Rubin, David C.
2013-01-01
Research on future episodic thought has produced compelling theories and results in cognitive psychology, cognitive neuroscience, and clinical psychology. To integrate these using basic concepts and methods from autobiographical memory research, 76 undergraduates remembered past and imagined future positive and negative events that had or would have a major impact on them. Correlations of the online ratings of visual and auditory imagery, emotion, and other measures demonstrated that individuals used the same processes to the same extent to remember past and construct future events. These measures predicted the theoretically important metacognitive judgment of past reliving and future ‘preliving’ in similar ways. Future negative events had much higher scores than past negative events on standardized tests of reactions to traumatic events, scores in the range that would qualify for a diagnosis of posttraumatic stress disorder (PTSD), which was replicated (n = 52) to check for order effects. Consistent with earlier work, future events had less sensory vividness. Thus, the imagined symptoms of future events were unlikely to be caused by sensory vividness. To confirm this, 63 undergraduates produced numerous added details between two constructions of the same negative future events, removing deficits in rated vividness with no increase in the standardized tests of reactions to traumatic events. Neuroticism predicted individuals’ reactions to negative past events but did not predict imagined reactions to future events. This set of novel methods and findings are interpreted in the contexts of the literatures of episodic future thought, autobiographical memory, PTSD, and classic schema theory. PMID:23607632
Expressed Likelihood as Motivator: Creating Value through Engaging What’s Real
Higgins, E. Tory; Franks, Becca; Pavarini, Dana; Sehnert, Steen; Manley, Katie
2012-01-01
Our research tested two predictions regarding how likelihood can have motivational effects as a function of how a probability is expressed. We predicted that describing the probability of a future event that could be either A or B using the language of high likelihood (“80% A”) rather than low likelihood (“20% B”), i.e., high rather than low expressed likelihood, would make a present activity more real and engaging, as long as the future event had properties relevant to the present activity. We also predicted that strengthening engagement from the high (vs. low) expressed likelihood of a future event would intensify the value of present positive and negative objects (in opposite directions). Both predictions were supported. There was also evidence that this intensification effect from expressed likelihood was independent of the actual probability or valence of the future event. What mattered was whether high versus low likelihood language was used to describe the future event. PMID:23940411
The UT 7/8 February 2013 Sila-Nunam Mutual Event and Future Predictions
NASA Technical Reports Server (NTRS)
Benecchi, S. D.; Noll, K. S.; Thirouin, A.; Ryan, E.; Grundy, W. M.; Verbiscer, A.; Doressoundiram, A.; Hestroffer, D.; Beaton, R.; Rabinowitz, D.;
2013-01-01
A superior mutual event of the Kuiper Belt binary system (79360) Sila-Nunam was observed over 15.47 h on UT 7/8 February 2013 by a coordinated effort at four different telescope facilities; it started approximately 1.5 h earlier than anticipated, the duration was approximately 9.5 h (about 10% longer than predicted), and was slightly less deep than predicted. It is the first full event observed for a comparably sized binary Kuiper Belt object. We provide predictions for future events refined by this and other partial mutual event observations obtained since the mutual event season began.
Marroquín, Brett; Boyle, Chloe C.; Nolen-Hoeksema, Susan; Stanton, Annette L.
2016-01-01
Predictions about the future are susceptible to mood-congruent influences of emotional state. However, recent work suggests individuals also differ in the degree to which they incorporate emotion into cognition. This study examined the role of such individual differences in the context of state negative emotion. We examined whether trait tendencies to use negative or positive emotion as information affect individuals' predictions of what will happen in the future (likelihood estimation) and how events will feel (affective forecasting), and whether trait influences depend on emotional state. Participants (N=119) reported on tendencies to use emotion as information (“following feelings”), underwent an emotion induction (negative versus neutral), and made likelihood estimates and affective forecasts for future events. Views of the future were predicted by both emotional state and individual differences in following feelings. Whereas following negative feelings affected most future-oriented cognition across emotional states, following positive feelings specifically buffered individuals' views of the future in the negative emotion condition, and specifically for positive future events, a category of future-event prediction especially important in psychological health. Individual differences may confer predisposition toward optimistic or pessimistic expectations of the future in the context of acute negative emotion, with implications for adaptive and maladaptive functioning. PMID:27041783
Getting What You Expect? Future Self-Views Predict the Valence of Life Events
ERIC Educational Resources Information Center
Voss, Peggy; Kornadt, Anna E.; Rothermund, Klaus
2017-01-01
Views on aging have been shown to predict the occurrence of events related to physical health in previous studies. Extending these findings, we investigated the relation between aging-related future self-views and life events in a longitudinal study across a range of different life domains. Participants (N = 593, age range 30-80 years at…
Technology Forecasting for the Purpose of Predicting Employment Growth
ERIC Educational Resources Information Center
Smith, Cormac
2016-01-01
Throughout history, there has been a great emphasis placed on the ability to predict future events. The value of such prognostication varies between situations and domains, but the objective remains the same. Is it possible to use current or past observations to forecast future events? One specific area in which such insight is sought after is the…
Induced optimism as mental rehearsal to decrease depressive predictive certainty.
Miranda, Regina; Weierich, Mariann; Khait, Valerie; Jurska, Justyna; Andersen, Susan M
2017-03-01
The present study examined whether practice in making optimistic future-event predictions would result in change in the hopelessness-related cognitions that characterize depression. Individuals (N = 170) with low, mild, and moderate-to-severe depressive symptoms were randomly assigned to a condition in which they practiced making optimistic future-event predictions or to a control condition in which they viewed the same stimuli but practiced determining whether a given phrase contained an adjective. Overall, individuals in the induced optimism condition showed increases in optimistic predictions, relative to the control condition, as a result of practice, but only individuals with moderate-to-severe symptoms of depression who practiced making optimistic future-event predictions showed decreases in depressive predictive certainty, relative to the control condition. In addition, they showed gains in efficiency in making optimistic predictions over the practice blocks, as assessed by response time. There was no difference in depressed mood by practice condition. Mental rehearsal might be one way of changing the hopelessness-related cognitions that characterize depression. Copyright © 2016 Elsevier Ltd. All rights reserved.
IMF Prediction with Cosmic Rays
NASA Astrophysics Data System (ADS)
Bieber, J. W.; Evenson, P. A.; Kuwabara, T.; Pei, C.
2013-12-01
Cosmic rays impacting Earth have passed through and interacted with the interplanetary magnetic field (IMF) surrounding Earth, and in some sense they carry information on the three-dimensional structure of that field. This work uses neutron monitor data in an effort to extract that information and use it to predict the future behavior of the IMF, especially the north-south component (Bz) which is so crucial in determining geomagnetic activity. We consider 161 events from a published list of interplanetary coronal mass ejections and compare hourly averages of the predicted field with the actual field measured later. We find that the percentage of events with 'good' predictions of Bz (in the sense of having a positive correlation between the prediction and the subsequent measurement) varies from about 85% for predictions 1 hour into the future to about 60% for predictions 4 hours into the future. We present several ideas for how the method might be improved in future implementations. Supported by NASA grant NNX08AQ01G and NSF grant ANT-0739620.
Doré, Bruce P; Meksin, Robert; Mather, Mara; Hirst, William; Ochsner, Kevin N
2016-06-01
In the aftermath of a national tragedy, important decisions are predicated on judgments of the emotional significance of the tragedy in the present and future. Research in affective forecasting has largely focused on ways in which people fail to make accurate predictions about the nature and duration of feelings experienced in the aftermath of an event. Here we ask a related but understudied question: can people forecast how they will feel in the future about a tragic event that has already occurred? We found that people were strikingly accurate when predicting how they would feel about the September 11 attacks over 1-, 2-, and 7-year prediction intervals. Although people slightly under- or overestimated their future feelings at times, they nonetheless showed high accuracy in forecasting (a) the overall intensity of their future negative emotion, and (b) the relative degree of different types of negative emotion (i.e., sadness, fear, or anger). Using a path model, we found that the relationship between forecasted and actual future emotion was partially mediated by current emotion and remembered emotion. These results extend theories of affective forecasting by showing that emotional responses to an event of ongoing national significance can be predicted with high accuracy, and by identifying current and remembered feelings as independent sources of this accuracy. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Doré, B.P.; Meksin, R.; Mather, M.; Hirst, W.; Ochsner, K.N
2016-01-01
In the aftermath of a national tragedy, important decisions are predicated on judgments of the emotional significance of the tragedy in the present and future. Research in affective forecasting has largely focused on ways in which people fail to make accurate predictions about the nature and duration of feelings experienced in the aftermath of an event. Here we ask a related but understudied question: can people forecast how they will feel in the future about a tragic event that has already occurred? We found that people were strikingly accurate when predicting how they would feel about the September 11 attacks over 1-, 2-, and 7-year prediction intervals. Although people slightly under- or overestimated their future feelings at times, they nonetheless showed high accuracy in forecasting 1) the overall intensity of their future negative emotion, and 2) the relative degree of different types of negative emotion (i.e., sadness, fear, or anger). Using a path model, we found that the relationship between forecasted and actual future emotion was partially mediated by current emotion and remembered emotion. These results extend theories of affective forecasting by showing that emotional responses to an event of ongoing national significance can be predicted with high accuracy, and by identifying current and remembered feelings as independent sources of this accuracy. PMID:27100309
The role of magical thinking in forecasting the future.
Stavrova, Olga; Meckel, Andrea
2017-02-01
This article explores the role of magical thinking in the subjective probabilities of future chance events. In five experiments, we show that individuals tend to predict a more lucky future (reflected in probability judgements of lucky and unfortunate chance events) for someone who happened to purchase a product associated with a highly moral person than for someone who unknowingly purchased a product associated with a highly immoral person. In the former case, positive events were considered more likely than negative events, whereas in the latter case, the difference in the likelihood judgement of positive and negative events disappeared or even reversed. Our results indicate that this effect is unlikely to be driven by participants' immanent justice beliefs, the availability heuristic, or experimenter demand. Finally, we show that individuals rely more heavily on magical thinking when their need for control is threatened, thus suggesting that lack of control represents a factor in driving magical thinking in making predictions about the future. © 2016 The British Psychological Society.
Elwood L. Shafer; George H. Moeller; Russell E. Getty
1974-01-01
As an aid to policy- and decision-making about future environmental problems, a panel of experts was asked to predict the probabilities of future events associated with natural-resource management, wildland-recreation management, environmental pollution, population-workforce-leisure, and urban environments. Though some of the predictions projected to the year 2050 may...
Buehler, Roger; McFarland, Cathy; Spyropoulos, Vassili; Lam, Kent C H
2007-09-01
This article examines the role of motivational factors in affective forecasting. The primary hypothesis was that people predict positive emotional reactions to future events when they are motivated to enhance their current feelings. Three experiments manipulated participants' moods (negative vs. neutral) and orientation toward their moods (reflective vs. ruminative) and then assessed the positivity of their affective predictions for future events. As hypothesized, when participants adopted a reflective orientation, and thus should have been motivated to engage in mood-regulation processes, they predicted more positive feelings in the negative than in the neutral mood condition. This pattern of mood-incongruent affective prediction was not exhibited when participants adopted a ruminative orientation. Additionally, within the negative mood condition, generating affective forecasts had a more positive emotional impact on reflectors than on ruminators. The findings suggest that affective predictions are sometimes driven by mood-regulatory motives.
Prediction Error Associated with the Perceptual Segmentation of Naturalistic Events
ERIC Educational Resources Information Center
Zacks, Jeffrey M.; Kurby, Christopher A.; Eisenberg, Michelle L.; Haroutunian, Nayiri
2011-01-01
Predicting the near future is important for survival and plays a central role in theories of perception, language processing, and learning. Prediction failures may be particularly important for initiating the updating of perceptual and memory systems and, thus, for the subjective experience of events. Here, we asked observers to make predictions…
Vazou, Spyridoula; Vlachopoulos, Symeon P
2014-11-01
Research on the motivation of stakeholders to integrate physical activity into daily school life is limited. The purpose was to examine the motivation of stakeholders to participate in a world record physical activity event and whether motivation was associated with future intention to use activity breaks during the daily school life and future participation in a similar event. After the 2012 JAM (Just-a-Minute) World Record event, 686 adults (591 women; 76.1% participated for children <10 years) completed measures of motivational regulations and future intention to (a) use the activity breaks and (b) participate in the event. High intrinsic motivation and low extrinsic motivation and amotivation for participation in the next event were reported. Hierarchical regression analysis, controlling for age, gender, and occupation, showed that intrinsic forms of motivation positively predicted, whereas amotivation negatively predicted, future intention to participate in the event and use the activity breaks. Multivariate analyses of variance revealed that school-related participants were more intrinsically motivated and intended to use the activity breaks and repeat the event more than those who were not affiliated with a school. Nonschool participants reported higher extrinsic motivation and amotivation than school-related participants. © 2014 Society for Public Health Education.
Does the self drive mental time travel?
Shao, Yi; Yao, Xiang; Ceci, Stephen J; Wang, Qi
2010-11-01
Research on autobiographical remembering has shown the intertwined relationship between the self and memory. Very little is known about the role of the self in the anticipation of the future. To investigate the association, European American (N=61) and Chinese (N=60) college students each reported two past autobiographical events and anticipated two future events, and described themselves in the past, present, and future. The results from a content analysis found that, regardless of culture, the future self and events were more positive and socially oriented than the past self and events. In general, European Americans provided more positive events and self-descriptions than Chinese. Men showed more personal focus in both experiences and self-descriptions than women at all time epochs. Importantly, independent of culture and gender, the self rather than the past events predicted the valence and personal focus of future events. These findings offer new insights into the dynamic relations between the self and episodic thinking.
Do Potential Past and Future Events Activate the Left-Right Mental Timeline?
ERIC Educational Resources Information Center
Aguirre, Roberto; Santiago, Julio
2017-01-01
Current evidence provides support for the idea that time is mentally represented by spatial means, i.e., a left-right mental timeline. However, available studies have tested only factual events, i.e., those which have occurred in the past or can be predicted to occur in the future. In the present study we tested whether past and future potential…
The surprising power of neighborly advice.
Gilbert, Daniel T; Killingsworth, Matthew A; Eyre, Rebecca N; Wilson, Timothy D
2009-03-20
Two experiments revealed that (i) people can more accurately predict their affective reactions to a future event when they know how a neighbor in their social network reacted to the event than when they know about the event itself and (ii) people do not believe this. Undergraduates made more accurate predictions about their affective reactions to a 5-minute speed date (n = 25) and to a peer evaluation (n = 88) when they knew only how another undergraduate had reacted to these events than when they had information about the events themselves. Both participants and independent judges mistakenly believed that predictions based on information about the event would be more accurate than predictions based on information about how another person had reacted to it.
Mass gathering medicine: a predictive model for patient presentation and transport rates.
Arbon, P; Bridgewater, F H; Smith, C
2001-01-01
This paper reports on research into the influence of environmental factors (including crowd size, temperature, humidity, and venue type) on the number of patients and the patient problems presenting to first-aid services at large, public events in Australia. Regression models were developed to predict rates of patient presentation and of transportation-to-a-hospital for future mass gatherings. To develop a data set and predictive model that can be applied across venues and types of mass gathering events that is not venue or event specific. Data collected will allow informed event planning for future mass gatherings for which health care services are required. Mass gatherings were defined as public events attended by in excess of 25,000 people. Over a period of 12 months, 201 mass gatherings attended by a combined audience in excess of 12 million people were surveyed throughout Australia. The survey was undertaken by St. John Ambulance Australia personnel. The researchers collected data on the incidence and type of patients presenting for treatment and on the environmental factors that may influence these presentations. A standard reporting format and definition of event geography was employed to overcome the event-specific nature of many previous surveys. There are 11,956 patients in the sample. The patient presentation rate across all event types was 0.992/1,000 attendees, and the transportation-to-hospital rate was 0.027/1,000 persons in attendance. The rates of patient presentations declined slightly as crowd sizes increased. The weather (particularly the relative humidity) was related positively to an increase in the rates of presentations. Other factors that influenced the number and type of patients presenting were the mobility of the crowd, the availability of alcohol, the event being enclosed by a boundary, and the number of patient-care personnel on duty. Three regression models were developed to predict presentation rates at future events. Several features of the event environment influence patient presentation rates, and that the prediction of patient load at these events is complex and multifactorial. The use of regression modeling and close attention to existing historical data for an event can improve planning and the provision of health care services at mass gatherings.
Component processes underlying future thinking.
D'Argembeau, Arnaud; Ortoleva, Claudia; Jumentier, Sabrina; Van der Linden, Martial
2010-09-01
This study sought to investigate the component processes underlying the ability to imagine future events, using an individual-differences approach. Participants completed several tasks assessing different aspects of future thinking (i.e., fluency, specificity, amount of episodic details, phenomenology) and were also assessed with tasks and questionnaires measuring various component processes that have been hypothesized to support future thinking (i.e., executive processes, visual-spatial processing, relational memory processing, self-consciousness, and time perspective). The main results showed that executive processes were correlated with various measures of future thinking, whereas visual-spatial processing abilities and time perspective were specifically related to the number of sensory descriptions reported when specific future events were imagined. Furthermore, individual differences in self-consciousness predicted the subjective feeling of experiencing the imagined future events. These results suggest that future thinking involves a collection of processes that are related to different facets of future-event representation.
A Case Study on Using Prediction Markets as a Rich Environment for Active Learning
ERIC Educational Resources Information Center
Buckley, Patrick; Garvey, John; McGrath, Fergal
2011-01-01
In this paper, prediction markets are presented as an innovative pedagogical tool which can be used to create a Rich Environment for Active Learning (REAL). Prediction markets are designed to make forecasts about specific future events by using a market mechanism to aggregate the information held by a large group of traders about that event into a…
Learning Temporal Statistics for Sensory Predictions in Aging.
Luft, Caroline Di Bernardi; Baker, Rosalind; Goldstone, Aimee; Zhang, Yang; Kourtzi, Zoe
2016-03-01
Predicting future events based on previous knowledge about the environment is critical for successful everyday interactions. Here, we ask which brain regions support our ability to predict the future based on implicit knowledge about the past in young and older age. Combining behavioral and fMRI measurements, we test whether training on structured temporal sequences improves the ability to predict upcoming sensory events; we then compare brain regions involved in learning predictive structures between young and older adults. Our behavioral results demonstrate that exposure to temporal sequences without feedback facilitates the ability of young and older adults to predict the orientation of an upcoming stimulus. Our fMRI results provide evidence for the involvement of corticostriatal regions in learning predictive structures in both young and older learners. In particular, we showed learning-dependent fMRI responses for structured sequences in frontoparietal regions and the striatum (putamen) for young adults. However, for older adults, learning-dependent activations were observed mainly in subcortical (putamen, thalamus) regions but were weaker in frontoparietal regions. Significant correlations of learning-dependent behavioral and fMRI changes in these regions suggest a strong link between brain activations and behavioral improvement rather than general overactivation. Thus, our findings suggest that predicting future events based on knowledge of temporal statistics engages brain regions involved in implicit learning in both young and older adults.
Future Nuisance Flooding at Boston Caused by Astronomical Tides Alone
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Foster, Grant
2016-01-01
Sea level rise necessarily triggers more occurrences of minor, or nuisance, flooding events along coastlines, a fact well documented in recent studies. At some locations nuisance flooding can be brought about merely by high spring tides, independent of storms, winds, or other atmospheric conditions. Analysis of observed water levels at Boston indicates that tidal flooding began to occur there in 2011 and will become more frequent in subsequent years. A compilation of all predicted nuisance-flooding events, induced by astronomical tides alone, is presented through year 2050. The accuracy of the tide prediction is improved when several unusual properties of Gulf of Maine tides, including secular changes, are properly accounted for. Future mean sea-level rise at Boston cannot be predicted with comparable confidence, so two very different climate scenarios are adopted; both predict a large increase in the frequency and the magnitude of tidal flooding events.
The Neural Basis of Event Simulation: An fMRI Study
Yomogida, Yukihito; Sugiura, Motoaki; Akimoto, Yoritaka; Miyauchi, Carlos Makoto; Kawashima, Ryuta
2014-01-01
Event simulation (ES) is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference). Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture–word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes. PMID:24789353
Decoding the future from past experience: learning shapes predictions in early visual cortex.
Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe
2015-05-01
Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.
Real-Time Safety Monitoring and Prediction for the National Airspace System
NASA Technical Reports Server (NTRS)
Roychoudhury, Indranil
2016-01-01
As new operational paradigms and additional aircraft are being introduced into the National Airspace System (NAS), maintaining safety in such a rapidly growing environment becomes more challenging. It is therefore desirable to have both an overview of the current safety of the airspace at different levels of granularity, as well an understanding of how the state of the safety will evolve into the future given the anticipated flight plans, weather forecasts, predicted health of assets in the airspace, and so on. To this end, we have developed a Real-Time Safety Monitoring (RTSM) that first, estimates the state of the NAS using the dynamic models. Then, given the state estimate and a probability distribution of future inputs to the NAS, the framework predicts the evolution of the NAS, i.e., the future state, and analyzes these future states to predict the occurrence of unsafe events. The entire probability distribution of airspace safety metrics is computed, not just point estimates, without significant assumptions regarding the distribution type and or parameters. We demonstrate our overall approach by predicting the occurrence of some unsafe events and show how these predictions evolve in time as flight operations progress.
Symbolic Processing Combined with Model-Based Reasoning
NASA Technical Reports Server (NTRS)
James, Mark
2009-01-01
A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.
Developing future precipitation events from historic events: An Amsterdam case study.
NASA Astrophysics Data System (ADS)
Manola, Iris; van den Hurk, Bart; de Moel, Hans; Aerts, Jeroen
2016-04-01
Due to climate change, the frequency and intensity of extreme precipitation events is expected to increase. It is therefore of high importance to develop climate change scenarios tailored towards the local and regional needs of policy makers in order to develop efficient adaptation strategies to reduce the risks from extreme weather events. Current approaches to tailor climate scenarios are often not well adopted in hazard management, since average changes in climate are not a main concern to policy makers, and tailoring climate scenarios to simulate future extremes can be complex. Therefore, a new concept has been introduced recently that uses known historic extreme events as a basis, and modifies the observed data for these events so that the outcome shows how the same event would occur in a warmer climate. This concept is introduced as 'Future Weather', and appeals to the experience of stakeholders and users. This research presents a novel method of projecting a future extreme precipitation event, based on a historic event. The selected precipitation event took place over the broader area of Amsterdam, the Netherlands in the summer of 2014, which resulted in blocked highways, disruption of air transportation, flooded buildings and public facilities. An analysis of rain monitoring stations showed that an event of such intensity has a 5 to 15 years return period. The method of projecting a future event follows a non-linear delta transformation that is applied directly on the observed event assuming a warmer climate to produce an "up-scaled" future precipitation event. The delta transformation is based on the observed behaviour of the precipitation intensity as a function of the dew point temperature during summers. The outcome is then compared to a benchmark method using the HARMONIE numerical weather prediction model, where the boundary conditions of the event from the Ensemble Prediction System of ECMWF (ENS) are perturbed to indicate a warmer climate. The two methodologies are statistically compared and evaluated. The comparison between the historic event generated by the model and the observed event will give information on the realism of the model for this event. The comparison between the delta transformation method and the future simulation will provide information on how the dynamics would affect the precipitation field, as compared to the statistical method.
Accuracy and artifact: reexamining the intensity bias in affective forecasting.
Levine, Linda J; Lench, Heather C; Kaplan, Robin L; Safer, Martin A
2012-10-01
Research on affective forecasting shows that people have a robust tendency to overestimate the intensity of future emotion. We hypothesized that (a) people can accurately predict the intensity of their feelings about events and (b) a procedural artifact contributes to people's tendency to overestimate the intensity of their feelings in general. People may misinterpret the forecasting question as asking how they will feel about a focal event, but they are later asked to report their feelings in general without reference to that event. In the current investigation, participants predicted and reported both their feelings in general and their feelings about an election outcome (Study 1) and an exam grade (Study 3). We also assessed how participants interpreted forecasting questions (Studies 2 and 4) and conducted a meta-analysis of affective forecasting research (Study 5). The results showed that participants accurately predicted the intensity of their feelings about events. They overestimated only when asked to predict how they would feel in general and later report their feelings without reference to the focal event. Most participants, however, misinterpreted requests to predict their feelings in general as asking how they would feel when they were thinking about the focal event. Clarifying the meaning of the forecasting question significantly reduced overestimation. These findings reveal that people have more sophisticated self-knowledge than is commonly portrayed in the affective forecasting literature. Overestimation of future emotion is partly due to a procedure in which people predict one thing but are later asked to report another.
Wan, Zhaofei; Liu, Xiaojun; Wang, Xinhong; Liu, Fuqiang; Liu, Weimin; Wu, Yue; Pei, Leilei; Yuan, Zuyi
2014-04-01
Arterial elasticity has been shown to predict cardiovascular disease (CVD) in apparently healthy populations. The present study aimed to explore whether arterial elasticity could predict CVD events in Chinese patients with angiographic coronary artery disease (CAD). Arterial elasticity of 365 patients with angiographic CAD was measured. During follow-up (48 months; range 6-65), 140 CVD events occurred (including 34 deaths). Univariate Cox analysis demonstrated that both large arterial elasticity and small arterial elasticity were significant predictors of CVD events. Multivariate Cox analysis indicated that small arterial elasticity remained significant. Kaplan-Meier analysis showed that the probability of having a CVD event/CVD death increased with a decrease of small arterial elasticity (P < .001, respectively). Decreased small arterial elasticity independently predicts the risk of CVD events in Chinese patients with angiographic CAD.
ERIC Educational Resources Information Center
McLain, Barbara Payne
2014-01-01
Predicting the future is a challenging task for music education, requiring both retrospection, analysis of current events, and foresight. This article examines several predictions from 2001 and challenges music educators to consider factors that may influence the future of teaching music in society.
Past makes future: role of pFC in prediction.
Fuster, Joaquín M; Bressler, Steven L
2015-04-01
The pFC enables the essential human capacities for predicting future events and preadapting to them. These capacities rest on both the structure and dynamics of the human pFC. Structurally, pFC, together with posterior association cortex, is at the highest hierarchical level of cortical organization, harboring neural networks that represent complex goal-directed actions. Dynamically, pFC is at the highest level of the perception-action cycle, the circular processing loop through the cortex that interfaces the organism with the environment in the pursuit of goals. In its predictive and preadaptive roles, pFC supports cognitive functions that are critical for the temporal organization of future behavior, including planning, attentional set, working memory, decision-making, and error monitoring. These functions have a common future perspective and are dynamically intertwined in goal-directed action. They all utilize the same neural infrastructure: a vast array of widely distributed, overlapping, and interactive cortical networks of personal memory and semantic knowledge, named cognits, which are formed by synaptic reinforcement in learning and memory acquisition. From this cortex-wide reservoir of memory and knowledge, pFC generates purposeful, goal-directed actions that are preadapted to predicted future events.
Hu, Hui-Xin; Chu, Min-Yi; Yang, Yin; Wang, Ling-Ling; Zhang, Rui-Ting; Lui, Simon S Y; Cheung, Eric F C; Chan, Raymond C K
2018-06-01
Few studies have examined whether there is a relationship between social anhedonia and prediction of future events and the role of beliefs about pleasure and emotional experience. In this study, 513 college students were recruited to complete a set of self-reported questionnaires, including the Revised Social Anhedonia Scale (CSAS), the Temporal Experience of Pleasure Scale (TEPS), the Belief about Pleasure Scale (BAPS) and the Beck Depression Inventory. Moreover, a checklist of 100 daily life events was also administrated to all participants. Mediation analysis found that social anhedonia had a direct impact on prediction of pleasant events. Emotional experience partly mediated the relationship between social anhedonia and subjective prediction of pleasant events. However, beliefs about pleasure had no significant mediation effect between social anhedonia and prediction of pleasant events, but were shown to influence the subjective prediction of pleasant events completely through emotional experience. These findings suggest that beliefs about pleasure and emotional experience may be considered promising factors for interventions in individuals with anhedonia. Copyright © 2018. Published by Elsevier B.V.
Mavromoustakos, Elena; Clark, Gavin I; Rock, Adam J
2016-01-01
Probability bias regarding threat-relevant outcomes has been demonstrated across anxiety disorders but has not been investigated in flying phobia. Individual temporal orientation (time perspective) may be hypothesised to influence estimates of negative outcomes occurring. The present study investigated whether probability bias could be demonstrated in flying phobia and whether probability estimates of negative flying events was predicted by time perspective. Sixty flying phobic and fifty-five non-flying-phobic adults were recruited to complete an online questionnaire. Participants completed the Flight Anxiety Scale, Probability Scale (measuring perceived probability of flying-negative events, general-negative and general positive events) and the Past-Negative, Future and Present-Hedonistic subscales of the Zimbardo Time Perspective Inventory (variables argued to predict mental travel forward and backward in time). The flying phobic group estimated the probability of flying negative and general negative events occurring as significantly higher than non-flying phobics. Past-Negative scores (positively) and Present-Hedonistic scores (negatively) predicted probability estimates of flying negative events. The Future Orientation subscale did not significantly predict probability estimates. This study is the first to demonstrate probability bias for threat-relevant outcomes in flying phobia. Results suggest that time perspective may influence perceived probability of threat-relevant outcomes but the nature of this relationship remains to be determined.
Mavromoustakos, Elena; Clark, Gavin I.; Rock, Adam J.
2016-01-01
Probability bias regarding threat-relevant outcomes has been demonstrated across anxiety disorders but has not been investigated in flying phobia. Individual temporal orientation (time perspective) may be hypothesised to influence estimates of negative outcomes occurring. The present study investigated whether probability bias could be demonstrated in flying phobia and whether probability estimates of negative flying events was predicted by time perspective. Sixty flying phobic and fifty-five non-flying-phobic adults were recruited to complete an online questionnaire. Participants completed the Flight Anxiety Scale, Probability Scale (measuring perceived probability of flying-negative events, general-negative and general positive events) and the Past-Negative, Future and Present-Hedonistic subscales of the Zimbardo Time Perspective Inventory (variables argued to predict mental travel forward and backward in time). The flying phobic group estimated the probability of flying negative and general negative events occurring as significantly higher than non-flying phobics. Past-Negative scores (positively) and Present-Hedonistic scores (negatively) predicted probability estimates of flying negative events. The Future Orientation subscale did not significantly predict probability estimates. This study is the first to demonstrate probability bias for threat-relevant outcomes in flying phobia. Results suggest that time perspective may influence perceived probability of threat-relevant outcomes but the nature of this relationship remains to be determined. PMID:27557054
Blecha, Kevin A.; Alldredge, Mat W.
2015-01-01
Animal space use studies using GPS collar technology are increasingly incorporating behavior based analysis of spatio-temporal data in order to expand inferences of resource use. GPS location cluster analysis is one such technique applied to large carnivores to identify the timing and location of feeding events. For logistical and financial reasons, researchers often implement predictive models for identifying these events. We present two separate improvements for predictive models that future practitioners can implement. Thus far, feeding prediction models have incorporated a small range of covariates, usually limited to spatio-temporal characteristics of the GPS data. Using GPS collared cougar (Puma concolor) we include activity sensor data as an additional covariate to increase prediction performance of feeding presence/absence. Integral to the predictive modeling of feeding events is a ground-truthing component, in which GPS location clusters are visited by human observers to confirm the presence or absence of feeding remains. Failing to account for sources of ground-truthing false-absences can bias the number of predicted feeding events to be low. Thus we account for some ground-truthing error sources directly in the model with covariates and when applying model predictions. Accounting for these errors resulted in a 10% increase in the number of clusters predicted to be feeding events. Using a double-observer design, we show that the ground-truthing false-absence rate is relatively low (4%) using a search delay of 2–60 days. Overall, we provide two separate improvements to the GPS cluster analysis techniques that can be expanded upon and implemented in future studies interested in identifying feeding behaviors of large carnivores. PMID:26398546
Jeunehomme, Olivier; D'Argembeau, Arnaud
2016-01-01
Recent research suggests that episodic future thoughts can be formed through the same dual mechanisms, direct and generative, as autobiographical memories. However, the prevalence and determinants of the direct production of future event representations remain unclear. Here, we addressed this issue by collecting self-reports of production modes, response times (RTs), and verbal protocols for the production past and future events in the word cueing paradigm. Across three experiments, we found that both past and future events were frequently reported to come directly to mind in response to the cue, and RTs confirmed that events were produced faster for direct than for generative responses. When looking at the determinants of direct responses, we found that most past and future events that were directly produced had already been thought of on a previous occasion, and the frequency of previous thoughts predicted the occurrence of direct access. The direct production of autobiographical thoughts was also more frequent for past and future events that were judged important and emotionally intense. Collectively, these findings provide novel evidence that the direct production of episodic future thoughts is frequent in the word cueing paradigm and often involves the activation of personally significant "memories of the future."
Learning predictive statistics from temporal sequences: Dynamics and strategies
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E.; Kourtzi, Zoe
2017-01-01
Human behavior is guided by our expectations about the future. Often, we make predictions by monitoring how event sequences unfold, even though such sequences may appear incomprehensible. Event structures in the natural environment typically vary in complexity, from simple repetition to complex probabilistic combinations. How do we learn these structures? Here we investigate the dynamics of structure learning by tracking human responses to temporal sequences that change in structure unbeknownst to the participants. Participants were asked to predict the upcoming item following a probabilistic sequence of symbols. Using a Markov process, we created a family of sequences, from simple frequency statistics (e.g., some symbols are more probable than others) to context-based statistics (e.g., symbol probability is contingent on preceding symbols). We demonstrate the dynamics with which individuals adapt to changes in the environment's statistics—that is, they extract the behaviorally relevant structures to make predictions about upcoming events. Further, we show that this structure learning relates to individual decision strategy; faster learning of complex structures relates to selection of the most probable outcome in a given context (maximizing) rather than matching of the exact sequence statistics. Our findings provide evidence for alternate routes to learning of behaviorally relevant statistics that facilitate our ability to predict future events in variable environments. PMID:28973111
Learning predictive statistics from temporal sequences: Dynamics and strategies.
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe
2017-10-01
Human behavior is guided by our expectations about the future. Often, we make predictions by monitoring how event sequences unfold, even though such sequences may appear incomprehensible. Event structures in the natural environment typically vary in complexity, from simple repetition to complex probabilistic combinations. How do we learn these structures? Here we investigate the dynamics of structure learning by tracking human responses to temporal sequences that change in structure unbeknownst to the participants. Participants were asked to predict the upcoming item following a probabilistic sequence of symbols. Using a Markov process, we created a family of sequences, from simple frequency statistics (e.g., some symbols are more probable than others) to context-based statistics (e.g., symbol probability is contingent on preceding symbols). We demonstrate the dynamics with which individuals adapt to changes in the environment's statistics-that is, they extract the behaviorally relevant structures to make predictions about upcoming events. Further, we show that this structure learning relates to individual decision strategy; faster learning of complex structures relates to selection of the most probable outcome in a given context (maximizing) rather than matching of the exact sequence statistics. Our findings provide evidence for alternate routes to learning of behaviorally relevant statistics that facilitate our ability to predict future events in variable environments.
Waikar, S V; Craske, M G
1997-01-01
Expectancies about future life events were assessed in anxious and depressed patients to test predictions of the Helplessness/Hopelessness model of anxiety and depression (Alloy, Kelly, Mineka, & Clements, 1990). In addition to expectancies for future events, patients from affective and anxiety treatment clinics completed anxiety and depression symptom ratings and positive and negative affects scales. Findings revealed partial support for the model. Negative outcome and helplessness expectancies were related specifically to depression. Cognitions regarding future positive events were interrelated and associated with symptom measures more strongly than were cognitions regarding negative events. Additionally, positive affects was more strongly related to depression than to anxiety symptom ratings. Implications and limitations of these findings are discussed.
Hanuschkin, Alexander; Kunkel, Susanne; Helias, Moritz; Morrison, Abigail; Diesmann, Markus
2010-01-01
Traditionally, event-driven simulations have been limited to the very restricted class of neuronal models for which the timing of future spikes can be expressed in closed form. Recently, the class of models that is amenable to event-driven simulation has been extended by the development of techniques to accurately calculate firing times for some integrate-and-fire neuron models that do not enable the prediction of future spikes in closed form. The motivation of this development is the general perception that time-driven simulations are imprecise. Here, we demonstrate that a globally time-driven scheme can calculate firing times that cannot be discriminated from those calculated by an event-driven implementation of the same model; moreover, the time-driven scheme incurs lower computational costs. The key insight is that time-driven methods are based on identifying a threshold crossing in the recent past, which can be implemented by a much simpler algorithm than the techniques for predicting future threshold crossings that are necessary for event-driven approaches. As run time is dominated by the cost of the operations performed at each incoming spike, which includes spike prediction in the case of event-driven simulation and retrospective detection in the case of time-driven simulation, the simple time-driven algorithm outperforms the event-driven approaches. Additionally, our method is generally applicable to all commonly used integrate-and-fire neuronal models; we show that a non-linear model employing a standard adaptive solver can reproduce a reference spike train with a high degree of precision. PMID:21031031
Changes in extreme events and the potential impacts on human health.
Bell, Jesse E; Brown, Claudia Langford; Conlon, Kathryn; Herring, Stephanie; Kunkel, Kenneth E; Lawrimore, Jay; Luber, George; Schreck, Carl; Smith, Adam; Uejio, Christopher
2018-04-01
Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future. Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden.
Continental-Scale Estimates of Runoff Using Future Climate ...
Recent runoff events have had serious repercussions to both natural ecosystems and human infrastructure. Understanding how shifts in storm event intensities are expected to change runoff responses are valuable for local, regional, and landscape planning. To address this challenge, relative changes in runoff using predicted future climate conditions were estimated over different biophysical areas for the CONterminous U.S. (CONUS). Runoff was estimated using the Curve Number (CN) developed by the USDA Soil Conservation Service (USDA, 1986). A seamless gridded dataset representing a CN for existing land use/land cover (LULC) across the CONUS was used along with two different storm event grids created specifically for this effort. The two storm event grids represent a 2- and a 100-year, 24-hour storm event under current climate conditions. The storm event grids were generated using a compilation of county-scale Texas USGS Intensity-Duration-Frequency (IDF) data (provided by William Asquith, USGS, Lubbock, Texas), and NOAA Atlas-2 and NOAA Atlas-14 gridded data sets. Future CN runoff was predicted using extreme storm events grids created using a method based on Kao and Ganguly (2011) where precipitation extremes reflect changes in saturated water vapor pressure of the atmosphere in response to temperature changes. The Clausius-Clapeyron relationship establishes that the total water vapor mass of fully saturated air increases with increasing temperature, leading to
A Goal Bias in Action: The Boundaries Adults Perceive in Events Align with Sites of Actor Intent
ERIC Educational Resources Information Center
Levine, Dani; Hirsh-Pasek, Kathy; Pace, Amy; Michnick Golinkoff, Roberta
2017-01-01
We live in a dynamic world comprised of continuous events. Remembering our past and predicting future events, however, requires that we segment these ongoing streams of information in a consistent manner. How is this segmentation achieved? This research examines whether the boundaries adults perceive in events, such as the Olympic figure skating…
Comparison of Diachronic Thinking and Event Ordering in 5- to 10-Year-Old Children
ERIC Educational Resources Information Center
Moore, Brandy D.; Brooks, Patricia J.; Rabin, Laura A.
2014-01-01
Two main theoretical constructs seek to describe the elaborated sense of time that may be a uniquely human attribute: diachronic thinking (the ability to think about the past and use that information to predict future events) and event ordering (the ability to sequence events in temporal order). Researchers utilize various tasks to measure the…
Genomic Selection Improves Heat Tolerance in Dairy Cattle
Garner, J. B.; Douglas, M. L.; Williams, S. R. O; Wales, W. J.; Marett, L. C.; Nguyen, T. T. T.; Reich, C. M.; Hayes, B. J.
2016-01-01
Dairy products are a key source of valuable proteins and fats for many millions of people worldwide. Dairy cattle are highly susceptible to heat-stress induced decline in milk production, and as the frequency and duration of heat-stress events increases, the long term security of nutrition from dairy products is threatened. Identification of dairy cattle more tolerant of heat stress conditions would be an important progression towards breeding better adapted dairy herds to future climates. Breeding for heat tolerance could be accelerated with genomic selection, using genome wide DNA markers that predict tolerance to heat stress. Here we demonstrate the value of genomic predictions for heat tolerance in cohorts of Holstein cows predicted to be heat tolerant and heat susceptible using controlled-climate chambers simulating a moderate heatwave event. Not only was the heat challenge stimulated decline in milk production less in cows genomically predicted to be heat-tolerant, physiological indicators such as rectal and intra-vaginal temperatures had reduced increases over the 4 day heat challenge. This demonstrates that genomic selection for heat tolerance in dairy cattle is a step towards securing a valuable source of nutrition and improving animal welfare facing a future with predicted increases in heat stress events. PMID:27682591
Cultural variation in the use of current life satisfaction to predict the future.
Oishi, S; Wyer, R S; Colcombe, S J
2000-03-01
Three studies examined cultural and situational influences on the tendency for people to use their current life satisfaction to predict future life events. On the basis of the self-enhancement literature, it was predicted that either writing about a positive personal experience or reading about another's negative experience would lead European Americans to focus their attention on internal attributes and thus would lead them to use their current life satisfaction in predicting the future. Conversely, on the basis of the self-criticism literature, it was predicted that these same conditions would lead Asian Americans to focus their attention on external factors and, therefore, would decrease their likelihood of using their current life satisfaction to predict the future. Studies 1 and 2 supported these hypotheses. Study 3 showed that these patterns could be obtained by subliminally priming concepts associated with individualism and collectivism.
Translating weather extremes into the future - a case for Norway
NASA Astrophysics Data System (ADS)
Sillmann, Jana; Mueller, Malte; Gjertsen, Uta; Haarsma, Rein; Hazeleger, Wilco; Amundsen, Helene
2017-04-01
We introduce a new project "Translating weather extremes into the future - a case for Norway" (TWEX - http://www.cicero.uio.no/en/twex). In TWEX, we take a novel "Tales of future weather" approach in which we use future scenarios tailored to a specific region and stakeholder in order to gain a more realistic picture of what future weather extremes might look like in a particular context. We focus on hydroclimatic extremes associated with a particular circulation pattern (so-called "Atmospheric River") leading to heavy rainfall in fall and winter along the West Coast of Norway and causing high-impact floods in Norwegian communities. We translate selected past events into the future (e.g., 2090) by using an approach very similar to what is used today for weather prediction. The data generated in TWEX will be distributed by standard (weather prediction) communication channels of the Norwegian Meteorological Institute and thus, will be accessible by end-user in a well-known data format for analyzing the impact of the events in the future and support decision-making on hazard prevention and adaptation planning.
Trends In Susceptibility To Single-Event Upset
NASA Technical Reports Server (NTRS)
Nichols, Donald K.; Price, William E.; Kolasinski, Wojciech A.; Koga, Rukotaro; Waskiewicz, Alvin E.; Pickel, James C.; Blandford, James T.
1989-01-01
Report provides nearly comprehensive body of data on single-event upsets due to irradiation by heavy ions. Combines new test data and previously published data from governmental and industrial laboratories. Clear trends emerge from data useful in predicting future performances of devices.
Adaptive constructive processes and the future of memory.
Schacter, Daniel L
2012-11-01
Memory serves critical functions in everyday life but is also prone to error. This article examines adaptive constructive processes, which play a functional role in memory and cognition but can also produce distortions, errors, and illusions. The article describes several types of memory errors that are produced by adaptive constructive processes and focuses in particular on the process of imagining or simulating events that might occur in one's personal future. Simulating future events relies on many of the same cognitive and neural processes as remembering past events, which may help to explain why imagination and memory can be easily confused. The article considers both pitfalls and adaptive aspects of future event simulation in the context of research on planning, prediction, problem solving, mind-wandering, prospective and retrospective memory, coping and positivity bias, and the interconnected set of brain regions known as the default network. PsycINFO Database Record (c) 2012 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Reed, Robert A.; Kinnison, Jim; Pickel, Jim; Buchner, Stephen; Marshall, Paul W.; Kniffin, Scott; LaBel, Kenneth A.
2003-01-01
Over the past 27 years, or so, increased concern over single event effects in spacecraft systems has resulted in research, development and engineering activities centered around a better understanding of the space radiation environment, single event effects predictive methods, ground test protocols, and test facility developments. This research has led to fairly well developed methods for assessing the impact of the space radiation environment on systems that contain SEE sensitive devices and the development of mitigation strategies either at the system or device level.
Geoffard, Pierre-Yves; Luchini, Stéphane
2010-01-01
In this paper, we consider that our experience of time (to come) depends on the emotions we feel when we imagine future pleasant or unpleasant events. A positive emotion such as relief or joy associated with a pleasant event that will happen in the future induces impatience. Impatience, in our context, implies that the experience of time up to the forthcoming event expands. A negative emotion such as grief or frustration associated with an unpleasant event that will happen in the future triggers anxiety. This will give the experience of time contraction. Time, therefore, is not exogeneously given to the individual and emotions, which link together events or situations, are a constitutive ingredient of the experience of time. Our theory can explain experimental evidence that people tend to prefer to perform painful actions earlier than pleasurable ones, contrary to the predictions yielded by the standard exponential discounting framework. PMID:20026465
Tang, Zhongwen
2015-01-01
An analytical way to compute predictive probability of success (PPOS) together with credible interval at interim analysis (IA) is developed for big clinical trials with time-to-event endpoints. The method takes account of the fixed data up to IA, the amount of uncertainty in future data, and uncertainty about parameters. Predictive power is a special type of PPOS. The result is confirmed by simulation. An optimal design is proposed by finding optimal combination of analysis time and futility cutoff based on some PPOS criteria.
Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests
NASA Astrophysics Data System (ADS)
Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.
2011-12-01
In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.
Prediction during statistical learning, and implications for the implicit/explicit divide
Dale, Rick; Duran, Nicholas D.; Morehead, J. Ryan
2012-01-01
Accounts of statistical learning, both implicit and explicit, often invoke predictive processes as central to learning, yet practically all experiments employ non-predictive measures during training. We argue that the common theoretical assumption of anticipation and prediction needs clearer, more direct evidence for it during learning. We offer a novel experimental context to explore prediction, and report results from a simple sequential learning task designed to promote predictive behaviors in participants as they responded to a short sequence of simple stimulus events. Predictive tendencies in participants were measured using their computer mouse, the trajectories of which served as a means of tapping into predictive behavior while participants were exposed to very short and simple sequences of events. A total of 143 participants were randomly assigned to stimulus sequences along a continuum of regularity. Analysis of computer-mouse trajectories revealed that (a) participants almost always anticipate events in some manner, (b) participants exhibit two stable patterns of behavior, either reacting to vs. predicting future events, (c) the extent to which participants predict relates to performance on a recall test, and (d) explicit reports of perceiving patterns in the brief sequence correlates with extent of prediction. We end with a discussion of implicit and explicit statistical learning and of the role prediction may play in both kinds of learning. PMID:22723817
Abram, M; Picard, L; Navarro, B; Piolino, P
2014-10-01
We investigated the episodic/semantic distinction in remembering the past and imagining the future and explored cognitive mechanisms predicting events' specificity throughout the lifespan. Eighty-three 6- to 81-year-old participants, divided into 5 age groups, underwent past, present and future episodic (events' evocation) and semantic (self-descriptions) autobiographical tasks and a complementary cognitive test battery (executive functions, working and episodic memory). The main results showed age effects on episodic events' evocation indicating an inverted U function (i.e., developmental progression from 6 to 21years and aging decline). By contrast, age effects were slighter on self-descriptions while self-defining events' evocation increased with age. Furthermore, age effects on episodic events' evocation were mainly mediated by age effects on cognitive functions and personal semantics. These new findings indicate a developmental and aging episodic/semantic distinction for both remembering the past and imagining the future, and suggest that above similarities, these abilities could have a fundamentally different basis. Copyright © 2014 Elsevier Inc. All rights reserved.
Lun, Chung-Tat; Tsui, Miranda S N; Cheng, Suet-Lai; Chan, Veronica L; Leung, Wah-Shing; Cheung, Alice P S; Chu, Chung-Ming
2016-01-01
Patients with chronic obstructive pulmonary disease (COPD) experiencing acute exacerbation (AE-COPD) with decompensated respiratory acidosis are known to have poor outcomes in terms of recurrent respiratory failure and death. However, the outcomes of AE-COPD patients with compensated respiratory acidosis are not known. We performed a 1-year prospective, single-centre, cohort study in patients surviving the index admission for AE-COPD to compare baseline factors between groups with normocapnia, compensated respiratory acidosis and decompensated respiratory acidosis. Survival analysis was done to examine time to readmissions, life-threatening events and death. A total of 250 patients fulfilling the inclusion and exclusion criteria were recruited and 245 patients were analysed. Compared with normocapnia, both compensated and decompensated respiratory acidosis are associated with lower FEV1 % (P < 0.001), higher GOLD stage (P = 0.003, <0.001) and higher BODE index (P = 0.038, 0.001) and a shorter time to life-threatening events (P < 0.001). Comparing compensated and decompensated respiratory acidosis, there was no difference in FEV1 (% predicted) (P = 0.15), GOLD stage (P = 0.091), BODE index (P = 0.158) or time to life-threatening events (P = 0.301). High PaCO2 level (P = 0.002) and previous use of non-invasive ventilation (NIV) in acute setting (P < 0.001) are predictive factors of future life-threatening events by multivariate analysis. Compared with normocapnia, both compensated and decompensated respiratory acidosis are associated with poorer lung function and higher risk of future life-threatening events. High PaCO2 level and past history of NIV use in acute settings were predictive factors for future life-threatening events. Compensated respiratory acidosis warrants special attention and optimization of medical therapy as it poses risk of life-threatening events. © 2015 Asian Pacific Society of Respirology.
ERIC Educational Resources Information Center
Ylinen, Sari; Bosseler, Alexis; Junttila, Katja; Huotilainen, Minna
2017-01-01
The ability to predict future events in the environment and learn from them is a fundamental component of adaptive behavior across species. Here we propose that inferring predictions facilitates speech processing and word learning in the early stages of language development. Twelve- and 24-month olds' electrophysiological brain responses to heard…
Kusev, Petko; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Juliusson, Asgeir; Chater, Nick
2018-01-01
When attempting to predict future events, people commonly rely on historical data. One psychological characteristic of judgmental forecasting of time series, established by research, is that when people make forecasts from series, they tend to underestimate future values for upward trends and overestimate them for downward ones, so-called trend-damping (modeled by anchoring on, and insufficient adjustment from, the average of recent time series values). Events in a time series can be experienced sequentially (dynamic mode), or they can also be retrospectively viewed simultaneously (static mode), not experienced individually in real time. In one experiment, we studied the influence of presentation mode (dynamic and static) on two sorts of judgment: (a) predictions of the next event (forecast) and (b) estimation of the average value of all the events in the presented series (average estimation). Participants' responses in dynamic mode were anchored on more recent events than in static mode for all types of judgment but with different consequences; hence, dynamic presentation improved prediction accuracy, but not estimation. These results are not anticipated by existing theoretical accounts; we develop and present an agent-based model-the adaptive anchoring model (ADAM)-to account for the difference between processing sequences of dynamically and statically presented stimuli (visually presented data). ADAM captures how variation in presentation mode produces variation in responses (and the accuracy of these responses) in both forecasting and judgment tasks. ADAM's model predictions for the forecasting and judgment tasks fit better with the response data than a linear-regression time series model. Moreover, ADAM outperformed autoregressive-integrated-moving-average (ARIMA) and exponential-smoothing models, while neither of these models accounts for people's responses on the average estimation task. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
Do strategic processes contribute to the specificity of future simulation in depression?
Addis, Donna Rose; Hach, Sylvia; Tippett, Lynette J
2016-06-01
The tendency to generate overgeneral past or future events is characteristic of individuals with a history of depression. Although much research has investigated the contribution of rumination and avoidance to the reduced specificity of past events, comparatively little research has examined (1) whether the specificity of future events is differentially reduced in depression and (2) the role of executive functions in this phenomenon. Our study aimed to redress this imbalance. Participants with either current or past experience of depressive symptoms ('depressive group'; N = 24) and matched controls ('control group'; N = 24) completed tests of avoidance, rumination, and executive functions. A modified Autobiographical Memory Test was administered to assess the specificity of past and future events. The depressive group were more ruminative and avoidant than controls, but did not exhibit deficits in executive function. Although overall the depressive group generated significantly fewer specific events than controls, this reduction was driven by a significant group difference in future event specificity. Strategic retrieval processes were correlated with both past and future specificity, and predictive of the future specificity, whereas avoidance and rumination were not. Our findings demonstrate that future simulation appears to be particularly vulnerable to disruption in individuals with current or past experience of depressive symptoms, consistent with the notion that future simulation is more cognitively demanding than autobiographical memory retrieval. Moreover, our findings suggest that even subtle changes in executive functions such as strategic processes may impact the ability to imagine specific future events. Future simulation may be particularly vulnerable to executive dysfunction in individuals with current/previous depressive symptoms, with evidence of a differential reduction in the specificity of future events. Strategic retrieval abilities were associated with the degree of future event specificity whereas levels of rumination and avoidance were not. Given that the ability to generate specific simulations of the future is associated with enhanced psychological wellbeing, problem solving and coping behaviours, understanding how to increase the specificity of future simulations in depression is an important direction for future research and clinical practice. Interventions focusing on improving the ability to engage strategic processes may be a fruitful avenue for increasing the ability to imagine specific future events in depression. The autobiographical event tasks have somewhat limited ecological validity as they do not account for the many social and environmental cues present in everyday life; the development of more clinically-relevant tasks may be of benefit to this area of study. © 2016 The British Psychological Society.
Thorndahl, Søren; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer
2016-12-01
Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events - especially in the future climate - it is valuable to be able to simulate these events numerically, both historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper, radar data observations with different spatial and temporal resolution, radar nowcasts of 0-2 h leadtime, and numerical weather models with leadtimes up to 24 h are used as inputs to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on the small town of Lystrup in Denmark, which was flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps in real-time with high resolution radar rainfall data, but rather limited forecast performance in predicting floods with leadtimes more than half an hour.
Prediction markets and their potential role in biomedical research--a review.
Pfeiffer, Thomas; Almenberg, Johan
2010-01-01
Predictions markets are marketplaces for trading contracts with payoffs that depend on the outcome of future events. Popular examples are markets on the outcome of presidential elections, where contracts pay $1 if a specific candidate wins the election and $0 if someone else wins. Contract prices on prediction markets can be interpreted as forecasts regarding the outcome of future events. Further attractive properties include the potential to aggregate private information, to generate and disseminate a consensus among the market participants, and to offer incentives for the acquisition of information. It has been argued that these properties might be valuable in the context of scientific research. In this review, we give an overview of key properties of prediction markets and discuss potential benefits for science. To illustrate these benefits for biomedical research, we discuss an example application in the context of decision making in research on the genetics of diseases. Moreover, some potential practical problems of prediction market application in science are discussed, and solutions are outlined. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
A threshold-free summary index of prediction accuracy for censored time to event data.
Yuan, Yan; Zhou, Qian M; Li, Bingying; Cai, Hengrui; Chow, Eric J; Armstrong, Gregory T
2018-05-10
Prediction performance of a risk scoring system needs to be carefully assessed before its adoption in clinical practice. Clinical preventive care often uses risk scores to screen asymptomatic population. The primary clinical interest is to predict the risk of having an event by a prespecified future time t 0 . Accuracy measures such as positive predictive values have been recommended for evaluating the predictive performance. However, for commonly used continuous or ordinal risk score systems, these measures require a subjective cutoff threshold value that dichotomizes the risk scores. The need for a cutoff value created barriers for practitioners and researchers. In this paper, we propose a threshold-free summary index of positive predictive values that accommodates time-dependent event status and competing risks. We develop a nonparametric estimator and provide an inference procedure for comparing this summary measure between 2 risk scores for censored time to event data. We conduct a simulation study to examine the finite-sample performance of the proposed estimation and inference procedures. Lastly, we illustrate the use of this measure on a real data example, comparing 2 risk score systems for predicting heart failure in childhood cancer survivors. Copyright © 2018 John Wiley & Sons, Ltd.
Hsu, Ling-Yuan; Chen, Tsung-Lin
2012-11-13
This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event.
Hsu, Ling-Yuan; Chen, Tsung-Lin
2012-01-01
This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231
Prospective Coding by Spiking Neurons
Brea, Johanni; Gaál, Alexisz Tamás; Senn, Walter
2016-01-01
Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron’s firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ). PMID:27341100
Deedwania, Prakash C; Pedersen, Terje R; DeMicco, David A; Breazna, Andrei; Betteridge, D John; Hitman, Graham A; Durrington, Paul; Neil, Andrew
2016-11-01
Traditional cardiovascular risk factors, such as hypertension and dyslipidemia, predispose individuals to cardiovascular disease, particularly patients with diabetes. We investigated the predictive value of baseline systolic blood pressure (SBP) and low-density lipoprotein cholesterol (LDL-C) on the risk of vascular outcomes in a large population of patients at high risk of future cardiovascular events. Data were pooled from the TNT (Treating to New Targets), CARDS (Collaborative Atorvastatin Diabetes Study), and IDEAL (Incremental Decrease in End-Points Through Aggressive Lipid Lowering) trials and included a total of 21,727 patients (TNT: 10,001; CARDS: 2838; IDEAL: 8888). The effect of baseline SBP and LDL-C on cardiovascular events, coronary events, and stroke was evaluated using a multivariate Cox proportional-hazards model. Overall, risk of cardiovascular events was significantly higher for patients with higher baseline SBP or LDL-C. Higher baseline SBP was significantly predictive of stroke but not coronary events. Conversely, higher baseline LDL-C was significantly predictive of coronary events but not stroke. Results from the subgroup with diabetes (5408 patients; TNT: 1501; CARDS: 2838; IDEAL: 1069) were broadly consistent with those of the total cohort: baseline SBP and LDL-C were significantly predictive of cardiovascular events overall, with the association to LDL-C predominantly related to an effect on coronary events. However, baseline SBP was not predictive of either coronary or stroke events in the pooled diabetic population. In this cohort of high-risk patients, baseline SBP and LDL-C were significantly predictive of cardiovascular outcomes, but this effect may differ between the cerebrovascular and coronary systems. NCT00327691 (TNT); NCT00327418 (CARDS); NCT00159835 (IDEAL). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
On the predictability of outliers in ensemble forecasts
NASA Astrophysics Data System (ADS)
Siegert, S.; Bröcker, J.; Kantz, H.
2012-03-01
In numerical weather prediction, ensembles are used to retrieve probabilistic forecasts of future weather conditions. We consider events where the verification is smaller than the smallest, or larger than the largest ensemble member of a scalar ensemble forecast. These events are called outliers. In a statistically consistent K-member ensemble, outliers should occur with a base rate of 2/(K+1). In operational ensembles this base rate tends to be higher. We study the predictability of outlier events in terms of the Brier Skill Score and find that forecast probabilities can be calculated which are more skillful than the unconditional base rate. This is shown analytically for statistically consistent ensembles. Using logistic regression, forecast probabilities for outlier events in an operational ensemble are calculated. These probabilities exhibit positive skill which is quantitatively similar to the analytical results. Possible causes of these results as well as their consequences for ensemble interpretation are discussed.
ERIC Educational Resources Information Center
Bohn, Annette; Berntsen, Dorthe
2013-01-01
When do children develop the ability to imagine their future lives in terms of a coherent prospective life story? We investigated whether this ability develops in parallel with the ability to construct a life story for the past and narratives about single autobiographical events in the past and future. Four groups of school children aged 9 to 15…
Eye movements reduce vividness and emotionality of "flashforwards".
Engelhard, Iris M; van den Hout, Marcel A; Janssen, Wilco C; van der Beek, Jorinde
2010-05-01
Earlier studies have shown that eye movements during retrieval of disturbing images about past events reduce their vividness and emotionality, which may be due to both tasks competing for working memory resources. This study examined whether eye movements reduce vividness and emotionality of visual distressing images about feared future events: "flashforwards". A non-clinical sample was asked to select two images of feared future events, which were self-rated for vividness and emotionality. These images were retrieved while making eye movements or without a concurrent secondary task, and then vividness and emotionality were rated again. Relative to the no-dual task condition, eye movements while thinking of future-oriented images resulted in decreased ratings of image vividness and emotional intensity. Apparently, eye movements reduce vividness and emotionality of visual images about past and future feared events. This is in line with a working memory account of the beneficial effects of eye movements, which predicts that any task that taxes working memory during retrieval of disturbing mental images will be beneficial. Copyright 2010 Elsevier Ltd. All rights reserved.
Identifying black swans in NextGen: predicting human performance in off-nominal conditions.
Wickens, Christopher D; Hooey, Becky L; Gore, Brian F; Sebok, Angelia; Koenicke, Corey S
2009-10-01
The objective is to validate a computational model of visual attention against empirical data--derived from a meta-analysis--of pilots' failure to notice safety-critical unexpected events. Many aircraft accidents have resulted, in part, because of failure to notice nonsalient unexpected events outside of foveal vision, illustrating the phenomenon of change blindness. A model of visual noticing, N-SEEV (noticing-salience, expectancy, effort, and value), was developed to predict these failures. First, 25 studies that reported objective data on miss rate for unexpected events in high-fidelity cockpit simulations were identified, and their miss rate data pooled across five variables (phase of flight, event expectancy, event location, presence of a head-up display, and presence of a highway-in-the-sky display). Second, the parameters of the N-SEEV model were tailored to mimic these dichotomies. The N-SEEV model output predicted variance in the obtained miss rate (r = .73). The individual miss rates of all six dichotomous conditions were predicted within 14%, and four of these were predicted within 7%. The N-SEEV model, developed on the basis of an independent data set, was able to successfully predict variance in this safety-critical measure of pilot response to abnormal circumstances, as collected from the literature. As new technology and procedures are envisioned for the future airspace, it is important to predict if these may compromise safety in terms of pilots' failing to notice unexpected events. Computational models such as N-SEEV support cost-effective means of making such predictions.
Music cognition as mental time travel.
Bailes, Freya; Dean, Roger T; Pearce, Marcus T
2013-01-01
As we experience a temporal flux of events our expectations of future events change. Such expectations seem to be central to our perception of affect in music, but we have little understanding of how expectations change as recent information is integrated. When music establishes a pitch centre (tonality), we rapidly learn to anticipate its continuation. What happens when anticipations are challenged by new events? Here we show that providing a melodic challenge to an established tonality leads to progressive changes in the impact of the features of the stimulus on listeners' expectations. The results demonstrate that retrospective analysis of recent events can establish new patterns of expectation that converge towards probabilistic interpretations of the temporal stream. These studies point to wider applications of understanding the impact of information flow on future prediction and its behavioural utility.
Information-Theoretic Properties of Auditory Sequences Dynamically Influence Expectation and Memory
ERIC Educational Resources Information Center
Agres, Kat; Abdallah, Samer; Pearce, Marcus
2018-01-01
A basic function of cognition is to detect regularities in sensory input to facilitate the prediction and recognition of future events. It has been proposed that these implicit expectations arise from an internal predictive coding model, based on knowledge acquired through processes such as statistical learning, but it is unclear how different…
Learning Political Science with Prediction Markets: An Experimental Study
ERIC Educational Resources Information Center
Ellis, Cali Mortenson; Sami, Rahul
2012-01-01
Prediction markets are designed to aggregate the information of many individuals to forecast future events. These markets provide participants with an incentive to seek information and a forum for interaction, making markets a promising tool to motivate student learning. We carried out a quasi-experiment in an introductory political science class…
The MJO-SSW Teleconnection: Interaction Between MJO-Forced Waves and the Midlatitude Jet
NASA Astrophysics Data System (ADS)
Kang, Wanying; Tziperman, Eli
2018-05-01
The Madden-Julian Oscillation (MJO) was shown to affect both present-day sudden stratospheric warming (SSW) events in the Arctic and their future frequency under global warming scenarios, with implications to the Arctic Oscillation and midlatitude extreme weather. This work uses a dry dynamic core model to understand the dependence of SSW frequency on the amplitude and longitudinal range of the MJO, motivated by the prediction that the MJO will strengthen and broaden its longitudinal range in a warmer climate. We focus on the response of the midlatitude jets and the corresponding generated stationary waves, which are shown to dominate the response of SSW events to MJO forcing. Momentum budget analysis of a large ensemble of spinup simulations suggests that the climatological jet response is driven by the MJO-forced meridional eddy momentum transport. The results suggest that the trends in both MJO amplitude and longitudinal range are important for the prediction of the midlatitude jet response and for the prediction of SSWs in a future climate.
Maroules, Christopher D; Rosero, Eric; Ayers, Colby; Peshock, Ronald M; Khera, Amit
2013-10-01
To determine the value of two abdominal aortic atherosclerosis measurements at magnetic resonance (MR) imaging for predicting future cardiovascular events. This study was approved by the institutional review board and complied with HIPAA regulations. The study consisted of 2122 participants from the multiethnic, population-based Dallas Heart Study who underwent abdominal aortic MR imaging at 1.5 T. Aortic atherosclerosis was measured by quantifying mean aortic wall thickness (MAWT) and aortic plaque burden. Participants were monitored for cardiovascular death, nonfatal cardiac events, and nonfatal extracardiac vascular events over a mean period of 7.8 years ± 1.5 (standard deviation [SD]). Cox proportional hazards regression was used to assess independent associations of aortic atherosclerosis and cardiovascular events. Increasing MAWT was positively associated with male sex (odds ratio, 3.66; P < .0001), current smoking (odds ratio, 2.53; P < .0001), 10-year increase in age (odds ratio, 2.24; P < .0001), and hypertension (odds ratio, 1.66; P = .0001). A total of 143 participants (6.7%) experienced a cardiovascular event. MAWT conferred an increased risk for composite events (hazard ratio, 1.28 per 1 SD; P = .001). Aortic plaque was not associated with increased risk for composite events. Increasing MAWT and aortic plaque burden both conferred an increased risk for nonfatal extracardiac events (hazard ratio of 1.52 per 1 SD [P < .001] and hazard ratio of 1.46 per 1 SD [P = .03], respectively). MR imaging measures of aortic atherosclerosis are predictive of future adverse cardiovascular events. © RSNA, 2013.
Brown, Adam J; Teng, Zhongzhao; Calvert, Patrick A; Rajani, Nikil K; Hennessy, Orla; Nerlekar, Nitesh; Obaid, Daniel R; Costopoulos, Charis; Huang, Yuan; Hoole, Stephen P; Goddard, Martin; West, Nick E J; Gillard, Jonathan H; Bennett, Martin R
2016-06-01
Although plaque rupture is responsible for most myocardial infarctions, few high-risk plaques identified by intracoronary imaging actually result in future major adverse cardiovascular events (MACE). Nonimaging markers of individual plaque behavior are therefore required. Rupture occurs when plaque structural stress (PSS) exceeds material strength. We therefore assessed whether PSS could predict future MACE in high-risk nonculprit lesions identified on virtual-histology intravascular ultrasound. Baseline nonculprit lesion features associated with MACE during long-term follow-up (median: 1115 days) were determined in 170 patients undergoing 3-vessel virtual-histology intravascular ultrasound. MACE was associated with plaque burden ≥70% (hazard ratio: 8.6; 95% confidence interval, 2.5-30.6; P<0.001) and minimal luminal area ≤4 mm(2) (hazard ratio: 6.6; 95% confidence interval, 2.1-20.1; P=0.036), although absolute event rates for high-risk lesions remained <10%. PSS derived from virtual-histology intravascular ultrasound was subsequently estimated in nonculprit lesions responsible for MACE (n=22) versus matched control lesions (n=22). PSS showed marked heterogeneity across and between similar lesions but was significantly increased in MACE lesions at high-risk regions, including plaque burden ≥70% (13.9±11.5 versus 10.2±4.7; P<0.001) and thin-cap fibroatheroma (14.0±8.9 versus 11.6±4.5; P=0.02). Furthermore, PSS improved the ability of virtual-histology intravascular ultrasound to predict MACE in plaques with plaque burden ≥70% (adjusted log-rank, P=0.003) and minimal luminal area ≤4 mm(2) (P=0.002). Plaques responsible for MACE had larger superficial calcium inclusions, which acted to increase PSS (P<0.05). Baseline PSS is increased in plaques responsible for MACE and improves the ability of intracoronary imaging to predict events. Biomechanical modeling may complement plaque imaging for risk stratification of coronary nonculprit lesions. © 2016 American Heart Association, Inc.
