Predictive Validity of National Basketball Association Draft Combine on Future Performance.
Teramoto, Masaru; Cross, Chad L; Rieger, Randall H; Maak, Travis G; Willick, Stuart E
2018-02-01
Teramoto, M, Cross, CL, Rieger, RH, Maak, TG, and Willick, SE. Predictive validity of national basketball association draft combine on future performance. J Strength Cond Res 32(2): 396-408, 2018-The National Basketball Association (NBA) Draft Combine is an annual event where prospective players are evaluated in terms of their athletic abilities and basketball skills. Data collected at the Combine should help NBA teams select right the players for the upcoming NBA draft; however, its value for predicting future performance of players has not been examined. This study investigated predictive validity of the NBA Draft Combine on future performance of basketball players. We performed a principal component analysis (PCA) on the 2010-2015 Combine data to reduce correlated variables (N = 234), a correlation analysis on the Combine data and future on-court performance to examine relationships (maximum pairwise N = 217), and a robust principal component regression (PCR) analysis to predict first-year and 3-year on-court performance from the Combine measures (N = 148 and 127, respectively). Three components were identified within the Combine data through PCA (= Combine subscales): length-size, power-quickness, and upper-body strength. As per the correlation analysis, the individual Combine items for anthropometrics, including height without shoes, standing reach, weight, wingspan, and hand length, as well as the Combine subscale of length-size, had positive, medium-to-large-sized correlations (r = 0.313-0.545) with defensive performance quantified by Defensive Box Plus/Minus. The robust PCR analysis showed that the Combine subscale of length-size was a predictor most significantly associated with future on-court performance (p ≤ 0.05), including Win Shares, Box Plus/Minus, and Value Over Replacement Player, followed by upper-body strength. In conclusion, the NBA Draft Combine has value for predicting future performance of players.
Overview: What's Worked and What Hasn't as a Guide towards Predictive Admissions Tool Development
ERIC Educational Resources Information Center
Siu, Eric; Reiter, Harold I.
2009-01-01
Admissions committees and researchers around the globe have used diligence and imagination to develop and implement various screening measures with the ultimate goal of predicting future clinical and professional performance. What works for predicting future job performance in the human resources world and in most of the academic world may not,…
Markovian prediction of future values for food grains in the economic survey
NASA Astrophysics Data System (ADS)
Sathish, S.; Khadar Babu, S. K.
2017-11-01
Now-a-days prediction and forecasting are plays a vital role in research. For prediction, regression is useful to predict the future value and current value on production process. In this paper, we assume food grain production exhibit Markov chain dependency and time homogeneity. The economic generative performance evaluation the balance time artificial fertilization different level in Estrusdetection using a daily Markov chain model. Finally, Markov process prediction gives better performance compare with Regression model.
On the use and the performance of software reliability growth models
NASA Technical Reports Server (NTRS)
Keiller, Peter A.; Miller, Douglas R.
1991-01-01
We address the problem of predicting future failures for a piece of software. The number of failures occurring during a finite future time interval is predicted from the number failures observed during an initial period of usage by using software reliability growth models. Two different methods for using the models are considered: straightforward use of individual models, and dynamic selection among models based on goodness-of-fit and quality-of-prediction criteria. Performance is judged by the relative error of the predicted number of failures over future finite time intervals relative to the number of failures eventually observed during the intervals. Six of the former models and eight of the latter are evaluated, based on their performance on twenty data sets. Many open questions remain regarding the use and the performance of software reliability growth models.
Salanova, Marisa; Schaufeli, Wilmar; Martinez, Isabel; Breso, Edgar
2010-01-01
Most people would agree with the maxim that "success breeds success." However, this is not the whole story. The current study investigated the additional impact of psychosocial factors (i.e., performance obstacles and facilitators) as well as psychological well-being (i.e., burnout and engagement) on success (i.e., academic performance). More specifically, our purpose was to show that, instead of directly affecting future performance, obstacles and facilitators exert an indirect effect via well-being. A total of 527 university students comprised the sample and filled out a questionnaire. We obtained their previous and future academic performance Grade Point Average (GPA) from the university's records. Structural equations modeling showed that the best predictor of future performance was the students' previous performance. As expected, study engagement mediated the relationship between performance obstacles and facilitators on the one hand, and future performance on the other. Contrary to expectations, burnout did not predict future performance, although, it is significantly associated with the presence of obstacles and the absence of facilitators. Our results illustrate that, although "success breeds success" (i.e., the best predictor of future performance is past performance), positive psychological states like study engagement are also important in explaining future performance, at least more so than negative states like study burnout.
Romañach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.
2014-01-01
Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.
Predicting the evolution of complex networks via similarity dynamics
NASA Astrophysics Data System (ADS)
Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping
2017-01-01
Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.
Teramoto, Masaru; Cross, Chad L; Willick, Stuart E
2016-05-01
The National Football League (NFL) Scouting Combine is held each year before the NFL Draft to measure athletic abilities and football skills of college football players. Although the NFL Scouting Combine can provide the NFL teams with an opportunity to evaluate college players for the upcoming NFL Draft, its value for predicting future success of players has been questioned. This study examined whether the NFL Combine measures can predict future performance of running backs (RBs) and wide receivers (WRs) in the NFL. We analyzed the 2000-09 Combine data of RBs (N = 276) and WRs (N = 447) and their on-field performance for the first 3 years after the draft and over their entire careers in the NFL, using correlation and regression analyses, along with a principal component analysis (PCA). The results of the analyses showed that, after accounting for the number of games played, draft position, height (HT), and weight (WT), the time on 10-yard dash was the most important predictor of rushing yards per attempt of the first 3 years (p = 0.002) and of the careers (p < 0.001) in RBs. For WRs, vertical jump was found to be significantly associated with receiving yards per reception of the first 3 years (p = 0.001) and of the careers (p = 0.004) in the NFL, after adjusting for the covariates above. Furthermore, HT was most important in predicting future performance of WRs. The analyses also revealed that the 8 athletic drills in the Combine seemed to have construct validity. It seems that the NFL Scouting Combine has some value for predicting future performance of RBs and WRs in the NFL.
Assessing personal talent determinants in young racquet sport players: a systematic review.
Faber, Irene R; Bustin, Paul M J; Oosterveld, Frits G J; Elferink-Gemser, Marije T; Nijhuis-Van der Sanden, Maria W G
2016-01-01
Since junior performances have little predictive value for future success, other solutions are sought to assess a young player's potential. The objectives of this systematic review are (1) to provide an overview of instruments measuring personal talent determinants of young players in racquet sports, and (2) to evaluate these instruments regarding their validity for talent development. Electronic searches were conducted in PubMed, PsychINFO, Web of Knowledge, ScienceDirect and SPORTDiscus (1990 to 31 March 2014). Search terms represented tennis, table tennis, badminton and squash, the concept of talent, methods of testing and children. Thirty articles with information regarding over 100 instruments were included. Validity evaluation showed that instruments focusing on intellectual and perceptual abilities, and coordinative skills discriminate elite from non-elite players and/or are related to current performance, but their predictive validity is not confirmed. There is moderate evidence that the assessments of mental and goal management skills predict future performance. Data on instruments measuring physical characteristics prohibit a conclusion due to conflicting findings. This systematic review yielded an ambiguous end point. The lack of longitudinal studies precludes verification of the instrument's capacity to forecast future performance. Future research should focus on instruments assessing multidimensional talent determinants and their predictive value in longitudinal designs.
The cognitive bases of the development of past and future episodic cognition in preschoolers.
Ünal, Gülten; Hohenberger, Annette
2017-10-01
The aim of this study was to use a minimalist framework to examine the joint development of past and future episodic cognition and their underlying cognitive abilities in 3- to 5-year-old Turkish preschoolers. Participants engaged in two main tasks, a what-where-when (www) task to measure episodic memory and a future prediction task to measure episodic future thinking. Three additional tasks were used for predicting children's performance in the two main tasks: a temporal language task, an executive function task, and a spatial working memory task. Results indicated that past and future episodic tasks were significantly correlated with each other even after controlling for age. Hierarchical multiple regressions showed that, after controlling for age, the www task was predicted by executive functions, possibly supporting binding of episodic information and by linguistic abilities. The future prediction task was predicted by linguistic abilities alone, underlining the importance of language for episodic past and future thinking. Copyright © 2017 Elsevier Inc. All rights reserved.
Improving brain-machine interface performance by decoding intended future movements
NASA Astrophysics Data System (ADS)
Willett, Francis R.; Suminski, Aaron J.; Fagg, Andrew H.; Hatsopoulos, Nicholas G.
2013-04-01
Objective. A brain-machine interface (BMI) records neural signals in real time from a subject's brain, interprets them as motor commands, and reroutes them to a device such as a robotic arm, so as to restore lost motor function. Our objective here is to improve BMI performance by minimizing the deleterious effects of delay in the BMI control loop. We mitigate the effects of delay by decoding the subject's intended movements a short time lead in the future. Approach. We use the decoded, intended future movements of the subject as the control signal that drives the movement of our BMI. This should allow the user's intended trajectory to be implemented more quickly by the BMI, reducing the amount of delay in the system. In our experiment, a monkey (Macaca mulatta) uses a future prediction BMI to control a simulated arm to hit targets on a screen. Main Results. Results from experiments with BMIs possessing different system delays (100, 200 and 300 ms) show that the monkey can make significantly straighter, faster and smoother movements when the decoder predicts the user's future intent. We also characterize how BMI performance changes as a function of delay, and explore offline how the accuracy of future prediction decoders varies at different time leads. Significance. This study is the first to characterize the effects of control delays in a BMI and to show that decoding the user's future intent can compensate for the negative effect of control delay on BMI performance.
Predicting performance with traffic analysis tools : final report.
DOT National Transportation Integrated Search
2008-03-01
This document provides insights into the common pitfalls and challenges associated with use of traffic analysis tools for predicting future performance of a transportation facility. It provides five in-depth case studies that demonstrate common ways ...
Temporal effects in trend prediction: identifying the most popular nodes in the future.
Zhou, Yanbo; Zeng, An; Wang, Wei-Hong
2015-01-01
Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes' recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail.
Temporal Effects in Trend Prediction: Identifying the Most Popular Nodes in the Future
Zhou, Yanbo; Zeng, An; Wang, Wei-Hong
2015-01-01
Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes’ recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail. PMID:25806810
Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.
2017-01-01
Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.
Measurements and Predictions for a Distributed Exhaust Nozzle
NASA Technical Reports Server (NTRS)
Kinzie, Kevin W.; Brown, Martha C.; Schein, David B.; Solomon, W. David, Jr.
2001-01-01
The acoustic and aerodynamic performance characteristics of a distributed exhaust nozzle (DEN) design concept were evaluated experimentally and analytically with the purpose of developing a design methodology for developing future DEN technology. Aerodynamic and acoustic measurements were made to evaluate the DEN performance and the CFD design tool. While the CFD approach did provide an excellent prediction of the flowfield and aerodynamic performance characteristics of the DEN and 2D reference nozzle, the measured acoustic suppression potential of this particular DEN was low. The measurements and predictions indicated that the mini-exhaust jets comprising the distributed exhaust coalesced back into a single stream jet very shortly after leaving the nozzles. Even so, the database provided here will be useful for future distributed exhaust designs with greater noise reduction and aerodynamic performance potential.
Airframe Noise Studies: Review and Future Direction
NASA Technical Reports Server (NTRS)
Rackl, Robert G.; Miller, Gregory; Guo, Yueping; Yamamoto, Kingo
2005-01-01
This report contains the following information: 1) a review of airframe noise research performed under NASA's Advanced Subsonic Transport (AST) program up to the year 2000, 2) a comparison of the year 1992 airframe noise predictions with those using a year 2000 baseline, 3) an assessment of various airframe noise reduction concepts as applied to the year 2000 baseline predictions, and 4) prioritized recommendations for future airframe noise reduction work. NASA's Aircraft Noise Prediction Program was the software used for all noise predictions and assessments. For future work, the recommendations for the immediate future focus on the development of design tools sensitive to airframe noise treatment effects and on improving the basic understanding of noise generation by the landing gear as well as on its reduction.
ERIC Educational Resources Information Center
Pecorella, Patricia A.; Bowers, David G.
Multiple regression in a double cross-validated design was used to predict two performance measures (total variable expense and absence rate) by multi-month period in five industrial firms. The regressions do cross-validate, and produce multiple coefficients which display both concurrent and predictive effects, peaking 18 months to two years…
National differences in environmental concern and performance are predicted by country age.
Hershfield, Hal E; Bang, H Min; Weber, Elke U
2014-01-01
There are obvious economic predictors of ability and willingness to invest in environmental sustainability. Yet, given that environmental decisions represent trade-offs between present sacrifices and uncertain future benefits, psychological factors may also play a role in country-level environmental behavior. Gott's principle suggests that citizens may use perceptions of their country's age to predict its future continuation, with longer pasts predicting longer futures. Using country- and individual-level analyses, we examined whether longer perceived pasts result in longer perceived futures, which in turn motivate concern for continued environmental quality. Study 1 found that older countries scored higher on an environmental performance index, even when the analysis controlled for country-level differences in gross domestic product and governance. Study 2 showed that when the United States was framed as an old country (vs. a young one), participants were willing to donate more money to an environmental organization. The findings suggest that framing a country as a long-standing entity may effectively prompt proenvironmental behavior.
Collective motion of predictive swarms
Vural, Dervis Can
2017-01-01
Theoretical models of populations and swarms typically start with the assumption that the motion of agents is governed by the local stimuli. However, an intelligent agent, with some understanding of the laws that govern its habitat, can anticipate the future, and make predictions to gather resources more efficiently. Here we study a specific model of this kind, where agents aim to maximize their consumption of a diffusing resource, by attempting to predict the future of a resource field and the actions of other agents. Once the agents make a prediction, they are attracted to move towards regions that have, and will have, denser resources. We find that the further the agents attempt to see into the future, the more their attempts at prediction fail, and the less resources they consume. We also study the case where predictive agents compete against non-predictive agents and find the predictors perform better than the non-predictors only when their relative numbers are very small. We conclude that predictivity pays off either when the predictors do not see too far into the future or the number of predictors is small. PMID:29065136
Collective motion of predictive swarms.
Rupprecht, Nathaniel; Vural, Dervis Can
2017-01-01
Theoretical models of populations and swarms typically start with the assumption that the motion of agents is governed by the local stimuli. However, an intelligent agent, with some understanding of the laws that govern its habitat, can anticipate the future, and make predictions to gather resources more efficiently. Here we study a specific model of this kind, where agents aim to maximize their consumption of a diffusing resource, by attempting to predict the future of a resource field and the actions of other agents. Once the agents make a prediction, they are attracted to move towards regions that have, and will have, denser resources. We find that the further the agents attempt to see into the future, the more their attempts at prediction fail, and the less resources they consume. We also study the case where predictive agents compete against non-predictive agents and find the predictors perform better than the non-predictors only when their relative numbers are very small. We conclude that predictivity pays off either when the predictors do not see too far into the future or the number of predictors is small.
Self-perception of competencies in adolescents with autism spectrum disorders.
Furlano, Rosaria; Kelley, Elizabeth A; Hall, Layla; Wilson, Daryl E
2015-12-01
Research has demonstrated that, despite difficulties in multiple domains, children with autism spectrum disorders (ASD) show a lack of awareness of these difficulties. A misunderstanding of poor competencies may make it difficult for individuals to adjust their behaviour in accordance with feedback and may lead to greater impairments over time. This study examined self-perceptions of adolescents with ASD (n = 19) and typically developing (TD) mental-age-matched controls (n = 22) using actual performance on objective academic tasks as the basis for ratings. Before completing the tasks, participants were asked how well they thought they would do (pre-task prediction). After completing each task, they were asked how well they thought they did (immediate post-performance) and how well they would do in the future (hypothetical future post-performance). Adolescents with ASD had more positively biased self-perceptions of competence than TD controls. The ASD group tended to overestimate their performance on all ratings of self-perceptions (pre-task prediction, immediate, and hypothetical future post-performance). In contrast, while the TD group was quite accurate at estimating their performance immediately before and after performing the task, they showed some tendency to overestimate their future performance. Future investigation is needed to systematically examine possible mechanisms that may be contributing to these biased self-perceptions. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Predicting Premeditation: Future Behavior Is Seen as More Intentional than Past Behavior
ERIC Educational Resources Information Center
Burns, Zachary C.; Caruso, Eugene M.; Bartels, Daniel M.
2012-01-01
People's intuitions about the underlying causes of past and future actions might not be the same. In 3 studies, we demonstrate that people judge the same behavior as more intentional when it will be performed in the future than when it has been performed in the past. We found this temporal asymmetry in perceptions of both the strength of an…
Do Test Scores of Students Who Have Been Retained Predict Future Performance?
ERIC Educational Resources Information Center
Bonnaig, Joy
2017-01-01
The purpose of this quantitative correlational research was to investigate to what extent 2007 performance of third grade students who had been retained in 2006 for failing to attain proficiency on the Reading and Mathematics Florida Comprehensive Assessment Test (FCAT) predicted their performance in 2010 on the sixth grade Reading and Mathematics…
Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies.
Dowd, J E; Weber, I; Rodriguez, B; Piret, J M; Kwok, K E
1999-05-20
The selection of medium feed rates for perfusion bioreactors represents a challenge for process optimization, particularly in bioreactors that are sampled infrequently. When the present and immediate future of a bioprocess can be adequately described, predictive control can minimize deviations from set points in a manner that can maximize process consistency. Predictive control of perfusion hollow-fiber bioreactors was investigated in a series of hybridoma cell cultures that compared operator control to computer estimation of feed rates. Adaptive software routines were developed to estimate the current and predict the future glucose uptake and lactate production of the bioprocess at each sampling interval. The current and future glucose uptake rates were used to select the perfusion feed rate in a designed response to deviations from the set point values. The routines presented a graphical user interface through which the operator was able to view the up-to-date culture performance and assess the model description of the immediate future culture performance. In addition, fewer samples were taken in the computer-estimated cultures, reducing labor and analytical expense. The use of these predictive controller routines and the graphical user interface decreased the glucose and lactate concentration variances up to sevenfold, and antibody yields increased by 10% to 43%. Copyright 1999 John Wiley & Sons, Inc.
Faber, Irene R; Elferink-Gemser, Marije T; Faber, Niels R; Oosterveld, Frits G J; Nijhuis-Van der Sanden, Maria W G
2016-01-01
Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players' potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player's future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7-11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items 'aiming at target', 'throwing a ball', and 'eye-hand coordination' in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment's outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent development programme. Future studies are needed to clarify the predictive value in a larger sample of youth competition players over a longer period in time.
NASA Astrophysics Data System (ADS)
Mao, Lei; Jackson, Lisa; Jackson, Tom
2017-09-01
This paper investigates the polymer electrolyte membrane (PEM) fuel cell internal behaviour variation at different operating condition, with characterization test data taken at predefined inspection times, and uses the determined internal behaviour evolution to predict the future PEM fuel cell performance. For this purpose, a PEM fuel cell behaviour model is used, which can be related to various fuel cell losses. By matching the model to the collected polarization curves from the PEM fuel cell system, the variation of fuel cell internal behaviour can be obtained through the determined model parameters. From the results, the source of PEM fuel cell degradation during its lifetime at different conditions can be better understood. Moreover, with determined fuel cell internal behaviour, the future fuel cell performance can be obtained by predicting the future model parameters. By comparing with prognostic results using adaptive neuro fuzzy inference system (ANFIS), the proposed prognostic analysis can provide better predictions for PEM fuel cell performance at dynamic condition, and with the understanding of variation in PEM fuel cell internal behaviour, mitigation strategies can be designed to extend the fuel cell performance.
A New Approach to Predict user Mobility Using Semantic Analysis and Machine Learning.
Fernandes, Roshan; D'Souza G L, Rio
2017-10-19
Mobility prediction is a technique in which the future location of a user is identified in a given network. Mobility prediction provides solutions to many day-to-day life problems. It helps in seamless handovers in wireless networks to provide better location based services and to recalculate paths in Mobile Ad hoc Networks (MANET). In the present study, a framework is presented which predicts user mobility in presence and absence of mobility history. Naïve Bayesian classification algorithm and Markov Model are used to predict user future location when user mobility history is available. An attempt is made to predict user future location by using Short Message Service (SMS) and instantaneous Geological coordinates in the absence of mobility patterns. The proposed technique compares the performance metrics with commonly used Markov Chain model. From the experimental results it is evident that the techniques used in this work gives better results when considering both spatial and temporal information. The proposed method predicts user's future location in the absence of mobility history quite fairly. The proposed work is applied to predict the mobility of medical rescue vehicles and social security systems.
Evaluating the Predictive Value of Growth Prediction Models
ERIC Educational Resources Information Center
Murphy, Daniel L.; Gaertner, Matthew N.
2014-01-01
This study evaluates four growth prediction models--projection, student growth percentile, trajectory, and transition table--commonly used to forecast (and give schools credit for) middle school students' future proficiency. Analyses focused on vertically scaled summative mathematics assessments, and two performance standards conditions (high…
Predicting consumer behavior with Web search.
Goel, Sharad; Hofman, Jake M; Lahaie, Sébastien; Pennock, David M; Watts, Duncan J
2010-10-12
Recent work has demonstrated that Web search volume can "predict the present," meaning that it can be used to accurately track outcomes such as unemployment levels, auto and home sales, and disease prevalence in near real time. Here we show that what consumers are searching for online can also predict their collective future behavior days or even weeks in advance. Specifically we use search query volume to forecast the opening weekend box-office revenue for feature films, first-month sales of video games, and the rank of songs on the Billboard Hot 100 chart, finding in all cases that search counts are highly predictive of future outcomes. We also find that search counts generally boost the performance of baseline models fit on other publicly available data, where the boost varies from modest to dramatic, depending on the application in question. Finally, we reexamine previous work on tracking flu trends and show that, perhaps surprisingly, the utility of search data relative to a simple autoregressive model is modest. We conclude that in the absence of other data sources, or where small improvements in predictive performance are material, search queries provide a useful guide to the near future.
Predicting consumer behavior with Web search
Goel, Sharad; Hofman, Jake M.; Lahaie, Sébastien; Pennock, David M.; Watts, Duncan J.
2010-01-01
Recent work has demonstrated that Web search volume can “predict the present,” meaning that it can be used to accurately track outcomes such as unemployment levels, auto and home sales, and disease prevalence in near real time. Here we show that what consumers are searching for online can also predict their collective future behavior days or even weeks in advance. Specifically we use search query volume to forecast the opening weekend box-office revenue for feature films, first-month sales of video games, and the rank of songs on the Billboard Hot 100 chart, finding in all cases that search counts are highly predictive of future outcomes. We also find that search counts generally boost the performance of baseline models fit on other publicly available data, where the boost varies from modest to dramatic, depending on the application in question. Finally, we reexamine previous work on tracking flu trends and show that, perhaps surprisingly, the utility of search data relative to a simple autoregressive model is modest. We conclude that in the absence of other data sources, or where small improvements in predictive performance are material, search queries provide a useful guide to the near future. PMID:20876140
Composite Quality Measures for Common Inpatient Medical Conditions
Chen, Lena M.; Staiger, Douglas O.; Birkmeyer, John D.; Ryan, Andrew M.; Zhang, Wenying; Dimick, Justin B.
2014-01-01
Background Public reporting on quality aims to help patients select better hospitals. However, individual quality measures are sub-optimal in identifying superior and inferior hospitals based on outcome performance. Objective To combine structure, process, and outcome measures into an empirically-derived composite quality measure for heart failure (HF), acute myocardial infarction (AMI), and pneumonia (PNA). To assess how well the composite measure predicts future high and low performers, and explains variance in future hospital mortality. Research Design Using national Medicare data, we created a cohort of older patients treated at an acute care hospital for HF (n=1,203,595), AMI (n=625,595), or PNA (n=1,234,299). We ranked hospitals based on their July 2005 to June 2008 performance on the composite. We then estimated the odds of future (July to December 2009) 30-day, risk-adjusted mortality at the worst vs. best quintile of hospitals. We repeated this analysis using 2005-2008 performance on existing quality indicators, including mortality. Results The composite (vs. Hospital Compare) explained 68% (vs. 39%) of variation in future AMI mortality rates. In 2009, if an AMI patient had chosen a hospital in the worst vs. best quintile of performance using 2005-2008 composite (vs. Hospital Compare) rankings, he or she would have had 1.61 (vs. 1.39) times the odds of dying in 30 days (p-value for difference < 0.001). Results were similar for HF and PNA. Conclusions Composite measures of quality for HF, AMI, and PNA performed better than existing measures at explaining variation in future mortality and predicting future high and low performers. PMID:23942222
A memory advantage for past-oriented over future-oriented performance feedback.
Nash, Robert A; Winstone, Naomi E; Gregory, Samantha E A; Papps, Emily
2018-03-05
People frequently receive performance feedback that describes how well they achieved in the past, and how they could improve in future. In educational contexts, future-oriented (directive) feedback is often argued to be more valuable to learners than past-oriented (evaluative) feedback; critically, prior research led us to predict that it should also be better remembered. We tested this prediction in six experiments. Subjects read written feedback containing evaluative and directive comments, which supposedly related to essays they had previously written (Experiments 1-2), or to essays another person had written (Experiments 3-6). Subjects then tried to reproduce the feedback from memory after a short delay. In all six experiments, the data strongly revealed the opposite effect to the one we predicted: despite only small differences in wording, evaluative feedback was in fact recalled consistently better than directive feedback. Furthermore, even when adult subjects did recall directive feedback, they frequently misremembered it in an evaluative style. These findings appear at odds with the position that being oriented toward the future is advantageous to memory. They also raise important questions about the possible behavioral effects and generalizability of such biases, in terms of students' academic performance. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Can We Predict Technical Aptitude?: A Systematic Review.
Louridas, Marisa; Szasz, Peter; de Montbrun, Sandra; Harris, Kenneth A; Grantcharov, Teodor P
2016-04-01
To identify background characteristics and cognitive tests that may predict surgical trainees' future technical performance, and therefore be used to supplement existing surgical residency selection criteria. Assessment of technical skills is not commonly incorporated as part of the selection process for surgical trainees in North America. Emerging evidence, however, suggests that not all trainees are capable of reaching technical competence. Therefore, incorporating technical aptitude into selection processes may prove useful. A systematic search was carried out of the MEDLINE, PsycINFO, and Embase online databases to identify all studies that assessed associations between surrogate markers of innate technical abilities in surgical trainees, and whether these abilities correlate with technical performance. The quality of each study was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation system. A total of 8035 records were identified. After screening by title, abstract, and full text, 52 studies were included. Very few surrogate markers were found to predict technical performance. Significant associations with technical performance were seen for 1 of 23 participant-reported surrogate markers, 2 of 25 visual spatial tests, and 2 of 19 dexterity tests. The assessment of trainee Basic Performance Resources predicted technical performance in 62% and 75% of participants. To date, no single test has been shown to reliably predict the technical performance of surgical trainees. Strategies that rely on assessing multiple innate abilities, their interaction, and their relationship with technical skill may ultimately be more likely to serve as reliable predictors of future surgical performance.
Counteracting Obstacles with Optimistic Predictions
ERIC Educational Resources Information Center
Zhang, Ying; Fishbach, Ayelet
2010-01-01
This research tested for counteractive optimism: a self-control strategy of generating optimistic predictions of future goal attainment in order to overcome anticipated obstacles in goal pursuit. In support of the counteractive optimism model, participants in 5 studies predicted better performance, more time invested in goal activities, and lower…
Performance Predictions for the Adaptive Optics System at LCRD's Ground Station 1
NASA Technical Reports Server (NTRS)
Roberts, Lewis C., Jr.; Burruss, Rick; Roberts, Jennifer E.; Piazzolla, Sabino; Dew, Sharon; Truong, Tuan; Fregoso, Santos; Page, Norm
2015-01-01
NASA's LCRD mission will lay the foundation for future laser communication systems. We show the design of the Table Mountain ground station's AO system and time series of predicted coupling efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
This appendix is a compilation of work done to predict overall cycle performance from gasifier to generator terminals. A spreadsheet has been generated for each case to show flows within a cycle. The spreadsheet shows gaseous or solid composition of flow, temperature of flow, quantity of flow, and heat heat content of flow. Prediction of steam and gas turbine performance was obtained by the computer program GTPro. Outputs of all runs for each combined cycle reviewed has been added to this appendix. A process schematic displaying all flows predicted through GTPro and the spreadsheet is also added to this appendix.more » The numbered bubbles on the schematic correspond to columns on the top headings of the spreadsheet.« less
NASA Astrophysics Data System (ADS)
Wu, Yenan; Zhong, Ping-an; Xu, Bin; Zhu, Feilin; Fu, Jisi
2017-06-01
Using climate models with high performance to predict the future climate changes can increase the reliability of results. In this paper, six kinds of global climate models that selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Path (RCP) 4.5 scenarios were compared to the measured data during baseline period (1960-2000) and evaluate the simulation performance on precipitation. Since the results of single climate models are often biased and highly uncertain, we examine the back propagation (BP) neural network and arithmetic mean method in assembling the precipitation of multi models. The delta method was used to calibrate the result of single model and multimodel ensembles by arithmetic mean method (MME-AM) during the validation period (2001-2010) and the predicting period (2011-2100). We then use the single models and multimodel ensembles to predict the future precipitation process and spatial distribution. The result shows that BNU-ESM model has the highest simulation effect among all the single models. The multimodel assembled by BP neural network (MME-BP) has a good simulation performance on the annual average precipitation process and the deterministic coefficient during the validation period is 0.814. The simulation capability on spatial distribution of precipitation is: calibrated MME-AM > MME-BP > calibrated BNU-ESM. The future precipitation predicted by all models tends to increase as the time period increases. The order of average increase amplitude of each season is: winter > spring > summer > autumn. These findings can provide useful information for decision makers to make climate-related disaster mitigation plans.
Predicting falls in older adults using the four square step test.
Cleary, Kimberly; Skornyakov, Elena
2017-10-01
The Four Square Step Test (FSST) is a performance-based balance tool involving stepping over four single-point canes placed on the floor in a cross configuration. The purpose of this study was to evaluate properties of the FSST in older adults who lived independently. Forty-five community dwelling older adults provided fall history and completed the FSST, Berg Balance Scale (BBS), Timed Up and Go (TUG), and Tinetti in random order. Future falls were recorded for 12 months following testing. The FSST accurately distinguished between non-fallers and multiple fallers, and the 15-second threshold score accurately distinguished multiple fallers from non-multiple fallers based on fall history. The FSST predicted future falls, and performance on the FSST was significantly correlated with performance on the BBS, TUG, and Tinetti. However, the test is not appropriate for older adults who use walkers. Overall, the FSST is a valid yet underutilized measure of balance performance and fall prediction tool that physical therapists should consider using in ambulatory community dwelling older adults.
Prediction of Muscle Performance During Dynamic Repetitive Exercise
NASA Technical Reports Server (NTRS)
Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.
2002-01-01
A method for predicting human muscle performance was developed. Eight test subjects performed a repetitive dynamic exercise to failure using a Lordex spinal machine. Electromyography (EMG) data was collected from the erector spinae. Evaluation of the EMG data using a 5th order Autoregressive (AR) model and statistical regression analysis revealed that an AR parameter, the mean average magnitude of AR poles, can predict performance to failure as early as the second repetition of the exercise. Potential applications to the space program include evaluating on-orbit countermeasure effectiveness, maximizing post-flight recovery, and future real-time monitoring capability during Extravehicular Activity.
Occupational-Specific Strength Predicts Astronaut-Related Task Performance in a Weighted Suit.
Taylor, Andrew; Kotarsky, Christopher J; Bond, Colin W; Hackney, Kyle J
2018-01-01
Future space missions beyond low Earth orbit will require deconditioned astronauts to perform occupationally relevant tasks within a planetary spacesuit. The prediction of time-to-completion (TTC) of astronaut tasks will be critical for crew safety, autonomous operations, and mission success. This exploratory study determined if the addition of task-specific strength testing to current standard lower body testing would enhance the prediction of TTC in a 1-G test battery. Eight healthy participants completed NASA lower body strength tests, occupationally specific strength tests, and performed six task simulations (hand drilling, construction wrenching, incline walking, collecting weighted samples, and dragging an unresponsive crewmember to safety) in a 48-kg weighted suit. The TTC for each task was recorded and summed to obtain a total TTC for the test battery. Linear regression was used to predict total TTC with two models: 1) NASA lower body strength tests; and 2) NASA lower body strength tests + occupationally specific strength tests. Total TTC of the test battery ranged from 20.2-44.5 min. The lower body strength test alone accounted for 61% of the variability in total TTC. The addition of hand drilling and wrenching strength tests accounted for 99% of the variability in total TTC. Adding occupationally specific strength tests (hand drilling and wrenching) to standard lower body strength tests successfully predicted total TTC in a performance test battery within a weighted suit. Future research should couple these strength tests with higher fidelity task simulations to determine the utility and efficacy of task performance prediction.Taylor A, Kotarsky CJ, Bond CW, Hackney KJ. Occupational-specific strength predicts astronaut-related task performance in a weighted suit. Aerosp Med Hum Perform. 2018; 89(1):58-62.
Prediction of Tennis Performance in Junior Elite Tennis Players
Kramer, Tamara; Huijgen, Barbara C.H.; Elferink-Gemser, Marije T.; Visscher, Chris
2017-01-01
Predicting current and future tennis performance can lead to improving the development of junior tennis players. The aim of this study is to investigate whether age, maturation, or physical fitness in junior elite tennis players in U13 can explain current and future tennis performance. The value of current tennis performance for future tennis performance is also investigated. A total of 86 junior elite tennis players (boys, n = 44; girls, n = 42) U13 (aged: 12.5 ± 0.3 years), and followed to U16, took part in this study. All players were top-30 ranked on the Dutch national ranking list at U13, and top-50 at U16. Age, maturation, and physical fitness, were measured at U13. A principal component analysis was used to extract four physical components from eight tests (medicine ball throwing overhead and reverse, ball throwing, SJ, CMJas, Sprint 5 and 10 meter, and the spider test). The possible relationship of age, maturation, and the physical components; “upper body power”, “lower body power”, “speed”, and “agility” with tennis performance at U13 and U16 was analyzed. Tennis performance was measured by using the ranking position on the Dutch national ranking list at U13 and U16. Regression analyses were conducted based on correlations between variables and tennis performance for boys and girls, separately. In boys U13, positive correlations were found between upper body power and tennis performance (R2 is 25%). In girls, positive correlations between maturation and lower body power with tennis performance were found at U13. Early maturing players were associated with a better tennis performance (R2 is 15%). In girls U16, only maturation correlated with tennis performance (R2 is 13%); later-maturing girls at U13 had better tennis performances at U16. Measuring junior elite tennis players at U13 is important for monitoring their development. These measurements did not predict future tennis performance of junior elite tennis players three years later. Future research should focus on other aspects in order to predict tennis performance better. Key points In boys, tennis performance can be partly explained by upper body power at U13, it is not a predictor for performance at U16. In girls, APHV is of influence for tennis performance at U13 and U16. At younger age earlier-matured girls were ranked higher, however at U16 later-matured girls were ranked higher. Overall, physical fitness in junior tennis is important for monitoring physical fitness development however this should not solely be used for selection criteria in a homogenous group of junior elite players. PMID:28344446
NASA Astrophysics Data System (ADS)
Du, Kongchang; Zhao, Ying; Lei, Jiaqiang
2017-09-01
In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt 'future' values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of 'future' values. These hybrid models caused incorrect 'high' prediction performance and may cause large errors in practice.
Nomi, Jason S; Rhodes, Matthew G; Cleary, Anne M
2013-01-01
This study examined how participants' predictions of future memory performance are influenced by emotional facial expressions. Participants made judgements of learning (JOLs) predicting the likelihood that they would correctly identify a face displaying a happy, angry, or neutral emotional expression in a future two-alternative forced-choice recognition test of identity (i.e., recognition that a person's face was seen before). JOLs were higher for studied faces with happy and angry emotional expressions than for neutral faces. However, neutral test faces with studied neutral expressions had significantly higher identity recognition rates than neutral test faces studied with happy or angry expressions. Thus, these data are the first to demonstrate that people believe happy and angry emotional expressions will lead to better identity recognition in the future relative to neutral expressions. This occurred despite the fact that neutral expressions elicited better identity recognition than happy and angry expressions. These findings contribute to the growing literature examining the interaction of cognition and emotion.
Critical overview of applications of genetic testing in sport talent identification.
Roth, Stephen M
2012-12-01
Talent identification for future sport performance is of paramount interest for many groups given the challenges of finding and costs of training potential elite athletes. Because genetic factors have been implicated in many performance- related traits (strength, endurance, etc.), a natural inclination is to consider the addition of genetic testing to talent identification programs. While the importance of genetic factors to sport performance is generally not disputed, whether genetic testing can positively inform talent identification is less certain. The present paper addresses the science behind the genetic tests that are now commercially available (some under patent protection) and aimed at predicting future sport performance potential. Also discussed are the challenging ethical issues that emerge from the availability of these tests. The potential negative consequences associated with genetic testing of young athletes will very likely outweigh any positive benefit for sport performance prediction at least for the next several years. The paper ends by exploring the future possibilities for genetic testing as the science of genomics in sport matures over the coming decade(s).
Aeromechanics and Aeroacoustics Predictions of the Boeing-SMART Rotor Using Coupled-CFD/CSD Analyses
NASA Technical Reports Server (NTRS)
Bain, Jeremy; Sim, Ben W.; Sankar, Lakshmi; Brentner, Ken
2010-01-01
This paper will highlight helicopter aeromechanics and aeroacoustics prediction capabilities developed by Georgia Institute of Technology, the Pennsylvania State University, and Northern Arizona University under the Helicopter Quieting Program (HQP) sponsored by the Tactical Technology Office of the Defense Advanced Research Projects Agency (DARPA). First initiated in 2004, the goal of the HQP was to develop high fidelity, state-of-the-art computational tools for designing advanced helicopter rotors with reduced acoustic perceptibility and enhanced performance. A critical step towards achieving this objective is the development of rotorcraft prediction codes capable of assessing a wide range of helicopter configurations and operations for future rotorcraft designs. This includes novel next-generation rotor systems that incorporate innovative passive and/or active elements to meet future challenging military performance and survivability goals.
Physics-of-Failure Approach to Prognostics
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.
2017-01-01
As more and more electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of the electrical components present in the system. In case of electric vehicles, computing remaining battery charge is safety-critical. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle. In this presentation our approach to develop a system level health monitoring safety indicator for different electronic components is presented which runs estimation and prediction algorithms to determine state-of-charge and estimate remaining useful life of respective components. Given models of the current and future system behavior, the general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.
Shimazu, Akihito; Schaufeli, Wilmar B; Kubota, Kazumi; Kawakami, Norito
2012-01-01
This study investigated the distinctiveness between workaholism and work engagement by examining their longitudinal relationships (measurement interval=7 months) with well-being and performance in a sample of 1,967 Japanese employees from various occupations. Based on a previous cross-sectional study (Shimazu & Schaufeli, 2009), we expected that workaholism predicts future unwell-being (i.e., high ill-health and low life satisfaction) and poor job performance, whereas work engagement predicts future well-being (i.e., low ill-health and high life satisfaction) and superior job performance. T1-T2 changes in ill-health, life satisfaction and job performance were measured as residual scores that were then included in the structural equation model. Results showed that workaholism and work engagement were weakly and positively related to each other. In addition, workaholism was related to an increase in ill-health and to a decrease in life satisfaction. In contrast, work engagement was related to a decrease in ill-health and to increases in both life satisfaction and job performance. These findings suggest that workaholism and work engagement are two different kinds of concepts that are oppositely related to well-being and performance.
2016-01-01
Forecasting future performance in youth table tennis players based on current performance is complex due to, among other things, differences between youth players in growth, development, maturity, context and table tennis experience. Talent development programmes might benefit from an assessment of underlying perceptuo-motor skills for table tennis, which is hypothesized to determine the players’ potential concerning the perceptuo-motor domain. The Dutch perceptuo-motor skills assessment intends to measure the perceptuo-motor potential for table tennis in youth players by assessing the underlying skills crucial for developing technical and tactical qualities. Untrained perceptuo-motor tasks are used as these are suggested to represent a player’s future potential better than specific sport skills themselves as the latter depend on exposure to the sport itself. This study evaluated the value of the perceptuo-motor skills assessment for a talent developmental programme by evaluating its predictive validity for competition participation and performance in 48 young table tennis players (7–11 years). Players were tested on their perceptuo-motor skills once during a regional talent day, and the subsequent competition results were recorded half-yearly over a period of 2.5 years. Logistic regression analysis showed that test scores did not predict future competition participation (p >0.05). Yet, the Generalized Estimating Equations analysis, including the test items ‘aiming at target’, ‘throwing a ball’, and ‘eye-hand coordination’ in the best fitting model, revealed that the outcomes of the perceptuo-motor skills assessment were significant predictors for future competition results (R2 = 51%). Since the test age influences the perceptuo-motor skills assessment’s outcome, another multivariable model was proposed including test age as a covariate (R2 = 53%). This evaluation demonstrates promising prospects for the perceptuo-motor skills assessment to be included in a talent development programme. Future studies are needed to clarify the predictive value in a larger sample of youth competition players over a longer period in time. PMID:26863212
Future of Earth Orientation Predictions
2010-01-01
introduced into the prediction process will increase . Potential drivers for change are discussed and possible directions for change are outlined. Keywords...is increasing as data latency has been reduced. However, all of these have been natural progressions; straightforward responses to improvements in...7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Naval Observatory,3450 Massachusetts Ave NW,Washington,DC,20392 8. PERFORMING ORGANIZATION
Djurdjevic, Tanja; Rehwald, Rafael; Knoflach, Michael; Matosevic, Benjamin; Kiechl, Stefan; Gizewski, Elke Ruth; Glodny, Bernhard; Grams, Astrid Ellen
2017-03-01
After intraarterial recanalisation (IAR), the haemorrhage and the blood-brain barrier (BBB) disruption can be distinguished using dual-energy computed tomography (DECT). The aim of the present study was to investigate whether future infarction development can be predicted from DECT. DECT scans of 20 patients showing 45 BBB disrupted areas after IAR were assessed and compared with follow-up examinations. Receiver operator characteristic (ROC) analyses using densities from the iodine map (IM) and virtual non-contrast (VNC) were performed. Future infarction areas are denser than future non-infarction areas on IM series (23.44 ± 24.86 vs. 5.77 ± 2.77; p < 0.0001) and more hypodense on VNC series (29.71 ± 3.33 vs. 35.33 ± 3.50; p < 0.0001). ROC analyses for the IM series showed an area under the curve (AUC) of 0.99 (cut-off: <9.97 HU; p < 0.05; sensitivity 91.18 %; specificity 100.00 %; accuracy 0.93) for the prediction of future infarctions. The AUC for the prediction of haemorrhagic infarctions was 0.78 (cut-off >17.13 HU; p < 0.05; sensitivity 90.00 %; specificity 62.86 %; accuracy 0.69). The VNC series allowed prediction of infarction volume. Future infarction development after IAR can be reliably predicted with the IM series. The prediction of haemorrhages and of infarction size is less reliable. • The IM series (DECT) can predict future infarction development after IAR. • Later haemorrhages can be predicted using the IM and the BW series. • The volume of definable hypodense areas in VNC correlates with infarction volume.
Brunette, Amanda M; Calamia, Matthew; Black, Jenah; Tranel, Daniel
2018-06-11
Episodic future thinking is the ability to mentally project oneself into the future. This construct has been explored extensively in cognitive neuroscience and may be relevant for adaptive functioning. However, it has not been determined whether the measurement of episodic future thinking might be valuable in a clinical neuropsychological setting. The current study investigated (1) the relationship between episodic future thinking and instrumental activities of daily living (IADLs); and (2) whether episodic future thinking is related to IADLs over and above standard measures of cognition. Sixty-one older adults with heterogeneous neurological conditions and 41 healthy older adults completed a future thinking task (the adapted Autobiographical Interview), a performance-based measure of instrumental activities of daily living (the Independent Living Scales), and standard clinical measures of memory and executive functioning. Episodic future thinking significantly predicted IADLs after accounting for age, education, gender, and depression (increase in R2 = .050, p = .010). Episodic future thinking significantly predicted IADLs over and above executive functioning (increase in R2 = .025, p = .030), but was not predictive of IADLs over and above memory (p = .157). This study suggests that episodic future thinking is significantly associated with IADLs, beyond what can be accounted for by executive functioning. However, episodic future thinking did not predict IADLs over and above memory. Overall, there is limited evidence for the clinical utility of episodic future thinking. The findings suggest that an episodic future thinking task does not provide enough valuable information about IADLs to justify its inclusion in a clinical neuropsychological setting.
Can Multiple Mini-Interviews Predict Academic Performance of Dental Students? A Two-Year Follow-Up.
Alaki, Sumer M; Yamany, Ibrahim A; Shinawi, Lana A; Hassan, Mona H A; Tekian, Ara
2016-11-01
Prior research has shown that students' previous grade point average (GPA) is the best predictor for future academic success. However, it can only partly predict the variability in dental school performance. The aim of this study was to assess the predictive value of multiple mini-interviews (MMI) as an admission criterion by comparing them with the academic performance of dental students over a two-year period. All incoming undergraduate dental students at the King Abdulaziz University Faculty of Dentistry (KAUFD) during academic year 2013-14 were invited to participate in MMI. Students rotated through six objective structured clinical exam (OSCE)-like stations for 30 minutes total and were interviewed by two trained faculty interviewers at each station. The stations were focused on noncognitive skills thought to be essential to academic performance at KAUFD. The academic performance of these students was then followed for two years and linked to their MMI scores. A total of 146 students (71 males and 75 females) participated in an interview (response rate=92.9%). Most students scored in the acceptable range at each MMI station. Students' total MMI score, ambitions, and motives were significant predictors of GPA during the two years of follow-up (p<0.038 and p<0.001, respectively). In this study, MMI was found to be able to predict future academic performance of undergraduate dental students.
ERIC Educational Resources Information Center
Frans, Niek; Post, Wendy J.; Huisman, Mark; Oenema-Mostert, Ineke C. E.; Keegstra, Anne L.; Minnaert, Alexander E. M. G.
2017-01-01
Despite the claim by several researchers that variability in performance may complicate the identification of "at-risk" children, variability in the academic performance of young children remains an undervalued area of research. The goal of this study is to examine the predictive validity for future scores and the score stability of two…
Connecting English Language Learning and Academic Performance: A Prediction Study
ERIC Educational Resources Information Center
Kong, Jadie; Powers, Sonya; Starr, Laura; Williams, Natasha
2012-01-01
The purpose of this study was to investigate the use of English language proficiency and academic reading assessment scores to predict the future academic success of English learner (EL) students. Data from two cohorts of middle-school ELs were used to evaluate three prediction models. One cohort of students was used to develop the prediction…
Prediction of mortality rates using a model with stochastic parameters
NASA Astrophysics Data System (ADS)
Tan, Chon Sern; Pooi, Ah Hin
2016-10-01
Prediction of future mortality rates is crucial to insurance companies because they face longevity risks while providing retirement benefits to a population whose life expectancy is increasing. In the past literature, a time series model based on multivariate power-normal distribution has been applied on mortality data from the United States for the years 1933 till 2000 to forecast the future mortality rates for the years 2001 till 2010. In this paper, a more dynamic approach based on the multivariate time series will be proposed where the model uses stochastic parameters that vary with time. The resulting prediction intervals obtained using the model with stochastic parameters perform better because apart from having good ability in covering the observed future mortality rates, they also tend to have distinctly shorter interval lengths.
Azadi, Sama; Karimi-Jashni, Ayoub
2016-02-01
Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sayegh, Philip; Arentoft, Alyssa; Thaler, Nicholas S.; Dean, Andy C.; Thames, April D.
2014-01-01
The current study examined whether self-rated education quality predicts Wide Range Achievement Test-4th Edition (WRAT-4) Word Reading subtest and neurocognitive performance, and aimed to establish this subtest's construct validity as an educational quality measure. In a community-based adult sample (N = 106), we tested whether education quality both increased the prediction of Word Reading scores beyond demographic variables and predicted global neurocognitive functioning after adjusting for WRAT-4. As expected, race/ethnicity and education predicted WRAT-4 reading performance. Hierarchical regression revealed that when including education quality, the amount of WRAT-4's explained variance increased significantly, with race/ethnicity and both education quality and years as significant predictors. Finally, WRAT-4 scores, but not education quality, predicted neurocognitive performance. Results support WRAT-4 Word Reading as a valid proxy measure for education quality and a key predictor of neurocognitive performance. Future research should examine these findings in larger, more diverse samples to determine their robust nature. PMID:25404004
Choosing the appropriate forecasting model for predictive parameter control.
Aleti, Aldeida; Moser, Irene; Meedeniya, Indika; Grunske, Lars
2014-01-01
All commonly used stochastic optimisation algorithms have to be parameterised to perform effectively. Adaptive parameter control (APC) is an effective method used for this purpose. APC repeatedly adjusts parameter values during the optimisation process for optimal algorithm performance. The assignment of parameter values for a given iteration is based on previously measured performance. In recent research, time series prediction has been proposed as a method of projecting the probabilities to use for parameter value selection. In this work, we examine the suitability of a variety of prediction methods for the projection of future parameter performance based on previous data. All considered prediction methods have assumptions the time series data has to conform to for the prediction method to provide accurate projections. Looking specifically at parameters of evolutionary algorithms (EAs), we find that all standard EA parameters with the exception of population size conform largely to the assumptions made by the considered prediction methods. Evaluating the performance of these prediction methods, we find that linear regression provides the best results by a very small and statistically insignificant margin. Regardless of the prediction method, predictive parameter control outperforms state of the art parameter control methods when the performance data adheres to the assumptions made by the prediction method. When a parameter's performance data does not adhere to the assumptions made by the forecasting method, the use of prediction does not have a notable adverse impact on the algorithm's performance.
Wallenstein, Joshua; Heron, Sheryl; Santen, Sally; Shayne, Philip; Ander, Douglas
2010-10-01
This study evaluated the ability of an objective structured clinical examination (OSCE) administered in the first month of residency to predict future resident performance in the Accreditation Council for Graduate Medical Education (ACGME) core competencies. Eighteen Postgraduate Year 1 (PGY-1) residents completed a five-station OSCE in the first month of postgraduate training. Performance was graded in each of the ACGME core competencies. At the end of 18 months of training, faculty evaluations of resident performance in the emergency department (ED) were used to calculate a cumulative clinical evaluation score for each core competency. The correlations between OSCE scores and clinical evaluation scores at 18 months were assessed on an overall level and in each core competency. There was a statistically significant correlation between overall OSCE scores and overall clinical evaluation scores (R = 0.48, p < 0.05) and in the individual competencies of patient care (R = 0.49, p < 0.05), medical knowledge (R = 0.59, p < 0.05), and practice-based learning (R = 0.49, p < 0.05). No correlation was noted in the systems-based practice, interpersonal and communication skills, or professionalism competencies. An early-residency OSCE has the ability to predict future postgraduate performance on a global level and in specific core competencies. Used appropriately, such information can be a valuable tool for program directors in monitoring residents' progress and providing more tailored guidance. © 2010 by the Society for Academic Emergency Medicine.
High capacity demonstration of honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Tanzer, H. J.
1989-01-01
The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.
Tryptophan Predicts the Risk for Future Type 2 Diabetes
Chen, Tianlu; Zheng, Xiaojiao; Ma, Xiaojing; Bao, Yuqian; Ni, Yan; Hu, Cheng; Rajani, Cynthia; Huang, Fengjie; Zhao, Aihua; Jia, Weiping; Jia, Wei
2016-01-01
Recently, 5 amino acids were identified and verified as important metabolites highly associated with type 2 diabetes (T2D) development. This report aims to assess the association of tryptophan with the development of T2D and to evaluate its performance with existing amino acid markers. A total of 213 participants selected from a ten-year longitudinal Shanghai Diabetes Study (SHDS) were examined in two ways: 1) 51 subjects who developed diabetes and 162 individuals who remained metabolically healthy in 10 years; 2) the same 51 future diabetes and 23 strictly matched ones selected from the 162 healthy individuals. Baseline fasting serum tryptophan concentrations were quantitatively measured using ultra-performance liquid chromatography triple quadruple mass spectrometry. First, serum tryptophan level was found significantly higher in future T2D and was positively and independently associated with diabetes onset risk. Patients with higher tryptophan level tended to present higher degree of insulin resistance and secretion, triglyceride and blood pressure. Second, the prediction potential of tryptophan is non-inferior to the 5 existing amino acids. The predictive performance of the combined score improved after taking tryptophan into account. Our findings unveiled the potential of tryptophan as a new marker associated with diabetes risk in Chinese populations. The addition of tryptophan provided complementary value to the existing amino acid predictors. PMID:27598004
Depressive self-presentation: beyond self-handicapping.
Weary, G; Williams, J P
1990-05-01
An experiment was conducted to examine the notion that depressives' responses would reflect a protective self-presentation style (Hill, Weary, & Williams, 1986), the underlying goal of which would be the avoidance of future performance demands and potential losses in self-esteem. In this study, depressed and nondepressed Ss were asked to perform a relatively simple visual-motor task. Half of the depressed and half of the nondepressed Ss were told that if they were successful at the task, they would be asked to perform a 2nd, similar task. The remaining Ss were given no such expectation of future performance. We predicted and found that depressed compared with nondepressed Ss strategically failed at the task when presented with the possibility of future performance and further losses in esteem. Moreover, this strategic failure was associated with some costs; depressed-future performance expectancy Ss experienced more discomfort or negative affect as a result of their performance. The relationship between this depressive self-presentation and self-handicapping strategies is discussed.
Predicting Liver Transplant Capacity Using Discrete Event Simulation.
Toro-Díaz, Hector; Mayorga, Maria E; Barritt, A Sidney; Orman, Eric S; Wheeler, Stephanie B
2015-08-01
The number of liver transplants (LTs) performed in the US increased until 2006 but has since declined despite an ongoing increase in demand. This decline may be due in part to decreased donor liver quality and increasing discard of poor-quality livers. We constructed a discrete event simulation (DES) model informed by current donor characteristics to predict future LT trends through the year 2030. The data source for our model is the United Network for Organ Sharing database, which contains patient-level information on all organ transplants performed in the US. Previous analysis showed that liver discard is increasing and that discarded organs are more often from donors who are older, are obese, have diabetes, and donated after cardiac death. Given that the prevalence of these factors is increasing, the DES model quantifies the reduction in the number of LTs performed through 2030. In addition, the model estimatesthe total number of future donors needed to maintain the current volume of LTs and the effect of a hypothetical scenario of improved reperfusion technology.We also forecast the number of patients on the waiting list and compare this with the estimated number of LTs to illustrate the impact that decreased LTs will have on patients needing transplants. By altering assumptions about the future donor pool, this model can be used to develop policy interventions to prevent a further decline in this lifesaving therapy. To our knowledge, there are no similar predictive models of future LT use based on epidemiological trends. © The Author(s) 2014.
Predicting Liver Transplant Capacity Using Discrete Event Simulation
Diaz, Hector Toro; Mayorga, Maria; Barritt, A. Sidney; Orman, Eric S.; Wheeler, Stephanie B.
