Duncan, Justin; Gosselin, Frédéric; Cobarro, Charlène; Dugas, Gabrielle; Blais, Caroline; Fiset, Daniel
2017-12-01
Horizontal information was recently suggested to be crucial for face identification. In the present paper, we expand on this finding and investigate the role of orientations for all the basic facial expressions and neutrality. To this end, we developed orientation bubbles to quantify utilization of the orientation spectrum by the visual system in a facial expression categorization task. We first validated the procedure in Experiment 1 with a simple plaid-detection task. In Experiment 2, we used orientation bubbles to reveal the diagnostic-i.e., task relevant-orientations for the basic facial expressions and neutrality. Overall, we found that horizontal information was highly diagnostic for expressions-surprise excepted. We also found that utilization of horizontal information strongly predicted performance level in this task. Despite the recent surge of research on horizontals, the link with local features remains unexplored. We were thus also interested in investigating this link. In Experiment 3, location bubbles were used to reveal the diagnostic features for the basic facial expressions. Crucially, Experiments 2 and 3 were run in parallel on the same participants, in an interleaved fashion. This way, we were able to correlate individual orientation and local diagnostic profiles. Our results indicate that individual differences in horizontal tuning are best predicted by utilization of the eyes.
Effects of static orientation upon human optokinetic afternystagmus
NASA Technical Reports Server (NTRS)
Wall, C. 3rd; Merfeld, D. M.; Zupan, L.
1999-01-01
"Normal" human subjects were placed in a series of 5 static orientations with respect to gravity and were asked to view an optokinetic display moving at a constant angular velocity. The axis of rotation coincided with the subject's rostro-caudal axis and produced horizontal optokinetic nystagmus and afternystagmus. Wall (1) previously reported that these optokinetic afternystagmus responses were not well characterized by parametric fits to slow component velocity. The response for nose-up, however, was larger than for nose-down. This suggested that the horizontal eye movements measured during optokinetic stimulation might include an induced linear VOR component as presented in the body of this paper. To investigate this hypothesis, another analysis of these data has been made using cumulative slow component eye position. Some subjects' responses had reversals in afternystagmus direction. These reversals were "filled in" by a zero slow component velocity. This method of analysis gives a much more consistent result across subjects and shows that, on average, responses from the nose-down horizontal (prone) orientation are greatly reduced (p < 0.05) compared to other horizontal and vertical orientations. Average responses are compared to responses predicted by a model previously used to predict successfully the responses to post-rotatory nystagmus after earth horizontal axis rotation. Ten of 11 subjects had larger responses in their supine than their prone orientation. Application of horizontal axis optokinetic afternystagmus for clinical otolith function testing, and implications for altered gravity experiments are discussed.
Optogenetic Assessment of Horizontal Interactions in Primary Visual Cortex
Huang, Xiaoying; Elyada, Yishai M.; Bosking, William H.; Walker, Theo
2014-01-01
Columnar organization of orientation selectivity and clustered horizontal connections linking orientation columns are two of the distinctive organizational features of primary visual cortex in many mammalian species. However, the functional role of these connections has been harder to characterize. Here we examine the extent and nature of horizontal interactions in V1 of the tree shrew using optical imaging of intrinsic signals, optogenetic stimulation, and multi-unit recording. Surprisingly, we find the effects of optogenetic stimulation depend primarily on distance and not on the specific orientation domains or axes in the cortex, which are stimulated. In addition, across a wide range of variation in both visual and optogenetic stimulation we find linear addition of the two inputs. These results emphasize that the cortex provides a rich substrate for functional interactions that are not limited to the orientation-specific interactions predicted by the monosynaptic distribution of horizontal connections. PMID:24695715
Measurement and modeling of solar irradiance components on horizontal and tilted planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padovan, Andrea; Col, Davide del
2010-12-15
In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurementsmore » taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)« less
NASA Astrophysics Data System (ADS)
Huang, Y.; Zhan, H.; Knappett, P.
2017-12-01
Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and <1 percent, respectively. These discrepancies are well within acceptable ranges of uncertainty for aquifer parameters estimation, when compared with other pumping test interpretation methods, which typically estimate uncertainty for the estimated parameters of 20 or 30 percent. Finally, the stream depletion rate was calculated as a function of stream-bank pumping. Unique to horizontally anisotropic aquifer, the stream depletion rate at any given pumping rate depends on the horizontal anisotropy ratio and the direction of the principle transmissivity. For example, when horizontal anisotropy ratios are 5 and 50 respectively, the corresponding depletion rate under pseudo steady-state condition are 86 m3/day and 91 m3/day. The results of this research fill a knowledge gap on predicting the response of horizontally anisotropic aquifers connected to streams. We further provide a method to estimate aquifer properties and predict stream depletion rates from observed drawdown. This new model can be used by water resources managers to exploit groundwater resource reasonably while protecting stream ecosystem.
NASA Astrophysics Data System (ADS)
Paul, Suman; Ali, Muhammad; Chatterjee, Rima
2018-01-01
Velocity of compressional wave ( V P) of coal and non-coal lithology is predicted from five wells from the Bokaro coalfield (CF), India. Shear sonic travel time logs are not recorded for all wells under the study area. Shear wave velocity ( Vs) is available only for two wells: one from east and other from west Bokaro CF. The major lithologies of this CF are dominated by coal, shaly coal of Barakar formation. This paper focuses on the (a) relationship between Vp and Vs, (b) prediction of Vp using regression and neural network modeling and (c) estimation of maximum horizontal stress from image log. Coal characterizes with low acoustic impedance (AI) as compared to the overlying and underlying strata. The cross-plot between AI and Vp/ Vs is able to identify coal, shaly coal, shale and sandstone from wells in Bokaro CF. The relationship between Vp and Vs is obtained with excellent goodness of fit ( R 2) ranging from 0.90 to 0.93. Linear multiple regression and multi-layered feed-forward neural network (MLFN) models are developed for prediction Vp from two wells using four input log parameters: gamma ray, resistivity, bulk density and neutron porosity. Regression model predicted Vp shows poor fit (from R 2 = 0.28) to good fit ( R 2 = 0.79) with the observed velocity. MLFN model predicted Vp indicates satisfactory to good R2 values varying from 0.62 to 0.92 with the observed velocity. Maximum horizontal stress orientation from a well at west Bokaro CF is studied from Formation Micro-Imager (FMI) log. Breakouts and drilling-induced fractures (DIFs) are identified from the FMI log. Breakout length of 4.5 m is oriented towards N60°W whereas the orientation of DIFs for a cumulative length of 26.5 m is varying from N15°E to N35°E. The mean maximum horizontal stress in this CF is towards N28°E.
Chouinard, Philippe A.; Peel, Hayden J.; Landry, Oriane
2017-01-01
The closer a line extends toward a surrounding frame, the longer it appears. This is known as a framing effect. Over 70 years ago, Teodor Künnapas demonstrated that the shape of the visual field itself can act as a frame to influence the perceived length of lines in the vertical-horizontal illusion. This illusion is typically created by having a vertical line rise from the center of a horizontal line of the same length creating an inverted T figure. We aimed to determine if the degree to which one fixates on a spatial location where the two lines bisect could influence the strength of the illusion, assuming that the framing effect would be stronger when the retinal image is more stable. We performed two experiments: the visual-field and vertical-horizontal illusion experiments. The visual-field experiment demonstrated that the participants could discriminate a target more easily when it was presented along the horizontal vs. vertical meridian, confirming a framing influence on visual perception. The vertical-horizontal illusion experiment determined the effects of orientation, size and eye gaze on the strength of the illusion. As predicted, the illusion was strongest when the stimulus was presented in either its standard inverted T orientation or when it was rotated 180° compared to other orientations, and in conditions in which the retinal image was more stable, as indexed by eye tracking. Taken together, we conclude that the results provide support for Teodor Künnapas’ explanation of the vertical-horizontal illusion. PMID:28392764
Radial bisection of words and lines in right-brain-damaged patients with spatial neglect.
Veronelli, Laura; Arduino, Lisa S; Girelli, Luisa; Vallar, Giuseppe
2017-09-01
The bisection of lines positioned radially (with the two ends of the line close and far, with respect to the participant's body) has been less investigated than that of lines placed horizontally (with their two ends left and right, with respect to the body's midsagittal plane). In horizontal bisection, patients with left neglect typically show a rightward bias for both lines and words, greater with longer stimuli. As for radial bisection, available data indicate that neurologically unimpaired participants make a distal error, while results from right-brain-damaged patients with left spatial neglect are contradictory. We investigated the bisection of radially oriented words, with the prediction that, during bisection, linguistic material would be recoded to its canonical left-to-right format in reading, with the performance of neglect patients being similar to that for horizontal words. Thirteen right-brain-damaged patients (seven with left spatial neglect) and fourteen healthy controls were asked to manually bisect 40 radial and 40 horizontal words (5-10 letters), and 80 lines, 40 radial and 40 horizontal, of comparable length. Right-brain-damaged patients with spatial neglect exhibited a proximal bias in the bisection of short radial words, with the proximal part corresponding to the final right part of horizontally oriented words. This proximal error was not found in patients without neglect and healthy controls. For bisection, short radial words may be recoded to the canonical orthographic horizontal format, unveiling the impact of left neglect on radially oriented stimuli. © 2015 The British Psychological Society.
Zanella, Alberto; Cressoni, Massimo; Epp, Myra; Hoffmann, Viktoria; Stylianou, Mario; Kolobow, Theodor
2012-04-01
Orientation of the trachea and tracheal tube below horizontal may prevent aspiration of oropharyngeal secretions into the lungs, which is a pivotal pathway in the pathogenesis of ventilator-associated pneumonia (VAP). The incidence of VAP was evaluated in swine with orientation of trachea and tracheal tube above horizontal (model of semirecumbent position, currently recommended in patients) and below horizontal. Twenty-six mini-pigs were randomized into four groups: (A) eight mechanically ventilated with orientation of trachea 45° above horizontal for 72 h. In the remaining groups (B, C, D) the trachea was oriented 10° below horizontal, with (B) six mechanically ventilated for 72 h, (C) six mechanically ventilated for 72 h with enteral feeding, and (D) six mechanically ventilated for 168 h with enteral feeding. At the end of the study period, all pigs were sacrificed and the clinical diagnosis of VAP was microbiologically evaluated. No antibiotics were administered. All eight pigs kept orientated with the trachea 45° above horizontal developed VAP and respiratory failure (PaO(2)/F(i)O(2) = 132 ± 139 mmHg) with a median of 5.5 pulmonary lobes out of 6 colonized with average colonization of 9.3 × 10(7) CFU/g. None of the 18 pigs kept oriented with the trachea below horizontal developed VAP; 16 had sterile lungs, while 2, ventilated for 7 days, developed a low level of colonization. Orientation of the trachea above horizontal was uniformly associated with VAP and respiratory failure; positioning the trachea below horizontal consistently prevented development of VAP.