NASA Technical Reports Server (NTRS)
Milesi, Cristina; Costa-Cabral, Mariza; Rath, John; Mills, William; Roy, Sujoy; Thrasher, Bridget; Wang, Weile; Chiang, Felicia; Loewenstein, Max; Podolske, James
2014-01-01
Water resource managers planning for the adaptation to future events of extreme precipitation now have access to high resolution downscaled daily projections derived from statistical bias correction and constructed analogs. We also show that along the Pacific Coast the Northern Oscillation Index (NOI) is a reliable predictor of storm likelihood, and therefore a predictor of seasonal precipitation totals and likelihood of extremely intense precipitation. Such time series can be used to project intensity duration curves into the future or input into stormwater models. However, few climate projection studies have explored the impact of the type of downscaling method used on the range and uncertainty of predictions for local flood protection studies. Here we present a study of the future climate flood risk at NASA Ames Research Center, located in South Bay Area, by comparing the range of predictions in extreme precipitation events calculated from three sets of time series downscaled from CMIP5 data: 1) the Bias Correction Constructed Analogs method dataset downscaled to a 1/8 degree grid (12km); 2) the Bias Correction Spatial Disaggregation method downscaled to a 1km grid; 3) a statistical model of extreme daily precipitation events and projected NOI from CMIP5 models. In addition, predicted years of extreme precipitation are used to estimate the risk of overtopping of the retention pond located on the site through simulations of the EPA SWMM hydrologic model. Preliminary results indicate that the intensity of extreme precipitation events is expected to increase and flood the NASA Ames retention pond. The results from these estimations will assist flood protection managers in planning for infrastructure adaptations.
NASA Astrophysics Data System (ADS)
Novelo-Casanova, D. A.; Valdés-González, C.
2008-10-01
Using pattern recognition techniques, we formulate a simple prediction rule for a retrospective prediction of the three last largest eruptions of the Popocatépetl, Mexico, volcano that occurred on 23 April-30 June 1997 (Eruption 1; VEI ~ 2-3); 11 December 2000-23 January 2001 (Eruption 2; VEI ~ 3-4) and 7 June-4 September 2002 (Eruption 3; explosive dome extrusion and destruction phase). Times of Increased Probability (TIP) were estimated from the seismicity recorded by the local seismic network from 1 January 1995 to 31 December 2005. A TIP is issued when a cluster of seismic events occurs under our algorithm considerations in a temporal window several days (or weeks) prior to large volcanic activity providing sufficient time to organize an effective alert strategy. The best predictions of the three analyzed eruptions were obtained when averaging seismicity rate over a 5-day window with a threshold value of 12 events and declaring an alarm for 45 days. A TIP was issued about six weeks before Eruption 1. TIPs were detected about one and four weeks before Eruptions 2 and 3, respectively. According to our objectives, in all cases, the observed TIPs would have allowed the development of an effective civil protection strategy. Although, under our model considerations the three eruptive events were successfully predicted, one false alarm was also issued by our algorithm. An analysis of the epicentral and depth distribution of the local seismicity used by our prediction rule reveals that successful TIPs were issued from microearthquakes that took place below and towards SE of the crater. On the contrary, the seismicity that issued the observed false alarm was concentrated below the summit of the volcano. We conclude that recording of precursory seismicity below and SE of the crater together with detection of TIPs as described here, could become an important tool to predict future large eruptions at Popocatépetl. Although our model worked well for events that occurred in the past, it is necessary to verify the real capability of the model for future eruptive events.
The impact of perceived self-efficacy on mental time travel and social problem solving.
Brown, Adam D; Dorfman, Michelle L; Marmar, Charles R; Bryant, Richard A
2012-03-01
Current models of autobiographical memory suggest that self-identity guides autobiographical memory retrieval. Further, the capacity to recall the past and imagine one's self in the future (mental time travel) can influence social problem solving. We examined whether manipulating self-identity, through an induction task in which students were led to believe they possessed high or low self-efficacy, impacted episodic specificity and content of retrieved and imagined events, as well as social problem solving. Compared to individuals in the low self efficacy group, individuals in the high self efficacy group generated past and future events with greater (a) specificity, (b) positive words, and (c) self-efficacious statements, and also performed better on social problem solving indices. A lack of episodic detail for future events predicted poorer performance on social problem solving tasks. Strategies that increase perceived self-efficacy may help individuals to selectively construct a past and future that aids in negotiating social problems. Copyright © 2011 Elsevier Inc. All rights reserved.
Lorenz, Matthias W; Gao, Lu; Ziegelbauer, Kathrin; Norata, Giuseppe Danilo; Empana, Jean Philippe; Schmidtmann, Irene; Lin, Hung-Ju; McLachlan, Stela; Bokemark, Lena; Ronkainen, Kimmo; Amato, Mauro; Schminke, Ulf; Srinivasan, Sathanur R; Lind, Lars; Okazaki, Shuhei; Stehouwer, Coen D A; Willeit, Peter; Polak, Joseph F; Steinmetz, Helmuth; Sander, Dirk; Poppert, Holger; Desvarieux, Moise; Ikram, M Arfan; Johnsen, Stein Harald; Staub, Daniel; Sirtori, Cesare R; Iglseder, Bernhard; Beloqui, Oscar; Engström, Gunnar; Friera, Alfonso; Rozza, Francesco; Xie, Wuxiang; Parraga, Grace; Grigore, Liliana; Plichart, Matthieu; Blankenberg, Stefan; Su, Ta-Chen; Schmidt, Caroline; Tuomainen, Tomi-Pekka; Veglia, Fabrizio; Völzke, Henry; Nijpels, Giel; Willeit, Johann; Sacco, Ralph L; Franco, Oscar H; Uthoff, Heiko; Hedblad, Bo; Suarez, Carmen; Izzo, Raffaele; Zhao, Dong; Wannarong, Thapat; Catapano, Alberico; Ducimetiere, Pierre; Espinola-Klein, Christine; Chien, Kuo-Liong; Price, Jackie F; Bergström, Göran; Kauhanen, Jussi; Tremoli, Elena; Dörr, Marcus; Berenson, Gerald; Kitagawa, Kazuo; Dekker, Jacqueline M; Kiechl, Stefan; Sitzer, Matthias; Bickel, Horst; Rundek, Tatjana; Hofman, Albert; Mathiesen, Ellisiv B; Castelnuovo, Samuela; Landecho, Manuel F; Rosvall, Maria; Gabriel, Rafael; de Luca, Nicola; Liu, Jing; Baldassarre, Damiano; Kavousi, Maryam; de Groot, Eric; Bots, Michiel L; Yanez, David N; Thompson, Simon G
2018-01-01
Carotid intima media thickness (CIMT) predicts cardiovascular (CVD) events, but the predictive value of CIMT change is debated. We assessed the relation between CIMT change and events in individuals at high cardiovascular risk. From 31 cohorts with two CIMT scans (total n = 89070) on average 3.6 years apart and clinical follow-up, subcohorts were drawn: (A) individuals with at least 3 cardiovascular risk factors without previous CVD events, (B) individuals with carotid plaques without previous CVD events, and (C) individuals with previous CVD events. Cox regression models were fit to estimate the hazard ratio (HR) of the combined endpoint (myocardial infarction, stroke or vascular death) per standard deviation (SD) of CIMT change, adjusted for CVD risk factors. These HRs were pooled across studies. In groups A, B and C we observed 3483, 2845 and 1165 endpoint events, respectively. Average common CIMT was 0.79mm (SD 0.16mm), and annual common CIMT change was 0.01mm (SD 0.07mm), both in group A. The pooled HR per SD of annual common CIMT change (0.02 to 0.43mm) was 0.99 (95% confidence interval: 0.95-1.02) in group A, 0.98 (0.93-1.04) in group B, and 0.95 (0.89-1.04) in group C. The HR per SD of common CIMT (average of the first and the second CIMT scan, 0.09 to 0.75mm) was 1.15 (1.07-1.23) in group A, 1.13 (1.05-1.22) in group B, and 1.12 (1.05-1.20) in group C. We confirm that common CIMT is associated with future CVD events in individuals at high risk. CIMT change does not relate to future event risk in high-risk individuals.
Uncertainties in radiation effect predictions for the natural radiation environments of space.
McNulty, P J; Stassinopoulos, E G
1994-10-01
Future manned missions beyond low earth orbit require accurate predictions of the risk to astronauts and to critical systems from exposure to ionizing radiation. For low-level exposures, the hazards are dominated by rare single-event phenomena where individual cosmic-ray particles or spallation reactions result in potentially catastrophic changes in critical components. Examples might be a biological lesion leading to cancer in an astronaut or a memory upset leading to an undesired rocket firing. The risks of such events appears to depend on the amount of energy deposited within critical sensitive volumes of biological cells and microelectronic components. The critical environmental information needed to estimate the risks posed by the natural space environments, including solar flares, is the number of times more than a threshold amount of energy for an event will be deposited in the critical microvolumes. These predictions are complicated by uncertainties in the natural environments, particularly the composition of flares, and by the effects of shielding. Microdosimetric data for large numbers of orbits are needed to improve the environmental models and to test the transport codes used to predict event rates.
Uncertainties in radiation effect predictions for the natural radiation environments of space
NASA Technical Reports Server (NTRS)
Mcnulty, P. J.; Stassinopoulos, E. G.
1994-01-01
Future manned missions beyond low earth orbit require accurate predictions of the risk to astronauts and to critical systems from exposure to ionizing radiation. For low-level exposures, the hazards are dominated by rare single-event phenomena where individual cosmic-ray particles or spallation reactions result in potentially catastrophic changes in critical components. Examples might be a biological lesion leading to cancer in an astronaut or a memory upset leading to an undesired rocket firing. The risks of such events appears to depend on the amount of energy deposited within critical sensitive volumes of biological cells and microelectronic components. The critical environmental information needed to estimate the risks posed by the natural space environments, including solar flares, is the number of times more than a threshold amount of energy for an event will be deposited in the critical microvolumes. These predictions are complicated by uncertainties in the natural environments, particularly the composition of flares, and by the effects of shielding. Microdosimetric data for large numbers of orbits are needed to improve the environmental models and to test the transport codes used to predict event rates.
Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter?
Green, Daniel J; Jones, Helen; Thijssen, Dick; Cable, N T; Atkinson, Greg
2011-03-01
Endothelial dysfunction is an early atherosclerotic event that precedes clinical symptoms and may also render established plaque vulnerable to rupture. Noninvasive assessment of endothelial function is commonly undertaken using the flow-mediated dilation (FMD) technique. Some studies indicate that FMD possesses independent prognostic value to predict future cardiovascular events that may exceed that associated with traditional risk factor assessment. It has been assumed that this association is related to the proposal that FMD provides an index of endothelium-derived nitric oxide (NO) function. Interestingly, placement of the occlusion cuff during the FMD procedure alters the shear stress stimulus and NO dependency of the resulting dilation: cuff placement distal to the imaged artery leads to a largely NO-mediated response, whereas proximal cuff placement leads to dilation which is less NO dependent. We used this physiological observation and the knowledge that prognostic studies have used both approaches to examine whether the prognostic capacity of FMD is related to its role as a putative index of NO function. In a meta-analysis of 14 studies (>8300 subjects), we found that FMD derived using a proximal cuff was at least as predictive as that derived using distal cuff placement, despite the latter being more NO dependent. This suggests that, whilst FMD is strongly predictive of future cardiovascular events, this may not solely be related to its assumed NO dependency. Although this finding should be confirmed with more and larger studies, we suggest that any direct measure of vascular (endothelial) function may provide independent prognostic information in humans.
NASA Astrophysics Data System (ADS)
Kafka, A.; Barnett, M.; Ebel, J.; Bellegarde, H.; Campbell, L.
2004-12-01
The occurrence of the 2004 Parkfield earthquake provided a unique "teachable moment" for students in our science course for teacher education majors. The course uses seismology as a medium for teaching a wide variety of science topics appropriate for future teachers. The 2004 Parkfield earthquake occurred just 15 minutes after our students completed a lab on earthquake processes and earthquake prediction. That lab included a discussion of the Parkfield Earthquake Prediction Experiment as a motivation for the exercises they were working on that day. Furthermore, this earthquake was recorded on an AS1 seismograph right in their lab, just minutes after the students left. About an hour after we recorded the earthquake, the students were able to see their own seismogram of the event in the lecture part of the course, which provided an excellent teachable moment for a lecture/discussion on how the occurrence of the 2004 Parkfield earthquake might affect seismologists' ideas about earthquake prediction. The specific lab exercise that the students were working on just before we recorded this earthquake was a "sliding block" experiment that simulates earthquakes in the classroom. The experimental apparatus includes a flat board on top of which are blocks of wood attached to a bungee cord and a string wrapped around a hand crank. Plate motion is modeled by slowly turning the crank, and earthquakes are modeled as events in which the block slips ("blockquakes"). We scaled the earthquake data and the blockquake data (using how much the string moved as a proxy for time) so that we could compare blockquakes and earthquakes. This provided an opportunity to use interevent-time histograms to teach about earthquake processes, probability, and earthquake prediction, and to compare earthquake sequences with blockquake sequences. We were able to show the students, using data obtained directly from their own lab, how global earthquake data fit a Poisson exponential distribution better than do the blockquake and Parkfield data. This provided opportunities for discussing the difference between Poisson and normal distributions, how those differences affect our estimation of future earthquake probabilities, the importance of both the mean and the standard deviation in predicting future behavior from a sequence of events, and how conditional probability is used to help seismologists predict future earthquakes given a known or theoretical distribution of past earthquakes.
Chan, Lai Fong; Shamsul, Azhar Shah; Maniam, Thambu
2014-12-30
Our study aimed to examine the interplay between clinical and social predictors of future suicide attempt and the transition from suicidal ideation to suicide attempt in depressive disorders. Sixty-six Malaysian inpatients with a depressive disorder were assessed at index admission and within 1 year for suicide attempt, suicidal ideation, depression severity, life event changes, treatment history and relevant clinical and socio-demographic factors. One-fifth of suicidal ideators transitioned to a future suicide attempt. All future attempters (12/66) had prior ideation and 83% of attempters had a prior attempt. The highest risk for transitioning from ideation to attempt was 5 months post-discharge. Single predictor models showed that previous psychiatric hospitalization and ideation severity were shared predictors of future attempt and ideation to attempt transition. Substance use disorders (especially alcohol) predicted future attempt and approached significance for the transition process. Low socio-economic status predicted the transition process while major personal injury/illness predicted future suicide attempt. Past suicide attempt, subjective depression severity and medication compliance predicted only future suicide attempt. The absence of prior suicide attempt did not eliminate the risk of future attempt. Given the limited sample, future larger studies on mechanisms underlying the interactions of such predictors are needed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Future perspective and healthy lifestyle choices in adulthood.
Tasdemir-Ozdes, Aylin; Strickland-Hughes, Carla M; Bluck, Susan; Ebner, Natalie C
2016-09-01
Regardless of age, making healthy lifestyle choices is prudent. Despite that, individuals of all ages sometimes have difficulty choosing the healthy option. We argue that individuals' view of the future and position in the life span affects their current lifestyle choices. We capture the multidimensionality of future thinking by assessing 3 types of future perspective. Younger and older men and women (N = 127) reported global future time perspective, future health perspective, and perceived importance of future health-related events. They also rated their likelihood of making healthy lifestyle choices. As predicted, older participants indicated greater intention to make healthy choices in their current life than did younger participants. Compared to younger participants, older participants reported shorter global future time perspective and anticipated worse future health but perceived future health-related events as more important. Having a positive view of one's future health and seeing future health-related events as important were related to greater intention to make healthy lifestyle choices, but greater global future time perspective was not directly related to healthy choices. However, follow-up analyses suggested that greater global future time perspective indirectly affected healthy choices via a more positive view of future health. None of these relations were moderated by age. Individuals' perspective on the future is shown to be an important multidimensional construct affecting everyday healthy lifestyle choices for both younger and older adults. Implications for encouraging healthy choices across the adult life span are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Concern for Others Leads to Vicarious Optimism
Kappes, Andreas; Faber, Nadira S.; Kahane, Guy; Savulescu, Julian; Crockett, Molly J.
2018-01-01
An optimistic learning bias leads people to update their beliefs in response to better-than-expected good news but neglect worse-than-expected bad news. Because evidence suggests that this bias arises from self-concern, we hypothesized that a similar bias may affect beliefs about other people’s futures, to the extent that people care about others. Here, we demonstrated the phenomenon of vicarious optimism and showed that it arises from concern for others. Participants predicted the likelihood of unpleasant future events that could happen to either themselves or others. In addition to showing an optimistic learning bias for events affecting themselves, people showed vicarious optimism when learning about events affecting friends and strangers. Vicarious optimism for strangers correlated with generosity toward strangers, and experimentally increasing concern for strangers amplified vicarious optimism for them. These findings suggest that concern for others can bias beliefs about their future welfare and that optimism in learning is not restricted to oneself. PMID:29381448
Concern for Others Leads to Vicarious Optimism.
Kappes, Andreas; Faber, Nadira S; Kahane, Guy; Savulescu, Julian; Crockett, Molly J
2018-03-01
An optimistic learning bias leads people to update their beliefs in response to better-than-expected good news but neglect worse-than-expected bad news. Because evidence suggests that this bias arises from self-concern, we hypothesized that a similar bias may affect beliefs about other people's futures, to the extent that people care about others. Here, we demonstrated the phenomenon of vicarious optimism and showed that it arises from concern for others. Participants predicted the likelihood of unpleasant future events that could happen to either themselves or others. In addition to showing an optimistic learning bias for events affecting themselves, people showed vicarious optimism when learning about events affecting friends and strangers. Vicarious optimism for strangers correlated with generosity toward strangers, and experimentally increasing concern for strangers amplified vicarious optimism for them. These findings suggest that concern for others can bias beliefs about their future welfare and that optimism in learning is not restricted to oneself.
Recent Advancements in the Global Understanding of what Drives Heatwaves
NASA Astrophysics Data System (ADS)
Perkins-Kirkpatrick, S.
2016-12-01
Heatwaves, defined as prolonged periods of extreme heat, are disastrous events that impact human, natural and industrial systems all over the world. In recent years, the global research effort has greatly increased our understanding on quantifying heatwaves and how they have changed, what drives them, and their future projections. This talk will summarize critical developments made in this field, with particular emphasis on the physical driving mechanisms and the role of internal climate variability. Case studies from various global regions will illustrate both similarities and differences in the physical set-ups of these fascinating events. Future projections of heatwaves and the human contribution behind specific observed heatwave events will be briefly discussed. The talk will conclude by highlighting research priorities such that future investigation is targeted, and closes existing knowledge gaps on what drives heatwaves as effectively as possible. Such developments will ultimately aid in the predictability of heatwaves, thus aiding in reducing their devastating impacts.
Extreme Events and Disaster Risk Reduction - a Future Earth KAN initiative
NASA Astrophysics Data System (ADS)
Frank, Dorothea; Reichstein, Markus
2017-04-01
The topic of Extreme Events in the context of global environmental change is both a scientifically challenging and exciting topic, and of very high societal relevance. The Future Earth Cluster initiative E3S organized in 2016 a cross-community/co-design workshop on Extreme Events and Environments from Climate to Society (http://www.e3s-future-earth.eu/index.php/ConferencesEvents/ConferencesAmpEvents). Based on the results, co-design research strategies and established network of the workshop, and previous activities, E3S is thriving to establish the basis for a longer-term research effort under the umbrella of Future Earth. These led to an initiative for a Future Earth Knowledge Action Network on Extreme Events and Disaster Risk Reduction. Example initial key question in this context include: What are meaningful indices to describe and quantify impact-relevant (e.g. climate) extremes? Which system properties yield resistance and resilience to extreme conditions? What are the key interactions between global urbanization processes, extreme events, and social and infrastructure vulnerability and resilience? The long-term goal of this KAN is to contribute to enhancing the resistance, resilience, and adaptive capacity of socio-ecological systems across spatial, temporal and institutional scales, in particular in the light of hazards affected by ongoing environmental change (e.g. climate change, global urbanization and land use/land cover change). This can be achieved by enhanced understanding, prediction, improved and open data and knowledge bases for detection and early warning decision making, and by new insights on natural and societal conditions and governance for resilience and adaptive capacity.
Bae, Jonghoon; Cha, Young-Jae; Lee, Hyungsuk; Lee, Boyun; Baek, Sojung; Choi, Semin; Jang, Dayk
2017-01-01
This study examines whether the way that a person makes inferences about unknown events is associated with his or her social relations, more precisely, those characterized by ego network density that reflects the structure of a person's immediate social relation. From the analysis of individual predictions over the Go match between AlphaGo and Sedol Lee in March 2016 in Seoul, Korea, this study shows that the low-density group scored higher than the high-density group in the accuracy of the prediction over a future state of a social event, i.e., the outcome of the first game. We corroborated this finding with three replication tests that asked the participants to predict the following: film awards, President Park's impeachment in Korea, and the counterfactual assessment of the US presidential election. Taken together, this study suggests that network density is negatively associated with vision advantage, i.e., the ability to discover and forecast an unknown aspect of a social event.
Familiar real-world spatial cues provide memory benefits in older and younger adults.
Robin, Jessica; Moscovitch, Morris
2017-05-01
Episodic memory, future thinking, and memory for scenes have all been proposed to rely on the hippocampus, and evidence suggests that these all decline in healthy aging. Despite this age-related memory decline, studies examining the effects of context reinstatement on episodic memory have demonstrated that reinstating elements of the encoding context of an event leads to better memory retrieval in both younger and older adults. The current study was designed to test whether more familiar, real-world contexts, such as locations that participants visited often, would improve the detail richness and vividness of memory for scenes, autobiographical events, and imagination of future events in young and older adults. The predicted age-related decline in internal details across all 3 conditions was accompanied by persistent effects of contextual familiarity, in which a more familiar spatial context led to increased detail and vividness of remembered scenes, autobiographical events, and, to some extent, imagined future events. This study demonstrates that autobiographical memory, imagination of the future, and scene memory are similarly affected by aging, and all benefit from being associated with more familiar (real-world) contexts, illustrating the stability of contextual reinstatement effects on memory throughout the life span. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Neutrino Observation of Core Collapse Supernovae
NASA Astrophysics Data System (ADS)
Nakazato, Ken'ichiro
The event rate of the supernova neutrinos are predicted for the future SK-Gd experiment. With an eye on the neutron tagging by Gd, the energy and angular distributions are calculated both for tagged events from inverse β decay reaction and untagged events from other reactions. As a result, it is indicated that the shock revival in the supernova is detectable through the decrease of the event rate and decline of the average energy of events. It is also implied that a careful treatment for the neutrino spectra is needed to investigate the untagged events owing to the high neutrino threshold energy of 16O reactions.
Predictive and postdictive mechanisms jointly contribute to visual awareness.
Soga, Ryosuke; Akaishi, Rei; Sakai, Katsuyuki
2009-09-01
One of the fundamental issues in visual awareness is how we are able to perceive the scene in front of our eyes on time despite the delay in processing visual information. The prediction theory postulates that our visual system predicts the future to compensate for such delays. On the other hand, the postdiction theory postulates that our visual awareness is inevitably a delayed product. In the present study we used flash-lag paradigms in motion and color domains and examined how the perception of visual information at the time of flash is influenced by prior and subsequent visual events. We found that both types of event additively influence the perception of the present visual image, suggesting that our visual awareness results from joint contribution of predictive and postdictive mechanisms.
Stress testing hydrologic models using bottom-up climate change assessment
NASA Astrophysics Data System (ADS)
Stephens, C.; Johnson, F.; Marshall, L. A.
2017-12-01
Bottom-up climate change assessment is a promising approach for understanding the vulnerability of a system to potential future changes. The technique has been utilised successfully in risk-based assessments of future flood severity and infrastructure vulnerability. We find that it is also an ideal tool for assessing hydrologic model performance in a changing climate. In this study, we applied bottom-up climate change to compare the performance of two different hydrologic models (an event-based and a continuous model) under increasingly severe climate change scenarios. This allowed us to diagnose likely sources of future prediction error in the two models. The climate change scenarios were based on projections for southern Australia, which indicate drier average conditions with increased extreme rainfall intensities. We found that the key weakness in using the event-based model to simulate drier future scenarios was the model's inability to dynamically account for changing antecedent conditions. This led to increased variability in model performance relative to the continuous model, which automatically accounts for the wetness of a catchment through dynamic simulation of water storages. When considering more intense future rainfall events, representation of antecedent conditions became less important than assumptions around (non)linearity in catchment response. The linear continuous model we applied may underestimate flood risk in a future climate with greater extreme rainfall intensity. In contrast with the recommendations of previous studies, this indicates that continuous simulation is not necessarily the key to robust flood modelling under climate change. By applying bottom-up climate change assessment, we were able to understand systematic changes in relative model performance under changing conditions and deduce likely sources of prediction error in the two models.
HepSim: A repository with predictions for high-energy physics experiments
Chekanov, S. V.
2015-02-03
A file repository for calculations of cross sections and kinematic distributions using Monte Carlo generators for high-energy collisions is discussed. The repository is used to facilitate effective preservation and archiving of data from theoretical calculations and for comparisons with experimental data. The HepSim data library is publicly accessible and includes a number of Monte Carlo event samples with Standard Model predictions for current and future experiments. The HepSim project includes a software package to automate the process of downloading and viewing online Monte Carlo event samples. Data streaming over a network for end-user analysis is discussed.
Diffuse neutrino supernova background as a cosmological test
NASA Astrophysics Data System (ADS)
Barranco, J.; Bernal, A.; Delepine, D.
2018-05-01
The future detection and measurement of the diffuse neutrino supernova background will provide us with information about supernova neutrino emission and the cosmic core-collapse supernova rate. Little has been said about the information that this measurement could give us about the expansion history of the Universe. The purpose of this article is to study the change of the predicted diffuse supernova neutrino background as a function of the cosmological model. In particular, we study three different models: the Λ–Cold Dark Matter model, the Logotropic universe and a bulk viscous matter-dominated universe. By fitting the free parameters of each model with the supernova Ia probe, we calculate the predicted number of events in these three models. We found that the spectra and number of events for the Λ–Cold dark matter model and the Logotropic model are almost indistinguishable, while a bulk viscous matter-dominated cosmological model predicts more events.
A data-based model to locate mass movements triggered by seismic events in Sichuan, China.
de Souza, Fabio Teodoro
2014-01-01
Earthquakes affect the entire world and have catastrophic consequences. On May 12, 2008, an earthquake of magnitude 7.9 on the Richter scale occurred in the Wenchuan area of Sichuan province in China. This event, together with subsequent aftershocks, caused many avalanches, landslides, debris flows, collapses, and quake lakes and induced numerous unstable slopes. This work proposes a methodology that uses a data mining approach and geographic information systems to predict these mass movements based on their association with the main and aftershock epicenters, geologic faults, riverbeds, and topography. A dataset comprising 3,883 mass movements is analyzed, and some models to predict the location of these mass movements are developed. These predictive models could be used by the Chinese authorities as an important tool for identifying risk areas and rescuing survivors during similar events in the future.
Novel biomarkers for cardiovascular risk assessment: current status and future directions.
MacNamara, James; Eapen, Danny J; Quyyumi, Arshed; Sperling, Laurence
2015-09-01
Cardiovascular disease (CVD) is the leading cause of mortality in the modern world. Traditional risk algorithms may miss up to 20% of CVD events. Therefore, there is a need for new cardiac biomarkers. Many fields of research are dedicated to improving cardiac risk prediction, including genomics, transcriptomics and proteomics. To date, even the most promising biomarkers have only demonstrated modest associations and predictive ability. Few have undergone randomized control trials. A number of biomarkers are targets to new therapies aimed to reduce cardiovascular risk. Currently, some of the most promising risk prediction has been demonstrated with panels of multiple biomarkers. This article reviews the current state and future of proteomic biomarkers and aggregate biomarker panels.
NASA Astrophysics Data System (ADS)
van der Wiel, K.; Kapnick, S. B.; Vecchi, G.; Smith, J. A.
2017-12-01
The Mississippi-Missouri river catchment houses millions of people and much of the U.S. national agricultural production. Severe flooding events can therefore have large negative societal, natural and economic impacts. GFDL FLOR, a global coupled climate model (atmosphere, ocean, land, sea ice with integrated river routing module) is used to investigate the characteristics of great Mississippi floods with an average return period of 100 years. Model experiments under pre-industrial greenhouse gas forcing were conducted for 3400 years, such that the most extreme flooding events were explicitly modeled and the land and/or atmospheric causes could be investigated. It is shown that melt of snow pack and frozen sub-surface water in the Missouri and Upper Mississippi basins prime the river system, subsequently sensitizing it to above average precipitation in the Ohio and Tennessee basins. The months preceding the greatest flooding events are above average wet, leading to moist sub-surface conditions. Anomalous melt depends on the availability of frozen water in the catchment, therefore anomalous amounts of sub-surface frozen water and anomalous large snow pack in winter (Nov-Feb) make the river system susceptible for these great flooding events in spring (Feb-Apr). An additional experiment of 1200 years under transient greenhouse gas forcing (RCP4.5, 5 members) was done to investigate potential future change in flood risk. Based on a peak-over-threshold method, it is found that the number of great flooding events decreases in a warmer future. This decrease coincides with decreasing occurrence of large melt events, but is despite increasing numbers of large precipitation events. Though the model results indicate a decreasing risk for the greatest flooding events, the predictability of events might decrease in a warmer future given the changing characters of melt and precipitation.
Reformulated pavement remaining service life framework.
DOT National Transportation Integrated Search
2013-11-01
"Many important decisions are necessary in order to effectively provide and manage a pavement network. At the heart : of this process is the prediction of needed future construction events. One approach to providing a single numeric on : the conditio...
Pavement remaining service interval implementation guidelines.
DOT National Transportation Integrated Search
2013-11-01
"Many important decisions are necessary in order to effectively provide and manage a pavement network. At the heart of this : process is the prediction of needed future construction events. One approach to providing a single numeric on the condition ...
Affective forecasting bias in preschool children.
Gautam, Shalini; Bulley, Adam; von Hippel, William; Suddendorf, Thomas
2017-07-01
Adults are capable of predicting their emotional reactions to possible future events. Nevertheless, they systematically overestimate the intensity of their future emotional reactions relative to how they feel when these events actually occur. The developmental origin of this "intensity bias" has not yet been examined. Two studies were conducted to test the intensity bias in preschool children. In the first study, 5-year-olds (N=30) predicted how they would feel if they won or lost various games. Comparisons with subsequent self-reported feelings indicated that participants overestimated how sad they would feel to lose the games but did not overestimate their happiness from winning. The second study replicated this effect in another sample of 5-year-olds (n=34) and also found evidence of an intensity bias in 4-year-olds (n=30). These findings provide the first evidence of a negative intensity bias in affective forecasting among young children. Copyright © 2017 Elsevier Inc. All rights reserved.
Peters, S A; Laham, S M; Pachter, N; Winship, I M
2014-04-01
When clinicians facilitate and patients make decisions about predictive genetic testing, they often base their choices on the predicted emotional consequences of positive and negative test results. Research from psychology and decision making suggests that such predictions may often be biased. Work on affective forecasting-predicting one's future emotional states-shows that people tend to overestimate the impact of (especially negative) emotional events on their well-being; a phenomenon termed the impact bias. In this article, we review the causes and consequences of the impact bias in medical decision making, with a focus on applying such findings to predictive testing in clinical genetics. We also recommend strategies for reducing the impact bias and consider the ethical and practical implications of doing so. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Flexibility decline contributes to similarity of past and future thinking in Alzheimer's disease.
El Haj, Mohamad; Antoine, Pascal; Kapogiannis, Dimitrios
2015-11-01
A striking similarity has been suggested between past and future thinking in Alzheimer's Disease (AD), a similarity attributable to abnormalities in common modular cognitive functions and neuroanatomical substrates. This study extends this literature by identifying specific executive function deficits underlying past and future thinking in AD. Twenty-four participants with a clinical diagnosis of probable (mild) AD and 26 older controls generated past and future events and underwent tests of binding and the executive functions of flexibility, inhibition, and updating. AD patients showed similar autobiographical performances in past and future event generation, and so did control participants. In each group, the similarity of past and future thinking was predicted by flexibility. Furthermore, AD patients with low flexibility showed higher similarity of past and future thinking than those with high flexibility. These findings are interpreted in terms of involvement of the hippocampus and frontal lobes in future thinking. Deficits in these brain regions in AD are likely to compromise the ability to recombine episodic information into novel and flexible configurations as scenarios for the future. © 2015 Wiley Periodicals, Inc.
Flexibility Decline Contributes to Similarity of Past and Future Thinking in Alzheimer’s Disease
El Haj, Mohamad; Antoine, Pascal; Kapogiannis, Dimitrios
2017-01-01
A striking similarity has been suggested between past and future thinking in Alzheimer’s Disease (AD), a similarity attributable to abnormalities in common modular cognitive functions and neuroanatomical substrates. This study extends this literature by identifying specific executive function deficits underlying past and future thinking in AD. Twenty-four participants with a clinical diagnosis of probable (mild) AD and 26 older controls generated past and future events and underwent tests of binding and the executive functions of flexibility, inhibition, and updating. AD patients showed similar autobiographical performances in past and future event generation, and so did control participants. In each group, the similarity of past and future thinking was predicted by flexibility. Furthermore, AD patients with low flexibility showed higher similarity of past and future thinking than those with high flexibility. These findings are interpreted in terms of involvement of the hippocampus and frontal lobes in future thinking. Deficits in these brain regions in AD are likely to compromise the ability to recombine episodic information into novel and flexible configurations as scenarios for the future. PMID:25850800
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods Ecologists are being challenged to predict ecosystem responses under changing climatic conditions. Water availability is the primary driver of ecosystem processes in temperate grasslands and shrublands, but uncertainty in the magnitude and direction of change in precipita...
Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme
Roy, Jacques; Picon-Cochard, Catherine; Augusti, Angela; Benot, Marie-Lise; Thiery, Lionel; Darsonville, Olivier; Landais, Damien; Piel, Clément; Defossez, Marc; Devidal, Sébastien; Escape, Christophe; Ravel, Olivier; Fromin, Nathalie; Volaire, Florence; Milcu, Alexandru; Bahn, Michael; Soussana, Jean-François
2016-01-01
Extreme climatic events (ECEs) such as droughts and heat waves are predicted to increase in intensity and frequency and impact the terrestrial carbon balance. However, we lack direct experimental evidence of how the net carbon uptake of ecosystems is affected by ECEs under future elevated atmospheric CO2 concentrations (eCO2). Taking advantage of an advanced controlled environment facility for ecosystem research (Ecotron), we simulated eCO2 and extreme cooccurring heat and drought events as projected for the 2050s and analyzed their effects on the ecosystem-level carbon and water fluxes in a C3 grassland. Our results indicate that eCO2 not only slows down the decline of ecosystem carbon uptake during the ECE but also enhances its recovery after the ECE, as mediated by increases of root growth and plant nitrogen uptake induced by the ECE. These findings indicate that, in the predicted near future climate, eCO2 could mitigate the effects of extreme droughts and heat waves on ecosystem net carbon uptake. PMID:27185934
Li, Wei-Ping; Neradilek, Moni B; Gu, Fu-Sheng; Isquith, Daniel A; Sun, Zhi-Jun; Wu, Xing; Li, Hong-Wei; Zhao, Xue-Qiao
2017-04-05
The risk prediction of pregnancy-associated plasma protein-A (PAPP-A) for future cardiovascular (CV) events post acute coronary syndrome (ACS) in patients with type-2 diabetes mellitus (T2DM) was investigated in comparison to other risk factors. PAPP-A was measured at hospital admission in 320 consecutive ACS patients (136 with T2DM and 184 without). All patients were followed for 2 years for occurrence of CV death, non-fatal MI or stroke. Effect of PAPP-A on the CV event risk was estimated using Cox regression models. Receiver operating characteristics (ROC) curves were generated to demonstrate the sensitivity and specificity of PAPP-A in predicting CV events. ACS patients with T2DM had higher PAPP-A (19.29 ± 16.36 vs. 13.29 ± 13.90 ng/ml, p < 0.001) and higher rate of CV events 2 years post ACS (27.2 vs. 13.6%, p = 0.002) than those without. Higher levels of PAPP-A were significantly associated with increased risk of CV events during 2-year follow-up [HR = 2.97 for 1 SD increase in log 10 (PAPP-A), 95% CI 2.11-4.18, p < 0.001] in T2DM and (HR = 3.16, 95% CI 2.27-4.39, p < 0.001) in non-T2DM. Among patients with T2DM, PAPP-A showed a larger area under the curve (AUC 0.79) that was significantly more predictive than hsCRP (AUC 0.64), eGFR (AUC 0.66) and LVEF < 50% (AUC 0.52); predictive ability did not improve significantly by including those factors into the model. Patients with T2DM had higher levels of PAPP-A and increased risk of CV events. Elevated PAPP-A compared to other risk factors was a stronger predictor for future CV events 2 years post ACS in patients with T2DM. Trial registration ISRCTN10805074. Registered on 20 January 2017, retrospectively registered.
Predictive Technologies: Can Smart Tools Augment the Brain's Predictive Abilities?
Pezzulo, Giovanni; D'Ausilio, Alessandro; Gaggioli, Andrea
2016-01-01
The ability of “looking into the future”—namely, the capacity of anticipating future states of the environment or of the body—represents a fundamental function of human (and animal) brains. A goalkeeper who tries to guess the ball's direction; a chess player who attempts to anticipate the opponent's next move; or a man-in-love who tries to calculate what are the chances of her saying yes—in all these cases, people are simulating possible future states of the world, in order to maximize the success of their decisions or actions. Research in neuroscience is showing that our ability to predict the behavior of physical or social phenomena is largely dependent on the brain's ability to integrate current and past information to generate (probabilistic) simulations of the future. But could predictive processing be augmented using advanced technologies? In this contribution, we discuss how computational technologies may be used to support, facilitate or enhance the prediction of future events, by considering exemplificative scenarios across different domains, from simpler sensorimotor decisions to more complex cognitive tasks. We also examine the key scientific and technical challenges that must be faced to turn this vision into reality. PMID:27199648
Predicting healthcare trajectories from medical records: A deep learning approach.
Pham, Trang; Tran, Truyen; Phung, Dinh; Venkatesh, Svetha
2017-05-01
Personalized predictive medicine necessitates the modeling of patient illness and care processes, which inherently have long-term temporal dependencies. Healthcare observations, stored in electronic medical records are episodic and irregular in time. We introduce DeepCare, an end-to-end deep dynamic neural network that reads medical records, stores previous illness history, infers current illness states and predicts future medical outcomes. At the data level, DeepCare represents care episodes as vectors and models patient health state trajectories by the memory of historical records. Built on Long Short-Term Memory (LSTM), DeepCare introduces methods to handle irregularly timed events by moderating the forgetting and consolidation of memory. DeepCare also explicitly models medical interventions that change the course of illness and shape future medical risk. Moving up to the health state level, historical and present health states are then aggregated through multiscale temporal pooling, before passing through a neural network that estimates future outcomes. We demonstrate the efficacy of DeepCare for disease progression modeling, intervention recommendation, and future risk prediction. On two important cohorts with heavy social and economic burden - diabetes and mental health - the results show improved prediction accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
On the significance of future trends in flood frequencies
NASA Astrophysics Data System (ADS)
Bernhardt, M.; Schulz, K.; Wieder, O.
2015-12-01
Floods are a significant threat for alpine headwater catchments and for the forelands. The formation of significant flood events is thereby often coupled on processes occurring in the alpine zone. Rain on snow events are just one example. The prediction of flood risks or trends of flood risks is of major interest to people under direct threat, policy and decision makers as well as for insurance companies. A lot of research was and is currently done in view of detecting future trends in flood extremes or return periods. From a pure physically based point of view, there is strong evidence that those trends exist. But, the central point question is if trends in flood events or other extreme events could be detected from a statistical point of view and on the basis of the available data. This study will investigate this question on the basis of different target parameters and by using long term measurements.
Boissoneault, Jeff; Bunch, Jennifer R.; Robinson, Michael
2015-01-01
To investigate the association of ethnicity, sex, and parental pain modeling on the evaluation of experienced and imagined painful events, 173 healthy volunteers (96 women) completed the Prior Pain Experience Questionnaire, a 79-question assessment of the intensity of painful events, and a questionnaire regarding exposure to parental pain models. Consistent with existing literature, greater ratings of experienced pain were noted among Black vs. White participants. Parental pain modeling was associated with higher imagined pain ratings, but only when the parent matched the participant’s sex. This effect was greater among White and Asian participants than Black or Hispanic participants, implying ethno-cultural effects may moderate the influence of pain modeling on the evaluation of imagined pain events. The clinical implications of these findings, as well as the predictive ability of imagined pain ratings for determining future experiences of pain, should be investigated in future studies. PMID:26085306
Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms.
Zhang, Yufeng; Hood, Wendy R
2016-10-15
Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. © 2016. Published by The Company of Biologists Ltd.
Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms
Zhang, Yufeng
2016-01-01
ABSTRACT Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. PMID:27802148
Radvansky, Gabriel A.; D’Mello, Sidney K.; Abbott, Robert G.; ...
2016-01-27
The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covertmore » event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant’s current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person’s prior experience. Hence, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events.« less
Radvansky, Gabriel A.; D’Mello, Sidney K.; Abbott, Robert G.; Bixler, Robert E.
2016-01-01
The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covert event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant’s current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person’s prior experience. Thus, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events. PMID:26858673
Radvansky, Gabriel A; D'Mello, Sidney K; Abbott, Robert G; Bixler, Robert E
2016-01-01
The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covert event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant's current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person's prior experience. Thus, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radvansky, Gabriel A.; D’Mello, Sidney K.; Abbott, Robert G.
The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covertmore » event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant’s current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person’s prior experience. Hence, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events.« less
Uncertainty estimation of water levels for the Mitch flood event in Tegucigalpa
NASA Astrophysics Data System (ADS)
Fuentes Andino, D. C.; Halldin, S.; Lundin, L.; Xu, C.
2012-12-01
Hurricane Mitch in 1998 left a devastating flood in Tegucigalpa, the capital city of Honduras. Simulation of elevated water surfaces provides a good way to understand the hydraulic mechanism of large flood events. In this study the one-dimensional HEC-RAS model for steady flow conditions together with the two-dimensional Lisflood-fp model were used to estimate the water level for the Mitch event in the river reaches at Tegucigalpa. Parameters uncertainty of the model was investigated using the generalized likelihood uncertainty estimation (GLUE) framework. Because of the extremely large magnitude of the Mitch flood, no hydrometric measurements were taken during the event. However, post-event indirect measurements of discharge and observed water levels were obtained in previous works by JICA and USGS. To overcome the problem of lacking direct hydrometric measurement data, uncertainty in the discharge was estimated. Both models could well define the value for channel roughness, though more dispersion resulted from the floodplain value. Analysis of the data interaction showed that there was a tradeoff between discharge at the outlet and floodplain roughness for the 1D model. The estimated discharge range at the outlet of the study area encompassed the value indirectly estimated by JICA, however the indirect method used by the USGS overestimated the value. If behavioral parameter sets can well reproduce water surface levels for past events such as Mitch, more reliable predictions for future events can be expected. The results acquired in this research will provide guidelines to deal with the problem of modeling past floods when no direct data was measured during the event, and to predict future large events taking uncertainty into account. The obtained range of the uncertain flood extension will be an outcome useful for decision makers.
River-ice break-up/freeze-up: a review of climatic drivers, historical trends and future predictions
NASA Astrophysics Data System (ADS)
Prowse, T. D.; Bonsal, B. R.; Duguay, C. R.; Lacroix, M. P.
2007-10-01
River ice plays a fundamental role in biological, chemical and physical processes that control freshwater regimes of the cold regions. Moreover, it can have enormous economic implications for river-based developments. All such activities and processes can be modified significantly by any changes to river-ice thickness, composition or event timing and severity. This paper briefly reviews some of the major hydraulic, mechanical and thermodynamic processes controlling river-ice events and how these are influenced by variations in climate. A regional and temporal synthesis is also made of the observed historical trends in river-ice break-up/freeze-up occurrence from the Eurasian and North American cold regions. This involves assessment of several hydroclimatic variables that have influenced past trends and variability in river-ice break-up/freeze-up dates including air-temperature indicators (e.g. seasonal temperature, 0°C isotherm dates and various degree-days) and large-scale atmospheric circulation patterns or teleconnections. Implications of future climate change on the timing and severity of river-ice events are presented and discussed in relation to the historical trends. Attention is drawn to the increasing trends towards the occurrence of mid-winter break-up events that can produce especially severe flood conditions but prove to be the most difficult type of event to model and predict.
Koch, Benjamin J.; Febria, Catherine M.; Cooke, Roger M.; Hosen, Jacob D.; Baker, Matthew E.; Colson, Abigail R.; Filoso, Solange; Hayhoe, Katharine; Loperfido, J. V.; Stoner, Anne M.K.; Palmer, Margaret A.
2015-01-01
Expert knowledge indicated wide uncertainty in BMP performance, with N removal efficiencies ranging from <0% (BMP acting as a source of N during a rain event) to >40%. Experts believed that the amount of rain was the primary identifiable source of variability in BMP efficiency, which is relevant given climate projections of more frequent heavy rain events in the mid-Atlantic. To assess the extent to which those projected changes might alter N export from suburban BMPs and watersheds, we combined downscaled estimates of rainfall with distributions of N loads for different-sized rain events derived from our elicitation. The model predicted higher and more variable N loads under a projected future climate regime, suggesting that current BMP regulations for reducing nutrients may be inadequate in the future.
Measuring anxious responses to predictable and unpredictable threat in children and adolescents
Schmitz, Anja; Merikangas, Kathleen; Swendsen, Haruka; Cui, Lihong; Heaton, Leanne; Grillon, Christian
2011-01-01
Research has highlighted the need for new methods to assess emotions in children on multiple levels in order to gain better insight into the complex processes of emotional development. The startle reflex is a unique translational tool that has been utilized to study physiological processes during fear and anxiety in rodents and in human subjects. However, it has been challenging to implement developmentally-appropriate startle experiments in children. This paper describes a procedure that uses predictable and unpredictable aversive events to distinguish between phasic fear and sustained anxiety in children and adolescents. We investigated anxious responses, as measured with the startle reflex, in youth (N = 36, mean age[range] = 12.63 [7–17]) across three conditions: no aversive events (N), predictable aversive events (P), and unpredictable aversive events (U). Short-duration cues were presented several times in each condition. Aversive events were signaled by the cues in P, but were presented randomly in U. Participants showed fear-potentiated startle to the threat cue in P. Startle responses were also elevated between cues in U compared to N, suggesting that unpredictable aversive events can evoke a sustained state of anxiety in youth. This latter effect was influenced by sex, being greater in girls compared to boys. These findings indicate the feasibility of this experimental induction of the startle reflex in response to predictable and unpredictable events in children and adolescents, enabling future research on inter-individual differences in fear and anxiety and their development in youth. PMID:21440905
Recent Results on "Approximations to Optimal Alarm Systems for Anomaly Detection"
NASA Technical Reports Server (NTRS)
Martin, Rodney Alexander
2009-01-01
An optimal alarm system and its approximations may use Kalman filtering for univariate linear dynamic systems driven by Gaussian noise to provide a layer of predictive capability. Predicted Kalman filter future process values and a fixed critical threshold can be used to construct a candidate level-crossing event over a predetermined prediction window. An optimal alarm system can be designed to elicit the fewest false alarms for a fixed detection probability in this particular scenario.
Characterization of the 2012-044C Briz-M Upper Stage Breakup
NASA Technical Reports Server (NTRS)
Hamilton, Joseph A.; Matney, Mark
2013-01-01
The NASA breakup model prediction was close to the observed population for catalog objects. The NASA breakup model predicted a larger population than was observed for objects under 10 cm. The stare technique produces low observation counts, but is readily comparable to model predictions. Customized stare parameters (Az, El, Range) were effective to increase the opportunities for HAX to observe the debris cloud. Other techniques to increase observation count will be considered for future breakup events.
Predicting Liver Transplant Capacity Using Discrete Event Simulation.
Toro-Díaz, Hector; Mayorga, Maria E; Barritt, A Sidney; Orman, Eric S; Wheeler, Stephanie B
2015-08-01
The number of liver transplants (LTs) performed in the US increased until 2006 but has since declined despite an ongoing increase in demand. This decline may be due in part to decreased donor liver quality and increasing discard of poor-quality livers. We constructed a discrete event simulation (DES) model informed by current donor characteristics to predict future LT trends through the year 2030. The data source for our model is the United Network for Organ Sharing database, which contains patient-level information on all organ transplants performed in the US. Previous analysis showed that liver discard is increasing and that discarded organs are more often from donors who are older, are obese, have diabetes, and donated after cardiac death. Given that the prevalence of these factors is increasing, the DES model quantifies the reduction in the number of LTs performed through 2030. In addition, the model estimatesthe total number of future donors needed to maintain the current volume of LTs and the effect of a hypothetical scenario of improved reperfusion technology.We also forecast the number of patients on the waiting list and compare this with the estimated number of LTs to illustrate the impact that decreased LTs will have on patients needing transplants. By altering assumptions about the future donor pool, this model can be used to develop policy interventions to prevent a further decline in this lifesaving therapy. To our knowledge, there are no similar predictive models of future LT use based on epidemiological trends. © The Author(s) 2014.
Predicting Liver Transplant Capacity Using Discrete Event Simulation
Diaz, Hector Toro; Mayorga, Maria; Barritt, A. Sidney; Orman, Eric S.; Wheeler, Stephanie B.
2014-01-01
The number of liver transplants (LTs) performed in the US increased until 2006, but has since declined despite an ongoing increase in demand. This decline may be due in part to decreased donor liver quality and increasing discard of poor quality livers. We constructed a Discrete Event Simulation (DES) model informed by current donor characteristics to predict future LT trends through the year 2030. The data source for our model is the United Network for Organ Sharing database, which contains patient level information on all organ transplants performed in the US. Previous analysis showed that liver discard is increasing and that discarded organs are more often from donors who are older, obese, have diabetes, and donated after cardiac death. Given that the prevalence of these factors is increasing, the DES model quantifies the reduction in the number of LTs performed through 2030. In addition, the model estimates the total number of future donors needed to maintain the current volume of LTs, and the effect of a hypothetical scenario of improved reperfusion technology. We also forecast the number of patients on the waiting list and compare this to the estimated number of LTs to illustrate the impact that decreased LTs will have on patients needing transplants. By altering assumptions about the future donor pool, this model can be used to develop policy interventions to prevent a further decline in this life saving therapy. To our knowledge, there are no similar predictive models of future LT use based on epidemiologic trends. PMID:25391681
Grossi, Enzo
2006-05-03
In recent years a number of algorithms for cardiovascular risk assessment has been proposed to the medical community. These algorithms consider a number of variables and express their results as the percentage risk of developing a major fatal or non-fatal cardiovascular event in the following 10 to 20 years The author has identified three major pitfalls of these algorithms, linked to the limitation of the classical statistical approach in dealing with this kind of non linear and complex information. The pitfalls are the inability to capture the disease complexity, the inability to capture process dynamics, and the wide confidence interval of individual risk assessment. Artificial Intelligence tools can provide potential advantage in trying to overcome these limitations. The theoretical background and some application examples related to artificial neural networks and fuzzy logic have been reviewed and discussed. The use of predictive algorithms to assess individual absolute risk of cardiovascular future events is currently hampered by methodological and mathematical flaws. The use of newer approaches, such as fuzzy logic and artificial neural networks, linked to artificial intelligence, seems to better address both the challenge of increasing complexity resulting from a correlation between predisposing factors, data on the occurrence of cardiovascular events, and the prediction of future events on an individual level.
Yielding to desire: the durability of affective preferences.
Rapp, David N; Jacovina, Matthew E; Slaten, Daniel G; Krause, Elise
2014-09-01
People's expectations about the future are guided not just by the contingencies of situations but also by what they hope or wish will happen next. These preferences can inform predictions that run counter to what should or must occur based on the logic of unfolding events. Effects of this type have been regularly identified in studies of judgment and decision making, with individuals' choices often reflecting emotional rather than rational influences. Encouraging individuals to rely less on their emotional considerations has proven a challenge as affective responses are generated quickly and are seemingly informative for decisions. In 6 experiments we examined whether individuals could be encouraged to rely less on their affective preferences when making judgments about future events. Participants read stories in which contexts informed the likelihood of events in ways that might run counter to their preferential investments in particular outcomes. While being less than relevant given the logic of events, participants' affective considerations remained influential despite time allotted for predictive reflection. In contrast, instructional warnings helped attenuate the influence of affective considerations, even under conditions previously shown to encourage preferential biases. The findings are discussed with respect to factors that mediate preference effects, and highlight challenges for overcoming people's reliance on affective contributors to everyday judgments and comprehension.
A discrete event simulation tool to support and predict hospital and clinic staffing.
DeRienzo, Christopher M; Shaw, Ryan J; Meanor, Phillip; Lada, Emily; Ferranti, Jeffrey; Tanaka, David
2017-06-01
We demonstrate how to develop a simulation tool to help healthcare managers and administrators predict and plan for staffing needs in a hospital neonatal intensive care unit using administrative data. We developed a discrete event simulation model of nursing staff needed in a neonatal intensive care unit and then validated the model against historical data. The process flow was translated into a discrete event simulation model. Results demonstrated that the model can be used to give a respectable estimate of annual admissions, transfers, and deaths based upon two different staffing levels. The discrete event simulation tool model can provide healthcare managers and administrators with (1) a valid method of modeling patient mix, patient acuity, staffing needs, and costs in the present state and (2) a forecast of how changes in a unit's staffing, referral patterns, or patient mix would affect a unit in a future state.
Symbiont diversity may help coral reefs survive moderate climate change.
Baskett, Marissa L; Gaines, Steven D; Nisbet, Roger M
2009-01-01
Given climate change, thermal stress-related mass coral-bleaching events present one of the greatest anthropogenic threats to coral reefs. While corals and their symbiotic algae may respond to future temperatures through genetic adaptation and shifts in community compositions, the climate may change too rapidly for coral response. To test this potential for response, here we develop a model of coral and symbiont ecological dynamics and symbiont evolutionary dynamics. Model results without variation in symbiont thermal tolerance predict coral reef collapse within decades under multiple future climate scenarios, consistent with previous threshold-based predictions. However, model results with genetic or community-level variation in symbiont thermal tolerance can predict coral reef persistence into the next century, provided low enough greenhouse gas emissions occur. Therefore, the level of greenhouse gas emissions will have a significant effect on the future of coral reefs, and accounting for biodiversity and biological dynamics is vital to estimating the size of this effect.
Sishodia, Rajendra P; Shukla, Sanjay; Wani, Suhas P; Graham, Wendy D; Jones, James W
2018-09-01
Simultaneous effects of future climate and irrigation intensification on surface and groundwater systems are not well understood. Efforts are needed to understand the future groundwater availability and associated surface flows under business-as-usual management to formulate policy changes to improve water sustainability. We combine measurements with integrated modeling (MIKE SHE/MIKE11) to evaluate the effects of future climate (2040-2069), with and without irrigation expansion, on water levels and flows in an agricultural watershed in low-storage crystalline aquifer region of south India. Demand and supply management changes, including improved efficiency of irrigation water as well as energy uses, were evaluated. Increased future rainfall (7-43%, from 5 Global Climate Models) with no further expansion of irrigation wells increased the groundwater recharge (10-55%); however, most of the recharge moved out of watershed as increased baseflow (17-154%) with a small increase in net recharge (+0.2mm/year). When increased rainfall was considered with projected increase in irrigation withdrawals, both hydrologic extremes of well drying and flooding were predicted. A 100-year flow event was predicted to be a 5-year event in the future. If irrigation expansion follows the historical trends, earlier and more frequent well drying, a source of farmers' distress in India, was predicted to worsen in the future despite the recharge gains from increased rainfall. Storage and use of excess flows, improved irrigation efficiency with flood to drip conversion in 25% of irrigated area, and reduced energy subsidy (free electricity for 3.5h compared to 7h/day; $1 billion savings) provided sufficient water savings to support future expansion in irrigated areas while mitigating well drying as well as flooding. Reductions in energy subsidy to fund the implementation of economically desirable (high benefit-cost ratio) demand (drip irrigation) and supply (water capture and storage) management was recommended to achieve a sustainable food-water-energy nexus in semi-arid regions. Copyright © 2018 Elsevier B.V. All rights reserved.
Prediction and mitigation of scour and scour damage to Vermont bridges.
DOT National Transportation Integrated Search
2017-02-20
Over 300 Vermont bridges were damaged in the 2011 Tropical Storm Irene and many experienced significant scour. Successfully mitigating bridge scour in future flooding events depends on our ability to reliably estimate scour potential, design safe and...
VAPEPS user's reference manual, version 5.0
NASA Technical Reports Server (NTRS)
Park, D. M.
1988-01-01
This is the reference manual for the VibroAcoustic Payload Environment Prediction System (VAPEPS). The system consists of a computer program and a vibroacoustic database. The purpose of the system is to collect measurements of vibroacoustic data taken from flight events and ground tests, and to retrieve this data and provide a means of using the data to predict future payload environments. This manual describes the operating language of the program. Topics covered include database commands, Statistical Energy Analysis (SEA) prediction commands, stress prediction command, and general computational commands.
Bae, Jonghoon; Cha, Young-Jae; Lee, Hyungsuk; Lee, Boyun; Baek, Sojung; Choi, Semin
2017-01-01
This study examines whether the way that a person makes inferences about unknown events is associated with his or her social relations, more precisely, those characterized by ego network density that reflects the structure of a person’s immediate social relation. From the analysis of individual predictions over the Go match between AlphaGo and Sedol Lee in March 2016 in Seoul, Korea, this study shows that the low-density group scored higher than the high-density group in the accuracy of the prediction over a future state of a social event, i.e., the outcome of the first game. We corroborated this finding with three replication tests that asked the participants to predict the following: film awards, President Park’s impeachment in Korea, and the counterfactual assessment of the US presidential election. Taken together, this study suggests that network density is negatively associated with vision advantage, i.e., the ability to discover and forecast an unknown aspect of a social event. PMID:28222114
Prediction of Exposure Level of Energetic Solar Particle Events
NASA Astrophysics Data System (ADS)
Kim, M. H. Y.; Blattnig, S.
2016-12-01
The potential for exposure to large solar particle events (SPEs) with fluxes that extend to high energies is a major concern during interplanetary transfer and extravehicular activities (EVAs) on the lunar and Martian surfaces. Prediction of sporadic occurrence of SPEs is not accurate for near or long-term scales, while the expected frequency of such events is strongly influenced by solar cycle activity. In the development of NASA's operational strategies real-time estimation of exposure to SPEs has been considered so that adequate responses can be applied in a timely manner to reduce exposures to well below the exposure limits. Previously, the organ doses of large historical SPEs had been calculated by using the complete energy spectra of each event and then developing a prediction model for blood-forming organ (BFO) dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. While BFO dose is determined primarily by solar protons with high energies, it was reasoned that more accurate BFO dose prediction models could be developed using integrated fluence above 60 MeV (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. In the current study, re-analysis of major SPEs (in which the proton spectra of the ground level enhancement [GLE] events since 1956 are correctly described by Band functions) has been used in evaluation of exposure levels. More accurate prediction models for BFO dose and NASA effective dose are then developed using integrated fluence above 200 MeV (Φ200), which by far have the most weight in the calculation of doses for deep-seated organs from exposure to extreme SPEs (GLEs or sub-GLEs). The unconditional probability of a BFO dose exceeding a pre-specified BFO dose limit is simultaneously calculated by taking into account the distribution of the predictor (Φ30, Φ60, Φ100, or Φ200) as estimated from historical SPEs. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions.
Prediction of the run out extents of the Slano Blato landslide for future debris flow events
NASA Astrophysics Data System (ADS)
Askarinejad, Amin; Leu, Pascal; Macek, Matej; Petkovsek, Ana; Springman, Sarah
2013-04-01
The Slano Blato landslide has a volume of about 1 mio m3 and is located in the western part of Slovenia. It has been considered to be a potential natural hazard for the village of Lokavec for more than 200 years. Several mud flows, exhibiting a range of volumes and velocities, have originated from the landslide body since the year 2000, when the landslide was reactivated due to an intense rainfall event. A series of obstacles, including safety dams and deposition ponds, have been constructed for the remediation of the landslide. These obstacles are designed to absorb and contain future debris flow hazard. A prerequisite to any risk analysis is to establish the vulnerability to the hazard event. The aim of this work is to simulate possible future debris flow scenarios in order to predict the run out distances, flow heights, impact pressures and potential effects on the downstream village buildings and infrastructure. The simulations were carried out using the RAMMS program (RApid Mass MovementS, www.ramms.slf.ch). A three dimensional terrain model of the landslide area and the downstream zones, with or without the inclusion of the obstacles, was made for the simulations and different scenarios concerning the released volume, the internal friction and viscosity of the sliding mass were studied. The results indicate that low viscosity mudflows with a volume of 5,000 m3 endanger some parts of Lokavec village. However, the simulations with volumes of 15,000 and 50,000 m3 predict catastrophic effects in terms of either impact pressures or deposition heights for the majority of houses. Moreover, the simulations confirmed that the choice of the material properties (internal friction and viscosity), the characteristics of the release hydrograph, event location, and natural or man-made obstacles play major roles in the run out distances and impact pressures.
Price dynamics in political prediction markets
Majumder, Saikat Ray; Diermeier, Daniel; Rietz, Thomas A.; Amaral, Luís A. Nunes
2009-01-01
Prediction markets, in which contract prices are used to forecast future events, are increasingly applied to various domains ranging from political contests to scientific breakthroughs. However, the dynamics of such markets are not well understood. Here, we study the return dynamics of the oldest, most data-rich prediction markets, the Iowa Electronic Presidential Election “winner-takes-all” markets. As with other financial markets, we find uncorrelated returns, power-law decaying volatility correlations, and, usually, power-law decaying distributions of returns. However, unlike other financial markets, we find conditional diverging volatilities as the contract settlement date approaches. We propose a dynamic binary option model that captures all features of the empirical data and can potentially provide a tool with which one may extract true information events from a price time series. PMID:19155442
Davis, Kelly Cue; Danube, Cinnamon L; Stappenbeck, Cynthia A; Norris, Jeanette; George, William H
2015-08-01
Sexual assault in the United States is an important public health concern. Using prospective longitudinal methods and responses from 217 community men, we examined whether background characteristics predicted subsequent sexual aggression (SA) perpetration during a 3-month follow-up period. We also examined event-specific characteristics of reported SA occurrences. Consistent with predictions, SA perpetration history, aggressive and impulsive personality traits, rape myth attitudes, and alcohol expectancies predicted SA (both non- and alcohol-involved) at follow-up. In addition, alcohol-involved assaults occurred more often with casual (vs. steady) partners but were more likely to involve condom use with casual (vs. steady) partners. Results suggest important avenues for future research and SA prevention efforts. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Tellman, B.; Sullivan, J.; Kettner, A.; Brakenridge, G. R.; Slayback, D. A.; Kuhn, C.; Doyle, C.
2016-12-01
There is an increasing need to understand flood vulnerability as the societal and economic effects of flooding increases. Risk models from insurance companies and flood models from hydrologists must be calibrated based on flood observations in order to make future predictions that can improve planning and help societies reduce future disasters. Specifically, to improve these models both traditional methods of flood prediction from physically based models as well as data-driven techniques, such as machine learning, require spatial flood observation to validate model outputs and quantify uncertainty. A key dataset that is missing for flood model validation is a global historical geo-database of flood event extents. Currently, the most advanced database of historical flood extent is hosted and maintained at the Dartmouth Flood Observatory (DFO) that has catalogued 4320 floods (1985-2015) but has only mapped 5% of these floods. We are addressing this data gap by mapping the inventory of floods in the DFO database to create a first-of- its-kind, comprehensive, global and historical geospatial database of flood events. To do so, we combine water detection algorithms on MODIS and Landsat 5,7 and 8 imagery in Google Earth Engine to map discrete flood events. The created database will be available in the Earth Engine Catalogue for download by country, region, or time period. This dataset can be leveraged for new data-driven hydrologic modeling using machine learning algorithms in Earth Engine's highly parallelized computing environment, and we will show examples for New York and Senegal.
Cyclone-induced rapid creation of extreme Antarctic sea ice conditions
Wang, Zhaomin; Turner, John; Sun, Bo; Li, Bingrui; Liu, Chengyan
2014-01-01
Two polar vessels, Akademik Shokalskiy and Xuelong, were trapped by thick sea ice in the Antarctic coastal region just to the west of 144°E and between 66.5°S and 67°S in late December 2013. This event demonstrated the rapid establishment of extreme Antarctic sea ice conditions on synoptic time scales. The event was associated with cyclones that developed at lower latitudes. Near the event site, cyclone-enhanced strong southeasterly katabatic winds drove large westward drifts of ice floes. In addition, the cyclones also gave southward ice drift. The arrival and grounding of Iceberg B9B in Commonwealth Bay in March 2011 led to the growth of fast ice around it, forming a northward protruding barrier. This barrier blocked the westward ice drift and hence aided sea ice consolidation on its eastern side. Similar cyclone-induced events have occurred at this site in the past after the grounding of Iceberg B9B. Future events may be predictable on synoptic time scales, if cyclone-induced strong wind events can be predicted. PMID:24937550
Forecasting irregular variations of UT1-UTC and LOD data caused by ENSO
NASA Astrophysics Data System (ADS)
Niedzielski, T.; Kosek, W.
2008-04-01
The research focuses on prediction of LOD and UT1-UTC time series up to one-year in the future with the particular emphasis on the prediction improvement during El Nĩ o or La Nĩ a n n events. The polynomial-harmonic least-squares model is applied to fit the deterministic function to LOD data. The stochastic residuals computed as the difference between LOD data and the polynomial- harmonic model reveal the extreme values driven by El Nĩ o or La Nĩ a. These peaks are modeled by the n n stochastic bivariate autoregressive prediction. This approach focuses on the auto- and cross-correlations between LOD and the axial component of the atmospheric angular momentum. This technique allows one to derive more accurate predictions than purely univariate forecasts, particularly during El Nĩ o/La n Nĩ a events. n
MARROQUÍN, BRETT; NOLEN-HOEKSEMA, SUSAN
2015-01-01
Depression is characterized by a bleak view of the future, but the mechanisms through which depressed mood is integrated into basic processes of future-oriented cognition are unclear. We hypothesized that dysphoric individuals’ predictions of what will happen in the future (likelihood estimation) and how the future will feel (affective forecasting) are attributable to individual differences in incorporating present emotion as judgment-relevant information. Dysphoric individuals (n = 77) made pessimistic likelihood estimates and blunted positive affective forecasts relative to controls (n = 84). These differences were mediated by dysphoric individuals’ tendencies to rely on negative emotion as information more than controls—and on positive emotion less—independent of anhedonia. These findings suggest that (1) blunted positive affective forecasting is a distinctive component of depressive future-oriented cognition, and (2) future-oriented cognitive processes are linked not just to current emotional state, but also to individual variation in using that emotion as information. This role of individual differences elucidates basic mechanisms in future-oriented cognition, and suggests routes for intervention on interrelated cognitive and affective processes in depression. PMID:26146452
Marroquín, Brett; Nolen-Hoeksema, Susan
2015-02-01
Depression is characterized by a bleak view of the future, but the mechanisms through which depressed mood is integrated into basic processes of future-oriented cognition are unclear. We hypothesized that dysphoric individuals' predictions of what will happen in the future ( likelihood estimation ) and how the future will feel ( affective forecasting ) are attributable to individual differences in incorporating present emotion as judgment-relevant information. Dysphoric individuals ( n = 77) made pessimistic likelihood estimates and blunted positive affective forecasts relative to controls ( n = 84). These differences were mediated by dysphoric individuals' tendencies to rely on negative emotion as information more than controls-and on positive emotion less-independent of anhedonia. These findings suggest that (1) blunted positive affective forecasting is a distinctive component of depressive future-oriented cognition, and (2) future-oriented cognitive processes are linked not just to current emotional state, but also to individual variation in using that emotion as information. This role of individual differences elucidates basic mechanisms in future-oriented cognition, and suggests routes for intervention on interrelated cognitive and affective processes in depression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Jonathan; Thompson, Sandra E.; Brothers, Alan J.