2014-01-01
The number of liver transplants (LTs) performed in the US increased until 2006, but has since declined despite an ongoing increase in demand. This decline may be due in part to decreased donor liver quality and increasing discard of poor quality livers. We constructed a Discrete Event Simulation (DES) model informed by current donor characteristics to predict future LT trends through the year 2030. The data source for our model is the United Network for Organ Sharing database, which contains patient level information on all organ transplants performed in the US. Previous analysis showed that liver discard is increasing and that discarded organs are more often from donors who are older, obese, have diabetes, and donated after cardiac death. Given that the prevalence of these factors is increasing, the DES model quantifies the reduction in the number of LTs performed through 2030. In addition, the model estimates the total number of future donors needed to maintain the current volume of LTs, and the effect of a hypothetical scenario of improved reperfusion technology. We also forecast the number of patients on the waiting list and compare this to the estimated number of LTs to illustrate the impact that decreased LTs will have on patients needing transplants. By altering assumptions about the future donor pool, this model can be used to develop policy interventions to prevent a further decline in this life saving therapy. To our knowledge, there are no similar predictive models of future LT use based on epidemiologic trends. PMID:25391681
Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.
Ko, Chien-Ho
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.
Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism. PMID:23864830
DOT National Transportation Integrated Search
2010-08-01
This study was intended to recommend future directions for the development of TxDOTs Mechanistic-Empirical : (TexME) design system. For stress predictions, a multi-layer linear elastic system was evaluated and its validity was : verified by compar...
Health Management and Service Life for Air Force Missiles
2011-09-26
prediction of performance will be conducted DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. PA# TBD 24 • Empiricism ...Strategic Missile A&S Approach Overview Empiricism DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. PA# TBD...Extrapolation Simulated Data 25 • Empiricism cannot always predict future state • Mechanistic method enables enhanced predictions • Mechanistic will not be
An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT
Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan
2016-01-01
In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process. PMID:27827909
An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT.
Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan
2016-11-04
In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process.
Predicting a future lifetime through Box-Cox transformation.
Yang, Z
1999-09-01
In predicting a future lifetime based on a sample of past lifetimes, the Box-Cox transformation method provides a simple and unified procedure that is shown in this article to meet or often outperform the corresponding frequentist solution in terms of coverage probability and average length of prediction intervals. Kullback-Leibler information and second-order asymptotic expansion are used to justify the Box-Cox procedure. Extensive Monte Carlo simulations are also performed to evaluate the small sample behavior of the procedure. Certain popular lifetime distributions, such as Weibull, inverse Gaussian and Birnbaum-Saunders are served as illustrative examples. One important advantage of the Box-Cox procedure lies in its easy extension to linear model predictions where the exact frequentist solutions are often not available.
NASA Technical Reports Server (NTRS)
Schredder, J. M.
1988-01-01
A comparative analysis was performed, using both the Geometrical Theory of Diffraction (GTD) and traditional pathlength error analysis techniques, for predicting RF antenna gain performance and pointing corrections. The NASA/JPL 70 meter antenna with its shaped surface was analyzed for gravity loading over the range of elevation angles. Also analyzed were the effects of lateral and axial displacements of the subreflector. Significant differences were noted between the predictions of the two methods, in the effect of subreflector displacements, and in the optimal subreflector positions to focus a gravity-deformed main reflector. The results are of relevance to future design procedure.
Does future-oriented thinking predict adolescent decision making?
Eskritt, Michelle; Doucette, Jesslyn; Robitaille, Lori
2014-01-01
A number of theorists, as well as plain common sense, suggest that future-oriented thinking (FOT) should be involved in decision making; therefore, the development of FOT should be related to better quality decision making. FOT and quality of the decision making were measured in adolescents as well as adults in 2 different experiments. Though the results of the first experiment revealed an increase in quality of decision making across adolescence into adulthood, there was no relationship between FOT and decision making. In the second experiment, FOT predicted performance on a more deliberative decision-making task independent of age, but not performance on the Iowa Gambling Task (IGT). Performance on the IGT was instead related to emotion regulation. The study's findings suggest that FOT can be related to reflective decision making but not necessarily decision making that is more intuitive.
NASA Astrophysics Data System (ADS)
He, Ling-Yun; Wen, Xing-Chun
2015-12-01
In this paper, we use a time-frequency domain technique, namely, wavelet squared coherency, to examine the associations between the trading volumes of three agricultural futures and three different forms of these futures' daily closing prices, i.e. prices, returns and volatilities, over the past several years. These agricultural futures markets are selected from China as a typical case of the emerging countries, and from the US as a representative of the developed economies. We investigate correlations and lead-lag relationships between the trading volumes and the prices to detect the predictability and efficiency of these futures markets. The results suggest that the information contained in the trading volumes of the three agricultural futures markets in China can be applied to predict the prices or returns, while that in US has extremely weak predictive power for prices or returns. We also conduct the wavelet analysis on the relationships between the volumes and returns or volatilities to examine the existence of the two "stylized facts" proposed by Karpoff [J. M. Karpoff, The relation between price changes and trading volume: A survey, J. Financ. Quant. Anal.22(1) (1987) 109-126]. Different markets in the two countries perform differently in reproducing the two stylized facts. As the wavelet tools can decode nonlinear regularities and hidden patterns behind price-volume relationship in time-frequency space, different from the conventional econometric framework, this paper offers a new perspective into the market predictability and efficiency.
Selection for Surgical Training: An Evidence-Based Review.
Schaverien, Mark V
2016-01-01
The predictive relationship between candidate selection criteria for surgical training programs and future performance during and at the completion of training has been investigated for several surgical specialties, however there is no interspecialty agreement regarding which selection criteria should be used. Better understanding the predictive reliability between factors at selection and future performance may help to optimize the process and lead to greater standardization of the surgical selection process. PubMed and Ovid MEDLINE databases were searched. Over 560 potentially relevant publications were identified using the search strategy and screened using the Cochrane Collaboration Data Extraction and Assessment Template. 57 studies met the inclusion criteria. Several selection criteria used in the traditional selection demonstrated inconsistent correlation with subsequent performance during and at the end of surgical training. The following selection criteria, however, demonstrated good predictive relationships with subsequent resident performance: USMLE examination scores, Letters of Recommendation (LOR) including the Medical Student Performance Evaluation (MSPE), academic performance during clinical clerkships, the interview process, displaying excellence in extracurricular activities, and the use of unadjusted rank lists. This systematic review supports that the current selection process needs to be further evaluated and improved. Multicenter studies using standardized outcome measures of success are now required to improve the reliability of the selection process to select the best trainees. Published by Elsevier Inc.
Integrating environmental and genetic effects to predict responses of tree populations to climate.
Wang, Tongli; O'Neill, Gregory A; Aitken, Sally N
2010-01-01
Climate is a major environmental factor affecting the phenotype of trees and is also a critical agent of natural selection that has molded among-population genetic variation. Population response functions describe the environmental effect of planting site climates on the performance of a single population, whereas transfer functions describe among-population genetic variation molded by natural selection for climate. Although these approaches are widely used to predict the responses of trees to climate change, both have limitations. We present a novel approach that integrates both genetic and environmental effects into a single "universal response function" (URF) to better predict the influence of climate on phenotypes. Using a large lodgepole pine (Pinus contorta Dougl. ex Loud.) field transplant experiment composed of 140 populations planted on 62 sites to demonstrate the methodology, we show that the URF makes full use of data from provenance trials to: (1) improve predictions of climate change impacts on phenotypes; (2) reduce the size and cost of future provenance trials without compromising predictive power; (3) more fully exploit existing, less comprehensive provenance tests; (4) quantify and compare environmental and genetic effects of climate on population performance; and (5) predict the performance of any population growing in any climate. Finally, we discuss how the last attribute allows the URF to be used as a mechanistic model to predict population and species ranges for the future and to guide assisted migration of seed for reforestation, restoration, or afforestation and genetic conservation in a changing climate.
Workaholism vs. work engagement: the two different predictors of future well-being and performance.
Shimazu, Akihito; Schaufeli, Wilmar B; Kamiyama, Kimika; Kawakami, Norito
2015-02-01
This study investigated the distinctiveness of two types of heavy work investment (i.e., workaholism and work engagement) by examining their 2-year longitudinal relationships with employee well-being and job performance. Based on a previous cross-sectional study by Shimazu and Schaufeli (Ind Health 47:495-502, 2009) and a shorter term longitudinal study by Shimazu et al. (Ind Health 50:316-21, 2012; measurement interval = 7 months), we predicted that workaholism predicts long-term future unwell-being (i.e., high ill-health and low life satisfaction) and poor job performance, whereas work engagement predicts future well-being (i.e., low ill-health and high life satisfaction) and superior job performance. A two-wave survey was conducted among employees from one Japanese company, and valid data from 1,196 employees was analyzed using structural equation modeling. T1-T2 changes in ill-health, life satisfaction, and job performance were measured as residual scores, which were included in the structural equation model. Workaholism and work engagement were weakly and positively related to each other. In addition, and as expected, workaholism was related to an increase in ill-health and to a decrease in life satisfaction. In contrast, and also as expected, work engagement was related to increases in both life satisfaction and job performance and to a decrease in ill-health. Although workaholism and work engagement are weakly positively related, they constitute two different concepts. More specifically, workaholism has negative consequences across an extended period of 2 years, whereas work engagement has positive consequences in terms of well-being and performance. Hence, workaholism should be prevented and work engagement should be stimulated.
Application of High Performance Computing for Simulations of N-Dodecane Jet Spray with Evaporation
2016-11-01
sprays and develop a predictive theory for comparison to measurements in the laboratory of turbulent diesel sprays. 15. SUBJECT TERMS high...models into future simulations of turbulent jet sprays and develop a predictive theory for comparison to measurements in the lab of turbulent diesel ...A critical component of maintaining performance and durability of a diesel engine involves the formation of a fuel-air mixture as a diesel jet spray
Facing the future: Memory as an evolved system for planning future acts
Klein, Stanley B.; Robertson, Theresa E.; Delton, Andrew W.
2013-01-01
All organisms capable of long-term memory are necessarily oriented toward the future. We propose that one of the most important adaptive functions of long-term episodic memory is to store information about the past in the service of planning for the personal future. Because a system should have especially efficient performance when engaged in a task that makes maximal use of its evolved machinery, we predicted that future-oriented planning would result in especially good memory relative to other memory tasks. We tested recall performance of a word list, using encoding tasks with different temporal perspectives (e.g., past, future) but a similar context. Consistent with our hypothesis, future-oriented encoding produced superior recall. We discuss these findings in light of their implications for the thesis that memory evolved to enable its possessor to anticipate and respond to future contingencies that cannot be known with certainty. PMID:19966234
Measured and predicted rotor performance for the SERI advanced wind turbine blades
NASA Astrophysics Data System (ADS)
Tangler, J.; Smith, B.; Kelley, N.; Jager, D.
1992-02-01
Measured and predicted rotor performance for the Solar Energy Research Institute (SERI) advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction.
Children's predictions of future perceptual experiences: Temporal reasoning and phenomenology.
Burns, Patrick; Russell, James
2016-11-01
We investigated the development and cognitive correlates of envisioning future experiences in 3.5- to 6.5-year old children across 2 experiments, both of which involved toy trains traveling along a track. In the first, children were asked to predict the direction of train travel and color of train side, as it would be seen through an arch. Children below 5 years typically failed the task, while performance on it was associated with performance on a "before/after" comprehension task in which order-of-mention in a sentence had to be mapped to a video of 2 actions (after McCormack & Hanley, 2011). In the second train task children were asked to predict the content of a doll's visual experience at the terminal point of a train's transit, based on the tint of a doll's spectacles and the direction of travel (toward or away). Again, success under 5 years of age was very rare and performance was associated with performance on the before/after task. This time there was a strong association with mental rotation skill. We conclude that the consistent association with before/after reasoning suggests that future-envisioning depends upon certain temporal-order concepts being in place. The inconsistent association with mental rotation suggests that envisioning can be achieved phenomenologically, but that its role is only explicit when the question explicitly concerns the content of a visual field. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Cieslak, Kasia P; Huisman, Floor; Bais, Thomas; Bennink, Roelof J; van Lienden, Krijn P; Verheij, Joanne; Besselink, Marc G; Busch, Olivier R C; van Gulik, Thomas M
2017-07-01
Preoperative portal vein embolization is widely used to increase the future remnant liver. Identification of nonresponders to portal vein embolization is essential because these patients may benefit from associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), which induces a more powerful hypertrophy response. 99m Tc-mebrofenin hepatobiliary scintigraphy is a quantitative method for assessment of future remnant liver function with a calculated cutoff value for the prediction of postoperative liver failure. The aim of this study was to analyze future remnant liver function before portal vein embolization to predict sufficient functional hypertrophy response after portal vein embolization. Sixty-three patients who underwent preoperative portal vein embolization and computed tomography imaging were included. Hepatobiliary scintigraphy was performed to determine pre-portal vein embolization and post-portal vein embolization future remnant liver function. Receiver operator characteristic analysis of pre-portal vein embolization future remnant liver function was performed to identify patients who would meet the post-portal vein embolization cutoff value for sufficient function (ie, 2.7%/min/m 2 ). Mean pre-portal vein embolization future remnant liver function was 1.80% ± 0.45%/min/m 2 and increased to 2.89% ± 0.97%/min/m 2 post-portal vein embolization. Receiver operator characteristic analysis in 33 patients who did not receive chemotherapy revealed that a pre-portal vein embolization future remnant liver function of ≥1.72%/min/m 2 was able to identify patients who would meet the safe future remnant liver function cutoff value 3 weeks after portal vein embolization (area under the curve = 0.820). The predictive value was less pronounced in 30 patients treated with neoadjuvant chemotherapy (area under the curve = 0.618). A total of 45 of 63 patients underwent liver resection, of whom 5 of 45 developed postoperative liver failure; 4 of 5 patients had a post-portal vein embolization future remnant liver function below the cutoff value for safe resection. When selecting patients for portal vein embolization, future remnant liver function assessed with hepatobiliary scintigraphy can be used as a predictor of insufficient functional hypertrophy after portal vein embolization, especially in nonchemotherapy patients. These patients are potential candidates for ALPPS. Copyright © 2017 Elsevier Inc. All rights reserved.
Teenage smoking, attempts to quit, and school performance.
Hu, T W; Lin, Z; Keeler, T E
1998-01-01
OBJECTIVES: This study examined the relationship between school performance, smoking, and quitting attempts among teenagers. METHODS: A logistic regression model was used to predict the probability of being a current smoker or a former smoker. Data were derived from the 1990 California Youth Tobacco Survey. RESULTS: Students' school performance was a key factor in predicting smoking and quitting attempts when other sociodemographic and family income factors were controlled. CONCLUSIONS: Developing academic or remedial classes designed to improve students' school performance may lead to a reduction in smoking rates among teenagers while simultaneously providing a human capital investment in their futures. PMID:9618625
The Five Key Questions of Human Performance Modeling.
Wu, Changxu
2018-01-01
Via building computational (typically mathematical and computer simulation) models, human performance modeling (HPM) quantifies, predicts, and maximizes human performance, human-machine system productivity and safety. This paper describes and summarizes the five key questions of human performance modeling: 1) Why we build models of human performance; 2) What the expectations of a good human performance model are; 3) What the procedures and requirements in building and verifying a human performance model are; 4) How we integrate a human performance model with system design; and 5) What the possible future directions of human performance modeling research are. Recent and classic HPM findings are addressed in the five questions to provide new thinking in HPM's motivations, expectations, procedures, system integration and future directions.
Projecting technology change to improve space technology planning and systems management
NASA Astrophysics Data System (ADS)
Walk, Steven Robert
2011-04-01
Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.
Sevincer, A Timur; Wagner, Greta; Kalvelage, Johanna; Oettingen, Gabriele
2014-04-01
Previous research has shown that positive thinking, in the form of fantasies about an idealized future, predicts low effort and poor performance. In the studies reported here, we used computerized content analysis of historical documents to investigate the relation between positive thinking about the future and economic development. During the financial crisis from 2007 to 2009, the more weekly newspaper articles in the economy page of USA Today contained positive thinking about the future, the more the Dow Jones Industrial Average declined in the subsequent week and 1 month later. In addition, between the New Deal era and the present time, the more presidential inaugural addresses contained positive thinking about the future, the more the gross domestic product and the employment rate declined in the presidents' subsequent tenures. These counterintuitive findings may help reveal the psychological processes that contribute to an economic crisis.
Challenges for future space power systems
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.
1989-01-01
Forecasts of space power needs are presented. The needs fall into three broad categories: survival, self-sufficiency, and industrialization. The cost of delivering payloads to orbital locations and from Low Earth Orbit (LEO) to Mars are determined. Future launch cost reductions are predicted. From these projections the performances necessary for future solar and nuclear space power options are identified. The availability of plentiful cost effective electric power and of low cost access to space are identified as crucial factors in the future extension of human presence in space.
Prognostics and Health Monitoring: Application to Electric Vehicles
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.
2017-01-01
As more and more autonomous electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of remaining useful life of the systemssubsystems, specifically the electrical powertrain. In case of electric aircrafts, computing remaining flying time is safety-critical, since an aircraft that runs out of power (battery charge) while in the air will eventually lose control leading to catastrophe. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle.Our research approach is to develop a system level health monitoring safety indicator either to the pilotautopilot for the electric vehicles which runs estimation and prediction algorithms to estimate remaining useful life of the vehicle e.g. determine state-of-charge in batteries. Given models of the current and future system behavior, a general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.
NASA Astrophysics Data System (ADS)
Tsao, Sinchai; Gajawelli, Niharika; Zhou, Jiayu; Shi, Jie; Ye, Jieping; Wang, Yalin; Lepore, Natasha
2014-03-01
Prediction of Alzheimers disease (AD) progression based on baseline measures allows us to understand disease progression and has implications in decisions concerning treatment strategy. To this end we combine a predictive multi-task machine learning method1 with novel MR-based multivariate morphometric surface map of the hippocampus2 to predict future cognitive scores of patients. Previous work by Zhou et al.1 has shown that a multi-task learning framework that performs prediction of all future time points (or tasks) simultaneously can be used to encode both sparsity as well as temporal smoothness. They showed that this can be used in predicting cognitive outcomes of Alzheimers Disease Neuroimaging Initiative (ADNI) subjects based on FreeSurfer-based baseline MRI features, MMSE score demographic information and ApoE status. Whilst volumetric information may hold generalized information on brain status, we hypothesized that hippocampus specific information may be more useful in predictive modeling of AD. To this end, we applied Shi et al.2s recently developed multivariate tensor-based (mTBM) parametric surface analysis method to extract features from the hippocampal surface. We show that by combining the power of the multi-task framework with the sensitivity of mTBM features of the hippocampus surface, we are able to improve significantly improve predictive performance of ADAS cognitive scores 6, 12, 24, 36 and 48 months from baseline.
Predictive models of safety based on audit findings: Part 2: Measurement of model validity.
Hsiao, Yu-Lin; Drury, Colin; Wu, Changxu; Paquet, Victor
2013-07-01
Part 1 of this study sequence developed a human factors/ergonomics (HF/E) based classification system (termed HFACS-MA) for safety audit findings and proved its measurement reliability. In Part 2, we used the human error categories of HFACS-MA as predictors of future safety performance. Audit records and monthly safety incident reports from two airlines submitted to their regulatory authority were available for analysis, covering over 6.5 years. Two participants derived consensus results of HF/E errors from the audit reports using HFACS-MA. We adopted Neural Network and Poisson regression methods to establish nonlinear and linear prediction models respectively. These models were tested for the validity of prediction of the safety data, and only Neural Network method resulted in substantially significant predictive ability for each airline. Alternative predictions from counting of audit findings and from time sequence of safety data produced some significant results, but of much smaller magnitude than HFACS-MA. The use of HF/E analysis of audit findings provided proactive predictors of future safety performance in the aviation maintenance field. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Stress testing hydrologic models using bottom-up climate change assessment
NASA Astrophysics Data System (ADS)
Stephens, C.; Johnson, F.; Marshall, L. A.
2017-12-01
Bottom-up climate change assessment is a promising approach for understanding the vulnerability of a system to potential future changes. The technique has been utilised successfully in risk-based assessments of future flood severity and infrastructure vulnerability. We find that it is also an ideal tool for assessing hydrologic model performance in a changing climate. In this study, we applied bottom-up climate change to compare the performance of two different hydrologic models (an event-based and a continuous model) under increasingly severe climate change scenarios. This allowed us to diagnose likely sources of future prediction error in the two models. The climate change scenarios were based on projections for southern Australia, which indicate drier average conditions with increased extreme rainfall intensities. We found that the key weakness in using the event-based model to simulate drier future scenarios was the model's inability to dynamically account for changing antecedent conditions. This led to increased variability in model performance relative to the continuous model, which automatically accounts for the wetness of a catchment through dynamic simulation of water storages. When considering more intense future rainfall events, representation of antecedent conditions became less important than assumptions around (non)linearity in catchment response. The linear continuous model we applied may underestimate flood risk in a future climate with greater extreme rainfall intensity. In contrast with the recommendations of previous studies, this indicates that continuous simulation is not necessarily the key to robust flood modelling under climate change. By applying bottom-up climate change assessment, we were able to understand systematic changes in relative model performance under changing conditions and deduce likely sources of prediction error in the two models.
Aramaki, Yu; Haruno, Masahiko; Osu, Rieko; Sadato, Norihiro
2011-07-06
In periodic bimanual movements, anti-phase-coordinated patterns often change into in-phase patterns suddenly and involuntarily. Because behavior in the initial period of a sequence of cycles often does not show any obvious errors, it is difficult to predict subsequent movement errors in the later period of the cyclical sequence. Here, we evaluated performance in the later period of the cyclical sequence of bimanual periodic movements using human brain activity measured with functional magnetic resonance imaging as well as using initial movement features. Eighteen subjects performed a 30 s bimanual finger-tapping task. We calculated differences in initiation-locked transient brain activity between antiphase and in-phase tapping conditions. Correlation analysis revealed that the difference in the anterior putamen activity during antiphase compared within-phase tapping conditions was strongly correlated with future instability as measured by the mean absolute deviation of the left-hand intertap interval during antiphase movements relative to in-phase movements (r = 0.81). Among the initial movement features we measured, only the number of taps to establish the antiphase movement pattern exhibited a significant correlation. However, the correlation efficient of 0.60 was not high enough to predict the characteristics of subsequent movement. There was no significant correlation between putamen activity and initial movement features. It is likely that initiating unskilled difficult movements requires increased anterior putamen activity, and this activity increase may facilitate the initiation of movement via the basal ganglia-thalamocortical circuit. Our results suggest that initiation-locked transient activity of the anterior putamen can be used to predict future motor performance.
NASA Technical Reports Server (NTRS)
Greene, G. C.
1980-01-01
The research in propeller noise prediction, noise/performance optimization, and interior reduction is described. Selected results are presented to illustrate the status of the technology and the direction of future research.
NASA Astrophysics Data System (ADS)
Ko, P.; Kurosawa, S.
2014-03-01
The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.
Bø, Ragnhild; Billieux, Joël; Gjerde, Line C.; Eilertsen, Espen M.; Landrø, Nils I.
2017-01-01
Background: Impairments in executive functions (EFs) are related to binge drinking in young adulthood, but research on how EFs influence future binge drinking is lacking. The aim of the current report is therefore to investigate the association between various EFs and later severity of, and change in, binge drinking over a prolonged period during young adulthood. Methods: At baseline, 121 students reported on their alcohol habits (Alcohol use disorder identification test; Alcohol use questionnaire). Concurrently, EFs [working memory, reversal, set-shifting, response inhibition, response monitoring and decision-making (with ambiguity and implicit risk)] were assessed. Eighteen months later, information on alcohol habits for 103 of the participants were gathered. Data were analyzed by means of multilevel regression modeling. Results: Future severity of binge drinking was uniquely predicted by performance on the Information sampling task, assessing risky decision-making (β = -1.86, 95% CI: -3.69, -0.04). None of the study variables predicted severity or change in binge drinking. Conclusion: Future severity of binge drinking was associated with making risky decisions in the prospect for gain, suggesting reward hypersensitivity. Future studies should aim at clarifying whether there is a causal association between decision-making style and binge drinking. Performance on all executive tasks was unrelated to change in binge drinking patterns; however, the finding was limited by overall small changes, and needs to be confirmed with longer follow-up periods. PMID:28408897
An Efficient Deterministic Approach to Model-based Prediction Uncertainty Estimation
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Saxena, Abhinav; Goebel, Kai
2012-01-01
Prognostics deals with the prediction of the end of life (EOL) of a system. EOL is a random variable, due to the presence of process noise and uncertainty in the future inputs to the system. Prognostics algorithm must account for this inherent uncertainty. In addition, these algorithms never know exactly the state of the system at the desired time of prediction, or the exact model describing the future evolution of the system, accumulating additional uncertainty into the predicted EOL. Prediction algorithms that do not account for these sources of uncertainty are misrepresenting the EOL and can lead to poor decisions based on their results. In this paper, we explore the impact of uncertainty in the prediction problem. We develop a general model-based prediction algorithm that incorporates these sources of uncertainty, and propose a novel approach to efficiently handle uncertainty in the future input trajectories of a system by using the unscented transformation. Using this approach, we are not only able to reduce the computational load but also estimate the bounds of uncertainty in a deterministic manner, which can be useful to consider during decision-making. Using a lithium-ion battery as a case study, we perform several simulation-based experiments to explore these issues, and validate the overall approach using experimental data from a battery testbed.
Kazaura, Kamugisha; Omae, Kazunori; Suzuki, Toshiji; Matsumoto, Mitsuji; Mutafungwa, Edward; Korhonen, Timo O; Murakami, Tadaaki; Takahashi, Koichi; Matsumoto, Hideki; Wakamori, Kazuhiko; Arimoto, Yoshinori
2006-06-12
The deterioration and deformation of a free-space optical beam wave-front as it propagates through the atmosphere can reduce the link availability and may introduce burst errors thus degrading the performance of the system. We investigate the suitability of utilizing soft-computing (SC) based tools for improving performance of free-space optical (FSO) communications systems. The SC based tools are used for the prediction of key parameters of a FSO communications system. Measured data collected from an experimental FSO communication system is used as training and testing data for a proposed multi-layer neural network predictor (MNNP) used to predict future parameter values. The predicted parameters are essential for reducing transmission errors by improving the antenna's accuracy of tracking data beams. This is particularly essential for periods considered to be of strong atmospheric turbulence. The parameter values predicted using the proposed tool show acceptable conformity with original measurements.
Remaining dischargeable time prediction for lithium-ion batteries using unscented Kalman filter
NASA Astrophysics Data System (ADS)
Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai; Sun, Han; Yu, Xiaowei
2017-10-01
To overcome the range anxiety, one of the important strategies is to accurately predict the range or dischargeable time of the battery system. To accurately predict the remaining dischargeable time (RDT) of a battery, a RDT prediction framework based on accurate battery modeling and state estimation is presented in this paper. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery. Then, an online recursive least-square-algorithm method and unscented-Kalman-filter are employed to estimate the system matrices and SOC at every prediction point. Besides, a discrete wavelet transform technique is employed to capture the statistical information of past dynamics of input currents, which are utilized to predict the future battery currents. Finally, the RDT can be predicted based on the battery model, SOC estimation results and predicted future battery currents. The performance of the proposed methodology has been verified by a lithium-ion battery cell. Experimental results indicate that the proposed method can provide an accurate SOC and parameter estimation and the predicted RDT can solve the range anxiety issues.
Tiffin, Paul A; Mwandigha, Lazaro M; Paton, Lewis W; Hesselgreaves, H; McLachlan, John C; Finn, Gabrielle M; Kasim, Adetayo S
2016-09-26
The UK Clinical Aptitude Test (UKCAT) has been shown to have a modest but statistically significant ability to predict aspects of academic performance throughout medical school. Previously, this ability has been shown to be incremental to conventional measures of educational performance for the first year of medical school. This study evaluates whether this predictive ability extends throughout the whole of undergraduate medical study and explores the potential impact of using the test as a selection screening tool. This was an observational prospective study, linking UKCAT scores, prior educational attainment and sociodemographic variables with subsequent academic outcomes during the 5 years of UK medical undergraduate training. The participants were 6812 entrants to UK medical schools in 2007-8 using the UKCAT. The main outcome was academic performance at each year of medical school. A receiver operating characteristic (ROC) curve analysis was also conducted, treating the UKCAT as a screening test for a negative academic outcome (failing at least 1 year at first attempt). All four of the UKCAT scale scores significantly predicted performance in theory- and skills-based exams. After adjustment for prior educational achievement, the UKCAT scale scores remained significantly predictive for most years. Findings from the ROC analysis suggested that, if used as a sole screening test, with the mean applicant UKCAT score as the cut-off, the test could be used to reject candidates at high risk of failing at least 1 year at first attempt. However, the 'number needed to reject' value would be high (at 1.18), with roughly one candidate who would have been likely to pass all years at first sitting being rejected for every higher risk candidate potentially declined entry on this basis. The UKCAT scores demonstrate a statistically significant but modest degree of incremental predictive validity throughout undergraduate training. Whilst the UKCAT could be considered a fairly crude screening tool for future academic performance, it may offer added value when used in conjunction with other selection measures. Future work should focus on the optimum role of such tests within the selection process and the prediction of post-graduate performance.
Salanova, Marisa; Agut, Sonia; Peiró, José María
2005-11-01
This study examined the mediating role of service climate in the prediction of employee performance and customer loyalty. Contact employees (N=342) from 114 service units (58 hotel front desks and 56 restaurants) provided information about organizational resources, engagement, and service climate. Furthermore, customers (N=1,140) from these units provided information on employee performance and customer loyalty. Structural equation modeling analyses were consistent with a full mediation model in which organizational resources and work engagement predict service climate, which in turn predicts employee performance and then customer loyalty. Further analyses revealed a potential reciprocal effect between service climate and customer loyalty. Implications of the study are discussed, together with limitations and suggestions for future research. ((c) 2005 APA, all rights reserved).
NASA Earned Value Management (EVM) Update
NASA Technical Reports Server (NTRS)
Kerby, Jerald
2013-01-01
Earned Value Management (EVM) is an integrated management control system for assessing, understanding and qualifying what a project is achieving with the resoures. EVM integrates technical cost and schedules with risk management. It allows objective assessment and quantification of current project performance, and helps predict future performance-based trents.
Evaluation of a computer-generated perspective tunnel display for flight path following
NASA Technical Reports Server (NTRS)
Grunwald, A. J.; Robertson, J. B.; Hatfield, J. J.
1980-01-01
The display was evaluated by monitoring pilot performance in a fixed base simulator with the vehicle dynamics of a CH-47 tandem rotor helicopter. Superposition of the predicted future vehicle position on the tunnel image was also investigated to determine whether, and to what extent, it contributes to better system performance (the best predicted future vehicle position was sought). Three types of simulator experiments were conducted: following a desired trajectory in the presence of disturbances; entering the trajectory from a random position, outside the trajectory; detecting and correcting failures in automatic flight. The tunnel display with superimposed predictor/director symbols was shown to be a very successful combination, which outperformed the other two displays in all three experiments. A prediction time of 4 to 7 sec. was found to optimize trajectory tracking for the given vehicle dynamics and flight condition. Pilot acceptance of the tunnel plus predictor/director display was found to be favorable and the time the pilot needed for familiarization with the display was found to be relatively short.
Verifying a computational method for predicting extreme ground motion
Harris, R.A.; Barall, M.; Andrews, D.J.; Duan, B.; Ma, S.; Dunham, E.M.; Gabriel, A.-A.; Kaneko, Y.; Kase, Y.; Aagaard, Brad T.; Oglesby, D.D.; Ampuero, J.-P.; Hanks, T.C.; Abrahamson, N.
2011-01-01
In situations where seismological data is rare or nonexistent, computer simulations may be used to predict ground motions caused by future earthquakes. This is particularly practical in the case of extreme ground motions, where engineers of special buildings may need to design for an event that has not been historically observed but which may occur in the far-distant future. Once the simulations have been performed, however, they still need to be tested. The SCEC-USGS dynamic rupture code verification exercise provides a testing mechanism for simulations that involve spontaneous earthquake rupture. We have performed this examination for the specific computer code that was used to predict maximum possible ground motion near Yucca Mountain. Our SCEC-USGS group exercises have demonstrated that the specific computer code that was used for the Yucca Mountain simulations produces similar results to those produced by other computer codes when tackling the same science problem. We also found that the 3D ground motion simulations produced smaller ground motions than the 2D simulations.
ERIC Educational Resources Information Center
Breckler, Jennifer; Teoh, Chia Shan; Role, Kemi
2011-01-01
Academic success in first-year college science coursework can strongly influence future career paths and usually includes a solid performance in introductory biology. We wanted to know whether factors affecting biology student performance might include learning style preferences and one's ability and confidence in self-assessing those learning…
Pleasure Now, Pain Later: Positive Fantasies About the Future Predict Symptoms of Depression.
Oettingen, Gabriele; Mayer, Doris; Portnow, Sam
2016-03-01
Though common sense suggests that positive thinking shelters people from depression, the four studies reported here showed that this intuition needs to be qualified: Positive thinking in the form of fantasies about the future did indeed relate to decreased symptoms of depression when measured concurrently; however, positive fantasies predicted more depressive symptoms when measured longitudinally. The pattern of results was observed for different indicators of fantasies and depression, in adults and in schoolchildren, and for periods of up to 7 months (Studies 1-4). In college students, low academic success partially mediated the predictive relation between positive fantasies and symptoms of depression (Study 4). Results add to existing research on the problematic effects of positive fantasies on performance by suggesting that indulging in positive fantasies predicts problems in mental health. © The Author(s) 2016.
Hester, Robert; Murphy, Kevin; Brown, Felicity L; Skilleter, Ashley J
2010-11-17
Punishing an error to shape subsequent performance is a major tenet of individual and societal level behavioral interventions. Recent work examining error-related neural activity has identified that the magnitude of activity in the posterior medial frontal cortex (pMFC) is predictive of learning from an error, whereby greater activity in this region predicts adaptive changes in future cognitive performance. It remains unclear how punishment influences error-related neural mechanisms to effect behavior change, particularly in key regions such as pMFC, which previous work has demonstrated to be insensitive to punishment. Using an associative learning task that provided monetary reward and punishment for recall performance, we observed that when recall errors were categorized by subsequent performance--whether the failure to accurately recall a number-location association was corrected at the next presentation of the same trial--the magnitude of error-related pMFC activity predicted future correction. However, the pMFC region was insensitive to the magnitude of punishment an error received and it was the left insula cortex that predicted learning from the most aversive outcomes. These findings add further evidence to the hypothesis that error-related pMFC activity may reflect more than a prediction error in representing the value of an outcome. The novel role identified here for the insular cortex in learning from punishment appears particularly compelling for our understanding of psychiatric and neurologic conditions that feature both insular cortex dysfunction and a diminished capacity for learning from negative feedback or punishment.
The Influence of Delaying Judgments of Learning on Metacognitive Accuracy: A Meta-Analytic Review
ERIC Educational Resources Information Center
Rhodes, Matthew G.; Tauber, Sarah K.
2011-01-01
Many studies have examined the accuracy of predictions of future memory performance solicited through judgments of learning (JOLs). Among the most robust findings in this literature is that delaying predictions serves to substantially increase the relative accuracy of JOLs compared with soliciting JOLs immediately after study, a finding termed the…
NASA Astrophysics Data System (ADS)
Castedo, Ricardo; de la Vega-Panizo, Rogelio; Fernández-Hernández, Marta; Paredes, Carlos
2015-02-01
A key requirement for effective coastal zone management is good knowledge of historical rates of change and the ability to predict future shoreline evolution, especially for rapidly eroding areas. Historical shoreline recession analysis was used for the prediction of future cliff shoreline positions along a section of 9 km between Bridlington and Hornsea, on the northern area of the Holderness Coast, UK. The analysis was based on historical maps and aerial photographs dating from 1852 to 2011 using the Digital Shoreline Analysis System (DSAS) 4.3, extension of ESRI's ArcInfo 10.×. The prediction of future shorelines was performed for the next 40 years using a variety of techniques, ranging from extrapolation from historical data, geometric approaches like the historical trend analysis, to a process-response numerical model that incorporates physically-based equations and geotechnical stability analysis. With climate change and sea-level rise implying that historical rates of change may not be a reliable guide for the future, enhanced visualization of the evolving coastline has the potential to improve awareness of these changing conditions. Following the IPCC, 2013 report, two sea-level rise rates, 2 mm/yr and 6 mm/yr, have been used to estimate future shoreline conditions. This study illustrated that good predictive models, once their limitations are estimated or at least defined, are available for use by managers, planners, engineers, scientists and the public to make better decisions regarding coastal management, development, and erosion-control strategies.
Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms.
Zhang, Yufeng; Hood, Wendy R
2016-10-15
Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. © 2016. Published by The Company of Biologists Ltd.
Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms
Zhang, Yufeng
2016-01-01
ABSTRACT Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. PMID:27802148
Segall, Marion; Tolley, Krystal A; Vanhooydonck, Bieke; Measey, G John; Herrel, Anthony
2013-10-15
Temperature is an extrinsic factor that influences reptile behavior because of its impact on reptile physiology. Understanding the impact of temperature on performance traits is important as it may affect the ecology and fitness of ectothermic animals such as reptiles. Here, we examined the temperature dependence of performance in two species of South African dwarf chameleon (Bradypodion): one adapted to a semi-arid environment and one to a mesic environment. Ecologically relevant performance traits were tested at different temperatures to evaluate their thermal dependence, and temperature-performance breadths for 80% and 90% of each performance trait were calculated. Our results show distinct differences in the thermal dependence of speed- versus force-related performance traits. Moreover, our results show that the semi-arid species is better adapted to higher temperatures and as such has a better chance of coping with the predicted increases in environmental temperature. The mesic area-adapted species seems to be more sensitive to an increase in temperature and could therefore potentially be threatened by the predicted future climate change. However, further studies investigating the potential for acclimation in chameleons are needed to better understand how animals may respond to future climate change.
Do functional tests predict low back pain?
Takala, E P; Viikari-Juntura, E
2000-08-15
A cohort of 307 nonsymptomatic workers and another cohort of 123 workers with previous episodes of low back pain were followed up for 2 years. The outcomes were measured by symptoms, medical consultations, and sick leaves due to low back disorders. To study the predictive value of a set of tests measuring the physical performance of the back in a working population. The hypothesis was that subjects with poor functional capacity are liable to back disorders. Reduced functional performance has been associated with back pain. There are few data to show whether reduced functional capacity is a cause or a consequence of pain. Mobility of the trunk in forward and side bending, maximal isokinetic trunk extension, flexion and lifting strength, and static endurance of back extension were measured. Standing balance and foot reaction time were recorded with a force plate. Clinical tests for the provocation of back or leg pain were performed. Gender, workload, age, and anthropometrics were managed as potential confounders in the analysis. Marked overlapping was seen in the measures of the subjects with different outcomes. Among the nonsymptomatic subjects, low performance in tests of mobility and standing balance was associated with future back disorders. Among workers with previous episodes of back pain, low isokinetic extension strength, poor standing balance, and positive clinical signs predicted future pain. Some associations were found between the functional tests and future low back pain. The wide variation in the results questions the value of the tests in health examinations (e.g., in screening or surveillance of low back disorders).
Using Speculative Execution to Automatically Hide I/O Latency
2001-12-07
sion of the Lempel - Ziv algorithm and the Finite multi-order context models (FMOC) that originated from prediction-by-partial-match data compressors...allowed the cancellation of a single hint at a time.) 2.2.4 Predicting future data needs In order to take advantage of any of the algorithms described...modelling techniques generally used for data compression to perform probabilistic prediction of an application’s next page fault (or, in an object-oriented
Solar array electrical performance assessment for Space Station Freedom
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Brisco, Holly
1993-01-01
Electrical power for Space Station Freedom will be generated by large Photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis, and test data to date. A description of the LMSC performance model, future test plans, and predicted performance ranges are also given.
Solar array electrical performance assessment for Space Station Freedom
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Brisco, Holly
1993-01-01
Electrical power for Space Station Freedom will be generated by large photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis and test data to date. A description of the LMSC performance model future test plans and predicted performance ranges are also given.
Cognitive Performance in Operational Environments
NASA Technical Reports Server (NTRS)
Russo, Michael; McGhee, James; Friedler, Edna; Thomas, Maria
2005-01-01
Optimal cognition during complex and sustained operations is a critical component for success in current and future military operations. "Cognitive Performance, Judgment, and Decision-making" (CPJD) is a newly organized U.S. Army Medical Research and Materiel Command research program focused on sustaining operational effectiveness of Future Force Warriors by developing paradigms through which militarily-relevant, higher-order cognitive performance, judgment, and decision-making can be assessed and sustained in individuals, small teams, and leaders of network-centric fighting units. CPJD evaluates the impact of stressors intrinsic to military operational environments (e.g., sleep deprivation, workload, fatigue, temperature extremes, altitude, environmental/physiological disruption) on military performance, evaluates noninvasive automated methods for monitoring and predicting cognitive performance, and investigates pharmaceutical strategies (e.g., stimulant countermeasures, hypnotics) to mitigate performance decrements. This manuscript describes the CPJD program, discusses the metrics utilized to relate militarily applied research findings to academic research, and discusses how the simulated combat capabilities of a synthetic battle laboratory may facilitate future cognitive performance research.
Proactive Supply Chain Performance Management with Predictive Analytics
Stefanovic, Nenad
2014-01-01
Today's business climate requires supply chains to be proactive rather than reactive, which demands a new approach that incorporates data mining predictive analytics. This paper introduces a predictive supply chain performance management model which combines process modelling, performance measurement, data mining models, and web portal technologies into a unique model. It presents the supply chain modelling approach based on the specialized metamodel which allows modelling of any supply chain configuration and at different level of details. The paper also presents the supply chain semantic business intelligence (BI) model which encapsulates data sources and business rules and includes the data warehouse model with specific supply chain dimensions, measures, and KPIs (key performance indicators). Next, the paper describes two generic approaches for designing the KPI predictive data mining models based on the BI semantic model. KPI predictive models were trained and tested with a real-world data set. Finally, a specialized analytical web portal which offers collaborative performance monitoring and decision making is presented. The results show that these models give very accurate KPI projections and provide valuable insights into newly emerging trends, opportunities, and problems. This should lead to more intelligent, predictive, and responsive supply chains capable of adapting to future business environment. PMID:25386605
Proactive supply chain performance management with predictive analytics.
Stefanovic, Nenad
2014-01-01
Today's business climate requires supply chains to be proactive rather than reactive, which demands a new approach that incorporates data mining predictive analytics. This paper introduces a predictive supply chain performance management model which combines process modelling, performance measurement, data mining models, and web portal technologies into a unique model. It presents the supply chain modelling approach based on the specialized metamodel which allows modelling of any supply chain configuration and at different level of details. The paper also presents the supply chain semantic business intelligence (BI) model which encapsulates data sources and business rules and includes the data warehouse model with specific supply chain dimensions, measures, and KPIs (key performance indicators). Next, the paper describes two generic approaches for designing the KPI predictive data mining models based on the BI semantic model. KPI predictive models were trained and tested with a real-world data set. Finally, a specialized analytical web portal which offers collaborative performance monitoring and decision making is presented. The results show that these models give very accurate KPI projections and provide valuable insights into newly emerging trends, opportunities, and problems. This should lead to more intelligent, predictive, and responsive supply chains capable of adapting to future business environment.
Behavior-Based Budget Management Using Predictive Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy Hiltbrand
Historically, the mechanisms to perform forecasting have primarily used two common factors as a basis for future predictions: time and money. While time and money are very important aspects of determining future budgetary spend patterns, organizations represent a complex system of unique individuals with a myriad of associated behaviors and all of these behaviors have bearing on how budget is utilized. When looking to forecasted budgets, it becomes a guessing game about how budget managers will behave under a given set of conditions. This becomes relatively messy when human nature is introduced, as different managers will react very differently undermore » similar circumstances. While one manager becomes ultra conservative during periods of financial austerity, another might be un-phased and continue to spend as they have in the past. Both might revert into a state of budgetary protectionism masking what is truly happening at a budget holder level, in order to keep as much budget and influence as possible while at the same time sacrificing the greater good of the organization. To more accurately predict future outcomes, the models should consider both time and money and other behavioral patterns that have been observed across the organization. The field of predictive analytics is poised to provide the tools and methodologies needed for organizations to do just this: capture and leverage behaviors of the past to predict the future.« less
Kelava, Augustin; Raabe, Johannes; Höner, Oliver
2018-01-01
Several talent identification and development (TID) programs in soccer have implemented diagnostics to measure players’ motor performance. Yet, there is a lack of research investigating the relationship between motor development in adolescence and future, adult performance. This longitudinal study analyzed the three-year development of highly talented young soccer players’ speed abilities and technical skills and examined the relevance of this development to their adult success. The current research sample consisted of N = 1,134 players born between 1993 and 1995 who were selected for the German Soccer Association’s TID program and participated in nationwide motor diagnostics (sprinting, agility, dribbling, ball control, shooting) four times between the Under 12 (U12) and Under 15 (U15) age class. Relative age (RA) was assessed for all players, and a total motor score was calculated based on performances in the individual tests. In order to investigate players’ future success, participants were divided into two groups according to their adult performance level (APL) in the 2014/2015 season: Elite (1st-5th German division; N = 145, 12.8%) and non-elite players (lower divisions; N = 989, 87.2%). Using multilevel regression analyses each motor performance was predicted by Time, Time2 (level-1 predictors), APL, and RA (level-2 covariates) with simultaneous consideration for interaction effects between the respective variables. Time and Time2 were significant predictors for each test performance. A predictive value for RA was confirmed for sprinting and the total motor score. A significant relationship between APL and the motor score as well as between APL and agility, dribbling, ball control, and shooting emerged. Interaction effects distinctly failed to reach significance. The study found a non-linear improvement in players’ performance for all considered motor performance factors over a three-year period from early to middle adolescence. While their predictive value for future success was confirmed by a significant relationship between APL and most of the considered factors, there was no significant interaction between APL and Time. These findings indicate that future elite players had already been better at the beginning of the TID program and maintained this high level throughout their promotion from U12 to U15. PMID:29723200
Leyhr, Daniel; Kelava, Augustin; Raabe, Johannes; Höner, Oliver
2018-01-01
Several talent identification and development (TID) programs in soccer have implemented diagnostics to measure players' motor performance. Yet, there is a lack of research investigating the relationship between motor development in adolescence and future, adult performance. This longitudinal study analyzed the three-year development of highly talented young soccer players' speed abilities and technical skills and examined the relevance of this development to their adult success. The current research sample consisted of N = 1,134 players born between 1993 and 1995 who were selected for the German Soccer Association's TID program and participated in nationwide motor diagnostics (sprinting, agility, dribbling, ball control, shooting) four times between the Under 12 (U12) and Under 15 (U15) age class. Relative age (RA) was assessed for all players, and a total motor score was calculated based on performances in the individual tests. In order to investigate players' future success, participants were divided into two groups according to their adult performance level (APL) in the 2014/2015 season: Elite (1st-5th German division; N = 145, 12.8%) and non-elite players (lower divisions; N = 989, 87.2%). Using multilevel regression analyses each motor performance was predicted by Time, Time2 (level-1 predictors), APL, and RA (level-2 covariates) with simultaneous consideration for interaction effects between the respective variables. Time and Time2 were significant predictors for each test performance. A predictive value for RA was confirmed for sprinting and the total motor score. A significant relationship between APL and the motor score as well as between APL and agility, dribbling, ball control, and shooting emerged. Interaction effects distinctly failed to reach significance. The study found a non-linear improvement in players' performance for all considered motor performance factors over a three-year period from early to middle adolescence. While their predictive value for future success was confirmed by a significant relationship between APL and most of the considered factors, there was no significant interaction between APL and Time. These findings indicate that future elite players had already been better at the beginning of the TID program and maintained this high level throughout their promotion from U12 to U15.
Sakoda, Lori C; Henderson, Louise M; Caverly, Tanner J; Wernli, Karen J; Katki, Hormuzd A
2017-12-01
Risk prediction models may be useful for facilitating effective and high-quality decision-making at critical steps in the lung cancer screening process. This review provides a current overview of published lung cancer risk prediction models and their applications to lung cancer screening and highlights both challenges and strategies for improving their predictive performance and use in clinical practice. Since the 2011 publication of the National Lung Screening Trial results, numerous prediction models have been proposed to estimate the probability of developing or dying from lung cancer or the probability that a pulmonary nodule is malignant. Respective models appear to exhibit high discriminatory accuracy in identifying individuals at highest risk of lung cancer or differentiating malignant from benign pulmonary nodules. However, validation and critical comparison of the performance of these models in independent populations are limited. Little is also known about the extent to which risk prediction models are being applied in clinical practice and influencing decision-making processes and outcomes related to lung cancer screening. Current evidence is insufficient to determine which lung cancer risk prediction models are most clinically useful and how to best implement their use to optimize screening effectiveness and quality. To address these knowledge gaps, future research should be directed toward validating and enhancing existing risk prediction models for lung cancer and evaluating the application of model-based risk calculators and its corresponding impact on screening processes and outcomes.
The Neural Basis of Event Simulation: An fMRI Study
Yomogida, Yukihito; Sugiura, Motoaki; Akimoto, Yoritaka; Miyauchi, Carlos Makoto; Kawashima, Ryuta
2014-01-01
Event simulation (ES) is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference). Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture–word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes. PMID:24789353
Comparison of four statistical and machine learning methods for crash severity prediction.
Iranitalab, Amirfarrokh; Khattak, Aemal
2017-11-01
Crash severity prediction models enable different agencies to predict the severity of a reported crash with unknown severity or the severity of crashes that may be expected to occur sometime in the future. This paper had three main objectives: comparison of the performance of four statistical and machine learning methods including Multinomial Logit (MNL), Nearest Neighbor Classification (NNC), Support Vector Machines (SVM) and Random Forests (RF), in predicting traffic crash severity; developing a crash costs-based approach for comparison of crash severity prediction methods; and investigating the effects of data clustering methods comprising K-means Clustering (KC) and Latent Class Clustering (LCC), on the performance of crash severity prediction models. The 2012-2015 reported crash data from Nebraska, United States was obtained and two-vehicle crashes were extracted as the analysis data. The dataset was split into training/estimation (2012-2014) and validation (2015) subsets. The four prediction methods were trained/estimated using the training/estimation dataset and the correct prediction rates for each crash severity level, overall correct prediction rate and a proposed crash costs-based accuracy measure were obtained for the validation dataset. The correct prediction rates and the proposed approach showed NNC had the best prediction performance in overall and in more severe crashes. RF and SVM had the next two sufficient performances and MNL was the weakest method. Data clustering did not affect the prediction results of SVM, but KC improved the prediction performance of MNL, NNC and RF, while LCC caused improvement in MNL and RF but weakened the performance of NNC. Overall correct prediction rate had almost the exact opposite results compared to the proposed approach, showing that neglecting the crash costs can lead to misjudgment in choosing the right prediction method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aggression and risk of future violence in forensic psychiatric patients with and without dyslexia.
Selenius, Heidi; Hellström, Ake; Belfrage, Henrik
2011-05-01
Dyslexia does not cause criminal behaviour, but it may worsen aggressive behaviour tendencies. In this study, aggressive behaviour and risk of future violence were compared between forensic psychiatric patients with and without dyslexia. Dyslexia was assessed using the Swedish phonological processing battery 'The Pigeon'. The patients filled in the Aggression Questionnaire, and trained assessors performed the risk assessments using HCR-20 version 2. Patients with dyslexia self-reported more aggressive behaviour compared with those without dyslexia. There was only a nearly significant tendency (p = 0.06) for the patients with dyslexia to receive higher scores in the HCR-20 compared with the patients without dyslexia, and phonological processing skills did not significantly predict aggression or risk of future violence. However, regression analyses demonstrated that poor phonological processing skills are a significant predictor of anger, which in turn significantly predicts risk of future violence. Copyright © 2011 John Wiley & Sons, Ltd.
Calculating Reuse Distance from Source Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, Sri Hari Krishna; Hovland, Paul
The efficient use of a system is of paramount importance in high-performance computing. Applications need to be engineered for future systems even before the architecture of such a system is clearly known. Static performance analysis that generates performance bounds is one way to approach the task of understanding application behavior. Performance bounds provide an upper limit on the performance of an application on a given architecture. Predicting cache hierarchy behavior and accesses to main memory is a requirement for accurate performance bounds. This work presents our static reuse distance algorithm to generate reuse distance histograms. We then use these histogramsmore » to predict cache miss rates. Experimental results for kernels studied show that the approach is accurate.« less
A combination of routine blood analytes predicts fitness decrement in elderly endurance athletes.
Haslacher, Helmuth; Ratzinger, Franz; Perkmann, Thomas; Batmyagmar, Delgerdalai; Nistler, Sonja; Scherzer, Thomas M; Ponocny-Seliger, Elisabeth; Pilger, Alexander; Gerner, Marlene; Scheichenberger, Vanessa; Kundi, Michael; Endler, Georg; Wagner, Oswald F; Winker, Robert
2017-01-01
Endurance sports are enjoying greater popularity, particularly among new target groups such as the elderly. Predictors of future physical capacities providing a basis for training adaptations are in high demand. We therefore aimed to estimate the future physical performance of elderly marathoners (runners/bicyclists) using a set of easily accessible standard laboratory parameters. To this end, 47 elderly marathon athletes underwent physical examinations including bicycle ergometry and a blood draw at baseline and after a three-year follow-up period. In order to compile a statistical model containing baseline laboratory results allowing prediction of follow-up ergometry performance, the cohort was subgrouped into a model training (n = 25) and a test sample (n = 22). The model containing significant predictors in univariate analysis (alanine aminotransferase, urea, folic acid, myeloperoxidase and total cholesterol) presented with high statistical significance and excellent goodness of fit (R2 = 0.789, ROC-AUC = 0.951±0.050) in the model training sample and was validated in the test sample (ROC-AUC = 0.786±0.098). Our results suggest that standard laboratory parameters could be particularly useful for predicting future physical capacity in elderly marathoners. It hence merits further research whether these conclusions can be translated to other disciplines or age groups.
A combination of routine blood analytes predicts fitness decrement in elderly endurance athletes
Ratzinger, Franz; Perkmann, Thomas; Batmyagmar, Delgerdalai; Nistler, Sonja; Scherzer, Thomas M.; Ponocny-Seliger, Elisabeth; Pilger, Alexander; Gerner, Marlene; Scheichenberger, Vanessa; Kundi, Michael; Endler, Georg; Wagner, Oswald F.; Winker, Robert
2017-01-01
Endurance sports are enjoying greater popularity, particularly among new target groups such as the elderly. Predictors of future physical capacities providing a basis for training adaptations are in high demand. We therefore aimed to estimate the future physical performance of elderly marathoners (runners/bicyclists) using a set of easily accessible standard laboratory parameters. To this end, 47 elderly marathon athletes underwent physical examinations including bicycle ergometry and a blood draw at baseline and after a three-year follow-up period. In order to compile a statistical model containing baseline laboratory results allowing prediction of follow-up ergometry performance, the cohort was subgrouped into a model training (n = 25) and a test sample (n = 22). The model containing significant predictors in univariate analysis (alanine aminotransferase, urea, folic acid, myeloperoxidase and total cholesterol) presented with high statistical significance and excellent goodness of fit (R2 = 0.789, ROC-AUC = 0.951±0.050) in the model training sample and was validated in the test sample (ROC-AUC = 0.786±0.098). Our results suggest that standard laboratory parameters could be particularly useful for predicting future physical capacity in elderly marathoners. It hence merits further research whether these conclusions can be translated to other disciplines or age groups. PMID:28475643
Gloom and doom? The future of marine capture fisheries
Garcia, Serge M.; Grainger, Richard J. R.