Seriès, Peggy; Georges, Sébastien; Lorenceau, Jean; Frégnac, Yves
2002-11-01
Psychophysical and physiological studies suggest that long-range horizontal connections in primary visual cortex participate in spatial integration and contour processing. Until recently, little attention has been paid to their intrinsic temporal properties. Recent physiological studies indicate, however, that the propagation of activity through long-range horizontal connections is slow, with time scales comparable to the perceptual scales involved in motion processing. Using a simple model of V1 connectivity, we explore some of the implications of this slow dynamics. The model predicts that V1 responses to a stimulus in the receptive field can be modulated by a previous stimulation, a few milliseconds to a few tens of milliseconds before, in the surround. We analyze this phenomenon and its possible consequences on speed perception, as a function of the spatio-temporal configuration of the visual inputs (relative orientation, spatial separation, temporal interval between the elements, sequence speed). We show that the dynamical interactions between feed-forward and horizontal signals in V1 can explain why the perceived speed of fast apparent motion sequences strongly depends on the orientation of their elements relative to the motion axis and can account for the range of speed for which this perceptual effect occurs (Georges, Seriès, Frégnac and Lorenceau, this issue).
D.R. Weise; E. Koo; X. Zhou; S. Mahalingam
2011-01-01
Observed fire spread rates from 240 laboratory fires in horizontally-oriented single-species live fuel beds were compared to predictions from various implementations and modifications of the Rothermel rate of spread model and a physical fire spread model developed by Pagni and Koo. Packing ratio of the laboratory fuel beds was generally greater than that observed in...
Orienting numbers in mental space: horizontal organization trumps vertical.
Holmes, Kevin J; Lourenco, Stella F
2012-01-01
While research on the spatial representation of number has provided substantial evidence for a horizontally oriented mental number line, recent studies suggest vertical organization as well. Directly comparing the relative strength of horizontal and vertical organization, however, we found no evidence of spontaneous vertical orientation (upward or downward), and horizontal trumped vertical when pitted against each other (Experiment 1). Only when numbers were conceptualized as magnitudes (as opposed to nonmagnitude ordinal sequences) did reliable vertical organization emerge, with upward orientation preferred (Experiment 2). Altogether, these findings suggest that horizontal representations predominate, and that vertical representations, when elicited, may be relatively inflexible. Implications for spatial organization beyond number, and its ontogenetic basis, are discussed.
Higashiyama, A
1992-03-01
Three experiments investigated anisotropic perception of visual angle outdoors. In Experiment 1, scales for vertical and horizontal visual angles ranging from 20 degrees to 80 degrees were constructed with the method of angle production (in which the subject reproduced a visual angle with a protractor) and the method of distance production (in which the subject produced a visual angle by adjusting viewing distance). In Experiment 2, scales for vertical and horizontal visual angles of 5 degrees-30 degrees were constructed with the method of angle production and were compared with scales for orientation in the frontal plane. In Experiment 3, vertical and horizontal visual angles of 3 degrees-80 degrees were judged with the method of verbal estimation. The main results of the experiments were as follows: (1) The obtained angles for visual angle are described by a quadratic equation, theta' = a + b theta + c theta 2 (where theta is the visual angle; theta', the obtained angle; a, b, and c, constants). (2) The linear coefficient b is larger than unity and is steeper for vertical direction than for horizontal direction. (3) The quadratic coefficient c is generally smaller than zero and is negatively larger for vertical direction than for horizontal direction. And (4) the obtained angle for visual angle is larger than that for orientation. From these results, it was possible to predict the horizontal-vertical illusion, over-constancy of size, and the moon illusion.
Electroluminescence from completely horizontally oriented dye molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komino, Takeshi; Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395; Japan Science and Technology Agency, ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395
2016-06-13
A complete horizontal molecular orientation of a linear-shaped thermally activated delayed fluorescent guest emitter 2,6-bis(4-(10Hphenoxazin-10-yl)phenyl)benzo[1,2-d:5,4-d′] bis(oxazole) (cis-BOX2) was obtained in a glassy host matrix by vapor deposition. The orientational order of cis-BOX2 depended on the combination of deposition temperature and the type of host matrix. Complete horizontal orientation was obtained when a thin film with cis-BOX2 doped in a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) host matrix was fabricated at 200 K. The ultimate orientation of guest molecules originates from not only the kinetic relaxation but also the kinetic stability of the deposited guest molecules on the film surface during film growth. Utilizing the ultimatemore » orientation, a highly efficient organic light-emitting diode with the external quantum efficiency of 33.4 ± 2.0% was realized. The thermal stability of the horizontal orientation of cis-BOX2 was governed by the glass transition temperature (T{sub g}) of the CBP host matrix; the horizontal orientation was stable unless the film was annealed above T{sub g}.« less
Sun, Pei; Gardner, Justin L.; Costagli, Mauro; Ueno, Kenichi; Waggoner, R. Allen; Tanaka, Keiji; Cheng, Kang
2013-01-01
Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception. PMID:22661413
On prediction of crack in different orientations in pipe using frequency based approach
NASA Astrophysics Data System (ADS)
Naniwadekar, M. R.; Naik, S. S.; Maiti, S. K.
2008-04-01
A technique based on measurement of change in natural frequencies and modeling of crack by rotational spring is employed to detect a crack with straight front in different orientations in a section of straight horizontal steel hollow pipe (outer diameter 0.0378 m and inner diameter 0.0278 m). Crack orientations in the range 0-60° with the vertical have been examined and sizes/depths in the range 1-4 mm through the wall of thickness 5 mm have been studied. Variation of rotational spring stiffness with crack size and orientation has been obtained experimentally by deflection and vibration methods. The spring stiffness reduces as expected, with an increase in crack size; it increases with an increase in the crack orientation angle. The crack location has been predicted with a maximum error of 7.29%. The sensitivity of the method for prediction of crack location on variations in experimental data has been examined by changing the difference between the frequencies of pipes with and without crack by ±10%. The method is found to be very robust; the maximum variation in location is 2.68%, which is much less than the change in frequency difference introduced.
Face perception is tuned to horizontal orientation in the N170 time window.
Jacques, Corentin; Schiltz, Christine; Goffaux, Valerie
2014-02-07
The specificity of face perception is thought to reside both in its dramatic vulnerability to picture-plane inversion and its strong reliance on horizontally oriented image content. Here we asked when in the visual processing stream face-specific perception is tuned to horizontal information. We measured the behavioral performance and scalp event-related potentials (ERP) when participants viewed upright and inverted images of faces and cars (and natural scenes) that were phase-randomized in a narrow orientation band centered either on vertical or horizontal orientation. For faces, the magnitude of the inversion effect (IE) on behavioral discrimination performance was significantly reduced for horizontally randomized compared to vertically or nonrandomized images, confirming the importance of horizontal information for the recruitment of face-specific processing. Inversion affected the processing of nonrandomized and vertically randomized faces early, in the N170 time window. In contrast, the magnitude of the N170 IE was much smaller for horizontally randomized faces. The present research indicates that the early face-specific neural representations are preferentially tuned to horizontal information and offers new perspectives for a description of the visual information feeding face-specific perception.
Influence of gravity on the orientation of vestibular induced quick phases.
Pettorossi, V E; Errico, P; Ferraresi, A; Draicchio, F
1995-01-01
In rabbits and cats the orientation of the quick phases (QPs) of the vestibulo-ocular reflex (VOR) was studied varying the head position in space. At different head tilt positions, QPs induced by step vestibular stimulation disaligned with respect to the stimulus toward the orientation of the earth's horizontal axis. The rabbits' QPs were horizontal during yaw stimulation and remained horizontal in a range of head pitch of +/- 90 degrees (reorientation gain = 1). Therefore, the slow compensatory responses (CSPs) progressively disaligned compared with the QPs. QPs induced by roll stimulation also showed horizontal orientation, although these were rare in the upright position and occurred more frequently when the head was pitched. In cats only the yaw-induced QPs were coplanar with the stimulus, while QPs induced by pitching were mostly oblique. It followed that in either yawing or pitching, the QPs had their end point scattered within a horizontally elongated area of the visual field. When tilting cats in the frontal plane, the orientation of QP trajectories changed with respect to the stimulus so that the end point distribution tended to remain aligned toward the horizontal instead of being fixed in the orbit. The reorientation gain decreased from 1 to 0.5 by increasing the head tilt. On the basis of difference regarding eye implantation and motility it was suggested that the effect of gravity on the orientation of QPs could be aimed at maintaining the interocular axis aligned with the horizon in the rabbit and at orientating the visual scanning system in the horizontal plane in the cat.
The effect of implied orientation derived from verbal context on picture recognition.
Stanfield, R A; Zwaan, R A
2001-03-01
Perceptual symbol systems assume an analogue relationship between a symbol and its referent, whereas amodal symbol systems assume an arbitrary relationship between a symbol and its referent. According to perceptual symbol theories, the complete representation of an object, called a simulation, should reflect physical characteristics of the object. Amodal theories, in contrast, do not make this prediction. We tested the hypothesis, derived from perceptual symbol theories, that people mentally represent the orientation of an object implied by a verbal description. Orientation (vertical-horizontal) was manipulated by having participants read a sentence that implicitly suggested a particular orientation for an object. Then recognition latencies to pictures of the object in each of the two orientations were measured. Pictures matching the orientation of the object implied by the sentence were responded to faster than pictures that did not match the orientation. This finding is interpreted as offering support for theories positing perceptual symbol systems.
The influence of object similarity and orientation on object-based cueing.
Hein, Elisabeth; Blaschke, Stefan; Rolke, Bettina
2017-01-01
Responses to targets that appear at a noncued position within the same object (invalid-same) compared to a noncued position at an equidistant different object (invalid-different) tend to be faster and more accurate. These cueing effects have been taken as evidence that visual attention can be object based (Egly, Driver, & Rafal, Journal of Experimental Psychology: General, 123, 161-177, 1994). Recent findings, however, have shown that the object-based cueing effect is influenced by object orientation, suggesting that the cueing effect might be due to a more general facilitation of attentional shifts across the horizontal meridian (Al-Janabi & Greenberg, Attention, Perception, & Psychophysics, 1-17, 2016; Pilz, Roggeveen, Creighton, Bennet, & Sekuler, PLOS ONE, 7, e30693, 2012). The aim of this study was to investigate whether the object-based cueing effect is influenced by object similarity and orientation. According to the object-based attention account, objects that are less similar to each other should elicit stronger object-based cueing effects independent of object orientation, whereas the horizontal meridian theory would not predict any effect of object similarity. We manipulated object similarity by using a color (Exp. 1, Exp. 2A) or shape change (Exp. 2B) to distinguish two rectangles in a variation of the classic two-rectangle paradigm (Egly et al., 1994). We found that the object-based cueing effects were influenced by the orientation of the rectangles and strengthened by object dissimilarity. We suggest that object-based cueing effects are strongly affected by the facilitation of attention along the horizontal meridian, but that they also have an object-based attentional component, which is revealed when the dissimilarity between the presented objects is accentuated.