The ability to estimate the likelihood of future events based on current and historical data is essential to the decision making process of many government agencies. Successful predictions related to terror events and characterizing the risks will support development of options for countering these events. The predictive tasks involve both technical and social component models. The social components have presented a particularly difficult challenge. This paper outlines some technical considerations of this modeling activity. Both data and predictions associated with the technical and social models will likely be known with differing certainties or accuracies – a critical challenge is linkingmore » across these model domains while respecting this fundamental difference in certainty level. This paper will describe the technical approach being taken to develop the social model and identification of the significant interfaces between the technical and social modeling in the context of analysis of diversion of nuclear material.« less
Predictive Validity of National Basketball Association Draft Combine on Future Performance.
Teramoto, Masaru; Cross, Chad L; Rieger, Randall H; Maak, Travis G; Willick, Stuart E
2018-02-01
Teramoto, M, Cross, CL, Rieger, RH, Maak, TG, and Willick, SE. Predictive validity of national basketball association draft combine on future performance. J Strength Cond Res 32(2): 396-408, 2018-The National Basketball Association (NBA) Draft Combine is an annual event where prospective players are evaluated in terms of their athletic abilities and basketball skills. Data collected at the Combine should help NBA teams select right the players for the upcoming NBA draft; however, its value for predicting future performance of players has not been examined. This study investigated predictive validity of the NBA Draft Combine on future performance of basketball players. We performed a principal component analysis (PCA) on the 2010-2015 Combine data to reduce correlated variables (N = 234), a correlation analysis on the Combine data and future on-court performance to examine relationships (maximum pairwise N = 217), and a robust principal component regression (PCR) analysis to predict first-year and 3-year on-court performance from the Combine measures (N = 148 and 127, respectively). Three components were identified within the Combine data through PCA (= Combine subscales): length-size, power-quickness, and upper-body strength. As per the correlation analysis, the individual Combine items for anthropometrics, including height without shoes, standing reach, weight, wingspan, and hand length, as well as the Combine subscale of length-size, had positive, medium-to-large-sized correlations (r = 0.313-0.545) with defensive performance quantified by Defensive Box Plus/Minus. The robust PCR analysis showed that the Combine subscale of length-size was a predictor most significantly associated with future on-court performance (p ≤ 0.05), including Win Shares, Box Plus/Minus, and Value Over Replacement Player, followed by upper-body strength. In conclusion, the NBA Draft Combine has value for predicting future performance of players.
Predicting fibromyalgia, a narrative review: are we better than fools and children?
Ablin, J N; Buskila, D
2014-09-01
Fibromyalgia syndrome (FMS) is a common and intriguing condition, manifest by chronic pain and fatigue. Although the pathogenesis of FMS is not yet completely understood, predicting the future development of FMS and chronic pain is a major challenge with great potential advantages, both from an individual as well as an epidemiological standpoint. Current knowledge indicates a genetic underpinning for FMS, and as increasing data are accumulated regarding the genetics involved, the prospect of utilizing these data for prediction becomes ever more attractive. The co-existence of FMS with multiple other functional disorders indicates that the clinical identification of such symptom constellations in a patient can alert the physician to the future development of FMS. Hypermobility syndrome is another clinical (as well as genetic) phenotype that has emerged as a risk factor for the development of FMS. Stressful events, including early life trauma, are also harbingers of the future development of FMS. Functional neuroimaging may help to elucidate the neural processes involved in central sensitization, and may ultimately also evolve into markers of predictive value. Last but not least, obesity and disturbed sleep are clinical (inter-related) features relevant for this spectrum. Future efforts will aim at integrating genetic, clinical and physiological data in the prediction of FMS and chronic pain. © 2014 European Pain Federation - EFIC®
Moon, Seung Hwan; Hong, Sun-Pyo; Cho, Young Seok; Noh, Tae Soo; Choi, Joon Young; Kim, Byung-Tae; Lee, Kyung-Han
2017-06-01
Hepatic F-18 fluoro-2-deoxyglucose (FDG) uptake is associated with non-alcoholic fatty liver disease (NAFLD) which is an independent risk factor for cardiovascular disease. However, the value of hepatic FDG uptake for predicting future cardiovascular events has not been explored. Study participants were 815 consecutive asymptomatic participants who underwent a health screening program that included FDG positron emission tomography/computed tomography (PET/CT), abdominal ultrasonography, and carotid intima-media thickness (CIMT) measurements (age 51.8 ± 6.0 year; males 93.9%). We measured hepatic FDG uptake and assessed the prognostic significance of this parameter with other cardiovascular risk factors including Framingham risk score and CIMT. Multivariate Cox proportional hazards analyses including all study participants revealed that NAFLD with high-hepatic FDG uptake was the only independent predictor for future cardiovascular events [hazard ratio (HR) 4.23; 95% CI 1.05-17.04; P = .043). Subgroup analysis conducted in the NAFLD group showed that high-hepatic FDG uptake was a significant independent predictor of cardiovascular events (HR 9.29; 95% CI 1.05-81.04; P = .045). This exploratory study suggests that high-hepatic FDG uptake may be a useful prognostic factor for cardiovascular events in individuals with NAFLD.
Volcanic hazards at Mount Rainier, Washington
Crandell, Dwight Raymond; Mullineaux, Donal Ray
1967-01-01
Mount Rainier is a large stratovolcano of andesitic rock in the Cascade Range of western Washington. Although the volcano as it now stands was almost completely formed before the last major glaciation, geologic formations record a variety of events that have occurred at the volcano in postglacial time. Repetition of some of these events today without warning would result in property damage and loss of life on a catastrophic scale. It is appropriate, therefore, to examine the extent, frequency, and apparent origin of these phenomena and to attempt to predict the effects on man of similar events in the future. The present report was prompted by a contrast that we noted during a study of surficial geologic deposits in Mount Rainier National Park, between the present tranquil landscape adjacent to the volcano and the violent events that shaped parts of that same landscape in the recent past. Natural catastrophes that have geologic causes - such as eruptions, landslides, earthquakes, and floods - all too often are disastrous primarily because man has not understood and made allowance for the geologic environment he occupies. Assessment of the potential hazards of a volcanic environment is especially difficult, for prediction of the time and kind of volcanic activity is still an imperfect art, even at active volcanoes whose behavior has been closely observed for many years. Qualified predictions, however, can be used to plan ways in which hazards to life and property can be minimized. The prediction of eruptions is handicapped because volcanism results from conditions far beneath the surface of the earth, where the causative factors cannot be seen and, for the most part, cannot be measured. Consequently, long-range predictions at Mount Rainier can be based only on the past behavior of the volcano, as revealed by study of the deposits that resulted from previous eruptions. Predictions of this sort, of course, cannot be specific as to time and locale of future events, and clearly are valid only if the past behavior is, as we believe, a reliable guide. The purpose of this report is to infer the events recorded by certain postglacial deposits at Mount Rainier and to suggest what bearing similar events in the future might have on land use within and near the park. In addition, table 2 (page 22) gives possible warning signs of an impending eruption. We want to increase man's understanding of a possibly hazardous geologic environment around Mount Rainier volcano, yet we do not wish to imply for certain that the hazards described are either immediate or inevitable. However, we do believe that hazards exist, that some caution is warranted, and that some major hazards can be avoided by judicious planning. Most of the events with which we are concerned are sporadic phenomena that have resulted directly or indirectly from volcanic eruptions. Although no eruptions (other than steam emission) of the volcano in historic time are unequivocally known (Hopson and others, 1962), pyroclastic (air-laid) deposits of pumice and rock debris attest to repeated, widely spaced eruptions during the 10,000 years or so of postglacial time. In addition, the constituents of some debris flows indicate an origin during eruptions of molten rock; other debris flows, because of their large size and constituents, are believed to have been caused by steam explosions. Some debris flows, however, are not related to volcanism at all.
NASA Astrophysics Data System (ADS)
Shouquan Cheng, Chad; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.
The differential contributions of visual imagery constructs on autobiographical thinking.
Aydin, Cagla
2018-02-01
There is a growing theoretical and empirical consensus on the central role of visual imagery in autobiographical memory. However, findings from studies that explore how individual differences in visual imagery are reflected on autobiographical thinking do not present a coherent story. One reason for the mixed findings was suggested to be the treatment of visual imagery as an undifferentiated construct while evidence shows that there is more than one type of visual imagery. The present study investigates the relative contributions of different imagery constructs; namely, object and spatial imagery, on autobiographical memory processes. Additionally, it explores whether a similar relation extends to imagining the future. The results indicate that while object imagery was significantly correlated with several phenomenological characteristics, such as the level of sensory and perceptual details for past events - but not for future events - spatial imagery predicted the level of episodic specificity for both past and future events. We interpret these findings as object imagery being recruited in tasks of autobiographical memory that employ reflective processes while spatial imagery is engaged during direct retrieval of event details. Implications for the role of visual imagery in autobiographical thinking processes are discussed.
ASSOCIATIONS BETWEEN TRAUMATIC EVENTS AND SUICIDAL BEHAVIOUR IN SOUTH AFRICA
Sorsdahl, Katherine; Stein, Dan J.; Williams, David R.; Nock, Matthew K.
2011-01-01
Research conducted predominantly in the developed world suggests that there is an association between trauma exposure and suicidal behaviour. However, there are limited data available investigating whether specific traumas are uniquely predictive of suicidal behaviour, or the extent to which traumatic events predict the progression from suicide ideation to plans and attempts. A national survey was conducted with 4351 adult South Africans between 2002 and 2004 as part of the WHO World Mental Health Surveys. Data on trauma exposure and subsequent suicidal behaviour were collected. Bivariate and multivariate survival models tested the relationship between the type and number of traumatic events and lifetime suicidal behaviour. A range of traumatic events are associated with lifetime suicide ideation and attempt; however, after controlling for all traumatic events in a multivariate model, only sexual violence (OR=4.7, CI 2.3-9.4) and having witnessed violence (OR=1.8, 1.1-2.9) remained significant predictors of life-time suicide attempts. Disaggregation of the associations between traumatic events and suicide attempts indicates that they are largely due to traumatic events predicting suicide ideation rather than to the progression from suicide ideation to attempt. This paper highlights the importance of traumatic life events in the occurrence of suicidal thoughts and behaviours and provides important information about the nature of this association. Future research is needed to better understand how and why such experiences increase the risk of suicidal outcomes. PMID:22134450
Drought prediction till 2100 under RCP 8.5 climate change scenarios for Korea
NASA Astrophysics Data System (ADS)
Park, Chang-Kyun; Byun, Hi-Ryong; Deo, Ravinesh; Lee, Bo-Ra
2015-07-01
An important step in mitigating the negative impacts of drought requires effective methodologies for predicting the future events. This study utilises the daily Effective Drought Index (EDI) to precisely and quantitatively predict future drought occurrences in Korea over the period 2014-2100. The EDI is computed from precipitation data generated by the regional climate model (HadGEM3-RA) under the Representative Concentration Pathway (RCP 8.5) scenario. Using this data for 678 grid points (12.5 km interval) groups of cluster regions with similar climates, the G1 (Northwest), G2 (Middle), G3 (Northeast) and G4 (Southern) regions, are constructed. Drought forecasting period is categorised into the early phase (EP, 2014-2040), middle phase (MP, 2041-2070) and latter phase (LP, 2071-2100). Future drought events are quantified and ranked according to the duration and intensity. Moreover, the occurrences of drought (when, where, how severe) within the clustered regions are represented as a spatial map over Korea. Based on the grid-point averages, the most severe future drought throughout the 87-year period are expected to occur in Namwon around 2039-2041 with peak intensity (minimum EDI) -3.54 and projected duration of 580 days. The most severe drought by cluster analysis is expected to occur in the G3 region with a mean intensity of -2.85 in 2027. Within the spatial area of investigation, 6.6 years of drought periodicity and a slight decrease in the peak intensity is noted. Finally a spatial-temporal drought map is constructed for all clusters and time-periods under consideration.
Drought Prediction till 2100 Under RCP 8.5 Climate Change Scenarios for Korea
NASA Astrophysics Data System (ADS)
Byun, H. R.; Park, C. K.; Deo, R. C.
2014-12-01
An important step in mitigating the negative impacts of drought requires effective methodologies for predicting the future events. This study utilizes the daily Effective Drought Index (EDI) to precisely and quantitatively predict future drought occurrences in Korea over the period 2014-2100. The EDI is computed from precipitation data generated by the regional climate model (HadGEM3-RA) under the Representative Concentration Pathway (RCP 8.5) scenario. Using this data for 678 grid points (12.5 km interval) groups of cluster regions with similar climates, the G1 (Northwest), G2 (Middle), G3 (Northeast) and G4 (Southern) regions, are constructed. Drought forecasting period is categorised into the early phase (EP, 2014-2040), middle phase (MP, 2041-2070) and latter phase (LP, 2071-2100). Future drought events are quantified and ranked according to the duration and intensity. Moreover, the occurrences of drought (when, where, how severe) within the clustered regions are represented as a spatial map over Korea. Based on the grid-point averages, the most severe future drought throughout the 87-year period are expected to occur in Namwon around 2039-2041 with peak intensity (minimum EDI) -3.54 and projected duration of 580 days. The most severe drought by cluster analysis is expected to occur in the G3 region with a mean intensity of -2.85 in 2027. Within the spatial area of investigation, 6 years of drought periodicity and a slight decrease in the peak intensity is noted. Finally a spatial-temporal drought map is constructed for all clusters and time-periods under consideration.
Precipitation Organization in a Warmer Climate
NASA Astrophysics Data System (ADS)
Rickenbach, T. M.; Nieto Ferreira, R.; Nissenbaum, M.
2014-12-01
This study will investigate changes in precipitation organization in a warmer climate using the Weather Research and Forecasting (WRF) model and CMIP-5 ensemble climate simulations. This work builds from an existing four-year NEXRAD radar-based precipitation climatology over the southeastern U.S. that uses a simple two-category framework of precipitation organization based on instantaneous precipitating feature size. The first category - mesoscale precipitation features (MPF) - dominates winter precipitation and is linked to the more predictable large-scale forcing provided by the extratropical cyclones. In contrast, the second category - isolated precipitation - dominates the summer season precipitation in the southern coastal and inland regions but is linked to less predictable mesoscale circulations and to local thermodynamics more crudely represented in climate models. Most climate modeling studies suggest that an accelerated water cycle in a warmer world will lead to an overall increase in precipitation, but few studies have addressed how precipitation organization may change regionally. To address this, WRF will simulate representative wintertime and summertime precipitation events in the Southeast US under the current and future climate. These events will be simulated in an environment resembling the future climate of the 2090s using the pseudo-global warming (PGW) approach based on an ensemble of temperature projections. The working hypothesis is that the higher water vapor content in the future simulation will result in an increase in the number of isolated convective systems, while MPFs will be more intense and longer-lasting. In the context of the seasonal climatology of MPF and isolated precipitation, these results have implications for assessing the predictability of future regional precipitation in the southeastern U.S.
Anticipating the future: Automatic prediction failures in schizophrenia
Ford, Judith M.; Mathalon, Daniel H.
2011-01-01
People with schizophrenia often misperceive sensations and misinterpret experiences, perhaps contributing to psychotic symptoms. These misperceptions and misinterpretations might result from an inability to make valid predictions about expected sensations and experiences. Healthy normal people take advantage of neural mechanisms that allow them to make predictions unconsciously, facilitating processing of expected sensations and distinguishing the expected from the unexpected. In this paper, we focus on two types of automatic, unconscious mechanisms that allow us to predict our perceptions. The first involves predictions made via innate mechanisms basic to all species in the animal kingdom—the efference copy and corollary discharge mechanisms. They accompany our voluntary movements and allow us to suppress sensations resulting from our actions. We study this during talking, and show that auditory cortical response to the speech sounds during talking is reduced compared to when they are played back. This suppression is reduced in schizophrenia, suggesting a failure to predict the sensations resulting from talking. The second mechanism involves implicitly learning what to expect from the current context of events. We study this by observing the brain's response to an unexpected repetition of an event, when a change would have been predicted. That patients have a reduced response suggests they failed to predict that it was time for a change. Both types of predictions should happen automatically and effortlessly, allowing for economic processing of expected events and orientation to unexpected ones. These prediction failures characterize the diagnosis of schizophrenia rather than reflecting specific symptoms. PMID:21959054
Predicting space climate change
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2011-10-01
Galactic cosmic rays and solar energetic particles can be hazardous to humans in space, damage spacecraft and satellites, pose threats to aircraft electronics, and expose aircrew and passengers to radiation. A new study shows that these threats are likely to increase in coming years as the Sun approaches the end of the period of high solar activity known as “grand solar maximum,” which has persisted through the past several decades. High solar activity can help protect the Earth by repelling incoming galactic cosmic rays. Understanding the past record can help scientists predict future conditions. Barnard et al. analyzed a 9300-year record of galactic cosmic ray and solar activity based on cosmogenic isotopes in ice cores as well as on neutron monitor data. They used this to predict future variations in galactic cosmic ray flux, near-Earth interplanetary magnetic field, sunspot number, and probability of large solar energetic particle events. The researchers found that the risk of space weather radiation events will likely increase noticeably over the next century compared with recent decades and that lower solar activity will lead to increased galactic cosmic ray levels. (Geophysical Research Letters, doi:10.1029/2011GL048489, 2011)
A precision medicine approach for psychiatric disease based on repeated symptom scores.
Fojo, Anthony T; Musliner, Katherine L; Zandi, Peter P; Zeger, Scott L
2017-12-01
For psychiatric diseases, rich information exists in the serial measurement of mental health symptom scores. We present a precision medicine framework for using the trajectories of multiple symptoms to make personalized predictions about future symptoms and related psychiatric events. Our approach fits a Bayesian hierarchical model that estimates a population-average trajectory for all symptoms and individual deviations from the average trajectory, then fits a second model that uses individual symptom trajectories to estimate the risk of experiencing an event. The fitted models are used to make clinically relevant predictions for new individuals. We demonstrate this approach on data from a study of antipsychotic therapy for schizophrenia, predicting future scores for positive, negative, and general symptoms, and the risk of treatment failure in 522 schizophrenic patients with observations over 8 weeks. While precision medicine has focused largely on genetic and molecular data, the complementary approach we present illustrates that innovative analytic methods for existing data can extend its reach more broadly. The systematic use of repeated measurements of psychiatric symptoms offers the promise of precision medicine in the field of mental health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
FUSSELL, ELIZABETH; CURRAN, SARA R.; DUNBAR, MATTHEW D.; BABB, MICHAEL A.; THOMPSON, LUANNE; MEIJER-IRONS, JACQUELINE
2017-01-01
Environmental determinists predict that people move away from places experiencing frequent weather hazards, yet some of these areas have rapidly growing populations. This analysis examines the relationship between weather events and population change in all U.S. counties that experienced hurricanes and tropical storms between 1980 and 2012. Our database allows for more generalizable conclusions by accounting for heterogeneity in current and past hurricane events and losses and past population trends. We find that hurricanes and tropical storms affect future population growth only in counties with growing, high-density populations, which are only 2 percent of all counties. In those counties, current year hurricane events and related losses suppress future population growth, although cumulative hurricane-related losses actually elevate population growth. Low-density counties and counties with stable or declining populations experience no effect of these weather events. Our analysis provides a methodologically informed explanation for contradictory findings in prior studies. PMID:29326480
Fussell, Elizabeth; Curran, Sara R; Dunbar, Matthew D; Babb, Michael A; Thompson, Luanne; Meijer-Irons, Jacqueline
2017-01-01
Environmental determinists predict that people move away from places experiencing frequent weather hazards, yet some of these areas have rapidly growing populations. This analysis examines the relationship between weather events and population change in all U.S. counties that experienced hurricanes and tropical storms between 1980 and 2012. Our database allows for more generalizable conclusions by accounting for heterogeneity in current and past hurricane events and losses and past population trends. We find that hurricanes and tropical storms affect future population growth only in counties with growing, high-density populations, which are only 2 percent of all counties. In those counties, current year hurricane events and related losses suppress future population growth, although cumulative hurricane-related losses actually elevate population growth. Low-density counties and counties with stable or declining populations experience no effect of these weather events. Our analysis provides a methodologically informed explanation for contradictory findings in prior studies.
Knowlton, Kim; Rotkin-Ellman, Miriam; Geballe, Linda; Max, Wendy; Solomon, Gina M
2011-11-01
The future health costs associated with predicted climate change-related events such as hurricanes, heat waves, and floods are projected to be enormous. This article estimates the health costs associated with six climate change-related events that struck the United States between 2000 and 2009. The six case studies came from categories of climate change-related events projected to worsen with continued global warming-ozone pollution, heat waves, hurricanes, infectious disease outbreaks, river flooding, and wildfires. We estimate that the health costs exceeded $14 billion, with 95 percent due to the value of lives lost prematurely. Actual health care costs were an estimated $740 million. This reflects more than 760,000 encounters with the health care system. Our analysis provides scientists and policy makers with a methodology to use in estimating future health costs related to climate change and highlights the growing need for public health preparedness.
Grossi, Enzo
2006-01-01
Background In recent years a number of algorithms for cardiovascular risk assessment has been proposed to the medical community. These algorithms consider a number of variables and express their results as the percentage risk of developing a major fatal or non-fatal cardiovascular event in the following 10 to 20 years Discussion The author has identified three major pitfalls of these algorithms, linked to the limitation of the classical statistical approach in dealing with this kind of non linear and complex information. The pitfalls are the inability to capture the disease complexity, the inability to capture process dynamics, and the wide confidence interval of individual risk assessment. Artificial Intelligence tools can provide potential advantage in trying to overcome these limitations. The theoretical background and some application examples related to artificial neural networks and fuzzy logic have been reviewed and discussed. Summary The use of predictive algorithms to assess individual absolute risk of cardiovascular future events is currently hampered by methodological and mathematical flaws. The use of newer approaches, such as fuzzy logic and artificial neural networks, linked to artificial intelligence, seems to better address both the challenge of increasing complexity resulting from a correlation between predisposing factors, data on the occurrence of cardiovascular events, and the prediction of future events on an individual level. PMID:16672045
Menopausal symptoms: do life events predict severity of symptoms in peri- and post-menopause?
Pimenta, Filipa; Leal, Isabel; Maroco, João; Ramos, Catarina
2012-08-01
Hormonal changes during menopausal transition are linked to physical and psychological symptoms' emergence. This study aims to explore if life events predict menopausal symptoms. This cross-sectional research encompasses a community sample of 992 women who answered to socio-demographic, health, menopause-related and lifestyle questionnaires; menopausal symptoms and life events were assessed with validated instruments. Structural equation modeling was used to build a causal model. Menopausal status predicted only three symptoms: skin/facial hair changes (β=.136; p=.020), sexual (β=.157; p=.004) and, marginally, vasomotor symptoms (β=.094; p=.054). Life events predicted depressive mood (β=-.391; p=.002), anxiety (β=-.271; p=.003), perceived cognitive impairment (β=-.295; p=.003), body shape changes (β=-.136; p=.031), aches/pain (β=-.212; p=.007), skin/facial hair changes (β=-.171; p=.021), numbness (β=-.169; p=.015), perceived loss of control (β=-.234; p=.008), mouth, nails and hair changes (β=-.290; p=.004), vasomotor (β=-.113; p=.044) and sexual symptoms (β=-.208; p=.009). Although women in peri- and post-menopausal manifested higher symptoms' severity than their pre-menopausal counterparts, only three of the menopausal symptoms assessed were predicted by menopausal status. Since the vast majority of menopausal symptoms' severity was significantly influenced by the way women perceived their recent life events, it is concluded that the symptomatology exacerbation, in peri- and post-menopausal women, might be due to life conditions and events, rather than hormonal changes (nonetheless, the inverse influence should be investigated in future studies). Therefore, these should be accounted for in menopause-related clinical and research settings. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A Strategic Framework for Responding to Coral Bleaching Events in a Changing Climate
NASA Astrophysics Data System (ADS)
Maynard, J. A.; Johnson, J. E.; Marshall, P. A.; Eakin, C. M.; Goby, G.; Schuttenberg, H.; Spillman, C. M.
2009-07-01
The frequency and severity of mass coral bleaching events are predicted to increase as sea temperatures continue to warm under a global regime of rising ocean temperatures. Bleaching events can be disastrous for coral reef ecosystems and, given the number of other stressors to reefs that result from human activities, there is widespread concern about their future. This article provides a strategic framework from the Great Barrier Reef to prepare for and respond to mass bleaching events. The framework presented has two main inter-related components: an early warning system and assessment and monitoring. Both include the need to proactively and consistently communicate information on environmental conditions and the level of bleaching severity to senior decision-makers, stakeholders, and the public. Managers, being the most timely and credible source of information on bleaching events, can facilitate the implementation of strategies that can give reefs the best chance to recover from bleaching and to withstand future disturbances. The proposed framework is readily transferable to other coral reef regions, and can easily be adapted by managers to local financial, technical, and human resources.
Van den Broeck, Kris; Pieters, Guido; Claes, Laurence; Berens, Ann; Raes, Filip
2016-11-01
Overgeneral memory (OGM), the tendency to retrieve categories of events from autobiographical memory instead of single events, is found to be a reliable predictor for future mood disturbances and post-traumatic symptom severity. Patients with borderline personality disorder (BPD) often report co-morbid episodes of major depressive disorder (MDD) and post-traumatic stress disorder (PTSD). Therefore, we investigated whether OGM would predict depression severity and (post-traumatic) stress symptoms in BPD patients. At admission (N = 54) and at six-month follow-up (N ≥ 31), BPD patients completed the Structured Clinical Interview for DSM-IV Disorders, the Assessment of DSM-IV Personality Disorders, the Autobiographical Memory Test, the Beck Depression Inventory-2nd edition (BDI-II), and the Impact of Event Scale. OGM at baseline predicted (a) higher levels of depressive symptoms at follow-up and (b) more intrusions related to a stressful event over and above baseline levels of borderline symptoms, depressive symptoms, and intrusions, respectively. No association was found between memory specificity and event-related avoidance at follow-up. Despite previous findings suggesting that OGM in BPD is less robust than in MDD and PTSD, our results suggest that memory specificity in BPD patients may have some relevance for the course of depressive and stress symptomatology in BPD.
Disease prevention versus data privacy: using landcover maps to inform spatial epidemic models.
Tildesley, Michael J; Ryan, Sadie J
2012-01-01
The availability of epidemiological data in the early stages of an outbreak of an infectious disease is vital for modelers to make accurate predictions regarding the likely spread of disease and preferred intervention strategies. However, in some countries, the necessary demographic data are only available at an aggregate scale. We investigated the ability of models of livestock infectious diseases to predict epidemic spread and obtain optimal control policies in the event of imperfect, aggregated data. Taking a geographic information approach, we used land cover data to predict UK farm locations and investigated the influence of using these synthetic location data sets upon epidemiological predictions in the event of an outbreak of foot-and-mouth disease. When broadly classified land cover data were used to create synthetic farm locations, model predictions deviated significantly from those simulated on true data. However, when more resolved subclass land use data were used, moderate to highly accurate predictions of epidemic size, duration and optimal vaccination and ring culling strategies were obtained. This suggests that a geographic information approach may be useful where individual farm-level data are not available, to allow predictive analyses to be carried out regarding the likely spread of disease. This method can also be used for contingency planning in collaboration with policy makers to determine preferred control strategies in the event of a future outbreak of infectious disease in livestock.
Disease Prevention versus Data Privacy: Using Landcover Maps to Inform Spatial Epidemic Models
Tildesley, Michael J.; Ryan, Sadie J.
2012-01-01
The availability of epidemiological data in the early stages of an outbreak of an infectious disease is vital for modelers to make accurate predictions regarding the likely spread of disease and preferred intervention strategies. However, in some countries, the necessary demographic data are only available at an aggregate scale. We investigated the ability of models of livestock infectious diseases to predict epidemic spread and obtain optimal control policies in the event of imperfect, aggregated data. Taking a geographic information approach, we used land cover data to predict UK farm locations and investigated the influence of using these synthetic location data sets upon epidemiological predictions in the event of an outbreak of foot-and-mouth disease. When broadly classified land cover data were used to create synthetic farm locations, model predictions deviated significantly from those simulated on true data. However, when more resolved subclass land use data were used, moderate to highly accurate predictions of epidemic size, duration and optimal vaccination and ring culling strategies were obtained. This suggests that a geographic information approach may be useful where individual farm-level data are not available, to allow predictive analyses to be carried out regarding the likely spread of disease. This method can also be used for contingency planning in collaboration with policy makers to determine preferred control strategies in the event of a future outbreak of infectious disease in livestock. PMID:23133352
A Hybrid Ground-Motion Prediction Equation for Earthquakes in Western Alberta
NASA Astrophysics Data System (ADS)
Spriggs, N.; Yenier, E.; Law, A.; Moores, A. O.
2015-12-01
Estimation of ground-motion amplitudes that may be produced by future earthquakes constitutes the foundation of seismic hazard assessment and earthquake-resistant structural design. This is typically done by using a prediction equation that quantifies amplitudes as a function of key seismological variables such as magnitude, distance and site condition. In this study, we develop a hybrid empirical prediction equation for earthquakes in western Alberta, where evaluation of seismic hazard associated with induced seismicity is of particular interest. We use peak ground motions and response spectra from recorded seismic events to model the regional source and attenuation attributes. The available empirical data is limited in the magnitude range of engineering interest (M>4). Therefore, we combine empirical data with a simulation-based model in order to obtain seismologically informed predictions for moderate-to-large magnitude events. The methodology is two-fold. First, we investigate the shape of geometrical spreading in Alberta. We supplement the seismic data with ground motions obtained from mining/quarry blasts, in order to gain insights into the regional attenuation over a wide distance range. A comparison of ground-motion amplitudes for earthquakes and mining/quarry blasts show that both event types decay at similar rates with distance and demonstrate a significant Moho-bounce effect. In the second stage, we calibrate the source and attenuation parameters of a simulation-based prediction equation to match the available amplitude data from seismic events. We model the geometrical spreading using a trilinear function with attenuation rates obtained from the first stage, and calculate coefficients of anelastic attenuation and site amplification via regression analysis. This provides a hybrid ground-motion prediction equation that is calibrated for observed motions in western Alberta and is applicable to moderate-to-large magnitude events.
Vrshek-Schallhorn, S; Doane, L D; Mineka, S; Zinbarg, R E; Craske, M G; Adam, E K
2013-03-01
The cortisol awakening response (CAR) has been shown to predict major depressive episodes (MDEs) over a 1-year period. It is unknown whether this effect: (a) is stable over longer periods of time; (b) is independent of prospective stressful life events; and (c) differentially predicts first onsets or recurrences of MDEs. A total of 270 older adolescents (mean age 17.06 years at cortisol measurement) from the larger prospective Northwestern-UCLA Youth Emotion Project completed baseline diagnostic and life stress interviews, questionnaires, and a 3-day cortisol sampling protocol measuring the CAR and diurnal rhythm, as well as up to four annual follow-up interviews of diagnoses and life stress. Non-proportional person-month survival analyses revealed that higher levels of the baseline CAR significantly predict MDEs for 2.5 years following cortisol measurement. However, the strength of prediction of depressive episodes significantly decays over time, with the CAR no longer significantly predicting MDEs after 2.5 years. Elevations in the CAR did not significantly increase vulnerability to prospective major stressful life events. They did, however, predict MDE recurrences more strongly than first onsets. These results suggest that a high CAR represents a time-limited risk factor for onsets of MDEs, which increases risk for depression independently of future major stressful life events. Possible explanations for the stronger effect of the CAR for predicting MDE recurrences than first onsets are discussed.
Manual B-mode versus automated radio-frequency carotid intima-media thickness measurements.
Dogan, Soner; Plantinga, Yvonne; Dijk, Joke M; van der Graaf, Yolanda; Grobbee, Diederick E; Bots, Michiel L
2009-10-01
Carotid intima-media thickness (CIMT) serves as an indicator of atherosclerosis and cardiovascular risk. Manual measurements of B-mode ultrasound images are the most applied method. Automated measurements with radiofrequency (RF) ultrasound have been suggested as an alternative. The aim of this study was to compare these methods in terms of risk-factor relations and associations with future events. Data from participants of the Second Manifestations of Arterial Disease (SMART) study were used. Far wall common CIMT was measured online with manual B-mode and automated RF ultrasound. Measurements were performed by a group of 6 sonographers. Risk-factor information was obtained. All participants were followed for the occurrence of vascular events (mean follow-up, 2.1 years). CIMT was related to risk factors with linear regression models and to future events with Cox proportional-hazards models. Data were available for 2,146 participants. Agreement between the methods was modest (intraclass correlation coefficient = 0.34). Risk-factor relations with age and systolic blood pressure were stronger for B-mode than for RF ultrasound. Association with future events was better for B-mode than for RF ultrasound (vascular death, 1.27 vs 1.00; ischemic stroke, 1.45 vs 1.03). In participants with CIMT < 0.9 mm (without plaque), the intraclass correlation between the measures was 0.50. In addition, in that subgroup, RF ultrasound showed a stronger association with future events than B-mode ultrasound (all events, 1.59 vs 1.09; vascular death, 1.72 vs 0.93; coronary ischemic events, 1.65 vs 1.05). The preference for either B-mode or RF measurements may be driven by the type of study population, the expected presence of local atherosclerotic abnormalities, and the main aim of the study (assessing risk factors or events). However, in this study, as in many others, the B-mode approach was shown to be robust in risk-factor relations and the prediction of events.
Lagattuta, Kristin Hansen; Sayfan, Liat
2013-01-01
Four- to 10-year-olds and adults (N = 265) responded to eight scenarios presented on an eye tracker. Each trial involved a character who encounters a perpetrator who had previously enacted positive (P), negative (N), or both types of actions toward him or her in varying sequences (NN, PP, PN, and NP). Participants predicted the character's thoughts about the likelihood of future events, emotion type and intensity, and decision to approach or avoid. All ages made more positive forecasts for PP > NP > PN > NN trials, with differentiation by past experience widening with age. Age-related increases in weighting the most recent past event also appeared in eye gaze. Individual differences in biased visual attention correlated with verbal judgments. Findings contribute to research on risk assessment, person perception, and heuristics in judgment and decision making. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.
A cyber-event correlation framework and metrics
NASA Astrophysics Data System (ADS)
Kang, Myong H.; Mayfield, Terry
2003-08-01
In this paper, we propose a cyber-event fusion, correlation, and situation assessment framework that, when instantiated, will allow cyber defenders to better understand the local, regional, and global cyber-situation. This framework, with associated metrics, can be used to guide assessment of our existing cyber-defense capabilities, and to help evaluate the state of cyber-event correlation research and where we must focus our future cyber-event correlation research. The framework, based on the cyber-event gathering activities and analysis functions, consists of five operational steps, each of which provides a richer set of contextual information to support greater situational understanding. The first three steps are categorically depicted as increasingly richer and broader-scoped contexts achieved through correlation activity, while in the final two steps, these richer contexts are achieved through analytical activities (situation assessment, and threat analysis & prediction). Category 1 Correlation focuses on the detection of suspicious activities and the correlation of events from a single cyber-event source. Category 2 Correlation clusters the same or similar events from multiple detectors that are located at close proximity and prioritizes them. Finally, the events from different time periods and event sources at different location/regions are correlated at Category 3 to recognize the relationship among different events. This is the category that focuses on the detection of large-scale and coordinated attacks. The situation assessment step (Category 4) focuses on the assessment of cyber asset damage and the analysis of the impact on missions. The threat analysis and prediction step (Category 5) analyzes attacks based on attack traces and predicts the next steps. Metrics that can distinguish correlation and cyber-situation assessment tools for each category are also proposed.
Lynd-Stevenson, R M
1997-02-01
Present research provides little support for the prediction central to hopelessness theory that hopelessness mediates the full relationship between vulnerability factors (e.g. stressful life-events, attributional style) and depression. Indeed, contrary to hopelessness theory, an accumulating body of research indicates that hopelessness moderates the relationship between vulnerability factors and depression. The proposal in the present study was that the type of hopelessness typically measured in the research literature has trait-like characteristics and cannot be used to test the mediation hypothesis. The prediction was that hopelessness would operate as a mediator and not a moderator if items in a measure of generalized hopelessness were reworded to measure event-specific hopelessness. A sample of 153 unemployed people completed measures of attributional style for positive and negative outcomes, stress associated with being unemployed, job hopelessness, and depressive symptoms. The results supported the hypothesis that event-specific hopelessness mediates, but does not moderate, the relationship between vulnerability factors and depression. Implications for hopelessness theory and future research are discussed.
Kneebone, I. I.; Guerrier, S.; Dunmore, E.; Jones, E.; Fife-Schaw, C.
2015-01-01
Purpose. Hopelessness theory predicts that negative attributional style will interact with negative life events over time to predict depression. The intention of this study was to test this in a population who are at greater risk of negative life events, people with Multiple Sclerosis (MS). Method. Data, including measures of attributional style, negative life events, and depressive symptoms, were collected via postal survey in 3 phases, each one a year apart. Results. Responses were received from over 380 participants at each study phase. Negative attributional style was consistently able to predict future depressive symptoms at low to moderate levels of association; however, this ability was not sustained when depressive symptoms at Phase 1 were controlled for. No substantial evidence to support the hypothesised interaction of negative attributional style and negative life events was found. Conclusions. Findings were not supportive of the causal interaction proposed by the hopelessness theory of depression. Further work considering other time frames, using methods to prime attributional style before assessment and specifically assessing the hopelessness subtype of depression, may prove to be more fruitful. Intervention directly to address attributional style should also be considered. PMID:26290622
Hamilton, Jessica L.; Connolly, Samantha L.; Liu, Richard T.; Stange, Jonathan P.; Abramson, Lyn Y.; Alloy, Lauren B.
2014-01-01
Research consistently has linked hopelessness to a range of negative outcomes, including depression, during adolescence. Although interpersonal stressors such as familial and peer emotional victimization have been found to contribute to hopelessness, less research has examined whether adolescents with a greater tendency to think about and plan for the future (i.e., future orientation) are protected against the development of hopelessness, particularly in the context of negative events. Thus, the current study evaluated whether peer and familial emotional victimization predicted increases in hopelessness more strongly among adolescents with a weaker future orientation than those with a stronger orientation towards the future, and whether hopelessness in turn predicted increases in depression. In a diverse sample of 259 early adolescents (54% female; 51% African American; Mage = 12.86 years), both peer and familial emotional victimization predicted increases in hopelessness more strongly among adolescents with weaker future orientations than among those with stronger future orientations. Further, moderated mediation analyses revealed that hopelessness significantly mediated the relationship between emotional victimization and increases in depressive symptoms more strongly among adolescents with weaker orientations towards the future compared to those with stronger future orientations. These findings indicate that adolescents’ tendency to think about the future may impact whether emotional victimization induces hopelessness and ultimately depressive symptoms during early adolescence. Results have important implications regarding intervention and prevention of depression during the critical developmental period of adolescence. PMID:25052625
Hamilton, Jessica L; Connolly, Samantha L; Liu, Richard T; Stange, Jonathan P; Abramson, Lyn Y; Alloy, Lauren B
2015-04-01
Research consistently has linked hopelessness to a range of negative outcomes, including depression, during adolescence. Although interpersonal stressors such as familial and peer emotional victimization have been found to contribute to hopelessness, less research has examined whether adolescents with a greater tendency to think about and plan for the future (i.e., future orientation) are protected against the development of hopelessness, particularly in the context of negative events. Thus, the current study evaluated whether peer and familial emotional victimization predicted increases in hopelessness more strongly among adolescents with a weaker future orientation than those with a stronger orientation towards the future, and whether hopelessness in turn predicted increases in depression. In a diverse sample of 259 early adolescents (54% female; 51% African American; Mage = 12.86 years), both peer and familial emotional victimization predicted increases in hopelessness more strongly among adolescents with weaker future orientations than among those with stronger future orientations. Further, moderated mediation analyses revealed that hopelessness significantly mediated the relationship between emotional victimization and increases in depressive symptoms more strongly among adolescents with weaker orientations towards the future compared to those with stronger future orientations. These findings indicate that adolescents' tendency to think about the future may impact whether emotional victimization induces hopelessness and ultimately depressive symptoms during early adolescence. Results have important implications regarding intervention and prevention of depression during the critical developmental period of adolescence.
Learning Predictive Statistics: Strategies and Brain Mechanisms.
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe
2017-08-30
When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions. SIGNIFICANCE STATEMENT Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to changes in the environment's statistics. We provide evidence for an alternate route for learning complex temporal statistics: extracting the most probable outcome in a given context is implemented by interactions between executive and motor corticostriatal mechanisms compared with visual corticostriatal circuits (including hippocampal cortex) that support learning of the exact temporal statistics. Copyright © 2017 Wang et al.
Sasaki, Satoshi; Comber, Alexis J; Suzuki, Hiroshi; Brunsdon, Chris
2010-01-28
Ambulance response time is a crucial factor in patient survival. The number of emergency cases (EMS cases) requiring an ambulance is increasing due to changes in population demographics. This is decreasing ambulance response times to the emergency scene. This paper predicts EMS cases for 5-year intervals from 2020, to 2050 by correlating current EMS cases with demographic factors at the level of the census area and predicted population changes. It then applies a modified grouping genetic algorithm to compare current and future optimal locations and numbers of ambulances. Sets of potential locations were evaluated in terms of the (current and predicted) EMS case distances to those locations. Future EMS demands were predicted to increase by 2030 using the model (R2 = 0.71). The optimal locations of ambulances based on future EMS cases were compared with current locations and with optimal locations modelled on current EMS case data. Optimising the location of ambulance stations locations reduced the average response times by 57 seconds. Current and predicted future EMS demand at modelled locations were calculated and compared. The reallocation of ambulances to optimal locations improved response times and could contribute to higher survival rates from life-threatening medical events. Modelling EMS case 'demand' over census areas allows the data to be correlated to population characteristics and optimal 'supply' locations to be identified. Comparing current and future optimal scenarios allows more nuanced planning decisions to be made. This is a generic methodology that could be used to provide evidence in support of public health planning and decision making.
Becker, Jeroen H; Krikhaar, Anniek; Schuit, Ewoud; Mårtendal, Annika; Maršál, Karel; Kwee, Anneke; Visser, Gerard H A; Amer-Wåhlin, Isis
2015-02-01
To study the predictive value of biphasic ST-events for interventions for suspected fetal distress and adverse neonatal outcome, when using ST-analysis of the fetal electrocardiogram (FECG) for intrapartum fetal monitoring. Prospective cohort study. Three academic hospitals in Sweden. Women in labor with a high-risk singleton fetus in cephalic position beyond 36 weeks of gestation. In women in labor who were monitored with conventional cardiotocography, ST-waveform analysis was recorded and concealed. Traces with biphasic ST-events of the FECG (index) were compared with traces without biphasic events of the FECG. The ability of biphasic events to predict interventions for suspected fetal distress and adverse outcome was assessed using univariable and multivariable logistic regression analyses. Interventions for suspected fetal distress and adverse outcome (defined as presence of metabolic acidosis (i.e. umbilical cord pH <7.05 and base deficit in extracellular fluid >12 mmol), umbilical cord pH <7.00, 5-min Apgar score <7, admittance to neonatal intensive care unit or perinatal death). Although the presence of biphasic events of the FECG was associated with more interventions for fetal distress and an increased risk of adverse outcome compared with cases with no biphasic events, the presence of significant (i.e. intervention advised according to cardiotocography interpretation) biphasic events showed no independent association with interventions for fetal distress [odds ratio (OR) 1.71, 95% confidence interval (CI) 0.65-4.50] or adverse outcome (OR 1.96, 95% CI 0.74-5.24). The presence of significant biphasic events did not discriminate in the prediction of interventions for fetal distress or adverse outcome. Therefore, biphasic events in relation to ST-analysis monitoring during birth should be omitted if future studies confirm our findings. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.
Howard, James H.; Howard, Darlene V.; Dennis, Nancy A.; Kelly, Andrew J.
2008-01-01
Knowledge of sequential relationships enables future events to be anticipated and processed efficiently. Research with the serial reaction time task (SRTT) has shown that sequence learning often occurs implicitly without effort or awareness. Here we report four experiments that use a triplet-learning task (TLT) to investigate sequence learning in young and older adults. In the TLT people respond only to the last target event in a series of discrete, three-event sequences or triplets. Target predictability is manipulated by varying the triplet frequency (joint probability) and/or the statistical relationships (conditional probabilities) among events within the triplets. Results revealed that both groups learned, though older adults showed less learning of both joint and conditional probabilities. Young people used the statistical information in both cues, but older adults relied primarily on information in the second cue alone. We conclude that the TLT complements and extends the SRTT and other tasks by offering flexibility in the kinds of sequential statistical regularities that may be studied as well as by controlling event timing and eliminating motor response sequencing. PMID:18763897
PROGNOSIS OF GLEs OF RELATIVISTIC SOLAR PROTONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez-Peraza, Jorge; Juárez-Zuñiga, Alan, E-mail: perperaz@geofisica.unam.mx, E-mail: z.alan.z@hotmail.com
Ground level enhancements (GLEs) are relativistic solar particles measured at ground level by the worldwide network of cosmic ray detectors. These sporadic events are associated with solar flares and are assumed to be of a quasi-random nature. Studying them gives information about their source and propagation processes, the maximum capacity of the Sun as a particle accelerator engine, the magnetic structure of the medium traversed, etc. Space vehicles, as well as electric transformers and gas pipes at high latitudes may be damaged by this kind of radiation. As a result, their prediction has turned out to be very important, butmore » because of their random occurrence, up to now few efforts toward this goal have been made. The results of these efforts have been limited to possible warnings in real time, just before a GLE occurrence, but no specific dates have been predicted well enough in advance to prevent possible hazards. In this study we show that, in spite of the quasi-stochastic nature of GLEs, it is possible to predict them with relative precision, even for future solar cycles. Additionally, a previous study establishing synchronization among some periodicities of several layers of solar atmosphere argues against the full randomness of the phenomenon of relativistic particle production. Therefore, by means of wavelet spectral analysis combined with fuzzy logic tools, we reproduce previous known GLE events and present results for future events. The next GLE is expected to occur in the first semester of 2016.« less
NASA Astrophysics Data System (ADS)
Papastefanou, P.; Fleischer, K.; Hickler, T.; Grams, T.; Lapola, D.; Quesada, C. A.; Zang, C.; Rammig, A.
2017-12-01
The Amazon basin was recently hit by severe drought events that were unprecedented in their severity and spatial extent, e.g. during 2005, 2010 and 2015/2016. Significant amounts of biomass were lost, turning large parts of the rainforest from a carbon sink into a carbon source. It is assumed that drought-induced tree mortality from hydraulic failure played an important role during these events and may become more frequent in the Amazon region in the future. Many state-of-the-art dynamic vegetation models do not include plant hydraulic processes and fail to reproduce observed rainforest responses to drought events, such as e.g. increased tree mortality. We address this research gap by developing a simple plant-hydraulic module for the dynamic vegetation model LPJ-GUESS. This plant-hydraulic module uses leaf water potential and cavitation as baseline processes to simulate tree mortality under drought stress. Furthermore, we introduce different plant strategies in the model, which describe e.g. differences in the stomatal regulation under drought stress. To parameterize and evaluate our hydraulic module, we use a set of available observational data from the Amazon region. We apply our model to the Amazon Basin and highlight similarities and differences across other measured and predicted drought responses, e.g. extrapolated observations and data derived from satellite measurements. Our results highlight the importance of including plant hydraulic processes in dynamic vegetation models to correctly predict vegetation dynamics under drought stress and show major differences on the vegetation dynamics depending on the selected plant strategies. We also identify gaps in process understanding of the triggering factors, the extent and the consequences of drought responses that hampers our ability to predict potential impact of future drought events on the Amazon rainforest.
NASA Astrophysics Data System (ADS)
Saleh, F.; Ramaswamy, V.; Wang, Y.; Georgas, N.; Blumberg, A.; Pullen, J.
2017-12-01
Estuarine regions can experience compound impacts from coastal storm surge and riverine flooding. The challenges in forecasting flooding in such areas are multi-faceted due to uncertainties associated with meteorological drivers and interactions between hydrological and coastal processes. The objective of this work is to evaluate how uncertainties from meteorological predictions propagate through an ensemble-based flood prediction framework and translate into uncertainties in simulated inundation extents. A multi-scale framework, consisting of hydrologic, coastal and hydrodynamic models, was used to simulate two extreme flood events at the confluence of the Passaic and Hackensack rivers and Newark Bay. The events were Hurricane Irene (2011), a combination of inland flooding and coastal storm surge, and Hurricane Sandy (2012) where coastal storm surge was the dominant component. The hydrodynamic component of the framework was first forced with measured streamflow and ocean water level data to establish baseline inundation extents with the best available forcing data. The coastal and hydrologic models were then forced with meteorological predictions from 21 ensemble members of the Global Ensemble Forecast System (GEFS) to retrospectively represent potential future conditions up to 96 hours prior to the events. Inundation extents produced by the hydrodynamic model, forced with the 95th percentile of the ensemble-based coastal and hydrologic boundary conditions, were in good agreement with baseline conditions for both events. The USGS reanalysis of Hurricane Sandy inundation extents was encapsulated between the 50th and 95th percentile of the forecasted inundation extents, and that of Hurricane Irene was similar but with caveats associated with data availability and reliability. This work highlights the importance of accounting for meteorological uncertainty to represent a range of possible future inundation extents at high resolution (∼m).
A 30-year history of earthquake crisis communication in California and lessons for the future
NASA Astrophysics Data System (ADS)
Jones, L.
2015-12-01
The first statement from the US Geological Survey to the California Office of Emergency Services quantifying the probability of a possible future earthquake was made in October 1985 about the probability (approximately 5%) that a M4.7 earthquake located directly beneath the Coronado Bay Bridge in San Diego would be a foreshock to a larger earthquake. In the next 30 years, publication of aftershock advisories have become routine and formal statements about the probability of a larger event have been developed in collaboration with the California Earthquake Prediction Evaluation Council (CEPEC) and sent to CalOES more than a dozen times. Most of these were subsequently released to the public. These communications have spanned a variety of approaches, with and without quantification of the probabilities, and using different ways to express the spatial extent and the magnitude distribution of possible future events. The USGS is re-examining its approach to aftershock probability statements and to operational earthquake forecasting with the goal of creating pre-vetted automated statements that can be released quickly after significant earthquakes. All of the previous formal advisories were written during the earthquake crisis. The time to create and release a statement became shorter with experience from the first public advisory (to the 1988 Lake Elsman earthquake) that was released 18 hours after the triggering event, but was never completed in less than 2 hours. As was done for the Parkfield experiment, the process will be reviewed by CEPEC and NEPEC (National Earthquake Prediction Evaluation Council) so the statements can be sent to the public automatically. This talk will review the advisories, the variations in wording and the public response and compare this with social science research about successful crisis communication, to create recommendations for future advisories
Flooding from Intense Rainfall: an overview of project SINATRA
NASA Astrophysics Data System (ADS)
Cloke, Hannah
2014-05-01
Project SINATRA (Susceptibility of catchments to INTense RAinfall and flooding) is part of the UK NERC's Flooding From Intense Rainfall (FFIR) research programme which aims to reduce the risks of damage and loss of life caused by surface water and flash floods through improved identification, characterisation and prediction of interacting meteorological, hydrological and hydro-morphological processes that contribute to flooding associated with high-intensity rainfall events. Extreme rainfall events may only last for a few hours at most, but can generate terrifying and destructive floods. Their impact can be affected by a wide range factors (or processes) such as the location and intensity of the rainfall, the shape and steepness of the catchment it falls on, how much sediment is moved by the water and the vulnerability of the communities in the flood's path. Furthermore, FFIR are by their nature rapid, making it very difficult for researchers to 'capture' measurements during events. The complexity, speed and lack of field measurements on FFIR make it difficult to create computer models to predict flooding and often we are uncertain as to their accuracy. In addition there is no consensus on how to identify how particular catchments may be vulnerable to FFIR, due to factors such as catchment area, shape, geology and soil type as well as land-use. Additionally, the catchments most susceptible to FFIR are often small and un-gauged. Project SINATRA will: (1) Increase our understanding of what factors cause FFIR and gathering new, high resolution measurements of FFIR by: assembling an archive of past FFIR events in Britain and their impacts, as a prerequisite for improving our ability to predict future occurrences of FFIR; making real time observations of flooding during flood events as well as post-event surveys and historical event reconstruction, using fieldwork and crowd-sourcing methods; and characterizing the physical drivers for UK summer flooding events by identifying the large-scale atmospheric conditions associated with FFIR events, and linking them to catchment type. (2) Use this new understanding and data to improve models of FFIR so we can predict where they may happen nationwide by: employing an integrated catchment/urban scale modelling approach to FFIR at high spatial and temporal scales, modelling rapid catchment response to flash floods and their impacts in urban areas; scaling up to larger catchments by improving the representation of fast riverine and surface water flooding and hydromorphic change (including debris flow) in regional scale models of FFIR; improving the representation of FFIR in the JULES land surface model by integrating river routing and fast runoff processes, and performing assimilation of soil moisture and river discharge into the model run (3) Use these new findings and predictions to provide the Environment Agency and other professionals with information and software they can use to manage FFIR, reducing their damage and impact to communities by: developing tools to enable prediction of future FFIR impacts to support the Flood Forecasting Centre in issuing new 'impacts-based' warnings about their occurrence; developing a FFIR analysis tool to assess risks associated with rare events in complex situations involving incomplete knowledge, analogous to those developed for safety assessment in radioactive waste management.
A Battery Health Monitoring Framework for Planetary Rovers
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Kulkarni, Chetan Shrikant
2014-01-01
Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.
The Representation of Prediction Error in Auditory Cortex
Rubin, Jonathan; Ulanovsky, Nachum; Tishby, Naftali
2016-01-01
To survive, organisms must extract information from the past that is relevant for their future. How this process is expressed at the neural level remains unclear. We address this problem by developing a novel approach from first principles. We show here how to generate low-complexity representations of the past that produce optimal predictions of future events. We then illustrate this framework by studying the coding of ‘oddball’ sequences in auditory cortex. We find that for many neurons in primary auditory cortex, trial-by-trial fluctuations of neuronal responses correlate with the theoretical prediction error calculated from the short-term past of the stimulation sequence, under constraints on the complexity of the representation of this past sequence. In some neurons, the effect of prediction error accounted for more than 50% of response variability. Reliable predictions often depended on a representation of the sequence of the last ten or more stimuli, although the representation kept only few details of that sequence. PMID:27490251
Chowdhury, Enayet K; Jennings, Garry L R; Dewar, Elizabeth; Wing, Lindon M H; Reid, Christopher M
2016-07-01
Hypertension leads to cardiac structural and functional changes, commonly assessed by echocardiography. In this study, we assessed the predictive performance of different echocardiographic parameters including left ventricular hypertrophy (LVH) on future cardiovascular outcomes in elderly hypertensive patients without heart failure. Data from LVH substudy of the Second Australian National Blood Pressure trial were used. Echocardiograms were performed at entry into the study. Cardiovascular outcomes were identified over short term (median 4.2 years) and long term (median 10.9 years). LVH was defined using threshold values of LV mass (LVM) indexed to either body surface area (BSA) or height(2.7): >115/95g/m(2) (LVH-BSA(115/95)) or ≥49/45g/m(2.7) (LVH-ht(49/45)) in males/females, respectively, and ≥125g/m(2) (LVH-BSA(125)) or ≥51g/m(2.7) (LVH-ht(51)) for both sexes. In the 666 participants aged ≥65 years in this analysis, LVH prevalence at baseline was 33%-70% depending on definition; and after adjusting for potential risk factors, only LVH-BSA(115/95) predicted both short- and long-term cardiovascular outcomes. Participants having LVH-BSA(115/95) (69%) at baseline had twice the risk of having any first cardiovascular event over the short term (hazard ratio, 95% confidence interval: 2.00, 1.12-3.57, P = 0.02) and any fatal cardiovascular events (2.11, 1.21-3.68, P = 0.01) over the longer term. Among other echocardiographic parameters, LVM and LVM indexed to either BSA or height(2.7) predicted cardiovascular events over both short and longer term. In elderly treated hypertensive patients without heart failure, determining LVH by echocardiography is highly dependent on the methodology adopted. LVH-BSA(115/95) is a reliable predictor of future cardiovascular outcomes in the elderly. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Moran, Andrew; Zhao, Dong; Gu, Dongfeng; Coxson, Pamela; Chen, Chung-Shiuan; Cheng, Jun; Liu, Jing; He, Jiang; Goldman, Lee
2008-01-01
Background China will experience an overall growth and aging of its adult population in coming decades. We used a computer model to forecast the future impact of these demographic changes on coronary heart disease (CHD) in China. Methods The CHD Policy Model is a validated state-transition, computer simulation of CHD on a national scale. China-specific CHD risk factor, incidence, case-fatality, and prevalence data were incorporated, and a CHD prediction model was generated from a Chinese cohort study and calibrated to age-specific Chinese mortality rates. Disability-adjusted life years (DALYs) due to CHD were calculated using standard methods. The projected population of China aged 35–84 years was entered, and CHD events, deaths, and DALYs were simulated over 2000–2029. CHD risk factors other than age and case-fatality were held at year 2000 levels. Sensitivity analyses tested uncertainty regarding CHD mortality coding, the proportion of total deaths attributable to CHD, and case-fatality. Results We predicted 7.8 million excess CHD events (a 69% increase) and 3.4 million excess CHD deaths (a 64% increase) in the decade 2020–2029 compared with 2000–2009. For 2030, we predicted 71% of almost one million annual CHD deaths will occur in persons ≥65 years old, while 67% of the growing annual burden of CHD death and disability will weigh on adults <65 years old. Substituting alternate CHD mortality assumptions led to 17–20% more predicted CHD deaths over 2000–2029, though the pattern of increases in CHD events and deaths over time remained. Conclusion We forecast that absolute numbers of CHD events and deaths will increase dramatically in China over 2010–2029, due to a growing and aging population alone. Recent data suggest CHD risk factor levels are increasing, so our projections may underestimate the extent of the potential CHD epidemic in China. PMID:19036167
Event-driven simulation in SELMON: An overview of EDSE
NASA Technical Reports Server (NTRS)
Rouquette, Nicolas F.; Chien, Steve A.; Charest, Leonard, Jr.
1992-01-01
EDSE (event-driven simulation engine), a model-based event-driven simulator implemented for SELMON, a tool for sensor selection and anomaly detection in real-time monitoring is described. The simulator is used in conjunction with a causal model to predict future behavior of the model from observed data. The behavior of the causal model is interpreted as equivalent to the behavior of the physical system being modeled. An overview of the functionality of the simulator and the model-based event-driven simulation paradigm on which it is based is provided. Included are high-level descriptions of the following key properties: event consumption and event creation, iterative simulation, synchronization and filtering of monitoring data from the physical system. Finally, how EDSE stands with respect to the relevant open issues of discrete-event and model-based simulation is discussed.
Ren, Yilong; Wang, Yunpeng; Wu, Xinkai; Yu, Guizhen; Ding, Chuan
2016-10-01
Red light running (RLR) has become a major safety concern at signalized intersection. To prevent RLR related crashes, it is critical to identify the factors that significantly impact the drivers' behaviors of RLR, and to predict potential RLR in real time. In this research, 9-month's RLR events extracted from high-resolution traffic data collected by loop detectors from three signalized intersections were applied to identify the factors that significantly affect RLR behaviors. The data analysis indicated that occupancy time, time gap, used yellow time, time left to yellow start, whether the preceding vehicle runs through the intersection during yellow, and whether there is a vehicle passing through the intersection on the adjacent lane were significantly factors for RLR behaviors. Furthermore, due to the rare events nature of RLR, a modified rare events logistic regression model was developed for RLR prediction. The rare events logistic regression method has been applied in many fields for rare events studies and shows impressive performance, but so far none of previous research has applied this method to study RLR. The results showed that the rare events logistic regression model performed significantly better than the standard logistic regression model. More importantly, the proposed RLR prediction method is purely based on loop detector data collected from a single advance loop detector located 400 feet away from stop-bar. This brings great potential for future field applications of the proposed method since loops have been widely implemented in many intersections and can collect data in real time. This research is expected to contribute to the improvement of intersection safety significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Occupation and Career Education Legislation.
ERIC Educational Resources Information Center
Nystrom, Dennis C.
Suitable for self-study or classroom instruction, this small volume treats the study of occupational legislation as both a cognitive and affective process; and it provides readers with the skills necessary to interpret cultural and social events in a context which allows predictions about future legislative enactments and their outcomes. Chapters…
Environmental Scan: A Strategic Planning Document.
ERIC Educational Resources Information Center
Osborn, Frances
Information, perceptions, and predictions from a variety of sources are brought together in this document to help guide planning and decision making at Monroe Community College (MCC). The first section examines national events and trends with implications for the future of MCC, including employment projections; educational norms; data on community…
Comparison of Two Analysis Approaches for Measuring Externalized Mental Models
ERIC Educational Resources Information Center
Al-Diban, Sabine; Ifenthaler, Dirk
2011-01-01
Mental models are basic cognitive constructs that are central for understanding phenomena of the world and predicting future events. Our comparison of two analysis approaches, SMD and QFCA, for measuring externalized mental models reveals different levels of abstraction and different perspectives. The advantages of the SMD include possibilities…
Sharma, Ashutosh; Kirkpatrick, Gordon; Chen, Virginia; Skolnik, Kate; Hollander, Zsuzsanna; Wilcox, Pearce; Quon, Bradley S
2017-01-01
C-reactive protein (CRP) is a systemic marker of inflammation that correlates with disease status in cystic fibrosis (CF). The clinical utility of CRP measurement to guide pulmonary exacerbation (PEx) treatment decisions remains uncertain. To determine whether monitoring CRP during PEx treatment can be used to predict treatment response. We hypothesized that early changes in CRP can be used to predict treatment response. We reviewed all PEx events requiring hospitalization for intravenous (IV) antibiotics over 2 years at our institution. 83 PEx events met our eligibility criteria. CRP levels from admission to day 5 were evaluated to predict treatment non-response, using a modified version of a prior published composite definition. CRP was also evaluated to predict time until next exacerbation (TUNE). 53% of 83 PEx events were classified as treatment non-response. Paradoxically, 24% of PEx events were characterized by a ≥ 50% increase in CRP levels within the first five days of treatment. Absolute change in CRP from admission to day 5 was not associated with treatment non-response (p = 0.58). Adjusted for FEV1% predicted, admission log10 CRP was associated with treatment non-response (OR: 2.39; 95% CI: 1.14 to 5.91; p = 0.03) and shorter TUNE (HR: 1.60; 95% CI: 1.13 to 2.27; p = 0.008). The area under the receiver operating characteristics (ROC) curve of admission CRP to predict treatment non-response was 0.72 (95% CI 0.61-0.83; p<0.001). 23% of PEx events were characterized by an admission CRP of > 75 mg/L with a specificity of 90% for treatment non-response. Admission CRP predicts treatment non-response and time until next exacerbation. A very elevated admission CRP (>75mg/L) is highly specific for treatment non-response and might be used to target high-risk patients for future interventional studies aimed at improving exacerbation outcomes.
Christodoulou Memory of GW150914 - Prospects of Detection in LIGO and Future Detectors
NASA Astrophysics Data System (ADS)
Johnson, Aaron; Kapadia, Shasvath; Kennefick, Daniel
2017-01-01
The event GW150914 produced strains of the order 10-21 in the two instruments comprising the Laser Interferometric Gravitational Wave Observatory (LIGO). The event has been interpreted as originating in a coalescing black hole binary, with individual components of about 30 solar masses each. A striking aspect of the coalescence deduced from the signal is the emission of 3 solar masses of energy in the oscillating gravitational wave. Theory predicts a DC component of the gravitational signal associated with the emission of such large amounts of gravitational wave energy known as the Christodoulou memory. The memory, as a non-linear component of the signal, is expected to be an order of magnitude smaller than the amplitude of the primary AC component of the gravitational waves. We discuss the prospects of detecting the Christodoulou memory in similar future signals, both with LIGO and with other detectors, including future space-based instruments.
NASA Astrophysics Data System (ADS)
Mayewski, Paul Andrew
2016-04-01
The demonstration using Greenland ice cores that abrupt shifts in climate, Dansgaard-Oeschger (D-O) events, existed during the last glacial period has had a transformational impact on our understanding of climate change in the naturally forced world. The demonstration that D-O events are globally distributed and that they operated during previous glacial periods has led to extensive research into the relative hemispheric timing and causes of these events. The emergence of civilization during our current interglacial, the Holocene, has been attributed to the "relative climate quiescence" of this period relative to the massive, abrupt shifts in climate that characterized glacial periods in the form of D-O events. But, everything is relative and climate change is no exception. The demise of past civilizations, (eg., Mesopatamian, Mayan and Norse) is integrally tied to abrupt climate change (ACC) events operating at regional scales. Regionally to globally distributed ACC events have punctuated the Holocene and extreme events have always posed significant challenges to humans and ecosystems. Current warming of the Arctic, in terms of length of the summer season, is as abrupt and massive, albeit not as extensive, as the transition from the last major D-O event, the Younger Dryas into the Holocene (Mayewski et al., 2013). Tropospheric source greenhouse gas rise and ozone depletion in the stratosphere over Antarctica are triggers for the modern advent of human emission instigated ACCs. Arctic warming and Antarctic ozone depletion have resulted in significance changes to the atmospheric circulation systems that transport heat, moisture, and pollutants in both hemispheres. Climate models offer a critical tool for assessing trends, but they cannot as yet predict ACC events, as evidenced by the inability of these models to predict the rapid onset of Arctic warming and resulting changes in atmospheric circulation; and in the model vs past analog differences in projections for the state of atmospheric circulation in the Southern Hemisphere that will result as a consequence of greenhouse gas rise and "healing" of the Antarctic ozone hole (Mayewski et al., 2015). Climate change perspective gained from instrumentally calibrated ice core and other past climate proxies is essential to the construction of plausible scenarios for future climate and actionable planning. More ACC events are in our future and the early manifestation of these events is apparent in the emerging change in the severity and frequency of extreme events. Searching for a precursor for ACC events is a major challenge for the scientific community and humanity. For the climate community to undertake this challenge it is necessary to investigate both past and present sub-seasonal and longer extreme events associated with past D-O and ACC events and their impact on societies. Examples of sub-seasonal scale investigation of these events will be included in the presentation. Mayewski, P.A., Sneed, S.B., Birkel, S.D., Kurbatov, A.V. and Maasch, Holocene warming marked by longer summers and reduced storm frequency around Greenland, Journal of Quaternary Science, 267-8179. DOl: I 0.1002/jqs.2684, 2013. Mayewski, P.A., Bertler, N., Birkel, S., Bracegirdle, T., Carleton, A., England, M., Goodwin, I., Kang, J-H., Mayewski, P., Russell, J., Schneider, S., Turner, J. and Vellicogna, I., 2015, Potential for Southern Hemisphere climate surprises, Journal of Quaternary Science (Rapid Communication) 30, 391-395, DOI: 10.1002/jqs.2794.
Homeostatic Regulation of Memory Systems and Adaptive Decisions
Mizumori, Sheri JY; Jo, Yong Sang
2013-01-01
While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The “multiple memory systems of the brain” have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in rigid and suboptimal decision making and memory as seen in addiction and neurological disease. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23929788
Homeostatic regulation of memory systems and adaptive decisions.