2005-01-01
Predicting global fisheries is a high-order challenge but predictions have been made and updates are needed. Past forecasts, present trends and perspectives of key parameters of the fisheries—including potential harvest, state of stocks, supply and demand, trade, fishing technology and governance—are reviewed in detail, as the basis for new forecasts and forecasting performance assessment. The future of marine capture fisheries will be conditioned by the political, social and economic evolution of the world within which they operate. Consequently, recent global scenarios for the future world are reviewed, with the emphasis on fisheries. The main driving forces (e.g. global economic development, demography, environment, public awareness, information technology, energy, ethics) including aquaculture are described. Outlooks are provided for each aspect of the fishery sector. The conclusion puts these elements in perspective and offers the authors’ personal interpretation of the possible future pathway of fisheries, the uncertainty about it and the still unanswered questions of direct relevance in shaping that future. PMID:15713587
Tang, An; Cloutier, Guy; Szeverenyi, Nikolaus M.; Sirlin, Claude B.
2016-01-01
OBJECTIVE The purpose of the article is to review the diagnostic performance of ultrasound and MR elastography techniques for detection and staging of liver fibrosis, the main current clinical applications of elastography in the abdomen. CONCLUSION Technical and instrument-related factors and biologic and patient-related factors may constitute potential confounders of stiffness measurements for assessment of liver fibrosis. Future developments may expand the scope of elastography for monitoring liver fibrosis and predict complications of chronic liver disease. PMID:25905762
NASA Technical Reports Server (NTRS)
Daigle, Matthew John; Goebel, Kai Frank
2010-01-01
Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.
Unified Performance and Power Modeling of Scientific Workloads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shuaiwen; Barker, Kevin J.; Kerbyson, Darren J.
2013-11-17
It is expected that scientific applications executing on future large-scale HPC must be optimized not only in terms of performance, but also in terms of power consumption. As power and energy become increasingly constrained resources, researchers and developers must have access to tools that will allow for accurate prediction of both performance and power consumption. Reasoning about performance and power consumption in concert will be critical for achieving maximum utilization of limited resources on future HPC systems. To this end, we present a unified performance and power model for the Nek-Bone mini-application developed as part of the DOE's CESAR Exascalemore » Co-Design Center. Our models consider the impact of computation, point-to-point communication, and collective communication« less
ERIC Educational Resources Information Center
Hancock, Thomas E.; And Others
1995-01-01
In machine-mediated learning environments, there is a need for more reliable methods of calculating the probability that a learner's response will be correct in future trials. A combination of domain-independent response-state measures of cognition along with two instructional variables for maximum predictive ability are demonstrated. (Author/LRW)
Using Formal Grammars to Predict I/O Behaviors in HPC: The Omnisc'IO Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorier, Matthieu; Ibrahim, Shadi; Antoniu, Gabriel
2016-08-01
The increasing gap between the computation performance of post-petascale machines and the performance of their I/O subsystem has motivated many I/O optimizations including prefetching, caching, and scheduling. In order to further improve these techniques, modeling and predicting spatial and temporal I/O patterns of HPC applications as they run has become crucial. In this paper we present Omnisc'IO, an approach that builds a grammar-based model of the I/O behavior of HPC applications and uses it to predict when future I/O operations will occur, and where and how much data will be accessed. To infer grammars, Omnisc'IO is based on StarSequitur, amore » novel algorithm extending Nevill-Manning's Sequitur algorithm. Omnisc'IO is transparently integrated into the POSIX and MPI I/O stacks and does not require any modification in applications or higher-level I/O libraries. It works without any prior knowledge of the application and converges to accurate predictions of any N future I/O operations within a couple of iterations. Its implementation is efficient in both computation time and memory footprint.« less
Prediction based active ramp metering control strategy with mobility and safety assessment
NASA Astrophysics Data System (ADS)
Fang, Jie; Tu, Lili
2018-04-01
Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.
Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future
NASA Technical Reports Server (NTRS)
Cates, Grant R.
2014-01-01
The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.
Reducing unnecessary lab testing in the ICU with artificial intelligence.
Cismondi, F; Celi, L A; Fialho, A S; Vieira, S M; Reti, S R; Sousa, J M C; Finkelstein, S N
2013-05-01
To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1-3]. Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future lab testing for eight common GI related lab tests. Future work will explore applications of this approach to a range of underlying medical conditions and laboratory tests. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Reducing unnecessary lab testing in the ICU with artificial intelligence
Cismondi, F.; Celi, L.A.; Fialho, A.S.; Vieira, S.M.; Reti, S.R.; Sousa, J.M.C.; Finkelstein, S.N.
2017-01-01
Objectives To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Design Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Patients Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Main results Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1–3]. Conclusions Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future lab testing for eight common GI related lab tests. Future work will explore applications of this approach to a range of underlying medical conditions and laboratory tests. PMID:23273628
NASA Astrophysics Data System (ADS)
Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian
2013-04-01
Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on 2 small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment method with 2 different likelihood functions. One was a time-series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was a likelihood function for the flow quantiles directly. Due to the better data coverage and smaller hydrological complexity in one of our test catchments we had better performance from the hydrological model and thus could observe that the relative importance of different uncertainty sources varied between sites, boundary conditions and flow indicators. The uncertainty of future climate was important, but not dominant. The deficiencies of the hydrological model were on the same scale, especially for the sites and flow components where model performance for the past observations was further from optimal (Nash-Sutcliffe index = 0.5 - 0.7). The overall uncertainty of predictions was well beyond the expected change signal even for the best performing site and flow indicator.
Diagnostic Methods for Predicting Performance Impairment Associated with Combat Stress
2007-08-01
vision. Participants who wore glasses were excluded, as the frame of eyeglasses interfered with the ability to acquire a signal with the apparatus...TCD in monitoring fitness to perform concurrently with performance, and to explore strategies for using TCD as a predictor of future performance...most effective technique for evaluating whether soldiers are fit for missions requiring sustained attention. The aim of this study was to test
Ground penetrating radar (GPR) for pavement evaluation.
DOT National Transportation Integrated Search
2012-12-01
In the near future the Arkansas State Highway and Transportation Department Pavement Management System (PMS) will utilize a : Falling Weight Deflectometer (FWD) to collect network level pavement structural data to aid in predicting performance of pav...
Robust predictive cruise control for commercial vehicles
NASA Astrophysics Data System (ADS)
Junell, Jaime; Tumer, Kagan
2013-10-01
In this paper we explore learning-based predictive cruise control and the impact of this technology on increasing fuel efficiency for commercial trucks. Traditional cruise control is wasteful when maintaining a constant velocity over rolling hills. Predictive cruise control (PCC) is able to look ahead at future road conditions and solve for a cost-effective course of action. Model- based controllers have been implemented in this field but cannot accommodate many complexities of a dynamic environment which includes changing road and vehicle conditions. In this work, we focus on incorporating a learner into an already successful model- based predictive cruise controller in order to improve its performance. We explore back propagating neural networks to predict future errors then take actions to prevent said errors from occurring. The results show that this approach improves the model based PCC by up to 60% under certain conditions. In addition, we explore the benefits of classifier ensembles to further improve the gains due to intelligent cruise control.
Adelman, Robert Mark; Herrmann, Sarah D; Bodford, Jessica E; Barbour, Joseph E; Graudejus, Oliver; Okun, Morris A; Kwan, Virginia S Y
2017-06-01
This research examined the function of future self-continuity and its potential downstream consequences for academic performance through relations with other temporal psychological factors and self-control. We also addressed the influence of cultural factors by testing whether these relations differed by college generation status. Undergraduate students enrolled at a large public university participated in two studies (Study 1: N = 119, M age = 20.55, 56.4% women; Study 2: N = 403, M age = 19.83, 58.3% women) in which they completed measures of temporal psychological factors and psychological resources. In Study 2, we also obtained academic records to link responses to academic performance. Future self-continuity predicted subsequent academic performance and was related positively to future focus, negatively to present focus, and positively to self-control. Additionally, the relation between future focus and self-control was stronger for continuing-generation college students than first-generation college students. Future self-continuity plays a pivotal role in academic contexts. Findings suggest that it may have positive downstream consequences on academic achievement by directing attention away from the present and toward the future, which promotes self-control. Further, the strategy of focusing on the future may be effective in promoting self-control only for certain cultural groups. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Tabachnick, Sharon E.; Miller, Raymond B.; Relyea, George E.
2008-01-01
The authors performed path analysis, followed by a bootstrap procedure, to test the predictions of a model explaining the relationships among students' distal future goals (both extrinsic and intrinsic), their adoption of a middle-range subgoal, their perceptions of task instrumentality, and their proximal task-oriented self-regulation strategies.…
Prognostics Applied to Electric Propulsion UAV
NASA Technical Reports Server (NTRS)
Goebel, Kai; Saha, Bhaskar
2013-01-01
Health management plays an important role in operations of UAV. If there is equipment malfunction on critical components, safe operation of the UAV might possibly be compromised. A technology with particular promise in this arena is equipment prognostics. This technology provides a state assessment of the health of components of interest and, if a degraded state has been found, it estimates how long it will take before the equipment will reach a failure threshold, conditional on assumptions about future operating conditions and future environmental conditions. This chapter explores the technical underpinnings of how to perform prognostics and shows an implementation on the propulsion of an electric UAV. A particle filter is shown as the method of choice in performing state assessment and predicting future degradation. The method is then applied to the batteries that provide power to the propeller motors. An accurate run-time battery life prediction algorithm is of critical importance to ensure the safe operation of the vehicle if one wants to maximize in-air time. Current reliability based techniques turn out to be insufficient to manage the use of such batteries where loads vary frequently in uncertain environments.
Performance considerations in long-term spaceflight
NASA Technical Reports Server (NTRS)
Akins, F. R.
1979-01-01
Maintenance of skilled performance during extended space flight is of critical importance to both the health and safety of crew members and to the overall success of mission goals. An examination of long term effects and performance requirements is therefore a factor of immense importance to the planning of future missions. Factors that were investigated include: definition of performance categories to be investigated; methods for assessing and predicting performance levels; in-flight factors which can affect performance; and factors pertinent to the maintenance of skilled performance.
Valls, Joan; Castellà, Gerard; Dyba, Tadeusz; Clèries, Ramon
2015-06-01
Predicting the future burden of cancer is a key issue for health services planning, where a method for selecting the predictive model and the prediction base is a challenge. A method, named here Goodness-of-Fit optimal (GoF-optimal), is presented to determine the minimum prediction base of historical data to perform 5-year predictions of the number of new cancer cases or deaths. An empirical ex-post evaluation exercise for cancer mortality data in Spain and cancer incidence in Finland using simple linear and log-linear Poisson models was performed. Prediction bases were considered within the time periods 1951-2006 in Spain and 1975-2007 in Finland, and then predictions were made for 37 and 33 single years in these periods, respectively. The performance of three fixed different prediction bases (last 5, 10, and 20 years of historical data) was compared to that of the prediction base determined by the GoF-optimal method. The coverage (COV) of the 95% prediction interval and the discrepancy ratio (DR) were calculated to assess the success of the prediction. The results showed that (i) models using the prediction base selected through GoF-optimal method reached the highest COV and the lowest DR and (ii) the best alternative strategy to GoF-optimal was the one using the base of prediction of 5-years. The GoF-optimal approach can be used as a selection criterion in order to find an adequate base of prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Predictive Validity of the ABFM's In-Training Examination.
O'Neill, Thomas R; Li, Zijia; Peabody, Michael R; Lybarger, Melanie; Royal, Kenneth; Puffer, James C
2015-05-01
Our objective was to examine the predictive validity of the American Board of Family Medicine's (ABFM) In-Training Examination (ITE) with regard to predicting outcomes on the ABFM certification examination. This study used a repeated measures design across three levels of medical training (PGY1--PGY2, PGY2--PGY3, and PGY3--initial certification) with three different cohorts (2010--2011, 2011--2012, and 2012--2013) to examine: (1) how well the residents' ITE scores correlated with their test scores in the following year, (2) what the typical score increase was across training years, and (3) what was the sensitivity, specificity, positive predictive value, and negative predictive value of the PGY3 scores with regard to predicting future results on the MC-FP Examination. ITE scores generally correlate at about .7 with the following year's ITE or with the following year's certification examination. The mean growth from PGY1 to PGY2 was 52 points, from PGY2 to PGY3 was 34 points, and from PGY3 to initial certification was 27 points. The sensitivity, specificity, positive predictive value, and negative predictive value were .91, .47, .96, and .27, respectively. The ITE is a useful predictor of future ITE and initial certification examination performance.
Ou, Jian; Chen, Yongguang; Zhao, Feng; Liu, Jin; Xiao, Shunping
2017-03-19
The extensive applications of multi-function radars (MFRs) have presented a great challenge to the technologies of radar countermeasures (RCMs) and electronic intelligence (ELINT). The recently proposed cognitive electronic warfare (CEW) provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR). With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity.
Ou, Jian; Chen, Yongguang; Zhao, Feng; Liu, Jin; Xiao, Shunping
2017-01-01
The extensive applications of multi-function radars (MFRs) have presented a great challenge to the technologies of radar countermeasures (RCMs) and electronic intelligence (ELINT). The recently proposed cognitive electronic warfare (CEW) provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR). With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity. PMID:28335492
ERIC Educational Resources Information Center
Woloshin, Renee
Intellective measures such as aptitude test scores and previous school grades have long been used to predict a student's future academic potential. The information is relatively easy to obtain and has shown high correlations with college grades. Among minority students, however, there is evidence that they often defy what one would predict on the…
On the predictability of land surface fluxes from meteorological variables
NASA Astrophysics Data System (ADS)
Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.
2018-01-01
Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.
Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.
Muruganantham, Arrchana; Tan, Kay Chen; Vadakkepat, Prahlad
2016-12-01
Evolutionary algorithms are effective in solving static multiobjective optimization problems resulting in the emergence of a number of state-of-the-art multiobjective evolutionary algorithms (MOEAs). Nevertheless, the interest in applying them to solve dynamic multiobjective optimization problems has only been tepid. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are required to further the research in this field. One or more objectives may change with time in dynamic optimization problems. The optimization algorithm must be able to track the moving optima efficiently. A prediction model can learn the patterns from past experience and predict future changes. In this paper, a new dynamic MOEA using Kalman filter (KF) predictions in decision space is proposed to solve the aforementioned problems. The predictions help to guide the search toward the changed optima, thereby accelerating convergence. A scoring scheme is devised to hybridize the KF prediction with a random reinitialization method. Experimental results and performance comparisons with other state-of-the-art algorithms demonstrate that the proposed algorithm is capable of significantly improving the dynamic optimization performance.
Hallett, Kerrod B; O'Rourke, Peter K
2013-01-01
The purpose of this study was to evaluate a chairside caries risk assessment protocol utilizing a caries prediction instrument, adenosine triphosphate (ATP) activity in dental plaque, mutans streptococci (MS) culture, and routine dental examination in five- to 10-year-old children at two regional Australian schools with high caries experience. Clinical indicators for future caries were assessed at baseline examination using a standardized prediction instrument. Plaque ATP activity was measured directly in relative light units (RLU) using a bioluminescence meter, and MS culture data were recorded. Each child's dentition was examined clinically and radiographically, and caries experience was recorded using enamel white spot lesions and decayed, missing, and filled surfaces for primary and permanent teeth indices. Univariate one-way analysis of variance between selected clinical indicators, ATP activity, MS count at baseline, and future new caries activity was performed, and a generalized linear model for prediction of new caries activity at 24 months was constructed. Future new caries activity was significantly associated with the presence of visible cavitations, reduced saliva flow, and orthodontic appliances at baseline (R(2)=0.2, P<.001). Baseline plaque adenosine triphosphate activity and mutans streptococci counts were not significantly associated with caries activity at 24 months.
NASA Astrophysics Data System (ADS)
Jahangoshai Rezaee, Mustafa; Jozmaleki, Mehrdad; Valipour, Mahsa
2018-01-01
One of the main features to invest in stock exchange companies is their financial performance. On the other hand, conventional evaluation methods such as data envelopment analysis are not only a retrospective process, but are also a process, which are incomplete and ineffective approaches to evaluate the companies in the future. To remove this problem, it is required to plan an expert system for evaluating organizations when the online data are received from stock exchange market. This paper deals with an approach for predicting the online financial performance of companies when data are received in different time's intervals. The proposed approach is based on integrating fuzzy C-means (FCM), data envelopment analysis (DEA) and artificial neural network (ANN). The classical FCM method is unable to update the number of clusters and their members when the data are changed or the new data are received. Hence, this method is developed in order to make dynamic features for the number of clusters and clusters members in classical FCM. Then, DEA is used to evaluate DMUs by using financial ratios to provide targets in neural network. Finally, the designed network is trained and prepared for predicting companies' future performance. The data on Tehran Stock Market companies for six consecutive years (2007-2012) are used to show the abilities of the proposed approach.
Winwood-Smith, Hugh S; Alton, Lesley A; Franklin, Craig E; White, Craig R
2015-01-01
Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures.
Artificial neural networks in gynaecological diseases: current and potential future applications.
Siristatidis, Charalampos S; Chrelias, Charalampos; Pouliakis, Abraham; Katsimanis, Evangelos; Kassanos, Dimitrios
2010-10-01
Current (and probably future) practice of medicine is mostly associated with prediction and accurate diagnosis. Especially in clinical practice, there is an increasing interest in constructing and using valid models of diagnosis and prediction. Artificial neural networks (ANNs) are mathematical systems being used as a prospective tool for reliable, flexible and quick assessment. They demonstrate high power in evaluating multifactorial data, assimilating information from multiple sources and detecting subtle and complex patterns. Their capability and difference from other statistical techniques lies in performing nonlinear statistical modelling. They represent a new alternative to logistic regression, which is the most commonly used method for developing predictive models for outcomes resulting from partitioning in medicine. In combination with the other non-algorithmic artificial intelligence techniques, they provide useful software engineering tools for the development of systems in quantitative medicine. Our paper first presents a brief introduction to ANNs, then, using what we consider the best available evidence through paradigms, we evaluate the ability of these networks to serve as first-line detection and prediction techniques in some of the most crucial fields in gynaecology. Finally, through the analysis of their current application, we explore their dynamics for future use.
NASA Technical Reports Server (NTRS)
1991-01-01
Analytical Design Service Corporation, Ann Arbor, MI, used NASTRAN (a NASA Structural Analysis program that analyzes a design and predicts how parts will perform) in tests of transmissions, engine cooling systems, internal engine parts, and body components. They also use it to design future automobiles. Analytical software can save millions by allowing computer simulated analysis of performance even before prototypes are built.
ERIC Educational Resources Information Center
Grissom, Jason A.; Mitani, Hajime; Blissett, Richard S. L.
2017-01-01
Many states require prospective principals to pass a licensure exam to obtain an administrative license, but we know little about the potential effects of principal licensure exams on the pool of available principals or whether scores predict later job performance. We investigate the most commonly used exam, the School Leaders Licensure Assessment…
Kwon, Andrew T.; Chou, Alice Yi; Arenillas, David J.; Wasserman, Wyeth W.
2011-01-01
We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions. PMID:22144875
Benchmarking and Hardware-In-The-Loop Operation of a ...
Engine Performance evaluation in support of LD MTE. EPA used elements of its ALPHA model to apply hardware-in-the-loop (HIL) controls to the SKYACTIV engine test setup to better understand how the engine would operate in a chassis test after combined with future leading edge technologies, advanced high-efficiency transmission, reduced mass, and reduced roadload. Predict future vehicle performance with Atkinson engine. As part of its technology assessment for the upcoming midterm evaluation of the 2017-2025 LD vehicle GHG emissions regulation, EPA has been benchmarking engines and transmissions to generate inputs for use in its ALPHA model
Cameron, Katherine; Murray, Alan
2008-05-01
This paper investigates whether spike-timing-dependent plasticity (STDP) can minimize the effect of mismatch within the context of a depth-from-motion algorithm. To improve noise rejection, this algorithm contains a spike prediction element, whose performance is degraded by analog very large scale integration (VLSI) mismatch. The error between the actual spike arrival time and the prediction is used as the input to an STDP circuit, to improve future predictions. Before STDP adaptation, the error reflects the degree of mismatch within the prediction circuitry. After STDP adaptation, the error indicates to what extent the adaptive circuitry can minimize the effect of transistor mismatch. The circuitry is tested with static and varying prediction times and chip results are presented. The effect of noisy spikes is also investigated. Under all conditions the STDP adaptation is shown to improve performance.
A prediction of 3-D viscous flow and performance of the NASA Low-Speed Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Moore, John; Moore, Joan G.
1990-01-01
A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modeling. Recommendations are made for future flow studies in the NASA impeller.
A prediction of 3-D viscous flow and performance of the NASA low-speed centrifugal compressor
NASA Technical Reports Server (NTRS)
Moore, John; Moore, Joan G.
1989-01-01
A prediction of the 3-D turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation for high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modelling. Recommendations are made for future flow studies in the NASA impeller.
Yamakado, Minoru; Nagao, Kenji; Imaizumi, Akira; Tani, Mizuki; Toda, Akiko; Tanaka, Takayuki; Jinzu, Hiroko; Miyano, Hiroshi; Yamamoto, Hiroshi; Daimon, Takashi; Horimoto, Katsuhisa; Ishizaka, Yuko
2015-01-01
Plasma free amino acid (PFAA) profile is highlighted in its association with visceral obesity and hyperinsulinemia, and future diabetes. Indeed PFAA profiling potentially can evaluate individuals’ future risks of developing lifestyle-related diseases, in addition to diabetes. However, few studies have been performed especially in Asian populations, about the optimal combination of PFAAs for evaluating health risks. We quantified PFAA levels in 3,701 Japanese subjects, and determined visceral fat area (VFA) and two-hour post-challenge insulin (Ins120 min) values in 865 and 1,160 subjects, respectively. Then, models between PFAA levels and the VFA or Ins120 min values were constructed by multiple linear regression analysis with variable selection. Finally, a cohort study of 2,984 subjects to examine capabilities of the obtained models for predicting four-year risk of developing new-onset lifestyle-related diseases was conducted. The correlation coefficients of the obtained PFAA models against VFA or Ins120 min were higher than single PFAA level. Our models work well for future risk prediction. Even after adjusting for commonly accepted multiple risk factors, these models can predict future development of diabetes, metabolic syndrome, and dyslipidemia. PFAA profiles confer independent and differing contributions to increasing the lifestyle-related disease risks in addition to the currently known factors in a general Japanese population. PMID:26156880
High neuroticism at age 20 predicts history of mental disorders and low self-esteem at age 35.
Lönnqvist, Jan-Erik; Verkasalo, Markku; Mäkinen, Seppo; Henriksson, Markus
2009-07-01
The authors assessed whether neuroticism in emerging adulthood predicts mental disorders and self-esteem in early adulthood after controlling for possible confounding variables. A sample of 69 male military conscripts was initially assessed at age 20 and again as civilians at age 35. The initial assessment included a psychiatric interview, objective indicators of conscript competence, an intellectual performance test, and neuroticism questionnaires. The follow-up assessment included a Structured Clinical Interview for DSM-IV (SCID; First, Spitzer, Gibbon, & Williams, 1996) and the Rosenberg Self-Esteem Scale (Rosenberg, 1965). Neuroticism predicted future mental disorders and low self-esteem beyond more objective indicators of adjustment. The results support the use of neuroticism as a predictor of future mental disorders, even over periods of time when personality is subject to change.
TankSIM: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.
2015-01-01
Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.
A threshold-free summary index of prediction accuracy for censored time to event data.
Yuan, Yan; Zhou, Qian M; Li, Bingying; Cai, Hengrui; Chow, Eric J; Armstrong, Gregory T
2018-05-10
Prediction performance of a risk scoring system needs to be carefully assessed before its adoption in clinical practice. Clinical preventive care often uses risk scores to screen asymptomatic population. The primary clinical interest is to predict the risk of having an event by a prespecified future time t 0 . Accuracy measures such as positive predictive values have been recommended for evaluating the predictive performance. However, for commonly used continuous or ordinal risk score systems, these measures require a subjective cutoff threshold value that dichotomizes the risk scores. The need for a cutoff value created barriers for practitioners and researchers. In this paper, we propose a threshold-free summary index of positive predictive values that accommodates time-dependent event status and competing risks. We develop a nonparametric estimator and provide an inference procedure for comparing this summary measure between 2 risk scores for censored time to event data. We conduct a simulation study to examine the finite-sample performance of the proposed estimation and inference procedures. Lastly, we illustrate the use of this measure on a real data example, comparing 2 risk score systems for predicting heart failure in childhood cancer survivors. Copyright © 2018 John Wiley & Sons, Ltd.
Meads, Catherine; Ahmed, Ikhlaaq; Riley, Richard D
2012-04-01
A risk prediction model is a statistical tool for estimating the probability that a currently healthy individual with specific risk factors will develop a condition in the future such as breast cancer. Reliably accurate prediction models can inform future disease burdens, health policies and individual decisions. Breast cancer prediction models containing modifiable risk factors, such as alcohol consumption, BMI or weight, condom use, exogenous hormone use and physical activity, are of particular interest to women who might be considering how to reduce their risk of breast cancer and clinicians developing health policies to reduce population incidence rates. We performed a systematic review to identify and evaluate the performance of prediction models for breast cancer that contain modifiable factors. A protocol was developed and a sensitive search in databases including MEDLINE and EMBASE was conducted in June 2010. Extensive use was made of reference lists. Included were any articles proposing or validating a breast cancer prediction model in a general female population, with no language restrictions. Duplicate data extraction and quality assessment were conducted. Results were summarised qualitatively, and where possible meta-analysis of model performance statistics was undertaken. The systematic review found 17 breast cancer models, each containing a different but often overlapping set of modifiable and other risk factors, combined with an estimated baseline risk that was also often different. Quality of reporting was generally poor, with characteristics of included participants and fitted model results often missing. Only four models received independent validation in external data, most notably the 'Gail 2' model with 12 validations. None of the models demonstrated consistently outstanding ability to accurately discriminate between those who did and those who did not develop breast cancer. For example, random-effects meta-analyses of the performance of the 'Gail 2' model showed the average C statistic was 0.63 (95% CI 0.59-0.67), and the expected/observed ratio of events varied considerably across studies (95% prediction interval for E/O ratio when the model was applied in practice was 0.75-1.19). There is a need for models with better predictive performance but, given the large amount of work already conducted, further improvement of existing models based on conventional risk factors is perhaps unlikely. Research to identify new risk factors with large additionally predictive ability is therefore needed, alongside clearer reporting and continual validation of new models as they develop.
Anticipating Their Future: Adolescent Values for the Future Predict Adult Behaviors
Finlay, Andrea; Wray-Lake, Laura; Warren, Michael; Maggs, Jennifer L.
2014-01-01
Adolescent future values – beliefs about what will matter to them in the future – may shape their adult behavior. Utilizing a national longitudinal British sample, this study examined whether adolescent future values in six domains (i.e., family responsibility, full-time job, personal responsibility, autonomy, civic responsibility, and hedonistic privilege) predicted adult social roles, civic behaviors, and alcohol use. Future values positively predicted behaviors within the same domain; fewer cross-domain associations were evident. Civic responsibility positively predicted adult civic behaviors, but negatively predicted having children. Hedonistic privilege positively predicted adult alcohol use and negatively predicted civic behaviors. Results suggest that attention should be paid to how adolescents are thinking about their futures due to the associated links with long-term social and health behaviors. PMID:26279595
Further Investigation of Receding Horizion-Based Controllers and Neural Network-Based Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Haley, Pamela J. (Technical Monitor)
2000-01-01
This report provides a comprehensive summary of the research work performed over the entire duration of the co-operative research agreement between NASA Langley Research Center and Kansas State University. This summary briefly lists the findings and also suggests possible future directions for the continuation of the subject research in the area of Generalized Predictive Control (GPC) and Network Based Generalized Predictive Control (NGPC).
NASA Technical Reports Server (NTRS)
Wickens, Christopher; Sebok, Angelia; Keller, John; Peters, Steve; Small, Ronald; Hutchins, Shaun; Algarin, Liana; Gore, Brian Francis; Hooey, Becky Lee; Foyle, David C.
2013-01-01
NextGen operations are associated with a variety of changes to the national airspace system (NAS) including changes to the allocation of roles and responsibilities among operators and automation, the use of new technologies and automation, additional information presented on the flight deck, and the entire concept of operations (ConOps). In the transition to NextGen airspace, aviation and air operations designers need to consider the implications of design or system changes on human performance and the potential for error. To ensure continued safety of the NAS, it will be necessary for researchers to evaluate design concepts and potential NextGen scenarios well before implementation. One approach for such evaluations is through human performance modeling. Human performance models (HPMs) provide effective tools for predicting and evaluating operator performance in systems. HPMs offer significant advantages over empirical, human-in-the-loop testing in that (1) they allow detailed analyses of systems that have not yet been built, (2) they offer great flexibility for extensive data collection, (3) they do not require experimental participants, and thus can offer cost and time savings. HPMs differ in their ability to predict performance and safety with NextGen procedures, equipment and ConOps. Models also vary in terms of how they approach human performance (e.g., some focus on cognitive processing, others focus on discrete tasks performed by a human, while others consider perceptual processes), and in terms of their associated validation efforts. The objectives of this research effort were to support the Federal Aviation Administration (FAA) in identifying HPMs that are appropriate for predicting pilot performance in NextGen operations, to provide guidance on how to evaluate the quality of different models, and to identify gaps in pilot performance modeling research, that could guide future research opportunities. This research effort is intended to help the FAA evaluate pilot modeling efforts and select the appropriate tools for future modeling efforts to predict pilot performance in NextGen operations.
Impact of Predicting Health Care Utilization Via Web Search Behavior: A Data-Driven Analysis.
Agarwal, Vibhu; Zhang, Liangliang; Zhu, Josh; Fang, Shiyuan; Cheng, Tim; Hong, Chloe; Shah, Nigam H
2016-09-21
By recent estimates, the steady rise in health care costs has deprived more than 45 million Americans of health care services and has encouraged health care providers to better understand the key drivers of health care utilization from a population health management perspective. Prior studies suggest the feasibility of mining population-level patterns of health care resource utilization from observational analysis of Internet search logs; however, the utility of the endeavor to the various stakeholders in a health ecosystem remains unclear. The aim was to carry out a closed-loop evaluation of the utility of health care use predictions using the conversion rates of advertisements that were displayed to the predicted future utilizers as a surrogate. The statistical models to predict the probability of user's future visit to a medical facility were built using effective predictors of health care resource utilization, extracted from a deidentified dataset of geotagged mobile Internet search logs representing searches made by users of the Baidu search engine between March 2015 and May 2015. We inferred presence within the geofence of a medical facility from location and duration information from users' search logs and putatively assigned medical facility visit labels to qualifying search logs. We constructed a matrix of general, semantic, and location-based features from search logs of users that had 42 or more search days preceding a medical facility visit as well as from search logs of users that had no medical visits and trained statistical learners for predicting future medical visits. We then carried out a closed-loop evaluation of the utility of health care use predictions using the show conversion rates of advertisements displayed to the predicted future utilizers. In the context of behaviorally targeted advertising, wherein health care providers are interested in minimizing their cost per conversion, the association between show conversion rate and predicted utilization score, served as a surrogate measure of the model's utility. We obtained the highest area under the curve (0.796) in medical visit prediction with our random forests model and daywise features. Ablating feature categories one at a time showed that the model performance worsened the most when location features were dropped. An online evaluation in which advertisements were served to users who had a high predicted probability of a future medical visit showed a 3.96% increase in the show conversion rate. Results from our experiments done in a research setting suggest that it is possible to accurately predict future patient visits from geotagged mobile search logs. Results from the offline and online experiments on the utility of health utilization predictions suggest that such prediction can have utility for health care providers.
Impact of Predicting Health Care Utilization Via Web Search Behavior: A Data-Driven Analysis
Zhang, Liangliang; Zhu, Josh; Fang, Shiyuan; Cheng, Tim; Hong, Chloe; Shah, Nigam H
2016-01-01
Background By recent estimates, the steady rise in health care costs has deprived more than 45 million Americans of health care services and has encouraged health care providers to better understand the key drivers of health care utilization from a population health management perspective. Prior studies suggest the feasibility of mining population-level patterns of health care resource utilization from observational analysis of Internet search logs; however, the utility of the endeavor to the various stakeholders in a health ecosystem remains unclear. Objective The aim was to carry out a closed-loop evaluation of the utility of health care use predictions using the conversion rates of advertisements that were displayed to the predicted future utilizers as a surrogate. The statistical models to predict the probability of user’s future visit to a medical facility were built using effective predictors of health care resource utilization, extracted from a deidentified dataset of geotagged mobile Internet search logs representing searches made by users of the Baidu search engine between March 2015 and May 2015. Methods We inferred presence within the geofence of a medical facility from location and duration information from users’ search logs and putatively assigned medical facility visit labels to qualifying search logs. We constructed a matrix of general, semantic, and location-based features from search logs of users that had 42 or more search days preceding a medical facility visit as well as from search logs of users that had no medical visits and trained statistical learners for predicting future medical visits. We then carried out a closed-loop evaluation of the utility of health care use predictions using the show conversion rates of advertisements displayed to the predicted future utilizers. In the context of behaviorally targeted advertising, wherein health care providers are interested in minimizing their cost per conversion, the association between show conversion rate and predicted utilization score, served as a surrogate measure of the model’s utility. Results We obtained the highest area under the curve (0.796) in medical visit prediction with our random forests model and daywise features. Ablating feature categories one at a time showed that the model performance worsened the most when location features were dropped. An online evaluation in which advertisements were served to users who had a high predicted probability of a future medical visit showed a 3.96% increase in the show conversion rate. Conclusions Results from our experiments done in a research setting suggest that it is possible to accurately predict future patient visits from geotagged mobile search logs. Results from the offline and online experiments on the utility of health utilization predictions suggest that such prediction can have utility for health care providers. PMID:27655225
Football league win prediction based on online and league table data
NASA Astrophysics Data System (ADS)
Par, Prateek; Gupt, Ankit Kumar; Singh, Samarth; Khare, Neelu; Bhattachrya, Sweta
2017-11-01
As we are proceeding towards an internet driven world, the impact of internet is increasing in our day to lives. This not only gives impact on the virtual world but also leave a mark in the real world. The social media sites contains huge amount of information, the only thing is to collect the relevant data and analyse the data to form a real world prediction and it can do far more than that. In this paper we study the relationship between the twitter data and the normal data analysis to predict the winning team in the NFL (National Football League).The prediction is based on the data collected on the on-going league which includes performance of each player and their previous statistics. Alongside with the data available online we are combining the twitter data which we extracted by the tweets pertaining to specific teams and games in the NFL season and use them alongside statistical game data to build predictive models for future or the outcome of the game i.e. which team will lose or win depending upon the statistical data available. Specifically the tweets within the 24 hours of match will be considered and the main focus of twitter data will be upon the last hours of tweets i.e. pre-match twitter data and post-match twitter data. We are experimenting on the data and using twitter data we are trying to increase the performance of the existing predictive models that uses only the game stats to predict the future.
Rovira, Ericka; Parasuraman, Raja
2010-06-01
This study examined whether benefits of conflict probe automation would occur in a future air traffic scenario in which air traffic service providers (ATSPs) are not directly responsible for freely maneuvering aircraft but are controlling other nonequipped aircraft (mixed-equipage environment). The objective was to examine how the type of automation imperfection (miss vs. false alarm) affects ATSP performance and attention allocation. Research has shown that the type of automation imperfection leads to differential human performance costs. Participating in four 30-min scenarios were 12 full-performance-level ATSPs. Dependent variables included conflict detection and resolution performance, eye movements, and subjective ratings of trust and self confidence. ATSPs detected conflicts faster and more accurately with reliable automation, as compared with manual performance. When the conflict probe automation was unreliable, conflict detection performance declined with both miss (25% conflicts detected) and false alarm automation (50% conflicts detected). When the primary task of conflict detection was automated, even highly reliable yet imperfect automation (miss or false alarm) resulted in serious negative effects on operator performance. The further in advance that conflict probe automation predicts a conflict, the greater the uncertainty of prediction; thus, designers should provide users with feedback on the state of the automation or other tools that allow for inspection and analysis of the data underlying the conflict probe algorithm.
Prediction of muscle performance during dynamic repetitive movement
NASA Technical Reports Server (NTRS)
Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.
2003-01-01
BACKGROUND: During long-duration spaceflight, astronauts experience progressive muscle atrophy and often perform strenuous extravehicular activities. Post-flight, there is a lengthy recovery period with an increased risk for injury. Currently, there is a critical need for an enabling tool to optimize muscle performance and to minimize the risk of injury to astronauts while on-orbit and during post-flight recovery. Consequently, these studies were performed to develop a method to address this need. METHODS: Eight test subjects performed a repetitive dynamic exercise to failure at 65% of their upper torso weight using a Lordex spinal machine. Surface electromyography (SEMG) data was collected from the erector spinae back muscle. The SEMG data was evaluated using a 5th order autoregressive (AR) model and linear regression analysis. RESULTS: The best predictor found was an AR parameter, the mean average magnitude of AR poles, with r = 0.75 and p = 0.03. This parameter can predict performance to failure as early as the second repetition of the exercise. CONCLUSION: A method for predicting human muscle performance early during dynamic repetitive exercise was developed. The capability to predict performance to failure has many potential applications to the space program including evaluating countermeasure effectiveness on-orbit, optimizing post-flight recovery, and potential future real-time monitoring capability during extravehicular activity.
Hahn, Seokyung; Moon, Min Kyong; Park, Kyong Soo; Cho, Young Min
2016-01-01
Background Various diabetes risk scores composed of non-laboratory parameters have been developed, but only a few studies performed cross-validation of these scores and a comparison with laboratory parameters. We evaluated the performance of diabetes risk scores composed of non-laboratory parameters, including a recently published Korean risk score (KRS), and compared them with laboratory parameters. Methods The data of 26,675 individuals who visited the Seoul National University Hospital Healthcare System Gangnam Center for a health screening program were reviewed for cross-sectional validation. The data of 3,029 individuals with a mean of 6.2 years of follow-up were reviewed for longitudinal validation. The KRS and 16 other risk scores were evaluated and compared with a laboratory prediction model developed by logistic regression analysis. Results For the screening of undiagnosed diabetes, the KRS exhibited a sensitivity of 81%, a specificity of 58%, and an area under the receiver operating characteristic curve (AROC) of 0.754. Other scores showed AROCs that ranged from 0.697 to 0.782. For the prediction of future diabetes, the KRS exhibited a sensitivity of 74%, a specificity of 54%, and an AROC of 0.696. Other scores had AROCs ranging from 0.630 to 0.721. The laboratory prediction model composed of fasting plasma glucose and hemoglobin A1c levels showed a significantly higher AROC (0.838, P < 0.001) than the KRS. The addition of the KRS to the laboratory prediction model increased the AROC (0.849, P = 0.016) without a significant improvement in the risk classification (net reclassification index: 4.6%, P = 0.264). Conclusions The non-laboratory risk scores, including KRS, are useful to estimate the risk of undiagnosed diabetes but are inferior to the laboratory parameters for predicting future diabetes. PMID:27214034
More than just the mean: moving to a dynamic view of performance-based compensation.
Barnes, Christopher M; Reb, Jochen; Ang, Dionysius
2012-05-01
Compensation decisions have important consequences for employees and organizations and affect factors such as retention, motivation, and recruitment. Past research has primarily focused on mean performance as a predictor of compensation, promoting the implicit assumption that alternative aspects of dynamic performance are not relevant. To address this gap in the literature, we examined the influence of dynamic performance characteristics on compensation decisions in the National Basketball Association (NBA). We predicted that, in addition to performance mean, performance trend and variability would also affect compensation decisions. Results revealed that performance mean and trend, but not variability, were significantly and positively related to changes in compensation levels of NBA players. Moreover, trend (but not mean or variability) predicted compensation when controlling for future performance, suggesting that organizations overweighted trend in their compensation decisions. Theoretical and practical implications are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Uden, Daniel R.; Allen, Craig R.; Bishop, Andrew A.; Grosse, Roger; Jorgensen, Christopher F.; LaGrange, Theodore G.; Stutheit, Randy G.; Vrtiska, Mark P.
2015-01-01
In the present period of rapid, worldwide change in climate and landuse (i.e., global change), successful biodiversity conservation warrants proactive management responses, especially for long-distance migratory species. However, the development and implementation of management strategies can be impeded by high levels of uncertainty and low levels of control over potentially impactful future events and their effects. Scenario planning and modeling are useful tools for expanding perspectives and informing decisions under these conditions. We coupled scenario planning and statistical modeling to explain and predict playa wetland inundation (i.e., presence/absence of water) and ponded area (i.e., extent of water) in the Rainwater Basin, an anthropogenically altered landscape that provides critical stopover habitat for migratory waterbirds. Inundation and ponded area models for total wetlands, those embedded in rowcrop fields, and those not embedded in rowcrop fields were trained and tested with wetland ponding data from 2004 and 2006–2009, and then used to make additional predictions under two alternative climate change scenarios for the year 2050, yielding a total of six predictive models and 18 prediction sets. Model performance ranged from moderate to good, with inundation models outperforming ponded area models, and models for non-rowcrop-embedded wetlands outperforming models for total wetlands and rowcrop-embedded wetlands. Model predictions indicate that if the temperature and precipitation changes assumed under our climate change scenarios occur, wetland stopover habitat availability in the Rainwater Basin could decrease in the future. The results of this and similar studies could be aggregated to increase knowledge about the potential spatial and temporal distributions of future stopover habitat along migration corridors, and to develop and prioritize multi-scale management actions aimed at mitigating the detrimental effects of global change on migratory waterbird populations.
Aaltonen, Sari; Latvala, Antti; Rose, Richard J.; Kujala, Urho M.; Kaprio, Jaakko; Silventoinen, Karri
2016-01-01
Physical activity and academic performance are positively associated, but the direction of the association is poorly understood. This longitudinal study examined the direction and magnitude of the associations between leisure-time physical activity and academic performance throughout adolescence and young adulthood. The participants were Finnish twins (from 2,859 to 4,190 individuals/study wave) and their families. In a cross-lagged path model, higher academic performance at ages 12, 14 and 17 predicted higher leisure-time physical activity at subsequent time-points (standardized path coefficient at age 14: 0.07 (p < 0.001), age 17: 0.12 (p < 0.001) and age 24: 0.06 (p < 0.05)), whereas physical activity did not predict future academic performance. A cross-lagged model of co-twin differences suggested that academic performance and subsequent physical activity were not associated due to the environmental factors shared by co-twins. Our findings suggest that better academic performance in adolescence modestly predicts more frequent leisure-time physical activity in late adolescence and young adulthood. PMID:27976699
Aaltonen, Sari; Latvala, Antti; Rose, Richard J; Kujala, Urho M; Kaprio, Jaakko; Silventoinen, Karri
2016-12-15
Physical activity and academic performance are positively associated, but the direction of the association is poorly understood. This longitudinal study examined the direction and magnitude of the associations between leisure-time physical activity and academic performance throughout adolescence and young adulthood. The participants were Finnish twins (from 2,859 to 4,190 individuals/study wave) and their families. In a cross-lagged path model, higher academic performance at ages 12, 14 and 17 predicted higher leisure-time physical activity at subsequent time-points (standardized path coefficient at age 14: 0.07 (p < 0.001), age 17: 0.12 (p < 0.001) and age 24: 0.06 (p < 0.05)), whereas physical activity did not predict future academic performance. A cross-lagged model of co-twin differences suggested that academic performance and subsequent physical activity were not associated due to the environmental factors shared by co-twins. Our findings suggest that better academic performance in adolescence modestly predicts more frequent leisure-time physical activity in late adolescence and young adulthood.
Teyhen, Deydre S; Shaffer, Scott W; Butler, Robert J; Goffar, Stephen L; Kiesel, Kyle B; Rhon, Daniel I; Boyles, Robert E; McMillian, Daniel J; Williamson, Jared N; Plisky, Phillip J
2016-10-01
Performance on movement tests helps to predict injury risk in a variety of physically active populations. Understanding baseline measures for normal is an important first step. Determine differences in physical performance assessments and describe normative values for these tests based on military unit type. Assessment of power, balance, mobility, motor control, and performance on the Army Physical Fitness Test were assessed in a cohort of 1,466 soldiers. Analysis of variance was performed to compare the results based on military unit type (Rangers, Combat, Combat Service, and Combat Service Support) and analysis of covariance was performed to determine the influence of age and gender. Rangers performed the best on all performance and fitness measures (p < 0.05). Combat soldiers performed better than Combat Service and Service Support soldiers on several physical performance tests and the Army Physical Fitness Test (p < 0.05). Performance in Combat Service and Service Support soldiers was equivalent on most measures (p < 0.05). Functional performance and level of fitness varied significantly by military unit type. Understanding these differences will provide a foundation for future injury prediction and prevention strategies. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Trends In Susceptibility To Single-Event Upset
NASA Technical Reports Server (NTRS)
Nichols, Donald K.; Price, William E.; Kolasinski, Wojciech A.; Koga, Rukotaro; Waskiewicz, Alvin E.; Pickel, James C.; Blandford, James T.
1989-01-01
Report provides nearly comprehensive body of data on single-event upsets due to irradiation by heavy ions. Combines new test data and previously published data from governmental and industrial laboratories. Clear trends emerge from data useful in predicting future performances of devices.
Influence versus intent for predictive analytics in situation awareness
NASA Astrophysics Data System (ADS)
Cui, Biru; Yang, Shanchieh J.; Kadar, Ivan
2013-05-01
Predictive analytics in situation awareness requires an element to comprehend and anticipate potential adversary activities that might occur in the future. Most work in high level fusion or predictive analytics utilizes machine learning, pattern mining, Bayesian inference, and decision tree techniques to predict future actions or states. The emergence of social computing in broader contexts has drawn interests in bringing the hypotheses and techniques from social theory to algorithmic and computational settings for predictive analytics. This paper aims at answering the question on how influence and attitude (some interpreted such as intent) of adversarial actors can be formulated and computed algorithmically, as a higher level fusion process to provide predictions of future actions. The challenges in this interdisciplinary endeavor include drawing existing understanding of influence and attitude in both social science and computing fields, as well as the mathematical and computational formulation for the specific context of situation to be analyzed. The study of `influence' has resurfaced in recent years due to the emergence of social networks in the virtualized cyber world. Theoretical analysis and techniques developed in this area are discussed in this paper in the context of predictive analysis. Meanwhile, the notion of intent, or `attitude' using social theory terminologies, is a relatively uncharted area in the computing field. Note that a key objective of predictive analytics is to identify impending/planned attacks so their `impact' and `threat' can be prevented. In this spirit, indirect and direct observables are drawn and derived to infer the influence network and attitude to predict future threats. This work proposes an integrated framework that jointly assesses adversarial actors' influence network and their attitudes as a function of past actions and action outcomes. A preliminary set of algorithms are developed and tested using the Global Terrorism Database (GTD). Our results reveals the benefits to perform joint predictive analytics with both attitude and influence. At the same time, we discover significant challenges in deriving influence and attitude from indirect observables for diverse adversarial behavior. These observations warrant further investigation of optimal use of influence and attitude for predictive analytics, as well as the potential inclusion of other environmental or capability elements for the actors.
Eronen, Lauri; Toivonen, Hannu
2012-06-06
Biological databases contain large amounts of data concerning the functions and associations of genes and proteins. Integration of data from several such databases into a single repository can aid the discovery of previously unknown connections spanning multiple types of relationships and databases. Biomine is a system that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. We present Biomine and evaluate its performance in link prediction, where the goal is to predict pairs of nodes that will be connected in the future, based on current data. In particular, we formulate protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph. We consider and experiment with several such measures, and perform a parameter optimization procedure where different edge types are weighted to optimize link prediction accuracy. We also propose a novel method for disease-gene prioritization, defined as finding a subset of candidate genes that cluster together in the graph. We experimentally evaluate Biomine by predicting future annotations in the source databases and prioritizing lists of putative disease genes. The experimental results show that Biomine has strong potential for predicting links when a set of selected candidate links is available. The predictions obtained using the entire Biomine dataset are shown to clearly outperform ones obtained using any single source of data alone, when different types of links are suitably weighted. In the gene prioritization task, an established reference set of disease-associated genes is useful, but the results show that under favorable conditions, Biomine can also perform well when no such information is available.The Biomine system is a proof of concept. Its current version contains 1.1 million entities and 8.1 million relations between them, with focus on human genetics. Some of its functionalities are available in a public query interface at http://biomine.cs.helsinki.fi, allowing searching for and visualizing connections between given biological entities.
Sabine-Neches Waterway, Sabine Pass Jetty System: Past and Future Performance
2010-04-01
island systems of the Mississippi River delta plain: historical change and future prediction. Journal of Coastal Research 13(3):628–655. McBride, R. A...armored breakwaters and revetments. Coastal and Hydraulics Engineering Technical Note, ERDC/CHL CHETN-III-64 ( revised ). Vicksburg, MS: U.S. Army...Systems, National Research Council, National Academy Press, Washington, D.C. Nelson, H. F., and E. E. Bray. 1970. Stratigraphy and history of the
Ahmadian, Maryam; Carmack, Suzie; Samah, Asnarulkhadi Abu; Kreps, Gary; Saidu, Mohammed Bashir
2016-01-01
Early detection is a critical part of reducing the burden of breast cancer and breast selfexamination (BSE) has been found to be an especially important early detection strategy in low and middle income countries such as Malaysia. Although reports indicate that Malaysian women report an increase in BSE activity in recent years, additional research is needed to explore factors that may help to increase this behavior among Southeastern Asian women. This study is the first of its kind to explore how the predicting variables of self-efficacy, perceived barriers, and body image factors correlate with self-reports of past BSE, and intention to conduct future breast self-exams among female students in Malaysia. Through the analysis of data collected from a prior study of female students from nine Malaysian universities (n=842), this study found that self-efficacy, perceived barriers and specific body image sub-constructs (MBSRQ-Appearance Scales) were correlated with, and at times predicted, both the likelihood of past BSE and the intention to conduct breast self-exams in the future. Self-efficacy (SE) positively predicted the likelihood of past self-exam behavior, and intention to conduct future breast self-exams. Perceived barriers (BR) negatively predicted past behavior and future intention of breast self-exams. The body image sub-constructs of appearance evaluation (AE) and overweight preoccupation (OWP) predicted the likelihood of past behavior but did not predict intention for future behavior. Appearance orientation (AO) had a somewhat opposite effect: AO did not correlate with or predict past behavior but did correlate with intention to conduct breast self-exams in the future. The body image sub-constructs of body area satisfaction (BASS) and self-classified weight (SCW) showed no correlation with the subjects' past breast self-exam behavior nor with their intention to conduct breast self-exams in the future. Findings from this study indicate that both self-efficacy and perceived barriers to BSE are significant psychosocial factors that influence BSE behavior. These results suggest that health promotion interventions that help enhance self-efficacy and reduce perceived barriers have the potential to increase the intentions of Malaysian women to perform breast self-exams, which can promote early detection of breast cancers. Future research should evaluate targeted communication interventions for addressing self-efficacy and perceived barriers to breast self-exams with at-risk Malaysian women. and further explore the relationship between BSE and body image.
Ariel, Robert; Hines, Jarrod C.; Hertzog, Christopher
2014-01-01
People estimate minimal changes in learning when making predictions of learning (POLs) for future study opportunities despite later showing increased performance and an awareness of that increase (Kornell & Bjork, 2009). This phenomenon is conceptualized as a stability bias in judgments about learning. We investigated the malleability of this effect, and whether it reflected people’s underlying beliefs about learning. We manipulated prediction framing to emphasize the role of testing vs. studying on memory and directly measured beliefs about multi-trial study effects on learning by having participants construct predicted learning curves before and after the experiment. Mean POLs were more sensitive to the number of study-test opportunities when performance was framed in terms of study benefits rather than testing benefits and POLs reflected pre-existing beliefs about learning. The stability bias is partially due to framing and reflects discounted beliefs about learning benefits rather than inherent belief in the stability of performance. PMID:25067885
Ariel, Robert; Hines, Jarrod C; Hertzog, Christopher
2014-08-01
People estimate minimal changes in learning when making predictions of learning (POLs) for future study opportunities despite later showing increased performance and an awareness of that increase (Kornell & Bjork, 2009). This phenomenon is conceptualized as a stability bias in judgments about learning. We investigated the malleability of this effect, and whether it reflected people's underlying beliefs about learning. We manipulated prediction framing to emphasize the role of testing vs. studying on memory and directly measured beliefs about multi-trial study effects on learning by having participants construct predicted learning curves before and after the experiment. Mean POLs were more sensitive to the number of study-test opportunities when performance was framed in terms of study benefits rather than testing benefits and POLs reflected pre-existing beliefs about learning. The stability bias is partially due to framing and reflects discounted beliefs about learning benefits rather than inherent belief in the stability of performance.
Application of historical mobility testing to sensor-based robotic performance
NASA Astrophysics Data System (ADS)
Willoughby, William E.; Jones, Randolph A.; Mason, George L.; Shoop, Sally A.; Lever, James H.
2006-05-01
The USA Engineer Research and Development Center (ERDC) has conducted on-/off-road experimental field testing with full-sized and scale-model military vehicles for more than fifty years. Some 4000 acres of local terrain are available for tailored field evaluations or verification/validation of future robotic designs in a variety of climatic regimes. Field testing and data collection procedures, as well as techniques for quantifying terrain in engineering terms, have been developed and refined into algorithms and models for predicting vehicle-terrain interactions and resulting forces or speeds of military-sized vehicles. Based on recent experiments with Matilda, Talon, and Pacbot, these predictive capabilities appear to be relevant to most robotic systems currently in development. Utilization of current testing capabilities with sensor-based vehicle drivers, or use of the procedures for terrain quantification from sensor data, would immediately apply some fifty years of historical knowledge to the development, refinement, and implementation of future robotic systems. Additionally, translation of sensor-collected terrain data into engineering terms would allow assessment of robotic performance a priori deployment of the actual system and ensure maximum system performance in the theater of operation.
Prestoration: Using species in restoration that will persist now and into the future
Butterfield, B.J.; Copeland, Stella; Munson, Seth M.; Roybal, C.M.; Wood, Troy E.
2017-01-01
Climate change presents new challenges for selecting species for restoration. If migration fails to keep pace with climate change, as models predict, the most suitable sources for restoration may not occur locally at all. To address this issue we propose a strategy of “prestoration”: utilizing species in restoration for which a site represents suitable habitat now and into the future. Using the Colorado Plateau, USA as a case study, we assess the ability of grass species currently used regionally in restoration to persist into the future using projections of ecological niche models (or climate envelope models) across a suite of climate change scenarios. We then present a technique for identifying new species that best compensate for future losses of suitable habitat by current target species. We found that the current suite of species, selected by a group of experts, is predicted to perform reasonably well in the short-term, but that losses of prestorable habitat by mid-century would approach 40%. Using an algorithm to identify additional species, we found that fewer than ten species could compensate for nearly all of the losses incurred by the current target species. This case study highlights the utility of integrating ecological niche modeling and future climate forecasts to predict the utility of species in restoring under climate change across a wide range of spatial and temporal scales.
Structure prediction and molecular simulation of gases diffusion pathways in hydrogenase.
Sundaram, Shanthy; Tripathi, Ashutosh; Gupta, Vipul
2010-10-06
Although hydrogen is considered to be one of the most promising future energy sources and the technical aspects involved in using it have advanced considerably, the future supply of hydrogen from renewable sources is still unsolved. The [Fe]- hydrogenase enzymes are highly efficient H(2) catalysts found in ecologically and phylogenetically diverse microorganisms, including the photosynthetic green alga, Chlamydomonas reinhardtii. While these enzymes can occur in several forms, H(2) catalysis takes place at a unique [FeS] prosthetic group or H-cluster, located at the active site. 3D structure of the protein hydA1 hydrogenase from Chlamydomonas reinhardtti was predicted using the MODELER 8v2 software. Conserved region was depicted from the NCBI CDD Search. Template selection was done on the basis NCBI BLAST results. For single template 1FEH was used and for multiple templates 1FEH and 1HFE were used. The result of the Homology modeling was verified by uploading the file to SAVS server. On the basis of the SAVS result 3D structure predicted using single template was chosen for performing molecular simulation. For performing molecular simulation three strategies were used. First the molecular simulation of the protein was performed in solvated box containing bulk water. Then 100 H(2) molecules were randomly inserted in the solvated box and two simulations of 50 and 100 ps were performed. Similarly 100 O(2) molecules were randomly placed in the solvated box and again 50 and 100 ps simulation were performed. Energy minimization was performed before each simulation was performed. Conformations were saved after each simulation. Analysis of the gas diffusion was done on the basis of RMSD, Radius of Gyration and no. of gas molecule/ps plot.