Halverson, B A; Anderson, W H
1992-03-01
During the 6-month period from mid February 1988 to mid August 1988, 148 patients presented with 154 diagnosed cases of mandibular third molar pericoronitis. All patients were members of the recruit population stationed at the Recruit Training Command, Great Lakes, Illinois. Selected clinical parameters relating to the orientation and eruption status of these third molars were collected and analyzed. The goal was to obtain a predictive clinical profile of the impacted mandibular third molar (MTM) at greatest risk for pericoronitis in the young naval and Marine Corps personnel. The majority of pericoronitis cases, 120 of 148 or 81.0%, involved vertically oriented MTMs; of this total, 79.1% were erupted to the approximate height of the occlusal plane of the arch. The remaining 20.9% were at or below the height of contour of the adjacent tooth. Mesioangular impacted MTMs accounted for only 11.2% of pericoronitis cases. The remaining cases comprised distoangular and horizontally impacted MTMs (3.4% and 3.8%, respectively). Involvement by impinging maxillary dentition was observed in 39.7% of the vertically oriented MTMs, 56.2% of the mesioangular oriented MTMs, 40.0% of the distoangular MTMs, and 14.0% of the horizontally impacted MTMs. The mean value for occlusal coverage by a soft tissue operculum observed for all MTMs in this study was 49%. In the population studied, risk for pericoronitis appears to increase with greater vertical orientation and height of eruption. The absence of impinging maxillary dentition did not eliminate the risk of mandibular third molar pericoronitis. These data have implications for targeting treatment needs of naval and Marine Corps personnel who may be without dental support for extended periods of time.
Relationships between clubshaft motions and clubface orientation during the golf swing.
Takagi, Tokio; Yokozawa, Toshiharu; Inaba, Yuki; Matsuda, Yuji; Shiraki, Hitoshi
2017-09-01
Since clubface orientation at impact affects ball direction and ball spin, the ability to control clubface orientation is one of the most important skills for golfers. This study presents a new method to describe clubface orientation as a function of the clubshaft motions (i.e., swing plane orientation, clubshaft angle in the swing plane, and clubshaft rolling angle) during a golf swing and investigates the relationships between the clubshaft motions and clubface orientation at impact. The club motion data of driver shots were collected from eight skilled golfers using a three-dimensional motion capture system. The degrees of influence of the clubshaft motions on the clubface orientation were investigated using sensitivity analysis. The sensitivity analysis revealed that the swing plane horizontal angle affected the clubface horizontal angle to an extent of 100%, that the clubshaft angle in the swing plane affected both the clubface vertical and horizontal angles to extents of 74 and 68%, respectively, and that the clubshaft rolling angle affected both the clubface vertical and horizontal angles to extents of -67 and 75%, respectively. Since the method presented here relates clubface orientation to clubshaft motions, it is useful for understanding the clubface control of a golfer.
Effect of attention on the detection and identification of masked spatial patterns.
Põder, Endel
2005-01-01
The effect of attention on the detection and identification of vertically and horizontally oriented Gabor patterns in the condition of simultaneous masking with obliquely oriented Gabors was studied. Attention was manipulated by varying the set size in a visual-search experiment. In the first experiment, small target Gabors were presented on the background of larger masking Gabors. In the detection task, the effect of set size was as predicted by unlimited-capacity signal detection theory. In the orientation identification task, increasing the set size from 1 to 8 resulted in a much larger decline in performance. The results of the additional experiments suggest that attention can reduce the crowding effect of maskers.
Influence of magnetic field on zebrafish activity and orientation in a plus maze.
Osipova, Elena A; Pavlova, Vera V; Nepomnyashchikh, Valentin A; Krylov, Viacheslav V
2016-01-01
We describe an impact of the geomagnetic field (GMF) and its modification on zebrafish's orientation and locomotor activity in a plus maze with four arms oriented to the north, east, south and west. Zebrafish's directional preferences were bimodal in GMF: they visited two arms oriented in opposed directions (east-west) most frequently. This bimodal preference remained stable for same individuals across experiments divided by several days. When the horizontal GMF component was turned 90° clockwise, the preference accordingly shifted by 90° to arms oriented to the north and south. Other modifications of GMF (reversal of both vertical and horizontal GMF components; reversal of vertical component only; and reversal of horizontal component only) did not exert any discernible effect on the orientation of zebrafish. The 90° turn of horizontal component also resulted in a significant increase of fish's locomotor activity in comparison with the natural GMF. This increase became even more pronounced when the horizontal component was repeatedly turned by 90° and back with 1min interval between turns. Our results show that GMF and its variations should be taken into account when interpreting zebrafish's directional preferences and locomotor activity in mazes and other experimental devices. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Jacob, K.
Flank eruptions of polygenetic volcanoes are regarded as surface expressions of radial dikes. Therefore, the approximate pattern of radial dikes is revealed by the distribution of sites of flank eruptions. Bending of radial dikes into a preferred orientation reveals the maximum horizontal compressive stress axis. The Aleutian and Alaskan volcanoes are studied using this concept and 28 orientations of the maximum horizontal compressive stress axis are obtained. Combined with the orientation of similar quality obtained from active faults in central Alaska the trajectories of the maximum horizontal stress for the entire area during recent 10,000 to 100,000 years or longermore » is depicted. Along the Aleutian-Alaska volcanic belt, the maximum horizontal compression parallels the direction of relative motion between the North American and Pacific plates. Seven roughly east-westerly orientations are obtained from west Alaskan and Bering Sea volcanoes. In central Alaska, the trajectories spread north-westward in a fan shape with axis of symmetry in a N25/sup 0/W direction passing through the easternmost part of the Aleutian trench. The trajectories continue westward onto the Bering Sea shelf with a generally westerly trend. The overall pattern of orientations of maximum horizontal compressive stresses seems to be explained by the convergent plate motions along. An exception is the high--angle relationship between the maximum horizontal stress orientation in the central Aleutians and the immediate back-arc region, which suggests that in the back-arc region the tectonic stress system has a different origin probably at considerable depth beneath the crust.« less
39. SAME VIEW AS MD6A38, ONLY WITH A HORIZONTAL ORIENTATION. ...
39. SAME VIEW AS MD-6A-38, ONLY WITH A HORIZONTAL ORIENTATION. - Baltimore & Ohio Railroad, Mount Clare Shops, South side of Pratt Street between Carey & Poppleton Streets, Baltimore, Independent City, MD
Vertical or horizontal orientation of foot radiographs does not affect image interpretation
Ferran, Nicholas Antonio; Ball, Luke; Maffulli, Nicola
2012-01-01
Summary This study determined whether the orientation of dorsoplantar and oblique foot radiographs has an effect on radiograph interpretation. A test set of 50 consecutive foot radiographs were selected (25 with fractures, and 25 normal), and duplicated in the horizontal orientation. The images were randomly arranged, numbered 1 through 100, and analysed by six image interpreters. Vertical and horizontal area under the ROC curve, accuracy, sensitivity and specificity were calculated for each image interpreter. There was no significant difference in the area under the ROC curve, accuracy, sensitivity or specificity of image interpretation between images viewed in the vertical or horizontal orientation. While conventions for display of radiographs may help to improve the development of an efficient visual search strategy in trainees, and allow for standardisation of publication of radiographic images, variation from the convention in clinical practice does not appear to affect the sensitivity or specificity of image interpretation. PMID:23738310
Thermocouple Probe Orientation Affects Prescribed Fire Behavior Estimation.
Coates, T Adam; Chow, Alex T; Hagan, Donald L; Waldrop, Thomas A; Wang, G Geoff; Bridges, William C; Rogers, Mary-Frances; Dozier, James H
2018-01-01
Understanding the relationship between fire intensity and fuel mass is essential information for scientists and forest managers seeking to manage forests using prescribed fires. Peak burning temperature, duration of heating, and area under the temperature profile are fire behavior metrics obtained from thermocouple-datalogger assemblies used to characterize prescribed burns. Despite their recurrent usage in prescribed burn studies, there is no simple protocol established to guide the orientation of thermocouple installation. Our results from dormant and growing season burns in coastal longleaf pine ( Mill.) forests in South Carolina suggest that thermocouples located horizontally at the litter-soil interface record significantly higher estimates of peak burning temperature, duration of heating, and area under the temperature profile than thermocouples extending 28 cm vertically above the litter-soil interface ( < 0.01). Surprisingly, vertical and horizontal estimates of these measures did not show strong correlation with one another ( ≤ 0.14). The horizontal duration of heating values were greater in growing season burns than in dormant season burns ( < 0.01), but the vertical values did not indicate this difference ( = 0.52). Field measures of fuel mass and depth before and after fire showed promise as significant predictive variables ( ≤ 0.05) for the fire behavior metrics. However, all correlation coefficients were less than or equal to = 0.41. Given these findings, we encourage scientists, researchers, and managers to carefully consider thermocouple orientation when investigating fire behavior metrics, as orientation may affect estimates of fire intensity and the distinction of fire treatment effects, particularly in forests with litter-dominated surface fuels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Voth, Greg A.; Kramel, Stefan; Menon, Udayshankar K.; Koch, Donald L.
2017-11-01
We experimentally measure the sedimentation of non-spherical particles in isotropic turbulence. We obtain time-resolved 3D orientations of the particles along with the fluid velocity field around them in a vertical water tunnel. An active jet array with 40 individually controllable jets enables us to adjust the turbulence intensity and observe the transition from strongly aligned to randomized particle orientations. We focus on the orientation statistics of ramified particles formed from several slender arms, including fibers and particles with three arms in planar symmetry (triads), which allows us to study alignment of both fibers and disk-like particles. We can predict the turbulent intensity at which the transition from aligned to randomized particle orientations occurs using a non-dimensional settling factor given by the ratio of rotation timescale of the turbulence at the scale of the particle to the rotation timescale of a particles in quiescent flow due to inertial torques. A model of ramified particle motion based on slender body theory provides accurate predictions of the vertical and horizontal particle velocities relative to the turbulent fluid. Supported by Army Research Office Grant W911NF1510205.
The orientation of the cervical vertebral column in unrestrained awake animals. I. Resting position.