Mizumori, Sheri J Y; Jo, Yong Sang
2013-11-01
While it is clear that many brain areas process mnemonic information, understanding how their interactions result in continuously adaptive behaviors has been a challenge. A homeostatic-regulated prediction model of memory is presented that considers the existence of a single memory system that is based on a multilevel coordinated and integrated network (from cells to neural systems) that determines the extent to which events and outcomes occur as predicted. The "multiple memory systems of the brain" have in common output that signals errors in the prediction of events and/or their outcomes, although these signals differ in terms of what the error signal represents (e.g., hippocampus: context prediction errors vs. midbrain/striatum: reward prediction errors). The prefrontal cortex likely plays a pivotal role in the coordination of prediction analysis within and across prediction brain areas. By virtue of its widespread control and influence, and intrinsic working memory mechanisms. Thus, the prefrontal cortex supports the flexible processing needed to generate adaptive behaviors and predict future outcomes. It is proposed that prefrontal cortex continually and automatically produces adaptive responses according to homeostatic regulatory principles: prefrontal cortex may serve as a controller that is intrinsically driven to maintain in prediction areas an experience-dependent firing rate set point that ensures adaptive temporally and spatially resolved neural responses to future prediction errors. This same drive by prefrontal cortex may also restore set point firing rates after deviations (i.e. prediction errors) are detected. In this way, prefrontal cortex contributes to reducing uncertainty in prediction systems. An emergent outcome of this homeostatic view may be the flexible and adaptive control that prefrontal cortex is known to implement (i.e. working memory) in the most challenging of situations. Compromise to any of the prediction circuits should result in rigid and suboptimal decision making and memory as seen in addiction and neurological disease. Copyright © 2013 Wiley Periodicals, Inc.
Top quark studies at hadron colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinervo, P.K.
1997-01-01
The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.
Stochastic Earthquake Rupture Modeling Using Nonparametric Co-Regionalization
NASA Astrophysics Data System (ADS)
Lee, Kyungbook; Song, Seok Goo
2017-09-01
Accurate predictions of the intensity and variability of ground motions are essential in simulation-based seismic hazard assessment. Advanced simulation-based ground motion prediction methods have been proposed to complement the empirical approach, which suffers from the lack of observed ground motion data, especially in the near-source region for large events. It is important to quantify the variability of the earthquake rupture process for future events and to produce a number of rupture scenario models to capture the variability in simulation-based ground motion predictions. In this study, we improved the previously developed stochastic earthquake rupture modeling method by applying the nonparametric co-regionalization, which was proposed in geostatistics, to the correlation models estimated from dynamically derived earthquake rupture models. The nonparametric approach adopted in this study is computationally efficient and, therefore, enables us to simulate numerous rupture scenarios, including large events ( M > 7.0). It also gives us an opportunity to check the shape of true input correlation models in stochastic modeling after being deformed for permissibility. We expect that this type of modeling will improve our ability to simulate a wide range of rupture scenario models and thereby predict ground motions and perform seismic hazard assessment more accurately.
Sornette, Didier
2002-01-01
We propose that catastrophic events are “outliers” with statistically different properties than the rest of the population and result from mechanisms involving amplifying critical cascades. We describe a unifying approach for modeling and predicting these catastrophic events or “ruptures,” that is, sudden transitions from a quiescent state to a crisis. Such ruptures involve interactions between structures at many different scales. Applications and the potential for prediction are discussed in relation to the rupture of composite materials, great earthquakes, turbulence, and abrupt changes of weather regimes, financial crashes, and human parturition (birth). Future improvements will involve combining ideas and tools from statistical physics and artificial/computational intelligence, to identify and classify possible universal structures that occur at different scales, and to develop application-specific methodologies to use these structures for prediction of the “crises” known to arise in each application of interest. We live on a planet and in a society with intermittent dynamics rather than a state of equilibrium, and so there is a growing and urgent need to sensitize students and citizens to the importance and impacts of ruptures in their multiple forms. PMID:11875205
Bayesian Analysis for Inference of an Emerging Epidemic: Citrus Canker in Urban Landscapes
Neri, Franco M.; Cook, Alex R.; Gibson, Gavin J.; Gottwald, Tim R.; Gilligan, Christopher A.
2014-01-01
Outbreaks of infectious diseases require a rapid response from policy makers. The choice of an adequate level of response relies upon available knowledge of the spatial and temporal parameters governing pathogen spread, affecting, amongst others, the predicted severity of the epidemic. Yet, when a new pathogen is introduced into an alien environment, such information is often lacking or of no use, and epidemiological parameters must be estimated from the first observations of the epidemic. This poses a challenge to epidemiologists: how quickly can the parameters of an emerging disease be estimated? How soon can the future progress of the epidemic be reliably predicted? We investigate these issues using a unique, spatially and temporally resolved dataset for the invasion of a plant disease, Asiatic citrus canker in urban Miami. We use epidemiological models, Bayesian Markov-chain Monte Carlo, and advanced spatial statistical methods to analyse rates and extent of spread of the disease. A rich and complex epidemic behaviour is revealed. The spatial scale of spread is approximately constant over time and can be estimated rapidly with great precision (although the evidence for long-range transmission is inconclusive). In contrast, the rate of infection is characterised by strong monthly fluctuations that we associate with extreme weather events. Uninformed predictions from the early stages of the epidemic, assuming complete ignorance of the future environmental drivers, fail because of the unpredictable variability of the infection rate. Conversely, predictions improve dramatically if we assume prior knowledge of either the main environmental trend, or the main environmental events. A contrast emerges between the high detail attained by modelling in the spatiotemporal description of the epidemic and the bottleneck imposed on epidemic prediction by the limits of meteorological predictability. We argue that identifying such bottlenecks will be a fundamental step in future modelling of weather-driven epidemics. PMID:24762851
Gurbel, Paul A.; Bliden, Kevin P.; Navickas, Irene A.; Mahla, Elizabeth; Dichiara, Joseph; Suarez, Thomas A.; Antonino, Mark J.; Tantry, Udaya S.; Cohen, Eli
2010-01-01
Background Post-stenting ischemic events occur despite dual antiplatelet therapy suggesting that a “one size fits all” antithrombotic strategy has significant limitations. Ex vivo platelet function measurements may facilitate risk stratification and personalized antiplatelet therapy. Methods We investigated the prognostic utility of the strength of ADP-induced (MAADP) and thrombin-induced (MATHROMBIN) platelet-fibrin clots measured by thrombelastography and ADP-induced light transmittance aggregation (LTAADP) in 225 serial patients following elective stenting treated with aspirin and clopidogrel. Ischemic and bleeding events were assessed over three-years. Results Overall, 59 (26 %) first ischemic events occurred. Patients with ischemic events had higher MAADP, MATHROMBIN, and LTAADP (p<0.0001 for all comparisons). By receiver operating characteristic curve analysis, MAADP > 47mm had the best predictive value of long-term ischemic events compared to other measurements (p<0.0001) with an area under the curve = 0.84 [95% CI 0.78 – 0.89, p < 0.0001]. The univariate Cox proportional hazards model identified MAADP >47mm, MATHROMBIN >69mm, and LTA ADP >34% as significant independent predictors of first ischemic events at the three-year time point, with hazard ratios of 10.3 (p<0.0001), 3.8 (p<0.0001), and 4.8 (p<0.0001) respectively. Fifteen bleeding events occurred. Receiver operator characteristic curve and quartile analysis suggest MAADP ≤ 31 as a predictive value for bleeding. Conclusion This study is the first demonstration of the prognostic utility of MAADP in predicting long term event occurrence following stenting. The quantitative assessment of ADP-stimulated platelet-fibrin clot strength measured by thrombelastography can serve as a future tool in investigations of personalized antiplatelet treatment designed to reduce ischemic events and bleeding. PMID:20691842
Gurbel, Paul A; Bliden, Kevin P; Navickas, Irene A; Mahla, Elizabeth; Dichiara, Joseph; Suarez, Thomas A; Antonino, Mark J; Tantry, Udaya S; Cohen, Eli
2010-08-01
Poststenting ischemic events occur despite dual-antiplatelet therapy, suggesting that a "one size fits all" antithrombotic strategy has significant limitations. Ex vivo platelet function measurements may facilitate risk stratification and personalized antiplatelet therapy. We investigated the prognostic utility of the strength of adenosine diphosphate (ADP)-induced (MA(ADP)) and thrombin-induced (MA(THROMBIN)) platelet-fibrin clots measured by thrombelastography and ADP-induced light transmittance aggregation (LTA(ADP)) in 225 serial patients after elective stenting treated with aspirin and clopidogrel. Ischemic and bleeding events were assessed over 3 years. Overall, 59 (26%) first ischemic events occurred. Patients with ischemic events had higher MA(ADP), MA(THROMBIN), and LTA(ADP) (P < .0001 for all comparisons). By receiver operating characteristic curve analysis, MA(ADP) >47 mm had the best predictive value of long-term ischemic events compared with other measurements (P < .0001), with an area under the curve = 0.84 (95% CI 0.78-0.89, P < .0001). The univariate Cox proportional hazards model identified MA(ADP) >47 mm, MA(THROMBIN) >69 mm, and LTA(ADP) >34% as significant independent predictors of first ischemic events at the 3-year time point, with hazard ratios of 10.3 (P < .0001), 3.8 (P < .0001), and 4.8 (P < .0001), respectively. Fifteen bleeding events occurred. Receiver operating characteristic curve and quartile analysis suggests MA(ADP)
NASA Astrophysics Data System (ADS)
Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Vieira-Martins, R.; Assafin, M.; Sicardy, B.; Bérard, D.; Benedetti-Rossi, G.
2018-05-01
Distant objects in the solar system are crucial to better understand the history and evolution of its outskirts. The stellar occultation technique allows the determination of their sizes and shapes with kilometric accuracy, a detailed investigation of their immediate vicinities, as well as the detection of tenuous atmospheres. The prediction of such events is a key point in this study, and yet accurate enough predictions are available to a handful of objects only. In this work, we briefly discuss the dramatic impact that both the astrometry from the Gaia space mission and the deep sky surveys - the Large Synoptic Survey Telescope in particular - will have on the prediction of stellar occultations and how they may influence the future of the study of distant small solar system bodies through this technique.
Otsuka, Kenichiro; Fukuda, Shota; Shimada, Kenei; Suzuki, Kenji; Nakanishi, Koki; Yoshiyama, Minoru; Yoshikawa, Junichi
2014-11-01
Arterial stiffness is a significant predictor of cardiovascular disease (CVD), the risk of which is modified by medications for atherosclerotic risk factors and life-style changes. Cardio-ankle vascular index (CAVI) provides noninvasive, objective information on arterial stiffness, independent of blood pressure. This study aimed to investigate changes in CAVI after management of atherosclerotic risk factors, and the impact of these changes on future CVD outcomes in patients with coronary artery disease (CAD). The study consisted of 211 CAD patients (65 ± 10 years, 118 men) with impaired CAVI. CAVI examination was repeated 6 months later. Impaired CAVI was defined as greater than the mean plus 1 s.d. of the age- and gender-specific normal CAVI values, according to results obtained in 5188 healthy subjects. All patients were followed for > 1 year or until the occurrence of a CVD event. Of the 211 patients, CAVI improved in 106 (50%) patients after 6 months, but remained high in 105 (50%) patients. During follow-up (2.9 ± 1.0 years), CVD events occurred in 28 (13%) patients. Persistently impaired CAVI was an independent predictor of future CVD events (P = 0.01), independent of baseline CAVI. CVD outcomes were worse in patients with persistently impaired CAVI than in those with improved CAVI (P < 0.001). Among patients with a normalized CAVI after treatment (n = 22) only one suffered a CVD event. This study was the first to demonstrate that persistent impairment of arterial stiffness was an independent risk factor of future CVD events. Serial measurements of CAVI provide important prognostic information regarding patients with CAD in clinical practice.
Mineral resource models and the Alaskan Mineral Resource Assessment Program
Singer, Donald A.; Vogely, W. A.
1975-01-01
The least exacting demand that can be made of any model is that it serves as a device whereby we can predict actual physical happenings. Another demand which could be made is that the physical happenings predicted be in some way relevant to man, either by allowing him to anticipate future uncontrollable events or by demonstrating the possible consequences of various decisions. To date, many mineral resource models have been deficient in meeting these demands.
Predicting the Future Impact of Droughts on Ungulate Populations in Arid and Semi-Arid Environments
Duncan, Clare; Chauvenet, Aliénor L. M.; McRae, Louise M.; Pettorelli, Nathalie
2012-01-01
Droughts can have a severe impact on the dynamics of animal populations, particularly in semi-arid and arid environments where herbivore populations are strongly limited by resource availability. Increased drought intensity under projected climate change scenarios can be expected to reduce the viability of such populations, yet this impact has seldom been quantified. In this study, we aim to fill this gap and assess how the predicted worsening of droughts over the 21st century is likely to impact the population dynamics of twelve ungulate species occurring in arid and semi-arid habitats. Our results provide support to the hypotheses that more sedentary, grazing and mixed feeding species will be put at high risk from future increases in drought intensity, suggesting that management intervention under these conditions should be targeted towards species possessing these traits. Predictive population models for all sedentary, grazing or mixed feeding species in our study show that their probability of extinction dramatically increases under future emissions scenarios, and that this extinction risk is greater for smaller populations than larger ones. Our study highlights the importance of quantifying the current and future impacts of increasing extreme natural events on populations and species in order to improve our ability to mitigate predicted biodiversity loss under climate change. PMID:23284700
EVALUATING THE PREDICTIVE VALIDITY OF SUICIDAL INTENT AND MEDICAL LETHALITY IN YOUTH
Sapyta, Jeffrey; Goldston, David B.; Erkanli, Alaattin; Daniel, Stephanie S.; Heilbron, Nicole; Mayfield, Andrew; Treadway, S. Lyn
2012-01-01
Objectives To examine whether suicidal intent and medical lethality of past suicide attempts are predictive of future attempts, the association between intent and lethality, and the consistency of these characteristics across repeated attempts among youth. Method Suicide attempts in a 15-year prospective study of 180 formerly psychiatrically hospitalized adolescents (Mage at hospitalization = 14.83; 51% female; 80% Caucasian) were characterized using the Subjective Intent Rating Scale and Lethality of Attempt Rating Scale. Anderson-Gill recurrent events survival models and generalized estimating equations were used to assess predictive validity. Generalized linear models were used to examine stability of characteristics across attempts. Results Neither intent nor lethality from the most recent attempt predicted future attempts. The highest level of intent and most severe lethality of attempts during the follow-up predicted subsequent attempts, but the degree to which highest intent and most severe lethality contributed to prediction after considering methods of suicide attempts, past number of attempts, or psychiatric diagnoses was mixed. Across successive attempts, there was little consistency in reported characteristics. Intent and lethality were related to each other only for attempts occurring in early adulthood. Conclusions Highest intent and lethality were better predictors of future attempts than intent and lethality of the most recent attempt. However, these characteristics should only be considered as predictors within the context of other factors. For youth, clinicians should not infer true intent from the lethality of attempts, nor assume that characteristics of future suicide attempts will be similar to previous attempts. PMID:22250854
NASA Astrophysics Data System (ADS)
Fekete, B. M.; Afshari Tork, S.; Vorosmarty, C. J.
2015-12-01
Characterizing hydrological extreme events and assessing their societal impacts is perpetual challenge for hydrologists. Climate models predict that anticipated temperature rise leads to an intensification of the hydrological cycle and to a corresponding increase in the reoccurrence and the severity of extreme events. The societal impact of the hydrological extremes are interlinked with anthropogenic activities therefore the damages to manmade infrastructures are rarely a good measure of the extreme events' magnitudes. Extreme events are rare by definition therefore detecting change in their distributions requires long-term observational records. Currently, only in-situ monitoring time series has the temporal extent necessary for assessing the reoccurrence probabilities of extreme events, but they frequently lack the spatial coverage. Satellite remote sensing is often advocated to provide the required spatial coverage, but satellites have to compromise between spatial and temporal resolutions. Furthermore, the retrieval algorithms are often as complex as comparable hydrological models with similar degree of uncertainties in their parameterization and the validity of the final data products. In addition, anticipated changes over time in the reoccurrence frequencies of extreme events invalidates the stationarity assumption, which is the basis for using past observations to predict the probabilities future extreme events. Probably the best approach to provide more robust predictions of extreme events is the integration of the available data (in-situ and remote sensing) in a comprehensive data assimilation frameworks built on top of adequate hydrological modeling platforms. Our presentation will provide an overview of the current state of hydrological models to support data assimilations and the viable pathways to integrate in-situ and remote sensing observations for flood predictions. We will demonstrate the use of socio-economic data in combination with hydrological data assimilation to assess the resiliency to extreme flood events.
Reality Check Algorithm for Complex Sources in Early Warning
NASA Astrophysics Data System (ADS)
Karakus, G.; Heaton, T. H.
2013-12-01
In almost all currently operating earthquake early warning (EEW) systems, presently available seismic data are used to predict future shaking. In most cases, location and magnitude are estimated. We are developing an algorithm to test the goodness of that prediction in real time. We monitor envelopes of acceleration, velocity, and displacement; if they deviate significantly from the envelope predicted by Cua's envelope gmpe's then we declare an overfit (perhaps false alarm) or an underfit (possibly a larger event has just occurred). This algorithm is designed to provide a robust measure and to work as quickly as possible in real-time. We monitor the logarithm of the ratio between the envelopes of the ongoing observed event and the envelopes derived from the predicted envelopes of channels of ground motion of the Virtual Seismologist (VS) (Cua, G. and Heaton, T.). Then, we recursively filter this result with a simple running median (de-spiking operator) to minimize the effect of one single high value. Depending on the result of the filtered value we make a decision such as if this value is large enough (e.g., >1), then we would declare, 'that a larger event is in progress', or similarly if this value is small enough (e.g., <-1), then we would declare a false alarm. We design the algorithm to work at a wide range of amplitude scales; that is, it should work for both small and large events.
Is Heavy Drinking Really Associated With Attrition From College? The Alcohol–Attrition Paradox
Martinez, Julia A.; Sher, Kenneth J.; Wood, Phillip K.
2009-01-01
Student attrition at colleges across the United States poses a significant problem for students and families, higher educational institutions, and the nation's workforce competing in the global economy. Heavy drinking is a highly plausible contributor to the problem. However, there is little evidence that it is a reliable predictor of attrition. Notably, few studies take into account indicators of collegiate engagement that are associated with both heavy drinking and persistence in college. Event-history analysis was used to estimate the effect of heavy drinking on attrition among 3,290 undergraduates at a large midwestern university during a 4-year period, and student attendance at a number of college events was included as covariates. Results showed that heavy drinking did not predict attrition bivariately or after controlling for precollege predictors of academic success. However, after controlling for event attendance (an important indicator of collegiate engagement), heavy drinking was found to predict attrition. These findings underscore the importance of the college context in showing that heavy drinking does in fact predict attrition and in considering future intervention efforts to decrease attrition and also heavy drinking. PMID:18778140
NASA Technical Reports Server (NTRS)
Halm, M. K.; Clark, A.; Wear, M. L.; Murray, J. D.; Polk, J. D.; Amirian, E.
2009-01-01
Risk prediction equations from the Framingham Heart Study are commonly used to predict the absolute risk of myocardial infarction (MI) and coronary heart disease (CHD) related death. Predicting CHD-related events in the U.S. astronaut corps presents a monumental challenge, both because astronauts tend to live healthier lifestyles and because of the unique cardiovascular stressors associated with being trained for and participating in space flight. Traditional risk factors may not hold enough predictive power to provide a useful indicator of CHD risk in this unique population. It is important to be able to identify individuals who are at higher risk for CHD-related events so that appropriate preventive care can be provided. This is of special importance when planning long duration missions since the ability to provide advanced cardiac care and perform medical evacuation is limited. The medical regimen of the astronauts follows a strict set of clinical practice guidelines in an effort to ensure the best care. The purpose of this study was to evaluate the utility of the Framingham risk score (FRS), low-density lipoprotein (LDL) and high-density lipoprotein levels, blood pressure, and resting pulse as predictors of CHD-related death and MI in the astronaut corps, using Cox regression. Of these factors, only two, LDL and pulse at selection, were predictive of CHD events (HR(95% CI)=1.12 (1.00-1.25) and HR(95% CI)=1.70 (1.05-2.75) for every 5-unit increase in LDL and pulse, respectively). Since traditional CHD risk factors may lack the specificity to predict such outcomes in astronauts, the development of a new predictive model, using additional measures such as electron-beam computed tomography and carotid intima-media thickness ultrasound, is planned for the future.
NASA Astrophysics Data System (ADS)
Slater, L. J.; Villarini, G.; Bradley, A.
2015-12-01
Model predictions of precipitation and temperature are crucial to mitigate the impacts of major flood and drought events through informed planning and response. However, the potential value and applicability of these predictions is inescapably linked to their forecast quality. The North-American Multi-Model Ensemble (NMME) is a multi-agency supported forecasting system for intraseasonal to interannual (ISI) climate predictions. Retrospective forecasts and real-time information are provided by each agency free of charge to facilitate collaborative research efforts for predicting future climate conditions as well as extreme weather events such as floods and droughts. Using the PRISM climate mapping system as the reference data, we examine the skill of five General Circulation Models (GCMs) from the NMME project to forecast monthly and seasonal precipitation and temperature over seven sub-regions of the continental United States. For each model, we quantify the seasonal accuracy of the forecast relative to observed precipitation using the mean square error skill score. This score is decomposed to assess the accuracy of the forecast in the absence of biases (potential skill), and in the presence of conditional (slope reliability) and unconditional (standardized mean error) biases. The quantification of these biases allows us to diagnose each model's skill over a full range temporal and spatial scales. Finally, we test each model's forecasting skill by evaluating its ability to predict extended periods of extreme temperature and precipitation that were conducive to 'billion-dollar' historical flood and drought events in different regions of the continental USA. The forecasting skill of the individual climate models is summarized and presented along with a discussion of different multi-model averaging techniques for predicting such events.
Hermann the Dalmatian as Astronomer
NASA Astrophysics Data System (ADS)
Dadic, Z.
Hermann the Dalmatian was the subject of great controversy for philosophers, and here his work and translations are considered. As far as Hermann's work are concerned his prime interest for astronomy and astrology is stressed. Astrological "predictions" interested him primarely as predictions of events which are related to global questions, i.e. predicting the future course of events in the universe or destiny of nation as a whole, rather then the destiny of indivinduals. On the other hand it is also evident that Hremann with his knowledge of the Eastern, Arabic scientific tradition and the European spiritual tradition, become one of the most important scientists of his times. Hermann archieved a fruitful syntesis between the two traditions and opened new concepts in science. So he stands as a basic figure at the turning point of European science and the scientific endeavours from the 12th to the 15th century.
Predicted and experienced affective responses to the outcome of the 2008 U.S. presidential election.
Kitchens, Michael B; Corser, Grant C; Gohm, Carol L; VonWaldner, Kristen L; Foreman, Elizabeth L
2010-12-01
People typically have intense feelings about politics. Therefore, it was no surprise that the campaign and eventual election of Barack Obama were highly anticipated and emotionally charged events, making it and the emotion experienced afterward a useful situation in which to replicate prior research showing that people typically overestimate the intensity and duration of their future affective states. Consequently, it was expected that Obama supporters and McCain supporters might overestimate the intensity of their affective responses to the outcome of the election. Data showed that while McCain supporters underestimated how happy they would be following the election, Obama supporters accurately predicted how happy they would be following the election. These data provide descriptive information on the accuracy of people's predicted reactions to the 2008 U.S. presidential election. The findings are discussed in the context of the broad literature and this specific and unique event.
Predicting adverse hemodynamic events in critically ill patients.
Yoon, Joo H; Pinsky, Michael R
2018-06-01
The art of predicting future hemodynamic instability in the critically ill has rapidly become a science with the advent of advanced analytical processed based on computer-driven machine learning techniques. How these methods have progressed beyond severity scoring systems to interface with decision-support is summarized. Data mining of large multidimensional clinical time-series databases using a variety of machine learning tools has led to our ability to identify alert artifact and filter it from bedside alarms, display real-time risk stratification at the bedside to aid in clinical decision-making and predict the subsequent development of cardiorespiratory insufficiency hours before these events occur. This fast evolving filed is primarily limited by linkage of high-quality granular to physiologic rationale across heterogeneous clinical care domains. Using advanced analytic tools to glean knowledge from clinical data streams is rapidly becoming a reality whose clinical impact potential is great.
Bayesian quantitative precipitation forecasts in terms of quantiles
NASA Astrophysics Data System (ADS)
Bentzien, Sabrina; Friederichs, Petra
2014-05-01
Ensemble prediction systems (EPS) for numerical weather predictions on the mesoscale are particularly developed to obtain probabilistic guidance for high impact weather. An EPS not only issues a deterministic future state of the atmosphere but a sample of possible future states. Ensemble postprocessing then translates such a sample of forecasts into probabilistic measures. This study focus on probabilistic quantitative precipitation forecasts in terms of quantiles. Quantiles are particular suitable to describe precipitation at various locations, since no assumption is required on the distribution of precipitation. The focus is on the prediction during high-impact events and related to the Volkswagen Stiftung funded project WEX-MOP (Mesoscale Weather Extremes - Theory, Spatial Modeling and Prediction). Quantile forecasts are derived from the raw ensemble and via quantile regression. Neighborhood method and time-lagging are effective tools to inexpensively increase the ensemble spread, which results in more reliable forecasts especially for extreme precipitation events. Since an EPS provides a large amount of potentially informative predictors, a variable selection is required in order to obtain a stable statistical model. A Bayesian formulation of quantile regression allows for inference about the selection of predictive covariates by the use of appropriate prior distributions. Moreover, the implementation of an additional process layer for the regression parameters accounts for spatial variations of the parameters. Bayesian quantile regression and its spatially adaptive extension is illustrated for the German-focused mesoscale weather prediction ensemble COSMO-DE-EPS, which runs (pre)operationally since December 2010 at the German Meteorological Service (DWD). Objective out-of-sample verification uses the quantile score (QS), a weighted absolute error between quantile forecasts and observations. The QS is a proper scoring function and can be decomposed into reliability, resolutions and uncertainty parts. A quantile reliability plot gives detailed insights in the predictive performance of the quantile forecasts.
NASA Astrophysics Data System (ADS)
Brandt, M. E.
2009-12-01
Understanding the variation in coral bleaching response is necessary for making accurate predictions of population changes and the future state of reefs in a climate of increasing thermal stress events. Individual coral colonies, belonging to inshore patch reef communities of the Florida Keys, were followed through the 2005 mass bleaching event. Overall, coral bleaching patterns followed an index of accumulated thermal stress more closely than in situ temperature measurements. Eight coral species ( Colpophyllia natans, Diploria strigosa, Montastraea cavernosa, M. faveolata, Porites astreoides, P. porites, Siderastrea siderea, and Stephanocoenia intersepta), representing >90% of the coral colonies studied, experienced intense levels of bleaching, but responses varied. Bleaching differed significantly among species: Colpophyllia natans and Diploria strigosa were most susceptible to thermal stress, while Stephanocoenia intersepta was the most tolerant. For colonies of C. natans, M. faveolata, and S. siderea, larger colonies experienced more extensive bleaching than smaller colonies. The inshore patch reef communities of the Florida Keys have historically been dominated by large colonies of Montastraea sp. and Colpophyllia natans. These results provide evidence that colony-level differences can affect bleaching susceptibility in this habitat and suggest that the impact of future thermal stress events may be biased toward larger colonies of dominant reef-building species. Predicted increases in the frequency of mass bleaching and subsequent mortality may therefore result in significant structural shifts of these ecologically important communities.
Possibility of Earthquake-prediction by analyzing VLF signals
NASA Astrophysics Data System (ADS)
Ray, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta
2016-07-01
Prediction of seismic events is one of the most challenging jobs for the scientific community. Conventional ways for prediction of earthquakes are to monitor crustal structure movements, though this method has not yet yield satisfactory results. Furthermore, this method fails to give any short-term prediction. Recently, it is noticed that prior to any seismic event a huge amount of energy is released which may create disturbances in the lower part of D-layer/E-layer of the ionosphere. This ionospheric disturbance may be used as a precursor of earthquakes. Since VLF radio waves propagate inside the wave-guide formed by lower ionosphere and Earth's surface, this signal may be used to identify ionospheric disturbances due to seismic activity. We have analyzed VLF signals to find out the correlations, if any, between the VLF signal anomalies and seismic activities. We have done both the case by case study and also the statistical analysis using a whole year data. In both the methods we found that the night time amplitude of VLF signals fluctuated anomalously three days before the seismic events. Also we found that the terminator time of the VLF signals shifted anomalously towards night time before few days of any major seismic events. We calculate the D-layer preparation time and D-layer disappearance time from the VLF signals. We have observed that this D-layer preparation time and D-layer disappearance time become anomalously high 1-2 days before seismic events. Also we found some strong evidences which indicate that it may possible to predict the location of epicenters of earthquakes in future by analyzing VLF signals for multiple propagation paths.
Fifth International Symposium on Liquid Space Propulsion
NASA Technical Reports Server (NTRS)
Garcia, R. (Compiler)
2005-01-01
Contents include the fiollowing: Theme: Life-life Combustion Devices Technology. Technical Sessions: International Perspectives. System Level Effects. Component Level Processes. Material Considerations. Design Environments -- Predictions. Injector Design Technology. Design Environments -- Measurements. Panel Discussion: Views on future research and development needs and Symposium observations. Aquarium Welcome and Southern Belle Riverboat Recognition Banquet evening events.
Ohio Environmental Education Areas.
ERIC Educational Resources Information Center
Melvin, Ruth W.
This is a guide to regional sites in Ohio which can be studied in regard to resource management; land use; the quality of air, water, soil; and reclamation. The first section of the guide includes brief descriptions of Ohio's natural features at the present time, accounts of past appearances and events, and predictions for the future. In the…
Analysis of the Transport and Fate of Metals Released From ...
This project’s objectives were to provide analysis of water quality following the release of acid mine drainage in the Animas and San Juan Rivers in a timely manner to 1) generate a comprehensive picture of the plume at the river system level, 2) help inform future monitoring efforts and 3) to predict potential secondary effects that could occur from materials that may remain stored within the system. The project focuses on assessing metals contamination during the plume and in the first month following the event. This project’s objectives were to provide analysis of water quality following the release of acid mine drainage from the Gold King Mine in the Animas and San Juan Rivers in a timely manner to 1) generate a comprehensive picture of the plume at the river system level, 2) help inform future monitoring efforts and 3) to predict potential secondary effects that could occur from materials that may remain stored within the system. The project focuses on assessing metals contamination during the plume and in the first month following the event.
Automatic identification of gait events using an instrumented sock
2011-01-01
Background Textile-based transducers are an emerging technology in which piezo-resistive properties of materials are used to measure an applied strain. By incorporating these sensors into a sock, this technology offers the potential to detect critical events during the stance phase of the gait cycle. This could prove useful in several applications, such as functional electrical stimulation (FES) systems to assist gait. Methods We investigated the output of a knitted resistive strain sensor during walking and sought to determine the degree of similarity between the sensor output and the ankle angle in the sagittal plane. In addition, we investigated whether it would be possible to predict three key gait events, heel strike, heel lift and toe off, with a relatively straight-forward algorithm. This worked by predicting gait events to occur at fixed time offsets from specific peaks in the sensor signal. Results Our results showed that, for all subjects, the sensor output exhibited the same general characteristics as the ankle joint angle. However, there were large between-subjects differences in the degree of similarity between the two curves. Despite this variability, it was possible to accurately predict gait events using a simple algorithm. This algorithm displayed high levels of trial-to-trial repeatability. Conclusions This study demonstrates the potential of using textile-based transducers in future devices that provide active gait assistance. PMID:21619570
Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events.
Botwey, Ransford Henry; Daskalaki, Elena; Diem, Peter; Mougiakakou, Stavroula G
2014-01-01
Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement.
Means and extremes: building variability into community-level climate change experiments.
Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula
2013-06-01
Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.
A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data.
Wolfson, Julian; Bandyopadhyay, Sunayan; Elidrisi, Mohamed; Vazquez-Benitez, Gabriela; Vock, David M; Musgrove, Donald; Adomavicius, Gediminas; Johnson, Paul E; O'Connor, Patrick J
2015-09-20
Predicting an individual's risk of experiencing a future clinical outcome is a statistical task with important consequences for both practicing clinicians and public health experts. Modern observational databases such as electronic health records provide an alternative to the longitudinal cohort studies traditionally used to construct risk models, bringing with them both opportunities and challenges. Large sample sizes and detailed covariate histories enable the use of sophisticated machine learning techniques to uncover complex associations and interactions, but observational databases are often 'messy', with high levels of missing data and incomplete patient follow-up. In this paper, we propose an adaptation of the well-known Naive Bayes machine learning approach to time-to-event outcomes subject to censoring. We compare the predictive performance of our method with the Cox proportional hazards model which is commonly used for risk prediction in healthcare populations, and illustrate its application to prediction of cardiovascular risk using an electronic health record dataset from a large Midwest integrated healthcare system. Copyright © 2015 John Wiley & Sons, Ltd.
A simulation of dementia epidemiology and resource use in Australia.
Standfield, Lachlan B; Comans, Tracy; Scuffham, Paul
2018-06-01
The number of people in the developed world who have dementia is predicted to rise markedly. This study presents a validated predictive model to assist decision-makers to determine this population's future resource requirements and target scarce health and welfare resources appropriately. A novel individual patient discrete event simulation was developed to estimate the future prevalence of dementia and related health and welfare resource use in Australia. When compared to other published results, the simulation generated valid estimates of dementia prevalence and resource use. The analysis predicted 298,000, 387,000 and 928,000 persons in Australia will have dementia in 2011, 2020 and 2050, respectively. Health and welfare resource use increased markedly over the simulated time-horizon and was affected by capacity constraints. This simulation provides useful estimates of future demands on dementia-related services allowing the exploration of the effects of capacity constraints. Implications for public health: The model demonstrates that under-resourcing of residential aged care may lead to inappropriate and inefficient use of hospital resources. To avoid these capacity constraints it is predicted that the number of aged care beds for persons with dementia will need to increase more than threefold from 2011 to 2050. © 2017 The Authors.
Salisbury, Margaret L; Xia, Meng; Zhou, Yueren; Murray, Susan; Tayob, Nabihah; Brown, Kevin K; Wells, Athol U; Schmidt, Shelley L; Martinez, Fernando J; Flaherty, Kevin R
2016-02-01
Idiopathic pulmonary fibrosis is a progressive lung disease with variable course. The Gender-Age-Physiology (GAP) Index and staging system uses clinical variables to stage mortality risk. It is unknown whether clinical staging predicts future decline in pulmonary function. We assessed whether the GAP stage predicts future pulmonary function decline and whether interval pulmonary function change predicts mortality after accounting for stage. Patients with idiopathic pulmonary fibrosis (N = 657) were identified retrospectively at three tertiary referral centers, and baseline GAP stages were assessed. Mixed models were used to describe average trajectories of FVC and diffusing capacity of the lung for carbon monoxide (Dlco). Multivariable Cox proportional hazards models were used to assess whether declines in pulmonary function ≥ 10% in 6 months predict mortality after accounting for GAP stage. Over a 2-year period, GAP stage was not associated with differences in yearly lung function decline. After accounting for stage, a 10% decrease in FVC or Dlco over 6 months independently predicted death or transplantation (FVC hazard ratio, 1.37; Dlco hazard ratio, 1.30; both, P ≤ .03). Patients with GAP stage 2 with declining pulmonary function experienced a survival profile similar to patients with GAP stage 3, with 1-year event-free survival of 59.3% (95% CI, 49.4-67.8) vs 56.9% (95% CI, 42.2-69.1). Baseline GAP stage predicted death or lung transplantation but not the rate of future pulmonary function decline. After accounting for GAP stage, a decline of ≥ 10% over 6 months independently predicted death or lung transplantation. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Easy to retrieve but hard to believe: metacognitive discounting of the unpleasantly possible.
O'Brien, Ed
2013-06-01
People who recall or forecast many pleasant moments should perceive themselves as happier in the past or future than people who generate few such moments; the same principle should apply to generating unpleasant moments and perceiving unhappiness. Five studies suggest that this is not always true. Rather, people's metacognitive experience of ease of thought retrieval ("fluency") can affect perceived well-being over time beyond actual thought content. The easier it is to recall positive past experiences, the happier people think they were at the time; likewise, the easier it is to recall negative past experiences, the unhappier people think they were. But this is not the case for predicting the future. Although people who easily generate positive forecasts predict more future happiness, people who easily generate negative forecasts do not infer future unhappiness. Given pervasive tendencies to underestimate the likelihood of experiencing negative events, people apparently discount hard-to-believe metacognitive feelings (e.g., easily imagined unpleasant futures). Paradoxically, people's well-being may be maximized when they contemplate some bad moments or just a few good moments.
The future of satellite remote sensing: A worldwide assessment and prediction
NASA Technical Reports Server (NTRS)
Spann, G. W.
1984-01-01
A frame-work in which to assess and predict the future prospects for satellite remote sensing markets is provided. The scope of the analysis is the satellite-related market for data, equipment, and services. It encompasses both domestic and international markets and contains an examination of the various market characteristics by market segment (e.g., Federal Government, State and Local Governments, Academic Organizations, Industrial Companies, and Individuals) and primary applications areas (e.g., Geology, Forestry, Land Resource Management, Agriculture and Cartography). The forecasts are derived from an analysis of both U.S. and foreign market data. The evolution and current status of U.S. and Foreign markets to arrive at market growth rates is evaluated. Circumstances and events which are likely to affect the future market development are examined. A market growth scenario is presented that is consistent with past data sales trends and takes into account the dynamic nature of the future satellite remote sensing market. Several areas of current and future business opportunities available in this market are discussed. Specific worldwide forecasts are presented in three market sectors for the period 1980 to 1990.
C-reactive protein and other markers of inflammation in hemodialysis patients
Heidari, Behzad
2013-01-01
Hemodialysis patients are at greater risk of cardiovascular disease. Higher than expected cardiovascular morbidity and mortality in this population has been attributed to dislipidemia as well as inflammation. The causes of inflammation in hemodialysis patients are multifactorial. Several markers were used for the detection of inflammatory reaction in patients with chronic renal disease. These markers can be used for the prediction of future cardiovascular events. Among the several parameters of inflammatory markers, serum, CRP is well known and its advantages for the detection of inflammation and its predictor ability has been evaluated in several studies. This review addressed the associated factors and markers of inflammation in hemodialysis patients. In addition, their ability in predicting future atherosclerosis and effect of treatment has been reviewed. However, this context particularly in using CRP as a prediction marker of inflammation and morbidity requires further studies. PMID:24009946
C-reactive protein and other markers of inflammation in hemodialysis patients.
Heidari, Behzad
2013-01-01
Hemodialysis patients are at greater risk of cardiovascular disease. Higher than expected cardiovascular morbidity and mortality in this population has been attributed to dislipidemia as well as inflammation. The causes of inflammation in hemodialysis patients are multifactorial. Several markers were used for the detection of inflammatory reaction in patients with chronic renal disease. These markers can be used for the prediction of future cardiovascular events. Among the several parameters of inflammatory markers, serum, CRP is well known and its advantages for the detection of inflammation and its predictor ability has been evaluated in several studies. This review addressed the associated factors and markers of inflammation in hemodialysis patients. In addition, their ability in predicting future atherosclerosis and effect of treatment has been reviewed. However, this context particularly in using CRP as a prediction marker of inflammation and morbidity requires further studies.
NASA Astrophysics Data System (ADS)
Ricciuto, D. M.; Warren, J.; Guha, A.
2017-12-01
While carbon and energy fluxes in current Earth system models generally have reasonable instantaneous responses to extreme temperature and precipitation events, they often do not adequately represent the long-term impacts of these events. For example, simulated net primary productivity (NPP) may decrease during an extreme heat wave or drought, but may recover rapidly to pre-event levels following the conclusion of the extreme event. However, field measurements indicate that long-lasting damage to leaves and other plant components often occur, potentially affecting the carbon and energy balance for months after the extreme event. The duration and frequency of such extreme conditions is likely to shift in the future, and therefore it is critical for Earth system models to better represent these processes for more accurate predictions of future vegetation productivity and land-atmosphere feedbacks. Here we modify the structure of the Accelerated Climate Model for Energy (ACME) land surface model to represent long-term impacts and test the improved model against observations from experiments that applied extreme conditions in growth chambers. Additionally, we test the model against eddy covariance measurements that followed extreme conditions at selected locations in North America, and against satellite-measured vegetation indices following regional extreme events.
Merging weak and QCD showers with matrix elements
Christiansen, Jesper Roy; Prestel, Stefan
2016-01-22
In this study, we present a consistent way of combining associated weak boson radiation in hard dijet events with hard QCD radiation in Drell–Yan-like scatterings. This integrates multiple tree-level calculations with vastly different cross sections, QCD- and electroweak parton-shower resummation into a single framework. The new merging strategy is implemented in the P ythia event generator and predictions are confronted with LHC data. Improvements over the previous strategy are observed. Results of the new electroweak-improved merging at a future 100 TeV proton collider are also investigated.
Merging weak and QCD showers with matrix elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christiansen, Jesper Roy; Prestel, Stefan
In this study, we present a consistent way of combining associated weak boson radiation in hard dijet events with hard QCD radiation in Drell–Yan-like scatterings. This integrates multiple tree-level calculations with vastly different cross sections, QCD- and electroweak parton-shower resummation into a single framework. The new merging strategy is implemented in the P ythia event generator and predictions are confronted with LHC data. Improvements over the previous strategy are observed. Results of the new electroweak-improved merging at a future 100 TeV proton collider are also investigated.
Arts, E E A; Popa, C D; Den Broeder, A A; Donders, R; Sandoo, A; Toms, T; Rollefstad, S; Ikdahl, E; Semb, A G; Kitas, G D; Van Riel, P L C M; Fransen, J
2016-04-01
Predictive performance of cardiovascular disease (CVD) risk calculators appears suboptimal in rheumatoid arthritis (RA). A disease-specific CVD risk algorithm may improve CVD risk prediction in RA. The objectives of this study are to adapt the Systematic COronary Risk Evaluation (SCORE) algorithm with determinants of CVD risk in RA and to assess the accuracy of CVD risk prediction calculated with the adapted SCORE algorithm. Data from the Nijmegen early RA inception cohort were used. The primary outcome was first CVD events. The SCORE algorithm was recalibrated by reweighing included traditional CVD risk factors and adapted by adding other potential predictors of CVD. Predictive performance of the recalibrated and adapted SCORE algorithms was assessed and the adapted SCORE was externally validated. Of the 1016 included patients with RA, 103 patients experienced a CVD event. Discriminatory ability was comparable across the original, recalibrated and adapted SCORE algorithms. The Hosmer-Lemeshow test results indicated that all three algorithms provided poor model fit (p<0.05) for the Nijmegen and external validation cohort. The adapted SCORE algorithm mainly improves CVD risk estimation in non-event cases and does not show a clear advantage in reclassifying patients with RA who develop CVD (event cases) into more appropriate risk groups. This study demonstrates for the first time that adaptations of the SCORE algorithm do not provide sufficient improvement in risk prediction of future CVD in RA to serve as an appropriate alternative to the original SCORE. Risk assessment using the original SCORE algorithm may underestimate CVD risk in patients with RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Close Approach Prediction Analysis of the Earth Science Constellation with the Fengyun-1C Debris
NASA Technical Reports Server (NTRS)
Duncan, Matthew; Rand, David K.
2008-01-01
Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. Each day, close approach predictions are generated by a U.S. Department of Defense Joint Space Operations Center Orbital Safety Analyst using the high accuracy Space Object Catalog maintained by the Air Force's 1" Space Control Squadron. Prediction results and other ancillary data such as state vector information are sent to NASAJGoddard Space Flight Center's (GSFC's) Collision Risk Assessment analysis team for review. Collision analysis is performed and the GSFC team works with the ESC member missions to develop risk reduction strategies as necessary. This paper presents various close approach statistics for the ESC. The ESC missions have been affected by debris from the recent anti-satellite test which destroyed the Chinese Fengyun- 1 C satellite. The paper also presents the percentage of close approach events induced by the Fengyun-1C debris, and presents analysis results which predict the future effects on the ESC caused by this event. Specifically, the Fengyun-1C debris is propagated for twenty years using high-performance computing technology and close approach predictions are generated for the ESC. The percent increase in the total number of conjunction events is considered to be an estimate of the collision risk due to the Fengyun-1C break- UP.
A modeling tool to evaluate regional coral reef responses to changes in climate and ocean chemistry
Buddemeier, R.W.; Jokiel, P.L.; Zimmerman, K.M.; Lane, D.R.; Carey, J.M.; Bohling, Geoffrey C.; Martinich, J.A.
2008-01-01
We developed a spreadsheet-based model for the use of managers, conservationists, and biologists for projecting the effects of climate change on coral reefs at local-to-regional scales. The COMBO (Coral Mortality and Bleaching Output) model calculates the impacts to coral reefs from changes in average SST and CO2 concentrations, and from high temperature mortality (bleaching) events. The model uses a probabilistic assessment of the frequency of high temperature events under a future climate to address scientific uncertainties about potential adverse effects. COMBO offers data libraries and default factors for three selected regions (Hawai'i, Great Barrier Reef, and Caribbean), but it is structured with user-selectable parameter values and data input options, making possible modifications to reflect local conditions or to incorporate local expertise. Preliminary results from sensitivity analyses and simulation examples for Hawai'i demonstrate the relative importance of high temperature events, increased average temperature, and increased CO2 concentration on the future status of coral reefs; Illustrate significant interactions among variables; and allow comparisons of past environmental history with future predictions. ?? 2008, by the American Society of Limnology and Oceanugraphy, Inc.
Palamara, Ornella
2016-12-29
Results from the analysis of charged current pion-less (CC 0-pion) muon neutrino events in argon collected by the ArgoNeuT experiment on the NuMI beam at Fermilab are presented and compared with predictions from Monte Carlo simulations. A novel analysis method, based on the reconstruction of exclusive topologies, fully exploiting the Liquid argon Time Projection Chamber (LAr TPC) technique capabilities, is used to analyze the events, characterized by the presence at the vertex of a leading muon track eventually accompanied by one or more highly ionizing tracks, and study nuclear effects in neutrino interactions on argon nuclei. Multiple protons accompanying themore » leading muon are visible in the ArgoNeuT events, and measured with a proton reconstruction threshold of 21 MeV kinetic energy. As a result, measurements of (anti-)neutrino CC 0-pion inclusive and exclusive cross sections on argon nuclei are reported. Prospects for future, larger mass LAr TPC detectors are discussed.« less
Model of Energy Spectrum Parameters of Ground Level Enhancement Events in Solar Cycle 23
NASA Astrophysics Data System (ADS)
Wu, S.-S.; Qin, G.
2018-01-01
Mewaldt et al. (2012) fitted the observations of the ground level enhancement (GLE) events during solar cycle 23 to the double power law equation to obtain the four spectral parameters, the normalization constant C, low-energy power law slope γ1, high-energy power law slope γ2, and break energy E0. There are 16 GLEs from which we select 13 for study by excluding some events with complicated situation. We analyze the four parameters with conditions of the corresponding solar events. According to solar event conditions, we divide the GLEs into two groups, one with strong acceleration by interplanetary shocks and another one without strong acceleration. By fitting the four parameters with solar event conditions we obtain models of the parameters for the two groups of GLEs separately. Therefore, we establish a model of energy spectrum of solar cycle 23 GLEs, which may be used in prediction in the future.
Löckenhoff, Corinna E.; Terracciano, Antonio; Patriciu, Nicholas S.; Eaton, William W.; Costa, Paul T.
2009-01-01
This study examined longitudinal personality change in response to extremely adverse life events in a sample (N = 458) drawn from the East Baltimore Epidemiologic Catchment Area study. Five-factor model personality traits were assessed twice over an average interval of 8 years. Twenty-five percent of the participants reported an extremely horrifying or frightening event within 2 years before the second personality assessment. Relative to the rest of the sample, they showed increases in neuroticism, decreases in the compliance facet of agreeableness, and decreases in openness to values. Baseline personality was unrelated to future events, but among participants who reported extreme events, lower extraversion and/or conscientiousness at baseline as well as longitudinal increases in neuroticism predicted lower mental health at follow-up. PMID:19230009
NASA Astrophysics Data System (ADS)
Lin, Caiyan; Zhang, Zhongfeng; Pu, Zhaoxia; Wang, Fengyun
2017-10-01
A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.
NASA Astrophysics Data System (ADS)
Yang, J.; Astitha, M.; Anagnostou, E. N.; Hartman, B.; Kallos, G. B.
2015-12-01
Weather prediction accuracy has become very important for the Northeast U.S. given the devastating effects of extreme weather events in the recent years. Weather forecasting systems are used towards building strategies to prevent catastrophic losses for human lives and the environment. Concurrently, weather forecast tools and techniques have evolved with improved forecast skill as numerical prediction techniques are strengthened by increased super-computing resources. In this study, we examine the combination of two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) by utilizing a Bayesian regression approach to improve the prediction of extreme weather events for NE U.S. The basic concept behind the Bayesian regression approach is to take advantage of the strengths of two atmospheric modeling systems and, similar to the multi-model ensemble approach, limit their weaknesses which are related to systematic and random errors in the numerical prediction of physical processes. The first part of this study is focused on retrospective simulations of seventeen storms that affected the region in the period 2004-2013. Optimal variances are estimated by minimizing the root mean square error and are applied to out-of-sample weather events. The applicability and usefulness of this approach are demonstrated by conducting an error analysis based on in-situ observations from meteorological stations of the National Weather Service (NWS) for wind speed and wind direction, and NCEP Stage IV radar data, mosaicked from the regional multi-sensor for precipitation. The preliminary results indicate a significant improvement in the statistical metrics of the modeled-observed pairs for meteorological variables using various combinations of the sixteen events as predictors of the seventeenth. This presentation will illustrate the implemented methodology and the obtained results for wind speed, wind direction and precipitation, as well as set the research steps that will be followed in the future.
[From "deadly quartet" to "metabolic syndrome". An analysis of its clinical relevance].
Vancheri, Federico; Burgio, Antonio; Dovico, Rossana
2007-03-01
The metabolic syndrome denotes a clustering of specific risk factors for both cardiovascular disease and type 2 diabetes, whose underlying pathophysiology is believed to include insulin resistance. It has been widely reported that the syndrome is a simple clinical tool to identify people at high long term risk of cardiovascular disease and diabetes. However, its clinical importance is under debate. There are substantial uncertainties about the clinical definition of the syndrome, as to whether the risk factors clustering indicates a single unifying disorder, whether the risk conferred by the condition as a whole is higher risk than its individual components, and whether its predictive value of future cardiovascular events or diabetes is greater than established predicting models such as the Framingham Risk Score and the Diabetes Risk Score. We undertook an extensive review of the literature. Our analysis indicates that current definitions of the syndrome are incomplete or ambiguous, more than one pathophysiological process underlies the syndrome, although the combination of insulin resistance and hyperinsulinemia are related to most cases; the risk associated with the syndrome is no greater than that explained by the presence of its components, and the syndrome is less effective in predicting the future development of cardiovascular events and diabetes than established predicting models. Although the syndrome has some importance in understanding the pathophysiology of cardiovascular and diabetes risk factors clustering, its use as a clinical syndrome is not justified by current data.
Yielding to Desire: The Durability of Affective Preferences
ERIC Educational Resources Information Center
Rapp, David N.; Jacovina, Matthew E.; Slaten, Daniel G.; Krause, Elise
2014-01-01
People's expectations about the future are guided not just by the contingencies of situations but also by what they hope or wish will happen next. These preferences can inform predictions that run counter to what should or must occur based on the logic of unfolding events. Effects of this type have been regularly identified in studies of judgment…
ERIC Educational Resources Information Center
Howard, James H., Jr.; Howard, Darlene V.; Dennis, Nancy A.; Kelly, Andrew J.
2008-01-01
Knowledge of sequential relationships enables future events to be anticipated and processed efficiently. Research with the serial reaction time task (SRTT) has shown that sequence learning often occurs implicitly without effort or awareness. Here, the authors report 4 experiments that use a triplet-learning task (TLT) to investigate sequence…
How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
NASA Astrophysics Data System (ADS)
Scolnic, D.; Kessler, R.; Brout, D.; Cowperthwaite, P. S.; Soares-Santos, M.; Annis, J.; Herner, K.; Chen, H.-Y.; Sako, M.; Doctor, Z.; Butler, R. E.; Palmese, A.; Diehl, H. T.; Frieman, J.; Holz, D. E.; Berger, E.; Chornock, R.; Villar, V. A.; Nicholl, M.; Biswas, R.; Hounsell, R.; Foley, R. J.; Metzger, J.; Rest, A.; García-Bellido, J.; Möller, A.; Nugent, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Neilsen, E.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, R. C.; Tucker, D. L.; Walker, A. R.; DES Collaboration
2018-01-01
The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies of {10}3 {{Gpc}}-3 {{yr}}-1, consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is z=0.8 for WFIRST, z=0.25 for LSST, and z=0.04 for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. More broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.
How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scolnic, D.; Kessler, R.; Brout, D.
The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies ofmore » $${10}^{3}\\,{\\mathrm{Gpc}}^{-3}\\,{\\mathrm{yr}}^{-1}$$, consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is $z=0.8$ for WFIRST, $z=0.25$ for LSST, and $z=0.04$ for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. Finally, more broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.« less
How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
Scolnic, D.; Kessler, R.; Brout, D.; ...
2017-12-22
The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies ofmore » $${10}^{3}\\,{\\mathrm{Gpc}}^{-3}\\,{\\mathrm{yr}}^{-1}$$, consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is $z=0.8$ for WFIRST, $z=0.25$ for LSST, and $z=0.04$ for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. Finally, more broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.« less
Predicting fire effects on water quality: a perspective and future needs
NASA Astrophysics Data System (ADS)
Smith, Hugh; Sheridan, Gary; Nyman, Petter; Langhans, Christoph; Noske, Philip; Lane, Patrick
2017-04-01
Forest environments are a globally significant source of drinking water. Fire presents a credible threat to the supply of high quality water in many forested regions. The post-fire risk to water supplies depends on storm event characteristics, vegetation cover and fire-related changes in soil infiltration and erodibility modulated by landscape position. The resulting magnitude of runoff generation, erosion and constituent flux to streams and reservoirs determines the severity of water quality impacts in combination with the physical and chemical composition of the entrained material. Research to date suggests that most post-fire water quality impacts are due to large increases in the supply of particulates (fine-grained sediment and ash) and particle-associated chemical constituents. The largest water quality impacts result from high magnitude erosion events, including debris flow processes, which typically occur in response to short duration, high intensity storm events during the recovery period. Most research to date focuses on impacts on water quality after fire. However, information on potential water quality impacts is required prior to fire events for risk planning. Moreover, changes in climate and forest management (e.g. prescribed burning) that affect fire regimes may alter water quality risks. Therefore, prediction requires spatial-temporal representation of fire and rainfall regimes coupled with information on fire-related changes to soil hydrologic parameters. Recent work has applied such an approach by combining a fire spread model with historic fire weather data in a Monte Carlo simulation to quantify probabilities associated with fire and storm events generating debris flows and fine sediment influx to a reservoir located in Victoria, Australia. Prediction of fire effects on water quality would benefit from further research in several areas. First, more work on regional-scale stochastic modelling of intersecting fire and storm events with landscape zones of erosion vulnerability is required to support quantitative evaluation of water quality risk and the effect of future changes in climate and land management. Second, we underscore previous calls for characterisation of landscape-scale domains to support regionalisation of parameter sets derived from empirical studies. Recent examples include work identifying aridity as a control of hydro-geomorphic response to fire and the use of spectral-based indices to predict spatial heterogeneity in ash loadings. Third, information on post-fire erosion from colluvial or alluvial stores is needed to determine their significance as both sediment-contaminant sinks and sources. Such sediment stores may require explicit spatial representation in risk models for some environments and sediment tracing can be used to determine their relative importance as secondary sources. Fourth, increased dating of sediment archives could provide regional datasets of fire-related erosion event frequency. Presently, the lack of such data hinders evaluation of risk models linking fire and storm events to erosion and water quality impacts.
Asymmetric cellular memory in bacteria exposed to antibiotics.
Mathis, Roland; Ackermann, Martin
2017-03-09
The ability to form a cellular memory and use it for cellular decision-making could help bacteria to cope with recurrent stress conditions. We analyzed whether bacteria would form a cellular memory specifically if past events are predictive of future conditions. We worked with the asymmetrically dividing bacterium Caulobacter crescentus where past events are expected to only be informative for one of the two cells emerging from division, the sessile cell that remains in the same microenvironment and does not migrate. Time-resolved analysis of individual cells revealed that past exposure to low levels of antibiotics increases tolerance to future exposure for the sessile but not for the motile cell. Using computer simulations, we found that such an asymmetry in cellular memory could be an evolutionary response to situations where the two cells emerging from division will experience different future conditions. Our results raise the question whether bacteria can evolve the ability to form and use cellular memory conditionally in situations where it is beneficial.
A case of collective responsibility: who else was to blame for the Columbine high school shootings?
Lickel, Brian; Schmader, Toni; Hamilton, David L
2003-02-01
Two studies examined perceptions of collective responsibility for the April 20, 1999, shootings at Columbine High School in Littleton, Colorado. Collective responsibility refers to the perception that others, besides the wrongdoers themselves, are responsible for the event. In Study 1, the authors assessed perceptions of the shooters' parents and their peer group (the Trenchcoat Mafia), whereas Study 2 tested perceptions of collective responsibility across a range of groups. In both studies, perceptions of a target group's entitativity predicted judgments of collective responsibility. This relationship was mediated by two situational construals that justify applying collective responsibility: responsibility by commission (encouraging or facilitating the event) and responsibility by omission (failing to prevent the event). Study 2 also determined that perceptions of authority predicted judgments of collective responsibility for the Columbine shootings and was mediated by inferences of omission. Future directions in collective responsibility research are discussed. Copyright 2003 Society for Personality and Social Psychology, Inc.
An fMRI investigation of the relationship between future imagination and cognitive flexibility
Roberts, R.P.; Wiebels, K.; Sumner, R.L.; van Mulukom, V.; Grady, C.L.; Schacter, D.L.; Addis, D.R.
2016-01-01
While future imagination is largely considered to be a cognitive process grounded in default mode network activity, studies have shown that future imagination recruits regions in both default mode and frontoparietal control networks. In addition, it has recently been shown that the ability to imagine the future is associated with cognitive flexibility, and that tasks requiring cognitive flexibility result in increased coupling of the default mode network with frontoparietal control and salience networks. In the current study, we investigated the neural correlates underlying the association between cognitive flexibility and future imagination in two ways. First, we experimentally varied the degree of cognitive flexibility required during future imagination by manipulating the disparateness of episodic details contributing to imagined events. To this end, participants generated episodic details (persons, locations, objects) within three social spheres; during fMRI scanning they were presented with sets of three episodic details all taken from the same social sphere (Congruent condition) or different social spheres (Incongruent condition) and required to imagine a future event involving the three details. We predicted that, relative to the Congruent condition, future simulation in the Incongruent condition would be associated with increased activity in regions of the default mode, frontoparietal and salience networks. Second, we hypothesized that individual differences in cognitive flexibility, as measured by performance on the Alternate Uses Task, would correspond to individual differences in the brain regions recruited during future imagination. A task partial least squares (PLS) analysis showed that the Incongruent condition resulted in an increase in activity in regions in salience networks (e.g. the insula) but, contrary to our prediction, reduced activity in many regions of the default mode network (including the hippocampus). A subsequent functional connectivity (within-subject seed PLS) analysis showed that the insula exhibited increased coupling with default mode regions during the Incongruent condition. Finally, a behavioral PLS analysis showed that individual differences in cognitive flexibility were associated with differences in activity in a number of regions from frontoparietal, salience and default-mode networks during both future imagination conditions, further highlighting that the cognitive flexibility underlying future imagination is grounded in the complex interaction of regions in these networks. PMID:27908591
Probabilistic short-term forecasting of eruption rate at Kīlauea Volcano using a physics-based model
NASA Astrophysics Data System (ADS)
Anderson, K. R.
2016-12-01
Deterministic models of volcanic eruptions yield predictions of future activity conditioned on uncertainty in the current state of the system. Physics-based eruption models are well-suited for deterministic forecasting as they can relate magma physics with a wide range of observations. Yet, physics-based eruption forecasting is strongly limited by an inadequate understanding of volcanic systems, and the need for eruption models to be computationally tractable. At Kīlauea Volcano, Hawaii, episodic depressurization-pressurization cycles of the magma system generate correlated, quasi-exponential variations in ground deformation and surface height of the active summit lava lake. Deflations are associated with reductions in eruption rate, or even brief eruptive pauses, and thus partly control lava flow advance rates and associated hazard. Because of the relatively well-understood nature of Kīlauea's shallow magma plumbing system, and because more than 600 of these events have been recorded to date, they offer a unique opportunity to refine a physics-based effusive eruption forecasting approach and apply it to lava eruption rates over short (hours to days) time periods. A simple physical model of the volcano ascribes observed data to temporary reductions in magma supply to an elastic reservoir filled with compressible magma. This model can be used to predict the evolution of an ongoing event, but because the mechanism that triggers events is unknown, event durations are modeled stochastically from previous observations. A Bayesian approach incorporates diverse data sets and prior information to simultaneously estimate uncertain model parameters and future states of the system. Forecasts take the form of probability distributions for eruption rate or cumulative erupted volume at some future time. Results demonstrate the significant uncertainties that still remain even for short-term eruption forecasting at a well-monitored volcano - but also the value of a physics-based, mixed deterministic-probabilistic eruption forecasting approach in reducing and quantifying these uncertainties.
Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099
Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F
2016-05-04
The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by the atmosphere with the multitude of factors affecting the growth of algae and corresponding water clarity.
Tsatsoulis, C; Amthauer, H
2003-01-01
A novel methodological approach for identifying clusters of similar medical incidents by analyzing large databases of incident reports is described. The discovery of similar events allows the identification of patterns and trends, and makes possible the prediction of future events and the establishment of barriers and best practices. Two techniques from the fields of information science and artificial intelligence have been integrated—namely, case based reasoning and information retrieval—and very good clustering accuracies have been achieved on a test data set of incident reports from transfusion medicine. This work suggests that clustering should integrate the features of an incident captured in traditional form based records together with the detailed information found in the narrative included in event reports. PMID:14645892
Northern Eurasian Heat Waves and Droughts
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Koster, Randal; Suarez, Max; Groisman, Pavel
2013-01-01
This article reviews our understanding of the characteristics and causes of northern Eurasian summertime heat waves and droughts. Additional insights into the nature of temperature and precipitation variability in Eurasia on monthly to decadal time scales and into the causes and predictability of the most extreme events are gained from the latest generation of reanalyses and from supplemental simulations with the NASA GEOS-5 AGCM. Key new results are: 1) the identification of the important role of summertime stationary Rossby waves in the development of the leading patterns of monthly Eurasian surface temperature and precipitation variability (including the development of extreme events such as the 2010 Russian heat wave), 2) an assessment of the mean temperature and precipitation changes that have occurred over northern Eurasia in the last three decades and their connections to decadal variability and global trends in SST, and 3) the quantification (via a case study) of the predictability of the most extreme simulated heat wave/drought events, with some focus on the role of soil moisture in the development and maintenance of such events. A literature survey indicates a general consensus that the future holds an enhanced probability of heat waves across northern Eurasia, while there is less agreement regarding future drought, reflecting a greater uncertainty in soil moisture and precipitation projections. Substantial uncertainties remain in our understanding of heat waves and drought, including the nature of the interactions between the short-term atmospheric variability associated with such extremes and the longer-term variability and trends associated with soil moisture feedbacks, SST anomalies, and an overall warming world.
Alshehry, Zahir H; Mundra, Piyushkumar A; Barlow, Christopher K; Mellett, Natalie A; Wong, Gerard; McConville, Malcolm J; Simes, John; Tonkin, Andrew M; Sullivan, David R; Barnes, Elizabeth H; Nestel, Paul J; Kingwell, Bronwyn A; Marre, Michel; Neal, Bruce; Poulter, Neil R; Rodgers, Anthony; Williams, Bryan; Zoungas, Sophia; Hillis, Graham S; Chalmers, John; Woodward, Mark; Meikle, Peter J
2016-11-22
Clinical lipid measurements do not show the full complexity of the altered lipid metabolism associated with diabetes mellitus or cardiovascular disease. Lipidomics enables the assessment of hundreds of lipid species as potential markers for disease risk. Plasma lipid species (310) were measured by a targeted lipidomic analysis with liquid chromatography electrospray ionization-tandem mass spectrometry on a case-cohort (n=3779) subset from the ADVANCE trial (Action in Diabetes and Vascular Disease: Preterax and Diamicron-MR Controlled Evaluation). The case-cohort was 61% male with a mean age of 67 years. All participants had type 2 diabetes mellitus with ≥1 additional cardiovascular risk factors, and 35% had a history of macrovascular disease. Weighted Cox regression was used to identify lipid species associated with future cardiovascular events (nonfatal myocardial infarction, nonfatal stroke, and cardiovascular death) and cardiovascular death during a 5-year follow-up period. Multivariable models combining traditional risk factors with lipid species were optimized with the Akaike information criteria. C statistics and NRIs were calculated within a 5-fold cross-validation framework. Sphingolipids, phospholipids (including lyso- and ether- species), cholesteryl esters, and glycerolipids were associated with future cardiovascular events and cardiovascular death. The addition of 7 lipid species to a base model (14 traditional risk factors and medications) to predict cardiovascular events increased the C statistic from 0.680 (95% confidence interval [CI], 0.678-0.682) to 0.700 (95% CI, 0.698-0.702; P<0.0001) with a corresponding continuous NRI of 0.227 (95% CI, 0.219-0.235). The prediction of cardiovascular death was improved with the incorporation of 4 lipid species into the base model, showing an increase in the C statistic from 0.740 (95% CI, 0.738-0.742) to 0.760 (95% CI, 0.757-0.762; P<0.0001) and a continuous net reclassification index of 0.328 (95% CI, 0.317-0.339). The results were validated in a subcohort with type 2 diabetes mellitus (n=511) from the LIPID trial (Long-Term Intervention With Pravastatin in Ischemic Disease). The improvement in the prediction of cardiovascular events, above traditional risk factors, demonstrates the potential of plasma lipid species as biomarkers for cardiovascular risk stratification in diabetes mellitus. URL: https://clinicaltrials.gov. Unique identifier: NCT00145925. © 2016 American Heart Association, Inc.
A Probabilistic Model of Meter Perception: Simulating Enculturation.
van der Weij, Bastiaan; Pearce, Marcus T; Honing, Henkjan
2017-01-01
Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter facilitates prediction of future onsets. Such prediction, we hypothesize, is based on previous exposure to rhythms. As such, predictive coding provides a possible explanation for the way meter perception is shaped by the cultural environment. Based on this hypothesis, we present a probabilistic model of meter perception that uses statistical properties of the relation between rhythm and meter to infer meter from quantized rhythms. We show that our model can successfully predict annotated time signatures from quantized rhythmic patterns derived from folk melodies. Furthermore, we show that by inferring meter, our model improves prediction of the onsets of future events compared to a similar probabilistic model that does not infer meter. Finally, as a proof of concept, we demonstrate how our model can be used in a simulation of enculturation. From the results of this simulation, we derive a class of rhythms that are likely to be interpreted differently by enculturated listeners with different histories of exposure to rhythms.