Trends of Abutment-Scour Prediction Equations Applied to 144 Field Sites in South Carolina
Benedict, Stephen T.; Deshpande, Nikhil; Aziz, Nadim M.; Conrads, Paul
2006-01-01
The U.S. Geological Survey conducted a study in cooperation with the Federal Highway Administration in which predicted abutment-scour depths computed with selected predictive equations were compared with field measurements of abutment-scour depth made at 144 bridges in South Carolina. The assessment used five equations published in the Fourth Edition of 'Evaluating Scour at Bridges,' (Hydraulic Engineering Circular 18), including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. An additional unpublished equation also was assessed. Comparisons between predicted and observed scour depths are intended to illustrate general trends and order-of-magnitude differences for the prediction equations. Field measurements were taken during non-flood conditions when the hydraulic conditions that caused the scour generally are unknown. The predicted scour depths are based on hydraulic conditions associated with the 100-year flow at all sites and the flood of record for 35 sites. Comparisons showed that predicted scour depths frequently overpredict observed scour and at times were excessive. The comparison also showed that underprediction occurred, but with less frequency. The performance of these equations indicates that they are poor predictors of abutment-scour depth in South Carolina, and it is probable that poor performance will occur when the equations are applied in other geographic regions. Extensive data and graphs used to compare predicted and observed scour depths in this study were compiled into spreadsheets and are included in digital format with this report. In addition to the equation-comparison data, Water-Surface Profile Model tube-velocity data, soil-boring data, and selected abutment-scour data are included in digital format with this report. The digital database was developed as a resource for future researchers and is especially valuable for evaluating the reasonableness of future equations that may be developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miltiadis Alamaniotis; Vivek Agarwal
This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less
Link Prediction in Evolving Networks Based on Popularity of Nodes.
Wang, Tong; He, Xing-Sheng; Zhou, Ming-Yang; Fu, Zhong-Qian
2017-08-02
Link prediction aims to uncover the underlying relationship behind networks, which could be utilized to predict missing edges or identify the spurious edges. The key issue of link prediction is to estimate the likelihood of potential links in networks. Most classical static-structure based methods ignore the temporal aspects of networks, limited by the time-varying features, such approaches perform poorly in evolving networks. In this paper, we propose a hypothesis that the ability of each node to attract links depends not only on its structural importance, but also on its current popularity (activeness), since active nodes have much more probability to attract future links. Then a novel approach named popularity based structural perturbation method (PBSPM) and its fast algorithm are proposed to characterize the likelihood of an edge from both existing connectivity structure and current popularity of its two endpoints. Experiments on six evolving networks show that the proposed methods outperform state-of-the-art methods in accuracy and robustness. Besides, visual results and statistical analysis reveal that the proposed methods are inclined to predict future edges between active nodes, rather than edges between inactive nodes.
Thorndahl, Søren; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer
2016-12-01
Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events - especially in the future climate - it is valuable to be able to simulate these events numerically, both historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper, radar data observations with different spatial and temporal resolution, radar nowcasts of 0-2 h leadtime, and numerical weather models with leadtimes up to 24 h are used as inputs to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on the small town of Lystrup in Denmark, which was flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps in real-time with high resolution radar rainfall data, but rather limited forecast performance in predicting floods with leadtimes more than half an hour.
Rhon, Daniel I; Teyhen, Deydre S; Shaffer, Scott W; Goffar, Stephen L; Kiesel, Kyle; Plisky, Phil P
2018-02-01
Musculoskeletal injuries are a primary source of disability in the US Military, and low back pain and lower extremity injuries account for over 44% of limited work days annually. History of prior musculoskeletal injury increases the risk for future injury. This study aims to determine the risk of injury after returning to work from a previous injury. The objective is to identify criteria that can help predict likelihood for future injury or re-injury. There will be 480 active duty soldiers recruited from across four medical centres. These will be patients who have sustained a musculoskeletal injury in the lower extremity or lumbar/thoracic spine, and have now been cleared to return back to work without any limitations. Subjects will undergo a battery of physical performance tests and fill out sociodemographic surveys. They will be followed for a year to identify any musculoskeletal injuries that occur. Prediction algorithms will be derived using regression analysis from performance and sociodemographic variables found to be significantly different between injured and non-injured subjects. Due to the high rates of injuries, injury prevention and prediction initiatives are growing. This is the first study looking at predicting re-injury rates after an initial musculoskeletal injury. In addition, multivariate prediction models appear to have move value than models based on only one variable. This approach aims to validate a multivariate model used in healthy non-injured individuals to help improve variables that best predict the ability to return to work with lower risk of injury, after a recent musculoskeletal injury. NCT02776930. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Using simplifications of reality in the real world: Robust benefits of models for decision making
NASA Astrophysics Data System (ADS)
Hunt, R. J.
2008-12-01
Models are by definition simplifications of reality; the degree and nature of simplification, however, is debated. One view is "the world is 3D, heterogeneous, and transient, thus good models are too" - the more a model directly simulates the complexity of the real world the better it is considered to be. An alternative view is to only use simple models up front because real-world complexity can never be truly known. A third view is construct and calibrate as many models as predictions. A fourth is to build highly parameterized models and either look at an ensemble of results, or use mathematical regularization to identify an optimal most reasonable parameter set and fit. Although each view may have utility for a given decision-making process, there are common threads that perhaps run through all views. First, the model-construction process itself can help the decision-making process because it raises the discussion of opposing parties from one of contrasting professional opinions to discussion of reasonable types and ranges of model inputs and processes. Secondly, no matter what view is used to guide the model building, model predictions for the future might be expected to perform poorly in the future due to unanticipated future changes and stressors to the underlying system simulated. Although this does not reduce the obligation of the modeler to build representative tools for the system, it should serve to temper expectations of model performance. Finally, perhaps the most under-appreciated utility of models is for calculating the reduction in prediction uncertainty resulting from different data collection strategies - an attractive feature separate from the calculation and minimization of absolute prediction uncertainty itself. This type of model output facilitates focusing on efficient use of current and future monitoring resources - something valued by many decision-makers regardless of background, system managed, and societal context.
The Thistle Field - Analysis of its past performance and optimisation of its future development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayat, M.G.; Tehrani, D.H.
1985-01-01
The Thistle Field geology and its reservoir performance over the past six years have been reviewed. The latest reservoir simulation study of the field, covering the performance history-matching, and the conclusions of various prediction cases are reported. The special features of PORES, Britoil in-house 3D 3-phase fully implicit numerical simulator and its modeling aids as applied to the Thistle Field are presented.
Couturier, Christine S.; Stecyk, Jonathan A. W.; Rummer, Jodie L.; Munday, Philip L.; Nilsson, Göran E.
2013-01-01
Ocean surface CO2 levels are increasing in line with rising atmospheric CO2 and could exceed 900 μatm by year 2100, with extremes above 2000 μatm in some coastal habitats. The imminent increase in ocean pCO2 is predicted to have negative consequences for marine fishes, including reduced aerobic performance, but variability among species could be expected. Understanding interspecific responses to ocean acidification is important for predicting the consequences of ocean acidification on communities and ecosystems. In the present study, the effects of exposure to near-future seawater CO2 (860 μatm) on resting (Ṁ O2rest) and maximum (Ṁ O2max) oxygen consumption rates were determined for three tropical coral reef fish species interlinked through predator-prey relationships: juvenile Pomacentrus moluccensis and P. amboinensis, and one of their predators: adult Pseudochromis fuscus. Contrary to predictions, one of the prey species, P. amboinensis, displayed a 28 – 39 % increase in Ṁ O2max after both an acute and four-day exposure to near-future CO2 seawater, while maintaining Ṁ O2rest. By contrast, the same treatment had no significant effects on Ṁ O2rest or Ṁ O2max of the other two species. However, acute exposure of P. amboinensis to 1400 and 2400 μatm CO2 resulted in Ṁ O2max returning to control values. Overall, the findings suggest that: (1) the metabolic costs of living in a near-future CO2 seawater environment were insignificant for the species examined at rest; (2) the ṀO2max response of tropical reef species to near-future CO2 seawater can be dependent on the severity of external hypercapnia; and (3) near-future ocean pCO2 may not be detrimental to aerobic scope of all fish species and it may even augment aerobic scope of some species. The present results also highlight that close phylogenetic relatedness and living in the same environment, does not necessarily imply similar physiological responses to near-future CO2. PMID:23916817
Human-Centered Technologies and Procedures for Future Air Traffic Management
NASA Technical Reports Server (NTRS)
Smith, Philip; Woods, David; McCoy, Elaine; Billings, Charles; Sarter, Nadine; Denning, Rebecca; Dekker, Sidney
1997-01-01
The use of various methodologies to predict the impact of future Air Traffic Management (ATM) concepts and technologies is explored. The emphasis has been on the importance of modeling coordination and cooperation among multiple agents within this system, and on understanding how the interactions among these agents will be influenced as new roles, responsibilities, procedures and technologies are introduced. To accomplish this, we have been collecting data on performance under the current air traffic management system, identifying critical problem areas and looking for examples suggestive of general approaches for solving such problems. Using the results of these field studies, we have developed a set of concrete scenarios centered around future designs, and have studied performance in these scenarios with a set of 40 controllers, dispatchers, pilots and traffic managers.
McGill, Stuart M; Andersen, Jordan T; Horne, Arthur D
2012-07-01
The purpose of this study was to see if specific tests of fitness and movement quality could predict injury resilience and performance in a team of basketball players over 2 years (2 playing seasons). It was hypothesized that, in a basketball population, movement and fitness scores would predict performance scores and that movement and fitness scores would predict injury resilience. A basketball team from a major American university (N = 14) served as the test population in this longitudinal trial. Variables linked to fitness, movement ability, speed, strength, and agility were measured together with some National Basketball Association (NBA) combine tests. Dependent variables of performance indicators (such as games and minutes played, points scored, assists, rebounds, steal, and blocks) and injury reports were tracked for the subsequent 2 years. Results showed that better performance was linked with having a stiffer torso, more mobile hips, weaker left grip strength, and a longer standing long jump, to name a few. Of the 3 NBA combine tests administered here, only a faster lane agility time had significant links with performance. Some movement qualities and torso endurance were not linked. No patterns with injury emerged. These observations have implications for preseason testing and subsequent training programs in an attempt to reduce future injury and enhance playing performance.
Lindahl, Jonas; Danell, Rickard
The aim of this study was to provide a framework to evaluate bibliometric indicators as decision support tools from a decision making perspective and to examine the information value of early career publication rate as a predictor of future productivity. We used ROC analysis to evaluate a bibliometric indicator as a tool for binary decision making. The dataset consisted of 451 early career researchers in the mathematical sub-field of number theory. We investigated the effect of three different definitions of top performance groups-top 10, top 25, and top 50 %; the consequences of using different thresholds in the prediction models; and the added prediction value of information on early career research collaboration and publications in prestige journals. We conclude that early career performance productivity has an information value in all tested decision scenarios, but future performance is more predictable if the definition of a high performance group is more exclusive. Estimated optimal decision thresholds using the Youden index indicated that the top 10 % decision scenario should use 7 articles, the top 25 % scenario should use 7 articles, and the top 50 % should use 5 articles to minimize prediction errors. A comparative analysis between the decision thresholds provided by the Youden index which take consequences into consideration and a method commonly used in evaluative bibliometrics which do not take consequences into consideration when determining decision thresholds, indicated that differences are trivial for the top 25 and the 50 % groups. However, a statistically significant difference between the methods was found for the top 10 % group. Information on early career collaboration and publication strategies did not add any prediction value to the bibliometric indicator publication rate in any of the models. The key contributions of this research is the focus on consequences in terms of prediction errors and the notion of transforming uncertainty into risk when we are choosing decision thresholds in bibliometricly informed decision making. The significance of our results are discussed from the point of view of a science policy and management.
Human factors of in-vehicle driver information systems : an executive summary
DOT National Transportation Integrated Search
1997-01-01
This report summarizes a multiyear program concerning driver interfaces for future cars. The goals were to develop (1) human Factors guidelines, (2) methods for testing safety and ease of use, and (3) a model that predicts human performance with thes...
Kim, Scott Y H
2014-04-01
The Patient Preference Predictor (PPP) proposal places a high priority on the accuracy of predicting patients' preferences and finds the performance of surrogates inadequate. However, the quest to develop a highly accurate, individualized statistical model has significant obstacles. First, it will be impossible to validate the PPP beyond the limit imposed by 60%-80% reliability of people's preferences for future medical decisions--a figure no better than the known average accuracy of surrogates. Second, evidence supports the view that a sizable minority of persons may not even have preferences to predict. Third, many, perhaps most, people express their autonomy just as much by entrusting their loved ones to exercise their judgment than by desiring to specifically control future decisions. Surrogate decision making faces none of these issues and, in fact, it may be more efficient, accurate, and authoritative than is commonly assumed.
Damage prognosis: the future of structural health monitoring.
Farrar, Charles R; Lieven, Nick A J
2007-02-15
This paper concludes the theme issue on structural health monitoring (SHM) by discussing the concept of damage prognosis (DP). DP attempts to forecast system performance by assessing the current damage state of the system (i.e. SHM), estimating the future loading environments for that system, and predicting through simulation and past experience the remaining useful life of the system. The successful development of a DP capability will require the further development and integration of many technology areas including both measurement/processing/telemetry hardware and a variety of deterministic and probabilistic predictive modelling capabilities, as well as the ability to quantify the uncertainty in these predictions. The multidisciplinary and challenging nature of the DP problem, its current embryonic state of development, and its tremendous potential for life-safety and economic benefits qualify DP as a 'grand challenge' problem for engineers in the twenty-first century.
Current and future perspectives on the development ...
Safety-related problems continue to be one of the major reasons of attrition in drug development. Non-testing approaches to predict toxicity could form part of the solution. This review provides a perspective of current status of non-testing approaches available for the prediction of different toxicity endpoints. A framework for the development, evaluation and assessment of (Q)SARs is presented together with several examples. A workflow for performing read-across predictions within category and analogue approaches is presented and the shortcomings discussed. In light of the advances in high throughput (HT) approaches and constructs such as adverse outcome pathways (AOPs) coming on-line to help in interpreting such HT data, the ways in which non-testing approaches are developed are also evolving. We discuss what the future of these approaches might look like and outline how their integration could be useful in screening toxicity for drug development. Invited review article for CRT for a special issue.
NASA Astrophysics Data System (ADS)
Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa
2015-10-01
The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game self-efficacy, including whether gender differences were observed. We examined 407 middle school students' scientific inquiry self-efficacy and computer game self-efficacy before and after completing a computer game-like assessment about a science mystery. Results from path analyses indicated that prior scientific inquiry self-efficacy predicted achievement on end-of-module questions, which in turn predicted change in scientific inquiry self-efficacy. By contrast, computer game self-efficacy was neither predictive of nor predicted by performance on the science assessment. While boys had higher computer game self-efficacy compared to girls, multi-group analyses suggested only minor gender differences in how efficacy beliefs related to performance. Implications for assessments with virtual environments and future design and research are discussed.
MSFC Skylab structures and mechanical systems mission evaluation
NASA Technical Reports Server (NTRS)
1974-01-01
A performance analysis for structural and mechanical major hardware systems and components is presented. Development background testing, modifications, and requirement adjustments are included. Functional narratives are provided for comparison purposes as are predicted design performance criterion. Each item is evaluated on an individual basis: that is, (1) history (requirements, design, manufacture, and test); (2) in-orbit performance (description and analysis); and (3) conclusions and recommendations regarding future space hardware application. Overall, the structural and mechanical performance of the Skylab hardware was outstanding.
Allen, Joseph; Gregory, Anne; Mikami, Amori; Lun, Janetta; Hamre, Bridget; Pianta, Robert
2017-01-01
Multilevel modeling techniques were used with a sample of 643 students enrolled in 37 secondary school classrooms to predict future student achievement (controlling for baseline achievement) from observed teacher interactions with students in the classroom, coded using the Classroom Assessment Scoring System—Secondary. After accounting for prior year test performance, qualities of teacher interactions with students predicted student performance on end-of-year standardized achievement tests. Classrooms characterized by a positive emotional climate, with sensitivity to adolescent needs and perspectives, use of diverse and engaging instructional learning formats, and a focus on analysis and problem solving were associated with higher levels of student achievement. Effects of higher quality teacher–student interactions were greatest in classrooms with fewer students. Implications for teacher performance assessment and teacher effects on achievement are discussed. PMID:28931966
Vadnais, Sarah A; Kibby, Michelle Y; Jagger-Rickels, Audreyana C
2018-01-01
We identified statistical predictors of four processing speed (PS) components in a sample of 151 children with and without attention-deficit/hyperactivity disorder (ADHD). Performance on perceptual speed was predicted by visual attention/short-term memory, whereas incidental learning/psychomotor speed was predicted by verbal working memory. Rapid naming was predictive of each PS component assessed, and inhibition predicted all but one task, suggesting a shared need to identify/retrieve stimuli rapidly and inhibit incorrect responding across PS components. Hence, we found both shared and unique predictors of perceptual, cognitive, and output speed, suggesting more specific terminology should be used in future research on PS in ADHD.
The Predictive Brain State: Timing Deficiency in Traumatic Brain Injury?
Ghajar, Jamshid; Ivry, Richard B.
2015-01-01
Attention and memory deficits observed in traumatic brain injury (TBI) are postulated to result from the shearing of white matter connections between the prefrontal cortex, parietal lobe, and cerebellum that are critical in the generation, maintenance, and precise timing of anticipatory neural activity. These fiber tracts are part of a neural network that generates predictions of future states and events, processes that are required for optimal performance on attention and working memory tasks. The authors discuss the role of this anticipatory neural system for understanding the varied symptoms and potential rehabilitation interventions for TBI. Preparatory neural activity normally allows the efficient integration of sensory information with goal-based representations. It is postulated that an impairment in the generation of this activity in traumatic brain injury (TBI) leads to performance variability as the brain shifts from a predictive to reactive mode. This dysfunction may constitute a fundamental defect in TBI as well as other attention disorders, causing working memory deficits, distractibility, a loss of goal-oriented behavior, and decreased awareness. “The future is not what is coming to meet us, but what we are moving forward to meet.” —Jean-Marie Guyau1 PMID:18460693
The interactive roles of mastery climate and performance climate in predicting intrinsic motivation.
Buch, R; Nerstad, C G L; Säfvenbom, R
2017-02-01
This study examined the interplay between perceived mastery and performance climates in predicting increased intrinsic motivation. The results of a two-wave longitudinal study comprising of 141 individuals from three military academies revealed a positive relationship between a perceived mastery climate and increased intrinsic motivation only for individuals who perceived a low performance climate. This finding suggests a positive relationship between a perceived mastery climate and increased intrinsic motivation only when combined with low perceptions of a performance climate. Hence, introducing a performance climate in addition to a mastery climate can be an undermining motivational strategy, as it attenuates the positive relationship between a mastery climate and increased intrinsic motivation. Implications for future research and practice are discussed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Thomas; Stergiou, Jonathan; Reese, Garth
Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.
Improved LTVMPC design for steering control of autonomous vehicle
NASA Astrophysics Data System (ADS)
Velhal, Shridhar; Thomas, Susy
2017-01-01
An improved linear time varying model predictive control for steering control of autonomous vehicle running on slippery road is presented. Control strategy is designed such that the vehicle will follow the predefined trajectory with highest possible entry speed. In linear time varying model predictive control, nonlinear vehicle model is successively linearized at each sampling instant. This linear time varying model is used to design MPC which will predict the future horizon. By incorporating predicted input horizon in each successive linearization the effectiveness of controller has been improved. The tracking performance using steering with front wheel and braking at four wheels are presented to illustrate the effectiveness of the proposed method.
Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage
Moyer, Thomas; Stergiou, Jonathan; Reese, Garth; ...
2016-05-25
Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.
Construction of prediction intervals for Palmer Drought Severity Index using bootstrap
NASA Astrophysics Data System (ADS)
Beyaztas, Ufuk; Bickici Arikan, Bugrayhan; Beyaztas, Beste Hamiye; Kahya, Ercan
2018-04-01
In this study, we propose an approach based on the residual-based bootstrap method to obtain valid prediction intervals using monthly, short-term (three-months) and mid-term (six-months) drought observations. The effects of North Atlantic and Arctic Oscillation indexes on the constructed prediction intervals are also examined. Performance of the proposed approach is evaluated for the Palmer Drought Severity Index (PDSI) obtained from Konya closed basin located in Central Anatolia, Turkey. The finite sample properties of the proposed method are further illustrated by an extensive simulation study. Our results revealed that the proposed approach is capable of producing valid prediction intervals for future PDSI values.
Lai, Fu-Jou; Chang, Hong-Tsun; Huang, Yueh-Min; Wu, Wei-Sheng
2014-01-01
Eukaryotic transcriptional regulation is known to be highly connected through the networks of cooperative transcription factors (TFs). Measuring the cooperativity of TFs is helpful for understanding the biological relevance of these TFs in regulating genes. The recent advances in computational techniques led to various predictions of cooperative TF pairs in yeast. As each algorithm integrated different data resources and was developed based on different rationales, it possessed its own merit and claimed outperforming others. However, the claim was prone to subjectivity because each algorithm compared with only a few other algorithms and only used a small set of performance indices for comparison. This motivated us to propose a series of indices to objectively evaluate the prediction performance of existing algorithms. And based on the proposed performance indices, we conducted a comprehensive performance evaluation. We collected 14 sets of predicted cooperative TF pairs (PCTFPs) in yeast from 14 existing algorithms in the literature. Using the eight performance indices we adopted/proposed, the cooperativity of each PCTFP was measured and a ranking score according to the mean cooperativity of the set was given to each set of PCTFPs under evaluation for each performance index. It was seen that the ranking scores of a set of PCTFPs vary with different performance indices, implying that an algorithm used in predicting cooperative TF pairs is of strength somewhere but may be of weakness elsewhere. We finally made a comprehensive ranking for these 14 sets. The results showed that Wang J's study obtained the best performance evaluation on the prediction of cooperative TF pairs in yeast. In this study, we adopted/proposed eight performance indices to make a comprehensive performance evaluation on the prediction results of 14 existing cooperative TFs identification algorithms. Most importantly, these proposed indices can be easily applied to measure the performance of new algorithms developed in the future, thus expedite progress in this research field.
WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning
Sutphin, George L.; Mahoney, J. Matthew; Sheppard, Keith; Walton, David O.; Korstanje, Ron
2016-01-01
The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs) between 6 eukaryotic species—humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/. PMID:27812085
WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning.
Sutphin, George L; Mahoney, J Matthew; Sheppard, Keith; Walton, David O; Korstanje, Ron
2016-11-01
The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs) between 6 eukaryotic species-humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/.
Predicted and tested performance of durable TPS
NASA Technical Reports Server (NTRS)
Shideler, John L.
1992-01-01
The development of thermal protection systems (TPS) for aerospace vehicles involves combining material selection, concept design, and verification tests to evaluate the effectiveness of the system. The present paper reviews verification tests of two metallic and one carbon-carbon thermal protection system. The test conditions are, in general, representative of Space Shuttle design flight conditions which may be more or less severe than conditions required for future space transportation systems. The results of this study are intended to help establish a preliminary data base from which the designers of future entry vehicles can evaluate the applicability of future concepts to their vehicles.
Jaspers, Arne; De Beéck, Tim Op; Brink, Michel S; Frencken, Wouter G P; Staes, Filip; Davis, Jesse J; Helsen, Werner F
2018-05-01
Machine learning may contribute to understanding the relationship between the external load and internal load in professional soccer. Therefore, the relationship between external load indicators (ELIs) and the rating of perceived exertion (RPE) was examined using machine learning techniques on a group and individual level. Training data were collected from 38 professional soccer players over 2 seasons. The external load was measured using global positioning system technology and accelerometry. The internal load was obtained using the RPE. Predictive models were constructed using 2 machine learning techniques, artificial neural networks and least absolute shrinkage and selection operator (LASSO) models, and 1 naive baseline method. The predictions were based on a large set of ELIs. Using each technique, 1 group model involving all players and 1 individual model for each player were constructed. These models' performance on predicting the reported RPE values for future training sessions was compared with the naive baseline's performance. Both the artificial neural network and LASSO models outperformed the baseline. In addition, the LASSO model made more accurate predictions for the RPE than did the artificial neural network model. Furthermore, decelerations were identified as important ELIs. Regardless of the applied machine learning technique, the group models resulted in equivalent or better predictions for the reported RPE values than the individual models. Machine learning techniques may have added value in predicting RPE for future sessions to optimize training design and evaluation. These techniques may also be used in conjunction with expert knowledge to select key ELIs for load monitoring.
Modeling the Office of Science Ten Year FacilitiesPlan: The PERI Architecture Tiger Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Supinski, B R; Alam, S R; Bailey, D H
2009-05-27
The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort to the optimization of key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measuredmore » the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less
Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Tiger Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Supinski, Bronis R.; Alam, Sadaf; Bailey, David H.
2009-06-26
The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance ofmore » these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less
Modeling the Office of Science Ten Year Facilities Plan: The PERI Architecture Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Supinski, Bronis R.; Alam, Sadaf R; Bailey, David
2009-01-01
The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance ofmore » these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfilll our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.« less
A collaborative filtering-based approach to biomedical knowledge discovery.
Lever, Jake; Gakkhar, Sitanshu; Gottlieb, Michael; Rashnavadi, Tahereh; Lin, Santina; Siu, Celia; Smith, Maia; Jones, Martin R; Krzywinski, Martin; Jones, Steven J M; Wren, Jonathan
2018-02-15
The increase in publication rates makes it challenging for an individual researcher to stay abreast of all relevant research in order to find novel research hypotheses. Literature-based discovery methods make use of knowledge graphs built using text mining and can infer future associations between biomedical concepts that will likely occur in new publications. These predictions are a valuable resource for researchers to explore a research topic. Current methods for prediction are based on the local structure of the knowledge graph. A method that uses global knowledge from across the knowledge graph needs to be developed in order to make knowledge discovery a frequently used tool by researchers. We propose an approach based on the singular value decomposition (SVD) that is able to combine data from across the knowledge graph through a reduced representation. Using cooccurrence data extracted from published literature, we show that SVD performs better than the leading methods for scoring discoveries. We also show the diminishing predictive power of knowledge discovery as we compare our predictions with real associations that appear further into the future. Finally, we examine the strengths and weaknesses of the SVD approach against another well-performing system using several predicted associations. All code and results files for this analysis can be accessed at https://github.com/jakelever/knowledgediscovery. sjones@bcgsc.ca. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
An improved predictive functional control method with application to PMSM systems
NASA Astrophysics Data System (ADS)
Li, Shihua; Liu, Huixian; Fu, Wenshu
2017-01-01
In common design of prediction model-based control method, usually disturbances are not considered in the prediction model as well as the control design. For the control systems with large amplitude or strong disturbances, it is difficult to precisely predict the future outputs according to the conventional prediction model, and thus the desired optimal closed-loop performance will be degraded to some extent. To this end, an improved predictive functional control (PFC) method is developed in this paper by embedding disturbance information into the system model. Here, a composite prediction model is thus obtained by embedding the estimated value of disturbances, where disturbance observer (DOB) is employed to estimate the lumped disturbances. So the influence of disturbances on system is taken into account in optimisation procedure. Finally, considering the speed control problem for permanent magnet synchronous motor (PMSM) servo system, a control scheme based on the improved PFC method is designed to ensure an optimal closed-loop performance even in the presence of disturbances. Simulation and experimental results based on a hardware platform are provided to confirm the effectiveness of the proposed algorithm.
Global Agriculture Yields and Conflict under Future Climate
NASA Astrophysics Data System (ADS)
Rising, J.; Cane, M. A.
2013-12-01
Aspects of climate have been shown to correlate significantly with conflict. We investigate a possible pathway for these effects through changes in agriculture yields, as predicted by field crop models (FAO's AquaCrop and DSSAT). Using satellite and station weather data, and surveyed data for soil and management, we simulate major crop yields across all countries between 1961 and 2008, and compare these to FAO and USDA reported yields. Correlations vary by country and by crop, from approximately .8 to -.5. Some of this range in crop model performance is explained by crop varieties, data quality, and other natural, economic, and political features. We also quantify the ability of AquaCrop and DSSAT to simulate yields under past cycles of ENSO as a proxy for their performance under changes in climate. We then describe two statistical models which relate crop yields to conflict events from the UCDP/PRIO Armed Conflict dataset. The first relates several preceding years of predicted yields of the major grain in each country to any conflict involving that country. The second uses the GREG ethnic group maps to identify differences in predicted yields between neighboring regions. By using variation in predicted yields to explain conflict, rather than actual yields, we can identify the exogenous effects of weather on conflict. Finally, we apply precipitation and temperature time-series under IPCC's A1B scenario to the statistical models. This allows us to estimate the scale of the impact of future yields on future conflict. Centroids of the major growing regions for each country's primary crop, based on USDA FAS consumption. Correlations between simulated yields and reported yields, for AquaCrop and DSSAT, under the assumption that no irrigation, fertilization, or pest control is used. Reported yields are the average of FAO yields and USDA FAS yields, where both are available.
Energy efficient engine fan component detailed design report
NASA Technical Reports Server (NTRS)
Halle, J. E.; Michael, C. J.
1981-01-01
The fan component which was designed for the energy efficient engine is an advanced high performance, single stage system and is based on technology advancements in aerodynamics and structure mechanics. Two fan components were designed, both meeting the integrated core/low spool engine efficiency goal of 84.5%. The primary configuration, envisioned for a future flight propulsion system, features a shroudless, hollow blade and offers a predicted efficiency of 87.3%. A more conventional blade was designed, as a back up, for the integrated core/low spool demonstrator engine. The alternate blade configuration has a predicted efficiency of 86.3% for the future flight propulsion system. Both fan configurations meet goals established for efficiency surge margin, structural integrity and durability.
Deep learning in pharmacogenomics: from gene regulation to patient stratification.
Kalinin, Alexandr A; Higgins, Gerald A; Reamaroon, Narathip; Soroushmehr, Sayedmohammadreza; Allyn-Feuer, Ari; Dinov, Ivo D; Najarian, Kayvan; Athey, Brian D
2018-05-01
This Perspective provides examples of current and future applications of deep learning in pharmacogenomics, including: identification of novel regulatory variants located in noncoding domains of the genome and their function as applied to pharmacoepigenomics; patient stratification from medical records; and the mechanistic prediction of drug response, targets and their interactions. Deep learning encapsulates a family of machine learning algorithms that has transformed many important subfields of artificial intelligence over the last decade, and has demonstrated breakthrough performance improvements on a wide range of tasks in biomedicine. We anticipate that in the future, deep learning will be widely used to predict personalized drug response and optimize medication selection and dosing, using knowledge extracted from large and complex molecular, epidemiological, clinical and demographic datasets.
Practical implications for genetic modeling in the genomics era
USDA-ARS?s Scientific Manuscript database
Genetic models convert data into estimated breeding values and other information useful to breeders. The goal is to provide accurate and timely predictions of the future performance for each animal (or embryo). Modeling involves defining traits, editing raw data, removing environmental effects, incl...
DOT National Transportation Integrated Search
1976-08-01
This report contains a functional design for the simulation of a future automation concept in support of the ATC Systems Command Center. The simulation subsystem performs airport airborne arrival delay predictions and computes flow control tables for...
Feasibility of Forecasting Highway Safety in Support of Safety Incentive and Safety Target Programs.
DOT National Transportation Integrated Search
2007-11-01
Using the frequency of fatal crashes from the current observation period (e.g. month, year, etc.) as the : prediction of expected future performance does not account for changes in safety that result from : increases in exposure (population, addition...
Schorer, Jörg; Rienhoff, Rebecca; Fischer, Lennart; Baker, Joseph
2017-01-01
In most sports, the development of elite athletes is a long-term process of talent identification and support. Typically, talent selection systems administer a multi-faceted strategy including national coach observations and varying physical and psychological tests when deciding who is chosen for talent development. The aim of this exploratory study was to evaluate the prognostic validity of talent selections by varying groups 10 years after they had been conducted. This study used a unique, multi-phased approach. Phase 1 involved players (n = 68) in 2001 completing a battery of general and sport-specific tests of handball ‘talent’ and performance. In Phase 2, national and regional coaches (n = 7) in 2001 who attended training camps identified the most talented players. In Phase 3, current novice and advanced handball players (n = 12 in each group) selected the most talented from short videos of matches played during the talent camp. Analyses compared predictions among all groups with a best model-fit derived from the motor tests. Results revealed little difference between regional and national coaches in the prediction of future performance and little difference in forecasting performance between novices and players. The best model-fit regression by the motor-tests outperformed all predictions. While several limitations are discussed, this study is a useful starting point for future investigations considering athlete selection decisions in talent identification in sport. PMID:28744238
Schorer, Jörg; Rienhoff, Rebecca; Fischer, Lennart; Baker, Joseph
2017-01-01
In most sports, the development of elite athletes is a long-term process of talent identification and support. Typically, talent selection systems administer a multi-faceted strategy including national coach observations and varying physical and psychological tests when deciding who is chosen for talent development. The aim of this exploratory study was to evaluate the prognostic validity of talent selections by varying groups 10 years after they had been conducted. This study used a unique, multi-phased approach. Phase 1 involved players ( n = 68) in 2001 completing a battery of general and sport-specific tests of handball 'talent' and performance. In Phase 2, national and regional coaches ( n = 7) in 2001 who attended training camps identified the most talented players. In Phase 3, current novice and advanced handball players ( n = 12 in each group) selected the most talented from short videos of matches played during the talent camp. Analyses compared predictions among all groups with a best model-fit derived from the motor tests. Results revealed little difference between regional and national coaches in the prediction of future performance and little difference in forecasting performance between novices and players. The best model-fit regression by the motor-tests outperformed all predictions. While several limitations are discussed, this study is a useful starting point for future investigations considering athlete selection decisions in talent identification in sport.
Algorithm aversion: people erroneously avoid algorithms after seeing them err.
Dietvorst, Berkeley J; Simmons, Joseph P; Massey, Cade
2015-02-01
Research shows that evidence-based algorithms more accurately predict the future than do human forecasters. Yet when forecasters are deciding whether to use a human forecaster or a statistical algorithm, they often choose the human forecaster. This phenomenon, which we call algorithm aversion, is costly, and it is important to understand its causes. We show that people are especially averse to algorithmic forecasters after seeing them perform, even when they see them outperform a human forecaster. This is because people more quickly lose confidence in algorithmic than human forecasters after seeing them make the same mistake. In 5 studies, participants either saw an algorithm make forecasts, a human make forecasts, both, or neither. They then decided whether to tie their incentives to the future predictions of the algorithm or the human. Participants who saw the algorithm perform were less confident in it, and less likely to choose it over an inferior human forecaster. This was true even among those who saw the algorithm outperform the human.
"Sturdy as a house with four windows," the star tracker of the future
NASA Astrophysics Data System (ADS)
Duivenvoorde, Tom; Leijtens, Johan; van der Heide, Erik J.
2017-11-01
Ongoing miniaturization of spacecraft demands the reduction in size of Attitude and Orbit Control Systems (AOCS). Therefore TNO has created a new design of a multi aperture, high performance, and miniaturized star tracker. The innovative design incorporates the latest developments in camera technology, attitude calculation and mechanical design into a system with 5 arc seconds accuracy, making the system usable for many applications. In this paper the results are presented of the system design and analysis, as well as the performance predictions for the Multi Aperture Baffled Star Tracker (MABS). The highly integrated system consists of multiple apertures without the need for external baffles, resulting in major advantages in mass, volume, alignment with the spacecraft and relative aperture stability. In the analysis part of this paper, the thermal and mechanical stability are discussed. In the final part the simulation results will be described that have lead to the predicted accuracy of the star tracker system and a peek into the future of attitude sensors is given.
Situation awareness measures for simulated submarine track management.
Loft, Shayne; Bowden, Vanessa; Braithwaite, Janelle; Morrell, Daniel B; Huf, Samuel; Durso, Francis T
2015-03-01
The aim of this study was to examine whether the Situation Present Assessment Method (SPAM) and the Situation Awareness Global Assessment Technique (SAGAT) predict incremental variance in performance on a simulated submarine track management task and to measure the potential disruptive effect of these situation awareness (SA) measures. Submarine track managers use various displays to localize and track contacts detected by own-ship sensors. The measurement of SA is crucial for designing effective submarine display interfaces and training programs. Participants monitored a tactical display and sonar bearing-history display to track the cumulative behaviors of contacts in relationship to own-ship position and landmarks. SPAM (or SAGAT) and the Air Traffic Workload Input Technique (ATWIT) were administered during each scenario, and the NASA Task Load Index (NASA-TLX) and Situation Awareness Rating Technique were administered postscenario. SPAM and SAGAT predicted variance in performance after controlling for subjective measures of SA and workload, and SA for past information was a stronger predictor than SA for current/future information. The NASA-TLX predicted performance on some tasks. Only SAGAT predicted variance in performance on all three tasks but marginally increased subjective workload. SPAM, SAGAT, and the NASA-TLX can predict unique variance in submarine track management performance. SAGAT marginally increased subjective workload, but this increase did not lead to any performance decrement. Defense researchers have identified SPAM as an alternative to SAGAT because it would not require field exercises involving submarines to be paused. SPAM was not disruptive, but it is potentially problematic that SPAM did not predict variance in all three performance tasks. © 2014, Human Factors and Ergonomics Society.
Performance of univariate forecasting on seasonal diseases: the case of tuberculosis.
Permanasari, Adhistya Erna; Rambli, Dayang Rohaya Awang; Dominic, P Dhanapal Durai
2011-01-01
The annual disease incident worldwide is desirable to be predicted for taking appropriate policy to prevent disease outbreak. This chapter considers the performance of different forecasting method to predict the future number of disease incidence, especially for seasonal disease. Six forecasting methods, namely linear regression, moving average, decomposition, Holt-Winter's, ARIMA, and artificial neural network (ANN), were used for disease forecasting on tuberculosis monthly data. The model derived met the requirement of time series with seasonality pattern and downward trend. The forecasting performance was compared using similar error measure in the base of the last 5 years forecast result. The findings indicate that ARIMA model was the most appropriate model since it obtained the less relatively error than the other model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brundage, Aaron L.; Nicolette, Vernon F.; Donaldson, A. Burl
2005-09-01
A joint experimental and computational study was performed to evaluate the capability of the Sandia Fire Code VULCAN to predict thermocouple response temperature. Thermocouple temperatures recorded by an Inconel-sheathed thermocouple inserted into a near-adiabatic flat flame were predicted by companion VULCAN simulations. The predicted thermocouple temperatures were within 6% of the measured values, with the error primarily attributable to uncertainty in Inconel 600 emissivity and axial conduction losses along the length of the thermocouple assembly. Hence, it is recommended that future thermocouple models (for Inconel-sheathed designs) include a correction for axial conduction. Given the remarkable agreement between experiment and simulation,more » it is recommended that the analysis be repeated for thermocouples in flames with pollutants such as soot.« less
Predicting introductory programming performance: A multi-institutional multivariate study
NASA Astrophysics Data System (ADS)
Bergin, Susan; Reilly, Ronan
2006-12-01
A model for predicting student performance on introductory programming modules is presented. The model uses attributes identified in a study carried out at four third-level institutions in the Republic of Ireland. Four instruments were used to collect the data and over 25 attributes were examined. A data reduction technique was applied and a logistic regression model using 10-fold stratified cross validation was developed. The model used three attributes: Leaving Certificate Mathematics result (final mathematics examination at second level), number of hours playing computer games while taking the module and programming self-esteem. Prediction success was significant with 80% of students correctly classified. The model also works well on a per-institution level. A discussion on the implications of the model is provided and future work is outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
This appendix is a compilation of work done to predict overall cycle performance from gasifier to generator terminals. A spreadsheet has been generated for each case to show flows within a cycle. The spreadsheet shows gaseous or solid composition of flow, temperature of flow, quantity of flow, and heat heat content of flow. Prediction of steam and gas turbine performance was obtained by the computer program GTPro. Outputs of all runs for each combined cycle reviewed has been added to this appendix. A process schematic displaying all flows predicted through GTPro and the spreadsheet is also added to this appendix.more » The numbered bubbles on the schematic correspond to columns on the top headings of the spreadsheet.« less
Varela, Sara; Larkin, Daniel J.; Phelps, Nicholas B. D.
2017-01-01
Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species’ suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain. PMID:28704433
Romero-Alvarez, Daniel; Escobar, Luis E; Varela, Sara; Larkin, Daniel J; Phelps, Nicholas B D
2017-01-01
Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species' suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain.
Performance Prediction and Validation: Data, Frameworks, and Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinnesand, Heidi
2017-05-19
Improving the predictability and reliability of wind power generation and operations will reduce costs and potentially establish a framework to attract new capital into the distributed wind sector, a key cost reduction requirement highlighted in results from the distributed wind future market assessment conducted with dWind. Quantifying and refining the accuracy of project performance estimates will also directly address several of the key challenges identified by industry stakeholders in 2015 as part of the distributed wind resource assessment workshop and be cross-cutting for several other facets of the distributed wind portfolio. This presentation covers the efforts undertaken in 2016 tomore » address these topics.« less
Sieberts, Solveig K; Zhu, Fan; García-García, Javier; Stahl, Eli; Pratap, Abhishek; Pandey, Gaurav; Pappas, Dimitrios; Aguilar, Daniel; Anton, Bernat; Bonet, Jaume; Eksi, Ridvan; Fornés, Oriol; Guney, Emre; Li, Hongdong; Marín, Manuel Alejandro; Panwar, Bharat; Planas-Iglesias, Joan; Poglayen, Daniel; Cui, Jing; Falcao, Andre O; Suver, Christine; Hoff, Bruce; Balagurusamy, Venkat S K; Dillenberger, Donna; Neto, Elias Chaibub; Norman, Thea; Aittokallio, Tero; Ammad-Ud-Din, Muhammad; Azencott, Chloe-Agathe; Bellón, Víctor; Boeva, Valentina; Bunte, Kerstin; Chheda, Himanshu; Cheng, Lu; Corander, Jukka; Dumontier, Michel; Goldenberg, Anna; Gopalacharyulu, Peddinti; Hajiloo, Mohsen; Hidru, Daniel; Jaiswal, Alok; Kaski, Samuel; Khalfaoui, Beyrem; Khan, Suleiman Ali; Kramer, Eric R; Marttinen, Pekka; Mezlini, Aziz M; Molparia, Bhuvan; Pirinen, Matti; Saarela, Janna; Samwald, Matthias; Stoven, Véronique; Tang, Hao; Tang, Jing; Torkamani, Ali; Vert, Jean-Phillipe; Wang, Bo; Wang, Tao; Wennerberg, Krister; Wineinger, Nathan E; Xiao, Guanghua; Xie, Yang; Yeung, Rae; Zhan, Xiaowei; Zhao, Cheng; Greenberg, Jeff; Kremer, Joel; Michaud, Kaleb; Barton, Anne; Coenen, Marieke; Mariette, Xavier; Miceli, Corinne; Shadick, Nancy; Weinblatt, Michael; de Vries, Niek; Tak, Paul P; Gerlag, Danielle; Huizinga, Tom W J; Kurreeman, Fina; Allaart, Cornelia F; Louis Bridges, S; Criswell, Lindsey; Moreland, Larry; Klareskog, Lars; Saevarsdottir, Saedis; Padyukov, Leonid; Gregersen, Peter K; Friend, Stephen; Plenge, Robert; Stolovitzky, Gustavo; Oliva, Baldo; Guan, Yuanfang; Mangravite, Lara M; Bridges, S Louis; Criswell, Lindsey; Moreland, Larry; Klareskog, Lars; Saevarsdottir, Saedis; Padyukov, Leonid; Gregersen, Peter K; Friend, Stephen; Plenge, Robert; Stolovitzky, Gustavo; Oliva, Baldo; Guan, Yuanfang; Mangravite, Lara M
2016-08-23
Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2)=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.
Thomassen, Henri A.; Fuller, Trevon; Asefi-Najafabady, Salvi; Shiplacoff, Julia A. G.; Mulembakani, Prime M.; Blumberg, Seth; Johnston, Sara C.; Kisalu, Neville K.; Kinkela, Timothée L.; Fair, Joseph N.; Wolfe, Nathan D.; Shongo, Robert L.; LeBreton, Matthew; Meyer, Hermann; Wright, Linda L.; Muyembe, Jean-Jacques; Buermann, Wolfgang; Okitolonda, Emile; Hensley, Lisa E.; Lloyd-Smith, James O.; Smith, Thomas B.; Rimoin, Anne W.
2013-01-01
Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts. PMID:23935820
Children's biological responsivity to acute stress predicts concurrent cognitive performance.
Roos, Leslie E; Beauchamp, Kathryn G; Giuliano, Ryan; Zalewski, Maureen; Kim, Hyoun K; Fisher, Philip A
2018-04-10
Although prior research has characterized stress system reactivity (i.e. hypothalamic-pituitary-adrenal axis, HPAA; autonomic nervous system, ANS) in children, it has yet to examine the extent to which biological reactivity predicts concurrent goal-directed behavior. Here, we employed a stressor paradigm that allowed concurrent assessment of both stress system reactivity and performance on a speeded-response task to investigate the links between biological reactivity and cognitive function under stress. We further investigated gender as a moderator given previous research suggesting that the ANS may be particularly predictive of behavior in males due to gender differences in socialization. In a sociodemographically diverse sample of young children (N = 58, M age = 5.38 yrs; 44% male), individual differences in sociodemographic covariates (age, household income), HPAA (i.e. cortisol), and ANS (i.e. respiratory sinus arrhythmia, RSA, indexing the parasympathetic branch; pre-ejection period, PEP, indexing the sympathetic branch) function were assessed as predictors of cognitive performance under stress. We hypothesized that higher income, older age, and greater cortisol reactivity would be associated with better performance overall, and flexible ANS responsivity (i.e. RSA withdrawal, PEP shortening) would be predictive of performance for males. Overall, females performed better than males. Two-group SEM analyses suggest that, for males, greater RSA withdrawal to the stressor was associated with better performance, while for females, older age, higher income, and greater cortisol reactivity were associated with better performance. Results highlight the relevance of stress system reactivity to cognitive performance under stress. Future research is needed to further elucidate for whom and in what situations biological reactivity predicts goal-directed behavior.
Weihs, Karen L; Wiley, Joshua F; Crespi, Catherine M; Krull, Jennifer L; Stanton, Annette L
2018-02-01
Create a brief, self-report screener for recently diagnosed breast cancer patients to identify patients at risk of future depression. Breast cancer patients (N = 410) within 2 ± 1 months after diagnosis provided data on depression vulnerability. Depression outcomes were defined as a high depressive symptom trajectory or a major depressive episode during 16 months after diagnosis. Stochastic gradient boosting of regression trees identified 7 items highly predictive for the depression outcomes from a pool of 219 candidate depression vulnerability items. Three of the 7 items were from the Patient Health Questionnaire 4 (PHQ-4), a validated screener for current anxiety/depressive disorder that has not been tested to identify risk for future depression. Thresholds classifying patients as high or low risk on the new Depression Risk Questionnaire 7 (DRQ-7) and the PHQ-4 were obtained. Predictive performance of the DRQ-7 and PHQ-4 was assessed on a holdout validation subsample. DRQ-7 items assess loneliness, irritability, persistent sadness, and low acceptance of emotion as well as 3 items from the PHQ-4 (anhedonia, depressed mood, and worry). A DRQ-7 score of ≥6/23 identified depression outcomes with 0.73 specificity, 0.83 sensitivity, 0.68 positive predictive value, and 0.86 negative predictive value. A PHQ-4 score of ≥3/12 performed moderately well but less accurately than the DRQ-7 (net reclassification improvement = 10%; 95% CI [0.5-16]). The DRQ-7 and the PHQ-4 with a new cutoff score are clinically accessible screeners for risk of depression in newly diagnosed breast cancer patients. Use of the screener to select patients for preventive interventions awaits validation of the screener in other samples. Copyright © 2017 John Wiley & Sons, Ltd.
Predicting First Grade Reading Performance from Kindergarten Response to Tier 1 Instruction
Al Otaiba, Stephanie; Folsom, Jessica S.; Schatschneider, Christopher; Wanzek, Jeanne; Greulich, Luana; Meadows, Jane; Li, Zhi; Connor, Carol M
2010-01-01
Many schools are beginning to implement multi-tier response to intervention (RTI) models for the prevention of reading difficulties and to assist in the identification of students with learning disabilities (LD). The present study was part of our larger ongoing longitudinal RTI investigation within the Florida Learning Disabilities Center grant. This study used a longitudinal correlational design, conducted in 7 ethnically and socio-economically diverse schools. We observed reading instruction in 20 classrooms, examined response rates to kindergarten Tier 1 instruction, and predicted students’ first grade reading performance based upon kindergarten growth and end of year reading performance (n = 203). Teachers followed an explicit core reading program and overall, classroom instruction was rated as effective. Results indicate that controlling for students’ end of kindergarten reading, their growth across kindergarten on a variety of language and literacy measures suppressed predictions of first grade performance. Specifically, the steeper the students’ trajectory to a satisfactory outcome, the less likely they were to demonstrate good performance in first grade. Implications for future research and RTI implementation are discussed. PMID:21857718
Eussen, Mart L J M; Van Gool, Arthur R; Louwerse, Anneke; Verhulst, Frank C; Greaves-Lord, Kirstin
2016-02-01
Previous research suggests that individuals with autism spectrum disorder (ASD) show a detail-focused cognitive style. The aim of the current longitudinal study was to investigate whether this detail-focused cognitive style in childhood predicted a higher symptom severity of repetitive and restrictive behaviors and interests (RRBI) in adolescence. The Childhood Embedded Figures Test (CEFT) and the Autism Diagnostic Observation Schedule (ADOS) were administered in 87 children with ASD at the age of 6-12 years old (T1), and the ADOS was readministered 7 years later when the participants were 12-19 years old (T2). Linear regression analyses were performed to investigate whether accuracy and reaction time in the complex versus simple CEFT condition and performance in the complex condition predicted T2 ADOS RRBI calibrated severity scores (CSS), while taking into consideration relevant covariates and ADOS RRBI CSS at T1. The CEFT performance (accuracy in the complex condition divided by the time needed) significantly predicted higher ADOS RRBI CSS at T2 (ΔR(2) = 15%). This finding further supports the detail-focused cognitive style in individuals with ASD, and shows that it is also predictive of future RRBI symptoms over time. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
2017-01-01
Several talent development programs in youth soccer have implemented motor diagnostics measuring performance factors. However, the predictive value of such tests for adult success is a controversial topic in talent research. This prospective cohort study evaluated the long-term predictive value of 1) motor tests and 2) players’ speed abilities (SA) and technical skills (TS) in early adolescence. The sample consisted of 14,178 U12 players from the German talent development program. Five tests (sprint, agility, dribbling, ball control, shooting) were conducted and players’ height, weight as well as relative age were assessed at nationwide diagnostics between 2004 and 2006. In the 2014/15 season, the players were then categorized as professional (n = 89), semi-professional (n = 913), or non-professional players (n = 13,176), indicating their adult performance level (APL). The motor tests’ prognostic relevance was determined using ANOVAs. Players’ future success was predicted by a logistic regression threshold model. This structural equation model comprised a measurement model with the motor tests and two correlated latent factors, SA and TS, with simultaneous consideration for the manifest covariates height, weight and relative age. Each motor predictor and anthropometric characteristic discriminated significantly between the APL (p < .001; η2 ≤ .02). The threshold model significantly predicted the APL (R2 = 24.8%), and in early adolescence the factor TS (p < .001) seems to have a stronger effect on adult performance than SA (p < .05). Both approaches (ANOVA, SEM) verified the diagnostics’ predictive validity over a long-term period (≈ 9 years). However, because of the limited effect sizes, the motor tests’ prognostic relevance remains ambiguous. A challenge for future research lies in the integration of different (e.g., person-oriented or multilevel) multivariate approaches that expand beyond the “traditional” topic of single tests’ predictive validity and toward more theoretically founded issues. PMID:28806410
Single-pass memory system evaluation for multiprogramming workloads
NASA Technical Reports Server (NTRS)
Conte, Thomas M.; Hwu, Wen-Mei W.
1990-01-01
Modern memory systems are composed of levels of cache memories, a virtual memory system, and a backing store. Varying more than a few design parameters and measuring the performance of such systems has traditionally be constrained by the high cost of simulation. Models of cache performance recently introduced reduce the cost simulation but at the expense of accuracy of performance prediction. Stack-based methods predict performance accurately using one pass over the trace for all cache sizes, but these techniques have been limited to fully-associative organizations. This paper presents a stack-based method of evaluating the performance of cache memories using a recurrence/conflict model for the miss ratio. Unlike previous work, the performance of realistic cache designs, such as direct-mapped caches, are predicted by the method. The method also includes a new approach to the problem of the effects of multiprogramming. This new technique separates the characteristics of the individual program from that of the workload. The recurrence/conflict method is shown to be practical, general, and powerful by comparing its performance to that of a popular traditional cache simulator. The authors expect that the availability of such a tool will have a large impact on future architectural studies of memory systems.
Statistical modelling of networked human-automation performance using working memory capacity.
Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja
2014-01-01
This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.
Yang, Chuanlei; Wang, Yinyan; Wang, Hechun
2018-01-01
To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future. PMID:29410849
Li, Xu; Yang, Chuanlei; Wang, Yinyan; Wang, Hechun
2018-01-01
To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future.
Mind-wandering, cognition, and performance: a theory-driven meta-analysis of attention regulation.
Randall, Jason G; Oswald, Frederick L; Beier, Margaret E
2014-11-01
The current meta-analysis accumulates empirical findings on the phenomenon of mind-wandering, integrating and interpreting findings in light of psychological theories of cognitive resource allocation. Cognitive resource theory emphasizes both individual differences in attentional resources and task demands together to predict variance in task performance. This theory motivated our conceptual and meta-analysis framework by introducing moderators indicative of task-demand to predict who is more likely to mind-wander under what conditions, and to predict when mind-wandering and task-related thought are more (or less) predictive of task performance. Predictions were tested via a random-effects meta-analysis of correlations obtained from normal adult samples (k = 88) based on measurement of specified episodes of off-task and/or on-task thought frequency and task performance. Results demonstrated that people with fewer cognitive resources tend to engage in more mind-wandering, whereas those with more cognitive resources are more likely to engage in task-related thought. Addressing predictions of resource theory, we found that greater time-on-task-although not greater task complexity-tended to strengthen the negative relation between cognitive resources and mind-wandering. Additionally, increases in mind-wandering were generally associated with decreases in task performance, whereas increases in task-related thought were associated with increased performance. Further supporting resource theory, the negative relation between mind-wandering and performance was more pronounced for more complex tasks, though not longer tasks. Complementarily, the positive association between task-related thought and performance was stronger for more complex tasks and for longer tasks. We conclude by discussing implications and future research directions for mind-wandering as a construct of interest in psychological research. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Aust, Frederik; Edwards, Jerri D.