Vidal, P P; Graf, W; Berthoz, A
1986-01-01
The orientation of the cervical vertebral column was studied by X-ray photography of the region containing the head and the neck in nine unrestrained species of vertebrates (man, monkey, cat, rabbit, guinea pig, rat, chicken, frog, lizard). In addition, the orientation of the horizontal semicircular canals was measured in four species using landmarks on the skull. In all vertebrates studied, with the exception of frog and lizard, the general orientation of the cervical vertebral column was vertical when animals were at rest, and not horizontal or oblique as suggested by the macroscopic appearance of the neck. The posture of the animal, whether lying, sitting or standing, had little effect on this general vertical orientation, although some variability was noticed depending on the species. This finding prompted the definition of a resting zone, where the cervical column can take any orientation within a narrow range around a mean position. The cervical vertebral column composes part of the S-shaped structure of the entire vertebral column, with one inflection around the cervico-thoracic (C7/Th1) junction. This feature is already noticable in the lizard. The vertical orientation of the cervical vertebral column is interpreted to provide a stable and energy saving balance of the head. Furthermore, when the head is lowered or raised, the atlanto-occipital and cervico-thoracic junctions are predominantly involved, while the entire cervical column largely preserves its intrinsic configuration. The curved configuration of the cervico-thoracic vertebral column embedded in long spring-like muscles is interpreted to function as a shock absorber. At rest, animals did not hold their heads with the horizontal canals oriented earth horizontally all the time, but often maintained them pitched up by ca. 5 deg, as has been reported for man. At other times, presumably when the vigilance level increased, the horizontal canals were brought into the earth horizontal plane. The vertical orientation of the cervical column results in a vertical positioning of the odontoid process of the axis (second cervical vertebra, C2), which thus provides the axis of rotation for yaw movements of the head. This axis corresponds to that of the horizontal semicircular canals. The vertical organization of the cervical vertebral column in birds and mammals, whether the animal is quadrupedal or bipedal, points to a common organizational principle for eye and head movement systems.(ABSTRACT TRUNCATED AT 400 WORDS)
Modeling Horizontal GPS Seasonal Signals Caused by Ocean Loading
NASA Astrophysics Data System (ADS)
Bartlow, N. M.; Fialko, Y. A.
2014-12-01
GPS monuments around the world exhibit seasonal signals in both the horizontal and vertical components with amplitudes on the order of centimeters. For analysis of tectonic signals, researchers typically fit and remove a sine wave with an annual period, and sometimes an additional sine wave with a semiannual period. As interest grows in analyzing smaller, slower signals it becomes more important to correct for these seasonal signals accurately. It is well established that the vertical component of seasonal GPS signals is largely due to continental water storage cycles (e.g. van Dam et al., GRL, 2001). Horizontal seasonal signals however are not well explained by continental water storage. We examine horizontal seasonal signals across western North America and find that the horizontal component is coherent at very large spatial scales and is in general oriented perpendicular to the nearest coastline, indicating an oceanic origin. Additionally, horizontal and vertical annual signals are out of phase by approximately 2 months indicating different physical origins. Studies of GRACE and ocean bottom pressure data indicate an annual variation of non-steric, non-tidal ocean height with an average amplitude of 1 cm globally (e.g. Ponte et al., GRL, 2007). We use Some Programs for Ocean Tide Loading (SPOTL; Agnew, SIO Technical Report, 2012) to model predicted displacements due to these (non-tidal) ocean loads and find general agreement with observed horizontal GPS seasonal signals. In the future, this may lead to a more accurate way to predict and remove the seasonal component of GPS displacement time-series, leading to better discrimination of the true tectonic signal. Modeling this long wavelength signal also provides a potential opportunity to probe the structure of the Earth.
Fibre Optic Connections And Method For Using Same
Chan, Benson; Cohen, Mitchell S.; Fortier, Paul F.; Freitag, Ladd W.; Hall, Richard R.; Johnson, Glen W.; Lin, How Tzu; Sherman, John H.
2004-03-30
A package is described that couples a twelve channel wide fiber optic cable to a twelve channel Vertical Cavity Surface Emitting Laser (VCSEL) transmitter and a multiple channel Perpendicularly Aligned Integrated Die (PAID) receiver. The package allows for reduction in the height of the assembly package by vertically orienting certain dies parallel to the fiber optic cable and horizontally orienting certain other dies. The assembly allows the vertically oriented optoelectronic dies to be perpendicularly attached to the horizontally oriented laminate via a flexible circuit.
Couvillon, Margaret J.; Phillipps, Hunter L. F.; Schürch, Roger; Ratnieks, Francis L. W.
2012-01-01
The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis. PMID:22513277
Couvillon, Margaret J; Phillipps, Hunter L F; Schürch, Roger; Ratnieks, Francis L W
2012-08-23
The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis.
NASA Technical Reports Server (NTRS)
Moore, R.; Cameron, I. L.; Hunter, K. E.; Olmos, D.; Smith, N. K.
1987-01-01
We used quantitative electron-probe energy-dispersive x-ray microanalysis to localize endogenous Na, Cl, K, P, S, Mg and Ca in cryofixed and freeze-dried cryosections of the cap (i.e. the putative site of graviperception) and elongating zone (i.e. site of gravicurvature) of horizontally oriented roots of Zea mays. Ca, Na, Cl, K and Mg accumulate along the lower side of caps of horizontally oriented roots. The most dramatic asymmetries of these ions occur in the apoplast, especially the mucilage. We could not detect any significant differences in the concentrations of these ions in the central cytoplasm of columella cells along the upper and lower sides of caps of horizontally-oriented roots. However, the increased amounts of Na, Cl, K and Mg in the longitudinal walls of columella cells along the lower side of the cap suggest that these ions may move down through the columella tissue of horizontally-oriented roots. Ca also accumulates (largely in the mucilage) along the lower side of the elongating zone of horizontally-oriented roots, while Na, P, Cl and K tend to accumulate along the upper side of the elongating zone. Of these ions, only K increases in concentration in the cytoplasm and longitudinal walls of cortical cells in the upper vs lower sides of the elongating zone. These results indicate that (1) gravity-induced asymmetries of ions differ significantly in the cap and elongating zone of graviresponding roots, (2) Ca accumulates along the lower side of the cap and elongating zone of graviresponding roots, (3) increased growth of the upper side of the elongating zone of horizontally-oriented roots correlates positively with increased amounts of K in the cytoplasm and longitudinal walls of cortical cells, and (4) the apoplast (especially the mucilage) may be an important component of the pathway via which ions move in graviresponding rots of Zea mays. These results are discussed relative to mechanisms for graviperception and gravicurvature of roots.
Yager, Kevin G.; Forrey, Christopher; Singh, Gurpreet; ...
2015-06-01
Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such ‘neutral’ substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmedmore » using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. As a result, our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.« less
Flower orientation enhances pollen transfer in bilaterally symmetrical flowers.
Ushimaru, Atushi; Dohzono, Ikumi; Takami, Yasuoki; Hyodo, Fujio
2009-07-01
Zygomorphic flowers are usually more complex than actinomorphic flowers and are more likely to be visited by specialized pollinators. Complex zygomorphic flowers tend to be oriented horizontally. It is hypothesized that a horizontal flower orientation ensures effective pollen transfer by facilitating pollinator recognition (the recognition-facilitation hypothesis) and/or pollinator landing (the landing-control hypothesis). To examine these two hypotheses, we altered the angle of Commelina communis flowers and examined the efficiency of pollen transfer, as well as the behavior of their visitors. We exposed unmanipulated (horizontal-), upward-, and downward-facing flowers to syrphid flies (mostly Episyrphus balteatus), which are natural visitors to C. communis. The frequency of pollinator approaches and landings, as well as the amount of pollen deposited by E. balteatus, decreased for the downward-facing flowers, supporting both hypotheses. The upward-facing flowers received the same numbers of approaches and landings as the unmanipulated flowers, but experienced more illegitimate landings. In addition, the visitors failed to touch the stigmas or anthers on the upward-facing flowers, leading to reduced pollen export and receipt, and supporting the landing-control hypothesis. Collectively, our data suggested that the horizontal orientation of zygomorphic flowers enhances pollen transfer by both facilitating pollinator recognition and controlling pollinator landing position. These findings suggest that zygomorphic flowers which deviate from a horizontal orientation may have lower fitness because of decreased pollen transfer.
Guo, Zhen; Li, Haiwen; Zhou, Lianqun; Zhao, Dongxu; Wu, Yihui; Zhang, Zhiqiang; Zhang, Wei; Li, Chuanyu; Yao, Jia
2015-01-27
A novel method of fabricating large-scale horizontally aligned ZnO microrod arrays with controlled orientation and periodic distribution via combing technology is introduced. Horizontally aligned ZnO microrod arrays with uniform orientation and periodic distribution can be realized based on the conventional bottom-up method prepared vertically aligned ZnO microrod matrix via the combing method. When the combing parameters are changed, the orientation of horizontally aligned ZnO microrod arrays can be adjusted (θ = 90° or 45°) in a plane and a misalignment angle of the microrods (0.3° to 2.3°) with low-growth density can be obtained. To explore the potential applications based on the vertically and horizontally aligned ZnO microrods on p-GaN layer, piezo-phototronic devices such as heterojunction LEDs are built. Electroluminescence (EL) emission patterns can be adjusted for the vertically and horizontally aligned ZnO microrods/p-GaN heterojunction LEDs by applying forward bias. Moreover, the emission color from UV-blue to yellow-green can be tuned by investigating the piezoelectric properties of the materials. The EL emission mechanisms of the LEDs are discussed in terms of band diagrams of the heterojunctions and carrier recombination processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Horizontal and Vertical Attentional Orienting in Parkinson's Disease
ERIC Educational Resources Information Center
Nys, Gudrun M. S.; Santens, Patrick; Vingerhoets, Guy
2010-01-01
Patients with Parkinson's disease (PD) typically suffer from an asymmetric degeneration of dopaminergic cells in the substantia nigra, resulting in right-sided (RPD) or left-sided (LPD) predominance of motor symptomatology. As the dopaminergic system is also involved in attention, we examined horizontal and vertical orienting of attention in LPD…
Postural Consequences of Cervical Sagittal Imbalance: A Novel Laboratory Model.