Hanly, J G; Urowitz, M B; Su, L; Bae, S-C; Gordon, C; Sanchez-Guerrero, J; Clarke, A; Bernatsky, S; Vasudevan, A; Isenberg, D; Rahman, A; Wallace, D J; Fortin, P R; Gladman, D; Dooley, M A; Bruce, I; Steinsson, K; Khamashta, M; Manzi, S; Ramsey-Goldman, R; Sturfelt, G; Nived, O; van Vollenhoven, R; Ramos-Casals, M; Aranow, C; Mackay, M; Kalunian, K; Alarcón, G S; Fessler, B J; Ruiz-Irastorza, G; Petri, M; Lim, S; Kamen, D; Peschken, C; Farewell, V; Thompson, K; Theriault, C; Merrill, J T
2015-01-01
Objective Neuropsychiatric (NP) events occur unpredictably in systemic lupus erythematosus (SLE) and most biomarker associations remain to be prospectively validated. We examined a disease inception cohort of 1047 SLE patients to determine which autoantibodies at enrollment predicted subsequent NP events. Methods Patients with recent SLE diagnosis were assessed prospectively for up to 10 years for NP events using ACR case definitions. Decision rules of graded stringency determined whether NP events were attributable to SLE. Associations between the first NP event and baseline autoantibodies (lupus anticoagulant, anticardiolipin, anti-β2 glycoprotein-I, anti-ribosomal P and anti-NR2 glutamate receptor) were tested by Cox proportional hazards regression. Results Disease duration at enrollment was 5.4±4.2 months, followup was 3.6±2.6 years. Patients were 89.1% female with mean (±SD) age 35.2±13.7 years. 495/1047 (47.3%) developed ≥1 NP event (total 917 events). NP events attributed to SLE were 15.4% (model A) and 28.2% (model B). At enrollment 21.9% of patients had lupus anticoagulant, 13.4% anticardiolipin, 15.1% anti-β2 glycoprotein-I, 9.2% anti-ribosomal P and 13.7% anti-NR2 antibodies. Lupus anticoagulant at baseline was associated with subsequent intracranial thrombosis (total n=22) attributed to SLE (model B) (Hazard ratio, HR 2.54 (95% CI: 1.08–5.94). Anti-ribosomal P antibody was associated with subsequent psychosis (total n=14) attributed to SLE (model B) (HR: 3.92 (95% CI:1.23–12.5); p=0.02). Other autoantibodies did not predict NP events. Conclusion In a prospective study of 1047 recently diagnosed SLE patients, lupus anticoagulant and anti-ribosomal P antibodies are associated with an increased future risk for intracranial thrombosis and lupus psychosis respectively PMID:21893582
Myers, Bronwyn; McLaughlin, Katie A; Wang, Shuai; Blanco, Carlos; Stein, Dan J
2014-12-01
Stress sensitization, whereby CA lowers tolerance to later stressors, has been proposed as a potential mechanism explaining the association between exposure to childhood adversities (CA) and drug use disorders in adulthood. However, this mechanism remains untested. This paper begins to address this gap through exploring associations between CA exposure and stressful events in adulthood for predicting drug use disorders. We used data drawn from Wave 2 of the U.S. National Epidemiological Survey of Alcohol and Related Conditions (n = 34,653) to explore whether the association between past-year stressful life events and the 12-month prevalence of disordered cannabis, stimulant, and opiate use varied by the number of types of CA that an individual was exposed to. Past-year stressful life events were associated with an increased risk of cannabis, stimulant, and opiate use disorders among men and women. Exposure to CA was associated with increased risk for disordered cannabis use among men and women and opiate use among men only. Finally, we found significant associations between exposure to CA and past-year stressful life events in predicting disordered drug use, but only for women in relation to disordered stimulant and opiate use. Findings are suggestive of possible stress sensitization effects in predicting disordered stimulant and opiate use among women. Implications of these findings for the prevention and treatment of drug use disorders and for future research are discussed.
Myers, Bronwyn; McLaughlin, Katie A.; Wang, Shuai; Blanco, Carlos; Stein, Dan J.
2014-01-01
Stress sensitization, whereby CA lowers tolerance to later stressors, has been proposed as a potential mechanism explaining the association between exposure to childhood adversities (CA) and drug use disorders in adulthood. However this mechanism remains untested. This paper begins to address this gap through exploring associations between CA exposure and stressful events in adulthood for predicting drug use disorders. We used data drawn from Wave 2 of the U.S. National Epidemiological Survey of Alcohol and Related Conditions (n=34,653) to explore whether the association between past-year stressful life events and the 12-month prevalence of disordered cannabis, stimulant and opiate use varied by the number of types of CA that an individual was exposed to. Past-year stressful life events were associated with an increased risk of cannabis, stimulant and opiate use disorders among men and women. Exposure to CA was associated with increased risk for disordered cannabis use among men and women and opiate use among men only. Finally, we found significant associations between exposure to CA and past year stressful life events in predicting disordered drug use, but only for women in relation to disordered stimulant and opiate use. Findings are suggestive of possible stress sensitization effects in predicting disordered stimulant and opiate use among women. Implications of these findings for the prevention and treatment of drug use disorders and for future research are discussed. PMID:25134042
Hallford, D J; Austin, D W; Raes, F; Takano, K
2018-04-18
Overgeneral memory (OGM) refers to the failure to recall memories of specific personally experienced events, which occurs in various psychiatric disorders. One pathway through which OGM is theorized to develop is the avoidance of thinking of negative experiences, whereby cumulative avoidance may maladaptively generalize to autobiographical memory (AM) more broadly. We tested this, predicting that negative experiences would interact with avoidance to predict AM specificity. In Study 1 (N = 281), negative life events (over six months) and daily hassles (over one month) were not related to AM specificity, nor was avoidance, and no interaction was found. In Study 2 (N = 318), we revised our measurements and used an increased timeframe of 12 months for both negative life events and daily hassles. The results showed no interaction effect for negative life events, but they did show an interaction for daily hassles, whereby increased hassles and higher avoidance of thinking about them were associated with reduced AM specificity, independent of general cognitive avoidance and depressive symptoms. No evidence was found that cognitive avoidance or AM specificity moderated the effect of negative experiences on depressive symptoms. Our findings suggest that life events over 6-12 months are not associated with AM specificity, but chronic daily hassles over 12 months predict reduced AM specificity when individuals avoid thinking about them. The findings provide evidence for the functional-avoidance hypothesis of OGM development and future directions for longitudinal studies.
Evaluation of the utility of a glycemic pattern identification system.
Otto, Erik A; Tannan, Vinay
2014-07-01
With the increasing prevalence of systems allowing automated, real-time transmission of blood glucose data there is a need for pattern recognition techniques that can inform of deleterious patterns in glycemic control when people test. We evaluated the utility of pattern identification with a novel pattern identification system named Vigilant™ and compared it to standard pattern identification methods in diabetes. To characterize the importance of an identified pattern we evaluated the relative risk of future hypoglycemic and hyperglycemic events in diurnal periods following identification of a pattern in a data set of 536 patients with diabetes. We evaluated events 2 days, 7 days, 30 days, and 61-90 days from pattern identification, across diabetes types and cohorts of glycemic control, and also compared the system to 6 pattern identification methods consisting of deleterious event counts and percentages over 5-, 14-, and 30-day windows. Episodes of hypoglycemia, hyperglycemia, severe hypoglycemia, and severe hyperglycemia were 120%, 46%, 123%, and 76% more likely after pattern identification, respectively, compared to periods when no pattern was identified. The system was also significantly more predictive of deleterious events than other pattern identification methods evaluated, and was persistently predictive up to 3 months after pattern identification. The system identified patterns that are significantly predictive of deleterious glycemic events, and more so relative to many pattern identification methods used in diabetes management today. Further study will inform how improved pattern identification can lead to improved glycemic control. © 2014 Diabetes Technology Society.
The Projection of Space Radiation Environments with a Solar Cycle Statistical Model
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.; Wilson, John W.
2006-01-01
A solar cycle statistical model has been developed to project sunspot numbers which represent the variations in the space radiation environment. The resultant projection of sunspot numbers in near future were coupled to space-related quantities of interest in radiation protection, such as the galactic cosmic radiation (GCR) deceleration potential (f) and the mean occurrence frequency of solar particle event (SPE). Future GCR fluxes have been derived from a predictive model, in which GCR temporal dependence represented by f was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. Results showed that the point dose equivalent inside a typical spacecraft in interplanetary radiation fields was influenced by solar modulation up to a factor of three. One important characteristic of sporadic SPEs is their mean frequency of occurrence, which is dependent on solar activity. Projections of future mean frequency of SPE occurrence were estimated from a power law function of sunspot number. Furthermore, the cumulative probabilities of SPE during short-period missions were defined with the continuous database of proton fluences of SPE. The analytic representation of energy spectra of SPE was constructed by the Weibull distribution for different event sizes. The representative exposure level at each event size was estimated for the guideline of protection systems for astronauts during future space exploration missions.
NASA Technical Reports Server (NTRS)
Evans, Diane
2012-01-01
Objective 2.1.1: Improve understanding of and improve the predictive capability for changes in the ozone layer, climate forcing, and air quality associated with changes in atmospheric composition. Objective 2.1.2: Enable improved predictive capability for weather and extreme weather events. Objective 2.1.3: Quantify, understand, and predict changes in Earth s ecosystems and biogeochemical cycles, including the global carbon cycle, land cover, and biodiversity. Objective 2.1.4: Quantify the key reservoirs and fluxes in the global water cycle and assess water cycle change and water quality. Objective 2.1.5: Improve understanding of the roles of the ocean, atmosphere, land and ice in the climate system and improve predictive capability for its future evolution. Objective 2.1.6: Characterize the dynamics of Earth s surface and interior and form the scientific basis for the assessment and mitigation of natural hazards and response to rare and extreme events. Objective 2.1.7: Enable the broad use of Earth system science observations and results in decision-making activities for societal benefits.
Hydrologic Design in the Anthropocene
NASA Astrophysics Data System (ADS)
Vogel, R. M.; Farmer, W. H.; Read, L.
2014-12-01
In an era dubbed the Anthropocene, the natural world is being transformed by a myriad of human influences. As anthropogenic impacts permeate hydrologic systems, hydrologists are challenged to fully account for such changes and develop new methods of hydrologic design. Deterministic watershed models (DWM), which can account for the impacts of changes in land use, climate and infrastructure, are becoming increasing popular for the design of flood and/or drought protection measures. As with all models that are calibrated to existing datasets, DWMs are subject to model error or uncertainty. In practice, the model error component of DWM predictions is typically ignored yet DWM simulations which ignore model error produce model output which cannot reproduce the statistical properties of the observations they are intended to replicate. In the context of hydrologic design, we demonstrate how ignoring model error can lead to systematic downward bias in flood quantiles, upward bias in drought quantiles and upward bias in water supply yields. By reincorporating model error, we document how DWM models can be used to generate results that mimic actual observations and preserve their statistical behavior. In addition to use of DWM for improved predictions in a changing world, improved communication of the risk and reliability is also needed. Traditional statements of risk and reliability in hydrologic design have been characterized by return periods, but such statements often assume that the annual probability of experiencing a design event remains constant throughout the project horizon. We document the general impact of nonstationarity on the average return period and reliability in the context of hydrologic design. Our analyses reveal that return periods do not provide meaningful expressions of the likelihood of future hydrologic events. Instead, knowledge of system reliability over future planning horizons can more effectively prepare society and communicate the likelihood of future hydrologic events of interest.
Gunawardhana, Luminda Niroshana; Al-Rawas, Ghazi A; Kazama, So; Al-Najar, Khalid A
2015-10-01
The objective of this study is to investigate how the magnitude and occurrence of extreme precipitation events are affected by climate change and to predict the subsequent impacts on the wadi flow regime in the Al-Khod catchment area, Muscat, Oman. The tank model, a lumped-parameter rainfall-runoff model, was used to simulate the wadi flow. Precipitation extremes and their potential future changes were predicted using six-member ensembles of general circulation models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Yearly maxima of the daily precipitation and wadi flow for varying return periods were compared for observed and projected data by fitting the generalized extreme value (GEV) distribution function. Flow duration curves (FDC) were developed and compared for the observed and projected wadi flows. The results indicate that extreme precipitation events consistently increase by the middle of the twenty-first century for all return periods (49-52%), but changes may become more profound by the end of the twenty-first century (81-101%). Consequently, the relative change in extreme wadi flow is greater than twofolds for all of the return periods in the late twenty-first century compared to the relative changes that occur in the mid-century period. Precipitation analysis further suggests that greater than 50% of the precipitation may be associated with extreme events in the future. The FDC analysis reveals that changes in low-to-moderate flows (Q60-Q90) may not be statistically significant, whereas increases in high flows (Q5) are statistically robust (20 and 25% for the mid- and late-century periods, respectively).
2014-01-01
Introduction High-sensitivity cardiac troponin I(hs-TnI) and T levels(hs-TnT) are sensitive biomarkers of cardiomyocyte turnover or necrosis. Prior studies of the predictive role of hs-TnT in type 2 diabetes mellitus(T2DM) patients have yielded conflicting results. This study aimed to determine whether hs-TnI, which is detectable in a higher proportion of normal subjects than hsTnT, is associated with a major adverse cardiovascular event(MACE) in T2DM patients. Methods and results We compared hs-TnI level in stored serum samples from 276 consecutive patients (mean age 65 ± 10 years; 57% male) with T2DM with that of 115 age-and sex-matched controls. All T2DM patients were prospectively followed up for at least 4 years for incidence of MACE including heart failure(HF), myocardial infarction(MI) and cardiovascular mortality. At baseline, 274(99%) patients with T2DM had detectable hs-TnI, and 57(21%) had elevated hs-TnI (male: 8.5 ng/L, female: 7.6 ng/L, above the 99th percentile in healthy controls). A total of 43 MACE occurred: HF(n = 18), MI(n = 11) and cardiovascular mortality(n = 14). Kaplan-Meier analysis showed that an elevated hs-TnI was associated with MACE, HF, MI and cardiovascular mortality. Although multivariate analysis revealed that an elevated hs-TnI independently predicted MACE, it had limited sensitivity(62.7%) and positive predictive value(38.5%). Contrary to this, a normal hs-TnI level had an excellent negative predictive value(92.2%) for future MACE in patients with T2DM. Conclusion The present study demonstrates that elevated hs-TnI in patients with T2DM is associated with increased MACE, HF, MI and cardiovascular mortality. Importantly, a normal hs-TnI level has an excellent negative predictive value for future adverse cardiovascular events during long-term follow-up. PMID:24661773
Modeling Patterns of Total Dissolved Solids Release from Central Appalachia, USA, Mine Spoils.
Clark, Elyse V; Zipper, Carl E; Daniels, W Lee; Orndorff, Zenah W; Keefe, Matthew J
2017-01-01
Surface mining in the central Appalachian coalfields (USA) influences water quality because the interaction of infiltrated waters and O with freshly exposed mine spoils releases elevated levels of total dissolved solids (TDS) to streams. Modeling and predicting the short- and long-term TDS release potentials of mine spoils can aid in the management of current and future mining-influenced watersheds and landscapes. In this study, the specific conductance (SC, a proxy variable for TDS) patterns of 39 mine spoils during a sequence of 40 leaching events were modeled using a five-parameter nonlinear regression. Estimated parameter values were compared to six rapid spoil assessment techniques (RSATs) to assess predictive relationships between model parameters and RSATs. Spoil leachates reached maximum values, 1108 ± 161 μS cm on average, within the first three leaching events, then declined exponentially to a breakpoint at the 16th leaching event on average. After the breakpoint, SC release remained linear, with most spoil samples exhibiting declines in SC release with successive leaching events. The SC asymptote averaged 276 ± 25 μS cm. Only three samples had SCs >500 μS cm at the end of the 40 leaching events. Model parameters varied with mine spoil rock and weathering type, and RSATs were predictive of four model parameters. Unweathered samples released higher SCs throughout the leaching period relative to weathered samples, and rock type influenced the rate of SC release. The RSATs for SC, total S, and neutralization potential may best predict certain phases of mine spoil TDS release. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Using integrated modeling for generating watershed-scale dynamic flood maps for Hurricane Harvey
NASA Astrophysics Data System (ADS)
Saksena, S.; Dey, S.; Merwade, V.; Singhofen, P. J.
2017-12-01
Hurricane Harvey, which was categorized as a 1000-year return period event, produced unprecedented rainfall and flooding in Houston. Although the expected rainfall was forecasted much before the event, there was no way to identify which regions were at higher risk of flooding, the magnitude of flooding, and when the impacts of rainfall would be highest. The inability to predict the location, duration, and depth of flooding created uncertainty over evacuation planning and preparation. This catastrophic event highlighted that the conventional approach to managing flood risk using 100-year static flood inundation maps is inadequate because of its inability to predict flood duration and extents for 500-year or 1000-year return period events in real-time. The purpose of this study is to create models that can dynamically predict the impacts of rainfall and subsequent flooding, so that necessary evacuation and rescue efforts can be planned in advance. This study uses a 2D integrated surface water-groundwater model called ICPR (Interconnected Channel and Pond Routing) to simulate both the hydrology and hydrodynamics for Hurricane Harvey. The methodology involves using the NHD stream network to create a 2D model that incorporates rainfall, land use, vadose zone properties and topography to estimate streamflow and generate dynamic flood depths and extents. The results show that dynamic flood mapping captures the flood hydrodynamics more accurately and is able to predict the magnitude, extent and time of occurrence for extreme events such as Hurricane Harvey. Therefore, integrated modeling has the potential to identify regions that are more susceptible to flooding, which is especially useful for large-scale planning and allocation of resources for protection against future flood risk.
Loss of Control Increases Belief in Precognition and Belief in Precognition Increases Control
Greenaway, Katharine H.; Louis, Winnifred R.; Hornsey, Matthew J.
2013-01-01
Every year thousands of dollars are spent on psychics who claim to “know” the future. The present research questions why, despite no evidence that humans are able to psychically predict the future, do people persist in holding irrational beliefs about precognition? We argue that believing the future is predictable increases one’s own perceived ability to exert control over future events. As a result, belief in precognition should be particularly strong when people most desire control–that is, when they lack it. In Experiment 1 (N = 87), people who were experimentally induced to feel low in control reported greater belief in precognition than people who felt high in control. Experiment 2 (N = 53) investigated whether belief in precognition increases perceived control. Consistent with this notion, providing scientific evidence that precognition is possible increased feelings of control relative to providing scientific evidence that precognition was not possible. Experiment 3 (N = 132) revealed that when control is low, believing in precognition helps people to feel in control once more. Prediction therefore acts as a compensatory mechanism in times of low control. The present research provides new insights into the psychological functions of seemingly irrational beliefs, like belief in psychic abilities. PMID:23951136
The global diabetes model: user friendly version 3.0.
Brown, J B; Russell, A; Chan, W; Pedula, K; Aickin, M
2000-11-01
The attributes of Release 3.0 of the user friendly version (UFV) of the global diabetes model (GDM) are described and documented in detail. The GDM is a continuous, stochastic microsimulation model of type 2 diabetes. Suitable for predicting the medical futures of both individuals with diabetes and representative diabetic populations, the GDM predicts medical events (complications of diabetes), survival, utilities, and medical care costs. Incidence rate functions for microvascular and macrovascular complications are based on a combination of published studies and analyses of data describing diabetic members of Kaiser Permanente Northwest Region, a non-profit group-model health maintenance organization. Active risk factors include average blood glucose (HbAlc), systolic blood pressure (SBP), low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), triglycerides, smoking status, and use of prophylactic aspirin. Events predicted include diabetic eye disease, diabetic nephropathy, peripheral neuropathy amputation, myocardial infarction, stroke, peripheral artery disease, congestive heart failure, coronary artery surgery, coronary angioplasty, and death.
Changes in Extreme Events and the Potential Impacts on National Security
NASA Astrophysics Data System (ADS)
Bell, J.
2017-12-01
Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socio-economic impacts. Climate change has caused changes in extreme event frequency, intensity and geographic distribution, and will continue to be a driver for changes in the future. Some of the extreme events that have already changed are heat waves, droughts, wildfires, flooding rains, coastal flooding, storm surge, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local intricacies of societal and environmental factors that influences the level of exposure. The goal of this presentation is to discuss the national security implications of changes in extreme weather events and demonstrate how changes in extremes can lead to a host cascading issues. To illustrate this point, this presentation will provide examples of the various pathways that extreme events can increase disease burden and cause economic stress.
Hard X-ray Detectability of Small Impulsive Heating Events in the Solar Corona
NASA Astrophysics Data System (ADS)
Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Marsh, A.; Krucker, S.; Christe, S.
2015-12-01
Impulsive heating events ("nanoflares") are a candidate to supply the solar corona with its ~2 MK temperature. These transient events can be studied using extreme ultraviolet and soft X-ray observations, among others. However, the impulsive events may occur in tenuous loops on small enough timescales that the heating is essentially not observed due to ionization timescales, and only the cooling phase is observed. Bremsstrahlung hard X-rays could serve as a more direct and prompt indicator of transient heating events. A hard X-ray spacecraft based on the direct-focusing technology pioneered by the Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket could search for these direct signatures. In this work, we use the hydrodynamical EBTEL code to simulate differential emission measures produced by individual heating events and by ensembles of such events. We then directly predict hard X-ray spectra and consider their observability by a future spaceborne FOXSI, and also by the RHESSI and NuSTAR spacecraft.
Predictive Value of Pulse Pressure in Acute Ischemic Stroke for Future Major Vascular Events.
Lee, Keon-Joo; Kim, Beom Joon; Han, Moon-Ku; Kim, Joon-Tae; Cho, Ki-Hyun; Shin, Dong-Ick; Yeo, Min-Ju; Cha, Jae-Kwan; Kim, Dae-Hyun; Nah, Hyun-Wook; Kim, Dong-Eog; Ryu, Wi-Sun; Park, Jong-Moo; Kang, Kyusik; Lee, Soo Joo; Oh, Mi-Sun; Yu, Kyung-Ho; Lee, Byung-Chul; Hong, Keun-Sik; Cho, Yong-Jin; Choi, Jay Chol; Sohn, Sung Il; Hong, Jeong-Ho; Park, Tai Hwan; Park, Sang-Soon; Kwon, Jee-Hyun; Kim, Wook-Joo; Lee, Jun; Lee, Ji Sung; Lee, Juneyoung; Gorelick, Philip B; Bae, Hee-Joon
2018-01-01
This study aimed to investigate whether pulse pressure (PP) obtained during the acute stage of ischemic stroke can be used as a predictor for future major vascular events. Using a multicenter prospective stroke registry database, patients who were hospitalized for ischemic stroke within 48 hours of onset were enrolled in this study. We analyzed blood pressure (BP) data measured during the first 3 days from onset. Primary and secondary outcomes were time to a composite of stroke recurrence, myocardial infarction, all-cause death, and time to stroke recurrence, respectively. Of 9840 patients, 4.3% experienced stroke recurrence, 0.2% myocardial infarction, and 7.3% death during a 1-year follow-up period. In Cox proportional hazards models including both linear and quadratic terms of PP, PP had a nonlinear J-shaped relationship with primary (for a quadratic term of PP, P =0.004) and secondary ( P <0.001) outcomes. The overall effects of PP and other BP parameters on primary and secondary outcomes were also significant ( P <0.05). When predictive power of BP parameters was compared using a statistic of -2 log-likelihood differences, PP was a stronger predictor than systolic BP (8.49 versus 5.91; 6.32 versus 4.56), diastolic BP (11.42 versus 11.05; 10.07 versus 4.56), and mean atrial pressure (8.75 versus 5.91; 7.03 versus 4.56) for the primary and secondary outcomes, respectively. Our study shows that PP when measured in the acute period of ischemic stroke has nonlinear J-shaped relationships with major vascular events and stroke recurrence, and may have a stronger predictive power than other commonly used BP parameters. © 2017 American Heart Association, Inc.
The function and failure of sensory predictions.
Bansal, Sonia; Ford, Judith M; Spering, Miriam
2018-04-23
Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms. © 2018 New York Academy of Sciences.
Imagining the Future in Children with Severe Traumatic Brain Injury.
Lah, Suncica; Gott, Chloe; Epps, Adrienne; Parry, Louise
2018-06-12
Imagining future events is thought to rely on recombination and integration of past episodic memory traces into future events. Future and past events contain episodic and nonepisodic details. Children with severe traumatic brain injury (TBI) were found to have impaired recall of past episodic (but not semantic) event details. Here, we examined whether severe TBI impairs construction of future events. Children with severe TBI (n = 15) and healthy controls (NC; n = 33) 1) completed tests of anterograde (narrative and relational) memory and executive skills, 2) recalled past events and generated future events, and 3) rated events' phenomenological qualities. Events were scored for episodic (internal) and semantic (external) details. The groups did not differ in generating details of future events, although children with TBI recalled significantly fewer past internal (but not external) events' details relative to NCs. Moreover, the number of past internal details relative to future internal details was significantly higher in the NC group, but not in the TBI groups. Significant correlations between past and future were found for 1) internal details in both groups and 2) external details in the NC group. The TBI group rated their events as being less significant than did the NC group. The groups did not differ on ratings of visual intensity and rehearsal. Our study has shown that children who have sustained severe TBI had impoverished recall of past, but not generation of future, events. This unexpected dissociation between past and future event construction requires further research.
Congenital limb malformations are among the most frequent malformation occurs in humans, with a frequency of about 1 in 500 to 1 in 1000 human live births. ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput (HTS) and computational methods that...
Animal cognition: an insect's sense of time?
Skorupski, Peter; Chittka, Lars
2006-10-10
For Immanuel Kant, time was the very form of the inner sense, the bedrock of our consciousness and also the origin of arithmetic ability. New research on bumblebees has shown that even an invertebrate with a brain the size of a pinhead can actively sense the passage of elapsed time, allowing it to predict when certain salient events will occur in the future.
ERIC Educational Resources Information Center
Caplan, Joel M.; Kennedy, Leslie W.; Piza, Eric L.
2013-01-01
Violent crime incidents occurring in Irvington, New Jersey, in 2007 and 2008 are used to assess the joint analytical capabilities of point pattern analysis, hotspot mapping, near-repeat analysis, and risk terrain modeling. One approach to crime analysis suggests that the best way to predict future crime occurrence is to use past behavior, such as…
Hoerger, Michael; Quirk, Stuart W.; Chapman, Benjamin P.; Duberstein, Paul R.
2011-01-01
Emerging research has examined individual differences in affective forecasting; however, we are aware of no published study to date linking psychopathology symptoms to affective forecasting problems. Pitting cognitive theory against depressive realism theory, we examined whether dysphoria was associated with negatively biased affective forecasts or greater accuracy. Participants (n = 325) supplied predicted and actual emotional reactions for three days surrounding an emotionally-evocative relational event, Valentine’s Day. Predictions were made a month prior to the holiday. Consistent with cognitive theory, we found evidence for a dysphoric forecasting bias – the tendency of individuals in dysphoric states to overpredict negative emotional reactions to future events. The dysphoric forecasting bias was robust across ratings of positive and negative affect, forecasts for pleasant and unpleasant scenarios, continuous and categorical operationalizations of dysphoria, and three time points of observation. Similar biases were not observed in analyses examining the independent effects of anxiety and hypomania. Findings provide empirical evidence for the long assumed influence of depressive symptoms on future expectations. The present investigation has implications for affective forecasting studies examining information processing constructs, decision making, and broader domains of psychopathology. PMID:22397734
Hoerger, Michael; Quirk, Stuart W; Chapman, Benjamin P; Duberstein, Paul R
2012-01-01
Emerging research has examined individual differences in affective forecasting; however, we are aware of no published study to date linking psychopathology symptoms to affective forecasting problems. Pitting cognitive theory against depressive realism theory, we examined whether dysphoria was associated with negatively biased affective forecasts or greater accuracy. Participants (n=325) supplied predicted and actual emotional reactions for three days surrounding an emotionally evocative relational event, Valentine's Day. Predictions were made a month prior to the holiday. Consistent with cognitive theory, we found evidence for a dysphoric forecasting bias-the tendency of individuals in dysphoric states to overpredict negative emotional reactions to future events. The dysphoric forecasting bias was robust across ratings of positive and negative affect, forecasts for pleasant and unpleasant scenarios, continuous and categorical operationalisations of dysphoria, and three time points of observation. Similar biases were not observed in analyses examining the independent effects of anxiety and hypomania. Findings provide empirical evidence for the long-assumed influence of depressive symptoms on future expectations. The present investigation has implications for affective forecasting studies examining information-processing constructs, decision making, and broader domains of psychopathology.
Torino, Claudia; Manfredini, Fabio; Bolignano, Davide; Aucella, Filippo; Baggetta, Rossella; Barillà, Antonio; Battaglia, Yuri; Bertoli, Silvio; Bonanno, Graziella; Castellino, Pietro; Ciurlino, Daniele; Cupisti, Adamasco; D'Arrigo, Graziella; De Paola, Luciano; Fabrizi, Fabrizio; Fatuzzo, Pasquale; Fuiano, Giorgio; Lombardi, Luigi; Lucisano, Gaetano; Messa, Piergiorgio; Rapanà, Renato; Rapisarda, Francesco; Rastelli, Stefania; Rocca-Rey, Lisa; Summaria, Chiara; Zuccalà, Alessandro; Tripepi, Giovanni; Catizone, Luigi; Zoccali, Carmine; Mallamaci, Francesca
2014-01-01
Scarce physical activity predicts shorter survival in dialysis patients. However, the relationship between physical (motor) fitness and clinical outcomes has never been tested in these patients. We tested the predictive power of an established metric of motor fitness, the Six-Minute Walking Test (6MWT), for death, cardiovascular events and hospitalization in 296 dialysis patients who took part in the trial EXCITE (ClinicalTrials.gov Identifier: NCT01255969). During follow up 69 patients died, 90 had fatal and non-fatal cardiovascular events, 159 were hospitalized and 182 patients had the composite outcome. In multivariate Cox models - including the study allocation arm and classical and non-classical risk factors - an increase of 20 walked metres during the 6MWT was associated to a 6% reduction of the risk for the composite end-point (P=0.001) and a similar relationship existed between the 6MWT, mortality (P<0.001) and hospitalizations (P=0.03). A similar trend was observed for cardiovascular events but this relationship did not reach statistical significance (P=0.09). Poor physical performance predicts a high risk of mortality, cardiovascular events and hospitalizations in dialysis patients. Future studies, including phase-2 EXCITE, will assess whether improving motor fitness may translate into better clinical outcomes in this high risk population. © 2014 S. Karger AG, Basel.
Boscarino, Joseph A; Adams, Richard E
2009-05-15
Several studies have suggested that experiencing a peritraumatic panic attack (PPA) during a traumatic event predicts future mental health status. Some investigators have suggested that this finding has psychotherapeutic significance. We assessed the hypothesis that PPA was not related to longer-term health status after event exposure, once background confounders were controlled. In our study we assessed exposure to the World Trade Center disaster (WTCD) and other negative life events, demographic factors, social support, self-esteem, and panic attack onset in predicting health outcome among 1681 New York City residents 2 years after the attack. Initial bivariate results indicated that a PPA was related to a number of adverse outcomes 2 years after the WTCD, including posttraumatic stress disorder, depression, poor physical health, anxiety, binge drinking, and mental health treatment seeking. However, when multivariate (MV) models were estimated adjusting for potential confounders, most of these associations were either non-significant or substantially reduced. Contrary to previous predictions, these MV models revealed that recent negative life events and current self-esteem at follow-up were the best predictors of health outcomes, not PPA. Although post-trauma interventions may target individuals who experienced PPA after traumatic exposures, reducing the long-term health consequences following such exposures based on PPA alone may be problematic. Modifications of psychopathology constructs based on the reported correlation between PPA and post-trauma outcomes may be premature.
Review of ship slamming loads and responses
NASA Astrophysics Data System (ADS)
Wang, Shan; Guedes Soares, C.
2017-12-01
The paper presents an overview of studies of slamming on ship structures. This work focuses on the hull slamming, which is one of the most important types of slamming problems to be considered in the ship design process and the assessment of the ship safety. There are three main research aspects related to the hull slamming phenomenon, a) where and how often a slamming event occurs, b) slamming load prediction and c) structural response due to slamming loads. The approaches used in each aspect are reviewed and commented, together with the presentation of some typical results. The methodology, which combines the seakeeping analysis and slamming load prediction, is discussed for the global analysis of the hull slamming of a ship in waves. Some physical phenomena during the slamming event are discussed also. Recommendations for the future research and developments are made.
A Search for Kilonovae in the Dark Energy Survey
Doctor, Z.; Kessler, R.; Chen, H. Y.; ...
2017-03-01
The coalescence of a binary neutron star pair is expected to produce gravitational waves (GW) and electromagnetic radiation, both of which may be detectable with currently available instruments. In this paper, we describe a search for a predicted r-process optical transient from these mergers, dubbed the “kilonova” (KN), using griz broadband data from the Dark Energy Survey Supernova Program (DES-SN). Some models predict KNe to be redder, shorter-lived, and dimmer than supernovae (SNe), but the event rate of KNe is poorly constrained. We simulate KN and SN light curves with the Monte-Carlo simulation code SNANA to optimize selection requirements, determine search efficiency, and predict SN backgrounds. Our analysis of the first two seasons of DES-SN data results in 0 events, and is consistent with our prediction of 1.1 ± 0.2 background events based on simulations of SNe. From our prediction, there is a 33% chance of finding 0 events in the data. Assuming no underlying galaxy flux, our search sets 90% upper limits on the KN volumetric rate of 1.0 x 10more » $$^{7}$$ Gpc $-$3 yr $-$1 for the dimmest KN model we consider (peak i-band absolute magnitude $${M}_{i}=-11.4$$ mag) and 2.4x 10$$^{4}$$ Gpc $-$3 yr $-$1 for the brightest ($${M}_{i}=-16.2$$ mag). Accounting for anomalous subtraction artifacts on bright galaxies, these limits are ~3 times higher. This analysis is the first untriggered optical KN search and informs selection requirements and strategies for future KN searches. Finally, our upper limits on the KN rate are consistent with those measured by GW and gamma-ray burst searches.« less
A Search for Kilonovae in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Doctor, Z.; Kessler, R.; Chen, H. Y.; Farr, B.; Finley, D. A.; Foley, R. J.; Goldstein, D. A.; Holz, D. E.; Kim, A. G.; Morganson, E.; Sako, M.; Scolnic, D.; Smith, M.; Soares-Santos, M.; Spinka, H.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Drlica-Wagner, A.; Eifler, T. F.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.; Wester, W.; DES Collaboration
2017-03-01
The coalescence of a binary neutron star pair is expected to produce gravitational waves (GW) and electromagnetic radiation, both of which may be detectable with currently available instruments. We describe a search for a predicted r-process optical transient from these mergers, dubbed the “kilonova” (KN), using griz broadband data from the Dark Energy Survey Supernova Program (DES-SN). Some models predict KNe to be redder, shorter-lived, and dimmer than supernovae (SNe), but the event rate of KNe is poorly constrained. We simulate KN and SN light curves with the Monte-Carlo simulation code SNANA to optimize selection requirements, determine search efficiency, and predict SN backgrounds. Our analysis of the first two seasons of DES-SN data results in 0 events, and is consistent with our prediction of 1.1 ± 0.2 background events based on simulations of SNe. From our prediction, there is a 33% chance of finding 0 events in the data. Assuming no underlying galaxy flux, our search sets 90% upper limits on the KN volumetric rate of 1.0 × {10}7 Gpc-3 yr-1 for the dimmest KN model we consider (peak I-band absolute magnitude {M}I=-11.4 mag) and 2.4 × {10}4 Gpc-3 yr-1 for the brightest ({M}I=-16.2 mag). Accounting for anomalous subtraction artifacts on bright galaxies, these limits are ˜3 times higher. This analysis is the first untriggered optical KN search and informs selection requirements and strategies for future KN searches. Our upper limits on the KN rate are consistent with those measured by GW and gamma-ray burst searches.
NASA Astrophysics Data System (ADS)
Quinn, Niall; Freer, Jim; Coxon, Gemma; Dunne, Toby; Neal, Jeff; Bates, Paul; Sampson, Chris; Smith, Andy; Parkin, Geoff
2017-04-01
Computationally efficient flood inundation modelling systems capable of representing important hydrological and hydrodynamic flood generating processes over relatively large regions are vital for those interested in flood preparation, response, and real time forecasting. However, such systems are currently not readily available. This can be particularly important where flood predictions from intense rainfall are considered as the processes leading to flooding often involve localised, non-linear spatially connected hillslope-catchment responses. Therefore, this research introduces a novel hydrological-hydraulic modelling framework for the provision of probabilistic flood inundation predictions across catchment to regional scales that explicitly account for spatial variability in rainfall-runoff and routing processes. Approaches have been developed to automate the provision of required input datasets and estimate essential catchment characteristics from freely available, national datasets. This is an essential component of the framework as when making predictions over multiple catchments or at relatively large scales, and where data is often scarce, obtaining local information and manually incorporating it into the model quickly becomes infeasible. An extreme flooding event in the town of Morpeth, NE England, in 2008 was used as a first case study evaluation of the modelling framework introduced. The results demonstrated a high degree of prediction accuracy when comparing modelled and reconstructed event characteristics for the event, while the efficiency of the modelling approach used enabled the generation of relatively large ensembles of realisations from which uncertainty within the prediction may be represented. This research supports previous literature highlighting the importance of probabilistic forecasting, particularly during extreme events, which can be often be poorly characterised or even missed by deterministic predictions due to the inherent uncertainty in any model application. Future research will aim to further evaluate the robustness of the approaches introduced by applying the modelling framework to a variety of historical flood events across UK catchments. Furthermore, the flexibility and efficiency of the framework is ideally suited to the examination of the propagation of errors through the model which will help gain a better understanding of the dominant sources of uncertainty currently impacting flood inundation predictions.
Impact of climate change on runoff pollution in urban environments
NASA Astrophysics Data System (ADS)
Coutu, S.; Kramer, S.; Barry, D. A.; Roudier, P.
2012-12-01
Runoff from urban environments is generally contaminated. These contaminants mostly originate from road traffic and building envelopes. Facade envelopes generate lead, zinc and even biocides, which are used for facade protection. Road traffic produces particles from tires and brakes. The transport of these pollutants to the environment is controlled by rainfall. The interval, duration and intensity of rainfall events are important as the dynamics of the pollutants are often modeled with non-linear buildup/washoff functions. Buildup occurs during dry weather when pollution accumulates, and is subsequently washed-off at the time of the following rainfall, contaminating surface runoff. Climate predictions include modified rainfall distributions, with changes in both number and intensity of events, even if the expected annual rainfall varies little. Consequently, pollutant concentrations in urban runoff driven by buildup/washoff processes will be affected by these changes in rainfall distributions. We investigated to what extent modifications in future rainfall distributions will impact the concentrations of pollutants present in urban surface runoff. The study used the example of Lausanne, Switzerland (temperate climate zone). Three emission scenarios (time horizon 2090), multiple combinations of RCM/GCM and modifications in rain event frequency were used to simulate future rainfall distributions with various characteristics. Simulated rainfall events were used as inputs for four pairs of buildup/washoff models, in order to compare future pollution concentrations in surface runoff. In this way, uncertainty in model structure was also investigated. Future concentrations were estimated to be between ±40% of today's concentrations depending on the season and, importantly, on the choice of the RCM/GCM model. Overall, however, the dominant factor was the uncertainty inherent in buildup/washoff models, which dominated over the uncertainty in future rainfall distributions. Consequently, the choice of a proper buildup/washoff model, with calibrated site-specific coefficients, is a major factor in modeling future runoff concentrations from contaminated urban surfaces.
Uden, Daniel R.; Allen, Craig R.; Bishop, Andrew A.; Grosse, Roger; Jorgensen, Christopher F.; LaGrange, Theodore G.; Stutheit, Randy G.; Vrtiska, Mark P.
2015-01-01
In the present period of rapid, worldwide change in climate and landuse (i.e., global change), successful biodiversity conservation warrants proactive management responses, especially for long-distance migratory species. However, the development and implementation of management strategies can be impeded by high levels of uncertainty and low levels of control over potentially impactful future events and their effects. Scenario planning and modeling are useful tools for expanding perspectives and informing decisions under these conditions. We coupled scenario planning and statistical modeling to explain and predict playa wetland inundation (i.e., presence/absence of water) and ponded area (i.e., extent of water) in the Rainwater Basin, an anthropogenically altered landscape that provides critical stopover habitat for migratory waterbirds. Inundation and ponded area models for total wetlands, those embedded in rowcrop fields, and those not embedded in rowcrop fields were trained and tested with wetland ponding data from 2004 and 2006–2009, and then used to make additional predictions under two alternative climate change scenarios for the year 2050, yielding a total of six predictive models and 18 prediction sets. Model performance ranged from moderate to good, with inundation models outperforming ponded area models, and models for non-rowcrop-embedded wetlands outperforming models for total wetlands and rowcrop-embedded wetlands. Model predictions indicate that if the temperature and precipitation changes assumed under our climate change scenarios occur, wetland stopover habitat availability in the Rainwater Basin could decrease in the future. The results of this and similar studies could be aggregated to increase knowledge about the potential spatial and temporal distributions of future stopover habitat along migration corridors, and to develop and prioritize multi-scale management actions aimed at mitigating the detrimental effects of global change on migratory waterbird populations.
Some Unsolved Problems, Questions, and Applications of the Brightsen Nucleon Cluster Model
NASA Astrophysics Data System (ADS)
Smarandache, Florentin
2010-10-01
Brightsen Model is opposite to the Standard Model, and it was build on John Weeler's Resonating Group Structure Model and on Linus Pauling's Close-Packed Spheron Model. Among Brightsen Model's predictions and applications we cite the fact that it derives the average number of prompt neutrons per fission event, it provides a theoretical way for understanding the low temperature / low energy reactions and for approaching the artificially induced fission, it predicts that forces within nucleon clusters are stronger than forces between such clusters within isotopes; it predicts the unmatter entities inside nuclei that result from stable and neutral union of matter and antimatter, and so on. But these predictions have to be tested in the future at the new CERN laboratory.
Kao, Amy H.; Lertratanakul, Apinya; Elliott, Jennifer R.; Sattar, Abdus; Santelices, Linda; Shaw, Penny; Birru, Mehret; Avram, Zheni; Thompson, Trina; Sutton-Tyrrell, Kim; Ramsey-Goldman, Rosalind; Manzi, Susan
2013-01-01
Patients with systemic lupus erythematosus (SLE) are at increased risk for cardiovascular (CV) disease. The aim of this study was to investigate the association between subclinical CV disease as measured by carotid intima-media thickness (IMT) and plaque using B-mode carotid ultrasound and incident CV events in a combined cohort of female patients with SLE. This was a prospective, 2-center observational study of 392 adult women with SLE and no previous CV events with a mean 8 years of follow-up. Incident CV events confirmed by clinicians were defined as angina, myocardial infarction, percutaneous transluminal coronary angioplasty, coronary artery bypass graft, fatal cardiac arrest, transient ischemic attack, and cerebrovascular accident. Incident hard CV events excluded angina and transient ischemic attack. The mean age was 43.5 years, and most patients were Caucasian (77.3%). During follow-up, 38 patients had incident CV events, and 17 had incident hard CV events. Patients with incident hard CV events had higher mean carotid IMT (0.80 vs 0.64 mm, p <0.01) and presence of carotid plaque (76.5% vs 30.4%, p <0.01) compared with those without incident hard CV events. Baseline carotid IMT and presence of plaque were predictive of any incident hard CV event (hazard ratio 1.35, 95% confidence interval 1.12 to 1.64, and hazard ratio 4.26, 95% confidence interval 1.23 to 14.83, respectively), independent of traditional CV risk factors and medication use. In conclusion, in women with SLE without previous CV events, carotid IMT and plaque are predictive of future CV events. This suggests that carotid ultrasound may provide an additional tool for CV risk stratification in patients with SLE. PMID:23827400
Kao, Amy H; Lertratanakul, Apinya; Elliott, Jennifer R; Sattar, Abdus; Santelices, Linda; Shaw, Penny; Birru, Mehret; Avram, Zheni; Thompson, Trina; Sutton-Tyrrell, Kim; Ramsey-Goldman, Rosalind; Manzi, Susan
2013-10-01
Patients with systemic lupus erythematosus (SLE) are at increased risk for cardiovascular (CV) disease. The aim of this study was to investigate the association between subclinical CV disease as measured by carotid intima-media thickness (IMT) and plaque using B-mode carotid ultrasound and incident CV events in a combined cohort of female patients with SLE. This was a prospective, 2-center observational study of 392 adult women with SLE and no previous CV events with a mean 8 years of follow-up. Incident CV events confirmed by clinicians were defined as angina, myocardial infarction, percutaneous transluminal coronary angioplasty, coronary artery bypass graft, fatal cardiac arrest, transient ischemic attack, and cerebrovascular accident. Incident hard CV events excluded angina and transient ischemic attack. The mean age was 43.5 years, and most patients were Caucasian (77.3%). During follow-up, 38 patients had incident CV events, and 17 had incident hard CV events. Patients with incident hard CV events had higher mean carotid IMT (0.80 vs 0.64 mm, p <0.01) and presence of carotid plaque (76.5% vs 30.4%, p <0.01) compared with those without incident hard CV events. Baseline carotid IMT and presence of plaque were predictive of any incident hard CV event (hazard ratio 1.35, 95% confidence interval 1.12 to 1.64, and hazard ratio 4.26, 95% confidence interval 1.23 to 14.83, respectively), independent of traditional CV risk factors and medication use. In conclusion, in women with SLE without previous CV events, carotid IMT and plaque are predictive of future CV events. This suggests that carotid ultrasound may provide an additional tool for CV risk stratification in patients with SLE. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Boslough, M.
2011-12-01
Climate-related uncertainty is traditionally presented as an error bar, but it is becoming increasingly common to express it in terms of a probability density function (PDF). PDFs are a necessary component of probabilistic risk assessments, for which simple "best estimate" values are insufficient. Many groups have generated PDFs for climate sensitivity using a variety of methods. These PDFs are broadly consistent, but vary significantly in their details. One axiom of the verification and validation community is, "codes don't make predictions, people make predictions." This is a statement of the fact that subject domain experts generate results using assumptions within a range of epistemic uncertainty and interpret them according to their expert opinion. Different experts with different methods will arrive at different PDFs. For effective decision support, a single consensus PDF would be useful. We suggest that market methods can be used to aggregate an ensemble of opinions into a single distribution that expresses the consensus. Prediction markets have been shown to be highly successful at forecasting the outcome of events ranging from elections to box office returns. In prediction markets, traders can take a position on whether some future event will or will not occur. These positions are expressed as contracts that are traded in a double-action market that aggregates price, which can be interpreted as a consensus probability that the event will take place. Since climate sensitivity cannot directly be measured, it cannot be predicted. However, the changes in global mean surface temperature are a direct consequence of climate sensitivity, changes in forcing, and internal variability. Viable prediction markets require an undisputed event outcome on a specific date. Climate-related markets exist on Intrade.com, an online trading exchange. One such contract is titled "Global Temperature Anomaly for Dec 2011 to be greater than 0.65 Degrees C." Settlement is based global temperature anomaly data published by NASS GISS. Typical climate contracts predict the probability of a specified future temperature, but not the probability density or best estimate. One way to generate a probability distribution would be to create a family of contracts over a range of specified temperatures and interpret the price of each contract as its exceedance probability. The resulting plot of probability vs. anomaly is the market-based cumulative density function. The best estimate can be determined by interpolation, and the market-based uncertainty estimate can be based on the spread. One requirement for an effective prediction market is liquidity. Climate contracts are currently considered somewhat of a novelty and often lack sufficient liquidity, but climate change has the potential to generate both tremendous losses for some (e.g. agricultural collapse and extreme weather events) and wealth for others (access to natural resources and trading routes). Use of climate markets by large stakeholders has the potential to generate the liquidity necessary to make them viable. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's NNSA under contract DE-AC04-94AL85000.
Chang, Ting-Yung; Hsu, Chien-Yi; Huang, Po-Hsun; Chiang, Chia-Hung; Leu, Hsin-Bang; Huang, Chin-Chou; Chen, Jaw-Wen; Lin, Shing-Jong
2015-10-01
Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor superfamily, is an antiapoptotic soluble receptor considered to play an important role in immune modulation and has pro-inflammatory functions. This study was designed to test whether circulating DcR3 levels are associated with coronary artery disease (CAD) severity and predict future major adverse cardiovascular events (MACEs) in patients with CAD. Circulating DcR3 levels and the Syntax score (SXscore) were determined in patients with multivessel CAD. The primary end point was the MACE within 12 months. In total, 152 consecutive patients with angiographically confirmed multivessel CAD who had received percutaneous coronary intervention were enrolled and were divided into 3 groups according to CAD lesion severity. Group 1 was defined as low SXscore (≤13), group 2 as intermediate SXscore (>13 and ≤22), and group 3 as high SXscore (>22). DcR3 levels were significantly higher in the high SXscore group than the other 2 groups (13,602 ± 7,256 vs 8,025 ± 7,789 vs 4,637 ± 4,403 pg/ml, p <0.001). By multivariate analysis, circulating DcR3 levels were identified as an independent predictor for high SXscore (adjusted odds ratio 1.15, 95% confidence interval 1.09 to 1.21; p <0.001). The Kaplan-Meier analysis showed that increased circulating DcR3 levels are associated with enhanced 1-year MACE in patients with multivessel CAD (log-rank p <0.001). In conclusion, increased circulating DcR3 levels are associated with CAD severity and predict future MACE in patients with multivessel CAD. Copyright © 2015 Elsevier Inc. All rights reserved.
Swartz, Johnna R; Knodt, Annchen R; Radtke, Spenser R; Hariri, Ahmad R
2018-01-31
We have previously reported that threat-related amygdala activity measured during a baseline fMRI scan predicts the experience of depression and anxiety associated with stressful life events years later. Here, we examine whether two broad measures of childhood environmental enrichment, namely parental educational achievement and subjective parental socioeconomic status, buffer against the effects of amygdala activity on future vulnerability to stress. Analyses of data available from 579 young adults revealed that maternal, but not paternal, educational achievement moderates the association between amygdala activity, recent life stress, and changes in mood and anxiety symptoms, even when controlling for participants' current subjective socioeconomic status. Specifically, only participants reporting lower maternal educational achievement exhibited our previously observed interaction between amygdala activity and future life stress predicting increases in depression and anxiety. These results suggest that higher maternal educational achievement may help buffer stress sensitivity associated with heightened threat-related amygdala activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
The effects of climate change on storm surges around the United Kingdom.
Lowe, J A; Gregory, J M
2005-06-15
Coastal flooding is often caused by extreme events, such as storm surges. In this study, improved physical models have been used to simulate the climate system and storm surges, and to predict the effect of increased atmospheric concentrations of greenhouse gases on the surges. In agreement with previous studies, this work indicates that the changes in atmospheric storminess and the higher time-average sea-level predicted for the end of the twenty-first century will lead to changes in the height of water levels measured relative to the present day tide. However, the details of these projections differ somewhat from earlier assessments. Uncertainty in projections of future extreme water levels arise from uncertainty in the amount and timing of future greenhouse gas emissions, uncertainty in the physical models used to simulate the climate system and from the natural variability of the system. The total uncertainty has not yet been reliably quantified and achieving this should be a priority for future research.
What differentiates episodic future thinking from complex scene imagery?
de Vito, Stefania; Gamboz, Nadia; Brandimonte, Maria A
2012-06-01
We investigated the contributions of familiarity of setting, self-relevance and self-projection in time to episodic future thinking. The role of familiarity of setting was assessed, in Experiment 1, by comparing episodic future thoughts to autobiographical future events supposed to occur in unfamiliar settings. The role of self-relevance was assessed, in Experiment 2, by comparing episodic future thoughts to future events involving familiar others. The role of self-projection in time was assessed, in both Experiments, by comparing episodic future thoughts to autobiographical events that were not temporal in nature. Results indicated that episodic future thoughts were more clearly represented than autobiographical future events occurring in unfamiliar setting and future events involving familiar others. Our results also revealed that episodic future thoughts were indistinguishable from autobiographical atemporal events with respect to both subjective and objective detail ratings. These results suggest that future and atemporal events are mentally represented in a similar way. Copyright © 2012 Elsevier Inc. All rights reserved.
An Expert System For Multispectral Threat Assessment And Response
NASA Astrophysics Data System (ADS)
Steinberg, Alan N.
1987-05-01
A concept has been defined for an automatic system to manage the self-defense of a combat aircraft. Distinctive new features of this concept include: a. the flexible prioritization of tasks and coordinated use of sensor, countermeasures, flight systems and weapons assets by means of an automated planning function; b. the integration of state-of-the-art data fusion algorithms with event prediction processing; c. the use of advanced Artificial Intelligence tools to emulate the decision processes of tactical EW experts. Threat Assessment functions (a) estimate threat identity, lethality and intent on the basis of multi-spectral sensor data, and (b) predict the time to critical events in threat engagements (e.g., target acquisition, tracking, weapon launch, impact). Response Management functions (a) select candidate responses to reported threat situations; (b) estimate the effects of candidate actions on survival; and (c) coordinate the assignment of sensors, weapons and countermeasures with the flight plan. The system employs Finite State Models to represent current engagements and to predict subsequent events. Each state in a model is associated with a set of observable features, allowing interpretation of sensor data and adaptive use of sensor assets. Defined conditions on state transitions allow prediction of times to critical future states and are used in planning self-defensive responses, which are designed either to impede a particular state transition or to force a transition to a lower threat state.
Fabina, Nicholas S; Baskett, Marissa L; Gross, Kevin
2015-09-01
Extreme events, which have profound ecological consequences, are changing in both frequency and magnitude with climate change. Because extreme temperatures induce coral bleaching, we can explore the relative impacts of changes in frequency and magnitude of high temperature events on coral reefs. Here, we combined climate projections and a dynamic population model to determine how changing bleaching regimes influence coral persistence. We additionally explored how coral traits and competition with macroalgae mediate changes in bleaching regimes. Our results predict that severe bleaching events reduce coral persistence more than frequent bleaching. Corals with low adult mortality and high growth rates are successful when bleaching is mild, but bleaching resistance is necessary to persist when bleaching is severe, regardless of frequency. The existence of macroalgae-dominated stable states reduces coral persistence and changes the relative importance of coral traits. Building on previous studies, our results predict that management efforts may need to prioritize protection of "weaker" corals with high adult mortality when bleaching is mild, and protection of "stronger" corals with high bleaching resistance when bleaching is severe. In summary, future reef projections and conservation targets depend on both local bleaching regimes and biodiversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong
Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previousmore » paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.« less
Resilience to seasonal heat wave episodes in a Mediterranean pine forest.
Tatarinov, Fedor; Rotenberg, Eyal; Maseyk, Kadmiel; Ogée, Jérôme; Klein, Tamir; Yakir, Dan
2016-04-01
Short-term, intense heat waves (hamsins) are common in the eastern Mediterranean region and provide an opportunity to study the resilience of forests to such events that are predicted to increase in frequency and intensity. The response of a 50-yr-old Aleppo pine (Pinus halepensis) forest to hamsin events lasting 1-7 d was studied using 10 yr of eddy covariance and sap flow measurements. The highest frequency of heat waves was c. four per month, coinciding with the peak productivity period (March-April). During these events, net ecosystem carbon exchange (NEE) and canopy conductance (gc ) decreased by c. 60%, but evapotranspiration (ET) showed little change. Fast recovery was also observed with fluxes reaching pre-stress values within a day following the event. NEE and gc showed a strong response to vapor pressure deficit that weakened as soil moisture decreased, while sap flow was primarily responding to changes in soil moisture. On an annual scale, heat waves reduced NEE and gross primary productivity by c. 15% and 4%, respectively. Forest resilience to short-term extreme events such as heat waves is probably a key to its survival and must be accounted for to better predict the increasing impact on productivity and survival of such events in future climates. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Xie, Yingying; Wang, Xiaojing; Silander, John A
2015-11-03
Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models.
NASA Astrophysics Data System (ADS)
Avakyan, S. V.; Gaponov, V. A.; Nicol'skii, G. A.; Solov'ev, A. A.
2017-06-01
During interplanetary flight, after large solar flares, astronauts are subject to the impact of relativistic solar protons. These particles produce an especially strong effect during extravehicular activity or landing on Mars (in the future). The relativistic protons reach the orbits of the Earth and Mars with a delay of several hours relative to solar X-rays and UV radiation. In this paper, we discuss a new opportunity to predict the most dangerous events caused by Solar Cosmic Rays with protons of maximum (relativistic) energy, known in the of solar-terrestrial physics asGround Level Enhancements or Ground Level Events (GLEs). This new capability is based on a close relationship between the dangerous events and decrease ofTotal Solar Irradiance (TSI)which precedes these events. This important relationship is revealed for the first time.
Beyond Prediction: the Many Ways in which Climate Science can Inform Adaptation Decisions
NASA Astrophysics Data System (ADS)
Lempert, R. J.
2017-12-01
Climate science provides an increasingly rich understanding of current and future climate, but this understanding is often not fully incorporated into climate adaptation decisions. In particular, the provision of climate information is still trapped in a narrow prediction-based framework, which envisions a sequential process that begins with model-based forecasts of future climate and decision makers then acting on those forecasts. Among its challenges, this framework can discourage action when climate predictions are deemed too uncertain, encourage overconfidence when climate scientists and decision makers fail to focus on decision-relevant but poorly understood extreme events, and offers a too-narrow communication path among climate scientists and decision makers. This talk will describe how robust decision approaches, organized around the idea of stress testing proposed adaptation decisions over a wide range of futures, can enable a richer flow information among climate scientists and decision makers. The talk illustrates these themes with two examples: 1) conservation management that explores the tradeoffs among alternative climate information products with different combinations of ensemble size and spatial resolution and 2) water quality implementation planning that focuses on the handling of extremes.
Asthma pharmacogenetics and the development of genetic profiles for personalized medicine
Ortega, Victor E; Meyers, Deborah A; Bleecker, Eugene R
2015-01-01
Human genetics research will be critical to the development of genetic profiles for personalized or precision medicine in asthma. Genetic profiles will consist of gene variants that predict individual disease susceptibility and risk for progression, predict which pharmacologic therapies will result in a maximal therapeutic benefit, and predict whether a therapy will result in an adverse response and should be avoided in a given individual. Pharmacogenetic studies of the glucocorticoid, leukotriene, and β2-adrenergic receptor pathways have focused on candidate genes within these pathways and, in addition to a small number of genome-wide association studies, have identified genetic loci associated with therapeutic responsiveness. This review summarizes these pharmacogenetic discoveries and the future of genetic profiles for personalized medicine in asthma. The benefit of a personalized, tailored approach to health care delivery is needed in the development of expensive biologic drugs directed at a specific biologic pathway. Prior pharmacogenetic discoveries, in combination with additional variants identified in future studies, will form the basis for future genetic profiles for personalized tailored approaches to maximize therapeutic benefit for an individual asthmatic while minimizing the risk for adverse events. PMID:25691813
Lateral habenula neurons signal errors in the prediction of reward information
Bromberg-Martin, Ethan S.; Hikosaka, Okihide
2011-01-01
Humans and animals have a remarkable ability to predict future events, which they achieve by persistently searching their environment for sources of predictive information. Yet little is known about the neural systems that motivate this behavior. We hypothesized that information-seeking is assigned value by the same circuits that support reward-seeking, so that neural signals encoding conventional “reward prediction errors” include analogous “information prediction errors”. To test this we recorded from neurons in the lateral habenula, a nucleus which encodes reward prediction errors, while monkeys chose between cues that provided different amounts of information about upcoming rewards. We found that a subpopulation of lateral habenula neurons transmitted signals resembling information prediction errors, responding when reward information was unexpectedly cued, delivered, or denied. Their signals evaluated information sources reliably even when the animal’s decisions did not. These neurons could provide a common instructive signal for reward-seeking and information-seeking behavior. PMID:21857659
Verifying a computational method for predicting extreme ground motion
Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, Brad T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.
2011-01-01
In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.
NASA Astrophysics Data System (ADS)
Miozzo, D.; Ferraris, L.; Altamura, M.
2012-04-01
There are two possible answers to the question that this session poses (why predict?): Firstly, because scientists like to play God and envisage a future where the chaotic unfolding of atmospheric physics will be reviled by numerical weather prediction models. Secondly, because policy makers realised, in the last years, that the development of our unsustainable society made it impossible to tackle the "risk reduction problem" by solving its dilemma at the root and de-constructing in favour of a cutback of risk exposure. In synthesis the desire of omnipotence of science and the excessively costly future prospected by politicians made us believe that predicting natural hazards is un indispensable tile of a much more complex jigsaw. Civil Protection (CP) measures, those for which most of the predictions are needed, are however entangled within complex societal schemes. A perfect CP system, with perfect soi-disent predictions, is useless if not applied and disseminated through a long term policy of civic education. The entire population needs to became part of this educational stream aiming to a shared and participated empowerment of society. If on the one hand we have society and science on the other hand we have economy and urban policies. The economy deriving from the construction sector is in some countries seen as an indispensable asset for national financial stability. Furthermore the current economical crisis is slowing the adoption of vital risk-reduction interventions: to the same extent as in the aftermath of the Second World War, employment and very short termed economical strategies are overtaking strict urban planning and environmental rules. Thus the availability of funds intended towards the protection of the population has greatly decreased whilst, on the other hand, more buildings are being constructed in areas of great risk. Not only our landscapes are being radically changed but, in the long term, we are exponentially augmenting the exposure of the population to extreme events. This work wants to convey on these themes bringing forward the example of the recent flash flood which took place in Genoa (Liguria Region, Italy, November 2011). It will show how CP plans were present and how they precisely identified the vulnerable areas where unfortunately six women died. Forecasts were consistent to the unfolding of events and CP alerts were diffusely issued two days before the event, however the population was unaware of what was going to happen. To this aspect also the aforementioned faulty urban planning perpetrated in more than fifty years must be taken into account. Going back to the initial question, why do we predict? A realistic answer could be: because we cannot do anything else. It is time for policy makers to rethink completely the scheme of priorities of our society. Are we willing to annihilate the safety of our cities in the near future just to live one more year on the verge of bankruptcy? If things will not change in the near future we are afraid that these questions will be retrospectively answered by our sons and daughters.
NASA Astrophysics Data System (ADS)
McCloskey, John
2008-03-01
The Sumatra-Andaman earthquake of 26 December 2004 (Boxing Day 2004) and its tsunami will endure in our memories as one of the worst natural disasters of our time. For geophysicists, the scale of the devastation and the likelihood of another equally destructive earthquake set out a series of challenges of how we might use science not only to understand the earthquake and its aftermath but also to help in planning for future earthquakes in the region. In this article a brief account of these efforts is presented. Earthquake prediction is probably impossible, but earth scientists are now able to identify particularly dangerous places for future events by developing an understanding of the physics of stress interaction. Having identified such a dangerous area, a series of numerical Monte Carlo simulations is described which allow us to get an idea of what the most likely consequences of a future earthquake are by modelling the tsunami generated by lots of possible, individually unpredictable, future events. As this article was being written, another earthquake occurred in the region, which had many expected characteristics but was enigmatic in other ways. This has spawned a series of further theories which will contribute to our understanding of this extremely complex problem.
Modified-Fibonacci-Dual-Lucas method for earthquake prediction
NASA Astrophysics Data System (ADS)
Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.
2015-06-01
The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (<6.5R) can be predicted with very good accuracy window (+-1 day). In this contribution we present an improvement modification to the FDL method, the MFDL method, which performs better than the FDL. We use the FDL numbers to develop possible earthquakes dates but with the important difference that the starting seed date is a trigger planetary aspect prior to the earthquake. Typical planetary aspects are Moon conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with the earthquake date and in this case the FDL method coincides with the MFDL. Based on the MDFL method we present the prediction method capable of predicting global events or localized earthquakes and we will discuss the accuracy of the method in as far as the prediction and location parts of the method. We show example calendar style predictions for global events as well as for the Greek region using planetary alignment seeds.
Visualization and classification of physiological failure modes in ensemble hemorrhage simulation
NASA Astrophysics Data System (ADS)
Zhang, Song; Pruett, William Andrew; Hester, Robert
2015-01-01
In an emergency situation such as hemorrhage, doctors need to predict which patients need immediate treatment and care. This task is difficult because of the diverse response to hemorrhage in human population. Ensemble physiological simulations provide a means to sample a diverse range of subjects and may have a better chance of containing the correct solution. However, to reveal the patterns and trends from the ensemble simulation is a challenging task. We have developed a visualization framework for ensemble physiological simulations. The visualization helps users identify trends among ensemble members, classify ensemble member into subpopulations for analysis, and provide prediction to future events by matching a new patient's data to existing ensembles. We demonstrated the effectiveness of the visualization on simulated physiological data. The lessons learned here can be applied to clinically-collected physiological data in the future.
Lara, Karen Hjortsvang; Lagattuta, Kristin Hansen; Kramer, Hannah J
2017-11-24
Four- to 10-year-olds and adults (N = 205) responded to vignettes involving three individuals with different expectations (high, low, and no) for a future event. Participants judged characters' pre-outcome emotions, as well as predicted and explained their feelings following three events (positive, attenuated, and negative). Although adults rated high-expectation characters more negatively than low-expectation characters after all outcomes, children shared this intuition starting at 6-7 years for negative outcomes, 8-10 years for attenuated, and never for positive. Comparison to baseline (no expectation) indicated that understanding the costs of high expectations emerges first and remains more robust across age than recognition that low expectations carry benefits. Explanation analyses further clarified this developing awareness about the relation between thoughts and emotions over time. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Gregersen, I B; Arnbjerg-Nielsen, K
2012-01-01
Several extraordinary rainfall events have occurred in Denmark within the last few years. For each event, problems in urban areas occurred as the capacity of the existing drainage systems were exceeded. Adaptation to climate change is necessary but also very challenging as urban drainage systems are characterized by long technical lifetimes and high, unrecoverable construction costs. One of the most important barriers for the initiation and implementation of the adaptation strategies is therefore the uncertainty when predicting the magnitude of the extreme rainfall in the future. This challenge is explored through the application and discussion of three different theoretical decision support strategies: the precautionary principle, the minimax strategy and Bayesian decision support. The reviewed decision support strategies all proved valuable for addressing the identified uncertainties, at best applied together as they all yield information that improved decision making and thus enabled more robust decisions.
Webster, Peter J.; Jian, Jun
2011-01-01
The uncertainty associated with predicting extreme weather events has serious implications for the developing world, owing to the greater societal vulnerability to such events. Continual exposure to unanticipated extreme events is a contributing factor for the descent into perpetual and structural rural poverty. We provide two examples of how probabilistic environmental prediction of extreme weather events can support dynamic adaptation. In the current climate era, we describe how short-term flood forecasts have been developed and implemented in Bangladesh. Forecasts of impending floods with horizons of 10 days are used to change agricultural practices and planning, store food and household items and evacuate those in peril. For the first time in Bangladesh, floods were anticipated in 2007 and 2008, with broad actions taking place in advance of the floods, grossing agricultural and household savings measured in units of annual income. We argue that probabilistic environmental forecasts disseminated to an informed user community can reduce poverty caused by exposure to unanticipated extreme events. Second, it is also realized that not all decisions in the future can be made at the village level and that grand plans for water resource management require extensive planning and funding. Based on imperfect models and scenarios of economic and population growth, we further suggest that flood frequency and intensity will increase in the Ganges, Brahmaputra and Yangtze catchments as greenhouse-gas concentrations increase. However, irrespective of the climate-change scenario chosen, the availability of fresh water in the latter half of the twenty-first century seems to be dominated by population increases that far outweigh climate-change effects. Paradoxically, fresh water availability may become more critical if there is no climate change. PMID:22042897
Matsuzawa, Yasushi; Svedlund, Sara; Aoki, Tatsuo; Guddeti, Raviteja R.; Kwon, Taek-Geun; Cilluffo, Rebecca; Widmer, R.Jay.; Nelson, Rebecca E.; Lennon, Ryan J.; Lerman, Lilach O.; Gao, Sinsia; Ganz, Peter; Gan, Li-Ming; Lerman, Amir
2015-01-01
Background Myocardial perfusion scintigraphy (MPS) is used widely to assess cardiovascular risk in patients with chest pain. The utility of carotid intima-media thickness (CIMT) and endothelial function as assessed by reactive hyperemia-peripheral arterial tonometry index (RHI) in risk stratifying patients with angina-like symptom needs to be defined. We investigated whether addition of CIMT and RHI to Framingham Cardiovascular Risk Score (FCVRS) and MPS improves comprehensive cardiovascular risk prediction in patients presenting with angina-like symptom. Methods We enrolled 343 consecutive patients with angina-like symptom suspected of having stable angina. MPS, CIMT, and RHI were performed and patients were followed for cardiovascular events for a median of 5.3 years (range 4.4-6.2). Patients were stratified by FCVRS and MPS. Results During the follow-up, 57 patients (16.6%) had cardiovascular events. Among patients without perfusion defect, low RHI was significantly associated with cardiovascular events in the intermediate and high FCVRS groups (Hazard ratio (HR) [95% confidence interval (CI)] of RHI≤2.11 was 6.99 [1.34-128] in the intermediate FCVRS group and 6.08 [1.08-114] in the high FCVRS group). Furthermore, although MPS did not predict, only RHI predicted hard cardiovascular events (cardiovascular death, myocardial infarction, and stroke) independent from FCVRS, and adding RHI to FCVRS improved net reclassification index (20.9%, 95% CI 0.8-41.1, p=0.04). Especially, RHI was significantly associated with hard cardiovascular events in the high FCVRS group (HR [95% CI] of RHI≤1.93 was 5.66 [1.54-36.4], p=0.007). Conclusions Peripheral endothelial function may improve discrimination in identifying at-risk patients for future cardiovascular events when added to FCVRS-MPS-based risk stratification. PMID:25918056
Spatial vulnerability of Australian urban populations to extreme heat events
NASA Astrophysics Data System (ADS)
Loughnan, Margaret; Tapper, Nigel; Phan, Thu; Lynch, Kellie; McInnes, Judith
2013-04-01
Extreme heat events pose a risk to the health of all individuals, especially the elderly and the chronically ill, and are associated with an increased demand for healthcare services. In order to address this problem, policy makers' need information about temperatures above which mortality and morbidity of the exposed population is likely to increase, where the vulnerable groups in the community are located, and how the risks from extreme heat events are likely to change in the future. This study identified threshold temperatures for all Australian capital cities, developed a spatial index of population vulnerability, and used climate model output to predict changes in the number of days exceeding temperature thresholds in the future, as well as changes in risk related to changes in urban density and an ageing population. The study has shown that daily maximum and minimum temperatures from the Bureau of Meteorology forecasts can be used to calculate temperature thresholds for heat alert days. The key risk factors related to adverse health outcomes were found to be areas with intense urban heat islands, areas with higher proportions of older people, and areas with ethnic communities. Maps of spatial vulnerability have been developed to provide information to assist emergency managers, healthcare professionals, and ancillary services develop heatwave preparedness plans at a local scale that target vulnerable groups and address heat-related health risks. The numbers of days exceeding current heat thresholds are predicted to increase over the next 20 to 40 years in all Australian capital cities.