2015-01-01
Introduction The Useful Field of View Test (UFOV®) is a cognitive measure that predicts older adults’ ability to perform a range of everyday activities. However, little is known about the individual contribution of each subtest to these predictions and the underlying constructs of UFOV performance remain a topic of debate. Method We investigated the incremental validity of UFOV subtests for the prediction of Instrumental Activities of Daily Living (IADL) performance in two independent datasets, the SKILL (n = 828) and ACTIVE (n = 2426) studies. We, then, explored the cognitive and visual abilities assessed by UFOV using a range of neuropsychological and vision tests administered in the SKILL study. Results In the four subtest variant of UFOV, only subtests 2 and 3 consistently made independent contributions to the prediction of IADL performance across three different behavioral measures. In all cases, the incremental validity of UFOV subtests 1 and 4 was negligible. Furthermore, we found that UFOV was related to processing speed, general non-speeded cognition, and visual function; the omission of subtests 1 and 4 from the test score did not affect these associations. Conclusions UFOV subtests 1 and 4 appear to be of limited use to predict IADL and possibly other everyday activities. Future experimental research should investigate if shortening the UFOV by omitting these subtests is a reliable and valid assessment approach. PMID:26782018
Knechtle, Beat; Zingg, Matthias Alexander; Rosemann, Thomas; Stiefel, Michael; Rüst, Christoph Alexander
2015-01-01
Objective This narrative review summarizes recent intentions to find potential predictor variables for ultra-triathlon race performance (ie, triathlon races longer than the Ironman distance covering 3.8 km swimming, 180 km cycling, and 42.195 km running). Results from studies on ultra-triathletes were compared to results on studies on Ironman triathletes. Methods A literature search was performed in PubMed using the terms “ultra”, “triathlon”, and “performance” for the aspects of “ultra-triathlon”, and “Ironman”, “triathlon”, and “performance” for the aspects of “Ironman triathlon”. All resulting papers were searched for related citations. Results for ultra-triathlons were compared to results for Ironman-distance triathlons to find potential differences. Results Athletes competing in Ironman and ultra-triathlon differed in anthropometric and training characteristics, where both Ironmen and ultra-triathletes profited from low body fat, but ultra-triathletes relied more on training volume, whereas speed during training was related to Ironman race time. The most important predictive variables for a fast race time in an ultra-triathlon from Double Iron (ie, 7.6 km swimming, 360 km cycling, and 84.4 km running) and longer were male sex, low body fat, age of 35–40 years, extensive previous experience, a fast time in cycling and running but not in swimming, and origins in Central Europe. Conclusion Any athlete intending to compete in an ultra-triathlon should be aware that low body fat and high training volumes are highly predictive for overall race time. Little is known about the physiological characteristics of these athletes and about female ultra-triathletes. Future studies need to investigate anthropometric and training characteristics of female ultra-triathletes and what motivates women to compete in these races. Future studies need to correlate physiological characteristics such as maximum oxygen uptake (VO2max) with ultra-triathlon race performance in order to investigate whether these characteristics are also predictive for ultra-triathlon race performance. PMID:26056498
Fitzpatrick, Matthew C; Blois, Jessica L; Williams, John W; Nieto-Lugilde, Diego; Maguire, Kaitlin C; Lorenz, David J
2018-03-23
Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information. © 2018 John Wiley & Sons Ltd.
McArley, Tristan J; Hickey, Anthony J R; Herbert, Neill A
2017-10-01
Intertidal fish species face gradual chronic changes in temperature and greater extremes of acute thermal exposure through climate-induced warming. As sea temperatures rise, it has been proposed that whole-animal performance will be impaired through oxygen and capacity limited thermal tolerance [OCLTT; reduced aerobic metabolic scope (MS)] and, on acute exposure to high temperatures, thermal safety margins may be reduced because of constrained acclimation capacity of upper thermal limits. Using the New Zealand triplefin fish ( Forsterygion lapillum ), this study addressed how performance in terms of growth and metabolism (MS) and upper thermal tolerance limits would be affected by chronic exposure to elevated temperature. Growth was measured in fish acclimated (12 weeks) to present and predicted future temperatures and metabolic rates were then determined in fish at acclimation temperatures and with acute thermal ramping. In agreement with the OCLTT hypothesis, chronic exposure to elevated temperature significantly reduced growth performance and MS. However, despite the prospect of impaired growth performance under warmer future summertime conditions, an annual growth model revealed that elevated temperatures may only shift the timing of high growth potential and not the overall annual growth rate. While the upper thermal tolerance (i.e. critical thermal maxima) increased with exposure to warmer temperatures and was associated with depressed metabolic rates during acute thermal ramping, upper thermal tolerance did not differ between present and predicted future summertime temperatures. This suggests that warming may progressively decrease thermal safety margins for hardy generalist species and could limit the available habitat range of intertidal populations. © 2017. Published by The Company of Biologists Ltd.
Predicting High-Power Performance in Professional Cyclists.
Sanders, Dajo; Heijboer, Mathieu; Akubat, Ibrahim; Meijer, Kenneth; Hesselink, Matthijs K
2017-03-01
To assess if short-duration (5 to ~300 s) high-power performance can accurately be predicted using the anaerobic power reserve (APR) model in professional cyclists. Data from 4 professional cyclists from a World Tour cycling team were used. Using the maximal aerobic power, sprint peak power output, and an exponential constant describing the decrement in power over time, a power-duration relationship was established for each participant. To test the predictive accuracy of the model, several all-out field trials of different durations were performed by each cyclist. The power output achieved during the all-out trials was compared with the predicted power output by the APR model. The power output predicted by the model showed very large to nearly perfect correlations to the actual power output obtained during the all-out trials for each cyclist (r = .88 ± .21, .92 ± .17, .95 ± .13, and .97 ± .09). Power output during the all-out trials remained within an average of 6.6% (53 W) of the predicted power output by the model. This preliminary pilot study presents 4 case studies on the applicability of the APR model in professional cyclists using a field-based approach. The decrement in all-out performance during high-intensity exercise seems to conform to a general relationship with a single exponential-decay model describing the decrement in power vs increasing duration. These results are in line with previous studies using the APR model to predict performance during brief all-out trials. Future research should evaluate the APR model with a larger sample size of elite cyclists.
Assink, Mark; van der Put, Claudia E; Oort, Frans J; Stams, Geert Jan J M
2015-03-04
In The Netherlands, police officers not only come into contact with juvenile offenders, but also with a large number of juveniles who were involved in a criminal offense, but not in the role of a suspect (i.e., juvenile non-offenders). Until now, no valid and reliable instrument was available that can be used by Dutch police officers for estimating the risk for future care needs of juvenile non-offenders. In the present study, the Youth Actuarial Care Needs Assessment Tool for Non-Offenders (Y-ACNAT-NO) was developed for predicting the risk for future care needs that consisted of (1) a future supervision order as imposed by a juvenile court judge and (2) future worrisome incidents involving child abuse, domestic violence/strife, and/or sexual offensive behavior at the juvenile's living address (i.e., problems in the child-rearing environment). Police records of 3,200 juveniles were retrieved from the Dutch police registration system after which the sample was randomly split in a construction (n = 1,549) and validation sample (n = 1,651). The Y-ACNAT-NO was developed by performing an Exhaustive CHAID analysis using the construction sample. The predictive validity of the instrument was examined in the validation sample by calculating several performance indicators that assess discrimination and calibration. The CHAID output yielded an instrument that consisted of six variables and eleven different risk groups. The risk for future care needs ranged from 0.06 in the lowest risk group to 0.83 in the highest risk group. The AUC value in the validation sample was .764 (95% CI [.743, .784]) and Sander's calibration score indicated an average assessment error of 3.74% in risk estimates per risk category. The Y-ACNAT-NO is the first instrument that can be used by Dutch police officers for estimating the risk for future care needs of juvenile non-offenders. The predictive validity of the Y-ACNAT-NO in terms of discrimination and calibration was sufficient to justify its use as an initial screening instrument when a decision is needed about referring a juvenile for further assessment of care needs.
Vanzo, Elisa; Jud, Werner; Li, Ziru; Albert, Andreas; Domagalska, Malgorzata A.; Ghirardo, Andrea; Niederbacher, Bishu; Frenzel, Juliane; Beemster, Gerrit T.S.; Asard, Han; Rennenberg, Heinz; Sharkey, Thomas D.; Hansel, Armin; Schnitzler, Jörg-Peter
2015-01-01
Isoprene emissions from poplar (Populus spp.) plantations can influence atmospheric chemistry and regional climate. These emissions respond strongly to temperature, [CO2], and drought, but the superimposed effect of these three climate change factors are, for the most part, unknown. Performing predicted climate change scenario simulations (periodic and chronic heat and drought spells [HDSs] applied under elevated [CO2]), we analyzed volatile organic compound emissions, photosynthetic performance, leaf growth, and overall carbon (C) gain of poplar genotypes emitting (IE) and nonemitting (NE) isoprene. We aimed (1) to evaluate the proposed beneficial effect of isoprene emission on plant stress mitigation and recovery capacity and (2) to estimate the cumulative net C gain under the projected future climate. During HDSs, the chloroplastidic electron transport rate of NE plants became impaired, while IE plants maintained high values similar to unstressed controls. During recovery from HDS episodes, IE plants reached higher daily net CO2 assimilation rates compared with NE genotypes. Irrespective of the genotype, plants undergoing chronic HDSs showed the lowest cumulative C gain. Under control conditions simulating ambient [CO2], the C gain was lower in the IE plants than in the NE plants. In summary, the data on the overall C gain and plant growth suggest that the beneficial function of isoprene emission in poplar might be of minor importance to mitigate predicted short-term climate extremes under elevated [CO2]. Moreover, we demonstrate that an analysis of the canopy-scale dynamics of isoprene emission and photosynthetic performance under multiple stresses is essential to understand the overall performance under proposed future conditions. PMID:26162427
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.
2014-01-01
The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Dennehy, Neil
2015-01-01
A retrospective consideration of two 15-year old Guidance, Navigation and Control (GN&C) technology 'vision' predictions will be the focus of this paper. A look back analysis and critique of these late 1990s technology roadmaps out-lining the future vision, for two then nascent, but rapidly emerging, GN&C technologies will be performed. Specifically, these two GN&C technologies were: 1) multi-spacecraft formation flying and 2) the spaceborne use and exploitation of global positioning system (GPS) signals to enable formation flying. This paper reprises the promise of formation flying and spaceborne GPS as depicted in the cited 1999 and 1998 papers. It will discuss what happened to cause that promise to be mostly unfulfilled and the reasons why the envisioned formation flying dream has yet to become a reality. The recent technology trends over the past few years will then be identified and a renewed government interest in spacecraft formation flying/cluster flight will be highlighted. The authors will conclude with a reality-tempered perspective, 15 years after the initial technology roadmaps were published, predicting a promising future of spacecraft formation flying technology development over the next decade.
Stevens, Jeffrey R; Marewski, Julian N; Schooler, Lael J; Gilby, Ian C
2016-08-01
In cognitive science, the rational analysis framework allows modelling of how physical and social environments impose information-processing demands onto cognitive systems. In humans, for example, past social contact among individuals predicts their future contact with linear and power functions. These features of the human environment constrain the optimal way to remember information and probably shape how memory records are retained and retrieved. We offer a primer on how biologists can apply rational analysis to study animal behaviour. Using chimpanzees ( Pan troglodytes ) as a case study, we modelled 19 years of observational data on their social contact patterns. Much like humans, the frequency of past encounters in chimpanzees linearly predicted future encounters, and the recency of past encounters predicted future encounters with a power function. Consistent with the rational analyses carried out for human memory, these findings suggest that chimpanzee memory performance should reflect those environmental regularities. In re-analysing existing chimpanzee memory data, we found that chimpanzee memory patterns mirrored their social contact patterns. Our findings hint that human and chimpanzee memory systems may have evolved to solve similar information-processing problems. Overall, rational analysis offers novel theoretical and methodological avenues for the comparative study of cognition.
Reflections of the social environment in chimpanzee memory: applying rational analysis beyond humans
Marewski, Julian N.; Schooler, Lael J.; Gilby, Ian C.
2016-01-01
In cognitive science, the rational analysis framework allows modelling of how physical and social environments impose information-processing demands onto cognitive systems. In humans, for example, past social contact among individuals predicts their future contact with linear and power functions. These features of the human environment constrain the optimal way to remember information and probably shape how memory records are retained and retrieved. We offer a primer on how biologists can apply rational analysis to study animal behaviour. Using chimpanzees (Pan troglodytes) as a case study, we modelled 19 years of observational data on their social contact patterns. Much like humans, the frequency of past encounters in chimpanzees linearly predicted future encounters, and the recency of past encounters predicted future encounters with a power function. Consistent with the rational analyses carried out for human memory, these findings suggest that chimpanzee memory performance should reflect those environmental regularities. In re-analysing existing chimpanzee memory data, we found that chimpanzee memory patterns mirrored their social contact patterns. Our findings hint that human and chimpanzee memory systems may have evolved to solve similar information-processing problems. Overall, rational analysis offers novel theoretical and methodological avenues for the comparative study of cognition. PMID:27853606
Limperos, Anthony M; Schmierbach, Mike
2016-04-01
Although it is generally understood that exergames can be beneficial, more research is needed to understand how in-game experiences influence enjoyment and the likelihood for continued use of these types of games. Therefore, the objective of this research is to understand how player performance in an exergame affects psychological responses (autonomy, competence, and presence), enjoyment of the experience, and likelihood for future play. Sixty-two college students (mean age, 20.32 years) participated in an experiment where they played a challenge event on the "Biggest Loser" exergame for the Nintendo (Kyoto, Japan) Wii™ console. Participants were given up to two chances to see if they could "win" the challenge event. A lab assistant recorded player performance for each session in minutes and seconds (range, 30 seconds-10 minutes). The attempt in which the participant achieved the greatest amount of time playing was used as a measure of player performance. After playing, subjects filled out a questionnaire with items pertaining to enjoyment, competence, autonomy, presence, and future intentions for continued use of the exergame. The results suggest that player achievement (longer time spent playing) directly and indirectly predicts feelings of autonomy, competence, presence, enjoyment, and future intentions to play. Individuals who performed better felt more autonomous and experienced greater presence, leading to greater enjoyment. Enjoyment and presence were found to mediate the relationship between player performance and future intentions to play an exergame. This study suggests that performance in exergames is related to psychological experiences that fuel enjoyment and the likelihood for future exergame use. The theoretical and practical significances of these findings are discussed, as well as future research involving exergames.
Manikandan, Narayanan; Subha, Srinivasan
2016-01-01
Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used.
Manikandan, Narayanan; Subha, Srinivasan
2016-01-01
Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used. PMID:26881271
Mounce, S R; Shepherd, W; Sailor, G; Shucksmith, J; Saul, A J
2014-01-01
Combined sewer overflows (CSOs) represent a common feature in combined urban drainage systems and are used to discharge excess water to the environment during heavy storms. To better understand the performance of CSOs, the UK water industry has installed a large number of monitoring systems that provide data for these assets. This paper presents research into the prediction of the hydraulic performance of CSOs using artificial neural networks (ANN) as an alternative to hydraulic models. Previous work has explored using an ANN model for the prediction of chamber depth using time series for depth and rain gauge data. Rainfall intensity data that can be provided by rainfall radar devices can be used to improve on this approach. Results are presented using real data from a CSO for a catchment in the North of England, UK. An ANN model trained with the pseudo-inverse rule was shown to be capable of predicting CSO depth with less than 5% error for predictions more than 1 hour ahead for unseen data. Such predictive approaches are important to the future management of combined sewer systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wosnik, Martin; Bachant, Pete; Neary, Vincent Sinclair
CACTUS, developed by Sandia National Laboratories, is an open-source code for the design and analysis of wind and hydrokinetic turbines. While it has undergone extensive validation for both vertical axis and horizontal axis wind turbines, and it has been demonstrated to accurately predict the performance of horizontal (axial-flow) hydrokinetic turbines, its ability to predict the performance of crossflow hydrokinetic turbines has yet to be tested. The present study addresses this problem by comparing the predicted performance curves derived from CACTUS simulations of the U.S. Department of Energy’s 1:6 scale reference model crossflow turbine to those derived by experimental measurements inmore » a tow tank using the same model turbine at the University of New Hampshire. It shows that CACTUS cannot accurately predict the performance of this crossflow turbine, raising concerns on its application to crossflow hydrokinetic turbines generally. The lack of quality data on NACA 0021 foil aerodynamic (hydrodynamic) characteristics over the wide range of angles of attack (AoA) and Reynolds numbers is identified as the main cause for poor model prediction. A comparison of several different NACA 0021 foil data sources, derived using both physical and numerical modeling experiments, indicates significant discrepancies at the high AoA experienced by foils on crossflow turbines. Users of CACTUS for crossflow hydrokinetic turbines are, therefore, advised to limit its application to higher tip speed ratios (lower AoA), and to carefully verify the reliability and accuracy of their foil data. Accurate empirical data on the aerodynamic characteristics of the foil is the greatest limitation to predicting performance for crossflow turbines with semi-empirical models like CACTUS. Future improvements of CACTUS for crossflow turbine performance prediction will require the development of accurate foil aerodynamic characteristic data sets within the appropriate ranges of Reynolds numbers and AoA.« less
NASA Astrophysics Data System (ADS)
Hutchenson, K. D.; Hartley-McBride, S.; Saults, T.; Schmidt, D. P.
2006-05-01
The International Monitoring System (IMS) is composed in part of radionuclide particulate and gas monitoring systems. Monitoring the operational status of these systems is an important aspect of nuclear weapon test monitoring. Quality data, process control techniques, and predictive models are necessary to detect and predict system component failures. Predicting failures in advance provides time to mitigate these failures, thus minimizing operational downtime. The Provisional Technical Secretariat (PTS) requires IMS radionuclide systems be operational 95 percent of the time. The United States National Data Center (US NDC) offers contributing components to the IMS. This effort focuses on the initial research and process development using prognostics for monitoring and predicting failures of the RASA two (2) days into the future. The predictions, using time series methods, are input to an expert decision system, called SHADES (State of Health Airflow and Detection Expert System). The results enable personnel to make informed judgments about the health of the RASA system. Data are read from a relational database, processed, and displayed to the user in a GIS as a prototype GUI. This procedure mimics the real time application process that could be implemented as an operational system, This initial proof-of-concept effort developed predictive models focused on RASA components for a single site (USP79). Future work shall include the incorporation of other RASA systems, as well as their environmental conditions that play a significant role in performance. Similarly, SHADES currently accommodates specific component behaviors at this one site. Future work shall also include important environmental variables that play an important part of the prediction algorithms.
SAMPL4 & DOCK3.7: lessons for automated docking procedures
NASA Astrophysics Data System (ADS)
Coleman, Ryan G.; Sterling, Teague; Weiss, Dahlia R.
2014-03-01
The SAMPL4 challenges were used to test current automated methods for solvation energy, virtual screening, pose and affinity prediction of the molecular docking pipeline DOCK 3.7. Additionally, first-order models of binding affinity were proposed as milestones for any method predicting binding affinity. Several important discoveries about the molecular docking software were made during the challenge: (1) Solvation energies of ligands were five-fold worse than any other method used in SAMPL4, including methods that were similarly fast, (2) HIV Integrase is a challenging target, but automated docking on the correct allosteric site performed well in terms of virtual screening and pose prediction (compared to other methods) but affinity prediction, as expected, was very poor, (3) Molecular docking grid sizes can be very important, serious errors were discovered with default settings that have been adjusted for all future work. Overall, lessons from SAMPL4 suggest many changes to molecular docking tools, not just DOCK 3.7, that could improve the state of the art. Future difficulties and projects will be discussed.
Predicting future glacial lakes in Austria using different modelling approaches
NASA Astrophysics Data System (ADS)
Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus
2017-04-01
Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers intermediate results from the FUTURELAKES project, which aims at generating the first nation-wide data set on future glacial lakes in Austria.
Practical implications for genetic modeling in the genomics era for the dairy industry
USDA-ARS?s Scientific Manuscript database
Genetic models convert data into estimated breeding values and other information useful to breeders. The goal is to provide accurate and timely predictions of the future performance for each animal (or embryo). Modeling involves defining traits, editing raw data, removing environmental effects, incl...
Computer Aided Evaluation of Higher Education Tutors' Performance
ERIC Educational Resources Information Center
Xenos, Michalis; Papadopoulos, Thanos
2007-01-01
This article presents a method for computer-aided tutor evaluation: Bayesian Networks are used for organizing the collected data about tutors and for enabling accurate estimations and predictions about future tutor behavior. The model provides indications about each tutor's strengths and weaknesses, which enables the evaluator to exploit strengths…
University Student's Goal Profiles and Metacomprehension Accuracy
ERIC Educational Resources Information Center
Zhou, Mingming
2013-01-01
In this study, undergraduate students provided confidence ratings to predict future performance in answering questions drawn from the text before reading the text, after reading the text and after rereading the text. Self-reports of achievement goal orientations during reading and posttest scores were also collected. Student's calibration index…
The impact of perceived self-efficacy on mental time travel and social problem solving.
Brown, Adam D; Dorfman, Michelle L; Marmar, Charles R; Bryant, Richard A
2012-03-01
Current models of autobiographical memory suggest that self-identity guides autobiographical memory retrieval. Further, the capacity to recall the past and imagine one's self in the future (mental time travel) can influence social problem solving. We examined whether manipulating self-identity, through an induction task in which students were led to believe they possessed high or low self-efficacy, impacted episodic specificity and content of retrieved and imagined events, as well as social problem solving. Compared to individuals in the low self efficacy group, individuals in the high self efficacy group generated past and future events with greater (a) specificity, (b) positive words, and (c) self-efficacious statements, and also performed better on social problem solving indices. A lack of episodic detail for future events predicted poorer performance on social problem solving tasks. Strategies that increase perceived self-efficacy may help individuals to selectively construct a past and future that aids in negotiating social problems. Copyright © 2011 Elsevier Inc. All rights reserved.
Miotto, Riccardo; Li, Li; Kidd, Brian A.; Dudley, Joel T.
2016-01-01
Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems. PMID:27185194
NASA Astrophysics Data System (ADS)
Miotto, Riccardo; Li, Li; Kidd, Brian A.; Dudley, Joel T.
2016-05-01
Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems.
Kusano, Kristofer; Gabler, Hampton C
2014-01-01
The odds of death for a seriously injured crash victim are drastically reduced if he or she received care at a trauma center. Advanced automated crash notification (AACN) algorithms are postcrash safety systems that use data measured by the vehicles during the crash to predict the likelihood of occupants being seriously injured. The accuracy of these models are crucial to the success of an AACN. The objective of this study was to compare the predictive performance of competing injury risk models and algorithms: logistic regression, random forest, AdaBoost, naïve Bayes, support vector machine, and classification k-nearest neighbors. This study compared machine learning algorithms to the widely adopted logistic regression modeling approach. Machine learning algorithms have not been commonly studied in the motor vehicle injury literature. Machine learning algorithms may have higher predictive power than logistic regression, despite the drawback of lacking the ability to perform statistical inference. To evaluate the performance of these algorithms, data on 16,398 vehicles involved in non-rollover collisions were extracted from the NASS-CDS. Vehicles with any occupants having an Injury Severity Score (ISS) of 15 or greater were defined as those requiring victims to be treated at a trauma center. The performance of each model was evaluated using cross-validation. Cross-validation assesses how a model will perform in the future given new data not used for model training. The crash ΔV (change in velocity during the crash), damage side (struck side of the vehicle), seat belt use, vehicle body type, number of events, occupant age, and occupant sex were used as predictors in each model. Logistic regression slightly outperformed the machine learning algorithms based on sensitivity and specificity of the models. Previous studies on AACN risk curves used the same data to train and test the power of the models and as a result had higher sensitivity compared to the cross-validated results from this study. Future studies should account for future data; for example, by using cross-validation or risk presenting optimistic predictions of field performance. Past algorithms have been criticized for relying on age and sex, being difficult to measure by vehicle sensors, and inaccuracies in classifying damage side. The models with accurate damage side and including age/sex did outperform models with less accurate damage side and without age/sex, but the differences were small, suggesting that the success of AACN is not reliant on these predictors.
Does the MCAT predict medical school and PGY-1 performance?
Saguil, Aaron; Dong, Ting; Gingerich, Robert J; Swygert, Kimberly; LaRochelle, Jeffrey S; Artino, Anthony R; Cruess, David F; Durning, Steven J
2015-04-01
The Medical College Admissions Test (MCAT) is a high-stakes test required for entry to most U. S. medical schools; admissions committees use this test to predict future accomplishment. Although there is evidence that the MCAT predicts success on multiple choice-based assessments, there is little information on whether the MCAT predicts clinical-based assessments of undergraduate and graduate medical education performance. This study looked at associations between the MCAT and medical school grade point average (GPA), Medical Licensing Examination (USMLE) scores, observed patient care encounters, and residency performance assessments. This study used data collected as part of the Long-Term Career Outcome Study to determine associations between MCAT scores, USMLE Step 1, Step 2 clinical knowledge and clinical skill, and Step 3 scores, Objective Structured Clinical Examination performance, medical school GPA, and PGY-1 program director (PD) assessment of physician performance for students graduating 2010 and 2011. MCAT data were available for all students, and the PGY PD evaluation response rate was 86.2% (N = 340). All permutations of MCAT scores (first, last, highest, average) were weakly associated with GPA, Step 2 clinical knowledge scores, and Step 3 scores. MCAT scores were weakly to moderately associated with Step 1 scores. MCAT scores were not significantly associated with Step 2 clinical skills Integrated Clinical Encounter and Communication and Interpersonal Skills subscores, Objective Structured Clinical Examination performance or PGY-1 PD evaluations. MCAT scores were weakly to moderately associated with assessments that rely on multiple choice testing. The association is somewhat stronger for assessments occurring earlier in medical school, such as USMLE Step 1. The MCAT was not able to predict assessments relying on direct clinical observation, nor was it able to predict PD assessment of PGY-1 performance. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
First Results of the Regional Earthquake Likelihood Models Experiment
Schorlemmer, D.; Zechar, J.D.; Werner, M.J.; Field, E.H.; Jackson, D.D.; Jordan, T.H.
2010-01-01
The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment-a truly prospective earthquake prediction effort-is underway within the U. S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary-the forecasts were meant for an application of 5 years-we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one. ?? 2010 The Author(s).
First Results of the Regional Earthquake Likelihood Models Experiment
NASA Astrophysics Data System (ADS)
Schorlemmer, Danijel; Zechar, J. Douglas; Werner, Maximilian J.; Field, Edward H.; Jackson, David D.; Jordan, Thomas H.
2010-08-01
The ability to successfully predict the future behavior of a system is a strong indication that the system is well understood. Certainly many details of the earthquake system remain obscure, but several hypotheses related to earthquake occurrence and seismic hazard have been proffered, and predicting earthquake behavior is a worthy goal and demanded by society. Along these lines, one of the primary objectives of the Regional Earthquake Likelihood Models (RELM) working group was to formalize earthquake occurrence hypotheses in the form of prospective earthquake rate forecasts in California. RELM members, working in small research groups, developed more than a dozen 5-year forecasts; they also outlined a performance evaluation method and provided a conceptual description of a Testing Center in which to perform predictability experiments. Subsequently, researchers working within the Collaboratory for the Study of Earthquake Predictability (CSEP) have begun implementing Testing Centers in different locations worldwide, and the RELM predictability experiment—a truly prospective earthquake prediction effort—is underway within the U.S. branch of CSEP. The experiment, designed to compare time-invariant 5-year earthquake rate forecasts, is now approximately halfway to its completion. In this paper, we describe the models under evaluation and present, for the first time, preliminary results of this unique experiment. While these results are preliminary—the forecasts were meant for an application of 5 years—we find interesting results: most of the models are consistent with the observation and one model forecasts the distribution of earthquakes best. We discuss the observed sample of target earthquakes in the context of historical seismicity within the testing region, highlight potential pitfalls of the current tests, and suggest plans for future revisions to experiments such as this one.
Design and analysis of a model predictive controller for active queue management.
Wang, Ping; Chen, Hong; Yang, Xiaoping; Ma, Yan
2012-01-01
Model predictive (MP) control as a novel active queue management (AQM) algorithm in dynamic computer networks is proposed. According to the predicted future queue length in the data buffer, early packets at the router are dropped reasonably by the MPAQM controller so that the queue length reaches the desired value with minimal tracking error. The drop probability is obtained by optimizing the network performance. Further, randomized algorithms are applied to analyze the robustness of MPAQM successfully, and also to provide the stability domain of systems with uncertain network parameters. The performances of MPAQM are evaluated through a series of simulations in NS2. The simulation results show that the MPAQM algorithm outperforms RED, PI, and REM algorithms in terms of stability, disturbance rejection, and robustness. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Kvavilashvili, Lia; Ford, Ruth M
2014-11-01
It is well documented that young children greatly overestimate their performance on tests of retrospective memory (RM), but the current investigation is the first to examine children's prediction accuracy for prospective memory (PM). Three studies were conducted, each testing a different group of 5-year-olds. In Study 1 (N=46), participants were asked to predict their success in a simple event-based PM task (remembering to convey a message to a toy mole if they encountered a particular picture during a picture-naming activity). Before naming the pictures, children listened to either a reminder story or a neutral story. Results showed that children were highly accurate in their PM predictions (78% accuracy) and that the reminder story appeared to benefit PM only in children who predicted they would remember the PM response. In Study 2 (N=80), children showed high PM prediction accuracy (69%) regardless of whether the cue was specific or general and despite typical overoptimism regarding their performance on a 10-item RM task using item-by-item prediction. Study 3 (N=35) showed that children were prone to overestimate RM even when asked about their ability to recall a single item-the mole's unusual name. In light of these findings, we consider possible reasons for children's impressive PM prediction accuracy, including the potential involvement of future thinking in performance predictions and PM. Copyright © 2014 Elsevier Inc. All rights reserved.
Acuff, Samuel F; Soltis, Kathryn E; Dennhardt, Ashley A; Borsari, Brian; Martens, Matthew P; Murphy, James G
2017-10-01
College student drinking is a major public health concern and can result in a range of negative consequences, from acute health risks to decreased academic performance and drop out. Harm reduction interventions have been developed to reduce problems associated with drinking but there is a need to identify specific risk/protective factors related to academic performance among college drinkers. Behavioral economics suggests that chronic alcohol misuse reflects a dysregulated behavioral process or reinforcer pathology-alcohol is overvalued and the value of prosocial rewards are sharply discounted due, in part, to their delay. This study examined delay discounting, consideration of future consequences (CFC) and protective behavioral strategies (PBS) as predictors of academic success (grade point average; GPA) and engagement (time devoted to academic activities) among 393 college drinkers (61% female). In multivariate models, PBS were associated with greater academic engagement, but were not with academic success. Lower discounting of delayed rewards and greater CFC were associated with both academic success and engagement among drinkers. Previous research suggests that future time orientation is malleable, and the current results provide support for efforts to enhance future time orientation as part of alcohol harm-reduction approaches. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Mobility performance of the lunar roving vehicle: Terrestrial studies: Apollo 15 results
NASA Technical Reports Server (NTRS)
Costes, N. C.; Farmer, J. E.; George, E. B.
1972-01-01
The constriants of the Apollo 15 mission dictated that the average and limiting performance capabilities of the first manned lunar roving vehicle be known or estimated within narrow margins. Extensive studies were conducted and are compared with the actual performance of the lunar roving vehicle during the Apollo 15 mission. From this comparison, conclusions are drawn relating to the capabilities and limitation of current terrestrial methodology in predicting the mobility performance of lunar roving vehicles under in-situ environmental conditions, and recommendations are offered concerning the performance of surface vehicles on future missions related to lunar or planetary exploration.
Economic analysis of the future growth of cosmetic surgery procedures.
Liu, Tom S; Miller, Timothy A
2008-06-01
The economic growth of cosmetic surgical and nonsurgical procedures has been tremendous. Between 1992 and 2005, annual U.S. cosmetic surgery volume increased by 725 percent, with over $10 billion spent in 2005. It is unknown whether this growth will continue for the next decade and, if so, what impact it will it have on the plastic surgeon workforce. The authors analyzed annual U.S. cosmetic surgery procedure volume reported by the American Society of Plastic Surgeons (ASPS) National Clearinghouse of Plastic Surgery Statistics between 1992 and 2005. Reconstructive plastic surgery volume was not included in the analysis. The authors analyzed the ability of economic and noneconomic variables to predict annual cosmetic surgery volume. The authors also used growth rate analyses to construct models with which to predict the future growth of cosmetic surgery. None of the economic and noneconomic variables were a significant predictor of annual cosmetic surgery volume. Instead, based on current compound annual growth rates, the authors predict that total cosmetic surgery volume (surgical and nonsurgical) will exceed 55 million annual procedures by 2015. ASPS members are projected to perform 299 surgical and 2165 nonsurgical annual procedures. Non-ASPS members are projected to perform 39 surgical and 1448 nonsurgical annual procedures. If current growth rates continue into the next decade, the future demand in cosmetic surgery will be driven largely by nonsurgical procedures. The growth of surgical procedures will be met by ASPS members. However, meeting the projected growth in nonsurgical procedures could be a potential challenge and a potential area for increased competition.
Gao, Fengxiang; Talbot, Elizabeth A; Loring, Carol H; Power, Jill J; Dionne-Odom, Jodie; Alroy-Preis, Sharon; Jackson, Patricia; Bean, Christine L
2014-07-01
During a nosocomial hepatitis C outbreak, emergency public clinics employed the OraQuick HCV rapid antibody test on site, and all results were verified by a standard enzyme immunoassay (EIA). Of 1,157 persons, 1,149 (99.3%) exhibited concordant results between the two tests (16 positive, 1,133 negative). The sensitivity, specificity, positive predictive value, and negative predictive value were 94.1%, 99.5%, 72.7%, and 99.9%, respectively. OraQuick performed well as a screening test during an outbreak investigation and could be integrated into future hepatitis C virus (HCV) outbreak testing algorithms. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
The development of a Kalman filter clock predictor
NASA Technical Reports Server (NTRS)
Davis, John A.; Greenhall, Charles A.; Boudjemaa, Redoane
2005-01-01
A Kalman filter based clock predictor is developed, and its performance evaluated using both simulated and real data. The clock predictor is shown to possess a neat to optimal Prediction Error Variance (PEV) when the underlying noise consists of one of the power law noise processes commonly encountered in time and frequency measurements. The predictor's performance is the presence of multiple noise processes is also examined. The relationship between the PEV obtained in the presence of multiple noise processes and those obtained for the individual component noise processes is examined. Comparisons are made with a simple linear clock predictor. The clock predictor is used to predict future values of the time offset between pairs of NPL's active hydrogen masers.
Modeling of rolling element bearing mechanics
NASA Technical Reports Server (NTRS)
Greenhill, L. M.
1991-01-01
Roller element bearings provide the primary mechanical interface between rotating and nonrotating components in the high performance turbomachinery of the Space Shuttle Main Engine (SSME). Knowledge of bearing behavior under various loading and environmental conditions is essential to predicting and understanding the overall behavior of turbopumps, including rotordynamic stability, critical speeds and bearing life. The objective is to develop mathematical models and computer programs to describe the mechanical behavior of ball and cylinder roller bearings under the loading and environmental conditions encountered in the SSME and future high performance rocket engines. This includes characteristics such as nonlinear load/motion relationships, stiffness and damping, rolling element loads for life prediction, and roller and cage stability.
NASA Technical Reports Server (NTRS)
Hoppa, Mary Ann; Wilson, Larry W.
1994-01-01
There are many software reliability models which try to predict future performance of software based on data generated by the debugging process. Our research has shown that by improving the quality of the data one can greatly improve the predictions. We are working on methodologies which control some of the randomness inherent in the standard data generation processes in order to improve the accuracy of predictions. Our contribution is twofold in that we describe an experimental methodology using a data structure called the debugging graph and apply this methodology to assess the robustness of existing models. The debugging graph is used to analyze the effects of various fault recovery orders on the predictive accuracy of several well-known software reliability algorithms. We found that, along a particular debugging path in the graph, the predictive performance of different models can vary greatly. Similarly, just because a model 'fits' a given path's data well does not guarantee that the model would perform well on a different path. Further we observed bug interactions and noted their potential effects on the predictive process. We saw that not only do different faults fail at different rates, but that those rates can be affected by the particular debugging stage at which the rates are evaluated. Based on our experiment, we conjecture that the accuracy of a reliability prediction is affected by the fault recovery order as well as by fault interaction.
Solar radio proxies for improved satellite orbit prediction
NASA Astrophysics Data System (ADS)
Yaya, Philippe; Hecker, Louis; Dudok de Wit, Thierry; Fèvre, Clémence Le; Bruinsma, Sean
2017-12-01
Specification and forecasting of solar drivers to thermosphere density models is critical for satellite orbit prediction and debris avoidance. Satellite operators routinely forecast orbits up to 30 days into the future. This requires forecasts of the drivers to these orbit prediction models such as the solar Extreme-UV (EUV) flux and geomagnetic activity. Most density models use the 10.7 cm radio flux (F10.7 index) as a proxy for solar EUV. However, daily measurements at other centimetric wavelengths have also been performed by the Nobeyama Radio Observatory (Japan) since the 1950's, thereby offering prospects for improving orbit modeling. Here we present a pre-operational service at the Collecte Localisation Satellites company that collects these different observations in one single homogeneous dataset and provides a 30 days forecast on a daily basis. Interpolation and preprocessing algorithms were developed to fill in missing data and remove anomalous values. We compared various empirical time series prediction techniques and selected a multi-wavelength non-recursive analogue neural network. The prediction of the 30 cm flux, and to a lesser extent that of the 10.7 cm flux, performs better than NOAA's present prediction of the 10.7 cm flux, especially during periods of high solar activity. In addition, we find that the DTM-2013 density model (Drag Temperature Model) performs better with (past and predicted) values of the 30 cm radio flux than with the 10.7 flux.
The MSFC Solar Activity Future Estimation (MSAFE) Model
NASA Technical Reports Server (NTRS)
Suggs, Ronnie J.
2017-01-01
The MSAFE model provides forecasts for the solar indices SSN, F10.7, and Ap. These solar indices are used as inputs to many space environment models used in orbital spacecraft operations and space mission analysis. Forecasts from the MSAFE model are provided on the MSFC Natural Environments Branch's solar webpage and are updated as new monthly observations come available. The MSAFE prediction routine employs a statistical technique that calculates deviations of past solar cycles from the mean cycle and performs a regression analysis to predict the deviation from the mean cycle of the solar index at the next future time interval. The prediction algorithm is applied recursively to produce monthly smoothed solar index values for the remaining of the cycle. The forecasts are initiated for a given cycle after about 8 to 12 months of observations are collected. A forecast made at the beginning of cycle 24 using the MSAFE program captured the cycle fairly well with some difficulty in discerning the double peak that occurred at solar cycle maximum.
Hammer, Eva M.; Kaufmann, Tobias; Kleih, Sonja C.; Blankertz, Benjamin; Kübler, Andrea
2014-01-01
Modulation of sensorimotor rhythms (SMR) was suggested as a control signal for brain-computer interfaces (BCI). Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80–100%) performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning.Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1) a measure for the accuracy of fine motor skills, i.e., a trade for a person’s visuo-motor control ability; and (2) subject’s “attentional impulsivity”. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1) failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject) the present predictors. PMID:25147518
Hens, Bart; Sinko, Patrick; Job, Nicholas; Dean, Meagan; Al-Gousous, Jozef; Salehi, Niloufar; Ziff, Robert M; Tsume, Yasuhiro; Bermejo, Marival; Paixão, Paulo; Brasseur, James G; Yu, Alex; Talattof, Arjang; Benninghoff, Gail; Langguth, Peter; Lennernäs, Hans; Hasler, William L; Marciani, Luca; Dickens, Joseph; Shedden, Kerby; Sun, Duxin; Amidon, Gregory E; Amidon, Gordon L
2018-06-23
Over the past decade, formulation predictive dissolution (fPD) testing has gained increasing attention. Another mindset is pushed forward where scientists in our field are more confident to explore the in vivo behavior of an oral drug product by performing predictive in vitro dissolution studies. Similarly, there is an increasing interest in the application of modern computational fluid dynamics (CFD) frameworks and high-performance computing platforms to study the local processes underlying absorption within the gastrointestinal (GI) tract. In that way, CFD and computing platforms both can inform future PBPK-based in silico frameworks and determine the GI-motility-driven hydrodynamic impacts that should be incorporated into in vitro dissolution methods for in vivo relevance. Current compendial dissolution methods are not always reliable to predict the in vivo behavior, especially not for biopharmaceutics classification system (BCS) class 2/4 compounds suffering from a low aqueous solubility. Developing a predictive dissolution test will be more reliable, cost-effective and less time-consuming as long as the predictive power of the test is sufficiently strong. There is a need to develop a biorelevant, predictive dissolution method that can be applied by pharmaceutical drug companies to facilitate marketing access for generic and novel drug products. In 2014, Prof. Gordon L. Amidon and his team initiated a far-ranging research program designed to integrate (1) in vivo studies in humans in order to further improve the understanding of the intraluminal processing of oral dosage forms and dissolved drug along the gastrointestinal (GI) tract, (2) advancement of in vitro methodologies that incorporates higher levels of in vivo relevance and (3) computational experiments to study the local processes underlying dissolution, transport and absorption within the intestines performed with a new unique CFD based framework. Of particular importance is revealing the physiological variables determining the variability in in vivo dissolution and GI absorption from person to person in order to address (potential) in vivo BE failures. This paper provides an introduction to this multidisciplinary project, informs the reader about current achievements and outlines future directions. Copyright © 2018. Published by Elsevier B.V.
Flooding in the future--predicting climate change, risks and responses in urban areas.
Ashley, R M; Balmforth, D J; Saul, A J; Blanskby, J D
2005-01-01
Engineering infrastructure is provided at high cost and is expected to have a useful operational life of decades. However, it is clear that the future is uncertain. Traditional approaches to designing and operating urban storm drainage assets have relied on past performance of natural systems and the ability to extrapolate this performance, together with that of the assets across the usable lifetime. Whether or not climate change is going to significantly alter future weather patterns in Europe, it is clear that it is now incumbent on designers and operators of storm drainage systems to prepare for greater uncertainty in the effectiveness of storm drainage systems. A recent U.K. Government study considered the potential effects of climate and socio-economic change in the U.K. in terms of four future scenarios and what the implications are for the performance of existing storm drainage facilities. In this paper the modelling that was undertaken to try to quantify the changes in risk, together with the effectiveness of responses in managing that risk, are described. It shows that flood risks may increase by a factor of almost 30 times and that traditional engineering measures alone are unlikely to be able to provide protection.
De Vries, A; Feleke, S
2008-12-01
This study assessed the accuracy of 3 methods that predict the uniform milk price in Federal Milk Marketing Order 6 (Florida). Predictions were made for 1 to 12 mo into the future. Data were from January 2003 to May 2007. The CURRENT method assumed that future uniform milk prices were equal to the last announced uniform milk price. The F+BASIS and F+UTIL methods were based on the milk futures markets because the futures prices reflect the market's expectation of the class III and class IV cash prices that are announced monthly by USDA. The F+BASIS method added an exponentially weighted moving average of the difference between the class III cash price and the historical uniform milk price (also known as basis) to the class III futures price. The F+UTIL method used the class III and class IV futures prices, the most recently announced butter price, and historical utilizations to predict the skim milk prices, butterfat prices, and utilizations in all 4 classes. Predictions of future utilizations were made with a Holt-Winters smoothing method. Federal Milk Marketing Order 6 had high class I utilization (85 +/- 4.8%). Mean and standard deviation of the class III and class IV cash prices were $13.39 +/- 2.40/cwt (1 cwt = 45.36 kg) and $12.06 +/- 1.80/cwt, respectively. The actual uniform price in Tampa, Florida, was $16.62 +/- 2.16/cwt. The basis was $3.23 +/- 1.23/cwt. The F+BASIS and F+UTIL predictions were generally too low during the period considered because the class III cash prices were greater than the corresponding class III futures prices. For the 1- to 6-mo-ahead predictions, the root of the mean squared prediction errors from the F+BASIS method were $1.12, $1.20, $1.55, $1.91, $2.16, and $2.34/cwt, respectively. The root of the mean squared prediction errors ranged from $2.50 to $2.73/cwt for predictions up to 12 mo ahead. Results from the F+UTIL method were similar. The accuracies of the F+BASIS and F+UTIL methods for all 12 fore-cast horizons were not significantly different. Application of the modified Mariano-Diebold tests showed that no method included all the information contained in the other methods. In conclusion, both F+BASIS and F+UTIL methods tended to more accurately predict the future uniform milk prices than the CURRENT method, but prediction errors could be substantial even a few months into the future. The majority of the prediction error was caused by the inefficiency of the futures markets to predict the class III cash prices.
Comparison of RNA-seq and microarray-based models for clinical endpoint prediction.
Zhang, Wenqian; Yu, Ying; Hertwig, Falk; Thierry-Mieg, Jean; Zhang, Wenwei; Thierry-Mieg, Danielle; Wang, Jian; Furlanello, Cesare; Devanarayan, Viswanath; Cheng, Jie; Deng, Youping; Hero, Barbara; Hong, Huixiao; Jia, Meiwen; Li, Li; Lin, Simon M; Nikolsky, Yuri; Oberthuer, André; Qing, Tao; Su, Zhenqiang; Volland, Ruth; Wang, Charles; Wang, May D; Ai, Junmei; Albanese, Davide; Asgharzadeh, Shahab; Avigad, Smadar; Bao, Wenjun; Bessarabova, Marina; Brilliant, Murray H; Brors, Benedikt; Chierici, Marco; Chu, Tzu-Ming; Zhang, Jibin; Grundy, Richard G; He, Min Max; Hebbring, Scott; Kaufman, Howard L; Lababidi, Samir; Lancashire, Lee J; Li, Yan; Lu, Xin X; Luo, Heng; Ma, Xiwen; Ning, Baitang; Noguera, Rosa; Peifer, Martin; Phan, John H; Roels, Frederik; Rosswog, Carolina; Shao, Susan; Shen, Jie; Theissen, Jessica; Tonini, Gian Paolo; Vandesompele, Jo; Wu, Po-Yen; Xiao, Wenzhong; Xu, Joshua; Xu, Weihong; Xuan, Jiekun; Yang, Yong; Ye, Zhan; Dong, Zirui; Zhang, Ke K; Yin, Ye; Zhao, Chen; Zheng, Yuanting; Wolfinger, Russell D; Shi, Tieliu; Malkas, Linda H; Berthold, Frank; Wang, Jun; Tong, Weida; Shi, Leming; Peng, Zhiyu; Fischer, Matthias
2015-06-25
Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model. We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models. We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.
Dissimilarity based Partial Least Squares (DPLS) for genomic prediction from SNPs.
Singh, Priyanka; Engel, Jasper; Jansen, Jeroen; de Haan, Jorn; Buydens, Lutgarde Maria Celina
2016-05-04
Genomic prediction (GP) allows breeders to select plants and animals based on their breeding potential for desirable traits, without lengthy and expensive field trials or progeny testing. We have proposed to use Dissimilarity-based Partial Least Squares (DPLS) for GP. As a case study, we use the DPLS approach to predict Bacterial wilt (BW) in tomatoes using SNPs as predictors. The DPLS approach was compared with the Genomic Best-Linear Unbiased Prediction (GBLUP) and single-SNP regression with SNP as a fixed effect to assess the performance of DPLS. Eight genomic distance measures were used to quantify relationships between the tomato accessions from the SNPs. Subsequently, each of these distance measures was used to predict the BW using the DPLS prediction model. The DPLS model was found to be robust to the choice of distance measures; similar prediction performances were obtained for each distance measure. DPLS greatly outperformed the single-SNP regression approach, showing that BW is a comprehensive trait dependent on several loci. Next, the performance of the DPLS model was compared to that of GBLUP. Although GBLUP and DPLS are conceptually very different, the prediction quality (PQ) measured by DPLS models were similar to the prediction statistics obtained from GBLUP. A considerable advantage of DPLS is that the genotype-phenotype relationship can easily be visualized in a 2-D scatter plot. This so-called score-plot provides breeders an insight to select candidates for their future breeding program. DPLS is a highly appropriate method for GP. The model prediction performance was similar to the GBLUP and far better than the single-SNP approach. The proposed method can be used in combination with a wide range of genomic dissimilarity measures and genotype representations such as allele-count, haplotypes or allele-intensity values. Additionally, the data can be insightfully visualized by the DPLS model, allowing for selection of desirable candidates from the breeding experiments. In this study, we have assessed the DPLS performance on a single trait.
Robot trajectory tracking with self-tuning predicted control
NASA Technical Reports Server (NTRS)
Cui, Xianzhong; Shin, Kang G.
1988-01-01
A controller that combines self-tuning prediction and control is proposed for robot trajectory tracking. The controller has two feedback loops: one is used to minimize the prediction error, and the other is designed to make the system output track the set point input. Because the velocity and position along the desired trajectory are given and the future output of the system is predictable, a feedforward loop can be designed for robot trajectory tracking with self-tuning predicted control (STPC). Parameters are estimated online to account for the model uncertainty and the time-varying property of the system. The authors describe the principle of STPC, analyze the system performance, and discuss the simplification of the robot dynamic equations. To demonstrate its utility and power, the controller is simulated for a Stanford arm.
Genomics DNA Profiling in Elite Professional Soccer Players: A Pilot Study
Kambouris, M; Del Buono, A; Maffulli, N
2014-01-01
Functional variants in exonic regions have been associated with development of cardiovascular disease, diabetes and cancer. Athletic performance can be considered a multi-factorial complex phenotype. Genomic DNA was extracted from buccal swabs of seven soccer players from the Fulham football team. Single nucleotide polymorphism (SNPs) genotyping was undertaken. To achieve optimal athletic performance, predictive genomics DNA profiling for sports performance can be used to aid in sport selection and elaboration of personalized training and nutrition programs. Predictive DNA profiling may be able to detect athletes with potential or frank injuries, or screening and selection of future athletes, and can help them to maximize utilization of their potential and improve performance in sports. The aim of this study is to provide a wide scenario of specific genomic variants that an athlete carries, to implement which measures should be taken to maximize the athlete’s potential. PMID:24809029
Predicting stillbirth in a low resource setting.
Kayode, Gbenga A; Grobbee, Diederick E; Amoakoh-Coleman, Mary; Adeleke, Ibrahim Taiwo; Ansah, Evelyn; de Groot, Joris A H; Klipstein-Grobusch, Kerstin
2016-09-20
Stillbirth is a major contributor to perinatal mortality and it is particularly common in low- and middle-income countries, where annually about three million stillbirths occur in the third trimester. This study aims to develop a prediction model for early detection of pregnancies at high risk of stillbirth. This retrospective cohort study examined 6,573 pregnant women who delivered at Federal Medical Centre Bida, a tertiary level of healthcare in Nigeria from January 2010 to December 2013. Descriptive statistics were performed and missing data imputed. Multivariable logistic regression was applied to examine the associations between selected candidate predictors and stillbirth. Discrimination and calibration were used to assess the model's performance. The prediction model was validated internally and over-optimism was corrected. We developed a prediction model for stillbirth that comprised maternal comorbidity, place of residence, maternal occupation, parity, bleeding in pregnancy, and fetal presentation. As a secondary analysis, we extended the model by including fetal growth rate as a predictor, to examine how beneficial ultrasound parameters would be for the predictive performance of the model. After internal validation, both calibration and discriminative performance of both the basic and extended model were excellent (i.e. C-statistic basic model = 0.80 (95 % CI 0.78-0.83) and extended model = 0.82 (95 % CI 0.80-0.83)). We developed a simple but informative prediction model for early detection of pregnancies with a high risk of stillbirth for early intervention in a low resource setting. Future research should focus on external validation of the performance of this promising model.
Mirolli, Marco; Santucci, Vieri G; Baldassarre, Gianluca
2013-03-01
An important issue of recent neuroscientific research is to understand the functional role of the phasic release of dopamine in the striatum, and in particular its relation to reinforcement learning. The literature is split between two alternative hypotheses: one considers phasic dopamine as a reward prediction error similar to the computational TD-error, whose function is to guide an animal to maximize future rewards; the other holds that phasic dopamine is a sensory prediction error signal that lets the animal discover and acquire novel actions. In this paper we propose an original hypothesis that integrates these two contrasting positions: according to our view phasic dopamine represents a TD-like reinforcement prediction error learning signal determined by both unexpected changes in the environment (temporary, intrinsic reinforcements) and biological rewards (permanent, extrinsic reinforcements). Accordingly, dopamine plays the functional role of driving both the discovery and acquisition of novel actions and the maximization of future rewards. To validate our hypothesis we perform a series of experiments with a simulated robotic system that has to learn different skills in order to get rewards. We compare different versions of the system in which we vary the composition of the learning signal. The results show that only the system reinforced by both extrinsic and intrinsic reinforcements is able to reach high performance in sufficiently complex conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Numerical Prediction of Chevron Nozzle Noise Reduction using Wind-MGBK Methodology
NASA Technical Reports Server (NTRS)
Engblom, W.A.; Bridges, J.; Khavarant, A.
2005-01-01
Numerical predictions for single-stream chevron nozzle flow performance and farfield noise production are presented. Reynolds Averaged Navier Stokes (RANS) solutions, produced via the WIND flow solver, are provided as input to the MGBK code for prediction of farfield noise distributions. This methodology is applied to a set of sensitivity cases involving varying degrees of chevron inward bend angle relative to the core flow, for both cold and hot exhaust conditions. The sensitivity study results illustrate the effect of increased chevron bend angle and exhaust temperature on enhancement of fine-scale mixing, initiation of core breakdown, nozzle performance, and noise reduction. Direct comparisons with experimental data, including stagnation pressure and temperature rake data, PIV turbulent kinetic energy fields, and 90 degree observer farfield microphone data are provided. Although some deficiencies in the numerical predictions are evident, the correct farfield noise spectra trends are captured by the WIND-MGBK method, including the noise reduction benefit of chevrons. Implications of these results to future chevron design efforts are addressed.
Exploring predictive performance: A reanalysis of the geospace model transition challenge
NASA Astrophysics Data System (ADS)
Welling, D. T.; Anderson, B. J.; Crowley, G.; Pulkkinen, A. A.; Rastätter, L.
2017-01-01
The Pulkkinen et al. (2013) study evaluated the ability of five different geospace models to predict surface dB/dt as a function of upstream solar drivers. This was an important step in the assessment of research models for predicting and ultimately preventing the damaging effects of geomagnetically induced currents. Many questions remain concerning the capabilities of these models. This study presents a reanalysis of the Pulkkinen et al. (2013) results in an attempt to better understand the models' performance. The range of validity of the models is determined by examining the conditions corresponding to the empirical input data. It is found that the empirical conductance models on which global magnetohydrodynamic models rely are frequently used outside the limits of their input data. The prediction error for the models is sorted as a function of solar driving and geomagnetic activity. It is found that all models show a bias toward underprediction, especially during active times. These results have implications for future research aimed at improving operational forecast models.
Impact of experimental design on PET radiomics in predicting somatic mutation status.