Patwardhan, Avinash G; Havey, Robert M; Khayatzadeh, Saeed; Muriuki, Muturi G; Voronov, Leonard I; Carandang, Gerard; Nguyen, Ngoc-Lam; Ghanayem, Alexander J; Schuit, Dale; Patel, Alpesh A; Smith, Zachary A; Sears, William
2015-06-01
A biomechanical study using human spine specimens. To study postural compensations in lordosis angles that are necessary to maintain horizontal gaze in the presence of forward head posture and increasing T1 sagittal tilt. Forward head posture relative to the shoulders, assessed radiographically using the horizontal offset distance between the C2 and C7 vertebral bodies (C2-C7 [sagittal vertical alignment] SVA), is a measure of global cervical imbalance. This may result from kyphotic alignment of cervical segments, muscle imbalance, as well as malalignment of thoracolumbar spine. Ten cadaveric cervical spines (occiput-T1) were tested. The T1 vertebra was anchored to a tilting and translating base. The occiput was free to move vertically but its angular orientation was constrained to ensure horizontal gaze regardless of sagittal imbalance. A 5-kg mass was attached to the occiput to mimic head weight. Forward head posture magnitude and T1 tilt were varied and motions of individual vertebrae were measured to calculate C2-C7 SVA and lordosis across C0-C2 and C2-C7. Increasing C2-C7 SVA caused flexion of lower cervical (C2-C7) segments and hyperextension of suboccipital (C0-C1-C2) segments to maintain horizontal gaze. Increasing kyphotic T1 tilt primarily increased lordosis across the C2-C7 segments. Regression models were developed to predict the compensatory C0-C2 and C2-C7 angulation needed to maintain horizontal gaze given values of C2-C7 SVA and T1 tilt. This study established predictive relationships between radiographical measures of forward head posture, T1 tilt, and postural compensations in the cervical lordosis angles needed to maintain horizontal gaze. The laboratory model predicted that normalization of C2-C7 SVA will reduce suboccipital (C0-C2) hyperextension, whereas T1 tilt reduction will reduce the hyperextension in the C2-C7 segments. The predictive relationships may help in planning corrective strategy in patients experiencing neck pain, which may be attributed to sagittal malalignment. N/A.
Navigation by light polarization in clear and turbid waters
Lerner, Amit; Sabbah, Shai; Erlick, Carynelisa; Shashar, Nadav
2011-01-01
Certain terrestrial animals use sky polarization for navigation. Certain aquatic species have also been shown to orient according to a polarization stimulus, but the correlation between underwater polarization and Sun position and hence the ability to use underwater polarization as a compass for navigation is still under debate. To examine this issue, we use theoretical equations for per cent polarization and electric vector (e-vector) orientation that account for the position of the Sun, refraction at the air–water interface and Rayleigh single scattering. The polarization patterns predicted by these theoretical equations are compared with measurements conducted in clear and semi-turbid coastal sea waters at 2 m and 5 m depth over sea floors of 6 m and 28 m depth. We find that the per cent polarization is correlated with the Sun's elevation only in clear waters. We furthermore find that the maximum value of the e-vector orientation angle equals the angle of refraction only in clear waters, in the horizontal viewing direction, over the deeper sea floor. We conclude that navigation by use of underwater polarization is possible under restricted conditions, i.e. in clear waters, primarily near the horizontal viewing direction, and in locations where the sea floor has limited effects on the light's polarization. PMID:21282170
Cytochemical localization of calcium in cap cells of primary roots of Zea mays L
NASA Technical Reports Server (NTRS)
Moore, R.
1986-01-01
The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.
Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco
2013-09-01
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.
Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight
NASA Technical Reports Server (NTRS)
Moore, Steven T.; Cohen, Bernard; Raphan, Theodore; Berthoz, Alain; Clement, Gilles
2005-01-01
On Earth, eye velocity of horizontal optokinetic nystagmus (OKN) orients to gravito-inertial acceleration (GIA), the sum of linear accelerations acting on the head and body. We determined whether adaptation to micro-gravity altered this orientation and whether ocular pursuit exhibited similar properties. Eye movements of four astronauts were recorded with three-dimensional video-oculography. Optokinetic stimuli were stripes moving horizontally, vertically, and obliquely at 30 degrees/s. Ocular pursuit was produced by a spot moving horizontally or vertically at 20 degrees/s. Subjects were either stationary or were centrifuged during OKN with 1 or 0.5 g of interaural or dorsoventral centripetal linear acceleration. Average eye position during OKN (the beating field) moved into the quick-phase direction by 10 degrees during lateral and upward field movement in all conditions. The beating field did not shift up during downward OKN on Earth, but there was a strong upward movement of the beating field (9 degrees) during downward OKN in the absence of gravity; this likely represents an adaptation to the lack of a vertical 1-g bias in-flight. The horizontal OKN velocity axis tilted 9 degrees in the roll plane toward the GIA during interaural centrifugation, both on Earth and in space. During oblique OKN, the velocity vector tilted towards the GIA in the roll plane when there was a disparity between the direction of stripe motion and the GIA, but not when the two were aligned. In contrast, dorsoventral acceleration tilted the horizontal OKN velocity vector 6 degrees in pitch away from the GIA. Roll tilts of the horizontal OKN velocity vector toward the GIA during interaural centrifugation are consistent with the orientation properties of velocity storage, but pitch tilts away from the GIA when centrifuged while supine are not. We speculate that visual suppression during OKN may have caused the velocity vector to tilt away from the GIA during dorsoventral centrifugation. Vertical OKN and ocular pursuit did not exhibit orientation toward the GIA in any condition. Static full-body roll tilts and centrifugation generating an equivalent interaural acceleration produced the same tilts in the horizontal OKN velocity before and after flight. Thus, the magnitude of tilt in OKN velocity was dependent on the magnitude of interaural linear acceleration, rather than the tilt of the GIA with regard to the head. These results favor a 'filter' model of spatial orientation in which orienting eye movements are proportional to the magnitude of low frequency interaural linear acceleration, rather than models that postulate an internal representation of gravity as the basis for spatial orientation.
Horizontal high speed stacking for batteries with prismatic cans
Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.
2016-06-14
A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.
Bezodis, Neil E; North, Jamie S; Razavet, Jane L
2017-09-01
A more horizontally oriented ground reaction force vector is related to higher levels of sprint acceleration performance across a range of athletes. However, the effects of acute experimental alterations to the force vector orientation within athletes are unknown. Fifteen male team sports athletes completed maximal effort 10-m accelerations in three conditions following different verbal instructions intended to manipulate the force vector orientation. Ground reaction forces (GRFs) were collected from the step nearest 5-m and stance leg kinematics at touchdown were also analysed to understand specific kinematic features of touchdown technique which may influence the consequent force vector orientation. Magnitude-based inferences were used to compare findings between conditions. There was a likely more horizontally oriented ground reaction force vector and a likely lower peak vertical force in the control condition compared with the experimental conditions. 10-m sprint time was very likely quickest in the control condition which confirmed the importance of force vector orientation for acceleration performance on a within-athlete basis. The stance leg kinematics revealed that a more horizontally oriented force vector during stance was preceded at touchdown by a likely more dorsiflexed ankle, a likely more flexed knee, and a possibly or likely greater hip extension velocity.
NASA Astrophysics Data System (ADS)
Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo
2014-10-01
We present the factors influencing the orientation of the phosphorescent dyes in phosphorescent OLEDs. And, we report that an OLED containing a phosphorescent emitter with horizontally oriented dipoles in an exciplex-forming co-host that exhibits an extremely high EQE of 32.3% and power efficiency of 142 lm/W, the highest values ever reported in literature. Furthermore, we experimentally and theoretically correlated the EQE of OLEDs to the PL quantum yield and the horizontal dipole ratio of phosphorescent dyes using three different dyes.
NASA Astrophysics Data System (ADS)
Sisay, Z. G.; Besha, T.; Gessesse, B.
2017-05-01
This study used in-situ GPS data to validate the accuracy of horizontal coordinates and orientation of linear features of orthophoto and line map for Bahir Dar city. GPS data is processed using GAMIT/GLOBK and Lieca GeoOfice (LGO) in a least square sense with a tie to local and regional GPS reference stations to predict horizontal coordinates at five checkpoints. Real-Time-Kinematic GPS measurement technique is used to collect the coordinates of road centerline to test the accuracy associated with the orientation of the photogrammetric line map. The accuracy of orthophoto was evaluated by comparing with in-situ GPS coordinates and it is in a good agreement with a root mean square error (RMSE) of 12.45 cm in x- and 13.97 cm in y-coordinates, on the other hand, 6.06 cm with 95 % confidence level - GPS coordinates from GAMIT/GLOBK. Whereas, the horizontal coordinates of the orthophoto are in agreement with in-situ GPS coordinates at an accuracy of 16.71 cm and 18.98 cm in x and y-directions respectively and 11.07 cm with 95 % confidence level - GPS data is processed by LGO and a tie to local GPS network. Similarly, the accuracy of linear feature is in a good fit with in-situ GPS measurement. The GPS coordinates of the road centerline deviates from the corresponding coordinates of line map by a mean value of 9.18 cm in x- direction and -14.96 cm in y-direction. Therefore, it can be concluded that, the accuracy of the orthophoto and line map is within the national standard of error budget ( 25 cm).
Horizontal tuning for faces originates in high-level Fusiform Face Area.
Goffaux, Valerie; Duecker, Felix; Hausfeld, Lars; Schiltz, Christine; Goebel, Rainer
2016-01-29
Recent work indicates that the specialization of face visual perception relies on the privileged processing of horizontal angles of facial information. This suggests that stimulus properties assumed to be fully resolved in primary visual cortex (V1; e.g., orientation) in fact determine human vision until high-level stages of processing. To address this hypothesis, the present fMRI study explored the orientation sensitivity of V1 and high-level face-specialized ventral regions such as the Occipital Face Area (OFA) and Fusiform Face Area (FFA) to different angles of face information. Participants viewed face images filtered to retain information at horizontal, vertical or oblique angles. Filtered images were viewed upright, inverted and (phase-)scrambled. FFA responded most strongly to the horizontal range of upright face information; its activation pattern reliably separated horizontal from oblique ranges, but only when faces were upright. Moreover, activation patterns induced in the right FFA and the OFA by upright and inverted faces could only be separated based on horizontal information. This indicates that the specialized processing of upright face information in the OFA and FFA essentially relies on the encoding of horizontal facial cues. This pattern was not passively inherited from V1, which was found to respond less strongly to horizontal than other orientations likely due to adaptive whitening. Moreover, we found that orientation decoding accuracy in V1 was impaired for stimuli containing no meaningful shape. By showing that primary coding in V1 is influenced by high-order stimulus structure and that high-level processing is tuned to selective ranges of primary information, the present work suggests that primary and high-level levels of the visual system interact in order to modulate the processing of certain ranges of primary information depending on their relevance with respect to the stimulus and task at hand. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of horizontal molecular orientation on triplet-exciton diffusion in amorphous organic films
NASA Astrophysics Data System (ADS)
Sawabe, T.; Takasu, I.; Yonehara, T.; Ono, T.; Yoshida, J.; Enomoto, S.; Amemiya, I.; Adachi, C.
2012-09-01
Triplet harvesting is a candidate technology for highly efficient and long-life white OLEDs, where green or red phosphorescent emitters are activated by the triplet-excitons diffused from blue fluorescent emitters. We examined two oxadiazole-based electron transport materials with different horizontal molecular orientation as a triplet-exciton diffusion layer (TDL) in triplet-harvesting OLEDs. The device characteristics and the transient electroluminescent analyses of the red phosphorescent emitter showed that the triplet-exciton diffusion was more effective in the highly oriented TDL. The results are ascribed to the strong orbital overlap between the oriented molecules, which provides rapid electron exchange (Dexter energy transfer) in the TDL.