Modelling volatility recurrence intervals in the Chinese commodity futures market
NASA Astrophysics Data System (ADS)
Zhou, Weijie; Wang, Zhengxin; Guo, Haiming
2016-09-01
The law of extreme event occurrence attracts much research. The volatility recurrence intervals of Chinese commodity futures market prices are studied: the results show that the probability distributions of the scaled volatility recurrence intervals have a uniform scaling curve for different thresholds q. So we can deduce the probability distribution of extreme events from normal events. The tail of a scaling curve can be well fitted by a Weibull form, which is significance-tested by KS measures. Both short-term and long-term memories are present in the recurrence intervals with different thresholds q, which denotes that the recurrence intervals can be predicted. In addition, similar to volatility, volatility recurrence intervals also have clustering features. Through Monte Carlo simulation, we artificially synthesise ARMA, GARCH-class sequences similar to the original data, and find out the reason behind the clustering. The larger the parameter d of the FIGARCH model, the stronger the clustering effect is. Finally, we use the Fractionally Integrated Autoregressive Conditional Duration model (FIACD) to analyse the recurrence interval characteristics. The results indicated that the FIACD model may provide a method to analyse volatility recurrence intervals.
Eguchi, Kazuo; Pickering, Thomas G; Schwartz, Joseph E; Hoshide, Satoshi; Ishikawa, Joji; Ishikawa, Shizukiyo; Shimada, Kazuyuki; Kario, Kazuomi
2008-11-10
It is not known whether short duration of sleep is a predictor of future cardiovascular events in patients with hypertension. To test the hypothesis that short duration of sleep is independently associated with incident cardiovascular diseases (CVD), we performed ambulatory blood pressure (BP) monitoring in 1255 subjects with hypertension (mean [SD] age, 70.4 [9.9] years) and followed them for a mean period of 50 (23) months. Short sleep duration was defined as less than 7.5 hours (20th percentile). Multivariable Cox hazard models predicting CVD events were used to estimate the adjusted hazard ratio and 95% confidence interval (CI) for short sleep duration. A riser pattern was defined when mean nighttime systolic BP exceeded daytime systolic BP. The end point was a cardiovascular event: stroke, fatal or nonfatal myocardial infarction (MI), and sudden cardiac death. In multivariable analyses, short duration of sleep (<7.5 hours) was associated with incident CVD (hazard ratio [HR], 1.68; 95% CI, 1.06-2.66; P = .03). A synergistic interaction was observed between short sleep duration and the riser pattern (P = .09). When subjects were classified according to their sleep time and a riser vs nonriser pattern, the group with shorter sleep duration plus the riser pattern had a substantially and significantly higher incidence of CVD than the group with predominant normal sleep duration plus the nonriser pattern (HR, 4.43; 95% CI, 2.09-9.39; P < .001), independent of covariates. Short duration of sleep is associated with incident CVD risk and the combination of the riser pattern and short duration of sleep that is most strongly predictive of future CVD, independent of ambulatory BP levels. Physicians should inquire about sleep duration in the risk assessment of patients with hypertension.
Eguchi, Kazuo; Pickering, Thomas G.; Schwartz, Joseph E.; Hoshide, Satoshi; Ishikawa, Joji; Ishikawa, Shizukiyo; Shimada, Kazuyuki; Kario, Kazuomi
2013-01-01
Context It is not known whether short duration of sleep is a predictor of future cardiovascular events in hypertensive patients. Objective To test the hypothesis that short duration of sleep is independently associated with incident cardiovascular diseases (CVD). Design, Setting, and Participants We performed ambulatory BP monitoring (ABPM) in 1255 subjects with hypertension (mean age: 70.4±9.9 years) and they were followed for an average of 50±23 months. Short sleep duration was defined as <7.5 hrs (20th percentile). Multivariable Cox hazard models predicting CVD events were used to estimate the adjusted hazard ratio (HR) and 95% CI for short sleep duration. A riser pattern was defined when average nighttime SBP exceeded daytime SBP. Main Outcome Measures The end point was cardiovascular events: stroke, fatal or non-fatal myocardial infarction (MI), and sudden cardiac death. Results In multivariable analyses, short duration of sleep (<7.5 hrs) was associated with incident CVD (HR=1.68; 1.06–2.66, P=.03). A synergistic interaction was observed between short sleep duration and the riser pattern (P=.089). When subjects were categorized on the basis of their sleep time and riser/non-riser patterns, the shorter sleep+riser group had a substantially and significantly higher incidence of CVD than the predominant normal sleep+non-riser group (HR=4.43;2.09–9.39, P<0.001), independent of covariates. Conclusions Short duration of sleep is associated with incident CVD risk, and the combination of riser pattern and short duration of sleep that is most strongly predictive of future CVD, independent of ambulatory BP levels. Physicians should inquire about sleep duration in the risk assessment of hypertensive patients. PMID:19001199
Kleindorfer, Dawn; Judd, Suzanne; Howard, Virginia J.; McClure, Leslie; Safford, Monika M.; Cushman, Mary; Rhodes, David; Howard, George
2011-01-01
Background and Purpose Previously in the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort, we found 18% of the stroke/TIA-free study population reported ≥ 1 stroke symptom (SS) at baseline. We sought to evaluate the additional impact of these stroke symptoms (SS) on risk for subsequent stroke. Methods REGARDS recruited 30,239 U.S. blacks and whites, aged 45+ in 2003–7, who are being followed every 6 months for events. All stroke events are physician-verified; those with prior diagnosed stroke or TIA are excluded from this analysis. At baseline, participants were asked six questions regarding stroke symptoms. Measured stroke risk factors were components of the Framingham Stroke Risk Score (FSRS). Results After excluding those with prior stroke or missing data, there were 24,412 participants in this analysis, with a median follow-up of 4.4 years. Participants were 39% black, 55% female, and had median age of 64 years. There were 381 physician-verified stroke events. The FSRS explained 72.0% of stroke risk; individual components explained between 0.2% (LVH) and 5.7% (age + race) of stroke risk. After adjustment for FSRS factors, SS were significantly related to stroke risk: for each SS reported, the risk of stroke increased by 21% per symptom. Discussion Among participants without self-reported stroke or TIA, prior SS are highly predictive of future stroke events. Compared to FSRS factors, the impact of SS on the prediction of future stroke was almost as large as the impact of smoking and hypertension, and larger than the impact of diabetes and heart disease. PMID:21921283
Kleindorfer, Dawn; Judd, Suzanne; Howard, Virginia J; McClure, Leslie; Safford, Monika M; Cushman, Mary; Rhodes, David; Howard, George
2011-11-01
Previously in the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort, we found 18% of the stroke/transient ischemic attack-free study population reported ≥1 stroke symptom at baseline. We sought to evaluate the additional impact of these stroke symptoms on risk for subsequent stroke. REGARDS recruited 30,239 US blacks and whites, aged 45+ years in 2003 to 2007 who are being followed every 6 months for events. All stroke events are physician-verified; those with prior diagnosed stroke or transient ischemic attack are excluded from this analysis. At baseline, participants were asked 6 questions regarding stroke symptoms. Measured stroke risk factors were components of the Framingham Stroke Risk Score. After excluding those with prior stroke or missing data, there were 24,412 participants in this analysis with a median follow-up of 4.4 years. Participants were 39% black, 55% female, and had median age of 64 years. There were 381 physician-verified stroke events. The Framingham Stroke Risk Score explained 72.0% of stroke risk; individual components explained between 0.2% (left ventricular hypertrophy) and 5.7% (age+race) of stroke risk. After adjustment for Framingham Stroke Risk Score factors, stroke symptoms were significantly related to stroke risk: for each stroke symptom reported, the risk of stroke increased by 21% per symptom. Among participants without self-reported stroke or transient ischemic attack, prior stroke symptoms are highly predictive of future stroke events. Compared with Framingham Stroke Risk Score factors, the impact of stroke symptom on the prediction of future stroke was almost as large as the impact of smoking and hypertension and larger than the impact of diabetes and heart disease.
Retrieval as a Fast Route to Memory Consolidation.
Antony, James W; Ferreira, Catarina S; Norman, Kenneth A; Wimber, Maria
2017-08-01
Retrieval-mediated learning is a powerful way to make memories last, but its neurocognitive mechanisms remain unclear. We propose that retrieval acts as a rapid consolidation event, supporting the creation of adaptive hippocampal-neocortical representations via the 'online' reactivation of associative information. We describe parallels between online retrieval and offline consolidation and offer testable predictions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Giesige, C.; Nava, E.
2016-12-01
In the midst of a changing climate we have seen extremes in weather events: lightning, wildfires, hurricanes, tornadoes, and earthquakes. All of these ride on an imbalance of magnetic and electrical distribution about the earth including what goes on from the atmospheric and geophysic levels. There is relevance to the important role the sun plays in developing and feeding of the extreme weather events along with the sun's role helping to create a separation of charges on earth furthering climactic extremes. Focusing attention in North America and on how the sun, atmospheric and geophysic winds come together producing lightning events, there are connections between energy distribution in the environment, lightning caused wildfires, and extreme wildfire behavior. Lightning caused wildfires and extreme fire behavior have become enhanced with the changing climate conditions. Even with strong developments in wildfire science, there remains a lack in full understanding of connections that create a lightning caused wildfire event and lack of monitoring advancements in predicting extreme fire behavior. Several connections have been made in our research allowing us to connect multiple facets of the environment in regards to electric and magnetic influences on wildfires. Among them include: irradiance, winds, pressure systems, humidity, and topology. The connections can be made to develop better detection systems of wildfires, establish with more accuracy areas of highest risk for wildfire and extreme wildfire behavior, and prediction of wildfire behavior. A platform found within the environment can also lead to further understanding and monitoring of other extreme weather events in the future.
Ezenwa, Miriam O.; Molokie, Robert E.; Wang, Zaijie Jim; Yao, Yingwei; Suarez, Marie L.; Angulo, Veronica; Wilkie, Diana J.
2014-01-01
Context Patient demographic and clinical factors have known associations with acute health care utilization (AHCU) among patients with sickle cell disease (SCD), but it is unknown if pain measured predominantly in an outpatient setting is a predictor of future AHCU in patients with SCD. Objectives To determine whether multidimensional pain scores obtained predominantly in an outpatient setting predicted subsequent one-year AHCU by 137 adults with SCD and whether the pain measured at a second visit also predicted AHCU. Methods Pain data included the Composite Pain Index (CPI), a single score representative of a multidimensional pain experience (number of pain sites, intensity, quality, and pattern). Based on the distribution of AHCU events, we divided patients into three groups: (1) zero events (Zero), (2) 1–3 events (Low), or (3) 4–23 events (High). Results The initial CPI scores differed significantly by the three groups (F(2,134)=7.38, P=0.001). Post hoc comparisons showed that the Zero group had lower CPI scores than both the Low group (P<0.01) and the High group (P<0.001). In multiviariate, overdispersed Poisson regression analyses, age, and CPI scores (at both measurement times) were statistically significant predictors of utilization events. Pain intensity scores at both measurement times were significant predictors of utilization, but other pain scores (number of pain sites, quality, and pattern) were not. Conclusion Findings support use of outpatient CPI scores or pain intensity and age to identify at-risk young adults with SCD who are likely to benefit from improved outpatient pain management plans. PMID:24636960
Storm loads of culturable and molecular fecal indicators in an inland urban stream.
Liao, Hehuan; Krometis, Leigh-Anne H; Cully Hession, W; Benitez, Romina; Sawyer, Richard; Schaberg, Erin; von Wagoner, Emily; Badgley, Brian D
2015-10-15
Elevated concentrations of fecal indicator bacteria in receiving waters during wet-weather flows are a considerable public health concern that is likely to be exacerbated by future climate change and urbanization. Knowledge of factors driving the fate and transport of fecal indicator bacteria in stormwater is limited, and even less is known about molecular fecal indicators, which may eventually supplant traditional culturable indicators. In this study, concentrations and loading rates of both culturable and molecular fecal indicators were quantified throughout six storm events in an instrumented inland urban stream. While both concentrations and loading rates of each fecal indicator increased rapidly during the rising limb of the storm hydrographs, it is the loading rates rather than instantaneous concentrations that provide a better estimate of transport through the stream during the entire storm. Concentrations of general fecal indicators (both culturable and molecular) correlated most highly with each other during storm events but not with the human-associated HF183 Bacteroides marker. Event loads of general fecal indicators most strongly correlated with total runoff volume, maximum discharge, and maximum turbidity, while event loads of HF183 most strongly correlated with the time to peak flow in a hydrograph. These observations suggest that collection of multiple samples during a storm event is critical for accurate predictions of fecal indicator loading rates and total loads during wet-weather flows, which are required for effective watershed management. In addition, existing predictive models based on general fecal indicators may not be sufficient to predict source-specific genetic markers of fecal contamination. Copyright © 2015 Elsevier B.V. All rights reserved.
Probability Forecasting Using Monte Carlo Simulation
NASA Astrophysics Data System (ADS)
Duncan, M.; Frisbee, J.; Wysack, J.
2014-09-01
Space Situational Awareness (SSA) is defined as the knowledge and characterization of all aspects of space. SSA is now a fundamental and critical component of space operations. Increased dependence on our space assets has in turn lead to a greater need for accurate, near real-time knowledge of all space activities. With the growth of the orbital debris population, satellite operators are performing collision avoidance maneuvers more frequently. Frequent maneuver execution expends fuel and reduces the operational lifetime of the spacecraft. Thus the need for new, more sophisticated collision threat characterization methods must be implemented. The collision probability metric is used operationally to quantify the collision risk. The collision probability is typically calculated days into the future, so that high risk and potential high risk conjunction events are identified early enough to develop an appropriate course of action. As the time horizon to the conjunction event is reduced, the collision probability changes. A significant change in the collision probability will change the satellite mission stakeholder's course of action. So constructing a method for estimating how the collision probability will evolve improves operations by providing satellite operators with a new piece of information, namely an estimate or 'forecast' of how the risk will change as time to the event is reduced. Collision probability forecasting is a predictive process where the future risk of a conjunction event is estimated. The method utilizes a Monte Carlo simulation that produces a likelihood distribution for a given collision threshold. Using known state and state uncertainty information, the simulation generates a set possible trajectories for a given space object pair. Each new trajectory produces a unique event geometry at the time of close approach. Given state uncertainty information for both objects, a collision probability value can be computed for every trail. This yields a collision probability distribution given known, predicted uncertainty. This paper presents the details of the collision probability forecasting method. We examine various conjunction event scenarios and numerically demonstrate the utility of this approach in typical event scenarios. We explore the utility of a probability-based track scenario simulation that models expected tracking data frequency as the tasking levels are increased. The resulting orbital uncertainty is subsequently used in the forecasting algorithm.
Know your limits? Climate extremes impact the range of Scots pine in unexpected places
Julio Camarero, J.; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel
2015-01-01
Background and Aims Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin (‘rear edge’) of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species’ European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). Methods A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. Key Results The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. Conclusions The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern ‘rear edge’, in order to avoid biased predictions based solely on warmer climatic scenarios. PMID:26292992
A comparison of methods to estimate future sub-daily design rainfall
NASA Astrophysics Data System (ADS)
Li, J.; Johnson, F.; Evans, J.; Sharma, A.
2017-12-01
Warmer temperatures are expected to increase extreme short-duration rainfall due to the increased moisture-holding capacity of the atmosphere. While attention has been paid to the impacts of climate change on future design rainfalls at daily or longer time scales, the potential changes in short duration design rainfalls have been often overlooked due to the limited availability of sub-daily projections and observations. This study uses a high-resolution regional climate model (RCM) to predict the changes in sub-daily design rainfalls for the Greater Sydney region in Australia. Sixteen methods for predicting changes to sub-daily future extremes are assessed based on different options for bias correction, disaggregation and frequency analysis. A Monte Carlo cross-validation procedure is employed to evaluate the skill of each method in estimating the design rainfall for the current climate. It is found that bias correction significantly improves the accuracy of the design rainfall estimated for the current climate. For 1 h events, bias correcting the hourly annual maximum rainfall simulated by the RCM produces design rainfall closest to observations, whereas for multi-hour events, disaggregating the daily rainfall total is recommended. This suggests that the RCM fails to simulate the observed multi-duration rainfall persistence, which is a common issue for most climate models. Despite the significant differences in the estimated design rainfalls between different methods, all methods lead to an increase in design rainfalls across the majority of the study region.
Are the Stress Drops of Small Earthquakes Good Predictors of the Stress Drops of Larger Earthquakes?
NASA Astrophysics Data System (ADS)
Hardebeck, J.
2017-12-01
Uncertainty in PSHA could be reduced through better estimates of stress drop for possible future large earthquakes. Studies of small earthquakes find spatial variability in stress drop; if large earthquakes have similar spatial patterns, their stress drops may be better predicted using the stress drops of small local events. This regionalization implies the variance with respect to the local mean stress drop may be smaller than the variance with respect to the global mean. I test this idea using the Shearer et al. (2006) stress drop catalog for M1.5-3.1 events in southern California. I apply quality control (Hauksson, 2015) and remove near-field aftershocks (Wooddell & Abrahamson, 2014). The standard deviation of the distribution of the log10 stress drop is reduced from 0.45 (factor of 3) to 0.31 (factor of 2) by normalizing each event's stress drop by the local mean. I explore whether a similar variance reduction is possible when using the Shearer catalog to predict stress drops of larger southern California events. For catalogs of moderate-sized events (e.g. Kanamori, 1993; Mayeda & Walter, 1996; Boyd, 2017), normalizing by the Shearer catalog's local mean stress drop does not reduce the standard deviation compared to the unmodified stress drops. I compile stress drops of larger events from the literature, and identify 15 M5.5-7.5 earthquakes with at least three estimates. Because of the wide range of stress drop estimates for each event, and the different techniques and assumptions, it is difficult to assign a single stress drop value to each event. Instead, I compare the distributions of stress drop estimates for pairs of events, and test whether the means of the distributions are statistically significantly different. The events divide into 3 categories: low, medium, and high stress drop, with significant differences in mean stress drop between events in the low and the high stress drop categories. I test whether the spatial patterns of the Shearer catalog stress drops can predict the categories of the 15 events. I find that they cannot, rather the large event stress drops are uncorrelated with the local mean stress drop from the Shearer catalog. These results imply that the regionalization of stress drops of small events does not extend to the larger events, at least with current standard techniques of stress drop estimation.
Event construal and temporal distance in natural language.
Bhatia, Sudeep; Walasek, Lukasz
2016-07-01
Construal level theory proposes that events that are temporally proximate are represented more concretely than events that are temporally distant. We tested this prediction using two large natural language text corpora. In study 1 we examined posts on Twitter that referenced the future, and found that tweets mentioning temporally proximate dates used more concrete words than those mentioning distant dates. In study 2 we obtained all New York Times articles that referenced U.S. presidential elections between 1987 and 2007. We found that the concreteness of the words in these articles increased with the temporal proximity to their corresponding election. Additionally the reduction in concreteness after the election was much greater than the increase in concreteness leading up to the election, though both changes in concreteness were well described by an exponential function. We replicated this finding with New York Times articles referencing US public holidays. Overall, our results provide strong support for the predictions of construal level theory, and additionally illustrate how large natural language datasets can be used to inform psychological theory. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Mull, Hillary J; Borzecki, Ann M; Loveland, Susan; Hickson, Kathleen; Chen, Qi; MacDonald, Sally; Shin, Marlena H; Cevasco, Marisa; Itani, Kamal M F; Rosen, Amy K
2014-04-01
The Patient Safety Indicators (PSIs) use administrative data to screen for select adverse events (AEs). In this study, VA Surgical Quality Improvement Program (VASQIP) chart review data were used as the gold standard to measure the criterion validity of 5 surgical PSIs. Independent chart review was also used to determine reasons for PSI errors. The sensitivity, specificity, and positive predictive value of PSI software version 4.1a were calculated among Veterans Health Administration hospitalizations (2003-2007) reviewed by VASQIP (n = 268,771). Nurses re-reviewed a sample of hospitalizations for which PSI and VASQIP AE detection disagreed. Sensitivities ranged from 31% to 68%, specificities from 99.1% to 99.8%, and positive predictive values from 31% to 72%. Reviewers found that coding errors accounted for some PSI-VASQIP disagreement; some disagreement was also the result of differences in AE definitions. These results suggest that the PSIs have moderate criterion validity; however, some surgical PSIs detect different AEs than VASQIP. Future research should explore using both methods to evaluate surgical quality. Published by Elsevier Inc.
Variation of rain intensity and drop size distribution with General Weather Patterns (GWL)
NASA Astrophysics Data System (ADS)
Ghada, Wael; Buras, Allan; Lüpke, Marvin; Menzel, Annette
2017-04-01
Short-duration rainfall extremes may cause flash floods in certain catchments (e.g. cities or fast responding watersheds) and pose a great risk to affected communities. In order to predict their occurrence under future climate change scenarios, their link to atmospheric circulation patterns needs to be well understood. We used a comprehensive data set of meteorological data (temperature, rain gauge precipitation) and precipitation spectra measured by a disdrometer (OTT PARSIVEL) between October 2008 and June 2010 at Freising, southern Germany. For the 21 months of the study period, we integrated the disdrometer spectra over intervals of 10 minutes to correspond to the temporal resolution of the weather station data and discarded measurements with air temperatures below 0°C. Daily General Weather Patterns ("Großwetterlagen", GWL) were downloaded from the website of the German Meteorological Service. Out of the 29 GWL, 14 were included in the analysis for which we had at least 12 rain events during our study period. For the definition of a rain event, we tested different lengths of minimum inter-event times and chose 30 min as a good compromise between number and length of resulting events; rain events started when more than 0.001 mm/h (sensitivity of the disdrometer) were recorded. The length of the rain events ranged between 10 min and 28 h (median 130 min) with the maximum rain intensity recorded being 134 mm/h on 24-07-2009. Seasonal differences were identified for rain event average intensities and maximum intensities per event. The influence of GWL on rain properties such as rain intensity and drop size distribution per time step and per event was investigated based on the above mentioned rain event definition. Pairwise Wilcoxon-tests revealed that higher rain intensity and larger drops were associated with the GWL "Low over the British Isles" (TB), whereas low rain intensities and less drops per interval were associated with the GWL "High over Central Europe" (HM). "Trough over Central Europe" (TRM) was linked to smaller drops and "High Scandinavia-Iceland, Trough C. Europe" (HNFZ) had fewer drops per time step when compared to other GWL types. We also investigated the intra-event behavior regarding fluctuations in rain intensity, rain drop counts, and drop size distribution with time. When combined with predictions of circulation patterns, our analysis provides a detailed insight into the characteristics of rain events under different future climate scenarios, but definitively an extended measurement period and more measurement locations are needed for validation.
Furuhashi, Tatsuhiko; Moroi, Masao; Joki, Nobuhiko; Hase, Hiroki; Masai, Hirofumi; Kunimasa, Taeko; Fukuda, Hiroshi; Sugi, Kaoru
2013-02-01
Pretest probability of coronary artery disease (CAD) facilitates diagnosis and risk stratification of CAD. Stress myocardial perfusion imaging (MPI) and chronic kidney disease (CKD) are established major predictors of cardiovascular events. However, the role of CKD to assess pretest probability of CAD has been unclear. This study evaluates the role of CKD to assess the predictive value of cardiovascular events under consideration of pretest probability in patients who underwent stress MPI. Patients with no history of CAD underwent stress MPI (n = 310; male = 166; age = 70; CKD = 111; low/intermediate/high pretest probability = 17/194/99) and were followed for 24 months. Cardiovascular events included cardiac death and nonfatal acute coronary syndrome. Cardiovascular events occurred in 15 of the 310 patients (4.8 %), but not in those with low pretest probability which included 2 CKD patients. In patients with intermediate to high pretest probability (n = 293), multivariate Cox regression analysis identified only CKD [hazard ratio (HR) = 4.88; P = 0.022) and summed stress score of stress MPI (HR = 1.50; P < 0.001) as independent and significant predictors of cardiovascular events. Cardiovascular events were not observed in patients with low pretest probability. In patients with intermediate to high pretest probability, CKD and stress MPI are independent predictors of cardiovascular events considering the pretest probability of CAD in patients with no history of CAD. In assessing pretest probability of CAD, CKD might be an important factor for assessing future cardiovascular prognosis.
Hydrological extremes and their agricultural impacts under a changing climate in Texas
NASA Astrophysics Data System (ADS)
Lee, K.; Gao, H.; Huang, M.; Sheffield, J.
2015-12-01
With the changing climate, hydrologic extremes (such as floods, droughts, and heat waves) are becoming more frequent and intensified. Such changes in extreme events are expected to affect agricultural production and food supplies. This study focuses on the State of Texas, which has the largest farm area and the highest value of livestock production in the U.S. The objectives are two-fold: First, to investigate the climatic impact on the occurrence of future hydrologic extreme events; and second, to evaluate the effects of the future extremes on agricultural production. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over Texas river basins during the historical period, is employed for this study. The VIC model is forced by the statistically downscaled climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four different scenarios in terms of Representative Concentration Pathway (RCP) (i.e. 2.6, 4.5, 6.0 and 8.5 w/m2). To carry out the analysis, VIC outputs forced by the CMIP5 model scenarios over three 30-year periods (1970-1999, 2020-2049 and 2070-2099) are first evaluated to identify how the frequency and the extent of the extreme events will be altered in the ten Texas major river basins. The results suggest that a significant increase in the number of extreme events will occur starting in the first half of the 21st century in Texas. Then, the effects of the predicted hydrologic extreme events on the irrigation water demand are investigated. It is found that future changes in water demand vary by crop type and location, with an east-to-west gradient. The results are expected to contribute to future water management and planning in Texas.
Clinical prediction and the idea of a population.
Armstrong, David
2017-04-01
Using an analysis of the British Medical Journal over the past 170 years, this article describes how changes in the idea of a population have informed new technologies of medical prediction. These approaches have largely replaced older ideas of clinical prognosis based on understanding the natural histories of the underlying pathologies. The 19 th -century idea of a population, which provided a denominator for medical events such as births and deaths, was constrained in its predictive power by its method of enumerating individual bodies. During the 20 th century, populations were increasingly constructed through inferential techniques based on patient groups and samples seen to possess variable characteristics. The emergence of these new virtual populations created the conditions for the emergence of predictive algorithms that are used to foretell our medical futures.
A pan-African medium-range ensemble flood forecast system
NASA Astrophysics Data System (ADS)
Thiemig, Vera; Bisselink, Bernard; Pappenberger, Florian; Thielen, Jutta
2015-04-01
The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions of the ECMWF and critical hydrological thresholds. In this study the predictive capability is investigated, to estimate AFFS' potential as an operational flood forecasting system for the whole of Africa. This is done in a hindcast mode, by reproducing pan-African hydrological predictions for the whole year of 2003 where important flood events were observed. Results were analysed in two ways, each with its individual objective. The first part of the analysis is of paramount importance for the assessment of AFFS as a flood forecasting system, as it focuses on the detection and prediction of flood events. Here, results were verified with reports of various flood archives such as Dartmouth Flood Observatory, the Emergency Event Database, the NASA Earth Observatory and Reliefweb. The number of hits, false alerts and missed alerts as well as the Probability of Detection, False Alarm Rate and Critical Success Index were determined for various conditions (different regions, flood durations, average amount of annual precipitations, size of affected areas and mean annual discharge). The second part of the analysis complements the first by giving a basic insight into the prediction skill of the general streamflow. For this, hydrological predictions were compared against observations at 36 key locations across Africa and the Continuous Rank Probability Skill Score (CRPSS), the limit of predictability and reliability were calculated. Results showed that AFFS detected around 70 % of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (> 1 week) and large affected areas (> 10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. Also the forecasts showed on average a good reliability, and the CRPSS helped identifying regions to focus on for future improvements. The case study for the flood event in March 2003 in the Sabi Basin (Zimbabwe and Mozambique) illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a good prospective as an operational system, as it has demonstrated its significant potential to contribute to the reduction of flood-related losses in Africa by providing national and international aid organizations timely with medium-range flood forecast information. However, issues related to the practical implication will still need to be investigated.
Beating the news using social media: the case study of American Idol
NASA Astrophysics Data System (ADS)
Ciulla, Fabio; Mocanu, Delia; Baronchelli, Andrea; Goncalves, Bruno; Perra, Nicola; Vespignani, Alessandro
2013-03-01
We present a contribution to the debate on the predictability of social events using big data analytics. We focus on the elimination of contestants in the American Idol TV shows as an example of a well defined electoral phenomenon to assess the predictive power of twitter signals. We provide evidence that Twitter activity during the time span defined by the TV show airing and the voting period following it allows the anticipation of the voting outcome. Twitter data have been analyzed to attempt the winner prediction ahead of the airing of the official result. We also show that the fraction of Tweets that contain geolocation information allows us to map the fanbase of each contestant, both within the US and abroad, showing that strong regional polarizations occur. The geolocalized data are crucial for the correct prediction of the final outcome of the show, pointing out the importance of considering information beyond the aggregated twitter signal. Although American Idol voting is just a minimal and simplified version of complex societal phenomena, this work shows that the volume of information available in online systems permits the real time gathering of quantitative indicators that may be able to anticipate the future unfolding of opinion formation events.
The predicted influence of climate change on lesser prairie-chicken reproductive parameters
Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, D.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.
2013-01-01
The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Nina events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.
The predicted influence of climate change on lesser prairie-chicken reproductive parameters.
Grisham, Blake A; Boal, Clint W; Haukos, David A; Davis, Dawn M; Boydston, Kathy K; Dixon, Charles; Heck, Willard R
2013-01-01
The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Niña events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.
Kaplan, Brent A; Reed, Derek D; Jarmolowicz, David P
2016-03-01
Many everyday choices are associated with both delayed and probabilistic outcomes. The temporal attention hypothesis suggests that individuals' decision making can be improved by focusing attention on temporally distal events and implies that environmental manipulations that bring temporally distal outcomes into focus may alter an individual's degree of discounting. One such manipulation, episodic future thinking, has shown to lower discount rates; however, several questions remain about the applicability of episodic future thinking to domains other than delay discounting. The present experiments examine the effects of a modified episodic-future-thinking procedure in which participants viewed age-progressed computer-generated images of themselves and answered questions related to their future, on probability discounting in the context of both a delayed health gain and loss. Results indicate that modified episodic future thinking effectively altered individuals' degree of discounting in the predicted directions and demonstrate the applicability of episodic future thinking to decision making of socially significant outcomes. © 2015 Society for the Experimental Analysis of Behavior.
Selected methods for quantification of community exposure to aircraft noise
NASA Technical Reports Server (NTRS)
Edge, P. M., Jr.; Cawthorn, J. M.
1976-01-01
A review of the state-of-the-art for the quantification of community exposure to aircraft noise is presented. Physical aspects, people response considerations, and practicalities of useful application of scales of measure are included. Historical background up through the current technology is briefly presented. The developments of both single-event and multiple-event scales are covered. Selective choice is made of scales currently in the forefront of interest and recommended methodology is presented for use in computer programing to translate aircraft noise data into predictions of community noise exposure. Brief consideration is given to future programing developments and to supportive research needs.
Li, Xiaoming; Barnett, Douglas; Fang, Xiaoyi; Lin, Xiuyun; Zhao, Guoxiang; Zhao, Junfeng; Hong, Yan; Zhang, Liying; Naar-King, Sylvie; Stanton, Bonita
2009-09-01
Cross-sectional data were gathered from 1,625 children (M age = 12.85, SD = 2.21) which included 755 AIDS orphans, 466 vulnerable children, and 404 comparison children. Participants completed self-report measures of exposure to traumatic events, and psychosocial adjustment including behavior problems, depression, self-esteem, and future orientation. AIDS orphans and vulnerable children reported experiencing a higher total occurrence, density, duration, initial impact and lasting impact of traumatic events compared to comparison children. Scores reflecting adjustment were lower among orphans and vulnerable children than among comparison children. Both orphan status and traumatic events contributed unique variance in the expected direction to the prediction of psychosocial adjustment. The data in the current study suggested that children affected by HIV/AIDS in China are exposed to more trauma and suffer more adjustment problems than children who do not experience HIV/AIDS in their families.
Predictions of barrier island berm evolution in a time-varying storm climatology
Plant, Nathaniel G.; Flocks, James; Stockdon, Hilary F.; Long, Joseph W.; Guy, Kristy K.; Thompson, David M.; Cormier, Jamie M.; Smith, Christopher G.; Miselis, Jennifer L.; Dalyander, P. Soupy
2014-01-01
Low-lying barrier islands are ubiquitous features of the world's coastlines, and the processes responsible for their formation, maintenance, and destruction are related to the evolution of smaller, superimposed features including sand dunes, beach berms, and sandbars. The barrier island and its superimposed features interact with oceanographic forces (e.g., overwash) and exchange sediment with each other and other parts of the barrier island system. These interactions are modulated by changes in storminess. An opportunity to study these interactions resulted from the placement and subsequent evolution of a 2 m high sand berm constructed along the northern Chandeleur Islands, LA. We show that observed berm length evolution is well predicted by a model that was fit to the observations by estimating two parameters describing the rate of berm length change. The model evaluates the probability and duration of berm overwash to predict episodic berm erosion. A constant berm length change rate is also predicted that persists even when there is no overwash. The analysis is extended to a 16 year time series that includes both intraannual and interannual variability of overwash events. This analysis predicts that as many as 10 or as few as 1 day of overwash conditions would be expected each year. And an increase in berm elevation from 2 m to 3.5 m above mean sea level would reduce the expected frequency of overwash events from 4 to just 0.5 event-days per year. This approach can be applied to understanding barrier island and berm evolution at other locations using past and future storm climatologies.
Predictions of barrier island berm evolution in a time-varying storm climatology
NASA Astrophysics Data System (ADS)
Plant, Nathaniel G.; Flocks, James; Stockdon, Hilary F.; Long, Joseph W.; Guy, Kristy; Thompson, David M.; Cormier, Jamie M.; Smith, Christopher G.; Miselis, Jennifer L.; Dalyander, P. Soupy
2014-02-01
Low-lying barrier islands are ubiquitous features of the world's coastlines, and the processes responsible for their formation, maintenance, and destruction are related to the evolution of smaller, superimposed features including sand dunes, beach berms, and sandbars. The barrier island and its superimposed features interact with oceanographic forces (e.g., overwash) and exchange sediment with each other and other parts of the barrier island system. These interactions are modulated by changes in storminess. An opportunity to study these interactions resulted from the placement and subsequent evolution of a 2 m high sand berm constructed along the northern Chandeleur Islands, LA. We show that observed berm length evolution is well predicted by a model that was fit to the observations by estimating two parameters describing the rate of berm length change. The model evaluates the probability and duration of berm overwash to predict episodic berm erosion. A constant berm length change rate is also predicted that persists even when there is no overwash. The analysis is extended to a 16 year time series that includes both intraannual and interannual variability of overwash events. This analysis predicts that as many as 10 or as few as 1 day of overwash conditions would be expected each year. And an increase in berm elevation from 2 m to 3.5 m above mean sea level would reduce the expected frequency of overwash events from 4 to just 0.5 event-days per year. This approach can be applied to understanding barrier island and berm evolution at other locations using past and future storm climatologies.
NASA Technical Reports Server (NTRS)
Finger, Herbert; Weeks, Bill
1985-01-01
This presentation discusses instrumentation that will be used for a specific event, which we hope will carry on to future events within the Space Shuttle program. The experiment is the Autogenic Feedback Training Experiment (AFTE) scheduled for Spacelab 3, currently scheduled to be launched in November, 1984. The objectives of the AFTE are to determine the effectiveness of autogenic feedback in preventing or reducing space adaptation syndrome (SAS), to monitor and record in-flight data from the crew, to determine if prediction criteria for SAS can be established, and, finally, to develop an ambulatory instrument package to mount the crew throughout the mission. The purpose of the Ambulatory Feedback System (AFS) is to record the responses of the subject during a provocative event in space and provide a real-time feedback display to reinforce the training.
Myers, Risa B; Lazaridis, Christos; Jermaine, Christopher M; Robertson, Claudia S; Rusin, Craig G
2016-09-01
To develop computer algorithms that can recognize physiologic patterns in traumatic brain injury patients that occur in advance of intracranial pressure and partial brain tissue oxygenation crises. The automated early detection of crisis precursors can provide clinicians with time to intervene in order to prevent or mitigate secondary brain injury. A retrospective study was conducted from prospectively collected physiologic data. intracranial pressure, and partial brain tissue oxygenation crisis events were defined as intracranial pressure of greater than or equal to 20 mm Hg lasting at least 15 minutes and partial brain tissue oxygenation value of less than 10 mm Hg for at least 10 minutes, respectively. The physiologic data preceding each crisis event were used to identify precursors associated with crisis onset. Multivariate classification models were applied to recorded data in 30-minute epochs of time to predict crises between 15 and 360 minutes in the future. The neurosurgical unit of Ben Taub Hospital (Houston, TX). Our cohort consisted of 817 subjects with severe traumatic brain injury. Our algorithm can predict the onset of intracranial pressure crises with 30-minute advance warning with an area under the receiver operating characteristic curve of 0.86 using only intracranial pressure measurements and time since last crisis. An analogous algorithm can predict the start of partial brain tissue oxygenation crises with 30-minute advanced warning with an area under the receiver operating characteristic curve of 0.91. Our algorithms provide accurate and timely predictions of intracranial hypertension and tissue hypoxia crises in patients with severe traumatic brain injury. Almost all of the information needed to predict the onset of these events is contained within the signal of interest and the time since last crisis.
Mutational jackpot events generate effective frequency-dependent selection in adapting populations
NASA Astrophysics Data System (ADS)
Hallatschek, Oskar
The site-frequency spectrum is one the most easily measurable quantities that characterize the genetic diversity of a population. While most neutral models predict that site frequency spectra should decay with increasing frequency, a high-frequency uptick has been reported in many populations. Anomalies in the high-frequency tail are particularly unsettling because the highest frequencies can be measured with greatest accuracy. Here, we show that an uptick in the spectrum of neutral mutations generally arises when mutant frequencies are dominated by rare jackpot events, mutational events with large descendant numbers. This leads to an effective pattern of frequency-dependent selection (or unstable internal equilibrium at one half frequency) that causes an accumulation of high-frequency polymorphic sites. We reproduce the known uptick occurring for recurrent hitchhiking (genetic draft) as well as rapid adaptation, and (in the future) generalize the shape of the high-frequency tail to other scenarios that are dominated by jackpot events, such as frequent range expansions. We also tackle (in the future) the inverse approach to use the high-frequency uptick for learning about the tail of the offspring number distribution. Positively selected alleles need to surpass, typically, an u NSF Career Award (PoLS), NIH NIGMS R01, Simons Foundation.
Pos, Karin; Boyette, Lindy Lou; Meijer, Carin J; Koeter, Maarten; Krabbendam, Lydia; de Haan, Lieuwe; For Group
2016-11-01
Recent life events are associated with transition to and outcome in psychosis. Childhood trauma and personality characteristics play a role in proneness to adult life events. However, little is known about the relative contribution and interrelatedness of these characteristics in psychotic disorders. Therefore, we investigated whether Five-Factor Model (FFM) personality traits and childhood trauma (abuse and neglect) predict adult life events, and whether the effect of childhood trauma on life events is mediated by personality traits. One hundred and sixty-three patients with psychotic disorders were assessed at baseline on history of childhood maltreatment and FFM personality traits, and on recent life events at 3-year follow-up. Childhood abuse is associated with negative life events, and part of the effect of childhood abuse on negative life events is mediated by openness to experience. Openness to experience and extraversion are associated with more positive and negative life events. Childhood neglect and lower extraversion are related to experiencing less positive events. The association between childhood trauma and recent life events is partly mediated by personality. Future research could focus on mechanisms leading to positive life events, as positive life events may buffer against development of mental health problems.
Bittencourt, Marcio S; Hulten, Edward A; Ghoshhajra, Brian; Abbara, Suhny; Murthy, Venkatesh L; Divakaran, Sanjay; Nasir, Khurram; Gowdak, Luis Henrique W; Riella, Leonardo V; Chiumiento, Marco; Hoffmann, Udo; Di Carli, Marcelo F; Blankstein, Ron
2015-07-01
It is unknown whether mild chronic kidney disease (CKD) is associated with adverse cardiovascular (CV) prognosis after accounting for coronary artery disease (CAD). Here we evaluated the interplay between CKD and CAD in predicting CV death or myocardial infarction (MI) and all-cause death. We included 1541 consecutive patients in the Partners registry (mean age 55 years, 43% female) over 18 years old with no known prior CAD who underwent coronary computed tomography angiography (CCTA). The results of CCTA were categorized as normal, nonobstructive (under half), or obstructive (half and over). Overall, 653 of the patients had no CAD, 583 had nonobstructive CAD, and 305 had obstructive CAD, while 1299 had eGFR over 60 ml/min per 1.73 m(2) and 242 had an eGFR under this value. The presence and severity of CAD was significantly associated with an increased rate of CV death or MI and all-cause death, even after adjustment for age, gender, symptoms, and risk factors. Similarly, reduced eGFR was significantly associated with CV death or MI and all-cause death after similar adjustment. The addition of reduced GFR to a model which included both clinical variables and CCTA findings resulted in significant improvement in the prediction of CV death or MI and all-cause death. Thus, among individuals referred for CCTA to evaluate CAD, renal dysfunction is associated with an increased rate of CV events, mainly driven by an increase in the rate of noncoronary CV events. In this group of patients, both eGFR and the presence and severity of CAD together improve the prediction of future CV events and death.
Quantifying the risk posed by potential Earth impacts
NASA Technical Reports Server (NTRS)
Chesley, S. R.; Chodas, P. W.; Harris, A. W.; Milani, A.; Valsecchi, G. B.; Yeomans, D. K.
2001-01-01
Predictions of future potential Earth impacts by near-Earth objects (NEOs) have become commonplace in recent years, and the rate of these detections is likely to accelerate as asteroid survey efforts continue to mature. In this paper we describe the metrics introduced, and we give numerous examples of their application. This enables us to establish in rough terms the levels at which events become interesting to various parties.
Induced Insecurity: Understanding the Potential Pitfalls in Developing Theater Campaign Plans
2015-06-11
effective partnerships that meet outlined in higher- level strategic guidance . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. UMITATION OF... effective partnerships that meet the desired end states outlined in higher-level strategic guidance. DEDICATION To the millions of men and women who...and draw conclusions, it does not always prove to be an effective means of predicting the outcome of current or future events. In addition, the
ERIC Educational Resources Information Center
Lagattuta, Kristin Hansen; Sayfan, Liat
2013-01-01
Four- to 10-year-olds and adults (N = 265) responded to eight scenarios presented on an eye tracker. Each trial involved a character who encounters a perpetrator who had previously enacted positive (P), negative (N), or both types of actions toward him or her in varying sequences (NN, PP, PN, and NP). Participants predicted the character's…
Trentacosta, Christopher J; McLear, Caitlin M; Ziadni, Maisa S; Lumley, Mark A; Arfken, Cynthia L
2016-01-01
This study examined mental health problems among children of Iraqi refugees, most of whom were Christian. Exposure to potentially traumatic events was hypothesized to predict more symptoms of depression and traumatic stress. Moreover, youth reports of supportive relationships with parents and positive feelings about school were examined in relation to mental health problems. These promotive factors were expected to mitigate the hypothesized association between traumatic event exposure and mental health problems. Participants were 211 youth recruited from agencies and programs serving Iraqi refugees in a large metropolitan area in the United States. The hypotheses were partially supported. Youth who reported experiencing more potentially traumatic events endorsed more traumatic stress and depression symptoms. After accounting for exposure to potentially traumatic events and other covariates, youth who reported more positive feelings about school endorsed fewer symptoms of traumatic stress, and youth who reported more supportive relationships with parents endorsed fewer symptoms of depression. In addition, there was an interaction between potentially traumatic events and relationships with parents when predicting depression symptoms. Youth endorsed higher levels of depression symptoms when they reported less supportive relationships, regardless of the amount of traumatic event exposure, whereas youth endorsed lower levels of depression symptoms when they reported more supportive relationships with parents, but only at low levels of traumatic event exposure. Otherwise, the main effects were not qualified by interactions between potentially traumatic event exposure and the promotive factors. The findings from this study have implications for future research, policy, and practice with children of refugees. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Black hole event horizons — Teleology and predictivity
NASA Astrophysics Data System (ADS)
Bhattacharya, Swastik; Shankaranarayanan, S.
2017-11-01
General Relativity predicts the existence of black holes. Access to the complete spacetime manifold is required to describe the black hole. This feature necessitates that black hole dynamics is specified by future or teleological boundary condition. Here, we demonstrate that the statistical mechanical description of black holes, the raison d’être behind the existence of black hole thermodynamics, requires teleological boundary condition. Within the fluid-gravity paradigm — Einstein’s equations when projected on spacetime horizons resemble Navier-Stokes equation of a fluid — we show that the specific heat and the coefficient of bulk viscosity of the horizon fluid are negative only if the teleological boundary condition is taken into account. We argue that in a quantum theory of gravity, the future boundary condition plays a crucial role. We briefly discuss the possible implications of this at late stages of black hole evaporation.
Niles, Justin K; Webber, Mayris P; Liu, Xiaoxue; Zeig-Owens, Rachel; Hall, Charles B; Cohen, Hillel W; Glaser, Michelle S; Weakley, Jessica; Schwartz, Theresa M; Weiden, Michael D; Nolan, Anna; Aldrich, Thomas K; Glass, Lara; Kelly, Kerry J; Prezant, David J
2014-08-01
We investigated early post 9/11 factors that could predict rhinosinusitis healthcare utilization costs up to 11 years later in 8,079 World Trade Center-exposed rescue/recovery workers. We used bivariate and multivariate analytic techniques to investigate utilization outcomes; we also used a pyramid framework to describe rhinosinusitis healthcare groups at early (by 9/11/2005) and late (by 9/11/2012) time points. Multivariate models showed that pre-9/11/2005 chronic rhinosinusitis diagnoses and nasal symptoms predicted final year healthcare utilization outcomes more than a decade after WTC exposure. The relative proportion of workers on each pyramid level changed significantly during the study period. Diagnoses of chronic rhinosinusitis within 4 years of a major inhalation event only partially explain future healthcare utilization. Exposure intensity, early symptoms and other factors must also be considered when anticipating future healthcare needs. © 2014 Wiley Periodicals, Inc.
Niles, Justin K.; Webber, Mayris P.; Liu, Xiaoxue; Zeig-Owens, Rachel; Hall, Charles B.; Cohen, Hillel W.; Glaser, Michelle S.; Weakley, Jessica; Schwartz, Theresa M.; Weiden, Michael D.; Nolan, Anna; Aldrich, Thomas K.; Glass, Lara; Kelly, Kerry J.; Prezant, David J.
2015-01-01
Background We investigated early post 9/11 factors that could predict rhinosinusitis healthcare utilization costs up to 11 years later in 8,079 World Trade Center-exposed rescue/recovery workers. Methods We used bivariate and multivariate analytic techniques to investigate utilization outcomes; we also used a pyramid framework to describe rhinosinusitis healthcare groups at early (by 9/11/2005) and late (by 9/11/2012) time points. Results Multivariate models showed that pre-9/11/2005 chronic rhinosinusitis diagnoses and nasal symptoms predicted final year healthcare utilization outcomes more than a decade after WTC exposure. The relative proportion of workers on each pyramid level changed significantly during the study period. Conclusions Diagnoses of chronic rhinosinusitis within 4 years of a major inhalation event only partially explain future healthcare utilization. Exposure intensity, early symptoms and other factors must also be considered when anticipating future healthcare needs. PMID:24898816
Health Management Applications for International Space Station
NASA Technical Reports Server (NTRS)
Alena, Richard; Duncavage, Dan
2005-01-01
Traditional mission and vehicle management involves teams of highly trained specialists monitoring vehicle status and crew activities, responding rapidly to any anomalies encountered during operations. These teams work from the Mission Control Center and have access to engineering support teams with specialized expertise in International Space Station (ISS) subsystems. Integrated System Health Management (ISHM) applications can significantly augment these capabilities by providing enhanced monitoring, prognostic and diagnostic tools for critical decision support and mission management. The Intelligent Systems Division of NASA Ames Research Center is developing many prototype applications using model-based reasoning, data mining and simulation, working with Mission Control through the ISHM Testbed and Prototypes Project. This paper will briefly describe information technology that supports current mission management practice, and will extend this to a vision for future mission control workflow incorporating new ISHM applications. It will describe ISHM applications currently under development at NASA and will define technical approaches for implementing our vision of future human exploration mission management incorporating artificial intelligence and distributed web service architectures using specific examples. Several prototypes are under development, each highlighting a different computational approach. The ISStrider application allows in-depth analysis of Caution and Warning (C&W) events by correlating real-time telemetry with the logical fault trees used to define off-nominal events. The application uses live telemetry data and the Livingstone diagnostic inference engine to display the specific parameters and fault trees that generated the C&W event, allowing a flight controller to identify the root cause of the event from thousands of possibilities by simply navigating animated fault tree models on their workstation. SimStation models the functional power flow for the ISS Electrical Power System and can predict power balance for nominal and off-nominal conditions. SimStation uses realtime telemetry data to keep detailed computational physics models synchronized with actual ISS power system state. In the event of failure, the application can then rapidly diagnose root cause, predict future resource levels and even correlate technical documents relevant to the specific failure. These advanced computational models will allow better insight and more precise control of ISS subsystems, increasing safety margins by speeding up anomaly resolution and reducing,engineering team effort and cost. This technology will make operating ISS more efficient and is directly applicable to next-generation exploration missions and Crew Exploration Vehicles.
Rogers, Paul; Qualter, Pamela; Wood, Dave
2016-11-01
Two studies examine the impact event vividness, event severity, and prior paranormal belief has on causal attributions for a depicted remarkable coincidence experience. In Study 1, respondents (n = 179) read a hypothetical vignette in which a fictional character accurately predicts a plane crash 1 day before it occurs. The crash was described in either vivid or pallid terms with the final outcome being either severe (fatal) or non-severe (non-fatal). Respondents completed 29 causal attribution items, one attribution confidence item, nine scenario perception items, a popular paranormal belief scale, and a standard demographics questionnaire. Principal axis factoring reduced the 29 attribution items to four attribution factors which were then subjected to a 2 (event vividness) × 2 (event severity) × 2 (paranormal belief) MANCOVA controlling for respondent gender. As expected, paranormal believers attributed the accurate crash prediction less to coincidence and more to both paranormal and transcendental knowing than did paranormal sceptics. Furthermore, paranormal (psychokinesis) believers deemed the prediction more reflective of paranormal knowing to both (1) a vivid/non-fatal and (2) a pallid/fatal crash depiction. Vividness, severity, and paranormal belief types had no impact on attribution confidence. In Study 2, respondents (also n = 179) generated data that were a moderately good fit to the previous factor structure and replicated several differences across attributional pairings albeit for paranormal non-believers only. Corresponding effects for event severity and paranormal belief were not replicated. Findings are discussed in terms of their support for the paranormal misattribution hypothesis and the impact of availability biases in the form of both vividness and severity effects. Methodological issues and future research ideas are also discussed. © 2016 The British Psychological Society.
Sadeh, Naomi; Miller, Mark W.; Wolf, Erika J.; Harkness, Kate L.
2015-01-01
Identifying the factors that influence stability and change in chronic posttraumatic stress disorder (PTSD) is important for improving clinical outcomes. Using a cross-lagged design, we analyzed the reciprocal effects of personality and PTSD symptoms over time and their effects on stress exposure in a sample of 222 trauma-exposed veterans (ages 23 – 68; 90.5% male). Personality functioning and PTSD were measured approximately 4 years apart, and self-reported exposure to major adverse life events during the interim was also assessed. Negative emotionality positively predicted future PTSD symptoms, and this effect was partially mediated by exposure to new events. Constraint (negatively) indirectly affected PTSD via its association with exposure to new events. There were no significant effects of positive emotionality nor did PTSD symptom severity exert influences on personality over time. Results indicate that high negative affect and disconstraint influence the course of PTSD symptoms by increasing exposure to stressful life events. PMID:25659969
Sadeh, Naomi; Miller, Mark W; Wolf, Erika J; Harkness, Kate L
2015-04-01
Identifying the factors that influence stability and change in chronic posttraumatic stress disorder (PTSD) is important for improving clinical outcomes. Using a cross-lagged design, we analyzed the reciprocal effects of personality and PTSD symptoms over time and their effects on stress exposure in a sample of 222 trauma-exposed veterans (ages 23-68; 90.5% male). Personality functioning and PTSD were measured approximately 4 years apart, and self-reported exposure to major adverse life events during the interim was also assessed. Negative emotionality positively predicted future PTSD symptoms, and this effect was partially mediated by exposure to new events. Constraint (negatively) indirectly affected PTSD via its association with exposure to new events. There were no significant effects of positive emotionality nor did PTSD symptom severity exert influences on personality over time. Results indicate that high negative affect and disconstraint influence the course of PTSD symptoms by increasing exposure to stressful life events. Published by Elsevier Ltd.
The cost of conservative synchronization in parallel discrete event simulations
NASA Technical Reports Server (NTRS)
Nicol, David M.
1990-01-01
The performance of a synchronous conservative parallel discrete-event simulation protocol is analyzed. The class of simulation models considered is oriented around a physical domain and possesses a limited ability to predict future behavior. A stochastic model is used to show that as the volume of simulation activity in the model increases relative to a fixed architecture, the complexity of the average per-event overhead due to synchronization, event list manipulation, lookahead calculations, and processor idle time approach the complexity of the average per-event overhead of a serial simulation. The method is therefore within a constant factor of optimal. The analysis demonstrates that on large problems--those for which parallel processing is ideally suited--there is often enough parallel workload so that processors are not usually idle. The viability of the method is also demonstrated empirically, showing how good performance is achieved on large problems using a thirty-two node Intel iPSC/2 distributed memory multiprocessor.
Forecasting peak asthma admissions in London: an application of quantile regression models.
Soyiri, Ireneous N; Reidpath, Daniel D; Sarran, Christophe
2013-07-01
Asthma is a chronic condition of great public health concern globally. The associated morbidity, mortality and healthcare utilisation place an enormous burden on healthcare infrastructure and services. This study demonstrates a multistage quantile regression approach to predicting excess demand for health care services in the form of asthma daily admissions in London, using retrospective data from the Hospital Episode Statistics, weather and air quality. Trivariate quantile regression models (QRM) of asthma daily admissions were fitted to a 14-day range of lags of environmental factors, accounting for seasonality in a hold-in sample of the data. Representative lags were pooled to form multivariate predictive models, selected through a systematic backward stepwise reduction approach. Models were cross-validated using a hold-out sample of the data, and their respective root mean square error measures, sensitivity, specificity and predictive values compared. Two of the predictive models were able to detect extreme number of daily asthma admissions at sensitivity levels of 76 % and 62 %, as well as specificities of 66 % and 76 %. Their positive predictive values were slightly higher for the hold-out sample (29 % and 28 %) than for the hold-in model development sample (16 % and 18 %). QRMs can be used in multistage to select suitable variables to forecast extreme asthma events. The associations between asthma and environmental factors, including temperature, ozone and carbon monoxide can be exploited in predicting future events using QRMs.
Forecasting peak asthma admissions in London: an application of quantile regression models
NASA Astrophysics Data System (ADS)
Soyiri, Ireneous N.; Reidpath, Daniel D.; Sarran, Christophe
2013-07-01
Asthma is a chronic condition of great public health concern globally. The associated morbidity, mortality and healthcare utilisation place an enormous burden on healthcare infrastructure and services. This study demonstrates a multistage quantile regression approach to predicting excess demand for health care services in the form of asthma daily admissions in London, using retrospective data from the Hospital Episode Statistics, weather and air quality. Trivariate quantile regression models (QRM) of asthma daily admissions were fitted to a 14-day range of lags of environmental factors, accounting for seasonality in a hold-in sample of the data. Representative lags were pooled to form multivariate predictive models, selected through a systematic backward stepwise reduction approach. Models were cross-validated using a hold-out sample of the data, and their respective root mean square error measures, sensitivity, specificity and predictive values compared. Two of the predictive models were able to detect extreme number of daily asthma admissions at sensitivity levels of 76 % and 62 %, as well as specificities of 66 % and 76 %. Their positive predictive values were slightly higher for the hold-out sample (29 % and 28 %) than for the hold-in model development sample (16 % and 18 %). QRMs can be used in multistage to select suitable variables to forecast extreme asthma events. The associations between asthma and environmental factors, including temperature, ozone and carbon monoxide can be exploited in predicting future events using QRMs.
Demblon, Julie; D'Argembeau, Arnaud
2014-02-01
Recent research suggests that many imagined future events are not represented in isolation, but instead are embedded in broader event sequences-referred to as event clusters. It remains unclear, however, whether the production of event clusters reflects the underlying organizational structure of prospective thinking or whether it is an artifact of the event-cuing task in which participants are explicitly required to provide chains of associated future events. To address this issue, the present study examined whether the occurrence of event clusters in prospective thought is apparent when people are left to think freely about events that might happen in their personal future. The results showed that the succession of events participants spontaneously produced when envisioning their future frequently included event clusters. This finding provides more compelling evidence that prospective thinking involves higher-order autobiographical knowledge structures that organize imagined events in coherent themes and sequences. Copyright © 2014 Elsevier Inc. All rights reserved.
Addis, Donna Rose; Wong, Alana T.; Schacter, Daniel L.
2007-01-01
People can consciously re-experience past events and pre-experience possible future events. This fMRI study examined the neural regions mediating the construction and elaboration of past and future events. Participants were cued with a noun for 20 seconds and instructed to construct a past or future event within a specified time period (week, year, 5–20 years). Once participants had the event in mind, they made a button press and for the remainder of the 20 seconds elaborated on the event. Importantly, all events generated were episodic and did not differ on a number of phenomenological qualities (detail, emotionality, personal significance, field/observer perspective). Conjunction analyses indicated the left hippocampus was commonly engaged by past and future event construction, along with posterior visuospatial regions, but considerable neural differentiation was also observed during the construction phase. Future events recruited regions involved in prospective thinking and generation processes, specifically right frontopolar cortex and left ventrolateral prefrontal cortex, respectively. Furthermore, future event construction uniquely engaged the right hippocampus, possibly as a response to the novelty of these events. In contrast to the construction phase, elaboration was characterized by remarkable overlap in regions comprising the autobiographical memory retrieval network, attributable to the common processes engaged during elaboration, including self-referential processing, contextual and episodic imagery. This striking neural overlap is consistent with findings that amnesic patients exhibit deficits in both past and future thinking, and confirms that the episodic system contributes importantly to imagining the future. PMID:17126370
Remembering the past and planning for the future in rats
Crystal, Jonathon D.
2012-01-01
A growing body of research suggests that rats represent and remember specific earlier events from the past. An important criterion for validating a rodent model of episodic memory is to establish that the content of the representation is about a specific event in the past rather than vague information about remoteness. Recent evidence suggests that rats may also represent events that are anticipated to occur in the future. An important capacity afforded by a representation of the future is the ability to plan for the occurrence of a future event. However, relatively little is known about the content of represented future events and the cognitive mechanisms that may support planning. This article reviews evidence that rats remember specific earlier events from the past, represent events that are anticipated to ccur in the future, and develops criteria for validating a rodent model of future planning. These criteria include representing a specific time in the future, the ability to temporarily disengage from a plan and reactivate the plan at an appropriate time in the future, and flexibility to deploy a plan in novel conditions. PMID:23219951
Beyond Rating Curves: Time Series Models for in-Stream Turbidity Prediction
NASA Astrophysics Data System (ADS)
Wang, L.; Mukundan, R.; Zion, M.; Pierson, D. C.
2012-12-01
The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies over 1 billion gallons of water per day to more than 9 million customers. DEP's "West of Hudson" reservoirs located in the Catskill Mountains are unfiltered per a renewable filtration avoidance determination granted by the EPA. While water quality is usually pristine, high volume storm events occasionally cause the reservoirs to become highly turbid. A logical strategy for turbidity control is to temporarily remove the turbid reservoirs from service. While effective in limiting delivery of turbid water and reducing the need for in-reservoir alum flocculation, this strategy runs the risk of negatively impacting water supply reliability. Thus, it is advantageous for DEP to understand how long a particular turbidity event will affect their system. In order to understand the duration, intensity and total load of a turbidity event, predictions of future in-stream turbidity values are important. Traditionally, turbidity predictions have been carried out by applying streamflow observations/forecasts to a flow-turbidity rating curve. However, predictions from rating curves are often inaccurate due to inter- and intra-event variability in flow-turbidity relationships. Predictions can be improved by applying an autoregressive moving average (ARMA) time series model in combination with a traditional rating curve. Since 2003, DEP and the Upstate Freshwater Institute have compiled a relatively consistent set of 15-minute turbidity observations at various locations on Esopus Creek above Ashokan Reservoir. Using daily averages of this data and streamflow observations at nearby USGS gauges, flow-turbidity rating curves were developed via linear regression. Time series analysis revealed that the linear regression residuals may be represented using an ARMA(1,2) process. Based on this information, flow-turbidity regressions with ARMA(1,2) errors were fit to the observations. Preliminary model validation exercises at a 30-day forecast horizon show that the ARMA error models generally improve the predictive skill of the linear regression rating curves. Skill seems to vary based on the ambient hydrologic conditions at the onset of the forecast. For example, ARMA error model forecasts issued before a high flow/turbidity event do not show significant improvements over the rating curve approach. However, ARMA error model forecasts issued during the "falling limb" of the hydrograph are significantly more accurate than rating curves for both single day and accumulated event predictions. In order to assist in reservoir operations decisions associated with turbidity events and general water supply reliability, DEP has initiated design of an Operations Support Tool (OST). OST integrates a reservoir operations model with 2D hydrodynamic water quality models and a database compiling near-real-time data sources and hydrologic forecasts. Currently, OST uses conventional flow-turbidity rating curves and hydrologic forecasts for predictive turbidity inputs. Given the improvements in predictive skill over traditional rating curves, the ARMA error models are currently being evaluated as an addition to DEP's Operations Support Tool.
Becoming a "second victim" in health care: Pathway of recovery after adverse event.
Rinaldi, C; Leigheb, F; Vanhaecht, K; Donnarumma, C; Panella, M
2016-07-01
The healthcare worker involved in an unanticipated adverse patient event can become second victim. These workers suffer physically and psycho-socially and try to overcome the post-event emotional stress by obtaining emotional support in a variety of ways. The goal of this research was to study second victims among health care providers in Italy. This contribution contains the results of 33 interviews of nurses, physicians and other healthcare workers. After institutional approval, the semi-structured interview, composed of 25 questions, was translated from English into Italian. The audio-interviews were transcribed on paper verbatim by the interviewer. It was then verified if the interviewees experienced the six post-event stages of second victim recovery previously described within the literature. The interviewees described the post-event recovery stages described by literature but stages were not detailed in the exact succession order as the American study. All participants clearly remembered the adverse event and referred the physical and psycho-social symptoms. The psychological support obtained by second victims was described as poor and inefficient. The post-event recovery pathway is predictable but not always clearly respected as defined within this Italian sample. Future study of the second-victim phenomenon and desired supportive interventions is necessary to understand the experience and interventions to mitigate harm of future clinicians. Every day healthcare workers become second victims and, considering that human resources are the most important heritage of healthcare infrastructures, after an adverse event it is very important to execute valid interventional programs to support and train these workers. Copyright © 2016 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.
Harris, R.A.; Arrowsmith, J.R.
2006-01-01
The 28 September 2004 M 6.0 Parkfield earthquake, a long-anticipated event on the San Andreas fault, is the world's best recorded earthquake to date, with state-of-the-art data obtained from geologic, geodetic, seismic, magnetic, and electrical field networks. This has allowed the preearthquake and postearthquake states of the San Andreas fault in this region to be analyzed in detail. Analyses of these data provide views into the San Andreas fault that show a complex geologic history, fault geometry, rheology, and response of the nearby region to the earthquake-induced ground movement. Although aspects of San Andreas fault zone behavior in the Parkfield region can be modeled simply over geological time frames, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake indicate that predicting the fine details of future earthquakes is still a challenge. Instead of a deterministic approach, forecasting future damaging behavior, such as that caused by strong ground motions, will likely continue to require probabilistic methods. However, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake have provided ample data to understand most of what did occur in 2004, culminating in significant scientific advances.
NASA Astrophysics Data System (ADS)
Eldardiry, H.; Hossain, F.
2017-12-01
Atmospheric Rivers (ARs) are narrow elongated corridors with horizontal water vapor transport located within the warm sector of extratropical cyclones. While it is widely known that most of heavy rainfall events across the western United States (US) are driven by ARs, the connection between atmospheric conditions and precipitation during an AR event has not been fully documented. In this study, we present a statistical analysis of the connection between precipitation, temperature, wind, and snowpack during the cold season AR events hitting the coastal regions of the western US. For each AR event, the precipitation and other atmospheric variables are retrieved through the dynamic downscaling of NCEP/NCAR Reanalysis product using the Advanced Research Weather Research and Forecasting Model (ARW-WRF). The results show a low frequency of precipitation (below 0.3) during AR events that reflects the connection of AR with extreme precipitation. Examining the horizontal wind speed during AR events indicates a high correlation (above 0.7) with precipitation. In addition, high levels of snow water equivalence (SWE) are also noticed along the mountainous regions, e.g., Cascade Range and Sierra-Nevada mountain range, during most of AR events. Addressing the impact of duration on the frequency of precipitation, we develop Intensity-Duration-Frequency (IDF) curves during AR events that can potentially describe the future predictability of precipitation along the north and south coast. To complement our analysis, we further investigate the flooding events recorded in the National Centers for Environmental Information (NCEI) storm events database. While some flooding events are attributed to heavy rainfall associated with an AR event, other flooding events are significantly connected to the increase in the snowmelt before the flooding date. Thus, we introduce an index that describes the contribution of rainfall vs snowmelt and categorizes the flooding events during an AR event into rain-driven and snow-driven events. Such categorization can provide insight into whether or not an AR will produce extreme precipitation or flooding. The results from such investigations are important to understand historical AR events and assess how precipitation and flooding might evolve in future climate.
Imagining flood futures: risk assessment and management in practice.