Yip, Stephen S F; Parmar, Chintan; Kim, John; Huynh, Elizabeth; Mak, Raymond H; Aerts, Hugo J W L
2017-12-01
PET-based radiomic features have demonstrated great promises in predicting genetic data. However, various experimental parameters can influence the feature extraction pipeline, and hence, Here, we investigated how experimental settings affect the performance of radiomic features in predicting somatic mutation status in non-small cell lung cancer (NSCLC) patients. 348 NSCLC patients with somatic mutation testing and diagnostic PET images were included in our analysis. Radiomic feature extractions were analyzed for varying voxel sizes, filters and bin widths. 66 radiomic features were evaluated. The performance of features in predicting mutations status was assessed using the area under the receiver-operating-characteristic curve (AUC). The influence of experimental parameters on feature predictability was quantified as the relative difference between the minimum and maximum AUC (δ). The large majority of features (n=56, 85%) were significantly predictive for EGFR mutation status (AUC≥0.61). 29 radiomic features significantly predicted EGFR mutations and were robust to experimental settings with δ Overall <5%. The overall influence (δ Overall ) of the voxel size, filter and bin width for all features ranged from 5% to 15%, respectively. For all features, none of the experimental designs was predictive of KRAS+ from KRAS- (AUC≤0.56). The predictability of 29 radiomic features was robust to the choice of experimental settings; however, these settings need to be carefully chosen for all other features. The combined effect of the investigated processing methods could be substantial and must be considered. Optimized settings that will maximize the predictive performance of individual radiomic features should be investigated in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Baquero, Oswaldo Santos; Santana, Lidia Maria Reis; Chiaravalloti-Neto, Francisco
2018-01-01
Globally, the number of dengue cases has been on the increase since 1990 and this trend has also been found in Brazil and its most populated city-São Paulo. Surveillance systems based on predictions allow for timely decision making processes, and in turn, timely and efficient interventions to reduce the burden of the disease. We conducted a comparative study of dengue predictions in São Paulo city to test the performance of trained seasonal autoregressive integrated moving average models, generalized additive models and artificial neural networks. We also used a naïve model as a benchmark. A generalized additive model with lags of the number of cases and meteorological variables had the best performance, predicted epidemics of unprecedented magnitude and its performance was 3.16 times higher than the benchmark and 1.47 higher that the next best performing model. The predictive models captured the seasonal patterns but differed in their capacity to anticipate large epidemics and all outperformed the benchmark. In addition to be able to predict epidemics of unprecedented magnitude, the best model had computational advantages, since its training and tuning was straightforward and required seconds or at most few minutes. These are desired characteristics to provide timely results for decision makers. However, it should be noted that predictions are made just one month ahead and this is a limitation that future studies could try to reduce.
Working Memory Involved in Predicting Future Outcomes Based on Past Experiences
ERIC Educational Resources Information Center
Dretsch, Michael N.; Tipples, Jason
2008-01-01
Deficits in working memory have been shown to contribute to poor performance on the Iowa Gambling Task [IGT: Bechara, A., & Martin, E.M. (2004). "Impaired decision making related to working memory deficits in individuals with substance addictions." "Neuropsychology," 18, 152-162]. Similarly, a secondary memory load task has been shown to impair…
High performance equipped mirrors for MTG FCI-TA and IRS-FTO
NASA Astrophysics Data System (ADS)
Kazakov, T.; San Juan, J. L.; Serrano, J.; Moreno, J.; González, D.; Rodríguez, G.; López, D.; Vázquez, E.; Aivar, J.; Motos, A.; Rahmouni, Christophe; Imperiali, Stephan; Fappani, Denis
2017-09-01
The Meteosat Third Generation (MTG) Programme is being realised through the well established and successful Cooperation between EUMETSAT and ESA. It will ensure the future continuity of MSG with the capabilities to enhance nowcasting, global and regional numerical weather prediction, climate and atmospheric chemistry monitoring data from Geostationary Orbit.
Narrative Abilities, Memory and Attention in Children with a Specific Language Impairment
ERIC Educational Resources Information Center
Duinmeijer, Iris; de Jong, Jan; Scheper, Annette
2012-01-01
Background: While narrative tasks have proven to be valid measures for detecting language disorders, measuring communicative skills and predicting future academic performance, research into the comparability of different narrative tasks has shown that outcomes are dependent on the type of task used. Although many of the studies detecting task…
Does Educational Level Matter in Adopting Online Education? A Malaysian Perspective
ERIC Educational Resources Information Center
Haghshenas, Hanif; Chatroudi, Ehsan Aminaei; Njeje, Fredy Anthony
2012-01-01
Having applied Unified Theory of Acceptance and Use of Technology (UTAUT) to predict intention and future usage behavior, the moderating effect of educational level was added to the model in moderating the relationship between variables. Also, despite past studies, Effort Expectancy had a higher beta than Performance Expectancy, while Social…
Bi, Chongzeng; Oyserman, Daphna
2015-10-01
Are possible selves and strategies to attain them universally helpful even among children with few resources? We test this question in rural China. Rural Chinese children are commonly "left behind" (LB) by parents seizing economic opportunities by migrating, hoping the family will "move forward" and their children will attain their predestined better future. Media, teachers, and peers negatively represent LB children as unruly and undisciplined, with negative fates, making LB a negative stereotype that includes the idea of destiny or fate. Indeed, making the idea of LB salient increases children's fatalism (Study 1 n = 144, Study 2 n = 124). However, having strategies to attain possible future selves predicts better in-class behavior, fewer depressive symptoms, and better exam performance even a year later and controlling for prior performance (Study 3 n = 176, Study 4 n = 145). Possible selves have mixed effects, not always predicting better grades and undermining LB children's self-control. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
A New Method for the Evaluation and Prediction of Base Stealing Performance.
Bricker, Joshua C; Bailey, Christopher A; Driggers, Austin R; McInnis, Timothy C; Alami, Arya
2016-11-01
Bricker, JC, Bailey, CA, Driggers, AR, McInnis, TC, and Alami, A. A new method for the evaluation and prediction of base stealing performance. J Strength Cond Res 30(11): 3044-3050, 2016-The purposes of this study were to evaluate a new method using electronic timing gates to monitor base stealing performance in terms of reliability, differences between it and traditional stopwatch-collected times, and its ability to predict base stealing performance. Twenty-five healthy collegiate baseball players performed maximal effort base stealing trials with a right and left-handed pitcher. An infrared electronic timing system was used to calculate the reaction time (RT) and total time (TT), whereas coaches' times (CT) were recorded with digital stopwatches. Reliability of the TGM was evaluated with intraclass correlation coefficients (ICCs) and coefficient of variation (CV). Differences between the TGM and traditional CT were calculated with paired samples t tests Cohen's d effect size estimates. Base stealing performance predictability of the TGM was evaluated with Pearson's bivariate correlations. Acceptable relative reliability was observed (ICCs 0.74-0.84). Absolute reliability measures were acceptable for TT (CVs = 4.4-4.8%), but measures were elevated for RT (CVs = 32.3-35.5%). Statistical and practical differences were found between TT and CT (right p = 0.00, d = 1.28 and left p = 0.00, d = 1.49). The TGM TT seems to be a decent predictor of base stealing performance (r = -0.49 to -0.61). The authors recommend using the TGM used in this investigation for athlete monitoring because it was found to be reliable, seems to be more precise than traditional CT measured with a stopwatch, provides an additional variable of value (RT), and may predict future performance.
Sieberts, Solveig K.; Zhu, Fan; García-García, Javier; Stahl, Eli; Pratap, Abhishek; Pandey, Gaurav; Pappas, Dimitrios; Aguilar, Daniel; Anton, Bernat; Bonet, Jaume; Eksi, Ridvan; Fornés, Oriol; Guney, Emre; Li, Hongdong; Marín, Manuel Alejandro; Panwar, Bharat; Planas-Iglesias, Joan; Poglayen, Daniel; Cui, Jing; Falcao, Andre O.; Suver, Christine; Hoff, Bruce; Balagurusamy, Venkat S. K.; Dillenberger, Donna; Neto, Elias Chaibub; Norman, Thea; Aittokallio, Tero; Ammad-ud-din, Muhammad; Azencott, Chloe-Agathe; Bellón, Víctor; Boeva, Valentina; Bunte, Kerstin; Chheda, Himanshu; Cheng, Lu; Corander, Jukka; Dumontier, Michel; Goldenberg, Anna; Gopalacharyulu, Peddinti; Hajiloo, Mohsen; Hidru, Daniel; Jaiswal, Alok; Kaski, Samuel; Khalfaoui, Beyrem; Khan, Suleiman Ali; Kramer, Eric R.; Marttinen, Pekka; Mezlini, Aziz M.; Molparia, Bhuvan; Pirinen, Matti; Saarela, Janna; Samwald, Matthias; Stoven, Véronique; Tang, Hao; Tang, Jing; Torkamani, Ali; Vert, Jean-Phillipe; Wang, Bo; Wang, Tao; Wennerberg, Krister; Wineinger, Nathan E.; Xiao, Guanghua; Xie, Yang; Yeung, Rae; Zhan, Xiaowei; Zhao, Cheng; Calaza, Manuel; Elmarakeby, Haitham; Heath, Lenwood S.; Long, Quan; Moore, Jonathan D.; Opiyo, Stephen Obol; Savage, Richard S.; Zhu, Jun; Greenberg, Jeff; Kremer, Joel; Michaud, Kaleb; Barton, Anne; Coenen, Marieke; Mariette, Xavier; Miceli, Corinne; Shadick, Nancy; Weinblatt, Michael; de Vries, Niek; Tak, Paul P.; Gerlag, Danielle; Huizinga, Tom W. J.; Kurreeman, Fina; Allaart, Cornelia F.; Louis Bridges Jr., S.; Criswell, Lindsey; Moreland, Larry; Klareskog, Lars; Saevarsdottir, Saedis; Padyukov, Leonid; Gregersen, Peter K.; Friend, Stephen; Plenge, Robert; Stolovitzky, Gustavo; Oliva, Baldo; Guan, Yuanfang; Mangravite, Lara M.
2016-01-01
Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h2=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data. PMID:27549343
Smith, Vanessa; Riccieri, Valeria; Pizzorni, Carmen; Decuman, Saskia; Deschepper, Ellen; Bonroy, Carolien; Sulli, Alberto; Piette, Yves; De Keyser, Filip; Cutolo, Maurizio
2013-12-01
Assessment of associations of nailfold videocapillaroscopy (NVC) scleroderma (systemic sclerosis; SSc) ("early," "active," and "late") with novel future severe clinical involvement in 2 independent cohorts. Sixty-six consecutive Belgian and 82 Italian patients with SSc underwent NVC at baseline. Images were blindly assessed and classified into normal, early, active, or late NVC pattern. Clinical evaluation was performed for 9 organ systems (general, peripheral vascular, skin, joint, muscle, gastrointestinal tract, lung, heart, and kidney) according to the Medsger disease severity scale (DSS) at baseline and in the future (18-24 months of followup). Severe clinical involvement was defined as category 2 to 4 per organ of the DSS. Logistic regression analysis (continuous NVC predictor variable) was performed. The OR to develop novel future severe organ involvement was stronger according to more severe NVC patterns and similar in both cohorts. In simple logistic regression analysis the OR in the Belgian/Italian cohort was 2.16 (95% CI 1.19-4.47, p = 0.010)/2.33 (95% CI 1.36-4.22, p = 0.002) for the early NVC SSc pattern, 4.68/5.42 for the active pattern, and 10.14/12.63 for the late pattern versus the normal pattern. In multiple logistic regression analysis, adjusting for disease duration, subset, and vasoactive medication, the OR was 2.99 (95% CI 1.31-8.82, p = 0.007)/1.88 (95% CI 1.00-3.71, p = 0.050) for the early NVC SSc pattern, 8.93/3.54 for the active pattern, and 26.69/6.66 for the late pattern versus the normal pattern. Capillaroscopy may be predictive of novel future severe organ involvement in SSc, as attested by 2 independent cohorts.
Machine Learning and Neurosurgical Outcome Prediction: A Systematic Review.
Senders, Joeky T; Staples, Patrick C; Karhade, Aditya V; Zaki, Mark M; Gormley, William B; Broekman, Marike L D; Smith, Timothy R; Arnaout, Omar
2018-01-01
Accurate measurement of surgical outcomes is highly desirable to optimize surgical decision-making. An important element of surgical decision making is identification of the patient cohort that will benefit from surgery before the intervention. Machine learning (ML) enables computers to learn from previous data to make accurate predictions on new data. In this systematic review, we evaluate the potential of ML for neurosurgical outcome prediction. A systematic search in the PubMed and Embase databases was performed to identify all potential relevant studies up to January 1, 2017. Thirty studies were identified that evaluated ML algorithms used as prediction models for survival, recurrence, symptom improvement, and adverse events in patients undergoing surgery for epilepsy, brain tumor, spinal lesions, neurovascular disease, movement disorders, traumatic brain injury, and hydrocephalus. Depending on the specific prediction task evaluated and the type of input features included, ML models predicted outcomes after neurosurgery with a median accuracy and area under the receiver operating curve of 94.5% and 0.83, respectively. Compared with logistic regression, ML models performed significantly better and showed a median absolute improvement in accuracy and area under the receiver operating curve of 15% and 0.06, respectively. Some studies also demonstrated a better performance in ML models compared with established prognostic indices and clinical experts. In the research setting, ML has been studied extensively, demonstrating an excellent performance in outcome prediction for a wide range of neurosurgical conditions. However, future studies should investigate how ML can be implemented as a practical tool supporting neurosurgical care. Copyright © 2017 Elsevier Inc. All rights reserved.
Multi-mode evaluation of power-maximizing cross-flow turbine controllers
Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James; ...
2017-09-21
A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less
Multi-mode evaluation of power-maximizing cross-flow turbine controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James
A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less
Thermal model of attic systems with radiant barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkes, K.E.
This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured inmore » a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.« less
Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan M
2017-06-03
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
Vanzo, Elisa; Jud, Werner; Li, Ziru; Albert, Andreas; Domagalska, Malgorzata A; Ghirardo, Andrea; Niederbacher, Bishu; Frenzel, Juliane; Beemster, Gerrit T S; Asard, Han; Rennenberg, Heinz; Sharkey, Thomas D; Hansel, Armin; Schnitzler, Jörg-Peter
2015-09-01
Isoprene emissions from poplar (Populus spp.) plantations can influence atmospheric chemistry and regional climate. These emissions respond strongly to temperature, [CO2], and drought, but the superimposed effect of these three climate change factors are, for the most part, unknown. Performing predicted climate change scenario simulations (periodic and chronic heat and drought spells [HDSs] applied under elevated [CO2]), we analyzed volatile organic compound emissions, photosynthetic performance, leaf growth, and overall carbon (C) gain of poplar genotypes emitting (IE) and nonemitting (NE) isoprene. We aimed (1) to evaluate the proposed beneficial effect of isoprene emission on plant stress mitigation and recovery capacity and (2) to estimate the cumulative net C gain under the projected future climate. During HDSs, the chloroplastidic electron transport rate of NE plants became impaired, while IE plants maintained high values similar to unstressed controls. During recovery from HDS episodes, IE plants reached higher daily net CO2 assimilation rates compared with NE genotypes. Irrespective of the genotype, plants undergoing chronic HDSs showed the lowest cumulative C gain. Under control conditions simulating ambient [CO2], the C gain was lower in the IE plants than in the NE plants. In summary, the data on the overall C gain and plant growth suggest that the beneficial function of isoprene emission in poplar might be of minor importance to mitigate predicted short-term climate extremes under elevated [CO2]. Moreover, we demonstrate that an analysis of the canopy-scale dynamics of isoprene emission and photosynthetic performance under multiple stresses is essential to understand the overall performance under proposed future conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.
Recent ecological responses to climate change support predictions of high extinction risk
Maclean, Ilya M. D.; Wilson, Robert J.
2011-01-01
Predicted effects of climate change include high extinction risk for many species, but confidence in these predictions is undermined by a perceived lack of empirical support. Many studies have now documented ecological responses to recent climate change, providing the opportunity to test whether the magnitude and nature of recent responses match predictions. Here, we perform a global and multitaxon metaanalysis to show that empirical evidence for the realized effects of climate change supports predictions of future extinction risk. We use International Union for Conservation of Nature (IUCN) Red List criteria as a common scale to estimate extinction risks from a wide range of climate impacts, ecological responses, and methods of analysis, and we compare predictions with observations. Mean extinction probability across studies making predictions of the future effects of climate change was 7% by 2100 compared with 15% based on observed responses. After taking account of possible bias in the type of climate change impact analyzed and the parts of the world and taxa studied, there was less discrepancy between the two approaches: predictions suggested a mean extinction probability of 10% across taxa and regions, whereas empirical evidence gave a mean probability of 14%. As well as mean overall extinction probability, observations also supported predictions in terms of variability in extinction risk and the relative risk associated with broad taxonomic groups and geographic regions. These results suggest that predictions are robust to methodological assumptions and provide strong empirical support for the assertion that anthropogenic climate change is now a major threat to global biodiversity. PMID:21746924
Recent ecological responses to climate change support predictions of high extinction risk.
Maclean, Ilya M D; Wilson, Robert J
2011-07-26
Predicted effects of climate change include high extinction risk for many species, but confidence in these predictions is undermined by a perceived lack of empirical support. Many studies have now documented ecological responses to recent climate change, providing the opportunity to test whether the magnitude and nature of recent responses match predictions. Here, we perform a global and multitaxon metaanalysis to show that empirical evidence for the realized effects of climate change supports predictions of future extinction risk. We use International Union for Conservation of Nature (IUCN) Red List criteria as a common scale to estimate extinction risks from a wide range of climate impacts, ecological responses, and methods of analysis, and we compare predictions with observations. Mean extinction probability across studies making predictions of the future effects of climate change was 7% by 2100 compared with 15% based on observed responses. After taking account of possible bias in the type of climate change impact analyzed and the parts of the world and taxa studied, there was less discrepancy between the two approaches: predictions suggested a mean extinction probability of 10% across taxa and regions, whereas empirical evidence gave a mean probability of 14%. As well as mean overall extinction probability, observations also supported predictions in terms of variability in extinction risk and the relative risk associated with broad taxonomic groups and geographic regions. These results suggest that predictions are robust to methodological assumptions and provide strong empirical support for the assertion that anthropogenic climate change is now a major threat to global biodiversity.
Doos, Lucy; Packer, Claire; Ward, Derek; Simpson, Sue; Stevens, Andrew
2016-01-01
Objectives Forecasting can support rational decision-making around the introduction and use of emerging health technologies and prevent investment in technologies that have limited long-term potential. However, forecasting methods need to be credible. We performed a systematic search to identify the methods used in forecasting studies to predict future health technologies within a 3–20-year timeframe. Identification and retrospective assessment of such methods potentially offer a route to more reliable prediction. Design Systematic search of the literature to identify studies reported on methods of forecasting in healthcare. Participants People are not needed in this study. Data sources The authors searched MEDLINE, EMBASE, PsychINFO and grey literature sources, and included articles published in English that reported their methods and a list of identified technologies. Main outcome measure Studies reporting methods used to predict future health technologies within a 3–20-year timeframe with an identified list of individual healthcare technologies. Commercially sponsored reviews, long-term futurology studies (with over 20-year timeframes) and speculative editorials were excluded. Results 15 studies met our inclusion criteria. Our results showed that the majority of studies (13/15) consulted experts either alone or in combination with other methods such as literature searching. Only 2 studies used more complex forecasting tools such as scenario building. Conclusions The methodological fundamentals of formal 3–20-year prediction are consistent but vary in details. Further research needs to be conducted to ascertain if the predictions made were accurate and whether accuracy varies by the methods used or by the types of technologies identified. PMID:26966060
The gate studies: Assessing the potential of future small general aviation turbine engines
NASA Technical Reports Server (NTRS)
Strack, W. C.
1979-01-01
Four studies were completed that explore the opportunities for future General Aviation turbine engines (GATE) in the 150-1000 SHP class. These studies forecasted the potential impact of advanced technology turbine engines in the post-1988 market, identified important aircraft and missions, desirable engine sizes, engine performance, and cost goals. Parametric evaluations of various engine cycles, configurations, design features, and advanced technology elements defined baseline conceptual engines for each of the important missions identified by the market analysis. Both fixed-wing and helicopter aircraft, and turboshaft, turboprop, and turbofan engines were considered. Sizable performance gains (e.g., 20% SFC decrease), and large engine cost reductions of sufficient magnitude to challenge the reciprocating engine in the 300-500 SHP class were predicted.
Statistical Approaches for Spatiotemporal Prediction of Low Flows
NASA Astrophysics Data System (ADS)
Fangmann, A.; Haberlandt, U.
2017-12-01
An adequate assessment of regional climate change impacts on streamflow requires the integration of various sources of information and modeling approaches. This study proposes simple statistical tools for inclusion into model ensembles, which are fast and straightforward in their application, yet able to yield accurate streamflow predictions in time and space. Target variables for all approaches are annual low flow indices derived from a data set of 51 records of average daily discharge for northwestern Germany. The models require input of climatic data in the form of meteorological drought indices, derived from observed daily climatic variables, averaged over the streamflow gauges' catchments areas. Four different modeling approaches are analyzed. Basis for all pose multiple linear regression models that estimate low flows as a function of a set of meteorological indices and/or physiographic and climatic catchment descriptors. For the first method, individual regression models are fitted at each station, predicting annual low flow values from a set of annual meteorological indices, which are subsequently regionalized using a set of catchment characteristics. The second method combines temporal and spatial prediction within a single panel data regression model, allowing estimation of annual low flow values from input of both annual meteorological indices and catchment descriptors. The third and fourth methods represent non-stationary low flow frequency analyses and require fitting of regional distribution functions. Method three is subject to a spatiotemporal prediction of an index value, method four to estimation of L-moments that adapt the regional frequency distribution to the at-site conditions. The results show that method two outperforms successive prediction in time and space. Method three also shows a high performance in the near future period, but since it relies on a stationary distribution, its application for prediction of far future changes may be problematic. Spatiotemporal prediction of L-moments appeared highly uncertain for higher-order moments resulting in unrealistic future low flow values. All in all, the results promote an inclusion of simple statistical methods in climate change impact assessment.
Prediction of energy balance and utilization for solar electric cars
NASA Astrophysics Data System (ADS)
Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.
2017-11-01
Solar irradiation and ambient temperature are characterized by region, season and time-domain, which directly affects the performance of solar energy based car system. In this paper, the model of solar electric cars used was based in Xi’an. Firstly, the meteorological data are modelled to simulate the change of solar irradiation and ambient temperature, and then the temperature change of solar cell is calculated using the thermal equilibrium relation. The above work is based on the driving resistance and solar cell power generation model, which is simulated under the varying radiation conditions in a day. The daily power generation and solar electric car cruise mileage can be predicted by calculating solar cell efficiency and power. The above theoretical approach and research results can be used in the future for solar electric car program design and optimization for the future developments.
Ng, Jacky Y K; Chan, Alan H S
2018-05-14
The shortage in Hong Kong of construction workers is expected to worsen in future due to the aging population and increasing construction activity. Construction work is dangerous and to help reduce the premature loss of construction workers due to work-related disabilities, this study measured the work ability of 420 Hong Kong construction workers with a Work Ability Index (WAI) which can be used to predict present and future work performance. Given the importance of WAI, in this study the effects of individual and work-related factors on WAI were examined to develop and validate a WAI model to predict how individual and work-related factors affect work ability. The findings will be useful for formulating a pragmatic intervention program to improve the work ability of construction workers and keep them in the work force.
Gullo, Charles A
2016-01-01
Biomedical programs have a potential treasure trove of data they can mine to assist admissions committees in identification of students who are likely to do well and help educational committees in the identification of students who are likely to do poorly on standardized national exams and who may need remediation. In this article, we provide a step-by-step approach that schools can utilize to generate data that are useful when predicting the future performance of current students in any given program. We discuss the use of linear regression analysis as the means of generating that data and highlight some of the limitations. Finally, we lament on how the combination of these institution-specific data sets are not being fully utilized at the national level where these data could greatly assist programs at large.
Patient Similarity in Prediction Models Based on Health Data: A Scoping Review
Sharafoddini, Anis; Dubin, Joel A
2017-01-01
Background Physicians and health policy makers are required to make predictions during their decision making in various medical problems. Many advances have been made in predictive modeling toward outcome prediction, but these innovations target an average patient and are insufficiently adjustable for individual patients. One developing idea in this field is individualized predictive analytics based on patient similarity. The goal of this approach is to identify patients who are similar to an index patient and derive insights from the records of similar patients to provide personalized predictions.. Objective The aim is to summarize and review published studies describing computer-based approaches for predicting patients’ future health status based on health data and patient similarity, identify gaps, and provide a starting point for related future research. Methods The method involved (1) conducting the review by performing automated searches in Scopus, PubMed, and ISI Web of Science, selecting relevant studies by first screening titles and abstracts then analyzing full-texts, and (2) documenting by extracting publication details and information on context, predictors, missing data, modeling algorithm, outcome, and evaluation methods into a matrix table, synthesizing data, and reporting results. Results After duplicate removal, 1339 articles were screened in abstracts and titles and 67 were selected for full-text review. In total, 22 articles met the inclusion criteria. Within included articles, hospitals were the main source of data (n=10). Cardiovascular disease (n=7) and diabetes (n=4) were the dominant patient diseases. Most studies (n=18) used neighborhood-based approaches in devising prediction models. Two studies showed that patient similarity-based modeling outperformed population-based predictive methods. Conclusions Interest in patient similarity-based predictive modeling for diagnosis and prognosis has been growing. In addition to raw/coded health data, wavelet transform and term frequency-inverse document frequency methods were employed to extract predictors. Selecting predictors with potential to highlight special cases and defining new patient similarity metrics were among the gaps identified in the existing literature that provide starting points for future work. Patient status prediction models based on patient similarity and health data offer exciting potential for personalizing and ultimately improving health care, leading to better patient outcomes. PMID:28258046
Farooqui, Ausaf A; Manly, Tom
2015-03-01
We showed that anticipatory cognitive control could be unconsciously instantiated through subliminal cues that predicted enhanced future control needs. In task-switching experiments, one of three subliminal cues preceded each trial. Participants had no conscious experience or knowledge of these cues, but their performance was significantly improved on switch trials after cues that predicted task switches (but not particular tasks). This utilization of subliminal information was flexible and adapted to a change in cues predicting task switches and occurred only when switch trials were difficult and effortful. When cues were consciously visible, participants were unable to discern their relevance and could not use them to enhance switch performance. Our results show that unconscious cognition can implicitly use subliminal information in a goal-directed manner for anticipatory control, and they also suggest that subliminal representations may be more conducive to certain forms of associative learning. © The Author(s) 2015.
Tanner, Evan P; Papeş, Monica; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A
2017-01-01
Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species' distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel's quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species' distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.
Brusa, Jamie L
2017-12-30
Successful recruiting for collegiate track & field athletes has become a more competitive and essential component of coaching. This study aims to determine the relationship between race performances of distance runners at the United States high school and National Collegiate Athletic Association (NCAA) levels. Conditional inference classification tree models were built and analysed to predict the probability that runners would qualify for the NCAA Division I National Cross Country Meet and/or the East or West NCAA Division I Outdoor Track & Field Preliminary Round based on their high school race times in the 800 m, 1600 m, and 3200 m. Prediction accuracies of the classification trees ranged from 60.0 to 76.6 percent. The models produced the most reliable estimates for predicting qualifiers in cross country, the 1500 m, and the 800 m for females and cross country, the 5000 m, and the 800 m for males. NCAA track & field coaches can use the results from this study as a guideline for recruiting decisions. Additionally, future studies can apply the methodological foundations of this research to predicting race performances set at different metrics, such as national meets in other countries or Olympic qualifications, from previous race data.
Intrinsic motivation and extrinsic incentives jointly predict performance: a 40-year meta-analysis.
Cerasoli, Christopher P; Nicklin, Jessica M; Ford, Michael T
2014-07-01
More than 4 decades of research and 9 meta-analyses have focused on the undermining effect: namely, the debate over whether the provision of extrinsic incentives erodes intrinsic motivation. This review and meta-analysis builds on such previous reviews by focusing on the interrelationship among intrinsic motivation, extrinsic incentives, and performance, with reference to 2 moderators: performance type (quality vs. quantity) and incentive contingency (directly performance-salient vs. indirectly performance-salient), which have not been systematically reviewed to date. Based on random-effects meta-analytic methods, findings from school, work, and physical domains (k = 183, N = 212,468) indicate that intrinsic motivation is a medium to strong predictor of performance (ρ = .21-45). The importance of intrinsic motivation to performance remained in place whether incentives were presented. In addition, incentive salience influenced the predictive validity of intrinsic motivation for performance: In a "crowding out" fashion, intrinsic motivation was less important to performance when incentives were directly tied to performance and was more important when incentives were indirectly tied to performance. Considered simultaneously through meta-analytic regression, intrinsic motivation predicted more unique variance in quality of performance, whereas incentives were a better predictor of quantity of performance. With respect to performance, incentives and intrinsic motivation are not necessarily antagonistic and are best considered simultaneously. Future research should consider using nonperformance criteria (e.g., well-being, job satisfaction) as well as applying the percent-of-maximum-possible (POMP) method in meta-analyses. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Mariner 9 propulsion subsystem performance during interplanetary cruise and Mars orbit insertion
NASA Technical Reports Server (NTRS)
Cork, M. J.; French, R. L.; Leising, C. J.; Schmit, D. D.
1972-01-01
On 14 November 1971 the Mariner 9 1334-N-(300-lbf)-thrust rocket engine was fired for just over 15 min to place the first man-made satellite into orbit about Mars. Propulsion subsystem data gathered during the 5-month interplanetary cruise and orbit insertion are of significance to future missions of this type. Specific results related to performance predictability, zero g heat transfer, and nitrogen permeation, diffusion, and solubility values are presented.
Pressure control and analysis report: Hydrogen Thermal Test Article (HTTA)
NASA Technical Reports Server (NTRS)
1971-01-01
Tasks accomplished during the HTTA Program study period included: (1) performance of a literature review to provide system guidelines; (2) development of analytical procedures needed to predict system performance; (3) design and analysis of the HTTA pressurization system considering (a) future utilization of results in the design of a spacecraft maneuvering system propellant package, (b) ease of control and operation, (c) system safety, and (d) hardware cost; and (4) making conclusions and recommendations for systems design.
Global Trends and Future Warfare (Strategic Insights. Special Issue, October 2011)
2011-10-01
CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ...cyberspace are constructed .33 In the early 1970s Daniel Bell in The Coming of Post- Industrial Society predicted something like this when he wrote of...ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School,Center on Contemporary Conflict,Monterey,CA,93943 8. PERFORMING ORGANIZATION REPORT
Energy efficient engine: Propulsion system-aircraft integration evaluation
NASA Technical Reports Server (NTRS)
Owens, R. E.
1979-01-01
Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.
Nonparametric predictive inference for combining diagnostic tests with parametric copula
NASA Astrophysics Data System (ADS)
Muhammad, Noryanti; Coolen, F. P. A.; Coolen-Maturi, T.
2017-09-01
Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine and health care. The Receiver Operating Characteristic (ROC) curve is a popular statistical tool for describing the performance of diagnostic tests. The area under the ROC curve (AUC) is often used as a measure of the overall performance of the diagnostic test. In this paper, we interest in developing strategies for combining test results in order to increase the diagnostic accuracy. We introduce nonparametric predictive inference (NPI) for combining two diagnostic test results with considering dependence structure using parametric copula. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only a few modelling assumptions. While copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. In this research, we estimate the copula density using a parametric method which is maximum likelihood estimator (MLE). We investigate the performance of this proposed method via data sets from the literature and discuss results to show how our method performs for different family of copulas. Finally, we briefly outline related challenges and opportunities for future research.
Working memory involved in predicting future outcomes based on past experiences.
Dretsch, Michael N; Tipples, Jason
2008-02-01
Deficits in working memory have been shown to contribute to poor performance on the Iowa Gambling Task [IGT: Bechara, A., & Martin, E.M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18, 152-162]. Similarly, a secondary memory load task has been shown to impair task performance [Hinson, J., Jameson, T. & Whitney, P. (2002). Somatic markers, working memory, and decision making. Cognitive, Affective, & Behavioural Neuroscience, 2, 341-353]. In the present study, we investigate whether the latter findings were due to increased random responding [Franco-Watkins, A. M., Pashler, H., & Rickard, T. C. (2006). Does working memory load lead to greater impulsivity? Commentary on Hinson, Jameson, and Whitney's (2003). Journal of Experimental Psychology: Learning, Memory & Cognition, 32, 443-447]. Participants were tested under Low Working Memory (LWM; n=18) or High Working Memory (HWM; n=17) conditions while performing the Reversed IGT in which punishment was immediate and reward delayed [Bechara, A., Dolan, S., & Hindes, A. (2002). Decision making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690-1705]. In support of a role for working memory in emotional decision making, compared to the LWM condition, participants in the HWM condition made significantly greater number of disadvantageous selections than that predicted by chance. Performance by the HWM group could not be fully explained by random responding.
Prediction of anthropometric accommodation in aircraft cockpits
NASA Astrophysics Data System (ADS)
Zehner, Gregory Franklin
Designing aircraft cockpits to accommodate the wide range of body sizes existing in the U.S. population has always been a difficult problem for Crewstation Engineers. The approach taken in the design of military aircraft has been to restrict the range of body sizes allowed into flight training, and then to develop standards and specifications to ensure that the majority of the pilots are accommodated. Accommodation in this instance is defined as the ability to: (1) Adequately see, reach, and actuate controls; (2) Have external visual fields so that the pilot can see to land, clear for other aircraft, and perform a wide variety of missions (ground support/attack or air to air combat); and (3) Finally, if problems arise, the pilot has to be able to escape safely. Each of these areas is directly affected by the body size of the pilot. Unfortunately, accommodation problems persist and may get worse. Currently the USAF is considering relaxing body size entrance requirements so that smaller and larger people could become pilots. This will make existing accommodation problems much worse. This dissertation describes a methodology for correcting this problem and demonstrates the method by predicting pilot fit and performance in the USAF T-38A aircraft based on anthropometric data. The methods described can be applied to a variety of design applications where fitting the human operator into a system is a major concern. A systematic approach is described which includes: defining the user population, setting functional requirements that operators must be able to perform, testing the ability of the user population to perform the functional requirements, and developing predictive equations for selecting future users of the system. Also described is a process for the development of new anthropometric design criteria and cockpit design methods that assure body size accommodation is improved in the future.
The fate of threatened coastal dune habitats in Italy under climate change scenarios.
Prisco, Irene; Carboni, Marta; Acosta, Alicia T R
2013-01-01
Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.
The Fate of Threatened Coastal Dune Habitats in Italy under Climate Change Scenarios
Prisco, Irene; Carboni, Marta; Acosta, Alicia T. R.
2013-01-01
Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an “indirect” plant-species-based one and a simple “direct” one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the “direct” approach was unsatisfactory, “indirect” models had a good predictive performance, highlighting the importance of using species’ responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats’ distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future. PMID:23874787
NASA Technical Reports Server (NTRS)
Atlas, Robert
2004-01-01
The lack of adequate observational data continues to be recognized as a major factor limiting both atmospheric research and numerical prediction on a variety of temporal and spatial scales. Since the advent of meteorological satellites in the 1960's, a considerable research effort has been directed toward the design of space-borne meteorological sensors, the development of optimal methods for the utilization of these data, (and an assessment of the influence of existing satellite data and the potential influence of future satellite observations on numerical weather prediction. This has included both Observing System Experiments (OSEs) and Observing System Simulation Experiments (OSSEs). OSEs are conducted to evaluate the impact of specific observations or classes of observations on analyses and forecasts. While OSEs are performed with existing data, OSSEs are conducted to evaluate the potential for future observing systems to improve-NWP, as well as to evaluate trade-offs in observing system design, and to develop and test improved methods for data assimilation. At the conference, results from OSEs to evaluate satellite data sets that have recently become available to the global observing system, such as AIRS and Seawinds, and results from OSSEs to determine the potential impact of space-based lidar winds will be presented.
NASA Technical Reports Server (NTRS)
Zorumski, W. E.
1983-01-01
Analytic propeller noise prediction involves a sequence of computations culminating in the application of acoustic equations. The prediction sequence currently used by NASA in its ANOPP (aircraft noise prediction) program is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the actual noise prediction, based on data from the first group. Deterministic predictions of periodic thickness and loading noise are made using Farassat's time-domain methods. Broadband noise is predicted by the semi-empirical Schlinker-Amiet method. Near-field predictions of fuselage surface pressures include the effects of boundary layer refraction and (for a cylinder) scattering. Far-field predictions include atmospheric and ground effects. Experimental data from subsonic and transonic propellers are compared and NASA's future direction is propeller noise technology development are indicated.
Hartnell, Chad A; Kinicki, Angelo J; Lambert, Lisa Schurer; Fugate, Mel; Doyle Corner, Patricia
2016-06-01
This study examines the nature of the interaction between CEO leadership and organizational culture using 2 common metathemes (task and relationship) in leadership and culture research. Two perspectives, similarity and dissimilarity, offer competing predictions about the fit, or interaction, between leadership and culture and its predicted effect on firm performance. Predictions for the similarity perspective draw upon attribution theory and social identity theory of leadership, whereas predictions for the dissimilarity perspective are developed based upon insights from leadership contingency theories and the notion of substitutability. Hierarchical regression results from 114 CEOs and 324 top management team (TMT) members failed to support the similarity hypotheses but revealed broad support for the dissimilarity predictions. Findings suggest that culture can serve as a substitute for leadership when leadership behaviors are redundant with cultural values (i.e., they both share a task- or relationship-oriented focus). Findings also support leadership contingency theories indicating that CEO leadership is effective when it provides psychological and motivational resources lacking in the organization's culture. We discuss theoretical and practical implications and delineate directions for future research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Fatima, Iram; Fahim, Muhammad; Lee, Young-Koo; Lee, Sungyoung
2013-01-01
In recent years, activity recognition in smart homes is an active research area due to its applicability in many applications, such as assistive living and healthcare. Besides activity recognition, the information collected from smart homes has great potential for other application domains like lifestyle analysis, security and surveillance, and interaction monitoring. Therefore, discovery of users common behaviors and prediction of future actions from past behaviors become an important step towards allowing an environment to provide personalized service. In this paper, we develop a unified framework for activity recognition-based behavior analysis and action prediction. For this purpose, first we propose kernel fusion method for accurate activity recognition and then identify the significant sequential behaviors of inhabitants from recognized activities of their daily routines. Moreover, behaviors patterns are further utilized to predict the future actions from past activities. To evaluate the proposed framework, we performed experiments on two real datasets. The results show a remarkable improvement of 13.82% in the accuracy on average of recognized activities along with the extraction of significant behavioral patterns and precise activity predictions with 6.76% increase in F-measure. All this collectively help in understanding the users” actions to gain knowledge about their habits and preferences. PMID:23435057
Arc Jet Testing of Carbon Phenolic for Mars Sample Return and Future NASA Missions
NASA Technical Reports Server (NTRS)
Laub, Bernard; Chen, Yih-Kanq; Skokova, Kristina; Delano, Chad
2004-01-01
The objective of the Mars Sample Return (MSR) Mission is to return a sample of MArtian soil to Earth. The Earth Entry Vehicle (EEV) brings te samples through the atmosphere to the ground.The program aims to: Model aerothermal environment during EEV flight; On the basis of results, select potential TPS materials for EEV forebody; Fabricate TPS materials; Test the materials in the arc jet environment representative of predicted flight environment;Evaluate material performance; Compare results of modeling predictions with test results.
NASA Astrophysics Data System (ADS)
Tang, Jie; Liu, Rong; Zhang, Yue-Li; Liu, Mou-Ze; Hu, Yong-Fang; Shao, Ming-Jie; Zhu, Li-Jun; Xin, Hua-Wen; Feng, Gui-Wen; Shang, Wen-Jun; Meng, Xiang-Guang; Zhang, Li-Rong; Ming, Ying-Zi; Zhang, Wei
2017-02-01
Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to compare the performance of multiple linear regression (MLR) and eight machine learning techniques in pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese cohort. A total of 1,045 renal transplant patients were recruited, 80% of which were randomly selected as the “derivation cohort” to develop dose-prediction algorithm, while the remaining 20% constituted the “validation cohort” to test the final selected algorithm. MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied and their performances were compared in this work. Among all the machine learning models, RT performed best in both derivation [0.71 (0.67-0.76)] and validation cohorts [0.73 (0.63-0.82)]. In addition, the ideal rate of RT was 4% higher than that of MLR. To our knowledge, this is the first study to use machine learning models to predict TSD, which will further facilitate personalized medicine in tacrolimus administration in the future.
Activated Carbon Fibers For Gas Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D; Contescu, Cristian I; Gallego, Nidia C
The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability ofmore » NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.« less
Hantke, Nathan; Nielson, Kristy A; Woodard, John L; Breting, Leslie M Guidotti; Butts, Alissa; Seidenberg, Michael; Carson Smith, J; Durgerian, Sally; Lancaster, Melissa; Matthews, Monica; Sugarman, Michael A; Rao, Stephen M
2013-01-01
Previous studies suggest that task-activated functional magnetic resonance imaging (fMRI) can predict future cognitive decline among healthy older adults. The present fMRI study examined the relative sensitivity of semantic memory (SM) versus episodic memory (EM) activation tasks for predicting cognitive decline. Seventy-eight cognitively intact elders underwent neuropsychological testing at entry and after an 18-month interval, with participants classified as cognitively "Stable" or "Declining" based on ≥ 1.0 SD decline in performance. Baseline fMRI scanning involved SM (famous name discrimination) and EM (name recognition) tasks. SM and EM fMRI activation, along with Apolipoprotein E (APOE) ε4 status, served as predictors of cognitive outcome using a logistic regression analysis. Twenty-seven (34.6%) participants were classified as Declining and 51 (65.4%) as Stable. APOE ε4 status alone significantly predicted cognitive decline (R(2) = .106; C index = .642). Addition of SM activation significantly improved prediction accuracy (R(2) = .285; C index = .787), whereas the addition of EM did not (R(2) = .212; C index = .711). In combination with APOE status, SM task activation predicts future cognitive decline better than EM activation. These results have implications for use of fMRI in prevention clinical trials involving the identification of persons at-risk for age-associated memory loss and Alzheimer's disease.
Subramony, Mahesh; Krause, Nicole; Norton, Jacqueline; Burns, Gary N
2008-07-01
It is commonly believed that human resource investments can yield positive performance-related outcomes for organizations. Utilizing the theory of organizational equilibrium (H. A. Simon, D. W. Smithburg, & V. A. Thompson, 1950; J. G. March & H. A. Simon, 1958), the authors proposed that organizational inducements in the form of competitive pay will lead to 2 firm-level performance outcomes--labor productivity and customer satisfaction--and that financially successful organizations would be more likely to provide these inducements to their employees. To test their hypotheses, the authors gathered employee-survey and objective performance data from a sample of 126 large publicly traded U.S. organizations over a period of 3 years. Results indicated that (a) firm-level financial performance (net income) predicted employees' shared perceptions of competitive pay, (b) shared pay perceptions predicted future labor productivity, and (c) the relationship between shared pay perceptions and customer satisfaction was fully mediated by employee morale.
Improving fast-ion confinement in high-performance discharges by suppressing Alfvén eigenmodes
Kramer, Geritt J.; Podestà, Mario; Holcomb, Christopher; ...
2017-03-28
Here, we show that the degradation of fast-ion confinement in steady-state DIII-D discharges is quantitatively consistent with predictions based on the effects of multiple unstable Alfven eigenmodes on beam-ion transport. Simulation and experiment show that increasing the radius where the magnetic safety factor has its minimum is effective in minimizing beam-ion transport. This is favorable for achieving high performance steady-state operation in DIII-D and future reactors. A comparison between the experiments and a critical gradient model, in which only equilibrium profiles were used to predict the most unstable modes, show that in a number of cases this model reproduces themore » measured neutron rate well.« less
Treadway, Darren C; Ferris, Gerald R; Hochwarter, Wayne; Perrewé, Pamela; Witt, L A; Goodman, Joseph M
2005-09-01
This research examined the interaction of organizational politics perceptions and employee age on job performance in 3 studies. On the basis of conservation of resources theory, the authors predicted that perceptions of politics would demonstrate their most detrimental effects on job performance for older workers. Results across the 3 studies provided strong support for the hypothesis that increases in politics perceptions are associated with decreases in job performance for older employees and that perceptions of politics do not affect younger employees' performance. Implications of these results, strengths and limitations, and directions for future research are discussed. Copyright 2005 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.
2012-01-01
At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.
Hettige, Nuwan C; Nguyen, Thai Binh; Yuan, Chen; Rajakulendran, Thanara; Baddour, Jermeen; Bhagwat, Nikhil; Bani-Fatemi, Ali; Voineskos, Aristotle N; Mallar Chakravarty, M; De Luca, Vincenzo
2017-07-01
Suicide is a major concern for those afflicted by schizophrenia. Identifying patients at the highest risk for future suicide attempts remains a complex problem for psychiatric interventions. Machine learning models allow for the integration of many risk factors in order to build an algorithm that predicts which patients are likely to attempt suicide. Currently it is unclear how to integrate previously identified risk factors into a clinically relevant predictive tool to estimate the probability of a patient with schizophrenia for attempting suicide. We conducted a cross-sectional assessment on a sample of 345 participants diagnosed with schizophrenia spectrum disorders. Suicide attempters and non-attempters were clearly identified using the Columbia Suicide Severity Rating Scale (C-SSRS) and the Beck Suicide Ideation Scale (BSS). We developed four classification algorithms using a regularized regression, random forest, elastic net and support vector machine models with sociocultural and clinical variables as features to train the models. All classification models performed similarly in identifying suicide attempters and non-attempters. Our regularized logistic regression model demonstrated an accuracy of 67% and an area under the curve (AUC) of 0.71, while the random forest model demonstrated 66% accuracy and an AUC of 0.67. Support vector classifier (SVC) model demonstrated an accuracy of 67% and an AUC of 0.70, and the elastic net model demonstrated and accuracy of 65% and an AUC of 0.71. Machine learning algorithms offer a relatively successful method for incorporating many clinical features to predict individuals at risk for future suicide attempts. Increased performance of these models using clinically relevant variables offers the potential to facilitate early treatment and intervention to prevent future suicide attempts. Copyright © 2017 Elsevier Inc. All rights reserved.
Zink, Davor N; Miller, Justin B; Caldwell, Jessica Z K; Bird, Christopher; Banks, Sarah J
2018-06-01
Tests of visuospatial function are often administered in comprehensive neuropsychological evaluations. These tests are generally considered assays of parietal lobe function; however, the neural correlates of these tests, using modern imaging techniques, are not well understood. In the current study we investigated the relationship between three commonly used tests of visuospatial function and lobar cortical thickness in each hemisphere. Data from 374 patients who underwent a neuropsychological evaluation and MRI scans in an outpatient dementia clinic were included in the analysis. We examined the relationships between cortical thickness, as assessed with Freesurfer, and performance on three tests: Judgment of Line Orientation (JoLO), Block Design (BD) from the Fourth edition of the Wechsler Adult Intelligence Scale, and Brief Visuospatial Memory Test-Revised Copy Trial (BVMT-R-C) in patients who showed overall average performance on these tasks. Using a series of multiple regression models, we assessed which lobe's overall cortical thickness best predicted test performance. Among the individual lobes, JoLO performance was best predicted by cortical thickness in the right temporal lobe. BD performance was best predicted by cortical thickness in the right parietal lobe, and BVMT-R-C performance was best predicted by cortical thickness in the left parietal lobe. Performance on constructional tests of visuospatial function appears to correspond best with underlying cortical thickness of the parietal lobes, while performance on visuospatial judgment tests appears to correspond best to temporal lobe thickness. Future research using voxel-wise and connectivity techniques and including more diverse samples will help further understanding of the regions and networks involved in visuospatial tests.
Flexibility decline contributes to similarity of past and future thinking in Alzheimer's disease.
El Haj, Mohamad; Antoine, Pascal; Kapogiannis, Dimitrios
2015-11-01
A striking similarity has been suggested between past and future thinking in Alzheimer's Disease (AD), a similarity attributable to abnormalities in common modular cognitive functions and neuroanatomical substrates. This study extends this literature by identifying specific executive function deficits underlying past and future thinking in AD. Twenty-four participants with a clinical diagnosis of probable (mild) AD and 26 older controls generated past and future events and underwent tests of binding and the executive functions of flexibility, inhibition, and updating. AD patients showed similar autobiographical performances in past and future event generation, and so did control participants. In each group, the similarity of past and future thinking was predicted by flexibility. Furthermore, AD patients with low flexibility showed higher similarity of past and future thinking than those with high flexibility. These findings are interpreted in terms of involvement of the hippocampus and frontal lobes in future thinking. Deficits in these brain regions in AD are likely to compromise the ability to recombine episodic information into novel and flexible configurations as scenarios for the future. © 2015 Wiley Periodicals, Inc.
Flexibility Decline Contributes to Similarity of Past and Future Thinking in Alzheimer’s Disease
El Haj, Mohamad; Antoine, Pascal; Kapogiannis, Dimitrios
2017-01-01
A striking similarity has been suggested between past and future thinking in Alzheimer’s Disease (AD), a similarity attributable to abnormalities in common modular cognitive functions and neuroanatomical substrates. This study extends this literature by identifying specific executive function deficits underlying past and future thinking in AD. Twenty-four participants with a clinical diagnosis of probable (mild) AD and 26 older controls generated past and future events and underwent tests of binding and the executive functions of flexibility, inhibition, and updating. AD patients showed similar autobiographical performances in past and future event generation, and so did control participants. In each group, the similarity of past and future thinking was predicted by flexibility. Furthermore, AD patients with low flexibility showed higher similarity of past and future thinking than those with high flexibility. These findings are interpreted in terms of involvement of the hippocampus and frontal lobes in future thinking. Deficits in these brain regions in AD are likely to compromise the ability to recombine episodic information into novel and flexible configurations as scenarios for the future. PMID:25850800
Data Analytics in Procurement Fraud Prevention
2014-05-30
Certified Fraud Examiners CAC common access card COR contracting officer’s representative CPAR Contractor Performance Assessment Reporting System DCAA...using analytics to predict patterns occurring in known credit card fraud investigations to prevent future schemes before they happen. The goal of...or iTunes . 4. Distributional Analytics Distributional analytics are used to detect anomalies within data. Through the use of distributional
Laser line scan performance prediction
NASA Astrophysics Data System (ADS)
Mahoney, Kevin L.; Schofield, Oscar; Kerfoot, John; Giddings, Tom; Shirron, Joe; Twardowski, Mike
2007-09-01
The effectiveness of sensors that use optical measurements for the laser detection and identification of subsurface mines is directly related to water clarity. The primary objective of the work presented here was to use the optical data collected by UUV (Slocum Glider) surveys of an operational areas to estimate the performance of an electro-optical identification (EOID) Laser Line Scan (LLS) system during RIMPAC 06, an international naval exercise off the coast of Hawaii. Measurements of optical backscattering and beam attenuation were made with a Wet Labs, Inc. Scattering Absorption Meter (SAM), mounted on a Rutgers University/Webb Research Slocum glider. The optical data universally indicated extremely clear water in the operational area, except very close to shore. The beam-c values from the SAM sensor were integrated to three attenuation lengths to provide an estimate of how well the LLS would perform in detecting and identifying mines in the operational areas. Additionally, the processed in situ optical data served as near-real-time input to the Electro-Optic Detection Simulator, ver. 3 (EODES-3; Metron, Inc.) model for EOID performance prediction. Both methods of predicting LLS performance suggested a high probability of detection and probability of identification. These predictions were validated by the actual performance of the LLS as the EOID system yielded imagery from which reliable mine identification could be made. Future plans include repeating this work in more optically challenging water types to demonstrate the utility of pre-mission UUV surveys of operational areas as a tactical decision aid for planning EOID missions.
Does ADHD in adults affect the relative accuracy of metamemory judgments?
Knouse, Laura E; Paradise, Matthew J; Dunlosky, John
2006-11-01
Prior research suggests that individuals with ADHD overestimate their performance across domains despite performing more poorly in these domains. The authors introduce measures of accuracy from the larger realm of judgment and decision making--namely, relative accuracy and calibration--to the study of self-evaluative judgment accuracy in adults with ADHD. Twenty-eight adults with ADHD and 28 matched controls participate in a computer-administered paired-associate learning task and predict their future recall using immediate and delayed judgments of learning (JOLs). Retrospective confidence judgments are also collected. Groups perform equally in terms of judgment magnitude and absolute judgment accuracy as measured by discrepancy scores and calibration curves. Both groups benefit equally from making their JOL at a delay, and the group with ADHD show higher relative accuracy for delayed judgments. Results suggest that under certain circumstances, adults with ADHD can make accurate judgments about their future memory.
Ballhausen, Nicola; Mahy, Caitlin E V; Hering, Alexandra; Voigt, Babett; Schnitzspahn, Katharina M; Lagner, Prune; Ihle, Andreas; Kliegel, Matthias
2017-01-01
A minimal amount of research has examined the cognitive predictors of children's performance in naturalistic, errand-type planning tasks such as the Zoo Map task of the Behavioral Assessment of the Dysexecutive Syndrome for Children (BADS-C). Thus, the current study examined prospection (i.e., the ability to remember to carry out a future intention), executive functioning, and intelligence markers as predictors of performance in this widely used naturalistic planning task in 56 children aged 7- to 12-years-old. Measures of planning, prospection, inhibition, crystallized intelligence, and fluid intelligence were collected in an individual differences study. Regression analyses showed that prospection (rather than traditional measures of intelligence or inhibition) predicted planning, suggesting that naturalistic planning tasks such as the Zoo Map task may rely on future-oriented cognitive processes rather than executive problem solving or general knowledge.
The Effects of Long-Duration Spaceflight on Training Retention and Transfer
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Healy, Alice; Dempsey, Donna L.; McGuire, Kerry M.; Landon, Lauren B.
2018-01-01
Training our crew members for long duration, exploration-class missions will have to maximize long-term retention and transfer of the trained skills. The expected duration of the missions, our inability to predict all the possible tasks the crew will be called upon to perform, and the low training-to-mission time ratio require that the training be maximally effective such that the skills acquired during training will be retained and will be transferrable across a wide range of specific tasks that are different from the particular tasks used during training. However, to be able to design training that can achieve these ambitious goals, we must first understand the ways in which long-duration spaceflight affects training retention and transfer. Current theories of training retention and transfer are largely based on experimental studies conducted at university laboratories using undergraduate students as participants. Furthermore, all such studies have been conducted on Earth. We do not know how well the results of these studies predict the performance of crew members. More specifically, we do not know how well the results of these studies predict the performance of crew members in space and especially during long-duration missions. To address this gap in our knowledge, the current on-going study seeks to test the null hypothesis that performance of university undergraduate students on Earth on training retention and transfer tests do in fact predict accurately the performance of crew members during long-duration spaceflights. To test this hypothesis, the study employs a single 16-month long experimental protocol with 3 different participant groups: undergraduate university students, crew members on the ground, and crew members in space. Results from this study will be presented upon its completion. This poster presents results of study trials of the two tasks used in this study: a data entry task and a mapping task. By researching established training principles, by examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
The Effects of Long-Duration Spaceflight on Training Retention and Transfer
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Healy, Alice; Dempsey, Donna L.; Mcguire, Kerry; Landon, Lauren
2017-01-01
Training our crew members for long duration, exploration-class missions will have to maximize long-term retention and transfer of the trained skills. The expected duration of the missions, our inability to predict all the possible tasks the crew will be called upon to perform, and the low training-to-mission time ratio require that the training be maximally effective such that the skills acquired during training will be retained and will be transferrable across a wide range of specific tasks that are different from the particular tasks used during training. However, to be able to design training that can achieve these ambitious goals, we must first understand the ways in which long-duration spaceflight affects training retention and transfer. Current theories of training retention and transfer are largely based on experimental studies conducted at university laboratories using undergraduate students as participants. Furthermore, all such studies have been conducted on Earth. We do not know how well the results of these studies predict the performance of crew members. More specifically, we do not know how well the results of these studies predict the performance of crew members in space and especially during long-duration missions. To address this gap in our knowledge, the current on-going study seeks to test the null hypothesis that performance of university undergraduate students on Earth on training retention and transfer tests do in fact predict accurately the performance of crew members during long-duration spaceflights. To test this hypothesis, the study employs a single 16-month long experimental protocol with 3 different participant groups: undergraduate university students, crew members on the ground, and crew members in space. Results from this study will be presented upon its completion. This poster presents results of study trials of the two tasks used in this study: a data entry task and a mapping task. By researching established training principles, by examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
Performance assessment of a Bayesian Forecasting System (BFS) for real-time flood forecasting
NASA Astrophysics Data System (ADS)
Biondi, D.; De Luca, D. L.