Predicting Visual Consciousness Electrophysiologically from Intermittent Binocular Rivalry
O’Shea, Robert P.; Kornmeier, Jürgen; Roeber, Urte
2013-01-01
Purpose We sought brain activity that predicts visual consciousness. Methods We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. Results We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. Conclusion We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness. PMID:24124536
A multidimensional model of the effect of gravity on the spatial orientation of the monkey
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.; Oman, C. M.; Shelhamer, M. J.
1993-01-01
A "sensory conflict" model of spatial orientation was developed. This mathematical model was based on concepts derived from observer theory, optimal observer theory, and the mathematical properties of coordinate rotations. The primary hypothesis is that the central nervous system of the squirrel monkey incorporates information about body dynamics and sensory dynamics to develop an internal model. The output of this central model (expected sensory afference) is compared to the actual sensory afference, with the difference defined as "sensory conflict." The sensory conflict information is, in turn, used to drive central estimates of angular velocity ("velocity storage"), gravity ("gravity storage"), and linear acceleration ("acceleration storage") toward more accurate values. The model successfully predicts "velocity storage" during rotation about an earth-vertical axis. The model also successfully predicts that the time constant of the horizontal vestibulo-ocular reflex is reduced and that the axis of eye rotation shifts toward alignment with gravity following postrotatory tilt. Finally, the model predicts the bias, modulation, and decay components that have been observed during off-vertical axis rotations (OVAR).
Effect of head pitch and roll orientations on magnetically induced vertigo.
Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L
2016-02-15
Lying supine in a strong magnetic field, such as in magnetic resonance imaging scanners, can induce a perception of whole-body rotation. The leading hypothesis to explain this invokes a Lorentz force mechanism acting on vestibular endolymph that acts to stimulate semicircular canals. The hypothesis predicts that the perception of whole-body rotation will depend on head orientation in the field. Results showed that the direction and magnitude of apparent whole-body rotation while stationary in a 7 T magnetic field is influenced by head orientation. The data are compatible with the Lorentz force hypothesis of magnetic vestibular stimulation and furthermore demonstrate the operation of a spatial transformation process from head-referenced vestibular signals to Earth-referenced body motion. High strength static magnetic fields are known to induce vertigo, believed to be via stimulation of the vestibular system. The leading hypothesis (Lorentz forces) predicts that the induced vertigo should depend on the orientation of the magnetic field relative to the head. In this study we examined the effect of static head pitch (-80 to +40 deg; 12 participants) and roll (-40 to +40 deg; 11 participants) on qualitative and quantitative aspects of vertigo experienced in the dark by healthy humans when exposed to the static uniform magnetic field inside a 7 T MRI scanner. Three participants were additionally examined at 180 deg pitch and roll orientations. The effect of roll orientation on horizontal and vertical nystagmus was also measured and was found to affect only the vertical component. Vertigo was most discomforting when head pitch was around 60 deg extension and was mildest when it was around 20 deg flexion. Quantitative analysis of vertigo focused on the induced perception of horizontal-plane rotation reported online with the aid of hand-held switches. Head orientation had effects on both the magnitude and the direction of this perceived rotation. The data suggest sinusoidal relationships between head orientation and perception with spatial periods of 180 deg for pitch and 360 deg for roll, which we explain is consistent with the Lorentz force hypothesis. The effects of head pitch on vertigo and previously reported nystagmus are consistent with both effects being driven by a common vestibular signal. To explain all the observed effects, this common signal requires contributions from multiple semicircular canals. © 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Lee, Sang Ki; Hwang, Yoon Sub; Choy, Won Sik
2014-03-01
Conventional operative treatments of patella fractures are frequently associated with implant failure or displacement. Recent biomechanical studies showed that the orientation of the wire loop and the site of the wire twist can affect the fixation strength. The purpose of this study was to compare the clinical outcome of the tension band technique with loops in different orientations and different knot positions. For this retrospective study, 72 patella fractures (71 patients) were fixed with figure-of-eight configurations in combination with 2 K-wires. Patients were divided into 3 groups according to the orientation of tension band construct. A total of 40 patella fractures were placed with figure-of-eight configurations in a vertical orientation either with 1 wire twist (group 1; 16 patella fractures) or with 2 wire twists at the adjacent corners (group 2; 24 patella fractures). Thirty-two patella fractures were placed with figure-of-eight configurations in a horizontal orientation with 2 wire twists at the adjacent corners (group 3). Range of motion, complication rates, and knee scoring scales (Hospital for Special Surgery and Lysholm) were assessed during serial follow-up. Satisfactory reductions were achieved in all groups, but functional results in the early stage were different. Group 3 had better Hospital for Special Surgery and Lysholm scores at 3 months postoperatively; however, at 6 months and 1 year postoperatively, all groups had similar scores. At the 1-year follow-up, all groups achieved acceptable flexion and range of motion. The overall complication rate was lower in the horizontal group (12.5%). Placing the figure-of-eight tension band construct in a horizontal orientation can provide functional benefits in the early stage after patella fractures. Copyright 2014, SLACK Incorporated.
Chirkov, Valery; Ryan, Richard M; Kim, Youngmee; Kaplan, Ulas
2003-01-01
On the basis of self-determination theory (R. M. Ryan & E. L. Deci, 2000) and cultural descriptions drawn from H. C. Triandis (1995), the authors hypothesized that (a) individuals from different cultures internalize different cultural practices; (b) despite these differences, the relative autonomy of individuals' motivation for those practices predicts well-being in all 4 cultures examined; and (c) horizontal practices are more readily internalized than vertical practices across all samples. Five hundred fifty-nine persons from South Korea, Russia, Turkey and the United States participated. Results supported the hypothesized relations between autonomy and well-being across cultures and gender. Results also suggested greater internalization of horizontal relative to vertical practices. Discussion focuses on the distinction between autonomy and individualism and the relative fit of cultural forms with basic psychological needs.
NASA Technical Reports Server (NTRS)
Wood, Scott; Clement, Gilles
2013-01-01
This purpose of this study was to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness from six subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. Both variability and curvature of gaze trajectories increased during roll tilt compared to the upright position. The saccades were less accurate during parabolic flight compared to measurements obtained in normal gravity. The trajectories of saccades along perceived horizontal orientations tended to deviate in the same direction as the head tilt, while the deviations in gaze trajectories along the perceived vertical orientations deviated in the opposite direction relative to the head tilt. Although subjects were instructed to look off in the distance while performing the eye movements, fixation distance varied with vertical gaze direction independent of whether the saccades were made along perceived aircraft or head orientations. This coupling of horizontal vergence with vertical gaze is in a consistent direction with the vertical slant of the horopter. The increased errors in gaze trajectories along both perceived orientations during microgravity can be attributed to the otolith's role in spatial coding of eye movements.
de Sousa, Hilário
2012-01-01
It has long been argued that spatial aspects of language influence people’s conception of time. However, what spatial aspect of language is the most influential in this regard? To test this, two experiments were conducted in Hong Kong and Macau with literate Cantonese speakers. The results suggest that the crucial factor in literate Cantonese people’s spatial conceptualization of time is their experience with writing and reading Chinese script. In Hong Kong and Macau, Chinese script is written either in the traditional vertical orientation, which is still used, or the newer horizontal orientation, which is more common these days. Before the 1950s, the dominant horizontal direction was right-to-left. However, by the 1970s, the dominant horizontal direction had become left-to-right. In both experiments, the older participants predominately demonstrated time in a right-to-left direction, whereas younger participants predominately demonstrated time in a left-to-right direction, consistent with the horizontal direction that was prevalent when they first became literate. PMID:22855679
Effect of gravito-inertial cues on the coding of orientation in pre-attentive vision.
Stivalet, P; Marendaz, C; Barraclough, L; Mourareau, C
1995-01-01
To see if the spatial reference frame used by pre-attentive vision is specified in a retino-centered frame or in a reference frame integrating visual and nonvisual information (vestibular and somatosensory), subjects were centrifuged in a non-pendular cabin and were asked to search for a target distinguishable from distractors by difference in orientation (Treisman's "pop-out" paradigm [1]). In a control condition, in which subjects were sitting immobilized but not centrifuged, this task gave an asymmetric search pattern: Search was rapid and pre-attentional except when the target was aligned with the horizontal retinal/head axis, in which case search was slow and attentional (2). Results using a centrifuge showed that slow/serial search patterns were obtained when the target was aligned with the subjective horizontal axis (and not with the horizontal retinal/head axis). These data suggest that a multisensory reference frame is used in pre-attentive vision. The results are interpreted in terms of Riccio and Stoffregen's "ecological theory" of orientation in which the vertical and horizontal axes constitute independent reference frames (3).
The organization of the cone photoreceptor mosaic measured in the living human retina
Sawides, Lucie; de Castro, Alberto; Burns, Stephen A.
2016-01-01
The cone photoreceptors represent the initial fundamental sampling step in the acquisition of visual information. While recent advances in adaptive optics have provided increasingly precise estimates of the packing density and spacing of the cone photoreceptors in the living human retina, little is known about the local cone arrangement beyond a tendency towards hexagonal packing. We analyzed the cone mosaic in data from 10 normal subjects. A technique was applied to calculate the local average cone mosaic structure which allowed us to determine the hexagonality, spacing and orientation of local regions. Using cone spacing estimates, we find the expected decrease in cone density with retinal eccentricity and higher densities along the horizontal meridians as opposed to the vertical meridians. Orientation analysis reveals an asymmetry in the local cone spacing of the hexagonal packing, with cones having a larger local spacing along the horizontal direction. This horizontal/vertical asymmetry is altered at eccentricities larger than 2 degrees in the superior meridian and 2.5 degrees in the inferior meridian. Analysis of hexagon orientations in the central 1.4° of the retina show a tendency for orientation to be locally coherent, with orientation patches consisting of between 35 and 240 cones. PMID:27353225
Chen, Xiao-Ping; Chen, Wei-Feng; Wang, Da-Wei
2014-01-01
Prenatal organophosphate exposure elicits long-term brain cytoarchitecture and cognitive function impairments, but the mechanism underlying the onset and development of neural progenitors remain largely unclear. Using precise positioned brain slices, we observed an alternated cleavage plane bias that emerged in the mitotic neural progenitors of embryonal neocortex with diazinion (DZN) and chlorpyrifos (CPF) pretreatment. In comparison with the control, DZN and CPF treatment induced decrease of vertical orientation, increase of oblique orientation, and increase of horizontal orientation. That is, the cleavage plane orientation bias had been rotated from vertical to horizontal after DZN and CPF treatment. Meanwhile, general morphology and mitotic index of the progenitors were unchanged. Acephate (ACP), another common organophosphate, had no significant effects on the cleavage plane orientation, cell morphology and mitotic index. These results represent direct evidence for the toxicity mechanism in onset multiplication of neural progenitors. PMID:24740262
Movement compatibility for frontal controls with displays located in four cardinal orientations.