Lane, Stuart N; Landström, Catharina; Whatmore, Sarah J
2011-05-13
The mantra that policy and management should be 'evidence-based' is well established. Less so are the implications that follow from 'evidence' being predictions of the future (forecasts, scenarios, horizons) even though such futures define the actions taken today to make the future sustainable. Here, we consider the tension between 'evidence', reliable because it is observed, and predictions of the future, unobservable in conventional terms. For flood risk management in England and Wales, we show that futures are actively constituted, and so imagined, through 'suites of practices' entwining policy, management and scientific analysis. Management has to constrain analysis because of the many ways in which flood futures can be constructed, but also because of commitment to an accounting calculus, which requires risk to be expressed in monetary terms. It is grounded in numerical simulation, undertaken by scientific consultants who follow policy/management guidelines that define the futures to be considered. Historical evidence is needed to deal with process and parameter uncertainties and the futures imagined are tied to pasts experienced. Reliance on past events is a challenge for prediction, given changing probability (e.g. climate change) and consequence (e.g. development on floodplains). So, risk management allows some elements of risk analysis to become unstable (notably in relation to climate change) but forces others to remain stable (e.g. invoking regulation to prevent inappropriate floodplain development). We conclude that the assumed separation of risk assessment and management is false because the risk calculation has to be defined by management. Making this process accountable requires openness about the procedures that make flood risk analysis more (or less) reliable to those we entrust to produce and act upon them such that, unlike the 'pseudosciences', they can be put to the test of public interrogation by those who have to live with their consequences. © 2011 Royal Society
NASA Astrophysics Data System (ADS)
Shi, Larry; Carbunar, Bogdan; Sion, Radu
We introduce a novel conditional e-cash protocol allowing future anonymous cashing of bank-issued e-money only upon the satisfaction of an agreed-upon public condition. Payers are able to remunerate payees for services that depend on future, yet to be determined outcomes of events. Once payment complete, any double-spending attempt by the payer will reveal its identity; no double-spending by the payee is possible. Payers can not be linked to payees or to ongoing or past transactions. The flow of cash within the system is thus both correct and anonymous. We discuss several applications of conditional e-cash including online trading of financial securities, prediction markets, and betting systems.
Imaging black holes: past, present and future
NASA Astrophysics Data System (ADS)
Falcke, Heino
2017-12-01
This paper briefly reviews past, current, and future efforts to image black holes. Black holes seem like mystical objects, but they are an integral part of current astrophysics and are at the center of attempts to unify quantum physics and general relativity. Yet, nobody has ever seen a black hole. What do they look like? Initially, this question seemed more of an academic nature. However, this has changed over the past two decades. Observations and theoretical considerations suggest that the supermassive black hole, Sgr A*, in the center of our Milky Way is surrounded by a compact, foggy emission region radiating at and above 230 GHz. It has been predicted that the event horizon of Sgr A* should cast its shadow onto that emission region, which could be detectable with a global VLBI array of radio telescopes. In contrast to earlier pictures of black holes, that dark feature is not supposed to be due to a hole in the accretion flow, but would represent a true negative image of the event horizon. Currently, the global Event Horizon Telescope consortium is attempting to make such an image. In the future those images could be improved by adding more telescopes to the array, in particular at high sites in Africa. Ultimately, a space array at THz frequencies, the Event Horizon Imager, could produce much more detailed images of black holes. In combination with numerical simulations and precise measurements of the orbits of stars - ideally also of pulsars - these images will allow us to study black holes with unprecedented precision.
NASA Astrophysics Data System (ADS)
Poletti, Maria Laura; Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco
2017-04-01
The exposure of the urban areas to flash-floods is particularly significant to Mediterranean coastal cities, generally densely-inhabited. Severe rainfall events often associated to intense and organized thunderstorms produced, during the last century, flash-floods and landslides causing serious damages to urban areas and in the worst events led to human losses. The temporal scale of these events has been observed strictly linked to the size of the catchments involved: in the Mediterranean area a great number of catchments that pass through coastal cities have a small drainage area (less than 100 km2) and a corresponding hydrologic response timescale in the order of a few hours. A suitable nowcasting chain is essential for the on time forecast of this kind of events. In fact meteorological forecast systems are unable to predict precipitation at the scale of these events, small both at spatial (few km) and temporal (hourly) scales. Nowcasting models, covering the time interval of the following two hours starting from the observation try to extend the predictability limits of the forecasting models in support of real-time flood alert system operations. This work aims to present the use of hydrological models coupled with nowcasting techniques. The nowcasting model PhaSt furnishes an ensemble of equi-probable future precipitation scenarios on time horizons of 1-3 h starting from the most recent radar observations. The coupling of the nowcasting model PhaSt with the hydrological model Continuum allows to forecast the flood with a few hours in advance. In this way it is possible to generate different discharge prediction for the following hours and associated return period maps: these maps can be used as a support in the decisional process for the warning system.
Ottsen, Christina Lundsgaard; Berntsen, Dorthe
2015-12-01
Mental time travel is the ability to remember past events and imagine future events. Here, 124 Middle Easterners and 128 Scandinavians generated important past and future events. These different societies present a unique opportunity to examine effects of culture. Findings indicate stronger influence of normative schemas and greater use of mental time travel to teach, inform and direct behaviour in the Middle East compared with Scandinavia. The Middle Easterners generated more events that corresponded to their cultural life script and that contained religious words, whereas the Scandinavians reported events with a more positive mood impact. Effects of gender were mainly found in the Middle East. Main effects of time orientation largely replicated recent findings showing that simulation of future and past events are not necessarily parallel processes. In accordance with the notion that future simulations rely on schema-based construction, important future events showed a higher overlap with life script events than past events in both cultures. In general, cross-cultural discrepancies were larger in future compared with past events. Notably, the high focus in the Middle East on sharing future events to give cultural guidance is consistent with the increased adherence to normative scripts found in this culture. Copyright © 2015 Elsevier Inc. All rights reserved.
Risk and the physics of clinical prediction.
McEvoy, John W; Diamond, George A; Detrano, Robert C; Kaul, Sanjay; Blaha, Michael J; Blumenthal, Roger S; Jones, Steven R
2014-04-15
The current paradigm of primary prevention in cardiology uses traditional risk factors to estimate future cardiovascular risk. These risk estimates are based on prediction models derived from prospective cohort studies and are incorporated into guideline-based initiation algorithms for commonly used preventive pharmacologic treatments, such as aspirin and statins. However, risk estimates are more accurate for populations of similar patients than they are for any individual patient. It may be hazardous to presume that the point estimate of risk derived from a population model represents the most accurate estimate for a given patient. In this review, we exploit principles derived from physics as a metaphor for the distinction between predictions regarding populations versus patients. We identify the following: (1) predictions of risk are accurate at the level of populations but do not translate directly to patients, (2) perfect accuracy of individual risk estimation is unobtainable even with the addition of multiple novel risk factors, and (3) direct measurement of subclinical disease (screening) affords far greater certainty regarding the personalized treatment of patients, whereas risk estimates often remain uncertain for patients. In conclusion, shifting our focus from prediction of events to detection of disease could improve personalized decision-making and outcomes. We also discuss innovative future strategies for risk estimation and treatment allocation in preventive cardiology. Copyright © 2014 Elsevier Inc. All rights reserved.
Jones, Alice R; Bull, C Michael; Brook, Barry W; Wells, Konstans; Pollock, Kenneth H; Fordham, Damien A
2016-03-01
Assessing the impacts of multiple, often synergistic, stressors on the population dynamics of long-lived species is becoming increasingly important due to recent and future global change. Tiliqua rugosa (sleepy lizard) is a long-lived skink (>30 years) that is adapted to survive in semi-arid environments with varying levels of parasite exposure and highly seasonal food availability. We used an exhaustive database of 30 years of capture-mark-recapture records to quantify the impacts of both parasite exposure and environmental conditions on the lizard's survival rates and long-term population dynamics. Lizard abundance was relatively stable throughout the study period; however, there were changing patterns in adult and juvenile apparent survival rates, driven by spatial and temporal variation in levels of tick exposure and temporal variation in environmental conditions. Extreme weather events during the winter and spring seasons were identified as important environmental drivers of survival. Climate models predict a dramatic increase in the frequency of extreme hot and dry winter and spring seasons in our South Australian study region; from a contemporary probability of 0.17 up to 0.47-0.83 in 2080 depending on the emissions scenario. Our stochastic population model projections showed that these future climatic conditions will induce a decline in the abundance of this long-lived reptile of up to 67% within 30 years from 2080, under worst case scenario modelling. The results have broad implications for future work investigating the drivers of population dynamics and persistence. We highlight the importance of long-term data sets and accounting for synergistic impacts between multiple stressors. We show that predicted increases in the frequency of extreme climate events have the potential to considerably and negatively influence a long-lived species, which might previously have been assumed to be resilient to environmental perturbations. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Culture, temporal focus, and values of the past and the future.
Guo, Tieyuan; Ji, Li-Jun; Spina, Roy; Zhang, Zhiyong
2012-08-01
This article examines cultural differences in how people value future and past events. Throughout four studies, the authors found that European Canadians attached more monetary value to an event in the future than to an identical event in the past, whereas Chinese and Chinese Canadians placed more monetary value to a past event than to an identical future event. The authors also showed that temporal focus-thinking about the past or future-explained cultural influences on the temporal value asymmetry effect. Specifically, when induced to think about and focus on the future, Chinese valued the future more than the past, just like Euro-Canadians; when induced to think about and focus on the past, Euro-Canadians valued the past more than the future, just like Chinese.
Learning temporal statistics for sensory predictions in mild cognitive impairment.
Di Bernardi Luft, Caroline; Baker, Rosalind; Bentham, Peter; Kourtzi, Zoe
2015-08-01
Training is known to improve performance in a variety of perceptual and cognitive skills. However, there is accumulating evidence that mere exposure (i.e. without supervised training) to regularities (i.e. patterns that co-occur in the environment) facilitates our ability to learn contingencies that allow us to interpret the current scene and make predictions about future events. Recent neuroimaging studies have implicated fronto-striatal and medial temporal lobe brain regions in the learning of spatial and temporal statistics. Here, we ask whether patients with mild cognitive impairment due to Alzheimer's disease (MCI-AD) that are characterized by hippocampal dysfunction are able to learn temporal regularities and predict upcoming events. We tested the ability of MCI-AD patients and age-matched controls to predict the orientation of a test stimulus following exposure to sequences of leftwards or rightwards orientated gratings. Our results demonstrate that exposure to temporal sequences without feedback facilitates the ability to predict an upcoming stimulus in both MCI-AD patients and controls. However, our fMRI results demonstrate that MCI-AD patients recruit an alternate circuit to hippocampus to succeed in learning of predictive structures. In particular, we observed stronger learning-dependent activations for structured sequences in frontal, subcortical and cerebellar regions for patients compared to age-matched controls. Thus, our findings suggest a cortico-striatal-cerebellar network that may mediate the ability for predictive learning despite hippocampal dysfunction in MCI-AD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Emergence of event cascades in inhomogeneous networks
NASA Astrophysics Data System (ADS)
Onaga, Tomokatsu; Shinomoto, Shigeru
2016-09-01
There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network.
Space Weather Impacts to Conjunction Assessment: A NASA Robotic Orbital Safety Perspective
NASA Technical Reports Server (NTRS)
Ghrist, Richard; Ghrist, Richard; DeHart, Russel; Newman, Lauri
2013-01-01
National Aeronautics and Space Administration (NASA) recognizes the risk of on-orbit collisions from other satellites and debris objects and has instituted a process to identify and react to close approaches. The charter of the NASA Robotic Conjunction Assessment Risk Analysis (CARA) task is to protect NASA robotic (unmanned) assets from threats posed by other space objects. Monitoring for potential collisions requires formulating close-approach predictions a week or more in the future to determine analyze, and respond to orbital conjunction events of interest. These predictions require propagation of the latest state vector and covariance assuming a predicted atmospheric density and ballistic coefficient. Any differences between the predicted drag used for propagation and the actual drag experienced by the space objects can potentially affect the conjunction event. Therefore, the space environment itself, in particular how space weather impacts atmospheric drag, is an essential element to understand in order effectively to assess the risk of conjunction events. The focus of this research is to develop a better understanding of the impact of space weather on conjunction assessment activities: both accurately determining the current risk and assessing how that risk may change under dynamic space weather conditions. We are engaged in a data-- ]mining exercise to corroborate whether or not observed changes in a conjunction event's dynamics appear consistent with space weather changes and are interested in developing a framework to respond appropriately to uncertainty in predicted space weather. In particular, we use historical conjunction event data products to search for dynamical effects on satellite orbits from changing atmospheric drag. Increased drag is expected to lower the satellite specific energy and will result in the satellite's being 'later' than expected, which can affect satellite conjunctions in a number of ways depending on the two satellites' orbits and the geometry of the conjunction. These satellite time offsets can form the basis of a new technique under development to determine whether space weather perturbations, such as coronal mass ejections, are likely to increase, decrease, or have a neutral effect on the collision risk due to a particular close approach.
Prospective Safety Analysis and the Complex Aviation System
NASA Technical Reports Server (NTRS)
Smith, Brian E.
2013-01-01
Fatal accident rates in commercial passenger aviation are at historic lows yet have plateaued and are not showing evidence of further safety advances. Modern aircraft accidents reflect both historic causal factors and new unexpected "Black Swan" events. The ever-increasing complexity of the aviation system, along with its associated technology and organizational relationships, provides fertile ground for fresh problems. It is important to take a proactive approach to aviation safety by working to identify novel causation mechanisms for future aviation accidents before they happen. Progress has been made in using of historic data to identify the telltale signals preceding aviation accidents and incidents, using the large repositories of discrete and continuous data on aircraft and air traffic control performance and information reported by front-line personnel. Nevertheless, the aviation community is increasingly embracing predictive approaches to aviation safety. The "prospective workshop" early assessment tool described in this paper represents an approach toward this prospective mindset-one that attempts to identify the future vectors of aviation and asks the question: "What haven't we considered in our current safety assessments?" New causation mechanisms threatening aviation safety will arise in the future because new (or revised) systems and procedures will have to be used under future contextual conditions that have not been properly anticipated. Many simulation models exist for demonstrating the safety cases of new operational concepts and technologies. However the results from such models can only be as valid as the accuracy and completeness of assumptions made about the future context in which the new operational concepts and/or technologies will be immersed. Of course that future has not happened yet. What is needed is a reasonably high-confidence description of the future operational context, capturing critical contextual characteristics that modulate both the likelihood of occurrence of hazards, and the likelihood that those hazards will lead to negative safety events. Heuristics extracted from scenarios, questionnaires, and observed trends from scanning the aviation horizon may be helpful in capturing those future changes in a way conducive to safety assessment. What is also needed is a checklist of potential sources of emerging risk that arise from organizational features that are frequently overlooked. The ultimate goal is to develop a pragmatic, workable method for using descriptions of the future aviation context, to generate valid predictions of safety risks.
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Agüeros, Marcel A.; Fournier, Amanda P.; Street, Rachel; Ofek, Eran O.; Covey, Kevin R.; Levitan, David; Laher, Russ R.; Sesar, Branimir; Surace, Jason
2014-01-01
Many photometric time-domain surveys are driven by specific goals, such as searches for supernovae or transiting exoplanets, which set the cadence with which fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several sub-surveys are conducted in parallel, leading to non-uniform sampling over its ~20,000 deg2 footprint. While the median 7.26 deg2 PTF field has been imaged ~40 times in the R band, ~2300 deg2 have been observed >100 times. We use PTF data to study the trade off between searching for microlensing events in a survey whose footprint is much larger than that of typical microlensing searches, but with far-from-optimal time sampling. To examine the probability that microlensing events can be recovered in these data, we test statistics used on uniformly sampled data to identify variables and transients. We find that the von Neumann ratio performs best for identifying simulated microlensing events in our data. We develop a selection method using this statistic and apply it to data from fields with >10 R-band observations, 1.1 × 109 light curves, uncovering three candidate microlensing events. We lack simultaneous, multi-color photometry to confirm these as microlensing events. However, their number is consistent with predictions for the event rate in the PTF footprint over the survey's three years of operations, as estimated from near-field microlensing models. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large data sets, which will be useful to future time-domain surveys, such as that planned with the Large Synoptic Survey Telescope.
Buechel, Eva C; Zhang, Jiao; Morewedge, Carey K
2017-05-01
Affective forecasts are used to anticipate the hedonic impact of future events and decide which events to pursue or avoid. We propose that because affective forecasters are more sensitive to outcome specifications of events than experiencers, the outcome specification values of an event, such as its duration, magnitude, probability, and psychological distance, can be used to predict the direction of affective forecasting errors: whether affective forecasters will overestimate or underestimate its hedonic impact. When specifications are positively correlated with the hedonic impact of an event, forecasters will overestimate the extent to which high specification values will intensify and low specification values will discount its impact. When outcome specifications are negatively correlated with its hedonic impact, forecasters will overestimate the extent to which low specification values will intensify and high specification values will discount its impact. These affective forecasting errors compound additively when multiple specifications are aligned in their impact: In Experiment 1, affective forecasters underestimated the hedonic impact of winning a smaller prize that they expected to win, and they overestimated the hedonic impact of winning a larger prize that they did not expect to win. In Experiment 2, affective forecasters underestimated the hedonic impact of a short unpleasant video about a temporally distant event, and they overestimated the hedonic impact of a long unpleasant video about a temporally near event. Experiments 3A and 3B showed that differences in the affect-richness of forecasted and experienced events underlie these differences in sensitivity to outcome specifications, therefore accounting for both the impact bias and its reversal. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Precipitation Regime Shift Enhanced the Rain Pulse Effect on Soil Respiration in a Semi-Arid Steppe
Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi
2014-01-01
The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m−2) and 39.6% (61.7 g C m−2) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r 2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953–2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953–2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change. PMID:25093573
Precipitation regime shift enhanced the rain pulse effect on soil respiration in a semi-arid steppe.
Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi
2014-01-01
The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m(-2)) and 39.6% (61.7 g C m(-2)) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953-2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953-2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change.
Butow, P N; Hiller, J E; Price, M A; Thackway, S V; Kricker, A; Tennant, C C
2000-09-01
Review empirical evidence for a relationship between psychosocial factors and breast cancer development. Standardised quality assessment criteria were utilised to assess the evidence of psychosocial predictors of breast cancer development in the following domains: (a) stressful life events, (b) coping style, (c) social support, and (d) emotional and personality factors. Few well-designed studies report any association between life events and breast cancer, the exception being two small studies using the Life Events and Difficulties Schedule (LEDS) reporting an association between severely threatening events and breast cancer risk. Seven studies show anger repression or alexithymia are predictors, the strongest evidence suggesting younger women are at increased risk. There is no evidence that social support, chronic anxiety, or depression affects breast cancer development. With the exception of rationality/anti-emotionality, personality factors do not predict breast cancer risk. The evidence for a relationship between psychosocial factors and breast cancer is weak. The strongest predictors are emotional repression and severe life events. Future research would benefit from theoretical grounding and greater methodological rigour. Recommendations are given.
Zhang, Jintao; Zhao, Guoxiang; Li, Xiaoming; Hong, Yan; Fang, Xiaoyi; Barnett, Douglas; Lin, Xiuyun; Zhao, Junfeng; Zhang, Liying
2009-12-01
The current study was designed to explore the effect of future orientation in mediating the relationship between traumatic events and mental health in children affected by HIV/AIDS in rural China. Cross-sectional data were collected from 1221 children affected by HIV/AIDS (755 AIDS orphans and 466 vulnerable children). Future orientation among children was measured using three indicators (future expectation, hopefulness toward the future, and perceived control over the future). Measures of mental health consisted of depression, loneliness, and self-esteem. Children's experience of any traumatic events was measured using a modified version of the Life Incidence of Traumatic Events-Student Form. Mediation analysis was conducted using structural equation modeling (SEM) methods. Among the children surveyed, most of the traumatic indicators were negatively associated with future expectation, hopefulness, perceived control, and self-esteem, and positively associated with depression and loneliness. The SEM of mediation analysis demonstrated an adequate fit. Future orientation fully mediated the relationship between traumatic events and mental health and accounted for 67.9% of the total effect of traumatic events on mental health. Results of this study support the positive effect of future expectation in mediating the relationship between traumatic events and mental health among children affected by HIV/AIDS in China. Future mental health promotion and intervention efforts targeting children affected by HIV/AIDS should include components that can mitigate the negative impact of traumatic events on their lives. These components may aim to develop children's positive future expectations, increase their hopefulness toward the future, and improve their perceived control over the future.
Incorporating adaptive responses into future projections of coral bleaching.
Logan, Cheryl A; Dunne, John P; Eakin, C Mark; Donner, Simon D
2014-01-01
Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming-induced bleaching remains largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias-corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the preindustrial period through 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a preindustrial climatology to the NOAA Coral Reef Watch bleaching prediction method overpredicts the present-day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2-10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20-80% compared with the 'no adaptive response' prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high-frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high-frequency bleaching by ca. 10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and ocean basins to determine if and how much corals can respond to increasing thermal stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Calen B., E-mail: henderson@astronomy.ohio-state.edu
2015-02-10
I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by (1) imaging the lens once it is spatially resolved from the source, (2) measuring the elongation of the point-spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and (3) taking prompt follow-up photometry. In each case I simulate the observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO onmore » the Very Large Telescope), future ground-based AO facilities (GMTIFS on the Giant Magellan Telescope, GMT), and future space telescopes (NIRCAM on the James Webb Space Telescope, JWST). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of σ{sub H{sub ℓ}}≤0.1 for ≳60% of planet detections ≥5 yr after each microlensing event for a simulated observing program using GMT, which images resolved lenses. NIRCAM on JWST would be able to carry out equivalently high-precision measurements for ∼28% of events Δt = 10 yr after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., >50% fractional uncertainty in the inferred lens mass) for ≲ (16 · f {sub bin})% of planet detections, where f {sub bin} is the binary fraction, with the majority of these failures occurring for host stars with mass ≲0.3 M {sub ☉}.« less
Mikami, Yoko; Jolly, Umjeet; Heydari, Bobak; Peng, Mingkai; Almehmadi, Fahad; Zahrani, Mohammed; Bokhari, Mahmoud; Stirrat, John; Lydell, Carmen P; Howarth, Andrew G; Yee, Raymond; White, James A
2017-01-01
Left ventricular ejection fraction remains the primary risk stratification tool used in the selection of patients for implantable cardioverter defibrillator therapy. However, this solitary marker fails to identify a substantial portion of patients experiencing sudden cardiac arrest. In this study, we examined the incremental value of considering right ventricular ejection fraction for the prediction of future arrhythmic events in patients with systolic dysfunction using the gold standard of cardiovascular magnetic resonance. Three hundred fourteen consecutive patients with ischemic cardiomyopathy or nonischemic dilated cardiomyopathy undergoing cardiovascular magnetic resonance were followed for the primary outcome of sudden cardiac arrest or appropriate implantable cardioverter defibrillator therapy. Blinded quantification of left ventricular and right ventricular (RV) volumes was performed from standard cine imaging. Quantification of fibrosis from late gadolinium enhancement imaging was incrementally performed. RV dysfunction was defined as right ventricular ejection fraction ≤45%. Among all patients (164 ischemic cardiomyopathy, 150 nonischemic dilated cardiomyopathy), the mean left ventricular ejection fraction was 32±12% (range, 6-54%) with mean right ventricular ejection fraction of 48±15% (range, 7-78%). At a median of 773 days, 49 patients (15.6%) experienced the primary outcome (9 sudden cardiac arrest, 40 appropriate implantable cardioverter defibrillator therapies). RV dysfunction was independently predictive of the primary outcome (hazard ratio=2.98; P=0.002). Among those with a left ventricular ejection fraction >35% (N=121; mean left ventricular ejection fraction, 45±6%), RV dysfunction provided an adjusted hazard ratio of 4.2 (P=0.02). RV dysfunction is a strong, independent predictor of arrhythmic events. Among patients with mild to moderate LV dysfunction, a cohort greatly contributing to global sudden cardiac arrest burden, this marker provides robust discrimination of high- versus low-risk subjects. © 2017 American Heart Association, Inc.
Learning to predict and control harmful events: chronic pain and conditioning.
Vlaeyen, Johan W S
2015-04-01
Pain is a biologically relevant signal and response to bodily threat, associated with the urge to restore the integrity of the body. Immediate protective responses include increased arousal, selective attention, escape, and facial expressions, followed by recuperative avoidance and safety-seeking behaviors. To facilitate early and effective protection against future bodily threat or injury, learning takes place rapidly. Learning is the observable change in behavior due to events in the internal and external environmental and includes nonassociative (habituation and sensitization) and associative learning (Pavlovian and operant conditioning). Once acquired, these knowledge representations remain stored in memory and may generalize to perceptually or functionally similar events. Moreover, these processes are not just a consequence of pain; they may directly influence pain perception. In contrast to the rapid acquisition of learned responses, their extinction is slow, fragile, context dependent and only occurs through inhibitory processes. Here, we review features of associative forms of learning in humans that contribute to pain, pain-related distress, and disability and discuss promising future directions. Although conditioning has a long and honorable history, a conditioning perspective still might open new windows on novel treatment modalities that facilitate the well-being of individuals with chronic pain.
Risk factors for psychological maladjustment of parents of children with cancer.
Hoekstra-Weebers, J E; Jaspers, J P; Kamps, W A; Klip, E C
1999-12-01
To examine risk variables for future, more immediate, and persistent psychological distress of parents of pediatric cancer patients. Parents (n = 128) completed questionnaires at the time of diagnosis (T1) and 12 months later (T2). Multiple regression analyses were performed using the following as predictors: demographics, illness-related variables, other life events, personality, coping styles, and social support. Trait anxiety was the strongest predictor of both fathers' and mothers' future distress. Changes in trait anxiety during the year also accompanied changes in both parents' levels of distress. Additional prospective predictors for fathers were the coping style "social support-seeking" and dissatisfaction with support. Dissatisfaction with support also had short-term effects for fathers. An additional prospective predictor for mothers was the number of pleasant events they had experienced prior to diagnosis, while a short-term effect was found for performance in assertiveness. No predictors for the persistence of distress were found. These results underscore the importance of personality anxiety in predicting parents' risk for adjustment difficulties associated with the experience of cancer in one's child. An additional risk factor for fathers was social support. For mothers, previously experienced life events and the frequency of assertive behavior were additional risk factors.
2010-04-01
recruiting, childhood obesity, JROTC, Whole Soldier, Accessions Research Award, Human Dimension, Army Experience Center, MEPCOM, Mental health...2 September 2009 Opening Comments (COL Jeff Schamburg) “ Childhood Obesity in the US: Prevalence, Trends & Health Risks." (Dr. Cynthia Ogden...experts are saying.” • Claire Raines - (Generational analyst-workforce) – Young people are shaped by defining events, the media, parenting patterns
2004-03-01
predicting future events ( Heizer and Render , 1999). Forecasting techniques fall into two major categories, qualitative and quantitative methods...Globemaster III.” Excerpt from website. www.globalsecurity.org/military /systems/ aircraft/c-17-history.htm. 2003. Heizer , Jay, and Barry Render ...of the past data used to make the forecast ( Heizer , et. al., 1999). Explanatory forecasting models assume that the variable being forecasted
Envisioning the times of future events: The role of personal goals.
Ben Malek, Hédi; Berna, Fabrice; D'Argembeau, Arnaud
2018-05-25
Episodic future thinking refers to the human capacity to imagine or simulate events that might occur in one's personal future. Previous studies have shown that personal goals guide the construction and organization of episodic future thoughts, and here we sought to investigate the role of personal goals in the process of locating imagined events in time. Using a think-aloud protocol, we found that dates were directly accessed more frequently for goal-related than goal-unrelated future events, and the goal-relevance of events was a significant predictor of direct access to temporal information on a trial-by-trial basis. Furthermore, when an event was not directly dated, references to anticipated lifetime periods were more frequently used as a strategy to determine when a goal-related event might occur. Together, these findings shed new light on the mechanisms by which personal goals contribute to the location of imagined events in future times. Copyright © 2018 Elsevier Inc. All rights reserved.
Well-being and Anticipation for Future Positive Events: Evidences from an fMRI Study.
Luo, Yangmei; Chen, Xuhai; Qi, Senqing; You, Xuqun; Huang, Xiting
2017-01-01
Anticipation for future confers great benefits to human well-being and mental health. However, previous work focus on how people's well-being correlate with brain activities during perception of emotional stimuli, rather than anticipation for the future events. Here, the current study investigated how well-being relates to neural circuitry underlying the anticipating process of future desired events. Using event-related functional magnetic resonance imaging, 40 participants were scanned while they were performing an emotion anticipation task, in which they were instructed to anticipate the positive or neutral events. The results showed that bilateral medial prefrontal cortex (MPFC) were activated during anticipation for positive events relative to neutral events, and the enhanced brain activation in MPFC was associated with higher level of well-being. The findings suggest a neural mechanism by which the anticipation process to future desired events correlates to human well-being, which provide a future-oriented view on the neural sources of well-being.
Well-being and Anticipation for Future Positive Events: Evidences from an fMRI Study
Luo, Yangmei; Chen, Xuhai; Qi, Senqing; You, Xuqun; Huang, Xiting
2018-01-01
Anticipation for future confers great benefits to human well-being and mental health. However, previous work focus on how people’s well-being correlate with brain activities during perception of emotional stimuli, rather than anticipation for the future events. Here, the current study investigated how well-being relates to neural circuitry underlying the anticipating process of future desired events. Using event-related functional magnetic resonance imaging, 40 participants were scanned while they were performing an emotion anticipation task, in which they were instructed to anticipate the positive or neutral events. The results showed that bilateral medial prefrontal cortex (MPFC) were activated during anticipation for positive events relative to neutral events, and the enhanced brain activation in MPFC was associated with higher level of well-being. The findings suggest a neural mechanism by which the anticipation process to future desired events correlates to human well-being, which provide a future-oriented view on the neural sources of well-being. PMID:29375415
Chen, Xing-jie; Liu, Lu-lu; Cui, Ji-fang; Wang, Ya; Chen, An-tao; Li, Feng-hua; Wang, Wei-hong; Zheng, Han-feng; Gan, Ming-yuan; Li, Chun-qiu; Shum, David H. K.; Chan, Raymond C. K.
2016-01-01
Mental time travel refers to the ability to recall past events and to imagine possible future events. Schizophrenia (SCZ) patients have problems in remembering specific personal experiences in the past and imagining what will happen in the future. This study aimed to examine episodic past and future thinking in SCZ spectrum disorders including SCZ patients and individuals with schizotypal personality disorder (SPD) proneness who are at risk for developing SCZ. Thirty-two SCZ patients, 30 SPD proneness individuals, and 33 healthy controls participated in the study. The Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test were used to measure past and future thinking abilities. Results showed that SCZ patients showed significantly reduced specificity in recalling past and imagining future events, they generated less proportion of specific and extended events compared to healthy controls. SPD proneness individuals only generated less extended events compared to healthy controls. The reduced specificity was mainly manifested in imagining future events. Both SCZ patients and SPD proneness individuals generated less positive events than controls. These results suggest that mental time travel impairments in SCZ spectrum disorders and have implications for understanding their cognitive and emotional deficits. PMID:27507958
NASA Astrophysics Data System (ADS)
Ironside, K. E.; Cole, K. L.; Eischeid, J. K.; Garfin, G. M.; Shaw, J. D.; Cobb, N. S.
2008-12-01
Ponderosa pine (Pinus ponderosa var. scopulorum) is the dominant conifer in higher elevation regions of the southwestern United States. Because this species is so prominent, southwestern montane ecosystems will be significantly altered if this species is strongly affected by future climate changes. These changes could be highly challenging for land management agencies. In order to model the consequences of future climates, 20th Century recruitment events and mortality for ponderosa pine were characterized using measures of seasonal water balance (precipitation - potential evapotranspiration). These relationships, assuming they will remain unchanged, were then used to predict 21st Century changes in ponderosa pine occurrence in the southwest. Twenty-one AR4 IPCC General Circulation Model (GCM) A1B simulation results were ranked on their ability to simulate the later 20th Century (1950-2000 AD) precipitation seasonality, spatial patterns, and quantity in the western United States. Among the top ranked GCMs, five were selected for downscaling to a 4 km grid that represented a range in predictions in terms of changes in water balance. Predicted decadal changes in southwestern ponderosa pine for the 21st Century for these five climate change scenarios were calculated using a multiple quadratic logistic regression model. Similar models of other western tree species (Pinus edulis, Yucca brevifolia) predicted severe contractions, especially in the southern half of their ranges. However, the results for Ponderosa pine suggested future expansions throughout its range to both higher and lower elevations, as well as very significant expansions northward.
NASA Technical Reports Server (NTRS)
Pesnell, William Dean
2012-01-01
Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.
Leger, Stefan; Zwanenburg, Alex; Pilz, Karoline; Lohaus, Fabian; Linge, Annett; Zöphel, Klaus; Kotzerke, Jörg; Schreiber, Andreas; Tinhofer, Inge; Budach, Volker; Sak, Ali; Stuschke, Martin; Balermpas, Panagiotis; Rödel, Claus; Ganswindt, Ute; Belka, Claus; Pigorsch, Steffi; Combs, Stephanie E; Mönnich, David; Zips, Daniel; Krause, Mechthild; Baumann, Michael; Troost, Esther G C; Löck, Steffen; Richter, Christian
2017-10-16
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g. C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.
Miller, Mary Beth; Borsari, Brian; Fernandez, Anne C; Yurasek, Ali M; Hustad, John T P
2016-07-02
Both drinking location and pregaming have been associated with heavy alcohol use among college students, yet the manner by which they uniquely contribute to alcohol intoxication remains unclear. The current study examined the unique utility of drinking location and pregaming in predicting alcohol intoxication among college students who violated campus alcohol policy. Between 2011 and 2012, mandated college students who reported drinking prior to their referral events (N = 212, 41% female, 80% White, Mage = 19.4 y) completed a computerized assessment of drinking location and related behaviors as part of larger research trial. Chi-squared statistics, t-tests, one-way analyses of covariance, and regression were used to examine study aims. Participants were most likely (44%) to report drinking in off-campus housing prior to the referral event, and approximately half (47%) reported pregaming. Alcohol intoxication on the night of the referral event differed significantly as a function of both drinking location and pregaming, but pregaming did not moderate the association between drinking location and alcohol intoxication among mandated students. Female birth sex, pregaming, and drinking at either fraternities or off-campus housing predicted greater levels of alcohol intoxication on the night of the referral incident, while drinking in a residence hall/dorm predicted lower intoxication. Drinking location and pregaming are distinct predictors of alcohol intoxication among mandated college students. Future interventions may benefit from targeting both where and how college students consume alcohol.
The Predicted Influence of Climate Change on Lesser Prairie-Chicken Reproductive Parameters
Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, Dawn M.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.
2013-01-01
The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001–2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter’s linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Niña events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival. PMID:23874549
NASA Astrophysics Data System (ADS)
Cantone, Carolina; Kalantari, Zahra; Cavalli, Marco; Crema, Stefano
2016-04-01
Climate changes are predicted to increase precipitation intensities and occurrence of extreme rainfall events in the near future. Scandinavia has been identified as one of the most sensitive regions in Europe to such changes; therefore, an increase in the risk for flooding, landslides and soil erosion is to be expected also in Sweden. An increase in the occurrence of extreme weather events will impose greater strain on the built environment and major transport infrastructures such as roads and railways. This research aimed to identify the risk of flooding at the road-stream intersections, crucial locations where water and debris can accumulate and cause failures of the existing drainage facilities. Two regions in southwest of Sweden affected by an extreme rainfall event in August 2014, were used for calibrating and testing a statistical flood prediction model. A set of Physical Catchment Descriptors (PCDs) including road and catchment characteristics was identified for the modelling. Moreover, a GIS-based topographic Index of Sediment Connectivity (IC) was used as PCD. The novelty of this study relies on the adaptation of IC for describing sediment connectivity in lowland areas taking into account contribution of soil type, land use and different patterns of precipitation during the event. A weighting factor for IC was calculated by estimating runoff calculated with SCS Curve Number method, assuming a constant value of precipitation for a given time period, corresponding to the critical event. The Digital Elevation Model of the study site was reconditioned at the drainage facilities locations to consider the real flow path in the analysis. These modifications led to highlight the role of rainfall patterns and surface runoff for modelling sediment delivery in lowland areas. Moreover, it was observed that integrating IC into the statistic prediction model increased its accuracy and performance. After the calibration procedure in one of the study areas, the model was validated in the other study area, located in the central part of Sweden, since this experienced flooding in relation to the same triggering event.
Amor, Antonio J; Serra-Mir, Mercè; Martínez-González, Miguel A; Corella, Dolores; Salas-Salvadó, Jordi; Fitó, Montserrat; Estruch, Ramón; Serra-Majem, Lluis; Arós, Fernando; Babio, Nancy; Ros, Emilio; Ortega, Emilio
2017-03-13
The usefulness of cardiovascular disease (CVD) predictive equations in different populations is debatable. We assessed the efficacy of the Framingham-REGICOR scale, validated for the Spanish population, to identify future CVD in participants, who were predefined as being at high-risk in the PREvención con DIeta MEDiterránea (PREDIMED) study-a nutrition-intervention primary prevention trial-and the impact of adherence to the Mediterranean diet on CVD across risk categories. In a post hoc analysis, we assessed the CVD predictive value of baseline estimated risk in 5966 PREDIMED participants (aged 55-74 years, 57% women; 48% with type 2 diabetes mellitus). Major CVD events, the primary PREDIMED end point, were an aggregate of myocardial infarction, stroke, and cardiovascular death. Multivariate-adjusted Cox regression was used to calculate hazard ratios for major CVD events and effect modification from the Mediterranean diet intervention across risk strata (low, moderate, high, very high). The Framingham-REGICOR classification of PREDIMED participants was 25.1% low risk, 44.5% moderate risk, and 30.4% high or very high risk. During 6-year follow-up, 188 major CVD events occurred. Hazard ratios for major CVD events increased in parallel with estimated risk (2.68, 4.24, and 6.60 for moderate, high, and very high risk), particularly in men (7.60, 13.16, and 15.85, respectively, versus 2.16, 2.28, and 3.51, respectively, in women). Yet among those with low or moderate risk, 32.2% and 74.3% of major CVD events occurred in men and women, respectively. Mediterranean diet adherence was associated with CVD risk reduction regardless of risk strata ( P >0.4 for interaction). Incident CVD increased in parallel with estimated risk in the PREDIMED cohort, but most events occurred in non-high-risk categories, particularly in women. Until predictive tools are improved, promotion of the Mediterranean diet might be useful to reduce CVD independent of baseline risk. URL: http://www.Controlled-trials.com. Unique identifier: ISRCTN35739639. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Ecological selectivity of the emerging mass extinction in the oceans.
Payne, Jonathan L; Bush, Andrew M; Heim, Noel A; Knope, Matthew L; McCauley, Douglas J
2016-09-16
To better predict the ecological and evolutionary effects of the emerging biodiversity crisis in the modern oceans, we compared the association between extinction threat and ecological traits in modern marine animals to associations observed during past extinction events using a database of 2497 marine vertebrate and mollusc genera. We find that extinction threat in the modern oceans is strongly associated with large body size, whereas past extinction events were either nonselective or preferentially removed smaller-bodied taxa. Pelagic animals were victimized more than benthic animals during previous mass extinctions but are not preferentially threatened in the modern ocean. The differential importance of large-bodied animals to ecosystem function portends greater future ecological disruption than that caused by similar levels of taxonomic loss in past mass extinction events. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Mann, M. E.; Rahmstorf, S.; Kornhuber, K.; Steinman, B. A.; Miller, S. K.; Coumou, D.
2017-12-01
Persistent episodes of extreme weather in the Northern Hemisphere summer are typically associated with high-amplitude quasi-stationary atmospheric Rossby waves with zonal wavenumbers. Such disturbances are favoured by the phenomenon of Quasi-Resonant Amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally-averaged surface temperature field. Examining future state-of-the-art (CMIP5) climate model projections we find that such events are likely to increase by 50% over the next century under business-as-usual carbon emissions, but there is considerable variation among climate models, with some models predicting a near tripling of QRA events by the end of the century. These results are strongly dependent on assumptions regarding the prominence of changes in radiative forcing associated with anthropogenic aerosols over the next century.
Field Investigations of Icelandic Joekulhlaups as an Analog to Floods on Mars
NASA Astrophysics Data System (ADS)
Rice, J. W., Jr.; Russell, A. J.; Tweed, F. S.; Knudsen, Ó.; Roberts, M. J.; Marren, P. M.; Waller, R. I.; Rushmer, E. L.; Fay, H.; Harris, T. D.
2000-08-01
Joekulhlaups are believed to play a dominant role in the evolution of proglacial outwash plains in many parts of the world and strongly influence the morphology and dynamics of glacier margins. Improved understanding of the characteristics and geomorphic effectiveness of such high magnitude events is invaluable for understanding former ice sheet dynamics, processes and rates of deglaciation, and predicting the environmental impacts of future events. Although the characteristics and immediate geomorphic impact of storage-release events such as the November 1996 joekulhlaup at Skeidararsandur have been investigated, few studies have focused on the impact of volcanically-generated joekulhlaups released directly into the proglacial zone. Spectacular joekulhlaup induced fracturing and sediment fills within Skeidarajoekull illustrate the importance of joekulhlaups as a mechanism of sediment entrainment into glaciers and ice sheets. Additional information is contained in the original extended abstract.
Storm surge and tidal range energy
NASA Astrophysics Data System (ADS)
Lewis, Matthew; Angeloudis, Athanasios; Robins, Peter; Evans, Paul; Neill, Simon
2017-04-01
The need to reduce carbon-based energy sources whilst increasing renewable energy forms has led to concerns of intermittency within a national electricity supply strategy. The regular rise and fall of the tide makes prediction almost entirely deterministic compared to other stochastic renewable energy forms; therefore, tidal range energy is often stated as a predictable and firm renewable energy source. Storm surge is the term used for the non-astronomical forcing of tidal elevation, and is synonymous with coastal flooding because positive storm surges can elevate water-levels above the height of coastal flood defences. We hypothesis storm surges will affect the reliability of the tidal range energy resource; with negative surge events reducing the tidal range, and conversely, positive surge events increasing the available resource. Moreover, tide-surge interaction, which results in positive storm surges more likely to occur on a flooding tide, will reduce the annual tidal range energy resource estimate. Water-level data (2000-2012) at nine UK tide gauges, where the mean tidal amplitude is above 2.5m and thus suitable for tidal-range energy development (e.g. Bristol Channel), were used to predict tidal range power with a 0D modelling approach. Storm surge affected the annual resource estimate by between -5% to +3%, due to inter-annual variability. Instantaneous power output were significantly affected (Normalised Root Mean Squared Error: 3%-8%, Scatter Index: 15%-41%) with spatial variability and variability due to operational strategy. We therefore find a storm surge affects the theoretical reliability of tidal range power, such that a prediction system may be required for any future electricity generation scenario that includes large amounts of tidal-range energy; however, annual resource estimation from astronomical tides alone appears sufficient for resource estimation. Future work should investigate water-level uncertainties on the reliability and predictability of tidal range energy with 2D hydrodynamic models.
Hydrologic Modeling in the Kenai River Watershed using Event Based Calibration
NASA Astrophysics Data System (ADS)
Wells, B.; Toniolo, H. A.; Stuefer, S. L.
2015-12-01
Understanding hydrologic changes is key for preparing for possible future scenarios. On the Kenai Peninsula in Alaska the yearly salmon runs provide a valuable stimulus to the economy. It is the focus of a large commercial fishing fleet, but also a prime tourist attraction. Modeling of anadromous waters provides a tool that assists in the prediction of future salmon run size. Beaver Creek, in Kenai, Alaska, is a lowlands stream that has been modeled using the Army Corps of Engineers event based modeling package HEC-HMS. With the use of historic precipitation and discharge data, the model was calibrated to observed discharge values. The hydrologic parameters were measured in the field or calculated, while soil parameters were estimated and adjusted during the calibration. With the calibrated parameter for HEC-HMS, discharge estimates can be used by other researches studying the area and help guide communities and officials to make better-educated decisions regarding the changing hydrology in the area and the tied economic drivers.
Temporal distance and discrimination: an audit study in academia.
Milkman, Katherine L; Akinola, Modupe; Chugh, Dolly
2012-07-01
Through a field experiment set in academia (with a sample of 6,548 professors), we found that decisions about distant-future events were more likely to generate discrimination against women and minorities (relative to Caucasian males) than were decisions about near-future events. In our study, faculty members received e-mails from fictional prospective doctoral students seeking to schedule a meeting either that day or in 1 week; students' names signaled their race (Caucasian, African American, Hispanic, Indian, or Chinese) and gender. When the requests were to meet in 1 week, Caucasian males were granted access to faculty members 26% more often than were women and minorities; also, compared with women and minorities, Caucasian males received more and faster responses. However, these patterns were essentially eliminated when prospective students requested a meeting that same day. Our identification of a temporal discrimination effect is consistent with the predictions of construal-level theory and implies that subtle contextual shifts can alter patterns of race- and gender-based discrimination.
Stressful Life Events and Predictors of Post-traumatic Growth among High-Risk Early Emerging Adults.
Arpawong, Thalida E; Rohrbach, Louise A; Milam, Joel E; Unger, Jennifer B; Land, Helen; Sun, Ping; Spruijt-Metz, Donna; Sussman, Steve
2016-01-01
Stressful life events (SLEs) may elicit positive psychosocial change among youth, referred to as Post-traumatic Growth (PTG). We assessed types of SLEs experienced, degree to which participants reported PTG, and variables predicting PTG across 24 months among a sample of high risk, ethnically diverse early emerging adults. Participants were recruited from alternative high schools ( n = 564; mean age=16.8; 65% Hispanic). Multi-level regression models were constructed to examine the impact of environmental (SLE quantity, severity) and personal factors (hedonic ability, perceived stress, developmental stage, future time orientation) on a composite score of PTG. The majority of participants reported positive changes resulted from their most life-altering SLE of the past two years. Predictors of PTG included fewer SLEs, less general stress, having a future time perspective, and greater identification with the developmental stage of Emerging Adulthood. Findings suggest intervention targets to foster positive adaptation among early emerging adults who experience frequent SLEs.
Transforming the practice of medicine using genomics
Ginsburg, Geoffrey S.; Ginsburg, Geoffrey S.; J. McCarthy, Jeanette
2009-01-01
Recent studies have demonstrated the use of genomic data, particularly gene expression signatures, as clinical prognostic factors in complex diseases. Such studies herald the future for genomic medicine and the opportunity for personalized prognosis in a variety of clinical contexts that utilize genomescale molecular information. Several key areas represent logical and critical next steps in the use of complex genomic profiling data towards the goal of personalized medicine. First, analyses should be geared toward the development of molecular profiles that predict future events – such as major clinical events or the response, resistance, or adverse reaction to therapy. Secondly, these must move into actual clinical practice by forming the basis for the next generation of clinical trials that will employ these methodologies to stratify patients. Lastly, there remain formidable challenges is in the translation of genomic technologies into clinical medicine that will need to be addressed: professional and public education, health outcomes research, reimbursement, regulatory oversight and privacy protection. PMID:22461094
Not my future? Core values and the neural representation of future events.
Brosch, Tobias; Stussi, Yoann; Desrichard, Olivier; Sander, David
2018-06-01
Individuals with pronounced self-transcendence values have been shown to put greater weight on the long-term consequences of their actions when making decisions. Using functional magnetic resonance imaging, we investigated the neural mechanisms underlying the evaluation of events occurring several decades in the future as well as the role of core values in these processes. Thirty-six participants viewed a series of events, consisting of potential consequences of climate change, which could occur in the near future (around 2030), and thus would be experienced by the participants themselves, or in the far future (around 2080). We observed increased activation in anterior VMPFC (BA11), a region involved in encoding the personal significance of future events, when participants were envisioning far future events, demonstrating for the first time that the role of the VMPFC in future projection extends to the time scale of decades. Importantly, this activation increase was observed only in participants with pronounced self-transcendence values measured by self-report questionnaire, as shown by a statistically significant interaction of temporal distance and value structure. These findings suggest that future projection mechanisms are modulated by self-transcendence values to allow for a more extensive simulation of far future events. Consistent with this, these participants reported similar concern ratings for near and far future events, whereas participants with pronounced self-enhancement values were more concerned about near future events. Our findings provide a neural substrate for the tendency of individuals with pronounced self-transcendence values to consider the long-term consequences of their actions.
NASA Astrophysics Data System (ADS)
Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin
2010-09-01
After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.
Steudte-Schmiedgen, Susann; Stalder, Tobias; Schönfeld, Sabine; Wittchen, Hans-Ulrich; Trautmann, Sebastian; Alexander, Nina; Miller, Robert; Kirschbaum, Clemens
2015-09-01
Previous evidence on endocrine risk markers for posttraumatic stress disorder (PTSD) has been inconclusive. Here, we report results of the first prospective study to investigate whether long-term hair cortisol levels and experimentally-induced cortisol stress reactivity are predictive of the development of PTSD symptomatology in response to trauma during military deployment. Male soldiers were examined before deployment to Afghanistan and at a 12-month post-deployment follow-up using dimensional measures for psychopathological symptoms. The predictive value of baseline (i) hair cortisol concentrations (HCC, N=90) and (ii) salivary cortisol stress reactivity (measured by the Trier Social Stress Test, N=80) for the development of PTSD symptomatology after being exposed to new-onset traumatic events was analyzed. Baseline cortisol activity significantly predicted PTSD symptom change from baseline to follow-up upon trauma exposure. Specifically, our results consistently revealed that lower HCC and lower cortisol stress reactivity were predictive of a greater increase in PTSD symptomatology in soldiers who had experienced new-onset traumatic events (explaining 5% and 10.3% of variance, respectively). Longitudinal analyses revealed an increase in HCC from baseline to follow-up and a trend for a negative relationship between HCC changes and the number of new-onset traumatic events. Additional pre-deployment analyses revealed that trauma history was reflected in lower HCC (at trend level) and that HCC were negatively related to stressful load. Our data indicate that attenuated cortisol secretion is a risk marker for subsequent development of PTSD symptomatology upon trauma exposure. Future studies are needed to confirm our findings in other samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin
2010-09-01
After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.
Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones
Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.
2014-01-01
Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8 Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.
Pricing a Protest: Forecasting the Dynamics of Civil Unrest Activity in Social Media.
Goode, Brian J; Krishnan, Siddharth; Roan, Michael; Ramakrishnan, Naren
2015-01-01
Online social media activity can often be a precursor to disruptive events such as protests, strikes, and "occupy" movements. We have observed that such civil unrest can galvanize supporters through social networks and help recruit activists to their cause. Understanding the dynamics of social network cascades and extrapolating their future growth will enable an analyst to detect or forecast major societal events. Existing work has primarily used structural and temporal properties of cascades to predict their future behavior. But factors like societal pressure, alignment of individual interests with broader causes, and perception of expected benefits also affect protest participation in social media. Here we develop an analysis framework using a differential game theoretic approach to characterize the cost of participating in a cascade, and demonstrate how we can combine such cost features with classical properties to forecast the future behavior of cascades. Using data from Twitter, we illustrate the effectiveness of our models on the "Brazilian Spring" and Venezuelan protests that occurred in June 2013 and November 2013, respectively. We demonstrate how our framework captures both qualitative and quantitative aspects of how these uprisings manifest through the lens of tweet volume on Twitter social media.
NASA Astrophysics Data System (ADS)
Kawazoe, S.; Gutowski, W. J., Jr.
2015-12-01
We analyze the ability of regional climate models (RCMs) to simulate very heavy daily precipitation and supporting processes for both contemporary and future-scenario simulations during summer (JJA). RCM output comes from North American Regional Climate Change Assessment Program (NARCCAP) simulations, which are all run at a spatial resolution of 50 km. Analysis focuses on the upper Mississippi basin for summer, between 1982-1998 for the contemporary climate, and 2052-2068 during the scenario climate. We also compare simulated precipitation and supporting processes with those obtained from observed precipitation and reanalysis atmospheric states. Precipitation observations are from the University of Washington (UW) and the Climate Prediction Center (CPC) gridded dataset. Utilizing two observational datasets helps determine if any uncertainties arise from differences in precipitation gridding schemes. Reanalysis fields come from the North American Regional Reanalysis. The NARCCAP models generally reproduce well the precipitation-vs.-intensity spectrum seen in observations, while producing overly strong precipitation at high intensity thresholds. In the future-scenario climate, there is a decrease in frequency for light to moderate precipitation intensities, while an increase in frequency is seen for the higher intensity events. Further analysis focuses on precipitation events exceeding the 99.5 percentile that occur simultaneously at several points in the region, yielding so-called "widespread events". For widespread events, we analyze local and large scale environmental parameters, such as 2-m temperature and specific humidity, 500-hPa geopotential heights, Convective Available Potential Energy (CAPE), vertically integrated moisture flux convergence, among others, to compare atmospheric states and processes leading to such events in the models and observations. The results suggest that an analysis of atmospheric states supporting very heavy precipitation events is a more fruitful path for understanding and detecting changes than simply looking at precipitation itself.
Know your limits? Climate extremes impact the range of Scots pine in unexpected places.
Julio Camarero, J; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel
2015-11-01
Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin ('rear edge') of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species' European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern 'rear edge', in order to avoid biased predictions based solely on warmer climatic scenarios. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Würtz, Peter; Havulinna, Aki S; Soininen, Pasi; Tynkkynen, Tuulia; Prieto-Merino, David; Tillin, Therese; Ghorbani, Anahita; Artati, Anna; Wang, Qin; Tiainen, Mika; Kangas, Antti J; Kettunen, Johannes; Kaikkonen, Jari; Mikkilä, Vera; Jula, Antti; Kähönen, Mika; Lehtimäki, Terho; Lawlor, Debbie A; Gaunt, Tom R; Hughes, Alun D; Sattar, Naveed; Illig, Thomas; Adamski, Jerzy; Wang, Thomas J; Perola, Markus; Ripatti, Samuli; Vasan, Ramachandran S; Raitakari, Olli T; Gerszten, Robert E; Casas, Juan-Pablo; Chaturvedi, Nish; Ala-Korpela, Mika; Salomaa, Veikko
2015-01-01
Background High-throughput profiling of circulating metabolites may improve cardiovascular risk prediction over established risk factors. Methods and Results We applied quantitative NMR metabolomics to identify biomarkers for incident cardiovascular disease during long-term follow-up. Biomarker discovery was conducted in the FINRISK study (n=7256; 800 events). Replication and incremental risk prediction was assessed in the SABRE study (n=2622; 573 events) and British Women’s Health and Heart Study (n=3563; 368 events). In targeted analyses of 68 lipids and metabolites, 33 measures were associated with incident cardiovascular events at P<0.0007 after adjusting for age, sex, blood pressure, smoking, diabetes and medication. When further adjusting for routine lipids, four metabolites were associated with future cardiovascular events in meta-analyses: higher serum phenylalanine (hazard ratio per standard deviation: 1.18 [95%CI 1.12–1.24]; P=4×10−10) and monounsaturated fatty acid levels (1.17 [1.11–1.24]; P=1×10−8) were associated with increased cardiovascular risk, while higher omega-6 fatty acids (0.89 [0.84–0.94]; P=6×10−5) and docosahexaenoic acid levels (0.90 [0.86–0.95]; P=5×10−5) were associated with lower risk. A risk score incorporating these four biomarkers was derived in FINRISK. Risk prediction estimates were more accurate in the two validation cohorts (relative integrated discrimination improvement 8.8% and 4.3%), albeit discrimination was not enhanced. Risk classification was particularly improved for persons in the 5–10% risk range (net reclassification 27.1% and 15.5%). Biomarker associations were further corroborated with mass spectrometry in FINRISK (n=671) and the Framingham Offspring Study (n=2289). Conclusions Metabolite profiling in large prospective cohorts identified phenylalanine, monounsaturated and polyunsaturated fatty acids as biomarkers for cardiovascular risk. This study substantiates the value of high-throughput metabolomics for biomarker discovery and improved risk assessment. PMID:25573147
Financial strain predicts recurrent events among women with coronary artery disease.
Georgiades, Anastasia; Janszky, Imre; Blom, May; László, Krisztina D; Ahnve, Staffan
2009-06-26
Although a number of epidemiological studies have found an association between socioeconomic status (SES) indices such as income and education and coronary morbidity and mortality, few have looked at health consequences arising from actually experiencing financial shortcomings. The objective of the present study was to examine whether financial strain predicts recurrent coronary artery disease (CAD) events among women with established CAD. Two hundred two women (mean age 62+/-9 years) hospitalized for an acute coronary event were followed over a period of 3.5 years. Demographic, socioeconomic, lifestyle-related, psychosocial and biological characteristics were obtained by means of questionnaires and clinical examination. Data on recurrent cardiac events were collected from the Swedish discharge and death registers. Women experiencing financial strain over the past year had an increased risk for recurrent events, i.e. the combination of all-cause mortality, new acute myocardial infarction and unstable angina pectoris during the follow-up with an unadjusted hazard ratio (HR) of 3.2 (95% CI 1.6-6.6), and a HR of 2.76 (95% CI 1.02-7.50) after controlling for education, household income, age, cohabiting status, inclusion diagnosis and rehabilitation therapy. Adjustment for potential mediators, i.e. psychosocial factors, lipids, diabetes mellitus, smoking, body-mass index, blood pressure, physical activity, alcohol consumption, participation in other cardiac rehabilitation programs did not alter the results significantly. Financial strain was a predictor for recurrent events among women with CAD, independently of commonly used SES indicators such as education and household income. Future studies will have to explore the mechanism behind this association.
Atmospheric River Frequency and Intensity Changes in CMIP5 Climate Model Projections
NASA Astrophysics Data System (ADS)
Warner, M.; Mass, C.; Salathe, E. P., Jr.
2012-12-01
Most extreme precipitation events that occur along the North American west coast are associated with narrow plumes of above-average water vapor concentration that stretch from the tropics or subtropics to the West Coast. These events generally occur during the wet season (October-March) and are referred to as atmospheric rivers (AR). ARs can cause major river management problems, damage from flooding or landslides, and loss of life. It is currently unclear how these events will change in frequency and intensity as a result of climate change in the coming century. While climate model global mean precipitation match observations reasonably well in historical runs, precipitation frequency and intensity is generally poorly represented at local scales; however, synoptic-scale features are more realistically simulated by climate models, and AR events can be identified by extremely high values of integrated water vapor flux at points near the West Coast. There have been many recent studies indicating changes in synoptic-scale features under climate change that could have meaningful impacts on the frequency and intensity of ARs. In this study, a suite of CMIP5 models are used to analyze predicted changes in frequency and intensity of AR events impacting the West Coast from the contemporary period (1970-1999) to the end of this century (2070-2099). Generally, integrated water vapor is predicted to increase in these models (both the mean and extremes) while low-level wind decreases and upper-level wind increases. This study aims to determine the influence of these changes on precipitation intensity in AR events in future climate simulations.
Primary Auditory Cortex is Required for Anticipatory Motor Response.
Li, Jingcheng; Liao, Xiang; Zhang, Jianxiong; Wang, Meng; Yang, Nian; Zhang, Jun; Lv, Guanghui; Li, Haohong; Lu, Jian; Ding, Ran; Li, Xingyi; Guang, Yu; Yang, Zhiqi; Qin, Han; Jin, Wenjun; Zhang, Kuan; He, Chao; Jia, Hongbo; Zeng, Shaoqun; Hu, Zhian; Nelken, Israel; Chen, Xiaowei
2017-06-01
The ability of the brain to predict future events based on the pattern of recent sensory experience is critical for guiding animal's behavior. Neocortical circuits for ongoing processing of sensory stimuli are extensively studied, but their contributions to the anticipation of upcoming sensory stimuli remain less understood. We, therefore, used in vivo cellular imaging and fiber photometry to record mouse primary auditory cortex to elucidate its role in processing anticipated stimulation. We found neuronal ensembles in layers 2/3, 4, and 5 which were activated in relationship to anticipated sound events following rhythmic stimulation. These neuronal activities correlated with the occurrence of anticipatory motor responses in an auditory learning task. Optogenetic manipulation experiments revealed an essential role of such neuronal activities in producing the anticipatory behavior. These results strongly suggest that the neural circuits of primary sensory cortex are critical for coding predictive information and transforming it into anticipatory motor behavior. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Knoeferle, Pia; Carminati, Maria Nella; Abashidze, Dato; Essig, Kai
2011-01-01
Eye-tracking findings suggest people prefer to ground their spoken language comprehension by focusing on recently seen events more than anticipating future events: When the verb in NP1-VERB-ADV-NP2 sentences was referentially ambiguous between a recently depicted and an equally plausible future clipart action, listeners fixated the target of the recent action more often at the verb than the object that hadn’t yet been acted upon. We examined whether this inspection preference generalizes to real-world events, and whether it is (vs. isn’t) modulated by how often people see recent and future events acted out. In a first eye-tracking study, the experimenter performed an action (e.g., sugaring pancakes), and then a spoken sentence either referred to that action or to an equally plausible future action (e.g., sugaring strawberries). At the verb, people more often inspected the pancakes (the recent target) than the strawberries (the future target), thus replicating the recent-event preference with these real-world actions. Adverb tense, indicating a future versus past event, had no effect on participants’ visual attention. In a second study we increased the frequency of future actions such that participants saw 50/50 future and recent actions. During the verb people mostly inspected the recent action target, but subsequently they began to rely on tense, and anticipated the future target more often for future than past tense adverbs. A corpus study showed that the verbs and adverbs indicating past versus future actions were equally frequent, suggesting long-term frequency biases did not cause the recent-event preference. Thus, (a) recent real-world actions can rapidly influence comprehension (as indexed by eye gaze to objects), and (b) people prefer to first inspect a recent action target (vs. an object that will soon be acted upon), even when past and future actions occur with equal frequency. A simple frequency-of-experience account cannot accommodate these findings. PMID:22207858
Visual perspective in remembering and episodic future thought.
McDermott, Kathleen B; Wooldridge, Cynthia L; Rice, Heather J; Berg, Jeffrey J; Szpunar, Karl K
2016-01-01
According to the constructive episodic simulation hypothesis, remembering and episodic future thinking are supported by a common set of constructive processes. In the present study, we directly addressed this assertion in the context of third-person perspectives that arise during remembering and episodic future thought. Specifically, we examined the frequency with which participants remembered past events or imagined future events from third-person perspectives. We also examined the different viewpoints from which third-person perspective events were remembered or imagined. Although future events were somewhat more likely to be imagined from a third-person perspective, the spatial viewpoint distributions of third-person perspectives characterizing remembered and imagined events were highly similar. These results suggest that a similar constructive mechanism may be at work when people remember events from a perspective that could not have been experienced in the past and when they imagine events from a perspective that could not be experienced in the future. The findings are discussed in terms of their consistency with--and as extensions of--the constructive episodic simulation hypothesis.
Recent Progress of Solar Weather Forecasting at Naoc
NASA Astrophysics Data System (ADS)
He, Han; Wang, Huaning; Du, Zhanle; Zhang, Liyun; Huang, Xin; Yan, Yan; Fan, Yuliang; Zhu, Xiaoshuai; Guo, Xiaobo; Dai, Xinghua
The history of solar weather forecasting services at National Astronomical Observatories, Chinese Academy of Sciences (NAOC) can be traced back to 1960s. Nowadays, NAOC is the headquarters of the Regional Warning Center of China (RWC-China), which is one of the members of the International Space Environment Service (ISES). NAOC is responsible for exchanging data, information and space weather forecasts of RWC-China with other RWCs. The solar weather forecasting services at NAOC cover short-term prediction (within two or three days), medium-term prediction (within several weeks), and long-term prediction (in time scale of solar cycle) of solar activities. Most efforts of the short-term prediction research are concentrated on the solar eruptive phenomena, such as flares, coronal mass ejections (CMEs) and solar proton events, which are the key driving sources of strong space weather disturbances. Based on the high quality observation data of the latest space-based and ground-based solar telescopes and with the help of artificial intelligence techniques, new numerical models with quantitative analyses and physical consideration are being developed for the predictions of solar eruptive events. The 3-D computer simulation technology is being introduced for the operational solar weather service platform to visualize the monitoring of solar activities, the running of the prediction models, as well as the presenting of the forecasting results. A new generation operational solar weather monitoring and forecasting system is expected to be constructed in the near future at NAOC.
Tracking Temporal Hazard in the Human Electroencephalogram Using a Forward Encoding Model
2018-01-01
Abstract Human observers automatically extract temporal contingencies from the environment and predict the onset of future events. Temporal predictions are modeled by the hazard function, which describes the instantaneous probability for an event to occur given it has not occurred yet. Here, we tackle the question of whether and how the human brain tracks continuous temporal hazard on a moment-to-moment basis, and how flexibly it adjusts to strictly implicit variations in the hazard function. We applied an encoding-model approach to human electroencephalographic data recorded during a pitch-discrimination task, in which we implicitly manipulated temporal predictability of the target tones by varying the interval between cue and target tone (i.e. the foreperiod). Critically, temporal predictability either was driven solely by the passage of time (resulting in a monotonic hazard function) or was modulated to increase at intermediate foreperiods (resulting in a modulated hazard function with a peak at the intermediate foreperiod). Forward-encoding models trained to predict the recorded EEG signal from different temporal hazard functions were able to distinguish between experimental conditions, showing that implicit variations of temporal hazard bear tractable signatures in the human electroencephalogram. Notably, this tracking signal was reconstructed best from the supplementary motor area, underlining this area’s link to cognitive processing of time. Our results underline the relevance of temporal hazard to cognitive processing and show that the predictive accuracy of the encoding-model approach can be utilized to track abstract time-resolved stimuli. PMID:29740594
Berntsen, Dorthe; Bohn, Annette
2010-04-01
Episodic future thinking is a projection of the self into the future to mentally preexperience an event. Previous work has shown striking similarities between autobiographical memory and episodic future thinking in response to various experimental manipulations. This has nurtured the idea of a shared neurocognitive system underlying both processes. Here, undergraduates generated autobiographical memories and future event representations in response to cue words and requests for important events and rated their characteristics. Important and word-cued events differed markedly on almost all measures. Past, as compared with future, events were rated as more sensorially vivid and less relevant to life story and identity. However, in contrast to previous work, these main effects were qualified by a number of interactions, suggesting important functional differences between the two temporal directions. For both temporal directions, sensory imagery dropped, whereas self-narrative importance and reference to normative cultural life script events increased with increasing temporal distance.
Hirono, Akira; Kusunose, Kenya; Kageyama, Norihito; Sumitomo, Masayuki; Abe, Masahiro; Fujinaga, Hiroyuki; Sata, Masataka
2018-01-01
An inter-arm systolic blood pressure difference (IAD) is associated with cardiovascular disease. The aim of this study was to develop and validate the optimal cut-off value of IAD as a predictor of major adverse cardiac events in patients with arteriosclerosis risk factors. From 2009 to 2014, 1076 patients who had at least one cardiovascular risk factor were included in the analysis. We defined 700 randomly selected patients as a development cohort to confirm that IAD was the predictor of cardiovascular events and to determine optimal cut-off value of IAD. Next, we validated outcomes in the remaining 376 patients as a validation cohort. The blood pressure (BP) of both arms measurements were done simultaneously using the ankle-brachial blood pressure index (ABI) form of automatic device. The primary endpoint was the cardiovascular event and secondary endpoint was the all-cause mortality. During a median period of 2.8 years, 143 patients reached the primary endpoint in the development cohort. In the multivariate Cox proportional hazards analysis, IAD was the strong predictor of cardiovascular events (hazard ratio: 1.03, 95% confidence interval: 1.01-1.05, p=0.005). The receiver operating characteristic curve revealed that 5mmHg was the optimal cut-off point of IAD to predict cardiovascular events (p<0.001). In the validation cohort, the presence of a large IAD (IAD ≥5mmHg) was significantly associated with the primary endpoint (p=0.021). IAD is significantly associated with future cardiovascular events in patients with arteriosclerosis risk factors. The optimal cut-off value of IAD is 5mmHg. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Chen, Xing-Jie; Liu, Lu-Lu; Cui, Ji-Fang; Wang, Ya; Shum, David H. K.; Chan, Raymond C. K.
2015-01-01
Mental time travel refers to the ability to recall episodic past and imagine future events. The present study aimed to investigate cultural differences in mental time travel between Chinese and Australian university students. A total of 231 students (108 Chinese and 123 Australians) participated in the study. Their mental time travel abilities were measured by the Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test (SCEFT). Results showed that there were no cultural differences in the number of specific events generated for the past or future. Significant differences between the Chinese and Australian participants were found mainly in the emotional valence and content of the events generated. Both Chinese and Australian participants generated more specific positive events compared to negative events when thinking about the future and Chinese participants were more positive about their past than Australian participants when recalling specific events. For content, Chinese participants recalled more events about their interpersonal relationships, while Australian participants imagined more about personal future achievements. These findings shed some lights on cultural differences in episodic past and future thinking. PMID:26167154
NASA Astrophysics Data System (ADS)
Ciavola, P.