2013-02-01
SummaryThe paper evaluates, for a number of flood events, the performance of a Bayesian Forecasting System (BFS), with the aim of evaluating total uncertainty in real-time flood forecasting. The predictive uncertainty of future streamflow is estimated through the Bayesian integration of two separate processors. The former evaluates the propagation of input uncertainty on simulated river discharge, the latter computes the hydrological uncertainty of actual river discharge associated with all other possible sources of error. A stochastic model and a distributed rainfall-runoff model were assumed, respectively, for rainfall and hydrological response simulations. A case study was carried out for a small basin in the Calabria region (southern Italy). The performance assessment of the BFS was performed with adequate verification tools suited for probabilistic forecasts of continuous variables such as streamflow. Graphical tools and scalar metrics were used to evaluate several attributes of the forecast quality of the entire time-varying predictive distributions: calibration, sharpness, accuracy, and continuous ranked probability score (CRPS). Besides the overall system, which incorporates both sources of uncertainty, other hypotheses resulting from the BFS properties were examined, corresponding to (i) a perfect hydrological model; (ii) a non-informative rainfall forecast for predicting streamflow; and (iii) a perfect input forecast. The results emphasize the importance of using different diagnostic approaches to perform comprehensive analyses of predictive distributions, to arrive at a multifaceted view of the attributes of the prediction. For the case study, the selected criteria revealed the interaction of the different sources of error, in particular the crucial role of the hydrological uncertainty processor when compensating, at the cost of wider forecast intervals, for the unreliable and biased predictive distribution resulting from the Precipitation Uncertainty Processor.
Hancock, Laura; Correia, Stephen; Ahern, David; Barredo, Jennifer; Resnik, Linda
2017-07-01
Purpose The objectives were to 1) identify major cognitive domains involved in learning to use the DEKA Arm; 2) specify cognitive domain-specific skills associated with basic versus advanced users; and 3) examine whether baseline memory and executive function predicted learning. Method Sample included 35 persons with upper limb amputation. Subjects were administered a brief neuropsychological test battery prior to start of DEKA Arm training, as well as physical performance measures at the onset of, and following training. Multiple regression models controlling for age and including neuropsychological tests were developed to predict physical performance scores. Prosthetic performance scores were divided into quartiles and independent samples t-tests compared neuropsychological test scores of advanced scorers and basic scorers. Baseline neuropsychological test scores were used to predict change in scores on physical performance measures across time. Results Cognitive domains of attention and processing speed were statistically significantly related to proficiency of DEKA Arm use and predicted level of proficiency. Conclusions Results support use of neuropsychological tests to predict learning and use of a multifunctional prosthesis. Assessment of cognitive status at the outset of training may help set expectations for the duration and outcomes of treatment. Implications for Rehabilitation Cognitive domains of attention and processing speed were significantly related to level of proficiencyof an advanced multifunctional prosthesis (the DEKA Arm) after training. Results provide initial support for the use of neuropsychological tests to predict advanced learningand use of a multifunctional prosthesis in upper-limb amputees. Results suggest that assessment of patients' cognitive status at the outset of upper limb prosthetictraining may, in the future, help patients, their families and therapists set expectations for theduration and intensity of training and may help set reasonable proficiency goals.
Survey and Method for Determination of Trajectory Predictor Requirements
NASA Technical Reports Server (NTRS)
Rentas, Tamika L.; Green, Steven M.; Cate, Karen Tung
2009-01-01
A survey of air-traffic-management researchers, representing a broad range of automation applications, was conducted to document trajectory-predictor requirements for future decision-support systems. Results indicated that the researchers were unable to articulate a basic set of trajectory-prediction requirements for their automation concepts. Survey responses showed the need to establish a process to help developers determine the trajectory-predictor-performance requirements for their concepts. Two methods for determining trajectory-predictor requirements are introduced. A fast-time simulation method is discussed that captures the sensitivity of a concept to the performance of its trajectory-prediction capability. A characterization method is proposed to provide quicker, yet less precise results, based on analysis and simulation to characterize the trajectory-prediction errors associated with key modeling options for a specific concept. Concept developers can then identify the relative sizes of errors associated with key modeling options, and qualitatively determine which options lead to significant errors. The characterization method is demonstrated for a case study involving future airport surface traffic management automation. Of the top four sources of error, results indicated that the error associated with accelerations to and from turn speeds was unacceptable, the error associated with the turn path model was acceptable, and the error associated with taxi-speed estimation was of concern and needed a higher fidelity concept simulation to obtain a more precise result
Verges, Daniel P; Dani, Hasan; Sterling, William A; Weedon, Jeremy; Atallah, William; Mehta, Komal; Schreiber, David; Weiss, Jeffrey P; Karanikolas, Nicholas T
2017-01-01
Several studies suggest that a baseline prostate specific antigen (PSA) measured in young men predicts future risk of prostate cancer. Considering recent recommendations against PSA screening, high-risk populations (e.g. black men, men with a high baseline PSA) may be particularly vulnerable in the coming years. Thus, we investigated the relationship between baseline PSA and future prostate cancer in a black majority-minority urban population. A retrospective analysis was performed of the prostate biopsy database (n = 994) at the Brooklyn Veterans Affairs Hospital. These men were referred to urology clinic for elevated PSA and biopsied between 2007 and 2014. Multivariate logistic regression was used to predict positive prostate biopsy from log-transformed baseline PSA, race (black, white, or other), and several other variables. The majority of men identified as black (50.2%). Median age at time of baseline PSA and biopsy was 58.6 and 64.8, respectively. Median baseline PSA was similar among black men and white men (2.70 vs 2.91 for black men vs white men, p = 0.232). Even so, black men were more likely than white men to be diagnosed with prostate cancer (OR 1.62, p < 0.0001). Black men less than age 70 were at particularly greater risk than their white counterparts. Baseline PSA was not a statistically significant predictor of future prostate cancer (p = 0.101). Black men were more likely to be diagnosed with prostate cancer than were white men, despite comparable baseline PSA. In our pre-screened population at the urology clinic, a retrospective examination of baseline PSA did not predict future prostate cancer. Copyright © 2016 National Medical Association. Published by Elsevier Inc. All rights reserved.
Prediction and Prescription in Systems Modeling
1988-06-30
are so fascinated by prediction of the future -- whether achieved through horoscopes or otherwise. The future is our future, or at least the future...entirely true , has enormous import for public policy, and could have been inferred from textbook treatments of linear dynamic systems without any
A Proposed Study Program for the Enhancement of Performance of Clocks in the DCS Timing system.
1982-08-31
INTRODUCTION This technical note presents a proposed program of test and analysis with a goal of using prediction techniques to enhance the...future digital DCS and methods of satisfying them so that the reader will understand: (1) what is needed from this program to enhance the performance...over a number of years, using both simulation and analysis , have recommended that all major nodes of the DCS be referenced to Coordinated Universal Time
Electrolytic hydrogen production: An analysis and review
NASA Technical Reports Server (NTRS)
Evangelista, J.; Phillips, B.; Gordon, L.
1975-01-01
The thermodynamics of water electrolysis cells is presented, followed by a review of current and future technology of commercial cells. The irreversibilities involved are analyzed and the resulting equations assembled into a computer simulation model of electrolysis cell efficiency. The model is tested by comparing predictions based on the model to actual commercial cell performance, and a parametric investigation of operating conditions is performed. Finally, the simulation model is applied to a study of electrolysis cell dynamics through consideration of an ideal pulsed electrolyzer.
Holzer, Thomas L.
1998-01-01
This chapter contains two papers that summarize the performance of engineered earth structures, dams and stabilized excavations in soil, and two papers that characterize for engineering purposes the attenuation of ground motion with distance during the Loma Prieta earthquake. Documenting the field performance of engineered structures and confirming empirically based predictions of ground motion are critical for safe and cost effective seismic design of future structures as well as the retrofitting of existing ones.
Propeller flow visualization techniques
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.
1982-01-01
Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.
Gambling and the Reasoned Action Model: Predicting Past Behavior, Intentions, and Future Behavior.
Dahl, Ethan; Tagler, Michael J; Hohman, Zachary P
2018-03-01
Gambling is a serious concern for society because it is highly addictive and is associated with a myriad of negative outcomes. The current study applied the Reasoned Action Model (RAM) to understand and predict gambling intentions and behavior. Although prior studies have taken a reasoned action approach to understand gambling, no prior study has fully applied the RAM or used the RAM to predict future gambling. Across two studies the RAM was used to predict intentions to gamble, past gambling behavior, and future gambling behavior. In study 1 the model significantly predicted intentions and past behavior in both a college student and Amazon Mechanical Turk sample. In study 2 the model predicted future gambling behavior, measured 2 weeks after initial measurement of the RAM constructs. This study stands as the first to show the utility of the RAM in predicting future gambling behavior. Across both studies, attitudes and perceived normative pressure were the strongest predictors of intentions to gamble. These findings provide increased understanding of gambling and inform the development of gambling interventions based on the RAM.
Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan; Duran, Adam; Gonder, Jeffrey
This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other threemore » as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.« less
Thermal and Alignment Analysis of the Instrument-Level ATLAS Thermal Vacuum Test
NASA Technical Reports Server (NTRS)
Bradshaw, Heather
2012-01-01
This paper describes the thermal analysis and test design performed in preparation for the ATLAS thermal vacuum test. NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be flown as the sole instrument aboard the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). It will be used to take measurements of topography and ice thickness for Arctic and Antarctic regions, providing crucial data used to predict future changes in worldwide sea levels. Due to the precise measurements ATLAS is taking, the laser altimeter has very tight pointing requirements. Therefore, the instrument is very sensitive to temperature-induced thermal distortions. For this reason, it is necessary to perform a Structural, Thermal, Optical Performance (STOP) analysis not only for flight, but also to ensure performance requirements can be operationally met during instrument-level thermal vacuum testing. This paper describes the thermal model created for the chamber setup, which was used to generate inputs for the environmental STOP analysis. This paper also presents the results of the STOP analysis, which indicate that the test predictions adequately replicate the thermal distortions predicted for flight. This is a new application of an existing process, as STOP analyses are generally performed to predict flight behavior only. Another novel aspect of this test is that it presents the opportunity to verify pointing results of a STOP model, which is not generally done. It is possible in this case, however, because the actual pointing will be measured using flight hardware during thermal vacuum testing and can be compared to STOP predictions.
PREDICTIVE MEASURES OF A RESIDENT'S PERFORMANCE ON WRITTEN ORTHOPAEDIC BOARD SCORES
Dyrstad, Bradley W; Pope, David; Milbrandt, Joseph C; Beck, Ryan T; Weinhoeft, Anita L.; Idusuyi, Osaretin B
2011-01-01
Objective Residency programs are continually attempting to predict the performance of both current and potential residents. Previous studies have supported the use of USMLE Steps 1 and 2 as predictors of Orthopaedic In-Training Examination (OITE) and eventual American Board of Orthopaedic Surgery success, while others show no significant correlation. A strong performance on OITE examinations does correlate with strong residency performance, and some believe OITE scores are good predictors of future written board success. The current study was designed to examine potential differences in resident assessment measures and their predictive value for written boards. Design/Methods A retrospective review of resident performance data was performed for the past 10 years. Personalized information was removed by the residency coordinator. USMLE Step 1, USMLE Step 2, Orthopaedic In-Training Examination (from first to fifth years of training), and written orthopaedic specialty board scores were collected. Subsequently, the residents were separated into two groups, those scoring above the 35th percentile on written boards and those scoring below. Data were analyzed using correlation and regression analyses to compare and contrast the scores across all tests. Results A significant difference was seen between the groups in regard to USMLE scores for both Step 1 and 2. Also, a significant difference was found between OITE scores for both the second and fifth years. Positive correlations were found for USMLE Step 1, Step 2, OITE 2 and OITE 5 when compared to performance on written boards. One resident initially failed written boards, but passed on the second attempt This resident consistently scored in the 20th and 30th percentiles on the in-training examinations. Conclusions USMLE Step 1 and 2 scores along with OITE scores are helpful in gauging an orthopaedic resident’s performance on written boards. Lower USMLE scores along with consistently low OITE scores likely identify residents at risk of failing their written boards. Close monitoring of the annual OITE scores is recommended and may be useful to identify struggling residents. Future work involving multiple institutions is warranted and would ensure applicability of our findings to other orthopedic residency programs. PMID:22096449
Can air temperature be used to project influences of climate change on stream temperature?
Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.
2014-01-01
Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.
Algorithms and the Future of Music Education: A Response to Shuler
ERIC Educational Resources Information Center
Thibeault, Matthew D.
2014-01-01
This article is a response to Shuler's 2001 article predicting the future of music education. The respondent assesses Shuler's predictions, finding that many have come true but critiquing Shuler's overall positive assessment. The respondent then goes on to make one prediction about the future of music education: that algorithms will…
NASA Technical Reports Server (NTRS)
Leonard, J. I.; Furukawa, S.; Vannordstrand, P. C.
1975-01-01
The use of automated, analytical techniques to aid medical support teams is suggested. Recommendations are presented for characterizing crew health in terms of: (1) wholebody function including physiological, psychological and performance factors; (2) a combination of critical performance indexes which consist of multiple factors of measurable parameters; (3) specific responses to low noise level stress tests; and (4) probabilities of future performance based on present and periodic examination of past performance. A concept is proposed for a computerized real time biomedical monitoring and health care system that would have the capability to integrate monitored data, detect off-nominal conditions based on current knowledge of spaceflight responses, predict future health status, and assist in diagnosis and alternative therapies. Mathematical models could play an important role in this approach, especially when operating in a real time mode. Recommendations are presented to update the present health monitoring systems in terms of recent advances in computer technology and biomedical monitoring systems.
NASA Technical Reports Server (NTRS)
Monk, Kevin J.; Roberts, Zachary
2017-01-01
In order to support the future expansion and integration of Unmanned Aircraft Systems (UAS), ongoing research efforts have sought to produce findings that inform the minimum display information elements required for acceptable UAS pilot response times and traffic avoidance. Previous simulations have revealed performance benefits associated with DAA displays containing predictive information and suggestive maneuver guidance tools in the form of banding. The present study investigated the impact of various maneuver guidance display configurations on detect-and-avoid (DAA) task performance in a simulated airspace environment. UAS pilots ability to maintain DAA well clear was compared between displays with either the presence or absence of green DAA bands, which indicated conflict-free flight regions. Additional display comparisons assessed pilots ability to regain DAA well clear with two different guidance presentations designed to aid in DAA well clear recovery during critical encounters. Performance implications and display considerations for future UAS DAA systems are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari
2009-11-15
Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R{sup 2} were used to evaluate performancemore » of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R{sup 2} confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.« less
Helicopter Rotor Noise Prediction: Background, Current Status, and Future Direction
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1997-01-01
Helicopter noise prediction is increasingly important. The purpose of this viewgraph presentation is to: 1) Put into perspective the recent progress; 2) Outline current prediction capabilities; 3) Forecast direction of future prediction research; 4) Identify rotorcraft noise prediction needs. The presentation includes an historical perspective, a description of governing equations, and the current status of source noise prediction.
Ng, Jacky Y. K.
2018-01-01
The shortage in Hong Kong of construction workers is expected to worsen in future due to the aging population and increasing construction activity. Construction work is dangerous and to help reduce the premature loss of construction workers due to work-related disabilities, this study measured the work ability of 420 Hong Kong construction workers with a Work Ability Index (WAI) which can be used to predict present and future work performance. Given the importance of WAI, in this study the effects of individual and work-related factors on WAI were examined to develop and validate a WAI model to predict how individual and work-related factors affect work ability. The findings will be useful for formulating a pragmatic intervention program to improve the work ability of construction workers and keep them in the work force. PMID:29758018
Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping.
Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad
2017-12-01
The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future sea ice conditions. Our results showed that, despite a general tendency toward less sea ice cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by sea ice blocking narrow passages. This will make sea ice forecasts on shorter time and space scales and Arctic weather prediction even more important.
Model identification of new heavy Z‧ bosons at ILC with polarized beams
NASA Astrophysics Data System (ADS)
Pankov, A. A.; Tsytrinov, A. V.
2017-12-01
Extra neutral gauge bosons, Z‧s, are predicted by many theoretical scenarios of physics beyond the Standard Model, and intensive searches for their signatures will be performed at present and future high energy colliders. It is quite possible that Z‧s are heavy enough to lie beyond the discovery reach expected at the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z‧ exchanges may occur at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We here discuss in this context the expected sensitivity to Z‧ parameters of fermion-pair production cross sections at the planned International Linear Collider (ILC), especially as regards the potential of distinguishing different Z‧ models once such deviations are observed. Specifically, we evaluate the discovery and identification reaches on Z‧ gauge bosons pertinent to the E 6, LR, ALR, and SSM classes of models at the ILC.
Gullo, Charles A.
2016-01-01
Biomedical programs have a potential treasure trove of data they can mine to assist admissions committees in identification of students who are likely to do well and help educational committees in the identification of students who are likely to do poorly on standardized national exams and who may need remediation. In this article, we provide a step-by-step approach that schools can utilize to generate data that are useful when predicting the future performance of current students in any given program. We discuss the use of linear regression analysis as the means of generating that data and highlight some of the limitations. Finally, we lament on how the combination of these institution-specific data sets are not being fully utilized at the national level where these data could greatly assist programs at large. PMID:27374246
Predicting fruit consumption: the role of habits, previous behavior and mediation effects
2014-01-01
Background This study assessed the role of habits and previous behavior in predicting fruit consumption as well as their additional predictive contribution besides socio-demographic and motivational factors. In the literature, habits are proposed as a stable construct that needs to be controlled for in longitudinal analyses that predict behavior. The aim of this study is to provide empirical evidence for the inclusion of either previous behavior or habits. Methods A random sample of 806 Dutch adults (>18 years) was invited by an online survey panel of a private research company to participate in an online study on fruit consumption. A longitudinal design (N = 574) was used with assessments at baseline and after one (T2) and two months (T3). Multivariate linear regression analysis was used to assess the differential value of habit and previous behavior in the prediction of fruit consumption. Results Eighty percent of habit strength could be explained by habit strength one month earlier, and 64% of fruit consumption could be explained by fruit consumption one month earlier. Regression analyses revealed that the model with motivational constructs explained 41% of the behavioral variance at T2 and 38% at T3. The addition of previous behavior and habit increased the explained variance up to 66% at T2 and to 59% at T3. Inclusion of these factors resulted in non-significant contributions of the motivational constructs. Furthermore, our findings showed that the effect of habit strength on future behavior was to a large extent mediated by previous behavior. Conclusions Both habit and previous behavior are important as predictors of future behavior, and as educational objectives for behavior change programs. Our results revealed less stability for the constructs over time than expected. Habit strength was to a large extent mediated by previous behavior and our results do not strongly suggest a need for the inclusion of both constructs. Future research needs to assess the conditions that determine direct influences of both previous behavior and habit, since these influences may differ per type of health behavior, per context stability in which the behavior is performed, and per time frame used for predicting future behavior. PMID:25037859
Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel
NASA Astrophysics Data System (ADS)
Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong
2018-04-01
A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.
The prediction of the hydrodynamic performance of tidal current turbines
NASA Astrophysics Data System (ADS)
Y Xiao, B.; Zhou, L. J.; Xiao, Y. X.; Wang, Z. W.
2013-12-01
Nowadays tidal current energy is considered to be one of the most promising alternative green energy resources and tidal current turbines are used for power generation. Prediction of the open water performance around tidal turbines is important for the reason that it can give some advice on installation and array of tidal current turbines. This paper presents numerical computations of tidal current turbines by using a numerical model which is constructed to simulate an isolated turbine. This paper aims at studying the installation of marine current turbine of which the hydro-environmental impacts influence by means of numerical simulation. Such impacts include free-stream velocity magnitude, seabed and inflow direction of velocity. The results of the open water performance prediction show that the power output and efficiency of marine current turbine varies from different marine environments. The velocity distribution should be clearly and the suitable unit installation depth and direction be clearly chosen, which can ensure the most effective strategy for energy capture before installing the marine current turbine. The findings of this paper are expected to be beneficial in developing tidal current turbines and array in the future.
Non-additive Effects in Genomic Selection
Varona, Luis; Legarra, Andres; Toro, Miguel A.; Vitezica, Zulma G.
2018-01-01
In the last decade, genomic selection has become a standard in the genetic evaluation of livestock populations. However, most procedures for the implementation of genomic selection only consider the additive effects associated with SNP (Single Nucleotide Polymorphism) markers used to calculate the prediction of the breeding values of candidates for selection. Nevertheless, the availability of estimates of non-additive effects is of interest because: (i) they contribute to an increase in the accuracy of the prediction of breeding values and the genetic response; (ii) they allow the definition of mate allocation procedures between candidates for selection; and (iii) they can be used to enhance non-additive genetic variation through the definition of appropriate crossbreeding or purebred breeding schemes. This study presents a review of methods for the incorporation of non-additive genetic effects into genomic selection procedures and their potential applications in the prediction of future performance, mate allocation, crossbreeding, and purebred selection. The work concludes with a brief outline of some ideas for future lines of that may help the standard inclusion of non-additive effects in genomic selection. PMID:29559995
Non-additive Effects in Genomic Selection.
Varona, Luis; Legarra, Andres; Toro, Miguel A; Vitezica, Zulma G
2018-01-01
In the last decade, genomic selection has become a standard in the genetic evaluation of livestock populations. However, most procedures for the implementation of genomic selection only consider the additive effects associated with SNP (Single Nucleotide Polymorphism) markers used to calculate the prediction of the breeding values of candidates for selection. Nevertheless, the availability of estimates of non-additive effects is of interest because: (i) they contribute to an increase in the accuracy of the prediction of breeding values and the genetic response; (ii) they allow the definition of mate allocation procedures between candidates for selection; and (iii) they can be used to enhance non-additive genetic variation through the definition of appropriate crossbreeding or purebred breeding schemes. This study presents a review of methods for the incorporation of non-additive genetic effects into genomic selection procedures and their potential applications in the prediction of future performance, mate allocation, crossbreeding, and purebred selection. The work concludes with a brief outline of some ideas for future lines of that may help the standard inclusion of non-additive effects in genomic selection.
The Deterministic Information Bottleneck
NASA Astrophysics Data System (ADS)
Strouse, D. J.; Schwab, David
2015-03-01
A fundamental and ubiquitous task that all organisms face is prediction of the future based on past sensory experience. Since an individual's memory resources are limited and costly, however, there is a tradeoff between memory cost and predictive payoff. The information bottleneck (IB) method (Tishby, Pereira, & Bialek 2000) formulates this tradeoff as a mathematical optimization problem using an information theoretic cost function. IB encourages storing as few bits of past sensory input as possible while selectively preserving the bits that are most predictive of the future. Here we introduce an alternative formulation of the IB method, which we call the deterministic information bottleneck (DIB). First, we argue for an alternative cost function, which better represents the biologically-motivated goal of minimizing required memory resources. Then, we show that this seemingly minor change has the dramatic effect of converting the optimal memory encoder from stochastic to deterministic. Next, we propose an iterative algorithm for solving the DIB problem. Additionally, we compare the IB and DIB methods on a variety of synthetic datasets, and examine the performance of retinal ganglion cell populations relative to the optimal encoding strategy for each problem.
Kaky, Emad; Gilbert, Francis
2017-01-01
Climate change is one of the most difficult of challenges to conserving biodiversity, especially for countries with few data on the distributions of their taxa. Species distribution modelling is a modern approach to the assessment of the potential effects of climate change on biodiversity, with the great advantage of being robust to small amounts of data. Taking advantage of a recently validated dataset, we use the medicinal plants of Egypt to identify hotspots of diversity now and in the future by predicting the effect of climate change on the pattern of species richness using species distribution modelling. Then we assess how Egypt's current Protected Area network is likely to perform in protecting plants under climate change. The patterns of species richness show that in most cases the A2a 'business as usual' scenario was more harmful than the B2a 'moderate mitigation' scenario. Predicted species richness inside Protected Areas was higher than outside under all scenarios, indicating that Egypt's PAs are well placed to help conserve medicinal plants.
Numerical Prediction of SERN Performance using WIND code
NASA Technical Reports Server (NTRS)
Engblom, W. A.
2003-01-01
Computational results are presented for the performance and flow behavior of single-expansion ramp nozzles (SERNs) during overexpanded operation and transonic flight. Three-dimensional Reynolds-Averaged Navier Stokes (RANS) results are obtained for two vehicle configurations, including the NASP Model 5B and ISTAR RBCC (a variant of X-43B) using the WIND code. Numerical predictions for nozzle integrated forces and pitch moments are directly compared to experimental data for the NASP Model 5B, and adequate-to-excellent agreement is found. The sensitivity of SERN performance and separation phenomena to freestream static pressure and Mach number is demonstrated via a matrix of cases for both vehicles. 3-D separation regions are shown to be induced by either lateral (e.g., sidewall) shocks or vertical (e.g., cowl trailing edge) shocks. Finally, the implications of this work to future preliminary design efforts involving SERNs are discussed.
Prediction of chemo-response in serous ovarian cancer.
Gonzalez Bosquet, Jesus; Newtson, Andreea M; Chung, Rebecca K; Thiel, Kristina W; Ginader, Timothy; Goodheart, Michael J; Leslie, Kimberly K; Smith, Brian J
2016-10-19
Nearly one-third of serous ovarian cancer (OVCA) patients will not respond to initial treatment with surgery and chemotherapy and die within one year of diagnosis. If patients who are unlikely to respond to current standard therapy can be identified up front, enhanced tumor analyses and treatment regimens could potentially be offered. Using the Cancer Genome Atlas (TCGA) serous OVCA database, we previously identified a robust molecular signature of 422-genes associated with chemo-response. Our objective was to test whether this signature is an accurate and sensitive predictor of chemo-response in serous OVCA. We first constructed prediction models to predict chemo-response using our previously described 422-gene signature that was associated with response to treatment in serous OVCA. Performance of all prediction models were measured with area under the curves (AUCs, a measure of the model's accuracy) and their respective confidence intervals (CIs). To optimize the prediction process, we determined which elements of the signature most contributed to chemo-response prediction. All prediction models were replicated and validated using six publicly available independent gene expression datasets. The 422-gene signature prediction models predicted chemo-response with AUCs of ~70 %. Optimization of prediction models identified the 34 most important genes in chemo-response prediction. These 34-gene models had improved performance, with AUCs approaching 80 %. Both 422-gene and 34-gene prediction models were replicated and validated in six independent datasets. These prediction models serve as the foundation for the future development and implementation of a diagnostic tool to predict response to chemotherapy for serous OVCA patients.
Risk prediction models of breast cancer: a systematic review of model performances.
Anothaisintawee, Thunyarat; Teerawattananon, Yot; Wiratkapun, Chollathip; Kasamesup, Vijj; Thakkinstian, Ammarin
2012-05-01
The number of risk prediction models has been increasingly developed, for estimating about breast cancer in individual women. However, those model performances are questionable. We therefore have conducted a study with the aim to systematically review previous risk prediction models. The results from this review help to identify the most reliable model and indicate the strengths and weaknesses of each model for guiding future model development. We searched MEDLINE (PubMed) from 1949 and EMBASE (Ovid) from 1974 until October 2010. Observational studies which constructed models using regression methods were selected. Information about model development and performance were extracted. Twenty-five out of 453 studies were eligible. Of these, 18 developed prediction models and 7 validated existing prediction models. Up to 13 variables were included in the models and sample sizes for each study ranged from 550 to 2,404,636. Internal validation was performed in four models, while five models had external validation. Gail and Rosner and Colditz models were the significant models which were subsequently modified by other scholars. Calibration performance of most models was fair to good (expected/observe ratio: 0.87-1.12), but discriminatory accuracy was poor to fair both in internal validation (concordance statistics: 0.53-0.66) and in external validation (concordance statistics: 0.56-0.63). Most models yielded relatively poor discrimination in both internal and external validation. This poor discriminatory accuracy of existing models might be because of a lack of knowledge about risk factors, heterogeneous subtypes of breast cancer, and different distributions of risk factors across populations. In addition the concordance statistic itself is insensitive to measure the improvement of discrimination. Therefore, the new method such as net reclassification index should be considered to evaluate the improvement of the performance of a new develop model.
Memory Concerns, Memory Performance and Risk of Dementia in Patients with Mild Cognitive Impairment
Wolfsgruber, Steffen; Wagner, Michael; Schmidtke, Klaus; Frölich, Lutz; Kurz, Alexander; Schulz, Stefanie; Hampel, Harald; Heuser, Isabella; Peters, Oliver; Reischies, Friedel M.; Jahn, Holger; Luckhaus, Christian; Hüll, Michael; Gertz, Hermann-Josef; Schröder, Johannes; Pantel, Johannes; Rienhoff, Otto; Rüther, Eckart; Henn, Fritz; Wiltfang, Jens; Maier, Wolfgang; Kornhuber, Johannes; Jessen, Frank
2014-01-01
Background Concerns about worsening memory (“memory concerns”; MC) and impairment in memory performance are both predictors of Alzheimer's dementia (AD). The relationship of both in dementia prediction at the pre-dementia disease stage, however, is not well explored. Refined understanding of the contribution of both MC and memory performance in dementia prediction is crucial for defining at-risk populations. We examined the risk of incident AD by MC and memory performance in patients with mild cognitive impairment (MCI). Methods We analyzed data of 417 MCI patients from a longitudinal multicenter observational study. Patients were classified based on presence (n = 305) vs. absence (n = 112) of MC. Risk of incident AD was estimated with Cox Proportional-Hazards regression models. Results Risk of incident AD was increased by MC (HR = 2.55, 95%CI: 1.33–4.89), lower memory performance (HR = 0.63, 95%CI: 0.56–0.71) and ApoE4-genotype (HR = 1.89, 95%CI: 1.18–3.02). An interaction effect between MC and memory performance was observed. The predictive power of MC was greatest for patients with very mild memory impairment and decreased with increasing memory impairment. Conclusions Our data suggest that the power of MC as a predictor of future dementia at the MCI stage varies with the patients' level of cognitive impairment. While MC are predictive at early stage MCI, their predictive value at more advanced stages of MCI is reduced. This suggests that loss of insight related to AD may occur at the late stage of MCI. PMID:25019225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tessum, C. W.; Hill, J. D.; Marshall, J. D.
We present results from and evaluate the performance of a 12-month, 12 km horizontal resolution year 2005 air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a volatility basis set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary modeling efforts used for regulatory and health-effects analysis, with an annual average daytime ozone (O 3) mean fractional bias (MFB) ofmore » 12% and an annual average fine particulate matter (PM 2.5) MFB of −1%. WRF-Chem, as configured here, tends to overpredict total PM 2.5 at some high concentration locations and generally overpredicts average 24 h O 3 concentrations. Performance is better at predicting daytime-average and daily peak O 3 concentrations, which are more relevant for regulatory and health effects analyses relative to annual average values. Predictive performance for PM 2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 36%), underpredicts particulate nitrate (MFB = −110%) and organic carbon (MFB = −29%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM 2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM 2.5 subspecies. Model predictive performance for PM 2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.« less
Tessum, C. W.; Hill, J. D.; Marshall, J. D.
2015-04-07
We present results from and evaluate the performance of a 12-month, 12 km horizontal resolution year 2005 air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a volatility basis set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary modeling efforts used for regulatory and health-effects analysis, with an annual average daytime ozone (O 3) mean fractional bias (MFB) ofmore » 12% and an annual average fine particulate matter (PM 2.5) MFB of −1%. WRF-Chem, as configured here, tends to overpredict total PM 2.5 at some high concentration locations and generally overpredicts average 24 h O 3 concentrations. Performance is better at predicting daytime-average and daily peak O 3 concentrations, which are more relevant for regulatory and health effects analyses relative to annual average values. Predictive performance for PM 2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB = 36%), underpredicts particulate nitrate (MFB = −110%) and organic carbon (MFB = −29%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM 2.5 predictions is to some extent a function of offsetting over- and underpredictions of PM 2.5 subspecies. Model predictive performance for PM 2.5 and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.« less
Doos, Lucy; Packer, Claire; Ward, Derek; Simpson, Sue; Stevens, Andrew
2016-03-10
Forecasting can support rational decision-making around the introduction and use of emerging health technologies and prevent investment in technologies that have limited long-term potential. However, forecasting methods need to be credible. We performed a systematic search to identify the methods used in forecasting studies to predict future health technologies within a 3-20-year timeframe. Identification and retrospective assessment of such methods potentially offer a route to more reliable prediction. Systematic search of the literature to identify studies reported on methods of forecasting in healthcare. People are not needed in this study. The authors searched MEDLINE, EMBASE, PsychINFO and grey literature sources, and included articles published in English that reported their methods and a list of identified technologies. Studies reporting methods used to predict future health technologies within a 3-20-year timeframe with an identified list of individual healthcare technologies. Commercially sponsored reviews, long-term futurology studies (with over 20-year timeframes) and speculative editorials were excluded. 15 studies met our inclusion criteria. Our results showed that the majority of studies (13/15) consulted experts either alone or in combination with other methods such as literature searching. Only 2 studies used more complex forecasting tools such as scenario building. The methodological fundamentals of formal 3-20-year prediction are consistent but vary in details. Further research needs to be conducted to ascertain if the predictions made were accurate and whether accuracy varies by the methods used or by the types of technologies identified. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
The Future of Satellite-based Lightning Detection
NASA Technical Reports Server (NTRS)
Bocippio, Dennis J.; Christian, Hugh J.; Arnold, James E. (Technical Monitor)
2001-01-01
The future of satellite-based optical lightning detection, beyond the end of the current TRMM mission, is discussed. Opportunities for new low-earth orbit missions are reviewed. The potential for geostationary observations is significant; such observations provide order-of-magnitude gains in sampling and data efficiency over existing satellite convective observations. The feasibility and performance (resolution, sensitivity) of geostationary measurements using current technology is discussed. In addition to direct and continuous hemispheric observation of lighting, geostationary measurements have the potential (through data assimilation) to dramatically improve short and medium range forecasts, offering benefits to prediction of NOx productions and/or vertical transport.
Nonlinear analyses of composite aerospace structures in sonic fatigue
NASA Technical Reports Server (NTRS)
Mei, Chuh
1993-01-01
This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.
Nonlinear analyses of composite aerospace structures in sonic fatigue
NASA Astrophysics Data System (ADS)
Mei, Chuh
1993-06-01
This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.
Composite measures for profiling hospitals on bariatric surgery performance
Dimick, Justin B.; Birkmeyer, Nancy J.; Finks, Jonathan F.; Share, David A.; English, Wayne J.; Carlin, Arthur M.; Birkmeyer, John D.
2014-01-01
Objective We sought to develop a novel composite measure for profiling hospital performance with bariatric surgery. Design, Setting, and Patients Using clinical registry data from the Michigan Bariatric Surgery Collaborative (MBSC), we studied all patients undergoing bariatric surgery from 2008 to 2010. For gastric bypass surgery, we used empirical Bayes techniques to create a composite measure by combining several measures, including serious complications, reoperations, and readmissions; hospital and surgeon volume; and outcomes with other, related procedures. Hospitals were ranked based on 2008-09 and placed in one of 3 groups: 3-star (top third), 2-star (middle third), and 1-star (bottom third). We assessed how well these ratings predicted outcomes in the next year (2010), compared to other widely used measures. Main Outcome Measures Risk-adjusted serious complications. Results Composite measures explained a larger proportion of hospital-level variation in serious complication rates with gastric bypass than other measures. For example, the composite measure explained 89% of the variation compared to only 28% for risk-adjusted complication rates alone. Composite measures also appeared better at predicting future performance compared to individual measures. When ranked on the composite measure, 1-star hospitals (bottom 20%), had 2-fold higher serious complication rates (4.6% vs. 2.4%; OR 2.0; 95% CI, 1.1 to 3.5) compared to 3-star (top 20%) hospitals. Differences in serious complications rates between 1-star and 3-star hospitals were much smaller when hospitals were ranked using serious complications (4.0% vs. 2.7%; OR 1.6; 95% CI, 0.8-2.9) and hospital volume (3.3% vs. 3.2%; OR 0.85; 95% CI, 0.4 to 1.7) Conclusions Composite measures are much better at explaining hospital-level variation in serious complications and predicting future performance than other approaches. In this preliminary study, it appears that such composite measures may be better than existing alternatives for profiling hospital performance with bariatric surgery. PMID:24132708
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yao; Balaprakash, Prasanna; Meng, Jiayuan
We present Raexplore, a performance modeling framework for architecture exploration. Raexplore enables rapid, automated, and systematic search of architecture design space by combining hardware counter-based performance characterization and analytical performance modeling. We demonstrate Raexplore for two recent manycore processors IBM Blue- Gene/Q compute chip and Intel Xeon Phi, targeting a set of scientific applications. Our framework is able to capture complex interactions between architectural components including instruction pipeline, cache, and memory, and to achieve a 3–22% error for same-architecture and cross-architecture performance predictions. Furthermore, we apply our framework to assess the two processors, and discover and evaluate a list ofmore » architectural scaling options for future processor designs.« less
NASA Technical Reports Server (NTRS)
Layland, J. W.
1974-01-01
An approximate analysis of the effect of a noisy carrier reference on the performance of sequential decoding is presented. The analysis uses previously developed techniques for evaluating noisy reference performance for medium-rate uncoded communications adapted to sequential decoding for data rates of 8 to 2048 bits/s. In estimating the ten to the minus fourth power deletion probability thresholds for Helios, the model agrees with experimental data to within the experimental tolerances. The computational problem involved in sequential decoding, carrier loop effects, the main characteristics of the medium-rate model, modeled decoding performance, and perspectives on future work are discussed.
Predicting performance: relative importance of students' background and past performance.
Stegers-Jager, Karen M; Themmen, Axel P N; Cohen-Schotanus, Janke; Steyerberg, Ewout W
2015-09-01
Despite evidence for the predictive value of both pre-admission characteristics and past performance at medical school, their relative contribution to predicting medical school performance has not been thoroughly investigated. This study was designed to determine the relative importance of pre-admission characteristics and past performance in medical school in predicting student performance in pre-clinical and clinical training. This longitudinal prospective study followed six cohorts of students admitted to a Dutch, 6-year, undergraduate medical course during 2002-2007 (n = 2357). Four prediction models were developed using multivariate logistic regression analysis. Main outcome measures were 'Year 1 course completion within 1 year' (models 1a, 1b), 'Pre-clinical course completion within 4 years' (model 2) and 'Achievement of at least three of five clerkship grades of ≥ 8.0' (model 3). Pre-admission characteristics (models 1a, 1b, 2, 3) and past performance at medical school (models 1b, 2, 3) were included as predictor variables. In model 1a - including pre-admission characteristics only - the strongest predictor for Year 1 course completion was pre-university grade point average (GPA). Success factors were 'selected by admission testing' and 'age > 21 years'; risk factors were 'Surinamese/Antillean background', 'foreign pre-university degree', 'doctor parent' and male gender. In model 1b, number of attempts and GPA at 4 months were the strongest predictors for Year 1 course completion, and male gender remained a risk factor. Year 1 GPA was the strongest predictor for pre-clinical course completion, whereas being male or aged 19-21 years were risk factors. Pre-clinical course GPA positively predicted clinical performance, whereas being non-Dutch or a first-generation university student were important risk factors for lower clinical grades. Nagelkerke's R(2) ranged from 0.16 to 0.62. This study not only confirms the importance of past performance as a predictor of future performance in pre-clinical training, but also reveals the importance of a student's background as a predictor in clinical training. These findings have important practical implications for selection and support during medical school. © 2015 John Wiley & Sons Ltd.
Predicting the names of the best teams after the knock-out phase of a cricket series.
Lemmer, Hermanus Hofmeyr
2014-01-01
Cricket players' performances can best be judged after a large number of matches had been played. For test or one-day international (ODI) players, career data are normally used to calculate performance measures. These are normally good indicators of future performances, although various factors influence the performance of a player in a specific match. It is often necessary to judge players' performances based on a small number of scores, e.g. to identify the best players after a short series of matches. The challenge then is to use the best available criteria in order to assess performances as accurately and fairly as possible. In the present study the results of the knock-out phase of an International Cricket Council (ICC) World Cup ODI Series are used to predict the names of the best teams by means of a suitably formulated logistic regression model. Despite using very sparse data, the methods used are reasonably successful. It is also shown that if the same technique is applied to career ratings, very good results are obtained.
Shah, Jai L.; Tandon, Neeraj; Keshavan, Matcheri S.
2016-01-01
Aim Accurate prediction of which individuals will go on to develop psychosis would assist early intervention and prevention paradigms. We sought to review investigations of prospective psychosis prediction based on markers and variables examined in longitudinal familial high-risk (FHR) studies. Methods We performed literature searches in MedLine, PubMed and PsycINFO for articles assessing performance characteristics of predictive clinical tests in FHR studies of psychosis. Studies were included if they reported one or more predictive variables in subjects at FHR for psychosis. We complemented this search strategy with references drawn from articles, reviews, book chapters and monographs. Results Across generations of familial high-risk projects, predictive studies have investigated behavioral, cognitive, psychometric, clinical, neuroimaging, and other markers. Recent analyses have incorporated multivariate and multi-domain approaches to risk ascertainment, although with still generally modest results. Conclusions While a broad range of risk factors has been identified, no individual marker or combination of markers can at this time enable accurate prospective prediction of emerging psychosis for individuals at FHR. We outline the complex and multi-level nature of psychotic illness, the myriad of factors influencing its development, and methodological hurdles to accurate and reliable prediction. Prospects and challenges for future generations of FHR studies are discussed in the context of early detection and intervention strategies. PMID:23693118
Pompili, Cecilia; Shargall, Yaron; Decaluwe, Herbert; Moons, Johnny; Chari, Madhu; Brunelli, Alessandro
2018-01-03
The objective of this study was to evaluate the performance of 3 thoracic surgery centres using the Eurolung risk models for morbidity and mortality. This was a retrospective analysis performed on data collected from 3 academic centres (2014-2016). Seven hundred and twenty-one patients in Centre 1, 857 patients in Centre 2 and 433 patients in Centre 3 who underwent anatomical lung resections were analysed. The Eurolung1 and Eurolung2 models were used to predict risk-adjusted cardiopulmonary morbidity and 30-day mortality rates. Observed and risk-adjusted outcomes were compared within each centre. The observed morbidity of Centre 1 was in line with the predicted morbidity (observed 21.1% vs predicted 22.7%, P = 0.31). Centre 2 performed better than expected (observed morbidity 20.2% vs predicted 26.7%, P < 0.001), whereas the observed morbidity of Centre 3 was higher than the predicted morbidity (observed 41.1% vs predicted 24.3%, P < 0.001). Centre 1 had higher observed mortality when compared with the predicted mortality (3.6% vs 2.1%, P = 0.005), whereas Centre 2 had an observed mortality rate significantly lower than the predicted mortality rate (1.2% vs 2.5%, P = 0.013). Centre 3 had an observed mortality rate in line with the predicted mortality rate (observed 1.4% vs predicted 2.4%, P = 0.17). The observed mortality rates in the patients with major complications were 30.8% in Centre 1 (versus predicted mortality rate 3.8%, P < 0.001), 8.2% in Centre 2 (versus predicted mortality rate 4.1%, P = 0.030) and 9.0% in Centre 3 (versus predicted mortality rate 3.5%, P = 0.014). The Eurolung models were successfully used as risk-adjusting instruments to internally audit the outcomes of 3 different centres, showing their applicability for future quality improvement initiatives. © The Author(s) 2018. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Vandorpe, Barbara; Vandendriessche, Joric B; Vaeyens, Roel; Pion, Johan; Lefevre, Johan; Philippaerts, Renaat M; Lenoir, Matthieu
2012-01-01
Gymnastics talent identification focuses on the identification of young gymnasts who display characteristics for potential success in the future. The aim of this study was to identify which current performance characteristics are related to performance in competition 2 years later. Twenty-three female gymnasts aged 7-8 years completed a multidimensional test battery measuring anthropometric, physical, and coordinative characteristics and were technically evaluated by expert coaches. Two years later, the all-around competition results of those gymnasts now participating in elite (n = 12) and sub-elite (n = 11) competition were obtained. None of the initial measurements significantly correlated with the results of the sub-elite gymnasts 2 years later. For the elite gymnasts, a non-sport-specific motor test battery correlated strongly with the competition result, with more than 40% of the variation in competition performance being explained by the result on that test 2 years earlier. Neither the coaches' judgement nor the anthropometric and physical characteristics were sensitive enough to predict performance. A motor coordination test might be valuable in the early identification of gymnasts, as its discriminative and predictive qualities might be sufficiently powerful for selection within a relatively homogeneous population of gymnasts exhibiting similar anthropometric and physical profiles.
Saito, Takaya; Rehmsmeier, Marc
2015-01-01
Binary classifiers are routinely evaluated with performance measures such as sensitivity and specificity, and performance is frequently illustrated with Receiver Operating Characteristics (ROC) plots. Alternative measures such as positive predictive value (PPV) and the associated Precision/Recall (PRC) plots are used less frequently. Many bioinformatics studies develop and evaluate classifiers that are to be applied to strongly imbalanced datasets in which the number of negatives outweighs the number of positives significantly. While ROC plots are visually appealing and provide an overview of a classifier's performance across a wide range of specificities, one can ask whether ROC plots could be misleading when applied in imbalanced classification scenarios. We show here that the visual interpretability of ROC plots in the context of imbalanced datasets can be deceptive with respect to conclusions about the reliability of classification performance, owing to an intuitive but wrong interpretation of specificity. PRC plots, on the other hand, can provide the viewer with an accurate prediction of future classification performance due to the fact that they evaluate the fraction of true positives among positive predictions. Our findings have potential implications for the interpretation of a large number of studies that use ROC plots on imbalanced datasets.
Papadakis, Maxine A; Arnold, Gerald K; Blank, Linda L; Holmboe, Eric S; Lipner, Rebecca S
2008-06-03
Physicians who are disciplined by state licensing boards are more likely to have demonstrated unprofessional behavior in medical school. Information is limited on whether similar performance measures taken during residency can predict performance as practicing physicians. To determine whether performance measures during residency predict the likelihood of future disciplinary actions against practicing internists. Retrospective cohort study. State licensing board disciplinary actions against physicians from 1990 to 2006. 66,171 physicians who entered internal medicine residency training in the United States from 1990 to 2000 and became diplomates. Predictor variables included components of the Residents' Annual Evaluation Summary ratings and American Board of Internal Medicine (ABIM) certification examination scores. 2 performance measures independently predicted disciplinary action. A low professionalism rating on the Residents' Annual Evaluation Summary predicted increased risk for disciplinary action (hazard ratio, 1.7 [95% CI, 1.3 to 2.2]), and high performance on the ABIM certification examination predicted decreased risk for disciplinary action (hazard ratio, 0.7 [CI, 0.60 to 0.70] for American or Canadian medical school graduates and 0.9 [CI, 0.80 to 1.0] for international medical school graduates). Progressively better professionalism ratings and ABIM certification examination scores were associated with less risk for subsequent disciplinary actions; the risk ranged from 4.0% for the lowest professionalism rating to 0.5% for the highest and from 2.5% for the lowest examination scores to 0.0% for the highest. The study was retrospective. Some diplomates may have practiced outside of the United States. Nondiplomates were excluded. Poor performance on behavioral and cognitive measures during residency are associated with greater risk for state licensing board actions against practicing physicians at every point on a performance continuum. These findings support the Accreditation Council for Graduate Medical Education standards for professionalism and cognitive performance and the development of best practices to remediate these deficiencies.
VCSEL-based fiber optic link for avionics: implementation and performance analyses
NASA Astrophysics Data System (ADS)
Shi, Jieqin; Zhang, Chunxi; Duan, Jingyuan; Wen, Huaitao
2006-11-01
A Gb/s fiber optic link with built-in test capability (BIT) basing on vertical-cavity surface-emitting laser (VCSEL) sources for military avionics bus for next generation has been presented in this paper. To accurately predict link performance, statistical methods and Bit Error Rate (BER) measurements have been examined. The results show that the 1Gb/s fiber optic link meets the BER requirement and values for link margin can reach up to 13dB. Analysis shows that the suggested photonic network may provide high performance and low cost interconnections alternative for future military avionics.
Predictive model for falling in Parkinson disease patients.
Custodio, Nilton; Lira, David; Herrera-Perez, Eder; Montesinos, Rosa; Castro-Suarez, Sheila; Cuenca-Alfaro, Jose; Cortijo, Patricia
2016-12-01
Falls are a common complication of advancing Parkinson's disease (PD). Although numerous risk factors are known, reliable predictors of future falls are still lacking. The aim of this study was to develop a multivariate model to predict falling in PD patients. Prospective cohort with forty-nine PD patients. The area under the receiver-operating characteristic curve (AUC) was calculated to evaluate predictive performance of the purposed multivariate model. The median of PD duration and UPDRS-III score in the cohort was 6 years and 24 points, respectively. Falls occurred in 18 PD patients (30%). Predictive factors for falling identified by univariate analysis were age, PD duration, physical activity, and scores of UPDRS motor, FOG, ACE, IFS, PFAQ and GDS ( p -value < 0.001), as well as fear of falling score ( p -value = 0.04). The final multivariate model (PD duration, FOG, ACE, and physical activity) showed an AUC = 0.9282 (correctly classified = 89.83%; sensitivity = 92.68%; specificity = 83.33%). This study showed that our multivariate model have a high performance to predict falling in a sample of PD patients.
Neural Network of Predictive Motor Timing in the Context of Gender Differences
Lošák, Jan; Kašpárek, Tomáš; Vaníček, Jiří; Bareš, Martin
2016-01-01
Time perception is an essential part of our everyday lives, in both the prospective and the retrospective domains. However, our knowledge of temporal processing is mainly limited to the networks responsible for comparing or maintaining specific intervals or frequencies. In the presented fMRI study, we sought to characterize the neural nodes engaged specifically in predictive temporal analysis, the estimation of the future position of an object with varying movement parameters, and the contingent neuroanatomical signature of differences in behavioral performance between genders. The established dominant cerebellar engagement offers novel evidence in favor of a pivotal role of this structure in predictive short-term timing, overshadowing the basal ganglia reported together with the frontal cortex as dominant in retrospective temporal processing in the subsecond spectrum. Furthermore, we discovered lower performance in this task and massively increased cerebellar activity in women compared to men, indicative of strategy differences between the genders. This promotes the view that predictive temporal computing utilizes comparable structures in the retrospective timing processes, but with a definite dominance of the cerebellum. PMID:27019753
NASA Astrophysics Data System (ADS)
O'Connor, Alison; Kirtman, Benjamin; Harrison, Scott; Gorman, Joe
2016-05-01
The US Navy faces several limitations when planning operations in regard to forecasting environmental conditions. Currently, mission analysis and planning tools rely heavily on short-term (less than a week) forecasts or long-term statistical climate products. However, newly available data in the form of weather forecast ensembles provides dynamical and statistical extended-range predictions that can produce more accurate predictions if ensemble members can be combined correctly. Charles River Analytics is designing the Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS), which performs data fusion over extended-range multi-model ensembles, such as the North American Multi-Model Ensemble (NMME), to produce a unified forecast for several weeks to several seasons in the future. We evaluated thirty years of forecasts using machine learning to select predictions for an all-encompassing and superior forecast that can be used to inform the Navy's decision planning process.
NASA Technical Reports Server (NTRS)
Hunter, H. E.; Amato, R. A.
1972-01-01
The results are presented of the application of Avco Data Analysis and Prediction Techniques (ADAPT) to derivation of new algorithms for the prediction of future sunspot activity. The ADAPT derived algorithms show a factor of 2 to 3 reduction in the expected 2-sigma errors in the estimates of the 81-day running average of the Zurich sunspot numbers. The report presents: (1) the best estimates for sunspot cycles 20 and 21, (2) a comparison of the ADAPT performance with conventional techniques, and (3) specific approaches to further reduction in the errors of estimated sunspot activity and to recovery of earlier sunspot historical data. The ADAPT programs are used both to derive regression algorithm for prediction of the entire 11-year sunspot cycle from the preceding two cycles and to derive extrapolation algorithms for extrapolating a given sunspot cycle based on any available portion of the cycle.
NASA Astrophysics Data System (ADS)
Madsen, Sarah K.; Ver Steeg, Greg; Daianu, Madelaine; Mezher, Adam; Jahanshad, Neda; Nir, Talia M.; Hua, Xue; Gutman, Boris A.; Galstyan, Aram; Thompson, Paul M.
2016-03-01
Cognitive decline accompanies many debilitating illnesses, including Alzheimer's disease (AD). In old age, brain tissue loss also occurs along with cognitive decline. Although blood tests are easier to perform than brain MRI, few studies compare brain scans to standard blood tests to see which kinds of information best predict future decline. In 504 older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we first used linear regression to assess the relative value of different types of data to predict cognitive decline, including 196 blood panel biomarkers, 249 MRI biomarkers obtained from the FreeSurfer software, demographics, and the AD-risk gene APOE. A subset of MRI biomarkers was the strongest predictor. There was no specific blood marker that increased predictive accuracy on its own, we found that a novel unsupervised learning method, CorEx, captured weak correlations among blood markers, and the resulting clusters offered unique predictive power.
A. Weiskittel; D. Maguire; R. Monserud
2007-01-01
Hybrid models offer the opportunity to improve future growth projections by combining advantages of both empirical and process-based modeling approaches. Hybrid models have been constructed in several regions and their performance relative to a purely empirical approach has varied. A hybrid model was constructed for intensively managed Douglas-fir plantations in the...
Finite-difference computations of rotor loads
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1985-01-01
This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.
Finite-difference computations of rotor loads
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1985-01-01
The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.
Name Writing Ability Not Length of Name Is Predictive of Future Academic Attainment
ERIC Educational Resources Information Center
Copping, Lee T.; Cramman, Helen; Gott, Sarah; Gray, Helen; Tymms, Peter
2016-01-01
Background: The Performance Indicators in Primary Schools On Entry Baseline assessment for pupils starting school includes an item which aims to assess how well a pupil writes his or her own name. There is some debate regarding the utility of this measure, on the grounds that name length may constitute bias. Purpose, method and design: The…
How Has Internet Use Changed between 2012 and 2015? PISA in Focus No. 83
ERIC Educational Resources Information Center
Echazarra, Alfonso
2018-01-01
In the growing world of digital technology everything is about speed: computer processors have doubled their performance every two years for decades; the future 5G mobile phone generation is predicted to be about 100 times faster than the current 4G and 20 000 times faster than the "ancient" 3G; and, according to the International…
Addressing the Future in Ancient and Modern Times.