Chan, Alan H S; Hoffmann, Errol R
2010-12-01
Strength and reversibility of direction-of-motion stereotypes and response times are presented for different configurations of horizontal, vertical and rotary controls with horizontal, vertical and circular displays. Measures of the strength and reversibility of stereotypes were used to analyse the effects of direction of turn instruction (clockwise/anticlockwise; up/down; left/right), display orientation (North; East; South; West) and hand side (left/right) on movement compatibility. A number of acceptable display/control arrangements were identified for displays in each of the North, East, South and West orientations relative to the operator. For the horizontally moving control, the Worringham and Beringer principle was found to identify display/control arrangements having both high stereotype strength and high reversibility. Vertically moving controls are excellent with vertical displays but poor with horizontal and circular displays. Rotary controls have high stereotype strength and reversibility with both horizontal and circular displays (with the indicator at the 12 o'clock position). STATEMENT OF RELEVANCE: Design of display/control arrangements requires a strong relationship between operator's expectancies and the response of a device to control inputs. The present research fills in gaps for stereotypes where data are not available, in particular where the operator is not seated facing a display directly to the front.
NASA Astrophysics Data System (ADS)
Thiesson, Julien; Rousselle, Gabrielle; Simon, François Xavier; Tabbagh, Alain
2011-12-01
Electromagnetic induction (EMI) is one of the geophysical techniques widely used in soil studies, the slingram devices being held horizontally over the soil surface, i.e. with the coils located at the same height above the ground surface. Our study aims assessing the abilities of slingram devices when held vertically. 1D and 3D modelling have been achieved in order to compare the theoretical responses of vertical devices to the horizontal ones. Some comparative surveys were also undertaken in archaeological contexts to confirm the reliability of theoretical conclusions. Both approaches show that vertical slingram devices are suitable for survey and can constitute an alternative to the usual horizontal orientation. We give a table in Appendix A which contains the calibration coefficient allowing transforming of the values given by some of commercially available devices which would be advantageous to use in vertical orientation
Does gravity influence the visual line bisection task?
Drakul, A; Bockisch, C J; Tarnutzer, A A
2016-08-01
The visual line bisection task (LBT) is sensitive to perceptual biases of visuospatial attention, showing slight leftward (for horizontal lines) and upward (for vertical lines) errors in healthy subjects. It may be solved in an egocentric or allocentric reference frame, and there is no obvious need for graviceptive input. However, for other visual line adjustments, such as the subjective visual vertical, otolith input is integrated. We hypothesized that graviceptive input is incorporated when performing the LBT and predicted reduced accuracy and precision when roll-tilted. Twenty healthy right-handed subjects repetitively bisected Earth-horizontal and body-horizontal lines in darkness. Recordings were obtained before, during, and after roll-tilt (±45°, ±90°) for 5 min each. Additionally, bisections of Earth-vertical and oblique lines were obtained in 17 subjects. When roll-tilted ±90° ear-down, bisections of Earth-horizontal (i.e., body-vertical) lines were shifted toward the direction of the head (P < 0.001). However, after correction for vertical line-bisection errors when upright, shifts disappeared. Bisecting body-horizontal lines while roll-tilted did not cause any shifts. The precision of Earth-horizontal line bisections decreased (P ≤ 0.006) when roll-tilted, while no such changes were observed for body-horizontal lines. Regardless of the trial condition and paradigm, the scanning direction of the bisecting cursor (leftward vs. rightward) significantly (P ≤ 0.021) affected line bisections. Our findings reject our hypothesis and suggest that gravity does not modulate the LBT. Roll-tilt-dependent shifts are instead explained by the headward bias when bisecting lines oriented along a body-vertical axis. Increased variability when roll-tilted likely reflects larger variability when bisecting body-vertical than body-horizontal lines. Copyright © 2016 the American Physiological Society.
Preventing chatter vibrations in heavy-duty turning operations in large horizontal lathes
NASA Astrophysics Data System (ADS)
Urbikain, G.; Campa, F.-J.; Zulaika, J.-J.; López de Lacalle, L.-N.; Alonso, M.-A.; Collado, V.
2015-03-01
Productivity and surface finish are typical user manufacturer requirements that are restrained by chatter vibrations sooner or later in every machining operation. Thus, manufacturers are interested in knowing, before building the machine, the dynamic behaviour of each machine structure with respect to another. Stability lobe graphs are the most reliable approach to analyse the dynamic performance. During heavy rough turning operations a model containing (a) several modes, or (b) modes with non-conventional (Cartesian) orientations is necessary. This work proposes two methods which are combined with multimode analysis to predict chatter in big horizontal lathes. First, a traditional single frequency model (SFM) is used. Secondly, the modern collocation method based on the Chebyshev polynomials (CCM) is alternatively studied. The models can be used to identify the machine design features limiting lathe productivity, as well as the threshold values for choosing good cutting parameters. The results have been compared with experimental tests in a horizontal turning centre. Besides the model and approach, this work offers real worthy values for big lathes, difficult to be got from literature.
Horizontal and sun-normal spectral biologically effective ultraviolet irradiances.
Parisi, A V; Kimlin, M G
1999-01-01
The dependence of the spectral biologically effective solar UV irradiance on the orientation of the receiver with respect to the sun has been determined for relatively cloud-free days at a sub-tropical Southern Hemisphere latitude for the solar zenith angle range 35-64 degrees. For the UV and biologically effective irradiances, the sun-normal to horizontal ratio for the total UV ranges from 1.18 +/- 0.05 to 1.27 +/- 0.06. The sun-normal to horizontal ratio for biologically effective irradiance is dependent on the relative effectiveness of the relevant action spectrum in the UV-A waveband. In contrast to the total UV, the diffuse UV and diffuse biologically effective irradiances are reduced in a sun-normal compared with a horizontal orientation by a factor ranging from 0.70 +/- 0.05 to 0.76 +/- 0.03.
NASA Technical Reports Server (NTRS)
Moore, R.
1985-01-01
Roots of Allium cepa L. cv. Yellow are differentially responsive to gravity. Long (e.g. 40 mm) roots are strongly graviresponsive, while short (c.g. 4 mm) roots are minimally responsive to gravity. Although columella cells of graviresponsive roots are larger than those of nongraviresponsive roots, they partition their volumes to cellular organelles similarly. The movement of amyloplasts and nuclei in columella cells of horizontally-oriented roots correlates positively with the onset of gravicurvature. Furthermore, there is no significant difference in the rates of organellar redistribution when graviresponsive and nongraviresponsive roots are oriented horizontally. The more pronounced graviresponsiveness of longer roots correlates positively with (1) their caps being 9-6 times more voluminous, (2) their columella tissues being 42 times more voluminous, (3) their caps having 15 times more columella cells, and (4) their columella tissues having relative volumes 4.4 times larger than those of shorter, nongraviresponsive roots. Graviresponsive roots that are oriented horizontally are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side, while similarly oriented nongraviresponsive roots exhibit only a minimal polar transport of 45Ca2+. These results indicate that the differential graviresponsiveness of roots of A. cepa is probably not due to either (1) ultrastructural differences in their columella cells, (2) differences in the rates of organellar redistribution when roots are oriented horizontally. Rather, these results indicate the graviresponsiveness may require an extensive columella tissue, which, in turn, may be necessary for polar movement of 45Ca2+ across the root tip.
NASA Astrophysics Data System (ADS)
Dhansay, Taufeeq; Navabpour, Payman; de Wit, Maarten; Ustaszewski, Kamil
2017-10-01
Understanding the kinematics of pre-existing fractures under the present-day stress field is an indispensable prerequisite for hydraulically increasing fracture-induced rock permeability, i.e. through hydraulic stimulation, which forms the basis of economically viable exploitation of resources such as natural gas and geothermal energy. Predicting the likelihood of reactivating pre-existing fractures in a target reservoir at particular fluid injection pressures requires detailed knowledge of the orientations and magnitudes of the prevailing stresses as well as pore fluid pressures. In the absence of actual in-situ stress measurements, e.g. derived from boreholes, as is mostly the case in previously underexplored ;frontier areas;, such predictions are often difficult. In this study, the potential of reactivating pre-existing fractures in a likely exploration region of the southern Karoo of South Africa is investigated. The orientations of the present-day in-situ stresses were assessed from surrounding earthquake focal mechanisms, implying c. NW-SE oriented maximum horizontal stress and a stress regime changing between strike-slip and normal faulting. A comparison with paleo-stress axes derived from inverted fault-slip data suggests that the stress field very likely did not experience any significant reorientation since Cretaceous times. Maximum possible in-situ stress magnitudes are estimated by assuming that these are limited by frictional strength on pre-existing planes and subsequently, slip and dilation tendency calculations were performed, assuming hydrostatic pore fluid pressures of c. 32 MPa at targeted reservoir depth. The results suggest that prevalent E-W and NW-SE oriented sub-vertical fractures are likely to be reactivated at wellhead pressures exceeding hydrostatic pore fluid pressures by as little as 2-5 MPa, while less prevalent sub-horizontal and moderately inclined fractures require higher wellhead pressures that are still technically feasible. Importantly, actual in-situ stress measurements are essential to test these theoretical considerations and to guide the design of safe and effective exploration linked to fracture manipulation, such as shale gas recovery.
Al-Janabi, Shahd; Greenberg, Adam S
2016-10-01
The representational basis of attentional selection can be object-based. Various studies have suggested, however, that object-based selection is less robust than spatial selection across experimental paradigms. We sought to examine the manner by which the following factors might explain this variation: Target-Object Integration (targets 'on' vs. part 'of' an object), Attention Distribution (narrow vs. wide), and Object Orientation (horizontal vs. vertical). In Experiment 1, participants discriminated between two targets presented 'on' an object in one session, or presented as a change 'of' an object in another session. There was no spatial cue-thus, attention was initially focused widely-and the objects were horizontal or vertical. We found evidence of object-based selection only when targets constituted a change 'of' an object. Additionally, object orientation modulated the sign of object-based selection: We observed a same-object advantage for horizontal objects, but a same-object cost for vertical objects. In Experiment 2, an informative cue preceded a single target presented 'on' an object or as a change 'of' an object (thus, attention was initially focused narrowly). Unlike in Experiment 1, we found evidence of object-based selection independent of target-object integration. We again found that the sign of selection was modulated by the objects' orientation. This result may reflect a meridian effect, which emerged due to anisotropies in the cortical representations when attention is oriented endogenously. Experiment 3 revealed that object orientation did not modulate object-based selection when attention was oriented exogenously. Our findings suggest that target-object integration, attention distribution, and object orientation modulate object-based selection, but only in combination.