2009-04-01
Both the EU and The United Nations are now taking seriously the predicted climate change scenarios of the IPCC. Of particular relevance to Integrated Coastal Zone Management is the predicted increase in the intensity and frequency of powerful storm events characterised by larger peak wind speeds and consequently larger waves. Engineering has usually been favoured in the past as the best option for disaster mitigation at the coast. However, most engineering works are constrained by economics, and a compromise is sought between the potential threat to lives and property and the resources available for design and construction. Furthermore, the design of structures is based on predicted extreme events which themselves are subject to uncertainty, especially in a rapidly changing global climate. The huge damage to the city of New Orleans by Hurricane Katrina illustrates clearly what can go wrong when the engineering design is subjected to forcing beyond its design limits and when civil evacuation and management plans fail. The proposed paper will address the issue of encouraging and facilitating exchange of information on storm impacts produced by nationally funded projects in Member States; establishing robust data management and data quality control and engaging with stakeholders and end users to optimise dissemination strategies. It will heavily rely on the information produced by the MICORE Project (FP7 contract 202798), using and enlarging the database collated by the project regarding the characteristics of extreme storm events occurred in the last 50 years. The MICORE project (www.micore.eu) will provide the knowledge necessary to assess the present day risks and to study the economic and social impact of future severe storm events. Together, these elements will have an important strategic impact on the safety of the people living in coastal areas and upon decision processes aimed at minimising the economic consequences of extreme events. The project will also investigate with stakeholders and end-users the possibilities of producing EU-wide guidelines for a viable and reliable risk mitigation strategy. One of the initial main objectives of MICORE is to produce an up-to-date data base for each partner country that includes: an historical review of storms; an inventory of data related to the forcing signals; quantification of the morphological response of coastal systems to storms and to sequences of storms; an assessment of socio-economic impact; a description of existing civil protection schemes and interventions. The MICORE project will identify indices for coastal vulnerability to erosion with an integrated EU perspective using the standardised data bases assembled for all member states. It will also recommend future data collection requirements that best serve the needs of coastal managers. Here an area of innovation in the project is the standardization in the production of vulnerability matrices for evaluation of society impact from storms.
NASA Astrophysics Data System (ADS)
Yu, Huai-zhong; Shen, Zheng-kang; Wan, Yong-ge; Zhu, Qing-yong; Yin, Xiang-chu
2006-12-01
The Load/Unload Response Ratio (LURR) method is proposed for short-to-intermediate-term earthquake prediction [Yin, X.C., Chen, X.Z., Song, Z.P., Yin, C., 1995. A New Approach to Earthquake Prediction — The Load/Unload Response Ratio (LURR) Theory, Pure Appl. Geophys., 145, 701-715]. This method is based on measuring the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to the Coulomb Failure Stress change induced by Earth tides on optimally oriented faults. According to the method, the LURR time series usually climb to an anomalously high peak prior to occurrence of a large earthquake. Previous studies have indicated that the size of critical seismogenic region selected for LURR measurements has great influence on the evaluation of LURR. In this study, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. The Coulomb stress change before a hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. This new algorithm, by combining the LURR method with our choice of identified area with increased Coulomb stress, is devised to improve the sensitivity of LURR to measure criticality of stress accumulation before a large earthquake. Retrospective tests of this algorithm on four large earthquakes occurred in California over the last two decades show remarkable enhancement of the LURR precursory anomalies. For some strong events of lesser magnitudes occurred in the same neighborhoods and during the same time periods, significant anomalies are found if circular areas are used, and are not found if increased Coulomb stress areas are used for LURR data selection. The unique feature of this algorithm may provide stronger constraints on forecasts of the size and location of future large events.
Hippocampal Maturation Drives Memory from Generalization to Specificity.
Keresztes, Attila; Ngo, Chi T; Lindenberger, Ulman; Werkle-Bergner, Markus; Newcombe, Nora S
2018-06-14
During early ontogeny, the rapid and cumulative acquisition of world knowledge contrasts with slower improvements in the ability to lay down detailed and long-lasting episodic memories. This emphasis on generalization at the expense of specificity persists well into middle childhood and possibly into adolescence. During this period, recognizing regularities, forming stable representations of recurring episodes, predicting the structure of future events, and building up semantic knowledge may be prioritized over remembering specific episodes. We highlight recent behavioral and neuroimaging evidence suggesting that maturational differences among subfields within the hippocampus contribute to the developmental lead-lag relation between generalization and specificity, and lay out future research directions. Copyright © 2018 Elsevier Ltd. All rights reserved.
A computational substrate for incentive salience.
McClure, Samuel M; Daw, Nathaniel D; Montague, P Read
2003-08-01
Theories of dopamine function are at a crossroads. Computational models derived from single-unit recordings capture changes in dopaminergic neuron firing rate as a prediction error signal. These models employ the prediction error signal in two roles: learning to predict future rewarding events and biasing action choice. Conversely, pharmacological inhibition or lesion of dopaminergic neuron function diminishes the ability of an animal to motivate behaviors directed at acquiring rewards. These lesion experiments have raised the possibility that dopamine release encodes a measure of the incentive value of a contemplated behavioral act. The most complete psychological idea that captures this notion frames the dopamine signal as carrying 'incentive salience'. On the surface, these two competing accounts of dopamine function seem incommensurate. To the contrary, we demonstrate that both of these functions can be captured in a single computational model of the involvement of dopamine in reward prediction for the purpose of reward seeking.
NASA Astrophysics Data System (ADS)
Daniell, James; Schaefer, Andreas; Wenzel, Friedemann; Khazai, Bijan; Girard, Trevor; Kunz-Plapp, Tina; Kunz, Michael; Muehr, Bernhard
2016-04-01
Over the days following the 2015 Nepal earthquake, rapid loss estimates of deaths and the economic loss and reconstruction cost were undertaken by our research group in conjunction with the World Bank. This modelling relied on historic losses from other Nepal earthquakes as well as detailed socioeconomic data and earthquake loss information via CATDAT. The modelled results were very close to the final death toll and reconstruction cost for the 2015 earthquake of around 9000 deaths and a direct building loss of ca. 3 billion (a). A description of the process undertaken to produce these loss estimates is described and the potential for use in analysing reconstruction costs from future Nepal earthquakes in rapid time post-event. The reconstruction cost and death toll model is then used as the base model for the examination of the effect of spending money on earthquake retrofitting of buildings versus complete reconstruction of buildings. This is undertaken future events using empirical statistics from past events along with further analytical modelling. The effects of investment vs. the time of a future event is also explored. Preliminary low-cost options (b) along the line of other country studies for retrofitting (ca. 100) are examined versus the option of different building typologies in Nepal as well as investment in various sectors of construction. The effect of public vs. private capital expenditure post-earthquake is also explored as part of this analysis, as well as spending on other components outside of earthquakes. a) http://www.scientificamerican.com/article/experts-calculate-new-loss-predictions-for-nepal-quake/ b) http://www.aees.org.au/wp-content/uploads/2015/06/23-Daniell.pdf
Huang, Shao-Sung; Huang, Po-Hsun; Chen, Ying-Hwa; Chiang, Kuang-Hsing; Chen, Jaw-Wen; Lin, Shing-Jong
2010-03-31
There is uncertainty about the association between circulating concentrations of adiponectin and coronary heart disease risk, particularly in patients after acute myocardial infarction (AMI). The goal of this study was to determine whether plasma adiponectin levels could predict future cardiovascular events in patients after AMI, and to elucidate the role of adiponectin in cardioprotection. A total of 102 patients with AMI were enrolled. Plasma adiponectin levels were examined from blood samples collected 18 months after AMI. All subjects were followed-up for 43+/-12 months. The primary endpoint was the combined occurrence of major adverse cardiovascular events (MACE), including rehospitalization due to unstable angina, nonfatal MI, revascularization with percutaneous coronary intervention or coronary artery bypass grafting, ischemic stroke, and cardiovascular death. A total of 30 MACE occurred, including one case of cardiovascular death, five cases of nonfatal MI, and nine cases of ischemic stroke. Patients with MACE had lower plasma adiponectin levels (p=0.013). In addition, adiponectin was positively associated with changes in left ventricular ejection fraction (p=0.005). All patients were divided into a high-adiponectin group (>or=6.46 microg/mL) and a low-adiponectin group (<6.46 microg/mL). The incidence of MACE was significantly reduced in the high-adiponectin group (p=0.021). In multivariate Cox regression analysis that included adiponectin, classical risk factors, and medications, adiponectin was an independent predictor of MACE in patients after AMI (HR, 0.821; 95% CI, 0.691 to 0.974; p=0.024). The results indicate a potential association between plasma adiponectin levels and future cardiovascular events in patients after AMI. Moreover, plasma adiponectin concentrations appear to play a pivotal role in atherothrombosis and cardioprotection.
Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago.
Mallela, J; Crabbe, M J C
2009-10-01
Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p=0.016). Following Hurricane Ivan in 2004 and the 2005-2006 bleaching event, coral recruitment was markedly limited with only 2% (n=6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago's marginal reef systems, albeit in low numbers.
Integrated modeling for assessment of energy-water system resilience under changing climate
NASA Astrophysics Data System (ADS)
Yan, E.; Veselka, T.; Zhou, Z.; Koritarov, V.; Mahalik, M.; Qiu, F.; Mahat, V.; Betrie, G.; Clark, C.
2016-12-01
Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. The IWESAF currently includes an extreme climate event generator to predict future extreme weather events, hydrologic and reservoir models, riverine temperature model, power plant water use simulator, and power grid operation and cost optimization model. The IWESAF can facilitate the interaction among the modeling systems and provide insights of the sustainability and resilience of the energy-water system under extreme climate events and economic consequence. The regional case demonstration in the Midwest region will be presented. The detailed information on some of individual modeling components will also be presented in several other abstracts submitted to AGU this year.
Teng, Zhongzhao; Sadat, Umar; Wang, Wenkai; Bahaei, Nasim S; Chen, Shengyong; Young, Victoria E; Graves, Martin J; Gillard, Jonathan H
2013-01-01
Stretch is a mechanical parameter, which has been proposed previously to affect the biological activities in different tissues. This study explored its utility in determining plaque vulnerability. One hundred and six patients with mild to moderate carotid stenosis were recruited in this study (53 symptomatic and 53 asymptomatic). High resolution, multi-sequence magnetic resonance (MR) imaging was performed to delineate various plaque components. Finite element method was used to predict high stretch concentration within the plaque. During a two-year follow-up, 11 patients in symptomatic group and 3 in asymptomatic group experienced recurrent cerebrovascular events. Plaque stretch at systole and stretch variation during one cardiac cycle was greater in symptomatic group than those in the asymptomatic. Within the symptomatic group, a similar trend was observed in patients with recurrent events compared to those without. Plaques with high stretch concentration and large stretch variation are associated with increased risk of future cerebrovascular events.
Research frontiers for improving our understanding of drought‐induced tree and forest mortality
Hartmann, Henrik; Moura, Catarina; Anderegg, William R. L.; Ruehr, Nadine; Salmon, Yann; Allen, Craig D.; Arndt, Stefan K.; Breshears, David D.; Davi, Hendrik; Galbraith, David; Ruthrof, Katinka X.; Wunder, Jan; Adams, Henry D.; Bloemen, Jasper; Cailleret, Maxime; Cobb, Richard; Gessler, Arthur; Grams, Thorsten E. E.; Jansen, Steven; Kautz, Markus; Lloret, Francisco; O’Brien, Michael
2018-01-01
Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die‐off events have severe consequences for ecosystem services, biophysical and biogeochemical land–atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die‐off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought‐induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.
Chou, Loke Ming; Toh, Tai Chong; Toh, Kok Ben; Ng, Chin Soon Lionel; Cabaitan, Patrick; Tun, Karenne; Goh, Eugene; Afiq-Rosli, Lutfi; Taira, Daisuke; Du, Rosa Celia Poquita; Loke, Hai Xin; Khalis, Aizat; Li, Jinghan; Song, Tiancheng
2016-01-01
Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera-Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change.
Toh, Kok Ben; Ng, Chin Soon Lionel; Cabaitan, Patrick; Tun, Karenne; Goh, Eugene; Afiq-Rosli, Lutfi; Taira, Daisuke; Du, Rosa Celia Poquita; Loke, Hai Xin; Khalis, Aizat; Li, Jinghan; Song, Tiancheng
2016-01-01
Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera–Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change. PMID:27438593
NASA Contributions to Improve Understanding of Extreme Events in the Global Energy and Water Cycle
NASA Technical Reports Server (NTRS)
Lapenta, William M.
2008-01-01
The U.S. Climate Change Science Program (CCSP) has established the water cycle goals of the Nation's climate change program. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability. through integration of all necessary observations and research tools, To this end, in conjunction with NASA's Earth science research strategy, the overarching long-term NASA Energy and Water Cycle Study (NEWS) grand challenge can he summarized as documenting and enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. This challenge requires documenting and predicting trends in the rate of the Earth's water and energy cycling that corresponds to climate change and changes in the frequency and intensity of naturally occurring related meteorological and hydrologic events, which may vary as climate may vary in the future. The cycling of water and energy has obvious and significant implications for the health and prosperity of our society. The importance of documenting and predicting water and energy cycle variations and extremes is necessary to accomplish this benefit to society.
Predicting Atmospheric Releases from the September 3, 2017 North Korean Event
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Simpson, M. D.; Glascoe, L. G.
2017-12-01
Underground nuclear explosions produce radionuclides that can be vented to the atmosphere and transported to International Monitoring System (IMS) measurement stations. Although a positive atmospheric detection from North Korea's declared test on September 3, 2017 has not been reported at any IMS station through early October, atmospheric transport models can predict when and where detections may arise and provide valuable information to optimize air collection strategies. We present predictive atmospheric transport simulations initiated in the early days after the event. Wind fields were simulated with the Weather Research and Forecast model and used to transport air tracers from an ensemble of releases in the FLEXPART dispersion model. If early venting had occurred, the simulations suggested that detections were possible at the IMS station in Takasaki, Japan. On-going and future research efforts associated with nuclear testing are focused on quantifying meteorological uncertainty, simulating releases in complex terrain, and developing new statistical methods for source attribution. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and is released as LLNL-ABS-740341.
Berger, Zoe E; Dalton, Louise J
2011-01-01
TO explore the factors that predict psychosocial adjustment in young people with a cleft and their parents. DESIGN, PARTICIPANTS, SETTING: The study used a cross-sectional postal questionnaire design involving young people aged between 11 and 16 and their parents from two cleft services. Data are presented for 91 adolescents and their mothers. Participants completed measures of psychological adjustment, coping, social experiences, satisfaction with appearance, stressful life events, cleft-related factors, and demographic information. Psychosocial adjustment in adolescents was predicted by their social experiences and maternal well-being. Satisfaction with appearance, perceived speech problems, and the use of avoidant coping strategies were also important factors relating to their adjustment. For mothers, adjustment was predicted by use of coping strategies such as self-blame, venting, and acceptance, in addition to perceived problems with their child's hearing and the number of stressful life events experienced. The findings are discussed in relation to the concepts of adjustment, coping, satisfaction with appearance, and maternal mental health. Directions for future research are outlined, and a number of opportunities and challenges for cleft services regarding the provision of timely interventions for this age group and their families are discussed.
Oglesby, Mary E; Boffa, Joseph W; Short, Nicole A; Raines, Amanda M; Schmidt, Norman B
2016-06-01
Intolerance of uncertainty (IU) has been associated with elevated post-traumatic stress symptoms (PTSS) in the extant literature. However, no research to date has investigated whether pre-trauma IU predicts PTSS following trauma exposure. The current study prospectively examined the relationship between IU and PTSS within a sample of individuals with various levels of exposure to a university campus shooting. We hypothesized that pre-trauma IU would predict elevated PTSS following a campus shooting, even after covarying for anxiety sensitivity (AS), a known correlate of PTSS. Participants included undergraduates (n=77) who completed a self-report battery in Introductory Psychology. After a campus shooting, they were invited to complete measures of PTSD symptoms and level of exposure to the shooting. As anticipated, results revealed pre-trauma IU as a significant predictor of elevated PTSS following the campus shooting. These results remained significant after covarying for pre-trauma levels of AS. Our results are the first to demonstrate that elevated pre-trauma levels of IU predict later PTSS following exposure to a traumatic event. This finding is discussed in terms of promising directions for future research and treatment strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
The neural basis of temporal order processing in past and future thought.
D'Argembeau, Arnaud; Jeunehomme, Olivier; Majerus, Steve; Bastin, Christine; Salmon, Eric
2015-01-01
Although growing evidence has shown that remembering the past and imagining the future recruit a common core network of frontal-parietal-temporal regions, the extent to which these regions contribute to the temporal dimension of autobiographical thought remains unclear. In this fMRI study, we focused on the event-sequencing aspect of time and examined whether ordering past and future events involve common neural substrates. Participants had to determine which of two past (or future) events occurred (or would occur) before the other, and these order judgments were compared with a task requiring to think about the content of the same past or future events. For both past and future events, we found that the left posterior hippocampus was more activated when establishing the order of events, whereas the anterior hippocampus was more activated when representing their content. Aside from the hippocampus, most of the brain regions that were activated when thinking about temporal order (notably the intraparietal sulcus, dorsolateral pFC, dorsal anterior cingulate, and visual cortex) lied outside the core network and may reflect the involvement of controlled processes and visuospatial imagery to locate events in time. Collectively, these findings suggest (a) that the same processing operations are engaged for ordering past events and planned future events in time, (b) that anterior and posterior portions of the hippocampus are involved in processing different aspects of autobiographical thought, and (c) that temporal order is not necessarily an intrinsic property of memory or future thought but instead requires additional, controlled processes.
Contribution of past and future self-defining event networks to personal identity.
Demblon, Julie; D'Argembeau, Arnaud
2017-05-01
Personal identity is nourished by memories of significant past experiences and by the imagination of meaningful events that one anticipates to happen in the future. The organisation of such self-defining memories and prospective thoughts in the cognitive system has received little empirical attention, however. In the present study, our aims were to investigate to what extent self-defining memories and future projections are organised in networks of related events, and to determine the nature of the connections linking these events. Our results reveal the existence of self-defining event networks, composed of both memories and future events of similar centrality for identity and characterised by similar identity motives. These self-defining networks expressed a strong internal coherence and frequently organised events in meaningful themes and sequences (i.e., event clusters). Finally, we found that the satisfaction of identity motives in represented events and the presence of clustering across events both contributed to increase in the perceived centrality of events for the sense of identity. Overall, these findings suggest that personal identity is not only nourished by representations of significant past and future events, but also depends on the formation of coherent networks of related events that provide an overarching meaning to specific life experiences.
Gallo, David A.; Korthauer, Laura E.; McDonough, Ian M.; Teshale, Salom; Johnson, Elizabeth L.
2013-01-01
This study investigated whether the age-related positivity effect strengthens specific event details in autobiographical memory. Participants retrieved past events or imagined future events in response to neutral or emotional cue words. Older adults rated each kind of event more positively than younger adults, demonstrating an age-related positivity effect. We next administered a source memory test. Participants were given the same cue words and tried to retrieve the previously generated event and its source (past or future). Accuracy on this source test should depend on the recollection of specific details about the earlier generated events, providing a more objective measure of those details than subjective ratings. We found that source accuracy was greater for positive than negative future events in both age groups, suggesting that positive future events were more detailed. In contrast, valence did not affect source accuracy for past events in either age group, suggesting that positive and negative past events were equally detailed. Although aging can bias people to focus on positive aspects of experience, this bias does not appear to strengthen the availability of details for positive relative to negative past events. PMID:21919591
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images. PMID:26869966
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.
Episodic and Semantic Memory Contribute to Familiar and Novel Episodic Future Thinking.
Wang, Tong; Yue, Tong; Huang, Xi Ting
2016-01-01
Increasing evidence indicates that episodic future thinking (EFT) relies on both episodic and semantic memory; however, event familiarity may importantly affect the extent to which episodic and semantic memory contribute to EFT. To test this possibility, two behavioral experiments were conducted. In Experiment 1, we directly compared the proportion of episodic and semantic memory used in an EFT task. The results indicated that more episodic memory was used when imagining familiar future events compared with novel future events. Conversely, significantly more semantic memory was used when imagining novel events compared with familiar events. Experiment 2 aimed to verify the results of Experiment 1. In Experiment 2, we found that familiarity moderated the effect of priming the episodic memory system on EFT; particularly, it increased the time required to construct a standard familiar episodic future event, but did not significantly affect novel episodic event reaction time. Collectively, these findings support the hypothesis that event familiarity importantly moderates episodic and semantic memory's contribution to EFT.
Pollitz, F.F.; Banerjee, P.; Burgmann, R.; Hashimoto, M.; Choosakul, N.
2006-01-01
The 26 December 2004 Mw = 9.2 and 28 March 2005 Mw = 8.7 earthquakes on the Sumatra megathrust altered the state of stress over a large region surrounding the earthquakes. We evaluate the stress changes associated with coseismic and postseismic deformation following these two large events, focusing on postseismic deformation that is driven by viscoelastic relaxation of a low-viscosity asthenosphere. Under Coulomb failure stress (CFS) theory, the December 2004 event increased CFS on the future hypocentral zone of the March 2005 event by about 0.25 bar, with little or no contribution from viscous relaxation. Coseismic stresses around the rupture zones of the 1797 and 1833 Sunda trench events are negligible, but postseismic stress perturbations since December 2004 are predicted to result in CFS increases of 0.1 to 0.2 bar around these rupture zones between 2 and 8 years after the December 2004 event. These are considerable stress perturbations given that the 1797 and 1833 rupture zones are likely approaching the end of a complete seismic cycle. Copyright 2006 by the American Geophysical Union.
Predicting asthma exacerbations in children.
Forno, Erick; Celedón, Juan C
2012-01-01
This review critically assesses recently published literature on predicting asthma exacerbations in children, while also providing general recommendations for future research in this field. Current evidence suggests that every effort should be made to provide optimal treatment to achieve adequate asthma control, as this will significantly reduce the risk of severe disease exacerbations. Children who have had at least one asthma exacerbation in the previous year are at highest risk for subsequent exacerbations, regardless of disease severity and/or control. Although several tools and biomarkers to predict asthma exacerbations have been recently developed, these approaches need further validation and/or have only had partial success in identifying children at risk. Although considerable progress has been made, much remains to be done. Future studies should clearly differentiate severe asthma exacerbations due to inadequate asthma control from those occurring in children whose asthma is well controlled, utilize standardized definitions of asthma exacerbations, and use a systematic approach to identify the best predictors after accounting for the multiple dimensions of the problem. Our ability to correctly predict the development of severe asthma exacerbations in an individual child should improve in parallel with increased knowledge and/or understanding of the complex interactions among genetic, environmental (e.g. viral infections) and lifestyle (e.g. adherence to treatment) factors underlying these events.
Wavelet modeling and prediction of the stability of states: the Roman Empire and the European Union
NASA Astrophysics Data System (ADS)
Yaroshenko, Tatyana Y.; Krysko, Dmitri V.; Dobriyan, Vitalii; Zhigalov, Maksim V.; Vos, Hendrik; Vandenabeele, Peter; Krysko, Vadim A.
2015-09-01
How can the stability of a state be quantitatively determined and its future stability predicted? The rise and collapse of empires and states is very complex, and it is exceedingly difficult to understand and predict it. Existing theories are usually formulated as verbal models and, consequently, do not yield sharply defined, quantitative prediction that can be unambiguously validated with data. Here we describe a model that determines whether the state is in a stable or chaotic condition and predicts its future condition. The central model, which we test, is that growth and collapse of states is reflected by the changes of their territories, populations and budgets. The model was simulated within the historical societies of the Roman Empire (400 BC to 400 AD) and the European Union (1957-2007) by using wavelets and analysis of the sign change of the spectrum of Lyapunov exponents. The model matches well with the historical events. During wars and crises, the state becomes unstable; this is reflected in the wavelet analysis by a significant increase in the frequency ω (t) and wavelet coefficients W (ω, t) and the sign of the largest Lyapunov exponent becomes positive, indicating chaos. We successfully reconstructed and forecasted time series in the Roman Empire and the European Union by applying artificial neural network. The proposed model helps to quantitatively determine and forecast the stability of a state.
An analysis of high-impact, low-predictive skill severe weather events in the northeast U.S
NASA Astrophysics Data System (ADS)
Vaughan, Matthew T.
An objective evaluation of Storm Prediction Center slight risk convective outlooks, as well as a method to identify high-impact severe weather events with poor-predictive skill are presented in this study. The objectives are to assess severe weather forecast skill over the northeast U.S. relative to the continental U.S., build a climatology of high-impact, low-predictive skill events between 1980--2013, and investigate the dynamic and thermodynamic differences between severe weather events with low-predictive skill and high-predictive skill over the northeast U.S. Severe storm reports of hail, wind, and tornadoes are used to calculate skill scores including probability of detection (POD), false alarm ratio (FAR) and threat scores (TS) for each convective outlook. Low predictive skill events are binned into low POD (type 1) and high FAR (type 2) categories to assess temporal variability of low-predictive skill events. Type 1 events were found to occur in every year of the dataset with an average of 6 events per year. Type 2 events occur less frequently and are more common in the earlier half of the study period. An event-centered composite analysis is performed on the low-predictive skill database using the National Centers for Environmental Prediction Climate Forecast System Reanalysis 0.5° gridded dataset to analyze the dynamic and thermodynamic conditions prior to high-impact severe weather events with varying predictive skill. Deep-layer vertical shear between 1000--500 hPa is found to be a significant discriminator in slight risk forecast skill where high-impact events with less than 31-kt shear have lower threat scores than high-impact events with higher shear values. Case study analysis of type 1 events suggests the environment over which severe weather occurs is characterized by high downdraft convective available potential energy, steep low-level lapse rates, and high lifting condensation level heights that contribute to an elevated risk of severe wind.
Laurent, Vincent; Balleine, Bernard W
2015-04-20
The capacity to extract causal knowledge from the environment allows us to predict future events and to use those predictions to decide on a course of action. Although evidence of such causal reasoning has long been described, recent evidence suggests that using predictive knowledge to guide decision-making in this way is predicated on reasoning about causes in two quite distinct ways: choosing an action can be based on the interaction between predictive information and the consequences of that action, or, alternatively, actions can be selected based on the consequences that they do not produce. The latter counterfactual reasoning is highly adaptive because it allows us to use information about both present and absent events to guide decision-making. Nevertheless, although there is now evidence to suggest that animals other than humans, including rats and birds, can engage in causal reasoning of one kind or another, there is currently no evidence that they use counterfactual reasoning to guide choice. To assess this question, we gave rats the opportunity to learn new action-outcome relationships, after which we probed the structure of this learning by presenting excitatory and inhibitory cues predicting that the specific outcomes of their actions would either occur or would not occur. Whereas the excitors biased choice toward the action delivering the predicted outcome, the inhibitory cues selectively elevated actions predicting the absence of the inhibited outcome, suggesting that rats encoded the counterfactual action-outcome mappings and were able to use them to guide choice. Copyright © 2015 Elsevier Ltd. All rights reserved.
The solar dynamo and prediction of sunspot cycles
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi
2012-07-01
Much progress has been made in understanding the solar dynamo since Parker first developed the concepts of dynamo waves and magnetic buoyancy around 1955, and the German school first formulated the solar dynamo using the mean-field formalism. The essential ingredients of these mean-field dynamos are turbulent magnetic diffusivity, a source of lifting of flux, or 'alpha-effect', and differential rotation. With the advent of helioseismic and other observations at the Sun's photosphere and interior, as well as theoretical understanding of solar interior dynamics, solar dynamo models have evolved both in the realm of mean-field and beyond mean-field models. After briefly discussing the status of these models, I will focus on a class of mean-field model, called flux-transport dynamos, which include meridional circulation as an essential additional ingredient. Flux-transport dynamos have been successful in simulating many global solar cycle features, and have reached the stage that they can be used for making solar cycle predictions. Meridional circulation works in these models like a conveyor-belt, carrying a memory of the magnetic fields from 5 to 20 years back in past. The lower is the magnetic diffusivity, the longer is the model's memory. In the terrestrial system, the great-ocean conveyor-belt in oceanic models and Hadley, polar and Ferrel circulation cells in the troposphere, carry signatures from the past climatological events and influence the determination of future events. Analogously, the memory provided by the Sun's meridional circulation creates the potential for flux-transport dynamos to predict future solar cycle properties. Various groups in the world have built flux-transport dynamo-based predictive tools, which nudge the Sun's surface magnetic data and integrated forward in time to forecast the amplitude of the currently ascending cycle 24. Due to different initial conditions and different choices of unknown model-ingredients, predictions can vary; so it is for their cycle 24 forecasts. We all await the peak of cycle 24. I will close by discussing the prospects of improving dynamo-based predictive tools using more sophisticated data-assimilation techniques, such as the Ensemble Kalman Filter method and variational approaches.
An extremely luminous X-ray outburst at the birth of a supernova
NASA Astrophysics Data System (ADS)
Soderberg, A. M.; Berger, E.; Page, K. L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.-Y.; Ofek, E. O.; Cucchiara, A.; Rau, A.; Waxman, E.; Simon, J. D.; Bock, D. C.-J.; Milne, P. A.; Page, M. J.; Barentine, J. C.; Barthelmy, S. D.; Beardmore, A. P.; Bietenholz, M. F.; Brown, P.; Burrows, A.; Burrows, D. N.; Byrngelson, G.; Cenko, S. B.; Chandra, P.; Cummings, J. R.; Fox, D. B.; Gal-Yam, A.; Gehrels, N.; Immler, S.; Kasliwal, M.; Kong, A. K. H.; Krimm, H. A.; Kulkarni, S. R.; Maccarone, T. J.; Mészáros, P.; Nakar, E.; O'Brien, P. T.; Overzier, R. A.; de Pasquale, M.; Racusin, J.; Rea, N.; York, D. G.
2008-05-01
Massive stars end their short lives in spectacular explosions-supernovae-that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their `delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the `break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.
Unlocking the riddle of time in learning disability.
Owen, Ann L; Wilson, Rebecca R
2006-03-01
People with learning disabilities often have difficulties understanding abstract concepts such as the concept of time yet research in this area is scarce. Not only does the development of an understanding of the concept of time enable us to predict future events, order past events and give us a sense of control over current events, it also serves to contribute to the very essence of our understanding of a sense of ourselves. It seems reasonable to suggest that the converse may be true for people who are not able to develop this concept. Time perception and understanding are complex cognitive processes. It is suggested that facilitating this development and managing associated difficulties may be achieved by focusing on the practical applications of time in everyday life. Improving time perception abilities may reduce feelings of powerlessness and anxiety and increase feelings of self-efficacy but research is needed to evaluate this.
Social interaction anxiety and the discounting of positive interpersonal events.
Vassilopoulos, Stephanos P; Banerjee, Robin
2010-10-01
Recent research has indicated that individuals with social interaction anxiety make biased interpretations of positive social interactions, with greater general apprehension in response to such events and more negative predictions about the future. There has also been some preliminary evidence for a second facet of interpretation bias, namely a failure to accept others' positive reactions at face value, but this has so far not been adequately studied. The present study developed a new measure of this "discounting" dimension and utilized a nonclinical sample of undergraduate students to provide an initial analysis of the scale. Results provide early support for the psychometric properties of our scale, and indicate that discounting mediates the relationship between social interaction anxiety and low positive affect, over and above the previously studied aspect of positive event interpretation bias. The implications for treatment interventions and further research are discussed.
An extremely luminous X-ray outburst at the birth of a supernova.
Soderberg, A M; Berger, E; Page, K L; Schady, P; Parrent, J; Pooley, D; Wang, X-Y; Ofek, E O; Cucchiara, A; Rau, A; Waxman, E; Simon, J D; Bock, D C-J; Milne, P A; Page, M J; Barentine, J C; Barthelmy, S D; Beardmore, A P; Bietenholz, M F; Brown, P; Burrows, A; Burrows, D N; Bryngelson, G; Byrngelson, G; Cenko, S B; Chandra, P; Cummings, J R; Fox, D B; Gal-Yam, A; Gehrels, N; Immler, S; Kasliwal, M; Kong, A K H; Krimm, H A; Kulkarni, S R; Maccarone, T J; Mészáros, P; Nakar, E; O'Brien, P T; Overzier, R A; de Pasquale, M; Racusin, J; Rea, N; York, D G
2008-05-22
Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.
Feig, Emily H; Winter, Samantha R; Kounios, John; Erickson, Brian; Berkowitz, Staci A; Lowe, Michael R
2017-10-01
A history of dieting to lose weight has been shown to be a robust predictor of future weight gain. A potential factor in propensity towards weight gain is the nature of people's reactions to the abundance of highly palatable food cues in the environment. Event Related Potentials (ERPs) have revealed differences in how the brain processes food cues between obese and normal weight individuals, as well as between restrained and unrestrained eaters. However, comparisons by weight status are not informative regarding whether differences predate or follow weight gain in obese individuals and restrained eating has not consistently been found to predict future weight gain. The present study compared ERP responses to food cues in non-obese historic dieters (HDs) to non-obese never dieters (NDs). HDs showed a blunted N1 component relative to NDs overall, and delayed N1 and P2 components compared to NDs in the hungry state, suggesting that early, perceptual processing of food cues differs between these groups, especially when food-deprived. HDs also showed a more hunger-dependent sustained ERP (LPP) compared to NDs. Future research should test ERP-based food cue responsivity as a mediator between dieting history and future weight gain to better identify those most at risk for weight gain as well as the nature of their vulnerability. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmadalipour, A.; Beal, B.; Moradkhani, H.
2015-12-01
Changing climate and potential future increases in global temperature are likely to have impacts on drought characteristics and hydrologic cylce. In this study, we analyze changes in temporal and spatial extent of meteorological and hydrological droughts in future, and their trends. Three statistically downscaled datasets from NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), Multivariate Adaptive Constructed Analogs (MACA), and Bias Correction and Spatial Disagregation (BCSD-PSU) each consisting of 10 CMIP5 Global Climate Models (GCM) are utilized for RCP4.5 and RCP8.5 scenarios. Further, Precipitation Runoff Modeling System (PRMS) hydrologic model is used to simulate streamflow from GCM inputs and assess the hydrological drought characteristics. Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI) are the two indexes used to investigate meteorological and hydrological drought, respectively. Study is done for Willamette Basin with a drainage area of 29,700 km2 accommodating more than 3 million inhabitants and 25 dams. We analyze our study for annual time scale as well as three future periods of near future (2010-2039), intermediate future (2040-2069), and far future (2070-2099). Large uncertainty is found from GCM predictions. Results reveal that meteorological drought events are expected to increase in near future. Severe to extreme drought with large areal coverage and several years of occurance is predicted around year 2030 with the likelihood of exceptional drought for both drought types. SPI is usually showing positive trends, while SDI indicates negative trends in most cases.
Mioni, Giovanna; Bertucci, Erica; Rosato, Antonella; Terrett, Gill; Rendell, Peter G; Zamuner, Massimo; Stablum, Franca
2017-06-01
Previous studies have shown that traumatic brain injury (TBI) patients have difficulties with prospective memory (PM). Considering that PM is closely linked to independent living it is of primary interest to develop strategies that can improve PM performance in TBI patients. This study employed Virtual Week task as a measure of PM, and we included future event simulation to boost PM performance. Study 1 evaluated the efficacy of the strategy and investigated possible practice effects. Twenty-four healthy participants performed Virtual Week in a no strategy condition, and 24 healthy participants performed it in a mixed condition (no strategy - future event simulation). In Study 2, 18 TBI patients completed the mixed condition of Virtual Week and were compared with the 24 healthy controls who undertook the mixed condition of Virtual Week in Study 1. All participants also completed a neuropsychological evaluation to characterize the groups on level of cognitive functioning. Study 1 showed that participants in the future event simulation condition outperformed participants in the no strategy condition, and these results were not attributable to practice effects. Results of Study 2 showed that TBI patients performed PM tasks less accurately than controls, but that future event simulation can substantially reduce TBI-related deficits in PM performance. The future event simulation strategy also improved the controls' PM performance. These studies showed the value of future event simulation strategy in improving PM performance in healthy participants as well as in TBI patients. TBI patients performed PM tasks less accurately than controls, confirming prospective memory impairment in these patients. Participants in the future event simulation condition out-performed participants in the no strategy condition. Future event simulation can substantially reduce TBI-related deficits in PM performance. Future event simulation strategy also improved the controls' PM performance. © 2017 The British Psychological Society.
Water Level Prediction of Lake Cascade Mahakam Using Adaptive Neural Network Backpropagation (ANNBP)
NASA Astrophysics Data System (ADS)
Mislan; Gaffar, A. F. O.; Haviluddin; Puspitasari, N.
2018-04-01
A natural hazard information and flood events are indispensable as a form of prevention and improvement. One of the causes is flooding in the areas around the lake. Therefore, forecasting the surface of Lake water level to anticipate flooding is required. The purpose of this paper is implemented computational intelligence method namely Adaptive Neural Network Backpropagation (ANNBP) to forecasting the Lake Cascade Mahakam. Based on experiment, performance of ANNBP indicated that Lake water level prediction have been accurate by using mean square error (MSE) and mean absolute percentage error (MAPE). In other words, computational intelligence method can produce good accuracy. A hybrid and optimization of computational intelligence are focus in the future work.
The Art and Science of Long-Range Space Weather Forecasting
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Wilson, Robert M.
2006-01-01
Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.
Geophysical Hazards and Preventive Disaster Management of Extreme Natural Events
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Takeuchi, K.
2007-12-01
Geophysical hazard is potentially damaging natural event and/or phenomenon, which may cause the loss of life or injury, property damage, social and economic disruption, or environmental degradation. Extreme natural hazards are a key manifestation of the complex hierarchical nonlinear Earth system. An understanding, accurate modeling and forecasting of the extreme hazards are most important scientific challenges. Several recent extreme natural events (e.g., 2004 Great Indian Ocean Earthquake and Tsunami and the 2005 violent Katrina hurricane) demonstrated strong coupling between solid Earth and ocean, and ocean and atmosphere. These events resulted in great humanitarian tragedies because of a weak preventive disaster management. The less often natural events occur (and the extreme events are rare by definition), the more often the disaster managers postpone the preparedness to the events. The tendency to reduce the funding for preventive disaster management of natural catastrophes is seldom follows the rules of responsible stewardship for future generations neither in developing countries nor in highly developed economies where it must be considered next to malfeasance. Protecting human life and property against earthquake disasters requires an uninterrupted chain of tasks: from (i) understanding of physics of the events, analysis and monitoring, through (ii) interpretation, modeling, hazard assessment, and prediction, to (iii) public awareness, preparedness, and preventive disaster management.
Sujaritpong, Sarunya; Dear, Keith; Cope, Martin; Walsh, Sean; Kjellstrom, Tord
2014-03-01
Climate change has been predicted to affect future air quality, with inevitable consequences for health. Quantifying the health effects of air pollution under a changing climate is crucial to provide evidence for actions to safeguard future populations. In this paper, we review published methods for quantifying health impacts to identify optimal approaches and ways in which existing challenges facing this line of research can be addressed. Most studies have employed a simplified methodology, while only a few have reported sensitivity analyses to assess sources of uncertainty. The limited investigations that do exist suggest that examining the health risk estimates should particularly take into account the uncertainty associated with future air pollution emissions scenarios, concentration-response functions, and future population growth and age structures. Knowledge gaps identified for future research include future health impacts from extreme air pollution events, interactions between temperature and air pollution effects on public health under a changing climate, and how population adaptation and behavioural changes in a warmer climate may modify exposure to air pollution and health consequences.
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; DiMego, G.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2016-12-01
Wildfires contribute to air quality problems not only towards primary emissions of particular matters (PM) but also emitted ozone precursor gases that can lead to elevated ozone concentration. Wildfires are unpredictable and can be ignited by natural causes such as lightning or accidently by human negligent behavior such as live cigarette. Although wildfire impacts on the air quality can be studied by collecting fire information after events, it is extremely difficult to predict future occurrence and behavior of wildfires for real-time air quality forecasts. Because of the time constraints of operational air quality forecasting, assumption of future day's fire behavior often have to be made based on observed fire information in the past. The United States (U.S.) NOAA/NWS built the National Air Quality Forecast Capability (NAQFC) based on the U.S. EPA CMAQ to provide air quality forecast guidance (prediction) publicly. State and local forecasters use the forecast guidance to issue air quality alerts in their area. The NAQFC fine particulates (PM2.5) prediction includes emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and fires. The fire emission input to the NAQFC is derived from the NOAA NESDIS HMS fire and smoke detection product and the emission module of the US Forest Service BlueSky Smoke Modeling Framework. This study focuses on the error estimation of NAQFC PM2.5 predictions resulting from fire emissions. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that present operational NAQFC fire emissions assumption can lead to a huge error in PM2.5 prediction as fire emissions are sometimes placed at wrong location and time. This PM2.5 prediction error can be propagated from the fire source in the Northwest U.S. to downstream areas as far as the Southeast U.S. From this study, a new procedure has been identified to minimize the aforementioned error. An additional 24 hours reanalysis-run of NAQFC using same-day observed fire emission are being tested. Preliminary results have shown that this procedure greatly improves the PM2.5 predictions at both nearby and downstream areas from fire sources. The 24 hours reanalysis-run is critical and necessary especially during extreme fire events to provide better PM2.5 predictions.
NASA Astrophysics Data System (ADS)
Rimo, Tan Hauw Sen; Chai Tin, Ong
2017-12-01
Capacity utilization (CU) measurement is an important task in a manufacturing system, especially in make-to-order (MTO) type manufacturing system with product customization, in predicting capacity to meet future demand. A stochastic discrete-event simulation is developed using ARENA software to determine CU and capacity gap (CG) in short run production function. This study focused on machinery breakdown and product defective rate as random variables in the simulation. The study found that the manufacturing system run in 68.01% CU and 31.99% CG. It is revealed that machinery breakdown and product defective rate have a direct relationship with CU. By improving product defective rate into zero defect, manufacturing system can improve CU up to 73.56% and CG decrease to 26.44%. While improving machinery breakdown into zero breakdowns will improve CU up to 93.99% and the CG decrease to 6.01%. This study helps operation level to study CU using “what-if” analysis in order to meet future demand in more practical and easier method by using simulation approach. Further study is recommended by including other random variables that affect CU to make the simulation closer with the real-life situation for a better decision.
A wrinkle in time: asymmetric valuation of past and future events.
Caruso, Eugene M; Gilbert, Daniel T; Wilson, Timothy D
2008-08-01
A series of studies shows that people value future events more than equivalent events in the equidistant past. Whether people imagined being compensated or compensating others, they required and offered more compensation for events that would take place in the future than for identical events that had taken place in the past. This temporal value asymmetry (TVA) was robust in between-persons comparisons and absent in within-persons comparisons, which suggests that participants considered the TVA irrational. Contemplating future events produced greater affect than did contemplating past events, and this difference mediated the TVA. We suggest that the TVA, the gain-loss asymmetry, and hyperbolic time discounting can be unified in a three-dimensional value function that describes how people value gains and losses of different magnitudes at different moments in time.
May, Heidi T; Anderson, Jeffrey L; Winegar, Deborah A; Rollo, Jeffrey; Connelly, Margery A; Otvos, James D; Muhlestein, Joseph B
2016-10-01
HDL-C is recognized to be inversely associated with cardiovascular (CV) risk. However, attenuation of the association of HDL-C with CV risk may occur after adjustment for other lipoprotein parameters and in various disease states, especially in the setting of acute coronary syndrome (ACS). Recently, the number of HDL particles (HDL-P) has been suggested to improve CV risk prediction. Patients (n=2999) in the Intermountain Heart Collaborative Study who underwent angiography and had lipoprotein particle measurements determined by nuclear magnetic resonance (NMR) spectroscopy were studied. Multivariable Cox hazard regression was utilized to evaluate the association of HDL-C, HDL-P, and HDL-P subclasses with future major adverse CV events (MACE: death, myocardial infarction, heart failure, and stroke). Patients averaged 64±12years, 66% male, 26% diabetic, and 42% ACS. At angiography, 65% of patients were diagnosed with coronary artery disease (CAD). HDL-C and HDL-P averaged 41±13mg/dL and 28±8μmol/L, respectively. HDL-P (HR=0.903, p=0.001), but not HDL-C (HR=0.947, p=0.102) was significantly associated with MACE. In a model that included all HDL-P subclasses, both small (HR=0.862, p<0.0001) and medium (HR=0.922, p=0.020) were associated with CV risk, but not large HDL-P (HR=1.0042, p=0.185). Small HDL-P continued to be associated with all of the individual components of MACE, but not stroke. In this study of patients undergoing angiography, HDL-P was a strong, independent predictor of future MACE, with the smaller HDL-P accounting for this association. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Cost analysis of adjustments of the epidemiological surveillance system to mass gatherings.
Zieliński, Andrzej
2011-01-01
The article deals with the problem of economical analysis of public health activities at mass gatherings. After presentation of elementary review of basic economical approaches to cost analysis author tries to analyze applicability of those methods to planning of mass gatherings. Difficulties in comparability of different events and lack of the outcome data at the stage of planning make most of the economic approaches unsuitable to application at the planning stage. Even applicability of cost minimization analysis may be limited to comparison of predicted costs of preconceived standards of epidemiological surveillance. Cost effectiveness performed ex post after the event when both costs and obtained effects are known, may bring more information for future selection of most effective procedures.
Episodic simulation of future events is impaired in mild Alzheimer's disease
Addis, Donna Rose; Sacchetti, Daniel C.; Ally, Brandon A.; Budson, Andrew E.; Schacter, Daniel L.
2009-01-01
Recent neuroimaging studies have demonstrated that both remembering the past and simulating the future activate a core neural network including the medial temporal lobes. Regions of this network, in particular the medial temporal lobes, are prime sites for amyloid deposition and are structurally and functionally compromised in Alzheimer's disease (AD). While we know some functions of this core network, specifically episodic autobiographical memory, are impaired in AD, no study has examined whether future episodic simulation is similarly impaired. We tested the ability of sixteen AD patients and sixteen age-matched controls to generate past and future autobiographical events using an adapted version of the Autobiographical Interview. Participants also generated five remote autobiographical memories from across the lifespan. Event transcriptions were segmented into distinct details, classified as either internal (episodic) or external (non-episodic). AD patients exhibited deficits in both remembering past events and simulating future events, generating fewer internal and external episodic details than healthy older controls. The internal and external detail scores were strongly correlated across past and future events, providing further evidence of the close linkages between the mental representations of past and future. PMID:19497331
NASA Astrophysics Data System (ADS)
Lee, S.; Oh, S.; Lee, J.; Hong, S.
2013-12-01
We have investigated the statistical relationship of the solar active region to predict the solar flare event analyzing the sunspot catalogue, which has been newly constructed from the SOHO MDI observation data during the period from 1996 to 2011 (Solar Cycle 23 & 24) by ASSA(Automatic Solar Synoptic Analyzer) algorithms. The prediction relation has been made by machine-learning algorithms to establish a short- term flare prediction model for operational use in near future. In this study, continuum and magnetogram images observed by SOHO has been processed to yield 15-year sunspot group catalogue that contains various physical parameters such as sunspot area, extent, asymmetry measure of largest penumbral sunspot, roughness of magnetic neutral line as well as McIntosh and Mt. Wilson classification results.The latest result of our study will be presented and the new approach to the prediction of the solar flare will be discussed.
Prediction Accuracy of Error Rates for MPTB Space Experiment
NASA Technical Reports Server (NTRS)
Buchner, S. P.; Campbell, A. B.; Davis, D.; McMorrow, D.; Petersen, E. L.; Stassinopoulos, E. G.; Ritter, J. C.
1998-01-01
This paper addresses the accuracy of radiation-induced upset-rate predictions in space using the results of ground-based measurements together with standard environmental and device models. The study is focused on two part types - 16 Mb NEC DRAM's (UPD4216) and 1 Kb SRAM's (AMD93L422) - both of which are currently in space on board the Microelectronics and Photonics Test Bed (MPTB). To date, ground-based measurements of proton-induced single event upset (SEM cross sections as a function of energy have been obtained and combined with models of the proton environment to predict proton-induced error rates in space. The role played by uncertainties in the environmental models will be determined by comparing the modeled radiation environment with the actual environment measured aboard MPTB. Heavy-ion induced upsets have also been obtained from MPTB and will be compared with the "predicted" error rate following ground testing that will be done in the near future. These results should help identify sources of uncertainty in predictions of SEU rates in space.
Baselining PMU Data to Find Patterns and Anomalies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amidan, Brett G.; Follum, James D.; Freeman, Kimberly A.
This paper looks at the application of situational awareness methodologies with respect to power grid data. These methodologies establish baselines that look for typical patterns and atypical behavior in the data. The objectives of the baselining analyses are to provide: real-time analytics, the capability to look at historical trends and events, and reliable predictions of the near future state of the grid. Multivariate algorithms were created to establish normal baseline behavior and then score each moment in time according to its variance from the baseline. Detailed multivariate analytical techniques are described in this paper that produced ways to identify typicalmore » patterns and atypical behavior. In this case, atypical behavior is behavior that is unenvisioned. Visualizations were also produced to help explain the behavior that was identified mathematically. Examples are shown to help describe how to read and interpret the analyses and visualizations. Preliminary work has been performed on PMU data sets from BPA (Bonneville Power Administration) and EI (Eastern Interconnect). Actual results are not fully shown here because of confidentiality issues. Comparisons between atypical events found mathematically and actual events showed that many of the actual events are also atypical events; however there are many atypical events that do not correlate to any actual events. Additional work needs to be done to help classify the atypical events into actual events, so that the importance of the events can be better understood.« less
Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome
Shao, Wei; Zhao, Qiong-Yi; Wang, Xiu-Ye; Xu, Xin-Yan; Tang, Qing; Li, Muwang; Li, Xuan; Xu, Yong-Zhen
2012-01-01
Alternative splicing and trans-splicing events have not been systematically studied in the silkworm Bombyx mori. Here, the silkworm transcriptome was analyzed by RNA-seq. We identified 320 novel genes, modified 1140 gene models, and found thousands of alternative splicing and 58 trans-splicing events. Studies of three SR proteins show that both their alternative splicing patterns and mRNA products are conserved from insect to human, and one isoform of Srsf6 with a retained intron is expressed sex-specifically in silkworm gonads. Trans-splicing of mod(mdg4) in silkworm was experimentally confirmed. We identified integrations from a common 5′-gene with 46 newly identified alternative 3′-exons that are located on both DNA strands over a 500-kb region. Other trans-splicing events in B. mori were predicted by bioinformatic analysis, in which 12 events were confirmed by RT-PCR, six events were further validated by chimeric SNPs, and two events were confirmed by allele-specific RT-PCR in F1 hybrids from distinct silkworm lines of JS and L10, indicating that trans-splicing is more widespread in insects than previously thought. Analysis of the B. mori transcriptome by RNA-seq provides valuable information of regulatory alternative splicing events. The conservation of splicing events across species and newly identified trans-splicing events suggest that B. mori is a good model for future studies. PMID:22627775
Steinberg, William M; Buse, John B; Ghorbani, Marie Louise Muus; Ørsted, David D; Nauck, Michael A
2017-07-01
To evaluate serum amylase and lipase levels and the rate of acute pancreatitis in patients with type 2 diabetes and high cardiovascular risk randomized to liraglutide or placebo and observed for 3.5-5.0 years. A total of 9,340 patients with type 2 diabetes were randomized to either liraglutide or placebo (median observation time 3.84 years). Fasting serum lipase and amylase were monitored. Acute pancreatitis was adjudicated in a blinded manner. Compared with the placebo group, liraglutide-treated patients had increases in serum lipase and amylase of 28.0% and 7.0%, respectively. Levels were increased at 6 months and then remained stable. During the study, 18 (0.4% [1.1 events/1,000 patient-years of observation] [PYO]) liraglutide-treated and 23 (0.5% [1.7 events/1,000 PYO]) placebo patients had acute pancreatitis confirmed by adjudication. Most acute pancreatitis cases occurred ≥12 months after randomization. Liraglutide-treated patients with prior history of pancreatitis ( n = 147) were not more likely to develop acute pancreatitis than similar patients in the placebo group ( n = 120). Elevations of amylase and lipase levels did not predict future risk of acute pancreatitis (positive predictive value <1.0%) in patients treated with liraglutide. In a population with type 2 diabetes at high cardiovascular risk, there were numerically fewer events of acute pancreatitis among liraglutide-treated patients (regardless of previous history of pancreatitis) compared with the placebo group. Liraglutide was associated with increases in serum lipase and amylase, which were not predictive of an event of subsequent acute pancreatitis. © 2017 by the American Diabetes Association.
Toutouzas, Konstantinos; Benetos, Georgios; Koutagiar, Iosif; Barampoutis, Nikolaos; Mitropoulou, Fotini; Davlouros, Periklis; Sfikakis, Petros P; Alexopoulos, Dimitrios; Stefanadis, Christodoulos; Siores, Elias; Tousoulis, Dimitris
2017-07-01
Limited prospective data have been reported regarding the impact of carotid inflammation on cardiovascular events in patients with coronary artery disease (CAD). Microwave radiometry (MWR) is a noninvasive, simple method that has been used for evaluation of carotid artery temperature which, when increased, predicts 'inflamed' plaques with vulnerable characteristics. We prospectively tested the hypothesis that increased carotid artery temperature predicts future cerebro- and cardiovascular events in patients with CAD. Consecutive patients from 3 centers, with documented CAD by coronary angiography, were studied. In both carotid arteries, common carotid intima-media thickness and plaque thickness were evaluated by ultrasound. Temperature difference (ΔT), measured by MWR, was considered as the maximal temperature along the carotid artery minus the minimum; ΔT ≥0.90 °C was assigned as high. Major cardiovascular events (MACE, death, stroke, myocardial infarction or revascularization) were recorded during the following year. In total, 250 patients were studied; of them 40 patients (16%) had high ΔT values in both carotid arteries. MACEs occurred in 30% of patients having bilateral high ΔT versus 3.8% in the remaining patients (p<0.001). Bilateral high ΔT was independently associated with increased one-year MACE rate (HR = 6.32, 95% CI 2.42-16.53, p<0.001, by multivariate cox regression hazard model). The addition of ΔT information on a baseline model based on cardiovascular risk factors and extent of CAD significantly increased the prognostic value of the model (c-statistic increase 0.744 to 0.845, p dif = 0.05) CONCLUSIONS: Carotid inflammation, detected by MWR, has an incremental prognostic value in patients with documented CAD. Copyright © 2017 Elsevier B.V. All rights reserved.
Validation of a modified Medical Resource Model for mass gatherings.
Smith, Wayne P; Tuffin, Heather; Stratton, Samuel J; Wallis, Lee A
2013-02-01
A modified Medical Resource Model to predict the medical resources required at mass gatherings based on the risk profile of events has been developed. This study was undertaken to validate this tool using data from events held in both a developed and a developing country. A retrospective study was conducted utilizing prospectively gathered data from individual events at Old Trafford Stadium in Manchester, United Kingdom, and Ellis Park Stadium, Johannesburg, South Africa. Both stadia are similar in design and spectator capacity. Data for Professional Football as well as Rugby League and Rugby Union (respectively) matches were used for the study. The medical resources predicted for the events were determined by entering the risk profile of each of the events into the Medical Resource Model. A recently developed South African tool was used to predetermine medical staffing for mass gatherings. For the study, the medical resources actually required to deal with the patient load for events within the control sample from the two stadia were compared with the number of needed resources predicted by the Medical Resource Model when that tool was applied retrospectively to the study events. The comparison was used to determine if the newly developed tool was either over- or under-predicting the resource requirements. In the case of Ellis Park, the model under-predicted the basic life support (BLS) requirement for 1.5% of the events in the data set. Mean over-prediction was 209.1 minutes for BLS availability. Old Trafford displayed no events for which the Medical Resource Model would have under-predicted. The mean over-prediction of BLS availability for Old Trafford was 671.6 minutes. The intermediate life support (ILS) requirement for Ellis Park was under-predicted for seven of the total 66 events (10.6% of the events), all of which had one factor in common, that being relatively low spectator attendance numbers. Modelling for ILS at Old Trafford did not under-predict for any events. The ILS requirements showed a mean over-prediction of 161.4 minutes ILS availability for Ellis Park compared with 425.2 minutes for Old Trafford. Of the events held at Ellis Park, the Medical Resource Model under-predicted the ambulance requirement in 4.5% of the events. For Old Trafford events, the under-prediction was higher: 7.5% of cases. The medical resources that are deployed at a mass gathering should best match the requirement for patient care at a particular event. An important consideration for any model is that it does not continually under-predict the resources required in relation to the actual requirement. With the exception of a specific subset of events at Ellis Park, the rate of under-prediction for this model was acceptable.
Puig, Vannia A; Szpunar, Karl K
2017-08-01
Over the past decade, psychologists have devoted considerable attention to episodic simulation-the ability to imagine specific hypothetical events. Perhaps one of the most consistent patterns of data to emerge from this literature is that positive simulations of the future are rated as more detailed than negative simulations of the future, a pattern of results that is commonly interpreted as evidence for a positivity bias in future thinking. In the present article, we demonstrate across two experiments that negative future events are consistently simulated in more detail than positive future events when frequency of prior thinking is taken into account as a possible confounding variable and when level of detail associated with simulated events is assessed using an objective scoring criterion. Our findings are interpreted in the context of the mobilization-minimization hypothesis of event cognition that suggests people are especially likely to devote cognitive resources to processing negative scenarios. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
D'Argembeau, Arnaud; Van der Linden, Martial
2004-12-01
As humans, we frequently engage in mental time travel, reliving past experiences and imagining possible future events. This study examined whether similar factors affect the subjective experience associated with remembering the past and imagining the future. Participants mentally "re-experienced" or "pre-experienced" positive and negative events that differed in their temporal distance from the present (close versus distant), and then rated the phenomenal characteristics (i.e., sensorial, contextual, and emotional details) associated with their representations. For both past and future, representations of positive events were associated with a greater feeling of re-experiencing (or pre-experiencing) than representations of negative events. In addition, representations of temporally close events (both past and future) contained more sensorial and contextual details, and generated a stronger feeling of re-experiencing (or pre-experiencing) than representations of temporally distant events. It is suggested that the way we both remember our past and imagine our future is constrained by our current goals.
Miller, Mary Beth; Borsari, Brian; Fernandez, Anne C.; Yurasek, Ali M.; Hustad, John T. P.
2016-01-01
Background Both drinking location and pregaming have been associated with heavy alcohol use among college students, yet the manner by which they uniquely contribute to alcohol intoxication remains unclear. Objective The current study examined the unique utility of drinking location and pregaming in predicting alcohol intoxication among college students who violated campus alcohol policy. Method Between 2011 and 2012, mandated college students who reported drinking prior to their referral events (N=212, 41% female, 80% White, Mage =19.4 y) completed a computerized assessment of drinking location and related behaviors as part of larger research trial. Chi-squared statistics, t-tests, one-way analyses of covariance, and regression were used to examine study aims. Results Participants were most likely (44%) to report drinking in off-campus housing prior to the referral event, and approximately half (47%) reported pregaming. Alcohol intoxication on the night of the referral event differed significantly as a function of both drinking location and pregaming, but pregaming did not moderate the association between drinking location and alcohol intoxication among mandated students. Female birth sex, pregaming, and drinking at either fraternities or off-campus housing predicted greater levels of alcohol intoxication on the night of the referral incident, while drinking in a residence hall/dorm predicted lower intoxication. Conclusions/Importance Drinking location and pregaming are distinct predictors of alcohol intoxication among mandated college students. Future interventions may benefit from targeting both where and how college students consume alcohol. PMID:27070480
Estimation of typhoon rainfall in GaoPing River: A Multivariate Maximum Entropy Method
NASA Astrophysics Data System (ADS)
Pei-Jui, Wu; Hwa-Lung, Yu
2016-04-01
The heavy rainfall from typhoons is the main factor of the natural disaster in Taiwan, which causes the significant loss of human lives and properties. Statistically average 3.5 typhoons invade Taiwan every year, and the serious typhoon, Morakot in 2009, impacted Taiwan in recorded history. Because the duration, path and intensity of typhoon, also affect the temporal and spatial rainfall type in specific region , finding the characteristics of the typhoon rainfall type is advantageous when we try to estimate the quantity of rainfall. This study developed a rainfall prediction model and can be divided three parts. First, using the EEOF(extended empirical orthogonal function) to classify the typhoon events, and decompose the standard rainfall type of all stations of each typhoon event into the EOF and PC(principal component). So we can classify the typhoon events which vary similarly in temporally and spatially as the similar typhoon types. Next, according to the classification above, we construct the PDF(probability density function) in different space and time by means of using the multivariate maximum entropy from the first to forth moment statistically. Therefore, we can get the probability of each stations of each time. Final we use the BME(Bayesian Maximum Entropy method) to construct the typhoon rainfall prediction model , and to estimate the rainfall for the case of GaoPing river which located in south of Taiwan.This study could be useful for typhoon rainfall predictions in future and suitable to government for the typhoon disaster prevention .
NASA Astrophysics Data System (ADS)
Castro, C.
2013-05-01
Arid and semi-arid regions are experiencing some of the most adverse impacts of climate change with increased heat waves, droughts, and extreme weather. These events will likely exacerbate socioeconomic and political instabilities in regions where the United States has vital strategic interests and ongoing military operations. The Southwest U.S. is strategically important in that it houses some of the most spatially expansive and important military installations in the country. The majority of severe weather events in the Southwest occur in association with the North American monsoon system (NAMS), and current observational record has shown a 'wet gets wetter and dry gets drier' global monsoon precipitation trend. We seek to evaluate the warm season extreme weather projection in the Southwest U.S., and how the extremes can affect Department of Defense (DoD) military facilities in that region. A baseline methodology is being developed to select extreme warm season weather events based on historical sounding data and moisture surge observations from Gulf of California. Numerical Weather Prediction (NWP)-type high resolution simulations will be performed for the extreme events identified from Weather Research and Forecast (WRF) model simulations initiated from IPCC GCM and NCAR Reanalysis data in both climate control and climate change periods. The magnitude in extreme event changes will be analyzed, and the synoptic forcing patterns of the future severe thunderstorms will provide a guide line to assess if the military installations in the Southwest will become more or less susceptible to severe weather in the future.
The Predictive Brain State: Timing Deficiency in Traumatic Brain Injury?
Ghajar, Jamshid; Ivry, Richard B.
2015-01-01
Attention and memory deficits observed in traumatic brain injury (TBI) are postulated to result from the shearing of white matter connections between the prefrontal cortex, parietal lobe, and cerebellum that are critical in the generation, maintenance, and precise timing of anticipatory neural activity. These fiber tracts are part of a neural network that generates predictions of future states and events, processes that are required for optimal performance on attention and working memory tasks. The authors discuss the role of this anticipatory neural system for understanding the varied symptoms and potential rehabilitation interventions for TBI. Preparatory neural activity normally allows the efficient integration of sensory information with goal-based representations. It is postulated that an impairment in the generation of this activity in traumatic brain injury (TBI) leads to performance variability as the brain shifts from a predictive to reactive mode. This dysfunction may constitute a fundamental defect in TBI as well as other attention disorders, causing working memory deficits, distractibility, a loss of goal-oriented behavior, and decreased awareness. “The future is not what is coming to meet us, but what we are moving forward to meet.” —Jean-Marie Guyau1 PMID:18460693
NASA Astrophysics Data System (ADS)
Cheng, Chad Shouquan; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been applied in Environment Canada to analyze climatic change impacts on various meteorological/hydrological risks, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the hazardous events, (2) statistical downscaling to provide station-scale future climate information, and (3) estimates of changes in frequency and magnitude of future hazardous meteorological/hydrological events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and various linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This paper will briefly summarize these research projects, focusing on the modeling exercise and results.
NASA Astrophysics Data System (ADS)
Jalalzadeh Fard, B.; Hassanzadeh, H.; Bhatia, U.; Ganguly, A. R.
2016-12-01
Studies on urban areas show a significant increase in frequency and intensity of heatwaves over the past decades, and predict the same trend for future. Since heatwaves have been responsible for a large number of life losses, urgent adaptation and mitigation strategies are required in the policy and decision making level for a sustainable urban planning. The Sustainability and Data Sciences Laboratory at Northeastern University, under the aegis of Thriving Earth Exchange of AGU, is working with the town of Brookline to understand the potential public health impacts of anticipated heatwaves. We consider the most important social and physical factors to obtain vulnerability and exposure parameters for each census block group of the town. Utilizing remote sensing data, we locate Urban Heat Islands (UHIs) during a recent heatwave event, as the hazard parameter. We then create priority risk map using the risk framework. Our analyses show spatial correlations between the UHIs and social factors such as poverty, and physical factors such as land cover variations. Furthermore, we investigate the future heatwave frequency and intensity increases by analyzing the climate models predictions. For future changes of UHIs, land cover changes are investigated using available predictive data. Also, socioeconomic predictions are carried out to complete the futuristic models of heatwave risks. Considering plausible scenarios for Brookline, we develop different risk maps based on the vulnerability, exposure and hazard parameters. Eventually, we suggest guidelines for Heatwave Action Plans for prioritizing effective mitigation and adaptation strategies in urban planning for the town of Brookline.
The past is the key to the future
Doe, B.R.
1983-01-01
A new major frontier of geological research, which was initiated in the 1970's, involves predicting future geologic trends or events through study of the present and past, rather than trying to understand the past, often using what one knows about the present. Like most scientific frontiers, this one began from practical considerations-environmental concerns. The lack of formal recognition of this frontier results from fragmentation among many Federal agencies and highly focused mission-oriented programs (e.g., earthquake prediction, CO2, nuclear-energy safety, etc.). Most programs aim to predict only the next 50-100 years, but much longer periods of the past need to be studied to do this. Nuclear-waste disposal has sometimes been considered in terms of the next million years, a period of time permitting significant and broad geologic changes. Decreasing public interest in environmental concerns relegates many questions from the realm of applied research back to that of basic research. Most of these questions are so fascinating, however, that the frontier is still worth pursuing. Such questions include whether a phenomenon will or will not take place and the rates at which it can develop (e.g., how fast do rifts form, how fast can a caldera event begin, and how quickly can a glacial maximum arrive?). Common elements of all studies include the historic record, trends in the Quaternary, analogues in various periods of the geologic time scale, and allowance for phenomena never experienced before. Other examples of studies include the Cretaceous as a period of a climatic extreme, an especially interesting time period; establishing the amount of paleocloudiness, a particularly challenging and important research area; acid rain as a possible new phenomenon. Geochemistry has much to contribute to this frontier science. ?? 1983.
NASA Technical Reports Server (NTRS)
Krisko, Paula H.
2007-01-01
Space debris is a worldwide-recognized issue concerning the safety of commercial, military, and exploration spacecraft. The space debris environment includes both naturally occuring meteoroids and objects in Earth orbit that are generated by human activity, termed orbital debris. Space agencies around the world are addressing the dangers of debris collisions to both crewed and robotic spacecraft. In the United States, the Orbital Debris Program Office at the NASA Johnson Space Center leads the effort to categorize debris, predict its growth, and formulate mitigation policy for the environment from low Earth orbit (LEO) through geosynchronous orbit (GEO). This paper presents recent results derived from the NASA long-term debris environment model, LEGEND. It includes the revised NASA sodium potassium droplet model, newly corrected for a factor of two over-estimation of the droplet population. The study indicates a LEO environment that is already highly collisionally active among orbital debris larger than 1 cm in size. Most of the modeled collision events are non-catastrophic (i.e., They lead to a cratering of the target, but no large scale fragmentation.). But they are potentially mission-ending, and take place between impactors smaller than 10 cm and targets larger than 10 cm. Given the small size of the impactor these events would likely be undetectable by present-day measurement means. The activity continues into the future as would be expected. Impact rates of about four per year are predicted by the current study within the next 30 years, with the majority of targets being abandoned intacts (spent upper stages and spacecraft). Still, operational spacecraft do show a small collisional activity, one that increases over time as the small fragment population increases.