ERIC Educational Resources Information Center
Roshwald, Mordecai
1982-01-01
Explores the similarities between ancient prophecy and modern futures prediction. The article suggests that the perceived degree of certainty in predictions of the future affects the patterns of emotional and rational responses in those receiving them. (AM)
Tiezzi, Francesco; Maltecca, Christian
2015-04-02
Genomic BLUP (GBLUP) can predict breeding values for non-phenotyped individuals based on the identity-by-state genomic relationship matrix (G). The G matrix can be constructed from thousands of markers spread across the genome. The strongest assumption of G and consequently of GBLUP is that all markers contribute equally to the genetic variance of a trait. This assumption is violated for traits that are controlled by a small number of quantitative trait loci (QTL) or individual QTL with large effects. In this paper, we investigate the performance of using a weighted genomic relationship matrix (wG) that takes into consideration the genetic architecture of the trait in order to improve predictive ability for a wide range of traits. Multiple methods were used to calculate weights for several economically relevant traits in US Holstein dairy cattle. Predictive performance was tested by k-means cross-validation. Relaxing the GBLUP assumption of equal marker contribution by increasing the weight that is given to a specific marker in the construction of the trait-specific G resulted in increased predictive performance. The increase was strongest for traits that are controlled by a small number of QTL (e.g. fat and protein percentage). Furthermore, bias in prediction estimates was reduced compared to that resulting from the use of regular G. Even for traits with low heritability and lower general predictive performance (e.g. calving ease traits), weighted G still yielded a gain in accuracy. Genomic relationship matrices weighted by marker realized variance yielded more accurate and less biased predictions for traits regulated by few QTL. Genome-wide association analyses were used to derive marker weights for creating weighted genomic relationship matrices. However, this can be cumbersome and prone to low stability over generations because of erosion of linkage disequilibrium between markers and QTL. Future studies may include other sources of information, such as functional annotation and gene networks, to better exploit the genetic architecture of traits and produce more stable predictions.
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.
2011-01-01
Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.
Safety focused modeling of lithium-ion batteries: A review
NASA Astrophysics Data System (ADS)
Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F.
2016-02-01
Safety issues pertaining to Li-ion batteries justify intensive testing all along their value chain. However, progress in scientific knowledge regarding lithium based battery failure modes, as well as remarkable technologic breakthroughs in computing science, now allow for development and use of prediction tools to assist designers in developing safer batteries. Subsequently, this paper offers a review of significant modeling works performed in the area with a focus on the characterization of the thermal runaway hazard and their relating triggering events. Progress made in models aiming at integrating battery ageing effect and related physics is also discussed, as well as the strong interaction with modeling-focused use of testing, and the main achievements obtained towards marketing safer systems. Current limitations and new challenges or opportunities that are expected to shape future modeling activity are also put in perspective. According to market trends, it is anticipated that safety may still act as a restraint in the search for acceptable compromise with overall performance and cost of lithium-ion based and post lithium-ion rechargeable batteries of the future. In that context, high-throughput prediction tools capable of screening adequate new components properties allowing access to both functional and safety related aspects are highly desirable.
NASA Technical Reports Server (NTRS)
Patterson, G.
1973-01-01
The data processing procedures and the computer programs were developed to predict structural responses using the Impulse Transfer Function (ITF) method. There are three major steps in the process: (1) analog-to-digital (A-D) conversion of the test data to produce Phase I digital tapes (2) processing of the Phase I digital tapes to extract ITF's and storing them in a permanent data bank, and (3) predicting structural responses to a set of applied loads. The analog to digital conversion is performed by a standard package which will be described later in terms of the contents of the resulting Phase I digital tape. Two separate computer programs have been developed to perform the digital processing.
Maki, Alexander; Rothman, Alexander J
2017-01-01
To better understand the consistency of people's proenvironmental intentions and behaviors, we set out to examine two sets of research questions. First, do people perform (1) different types of proenvironmental behaviors consistently, and (2) the same proenvironmental behavior consistently across settings? Second, are there consistent predictors of proenvironmental behavioral intentions across behavior and setting type? Participants reported four recycling and conservation behaviors across three settings, revealing significant variability in rates of behaviors across settings. Prior behavior, attitudes toward the behavior, and importance of the behaviour consistently predicted proenvironmental intentions. However, perceived behavioral control tended to predict intentions to perform proenvironmental behavior outside the home. Future research aimed at understanding and influencing different proenvironmental behaviors should carefully consider how settings affect intentions and behavior.
Bai, Yunjun; Wei, Xueping
2018-01-01
Background The ongoing change in climate is predicted to exert unprecedented effects on Earth’s biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. Methods In this study, we modelled the distributional dynamics of a ‘Vulnerable’ species, Pseudolarix amabilis, in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Results Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. Discussion In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time. PMID:29362700
Bai, Yunjun; Wei, Xueping; Li, Xiaoqiang
2018-01-01
The ongoing change in climate is predicted to exert unprecedented effects on Earth's biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. In this study, we modelled the distributional dynamics of a 'Vulnerable' species, Pseudolarix amabilis , in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time.
Inter-comparison of time series models of lake levels predicted by several modeling strategies
NASA Astrophysics Data System (ADS)
Khatibi, R.; Ghorbani, M. A.; Naghipour, L.; Jothiprakash, V.; Fathima, T. A.; Fazelifard, M. H.
2014-04-01
Five modeling strategies are employed to analyze water level time series of six lakes with different physical characteristics such as shape, size, altitude and range of variations. The models comprise chaos theory, Auto-Regressive Integrated Moving Average (ARIMA) - treated for seasonality and hence SARIMA, Artificial Neural Networks (ANN), Gene Expression Programming (GEP) and Multiple Linear Regression (MLR). Each is formulated on a different premise with different underlying assumptions. Chaos theory is elaborated in a greater detail as it is customary to identify the existence of chaotic signals by a number of techniques (e.g. average mutual information and false nearest neighbors) and future values are predicted using the Nonlinear Local Prediction (NLP) technique. This paper takes a critical view of past inter-comparison studies seeking a superior performance, against which it is reported that (i) the performances of all five modeling strategies vary from good to poor, hampering the recommendation of a clear-cut predictive model; (ii) the performances of the datasets of two cases are consistently better with all five modeling strategies; (iii) in other cases, their performances are poor but the results can still be fit-for-purpose; (iv) the simultaneous good performances of NLP and SARIMA pull their underlying assumptions to different ends, which cannot be reconciled. A number of arguments are presented including the culture of pluralism, according to which the various modeling strategies facilitate an insight into the data from different vantages.
NASA Technical Reports Server (NTRS)
Alefeld, Goetz; Koshelev, Misha; Mayer, Guenter
1997-01-01
At first glance. it may seem that reconstructing the past is, in general, easier than predicting the future, because the past has already occurred and it has already left its traces, while the future is still yet to come, and so no traces of the future are available. However, in many real life situations, including problems from geophysics and celestial mechanics, reconstructing the past is much more computationally difficult than predicting the future. In this paper, we give an explanation of this difficulty. This explanation is given both on a formal level (as a theorem) and on the informal level (as a more intuitive explanation).
Prediction in complex systems: The case of the international trade network
NASA Astrophysics Data System (ADS)
Vidmer, Alexandre; Zeng, An; Medo, Matúš; Zhang, Yi-Cheng
2015-10-01
Predicting the future evolution of complex systems is one of the main challenges in complexity science. Based on a current snapshot of a network, link prediction algorithms aim to predict its future evolution. We apply here link prediction algorithms to data on the international trade between countries. This data can be represented as a complex network where links connect countries with the products that they export. Link prediction techniques based on heat and mass diffusion processes are employed to obtain predictions for products exported in the future. These baseline predictions are improved using a recent metric of country fitness and product similarity. The overall best results are achieved with a newly developed metric of product similarity which takes advantage of causality in the network evolution.
Blecha, Kevin A.; Alldredge, Mat W.
2015-01-01
Animal space use studies using GPS collar technology are increasingly incorporating behavior based analysis of spatio-temporal data in order to expand inferences of resource use. GPS location cluster analysis is one such technique applied to large carnivores to identify the timing and location of feeding events. For logistical and financial reasons, researchers often implement predictive models for identifying these events. We present two separate improvements for predictive models that future practitioners can implement. Thus far, feeding prediction models have incorporated a small range of covariates, usually limited to spatio-temporal characteristics of the GPS data. Using GPS collared cougar (Puma concolor) we include activity sensor data as an additional covariate to increase prediction performance of feeding presence/absence. Integral to the predictive modeling of feeding events is a ground-truthing component, in which GPS location clusters are visited by human observers to confirm the presence or absence of feeding remains. Failing to account for sources of ground-truthing false-absences can bias the number of predicted feeding events to be low. Thus we account for some ground-truthing error sources directly in the model with covariates and when applying model predictions. Accounting for these errors resulted in a 10% increase in the number of clusters predicted to be feeding events. Using a double-observer design, we show that the ground-truthing false-absence rate is relatively low (4%) using a search delay of 2–60 days. Overall, we provide two separate improvements to the GPS cluster analysis techniques that can be expanded upon and implemented in future studies interested in identifying feeding behaviors of large carnivores. PMID:26398546
NASA Astrophysics Data System (ADS)
López, Juan Manuel; Vega, J.; Alves, D.; Dormido-Canto, S.; Murari, A.; Ramírez, J. M.; Felton, R.; Ruiz, M.; de Arcas, G.
2014-04-01
This paper describes the implementation of a real-time disruption predictor that is based on support vector machine (SVM) classifiers. The implementation was performed under the MARTe framework on a six-core x86 architecture. The system is connected via JET's Real-time Data Network (RTDN). The online results show a high degree of successful predictions and a low rate of false alarms, thus confirming the usefulness of this approach in a disruption mitigation scheme. The implementation shows a low computational load, which will be exploited in the immediate future to increase the prediction's temporal resolution.
Preliminary Analysis of the 30-m UltraBoom Flight Test
NASA Technical Reports Server (NTRS)
Agnes, Gregory S.; Abelson, Robert D.; Miyake, Robert; Lin, John K. H.; Welsh, Joe; Watson, Judith J.
2005-01-01
Future NASA missions require long, ultra-lightweight booms to enable solar sails, large sunshields, and other gossamer-type spacecraft structures. The space experiment discussed in this paper will flight validate the non-traditional ultra lightweight rigidizable, inflatable, isogrid structure utilizing graphite shape memory polymer (GR/SMP) called UltraBoom(TradeMark). The focus of this paper is the analysis of the 3-m ground test article. The primary objective of the mission is to show that a combination of ground testing and analysis can predict the on-orbit performance of an ultra lightweight boom that is scalable, predictable, and thermomechanically stable.
Computational methods for a three-dimensional model of the petroleum-discovery process
Schuenemeyer, J.H.; Bawiec, W.J.; Drew, L.J.
1980-01-01
A discovery-process model devised by Drew, Schuenemeyer, and Root can be used to predict the amount of petroleum to be discovered in a basin from some future level of exploratory effort: the predictions are based on historical drilling and discovery data. Because marginal costs of discovery and production are a function of field size, the model can be used to make estimates of future discoveries within deposit size classes. The modeling approach is a geometric one in which the area searched is a function of the size and shape of the targets being sought. A high correlation is assumed between the surface-projection area of the fields and the volume of petroleum. To predict how much oil remains to be found, the area searched must be computed, and the basin size and discovery efficiency must be estimated. The basin is assumed to be explored randomly rather than by pattern drilling. The model may be used to compute independent estimates of future oil at different depth intervals for a play involving multiple producing horizons. We have written FORTRAN computer programs that are used with Drew, Schuenemeyer, and Root's model to merge the discovery and drilling information and perform the necessary computations to estimate undiscovered petroleum. These program may be modified easily for the estimation of remaining quantities of commodities other than petroleum. ?? 1980.
Cultural variation in the use of current life satisfaction to predict the future.
Oishi, S; Wyer, R S; Colcombe, S J
2000-03-01
Three studies examined cultural and situational influences on the tendency for people to use their current life satisfaction to predict future life events. On the basis of the self-enhancement literature, it was predicted that either writing about a positive personal experience or reading about another's negative experience would lead European Americans to focus their attention on internal attributes and thus would lead them to use their current life satisfaction in predicting the future. Conversely, on the basis of the self-criticism literature, it was predicted that these same conditions would lead Asian Americans to focus their attention on external factors and, therefore, would decrease their likelihood of using their current life satisfaction to predict the future. Studies 1 and 2 supported these hypotheses. Study 3 showed that these patterns could be obtained by subliminally priming concepts associated with individualism and collectivism.
The Next Twenty-Five Years: It's Time to Plan.
ERIC Educational Resources Information Center
Jugenheimer, Donald W.
There is a need in the advertising industry for prediction--of the future in general, of the new communication technology, and of the implications for advertising. Studies of the future in other disciplines have identified at least four separate future trends relevant to prediction and preparation for the future in advertising: within specified…
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.
Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis
Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification. PMID:27224653
Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia
Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.
2015-01-01
Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883
Predicting past and future diameter growth for trees in the northeastern United States
James A. Westfall
2006-01-01
Tree diameter growth models are widely used in forestry applications, often to predict tree size at a future point in time. Also, there are instances where projections of past diameters are needed. A relative diameter growth model was developed to allow prediction of both future and past growth rates. Coefficients were estimated for 15 species groups that cover most...
IMF Prediction with Cosmic Rays
NASA Astrophysics Data System (ADS)
Bieber, J. W.; Evenson, P. A.; Kuwabara, T.; Pei, C.
2013-12-01
Cosmic rays impacting Earth have passed through and interacted with the interplanetary magnetic field (IMF) surrounding Earth, and in some sense they carry information on the three-dimensional structure of that field. This work uses neutron monitor data in an effort to extract that information and use it to predict the future behavior of the IMF, especially the north-south component (Bz) which is so crucial in determining geomagnetic activity. We consider 161 events from a published list of interplanetary coronal mass ejections and compare hourly averages of the predicted field with the actual field measured later. We find that the percentage of events with 'good' predictions of Bz (in the sense of having a positive correlation between the prediction and the subsequent measurement) varies from about 85% for predictions 1 hour into the future to about 60% for predictions 4 hours into the future. We present several ideas for how the method might be improved in future implementations. Supported by NASA grant NNX08AQ01G and NSF grant ANT-0739620.
Chowdhury, Enayet K; Jennings, Garry L R; Dewar, Elizabeth; Wing, Lindon M H; Reid, Christopher M
2016-07-01
Hypertension leads to cardiac structural and functional changes, commonly assessed by echocardiography. In this study, we assessed the predictive performance of different echocardiographic parameters including left ventricular hypertrophy (LVH) on future cardiovascular outcomes in elderly hypertensive patients without heart failure. Data from LVH substudy of the Second Australian National Blood Pressure trial were used. Echocardiograms were performed at entry into the study. Cardiovascular outcomes were identified over short term (median 4.2 years) and long term (median 10.9 years). LVH was defined using threshold values of LV mass (LVM) indexed to either body surface area (BSA) or height(2.7): >115/95g/m(2) (LVH-BSA(115/95)) or ≥49/45g/m(2.7) (LVH-ht(49/45)) in males/females, respectively, and ≥125g/m(2) (LVH-BSA(125)) or ≥51g/m(2.7) (LVH-ht(51)) for both sexes. In the 666 participants aged ≥65 years in this analysis, LVH prevalence at baseline was 33%-70% depending on definition; and after adjusting for potential risk factors, only LVH-BSA(115/95) predicted both short- and long-term cardiovascular outcomes. Participants having LVH-BSA(115/95) (69%) at baseline had twice the risk of having any first cardiovascular event over the short term (hazard ratio, 95% confidence interval: 2.00, 1.12-3.57, P = 0.02) and any fatal cardiovascular events (2.11, 1.21-3.68, P = 0.01) over the longer term. Among other echocardiographic parameters, LVM and LVM indexed to either BSA or height(2.7) predicted cardiovascular events over both short and longer term. In elderly treated hypertensive patients without heart failure, determining LVH by echocardiography is highly dependent on the methodology adopted. LVH-BSA(115/95) is a reliable predictor of future cardiovascular outcomes in the elderly. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.
2018-05-01
The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.
NASA Astrophysics Data System (ADS)
Kishor Kumar, V. V.; Kuzhiveli, B. T.
2017-12-01
The performance of a Stirling cryocooler depends on the thermal and hydrodynamic properties of the regenerator in the system. CFD modelling is the best technique to design and predict the performance of a Stirling cooler. The accuracy of the simulation results depend on the hydrodynamic and thermal transport parameters used as the closure relations for the volume averaged governing equations. A methodology has been developed to quantify the viscous and inertial resistance terms required for modelling the regenerator as a porous medium in Fluent. Using these terms, the steady and steady - periodic flow of helium through regenerator was modelled and simulated. Comparison of the predicted and experimental pressure drop reveals the good predictive power of the correlation based method. For oscillatory flow, the simulation could predict the exit pressure amplitude and the phase difference accurately. Therefore the method was extended to obtain the Darcy permeability and Forchheimer’s inertial coefficient of other wire mesh matrices applicable to Stirling coolers. Simulation of regenerator using these parameters will help to better understand the thermal and hydrodynamic interactions between working fluid and the regenerator material, and pave the way to contrive high performance, ultra-compact free displacers used in miniature Stirling cryocoolers in the future.
Shared periodic performer movements coordinate interactions in duo improvisations.
Eerola, Tuomas; Jakubowski, Kelly; Moran, Nikki; Keller, Peter E; Clayton, Martin
2018-02-01
Human interaction involves the exchange of temporally coordinated, multimodal cues. Our work focused on interaction in the visual domain, using music performance as a case for analysis due to its temporally diverse and hierarchical structures. We made use of two improvising duo datasets-(i) performances of a jazz standard with a regular pulse and (ii) non-pulsed, free improvizations-to investigate whether human judgements of moments of interaction between co-performers are influenced by body movement coordination at multiple timescales. Bouts of interaction in the performances were manually annotated by experts and the performers' movements were quantified using computer vision techniques. The annotated interaction bouts were then predicted using several quantitative movement and audio features. Over 80% of the interaction bouts were successfully predicted by a broadband measure of the energy of the cross-wavelet transform of the co-performers' movements in non-pulsed duos. A more complex model, with multiple predictors that captured more specific, interacting features of the movements, was needed to explain a significant amount of variance in the pulsed duos. The methods developed here have key implications for future work on measuring visual coordination in musical ensemble performances, and can be easily adapted to other musical contexts, ensemble types and traditions.
The effect of challenge and threat states on performance: An examination of potential mechanisms
Moore, Lee J; Vine, Samuel J; Wilson, Mark R; Freeman, Paul
2012-01-01
Challenge and threat states predict future performance; however, no research has examined their immediate effect on motor task performance. The present study examined the effect of challenge and threat states on golf putting performance and several possible mechanisms. One hundred twenty-seven participants were assigned to a challenge or threat group and performed six putts during which emotions, gaze, putting kinematics, muscle activity, and performance were recorded. Challenge and threat states were successively manipulated via task instructions. The challenge group performed more accurately, reported more favorable emotions, and displayed more effective gaze, putting kinematics, and muscle activity than the threat group. Multiple putting kinematic variables mediated the relationship between group and performance, suggesting that challenge and threat states impact performance at a predominately kinematic level. PMID:22913339
Liao, Yue; Chou, Chih-Ping; Huh, Jimi; Leventhal, Adam; Dunton, Genevieve
2017-08-01
Affective response during physical activity may influence motivation to perform future physical activity behavior. However, affective response during physical activity is often assessed under controlled laboratory conditions. The current study used ecological momentary assessment (EMA) to capture affective responses during free-living physical activity performed by adults, and determined whether these affective responses predict future moderate-to-vigorous physical activity (MVPA) levels after 6 and 12 months. At baseline, electronic EMA surveys were randomly prompted across 4 days asking about current activities and affective states (e.g., happy, stressed, energetic, tired). Affective response during physical activity was operationalized as the level of positive or negative affect reported when concurrent physical activity (e.g., exercise or sports) was also reported. Data were available for 82 adults. Future levels of moderate-to-vigorous physical activity (MVPA) were measured using accelerometers, worn for seven consecutive days at 6 and 12 months after the baseline assessment. Feeling more energetic during physical activity was associated with performing more minutes of daily MVPA after both 6 and 12 months. Feeling less negative affect during physical activity was associated with engaging in more daily MVPA minutes after 12 months only. This study demonstrated how EMA can be used to capture affective responses during free-living physical activity. Results found that feelings more energetic and less negative during physical activity were associated with more future physical activity, suggesting that positive emotional benefits may reinforce behavior.
McGowan, Conor P.; Allan, Nathan; Servoss, Jeff; Hedwall, Shaula J.; Wooldridge, Brian
2017-01-01
Assessment of a species' status is a key part of management decision making for endangered and threatened species under the U.S. Endangered Species Act. Predicting the future state of the species is an essential part of species status assessment, and projection models can play an important role in developing predictions. We built a stochastic simulation model that incorporated parametric and environmental uncertainty to predict the probable future status of the Sonoran desert tortoise in the southwestern United States and North Central Mexico. Sonoran desert tortoise was a Candidate species for listing under the Endangered Species Act, and decision makers wanted to use model predictions in their decision making process. The model accounted for future habitat loss and possible effects of climate change induced droughts to predict future population growth rates, abundances, and quasi-extinction probabilities. Our model predicts that the population will likely decline over the next few decades, but there is very low probability of quasi-extinction less than 75 years into the future. Increases in drought frequency and intensity may increase extinction risk for the species. Our model helped decision makers predict and characterize uncertainty about the future status of the species in their listing decision. We incorporated complex ecological processes (e.g., climate change effects on tortoises) in transparent and explicit ways tailored to support decision making processes related to endangered species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gering, Kevin L.
2015-09-01
Available capacity, power, and cell conductance figure centrally into performance characterization of electrochemical cells (such as Li-ion cells) over their service life. For example, capacity loss in Li-ion cells is due to a combination of mechanisms, including loss of free available lithium, loss of active host sites, shifts in the potential-capacity curve, etc. Further distinctions can be made regarding irreversible and reversible capacity loss mechanisms. There are tandem needs for accurate interpretation of capacity at characterization conditions (cycling rate, temperature, etc.) and for robust self-consistent modeling techniques that can be used for diagnostic analysis of cell data as well asmore » forecasting of future performance. Analogous issues exist for aging effects on cell conductance and available power. To address these needs, a modeling capability was developed that provides a systematic analysis of the contributing factors to battery performance loss over aging and to act as a regression/prediction platform for cell performance. The modeling basis is a summation of self-consistent chemical kinetics rate expressions, which as individual expressions each covers a distinct mechanism (e.g., loss of active host sites, lithium loss), but collectively account for the net loss of premier metrics (e.g., capacity) over time for a particular characterization condition. Specifically, sigmoid-based rate expressions are utilized to describe each contribution to performance loss. Through additional mathematical development another tier of expressions is derived and used to perform differential analyses and segregate irreversible versus reversible contributions, as well as to determine concentration profiles over cell aging for affected Li+ ion inventory and fraction of active sites that remain at each time step. Reversible fade components are surmised by comparing fade rates at fast versus slow cycling conditions. The model is easily utilized for predictive calculations so that future capacity performance can be estimated. The invention covers mathematical and theoretical frameworks, and demonstrates application to various Li-ion cells covering test periods that vary in duration, and shows model predictions well past the end of test periods. Version 2.0 Enhancements: the code now covers path-dependent aging scenarios, wherein the framework allows for arbitrarily-chosen aging conditions over a timeline to accommodate prediction of battery aging over a multiplicity of changing conditions. The code framework also allows for cell conductance and power loss evaluations over cell aging, analysis of series strings that contain a thermal anomaly (hot spot), and evaluation of battery thermal management parameters that impact battery lifetimes. Lastly, a comprehensive GUI now resides in the Ver. 2.0 code.« less
Climate change risk to forests in China associated with warming.
Yin, Yunhe; Ma, Danyang; Wu, Shaohong
2018-01-11
Variations in forest net primary productivity (NPP) reflects the combined effects of key climate variables on ecosystem structure and function, especially on the carbon cycle. We performed risk analysis indicated by the magnitude of future negative anomalies in NPP in comparison with the natural interannual variability to investigate the impact of future climatic projections on forests in China. Results from the multi-model ensemble showed that climate change risk of decreases in forest NPP would be more significant in higher emission scenario in China. Under relatively low emission scenarios, the total area of risk was predicted to decline, while for RCP8.5, it was predicted to first decrease and then increase after the middle of 21st century. The rapid temperature increases predicted under the RCP8.5 scenario would be probably unfavorable for forest vegetation growth in the long term. High-level risk area was likely to increase except RCP2.6. The percentage area at high risk was predicted to increase from 5.39% (2021-2050) to 27.62% (2071-2099) under RCP8.5. Climate change risk to forests was mostly concentrated in southern subtropical and tropical regions, generally significant under high emission scenario of RCP8.5, which was mainly attributed to the intensified dryness in south China.
Tzuriel, D
1999-05-01
The main objectives of this article are to describe the effects of mediated learning experience (MLE) strategies in mother-child interactions on the child's cognitive modifiability, the effects of distal factors (e.g., socioeconomic status, mother's intelligence, child's personality) on MLE interactions, and the effects of situational variables on MLE processes. Methodological aspects of measurement of MLE interactions and of cognitive modifiability, using a dynamic assessment approach, are discussed. Studies with infants showed that the quality of mother-infant MLE interactions predict later cognitive functioning and that MLE patterns and children's cognitive performance change as a result of intervention programs. Studies with preschool and school-aged children showed that MLE interactions predict cognitive modifiability and that distal factors predict MLE interactions but not the child's cognitive modifiability. The child's cognitive modifiability was predicted by MLE interactions in a structured but not in a free-play situation. Mediation for transcendence (e.g., teaching rules and generalizations) appeared to be the strongest predictor of children's cognitive modifiability. Discussion of future research includes the consideration of a holistic transactional approach, which refers to MLE processes, personality, and motivational-affective factors, the cultural context of mediation, perception of the whole family as a mediational unit, and the "mediational normative scripts."
Cortical Thickness Predicts the First Onset of Major Depression in Adolescence
Foland-Ross, Lara C.; Sacchet, Matthew D.; Prasad, Gautam; Gilbert, Brooke; Thompson, Paul M.; Gotlib, Ian H.
2015-01-01
Given the increasing prevalence of Major Depressive Disorder and recent advances in preventative treatments for this disorder, an important challenge in pediatric neuroimaging is the early identification of individuals at risk for depression. We examined whether machine learning can be used to predict the onset of depression at the individual level. Thirty-three never-disordered adolescents (10–15 years old) underwent structural MRI. Participants were followed for 5 years to monitor the emergence of clinically significant depressive symptoms. We used support vector machines (SVMs) to test whether baseline cortical thickness could reliably distinguish adolescents who develop depression from adolescents who remained free of any Axis I disorder. Accuracies from subsampled cross-validated classification were used to assess classifier performance. Baseline cortical thickness correctly predicted the future onset of depression with an overall accuracy of 70% (69% sensitivity, 70% specificity; p = 0.021). Examination of SVM feature weights indicated that the right medial orbitofrontal, right precentral, left anterior cingulate, and bilateral insular cortex contributed most strongly to this classification. These findings indicate that cortical gray matter structure can predict the subsequent onset of depression. An important direction for future research is to elucidate mechanisms by which these anomalies in gray matter structure increase risk for developing this disorder. PMID:26315399
Cortical thickness predicts the first onset of major depression in adolescence.
Foland-Ross, Lara C; Sacchet, Matthew D; Prasad, Gautam; Gilbert, Brooke; Thompson, Paul M; Gotlib, Ian H
2015-11-01
Given the increasing prevalence of Major Depressive Disorder and recent advances in preventative treatments for this disorder, an important challenge in pediatric neuroimaging is the early identification of individuals at risk for depression. We examined whether machine learning can be used to predict the onset of depression at the individual level. Thirty-three never-disordered adolescents (10-15 years old) underwent structural MRI. Participants were followed for 5 years to monitor the emergence of clinically significant depressive symptoms. We used support vector machines (SVMs) to test whether baseline cortical thickness could reliably distinguish adolescents who develop depression from adolescents who remained free of any Axis I disorder. Accuracies from subsampled cross-validated classification were used to assess classifier performance. Baseline cortical thickness correctly predicted the future onset of depression with an overall accuracy of 70% (69% sensitivity, 70% specificity; p=0.021). Examination of SVM feature weights indicated that the right medial orbitofrontal, right precentral, left anterior cingulate, and bilateral insular cortex contributed most strongly to this classification. These findings indicate that cortical gray matter structure can predict the subsequent onset of depression. An important direction for future research is to elucidate mechanisms by which these anomalies in gray matter structure increase risk for developing this disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.
Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules
NASA Astrophysics Data System (ADS)
Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven
2009-11-01
Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.
NASA Astrophysics Data System (ADS)
Majumdar, Suman; Mellema, Garrelt; Datta, Kanan K.; Jensen, Hannes; Choudhury, T. Roy; Bharadwaj, Somnath; Friedrich, Martina M.
2014-10-01
We present a detailed comparison of three different simulations of the epoch of reionization (EoR). The radiative transfer simulation (C2-RAY) among them is our benchmark. Radiative transfer codes can produce realistic results, but are computationally expensive. We compare it with two seminumerical techniques: one using the same haloes as C2-RAY as its sources (Sem-Num), and one using a conditional Press-Schechter scheme (CPS+GS). These are vastly more computationally efficient than C2-RAY, but use more simplistic physical assumptions. We evaluate these simulations in terms of their ability to reproduce the history and morphology of reionization. We find that both Sem-Num and CPS+GS can produce an ionization history and morphology that is very close to C2-RAY, with Sem-Num performing slightly better compared to CPS+GS. We also study different redshift-space observables of the 21-cm signal from EoR: the variance, power spectrum and its various angular multipole moments. We find that both seminumerical models perform reasonably well in predicting these observables at length scales relevant for present and future experiments. However, Sem-Num performs slightly better than CPS+GS in producing the reionization history, which is necessary for interpreting the future observations. The CPS+GS scheme, however, has the advantage that it is not restricted by the mass resolution of the dark matter density field.
The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills
Tierney, Adam T.; Kraus, Nina
2013-01-01
Reading-impaired children have difficulty tapping to a beat. Here we tested whether this relationship between reading ability and synchronized tapping holds in typically-developing adolescents. We also hypothesized that tapping relates to two other abilities. First, since auditory-motor synchronization requires monitoring of the relationship between motor output and auditory input, we predicted that subjects better able to tap to the beat would perform better on attention tests. Second, since auditory-motor synchronization requires fine temporal precision within the auditory system for the extraction of a sound’s onset time, we predicted that subjects better able to tap to the beat would be less affected by backward masking, a measure of temporal precision within the auditory system. As predicted, tapping performance related to reading, attention, and backward masking. These results motivate future research investigating whether beat synchronization training can improve not only reading ability, but potentially executive function and basic auditory processing as well. PMID:23400117
Nuclear masses far from stability: the interplay of theory and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haustein, P.E.
1985-01-01
Mass models seek, by a variety of theoretical approaches, to reproduce the measured mass surface and to predict unmeasured masses beyond it. Subsequent measurements of these predicted nuclear masses permit an assessment of the quality of the mass predictions from the various models. Since the last comprehensive revision of the mass predictions (in the mid-to-late 1970's) over 300 new masses have been reported. Global analyses of these data have been performed by several numerical and graphical methods. These have identified both the strengths and weaknesses of the models. In some cases failures in individual models are distinctly apparent when themore » new mass data are plotted as functions of one or more selected physical parameters. Several examples will be given. Future theoretical efforts will also be discussed.« less
Evaluation of a conceptual framework for predicting navigation performance in virtual reality.
Grübel, Jascha; Thrash, Tyler; Hölscher, Christoph; Schinazi, Victor R
2017-01-01
Previous research in spatial cognition has often relied on simple spatial tasks in static environments in order to draw inferences regarding navigation performance. These tasks are typically divided into categories (e.g., egocentric or allocentric) that reflect different two-systems theories. Unfortunately, this two-systems approach has been insufficient for reliably predicting navigation performance in virtual reality (VR). In the present experiment, participants were asked to learn and navigate towards goal locations in a virtual city and then perform eight simple spatial tasks in a separate environment. These eight tasks were organised along four orthogonal dimensions (static/dynamic, perceived/remembered, egocentric/allocentric, and distance/direction). We employed confirmatory and exploratory analyses in order to assess the relationship between navigation performance and performances on these simple tasks. We provide evidence that a dynamic task (i.e., intercepting a moving object) is capable of predicting navigation performance in a familiar virtual environment better than several categories of static tasks. These results have important implications for studies on navigation in VR that tend to over-emphasise the role of spatial memory. Given that our dynamic tasks required efficient interaction with the human interface device (HID), they were more closely aligned with the perceptuomotor processes associated with locomotion than wayfinding. In the future, researchers should consider training participants on HIDs using a dynamic task prior to conducting a navigation experiment. Performances on dynamic tasks should also be assessed in order to avoid confounding skill with an HID and spatial knowledge acquisition.
Evaluation of a conceptual framework for predicting navigation performance in virtual reality
Thrash, Tyler; Hölscher, Christoph; Schinazi, Victor R.
2017-01-01
Previous research in spatial cognition has often relied on simple spatial tasks in static environments in order to draw inferences regarding navigation performance. These tasks are typically divided into categories (e.g., egocentric or allocentric) that reflect different two-systems theories. Unfortunately, this two-systems approach has been insufficient for reliably predicting navigation performance in virtual reality (VR). In the present experiment, participants were asked to learn and navigate towards goal locations in a virtual city and then perform eight simple spatial tasks in a separate environment. These eight tasks were organised along four orthogonal dimensions (static/dynamic, perceived/remembered, egocentric/allocentric, and distance/direction). We employed confirmatory and exploratory analyses in order to assess the relationship between navigation performance and performances on these simple tasks. We provide evidence that a dynamic task (i.e., intercepting a moving object) is capable of predicting navigation performance in a familiar virtual environment better than several categories of static tasks. These results have important implications for studies on navigation in VR that tend to over-emphasise the role of spatial memory. Given that our dynamic tasks required efficient interaction with the human interface device (HID), they were more closely aligned with the perceptuomotor processes associated with locomotion than wayfinding. In the future, researchers should consider training participants on HIDs using a dynamic task prior to conducting a navigation experiment. Performances on dynamic tasks should also be assessed in order to avoid confounding skill with an HID and spatial knowledge acquisition. PMID:28915266
Europa's small impactor flux and seismic detection predictions
NASA Astrophysics Data System (ADS)
Tsuji, Daisuke; Teanby, Nicholas A.
2016-10-01
Europa is an attractive target for future lander missions due to its dynamic surface and potentially habitable sub-surface environment. Seismology has the potential to provide powerful new constraints on the internal structure using natural sources such as faults or meteorite impacts. Here we predict how many meteorite impacts are likely to be detected using a single seismic station on Europa to inform future mission planning efforts. To this end, we derive: (1) the current small impactor flux on Europa from Jupiter impact rate observations and models; (2) a crater diameter versus impactor energy scaling relation for icy moons by merging previous experiments and simulations; and (3) scaling relations for seismic signal amplitudes as a function of distance from the impact site for a given crater size, based on analogue explosive data obtained on Earth's ice sheets. Finally, seismic amplitudes are compared to predicted noise levels and seismometer performance to determine detection rates. We predict detection of 0.002-20 small local impacts per year based on P-waves travelling directly through the ice crust. Larger regional and global-scale impact events, detected through mantle-refracted waves, are predicted to be extremely rare (10-8-1 detections per year), so are unlikely to be detected by a short duration mission. Estimated ranges include uncertainties from internal seismic attenuation, impactor flux, and seismic amplitude scaling. Internal attenuation is the most significant unknown and produces extreme uncertainties in the mantle-refracted P-wave amplitudes. Our nominal best-guess attenuation model predicts 0.002-5 local direct P detections and 6 × 10-6-0.2 mantle-refracted detections per year. Given that a plausible Europa landed mission will only last around 30 days, we conclude that impacts should not be relied upon for a seismic exploration of Europa. For future seismic exploration, faulting due to stresses in the rigid outer ice shell is likely to be a much more viable mechanism for probing Europa's interior.
Assessing the impact of a future volcanic eruption on decadal predictions
NASA Astrophysics Data System (ADS)
Illing, Sebastian; Kadow, Christopher; Pohlmann, Holger; Timmreck, Claudia
2018-06-01
The likelihood of a large volcanic eruption in the future provides the largest uncertainty concerning the evolution of the climate system on the timescale of a few years, but also an excellent opportunity to learn about the behavior of the climate system, and our models thereof. So the following question emerges: how predictable is the response of the climate system to future eruptions? By this we mean to what extent will the volcanic perturbation affect decadal climate predictions and how does the pre-eruption climate state influence the impact of the volcanic signal on the predictions? To address these questions, we performed decadal forecasts with the MiKlip prediction system, which is based on the MPI-ESM, in the low-resolution configuration for the initialization years 2012 and 2014, which differ in the Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO) phase. Each forecast contains an artificial Pinatubo-like eruption starting in June of the first prediction year and consists of 10 ensemble members. For the construction of the aerosol radiative forcing, we used the global aerosol model ECHAM5-HAM in a version adapted for volcanic eruptions. We investigate the response of different climate variables, including near-surface air temperature, precipitation, frost days, and sea ice area fraction. Our results show that the average global cooling response over 4 years of about 0.2 K and the precipitation decrease of about 0.025 mm day-1 is relatively robust throughout the different experiments and seemingly independent of the initialization state. However, on a regional scale, we find substantial differences between the initializations. The cooling effect in the North Atlantic and Europe lasts longer and the Arctic sea ice increase is stronger in the simulations initialized in 2014. In contrast, the forecast initialized in 2012 with a negative PDO shows a prolonged cooling in the North Pacific basin.
The future of laboratory medicine - a 2014 perspective.
Kricka, Larry J; Polsky, Tracey G; Park, Jason Y; Fortina, Paolo
2015-01-01
Predicting the future is a difficult task. Not surprisingly, there are many examples and assumptions that have proved to be wrong. This review surveys the many predictions, beginning in 1887, about the future of laboratory medicine and its sub-specialties such as clinical chemistry and molecular pathology. It provides a commentary on the accuracy of the predictions and offers opinions on emerging technologies, economic factors and social developments that may play a role in shaping the future of laboratory medicine. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.
2013-12-01
Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa
2018-07-01
Automatic text classification techniques are useful for classifying plaintext medical documents. This study aims to automatically predict the cause of death from free text forensic autopsy reports by comparing various schemes for feature extraction, term weighing or feature value representation, text classification, and feature reduction. For experiments, the autopsy reports belonging to eight different causes of death were collected, preprocessed and converted into 43 master feature vectors using various schemes for feature extraction, representation, and reduction. The six different text classification techniques were applied on these 43 master feature vectors to construct a classification model that can predict the cause of death. Finally, classification model performance was evaluated using four performance measures i.e. overall accuracy, macro precision, macro-F-measure, and macro recall. From experiments, it was found that that unigram features obtained the highest performance compared to bigram, trigram, and hybrid-gram features. Furthermore, in feature representation schemes, term frequency, and term frequency with inverse document frequency obtained similar and better results when compared with binary frequency, and normalized term frequency with inverse document frequency. Furthermore, the chi-square feature reduction approach outperformed Pearson correlation, and information gain approaches. Finally, in text classification algorithms, support vector machine classifier outperforms random forest, Naive Bayes, k-nearest neighbor, decision tree, and ensemble-voted classifier. Our results and comparisons hold practical importance and serve as references for future works. Moreover, the comparison outputs will act as state-of-art techniques to compare future proposals with existing automated text classification techniques. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
The SAMPL4 host-guest blind prediction challenge: an overview.
Muddana, Hari S; Fenley, Andrew T; Mobley, David L; Gilson, Michael K
2014-04-01
Prospective validation of methods for computing binding affinities can help assess their predictive power and thus set reasonable expectations for their performance in drug design applications. Supramolecular host-guest systems are excellent model systems for testing such affinity prediction methods, because their small size and limited conformational flexibility, relative to proteins, allows higher throughput and better numerical convergence. The SAMPL4 prediction challenge therefore included a series of host-guest systems, based on two hosts, cucurbit[7]uril and octa-acid. Binding affinities in aqueous solution were measured experimentally for a total of 23 guest molecules. Participants submitted 35 sets of computational predictions for these host-guest systems, based on methods ranging from simple docking, to extensive free energy simulations, to quantum mechanical calculations. Over half of the predictions provided better correlations with experiment than two simple null models, but most methods underperformed the null models in terms of root mean squared error and linear regression slope. Interestingly, the overall performance across all SAMPL4 submissions was similar to that for the prior SAMPL3 host-guest challenge, although the experimentalists took steps to simplify the current challenge. While some methods performed fairly consistently across both hosts, no single approach emerged as consistent top performer, and the nonsystematic nature of the various submissions made it impossible to draw definitive conclusions regarding the best choices of energy models or sampling algorithms. Salt effects emerged as an issue in the calculation of absolute binding affinities of cucurbit[7]uril-guest systems, but were not expected to affect the relative affinities significantly. Useful directions for future rounds of the challenge might involve encouraging participants to carry out some calculations that replicate each others' studies, and to systematically explore parameter options.
The fractal feature and price trend in the gold future market at the Shanghai Futures Exchange (SFE)
NASA Astrophysics Data System (ADS)
Wu, Binghui; Duan, Tingting
2017-05-01
The price of gold future is affected by many factors, which include the fluctuation of gold price and the change of trading environment. Fractal analysis can help investors gain better understandings of the price fluctuation and make reasonable investment decisions in the gold future market. After analyzing gold future price from January 2th, 2014 to April 12th, 2016 at the Shanghai Futures Exchange (SFE) in China, the conclusion is drawn that the gold future market has sustainability in each trading day, with all Hurst indexes greater than 0.5. The changing features of Hurst index indicate the sustainability of gold future market is strengthened first and weakened then. As a complicatedly nonlinear system, the gold future market can be well reflected by Elman neural network, which is capable of memorizing previous prices and particularly suited for forecasting time series in comparison with other types of neural networks. After analyzing the price trend in the gold future market, the results show that the relative error between the actual value of gold future and the predictive value of Elman neural network is smaller. This model that has a better performance in data fitting and predication, can help investors analyze and foresee the price tendency in the gold future market.
A methodology for long-range prediction of air transportation
NASA Technical Reports Server (NTRS)
Ayati, M. B.; English, J. M.
1980-01-01
A framework and methodology for long term projection of demand for aviation fuels is presented. The approach taken includes two basic components. The first was a new technique for establishing the socio-economic environment within which the future aviation industry is embedded. The concept utilized was a definition of an overall societal objective for the very long run future. Within a framework so defined, a set of scenarios by which the future will unfold are then written. These scenarios provide the determinants of the air transport industry operations and accordingly provide an assessment of future fuel requirements. The second part was the modeling of the industry in terms of an abstracted set of variables to represent the overall industry performance on a macro scale. The model was validated by testing the desired output variables from the model with historical data over the past decades.
Qiu, Mingyue; Song, Yu
2016-01-01
In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.
Qiu, Mingyue; Song, Yu
2016-01-01
In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders’ expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day’s price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately. PMID:27196055
Rotor Performance at High Advance Ratio: Theory versus Test
NASA Technical Reports Server (NTRS)
Harris, Franklin D.
2008-01-01
Five analytical tools have been used to study rotor performance at high advance ratio. One is representative of autogyro rotor theory in 1934 and four are representative of helicopter rotor theory in 2008. The five theories are measured against three sets of well documented, full-scale, isolated rotor performance experiments. The major finding of this study is that the decades spent by many rotorcraft theoreticians to improve prediction of basic rotor aerodynamic performance has paid off. This payoff, illustrated by comparing the CAMRAD II comprehensive code and Wheatley & Bailey theory to H-34 test data, shows that rational rotor lift to drag ratios are now predictable. The 1934 theory predicted L/D ratios as high as 15. CAMRAD II predictions compared well with H-34 test data having L/D ratios more on the order of 7 to 9. However, the detailed examination of the selected codes compared to H-34 test data indicates that not one of the codes can predict to engineering accuracy above an advance ratio of 0.62 the control positions and shaft angle of attack required for a given lift. There is no full-scale rotor performance data available for advance ratios above 1.0 and extrapolation of currently available data to advance ratios on the order of 2.0 is unreasonable despite the needs of future rotorcraft. Therefore, it is recommended that an overly strong full-scale rotor blade set be obtained and tested in a suitable wind tunnel to at least an advance ratio of 2.5. A tail rotor from a Sikorsky CH-53 or other large single rotor helicopter should be adequate for this exploratory experiment.
Heidinger, Britt J; Nisbet, Ian C T; Ketterson, Ellen D
2006-09-07
In many taxa, reproductive performance increases throughout the lifespan and this may occur in part because older adults invest more in reproduction. The mechanisms that facilitate an increase in reproductive performance with age, however, are poorly understood. In response to stressors, vertebrates release glucocorticoids, which enhance survival but concurrently shift investment away from reproduction. Consequently, when the value of current reproduction is high relative to the value of future reproduction and survival, as it is in older adults, life history theory predicts that the stress response should be suppressed. In this study, we tested the hypothesis that older parents would respond less strongly to a stressor in a natural, breeding population of common terns (Sterna hirundo). Common terns are long-lived seabirds and reproductive performance is known to increase throughout the lifespan of this species. As predicted, the maximum level of glucocorticoids released in response to handling stress decreased significantly with age. We suggest that suppression of the stress response may be an important physiological mechanism that facilitates an increase in reproductive performance with age.
Marroquín, Brett; Boyle, Chloe C.; Nolen-Hoeksema, Susan; Stanton, Annette L.
2016-01-01
Predictions about the future are susceptible to mood-congruent influences of emotional state. However, recent work suggests individuals also differ in the degree to which they incorporate emotion into cognition. This study examined the role of such individual differences in the context of state negative emotion. We examined whether trait tendencies to use negative or positive emotion as information affect individuals' predictions of what will happen in the future (likelihood estimation) and how events will feel (affective forecasting), and whether trait influences depend on emotional state. Participants (N=119) reported on tendencies to use emotion as information (“following feelings”), underwent an emotion induction (negative versus neutral), and made likelihood estimates and affective forecasts for future events. Views of the future were predicted by both emotional state and individual differences in following feelings. Whereas following negative feelings affected most future-oriented cognition across emotional states, following positive feelings specifically buffered individuals' views of the future in the negative emotion condition, and specifically for positive future events, a category of future-event prediction especially important in psychological health. Individual differences may confer predisposition toward optimistic or pessimistic expectations of the future in the context of acute negative emotion, with implications for adaptive and maladaptive functioning. PMID:27041783
Human factors aspects of air traffic control
NASA Technical Reports Server (NTRS)
Older, H. J.; Cameron, B. J.
1972-01-01
An overview of human factors problems associated with the operation of present and future air traffic control systems is presented. A description is included of those activities and tasks performed by air traffic controllers at each operational position within the present system. Judgemental data obtained from controllers concerning psychological dimensions related to these tasks and activities are also presented. The analysis includes consideration of psychophysiological dimensions of human performance. The role of the human controller in present air traffic control systems and his predicted role in future systems is described, particularly as that role changes as the result of the system's evolution towards a more automated configuration. Special attention is directed towards problems of staffing, training, and system operation. A series of ten specific research and development projects are recommended and suggested work plans for their implementation are included.
NASA Astrophysics Data System (ADS)
Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.
2017-12-01
Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.
NASA Astrophysics Data System (ADS)
Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.
2016-12-01
Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.
Promoting Positive Future Expectations During Adolescence: The Role of Assets.
Stoddard, Sarah A; Pierce, Jennifer
2015-12-01
Positive future expectations can facilitate optimal development and contribute to healthier outcomes for youth. Researchers suggest that internal resources and community-level factors may influence adolescent future expectations, yet little is known about the processes through which these benefits are conferred. The present study examined the relationship between contribution to community, neighborhood collective efficacy, purpose, hope and future expectations, and tested a mediation model that linked contribution to community and collective efficacy with future expectations through purpose and hope in a sample of 7th grade youth (N = 196; Mage = 12.39; 60 % female; 40 % African American; 71 % economically disadvantaged). Greater collective efficacy and contribution to community predicted higher levels of hope and purpose. Higher levels of hope and purpose predicted more positive future expectations. Contribution to community and neighborhood collective efficacy indirectly predicted future expectations via hope. Implications of the findings and suggestions for future research are discussed.
Promoting Positive Future Expectations during Adolescence: The Role of Assets
Stoddard, Sarah A.; Pierce, Jennifer
2015-01-01
Positive future expectations can facilitate optimal development and contribute to healthier outcomes for youth. Researchers suggest that internal resources and community-level factors may influence adolescent future expectations, yet little is known about the processes through which these benefits are conferred. The present study examined the relationship between contribution to community, neighborhood collective efficacy, purpose, hope and future expectations, and tested a mediation model that linked contribution to community and collective efficacy with future expectations through purpose and hope in a sample of 7th grade youth (N = 196; Mage = 12.39; 60% female; 40% African American; 71% economically disadvantaged). Greater collective efficacy and contribution to community predicted higher levels of hope and purpose. Higher levels of hope and purpose predicted more positive future expectations. Contribution to community and neighborhood collective efficacy indirectly predicted future expectations via hope. Implications of the findings and suggestions for future research are discussed. PMID:26385095
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2011-01-01
As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.
A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.
Ashraf, M Irfan; Meng, Fan-Rui; Bourque, Charles P-A; MacLean, David A
2015-01-01
Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2) 5-year(-1) and volume: 0.0008 m(3) 5-year(-1)). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm(2) 5-year(-1) and 0.0393 m(3) 5-year(-1) in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling.
A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change
Ashraf, M. Irfan; Meng, Fan-Rui; Bourque, Charles P.-A.; MacLean, David A.
2015-01-01
Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm2 5-year-1 and volume: 0.0008 m3 5-year-1). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm2 5-year-1 and 0.0393 m3 5-year-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling. PMID:26173081
Gurka, Matthew J; Filipp, Stephanie L; Musani, Solomon K; Sims, Mario; DeBoer, Mark D
2018-06-01
Estimates of adiposity in evaluating the metabolic syndrome (MetS) have traditionally utilized measures of waist circumference (WC), whereas body mass index (BMI) is more commonly used clinically. Our objective was to determine if a MetS severity Z-score employing BMI as its measure of adiposity (MetS-Z-BMI) would perform similarly to a WC-based score (MetS-Z-WC) in predicting future disease. To formulate the MetS-Z-BMI, we performed confirmatory factor analysis on a sex- and race/ethnicity-specific basis on MetS-related data for 6870 adult participants of the National Health and Nutrition Survey 1999-2010. We then validated this score and compared it to MetS-Z-WC in assessing correlations with future coronary heart disease (CHD) and Type 2 diabetes mellitus (T2DM) using Cox proportional hazard analysis of 13,094 participants of the Atherosclerosis Risk in Communities study and Jackson Heart Study. Loading factors, which represent the relative contribution of each component to the latent MetS factor, were lower for BMI than for WC in formulating the two respective scores (MetS-Z-BMI and MetS-Z-WC). Nevertheless, MetS-Z-BMI and MetS-Z-WC exhibited similar hazard ratios (HR) toward future disease. For each one standard-deviation-unit increase in MetS-Z-BMI, HR for CHD was 1.76 (95% confidence interval [CI]: 1.65, 1.88) and HR for T2DM was 3.39 (CI 3.16, 3.63) (both p < 0.0001). There were no meaningful differences between the MetS-Z-WC and MetS-Z-BMI scores in their associations with future CHD and T2DM. A MetS severity Z-score utilizing BMI as its measure of adiposity operated similarly to a WC-based score in predicting future CHD and T2DM, suggesting overall similarity in MetS-based risk as estimated by both measures of adiposity. This indicates potential clinical usefulness of MetS-Z-BMI in assessing and following MetS-related risk over time. Copyright © 2018 Elsevier Inc. All rights reserved.
Ku, Li-Jung Elizabeth; Chiou, Meng-Jiun; Liu, Li-Fan
2015-07-01
The National Health Insurance (NHI) system in Taiwan launched a trial capitation provider payment programme in 2011, with the capitation formula based on patients' average NHI expenditure in the previous year. This study seeks to examine the concentration and persistence of health care expenditure among the elderly, and to assess the performance of the current capitation formula in predicting future high-cost users. This study analysed NHI expenditures for a nationally representative sample of people aged 65 years and over who took part in Taiwan's National Health Interview Survey, 2005. Expenditure concentration was assessed by the proportion of NHI expenditures attributable to four groups by expenditure percentile. Four transition probability matrixes examined changes in a person's position in the expenditure percentiles and generalized estimation equation models were estimated to identify significant predictors of a patient being in the top 10% of users. Between 2005 and 2009, the top 10% of users on average accounted for 55% of total NHI expenditures. Of the top 10% in 2005, 39% retained this position in 2006. However, expenditure persistence was the highest (77%) among the bottom 50% of users. NHI expenditure percentiles in both the baseline year and the prior year, and chronic conditions all significantly predicted future high expenditures. The model including chronic conditions performed better in predicting the top 10% of users (c-statistics increased from 0.772 to 0.904) than the model without. Given the increase in predictive ability, adding chronic conditions and baseline health care use data to Taiwan's capitation payment formula would correctly identify more high users. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Yasami, Yasser; Safaei, Farshad
2018-02-01
The traditional complex network theory is particularly focused on network models in which all network constituents are dealt with equivalently, while fail to consider the supplementary information related to the dynamic properties of the network interactions. This is a main constraint leading to incorrect descriptions of some real-world phenomena or incomplete capturing the details of certain real-life problems. To cope with the problem, this paper addresses the multilayer aspects of dynamic complex networks by analyzing the properties of intrinsically multilayered co-authorship networks, DBLP and Astro Physics, and presenting a novel multilayer model of dynamic complex networks. The model examines the layers evolution (layers birth/death process and lifetime) throughout the network evolution. Particularly, this paper models the evolution of each node's membership in different layers by an Infinite Factorial Hidden Markov Model considering feature cascade, and thereby formulates the link generation process for intra-layer and inter-layer links. Although adjacency matrixes are useful to describe the traditional single-layer networks, such a representation is not sufficient to describe and analyze the multilayer dynamic networks. This paper also extends a generalized mathematical infrastructure to address the problems issued by multilayer complex networks. The model inference is performed using some Markov Chain Monte Carlo sampling strategies, given synthetic and real complex networks data. Experimental results indicate a tremendous improvement in the performance of the proposed multilayer model in terms of sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, F1-score, Matthews correlation coefficient, and accuracy for two important applications of missing link prediction and future link forecasting. The experimental results also indicate the strong predictivepower of the proposed model for the application of cascade prediction in terms of accuracy.
Performance of Dental Ceramics
Rekow, E.D.; Silva, N.R.F.A.; Coelho, P.G.; Zhang, Y.; Guess, P.; Thompson, V.P.
2011-01-01
The clinical success of modern dental ceramics depends on an array of factors, ranging from initial physical properties of the material itself, to the fabrication and clinical procedures that inevitably damage these brittle materials, and the oral environment. Understanding the influence of these factors on clinical performance has engaged the dental, ceramics, and engineering communities alike. The objective of this review is to first summarize clinical, experimental, and analytic results reported in the recent literature. Additionally, it seeks to address how this new information adds insight into predictive test procedures and reveals challenges for future improvements. PMID:21224408
Existing generating assets squeezed as new project starts slow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.B.; Tiffany, E.D.
Most forecasting reports concentrate on political or regulatory events to predict future industry trends. Frequently overlooked are the more empirical performance trends of the principal power generation technologies. Solomon and Associates queried its many power plant performance databases and crunched some numbers to identify those trends. Areas of investigation included reliability, utilization (net output factor and net capacity factor) and cost (operating costs). An in-depth analysis for North America and Europe is presented in this article, by region and by regeneration technology. 4 figs., 2 tabs.
Simulation of the Simbol-X telescope: imaging performance of a deformable x-ray telescope
NASA Astrophysics Data System (ADS)
Chauvin, Maxime; Roques, Jean-Pierre
2009-08-01
We have developed a simulation tool for a Wolter I telescope subject to deformations. The aim is to understand and predict the behavior of Simbol-X and other future missions (NuSTAR, Astro-H, IXO, ...). Our code, based on Monte-Carlo ray-tracing, computes the full photon trajectories up to the detector plane, along with the deformations. The degradation of the imaging system is corrected using metrology. This tool allows to perform many analyzes in order to optimize the configuration of any of these telescopes.