NASA Astrophysics Data System (ADS)
Carlson, G.; Johnson, K. M.; Rupp, J. A.
2017-12-01
The Midcontinental United States continues to experience anomalously high rates of seismicity and generate large earthquakes despite its location in the cratonic interior, far from any plate boundary. There is renewed interest in Midcontinent seismicity with the concern that fluid injection within the Illinois basin could induce seismicity. In order to better understand the seismic hazard and inform studies of risk mitigation, we present an assessment of the contemporary crustal stress state in the Illinois basin and surrounding region, looking specifically at how the orientation of maximum horizontal compressive stress varies throughout the region. This information will help identify which faults are critically stressed and therefore most likely to fail under increased pore pressures. We conduct a Bayesian stress inversion of focal mechanism solutions and maximum horizontal stress orientations from borehole breakout, core fracture, overcoring, hydraulic fracture, and strain gauge measurements for maximum horizontal compressive stress orientations across the Midcontinent region and produce a map of expected faulting styles. Because distinguishing the slipping fault plane from the auxiliary nodal plane is ambiguous for focal mechanisms, the choice of the fault plane and associated slip vector to use in the inversion is important in the estimation of the stress tensor. The stress inversion provides an objective means to estimate nonlinear parameters including the spatial smoothing parameter, unknown data uncertainties, as well as the selection of focal mechanism nodal planes. We find a systematic rotation of the maximum horizontal stress orientation (SHmax) across a 1000 km width of the Midcontinent. We find that SHmax rotates from N60E to E/W orientation across the southern Illinois basin and returns to N60E in the western Appalachian basin. The stress regime is largely consistent with strike-slip faulting with pockets of a reverse-faulting stress regime near the New Madrid and Wabash Valley seismic zones.
Some influences of touch and pressure cues on human spatial orientation
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1978-01-01
In order to evaluate the influences of touch and pressure cues on human spatial orientation, blindfolded subjects were exposed to 30 rmp rotation about the Z-axis of their bodies while the axis was horizontal or near horizontal. It was found that the manipulation of pressure patterns to which the subjects are exposed significantly influences apparent orientation. When provided with visual information about actual orientation the subjects will eliminate the postural illusions created by pressure-cue patterns. The localization of sounds is dependent of the apparent orientation and the actual pattern of auditory stimulation. The study provides a basis for investigating: (1) the postural illusions experienced by astronauts in orbital flight and subjects in the free-fall phase of parabolic flight, and (2) the spatial-constancy mechanisms distinguishing changes in sensory afflux conditioned by a subject's movements in relation to the environment, and those conditioned by movements of the environment.
Orientation-independent measures of ground motion
Boore, D.M.; Watson-Lamprey, Jennie; Abrahamson, N.A.
2006-01-01
The geometric mean of the response spectra for two orthogonal horizontal components of motion, commonly used as the response variable in predictions of strong ground motion, depends on the orientation of the sensors as installed in the field. This means that the measure of ground-motion intensity could differ for the same actual ground motion. This dependence on sensor orientation is most pronounced for strongly correlated motion (the extreme example being linearly polarized motion), such as often occurs at periods of 1 sec or longer. We propose two new measures of the geometric mean, GMRotDpp, and GMRotIpp, that are independent of the sensor orientations. Both are based on a set of geometric means computed from the as-recorded orthogonal horizontal motions rotated through all possible non-redundant rotation angles. GMRotDpp is determined as the ppth percentile of the set of geometric means for a given oscillator period. For example, GMRotDOO, GMRotD50, and GMRotD100 correspond to the minimum, median, and maximum values, respectively. The rotations that lead to GMRotDpp depend on period, whereas a single-period-independent rotation is used for GMRotIpp, the angle being chosen to minimize the spread of the rotation-dependent geometric mean (normalized by GMRotDpp) over the usable range of oscillator periods. GMRotI50 is the ground-motion intensity measure being used in the development of new ground-motion prediction equations by the Pacific Earthquake Engineering Center Next Generation Attenuation project. Comparisons with as-recorded geometric means for a large dataset show that the new measures are systematically larger than the geometric-mean response spectra using the as-recorded values of ground acceleration, but only by a small amount (less than 3%). The theoretical advantage of the new measures is that they remove sensor orientation as a contributor to aleatory uncertainty. Whether the reduction is of practical significance awaits detailed studies of large datasets. A preliminary analysis contained in a companion article by Beyer and Bommer finds that the reduction is small-to-nonexistent for equations based on a wide range of magnitudes and distances. The results of Beyer and Bommer do suggest, however, that there is an increasing reduction as period increases. Whether the reduction increases with other subdivisions of the dataset for which strongly correlated motions might be expected (e.g., pulselike motions close to faults) awaits further analysis.
The impact of orientation filtering on face-selective neurons in monkey inferior temporal cortex.
Taubert, Jessica; Goffaux, Valerie; Van Belle, Goedele; Vanduffel, Wim; Vogels, Rufin
2016-02-16
Faces convey complex social signals to primates. These signals are tolerant of some image transformations (e.g. changes in size) but not others (e.g. picture-plane rotation). By filtering face stimuli for orientation content, studies of human behavior and brain responses have shown that face processing is tuned to selective orientation ranges. In the present study, for the first time, we recorded the responses of face-selective neurons in monkey inferior temporal (IT) cortex to intact and scrambled faces that were filtered to selectively preserve horizontal or vertical information. Guided by functional maps, we recorded neurons in the lateral middle patch (ML), the lateral anterior patch (AL), and an additional region located outside of the functionally defined face-patches (CONTROL). We found that neurons in ML preferred horizontal-passed faces over their vertical-passed counterparts. Neurons in AL, however, had a preference for vertical-passed faces, while neurons in CONTROL had no systematic preference. Importantly, orientation filtering did not modulate the firing rate of neurons to phase-scrambled face stimuli in any recording region. Together these results suggest that face-selective neurons found in the face-selective patches are differentially tuned to orientation content, with horizontal tuning in area ML and vertical tuning in area AL.
Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity
NASA Technical Reports Server (NTRS)
Oker, E.; Merte, H., Jr.
1973-01-01
Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.
NASA Astrophysics Data System (ADS)
Tackie, Alan Derek Nii
Computer modeling of Oriented Strand Board (OSB) properties has gained widespread attention with numerous models created to better understand OBS behavior. Recent models allow researchers to observe multiple variables such as changes in moisture content, density and resin effects on panel performance. Thickness-swell variation influences panel durability and often has adverse effects on a structural panel's bending stiffness. The prediction of out-of-plane swell under changing moisture conditions was, therefore, the essence for developing a model in this research. The finite element model accounted for both vertical and horizontal density variations, the three-dimensional (3D) density variation of the board. The density variation, resulting from manufacturing processes, affects the uniformity of thickness-swell in OSB and is often exacerbated by continuous sorption of moisture that leads to potentially damaging internal stresses in the panel. The overall thickness-swell (the cumulative swell from non-uniform horizontal density profile, panel swell from free water, and spring-back from panel compression) was addressed through the finite element model in this research. The pursued goals in this study were, first and foremost, the development of a robust and comprehensive finite element model which integrated several component studies to investigate the effects of moisture variation on the out-of-plane thickness-swell of OSB panels, and second, the extension of the developed model to predict panel stiffness. It is hoped that this paper will encourage researchers to adopt the 3D density distribution approach as a viable approach to analyzing the physical and mechanical properties of OSB.
Lee, Sunghun; Shin, Hyun; Kim, Jang-Joo
2014-09-03
Tandem white organic light-emitting diodes (WOLEDs) using horizontally oriented phosphorescent dyes in an exciplex-forming co-host are presented, along with an orange OLED. A high external quantum efficiency of 32% is achieved for the orange OLED at 1000 cd m(-2) and the tandem WOLEDs exhibit a high maximum EQE of 54.3% (PE of 63 lm W(-1)). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Parallel heater system for subsurface formations
Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX
2011-10-25
A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.
Fairer, George M.; Boernge, James M.; Harris, David W.; Campbell, DeWayne A.; Tuttle, Gene E.; McKeown, Mark H.; Beason, Steven C.
1993-01-01
The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.
Monte Carlo modeling of ultrasound probes for image guided radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena, E-mail: bazalova@uvic.ca; Schlosser, Jeffrey; Chen, Josephine
2015-10-15
Purpose: To build Monte Carlo (MC) models of two ultrasound (US) probes and to quantify the effect of beam attenuation due to the US probes for radiation therapy delivered under real-time US image guidance. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their megavoltage (MV) CT images acquired in a Tomotherapy machine with a 3.5 MV beam in the EGSnrc, BEAMnrc, and DOSXYZnrc codes. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2 andmore » 8.0 g/cm{sup 3}. Beam attenuation due to the US probes in horizontal (for both probes) and vertical (for the X6-1 probe) orientation was measured in a solid water phantom for 6 and 15 MV (15 × 15) cm{sup 2} beams with a 2D ionization chamber array and radiographic films at 5 cm depth. The MC models of the US probes were validated by comparison of the measured dose distributions and dose distributions predicted by MC. Attenuation of depth dose in the (15 × 15) cm{sup 2} beams and small circular beams due to the presence of the probes was assessed by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities in the X6-1 and C5-2 probes were found to be 4.8 and 5.2 g/cm{sup 3}, respectively. Dose profile differences between MC simulations and measurements of less than 3% for US probes in horizontal orientation were found, with the exception of the penumbra region. The largest 6% dose difference was observed in dose profiles of the X6-1 probe placed in vertical orientation, which was attributed to inadequate modeling of the probe cable. Gamma analysis of the simulated and measured doses showed that over 96% of measurement points passed the 3%/3 mm criteria for both probes placed in horizontal orientation and for the X6-1 probe in vertical orientation. The X6-1 probe in vertical orientation caused the highest attenuation of the 6 and 15 MV beams, which at 10 cm depth accounted for 33% and 43% decrease compared to the respective (15 × 15) cm{sup 2} open fields. The C5-2 probe in horizontal orientation, on the other hand, caused a dose increase of 10% and 53% for the 6 and 15 MV beams, respectively, in the buildup region at 0.5 cm depth. For the X6-1 probe in vertical orientation, the dose at 5 cm depth for the 3-cm diameter 6 MV and 5-cm diameter 15 MV beams was attenuated compared to the corresponding open fields to a greater degree by 65% and 43%, respectively. Conclusions: MC models of two US probes used for real-time image guidance during radiotherapy have been built. Due to the high beam attenuation of the US probes, the authors generally recommend avoiding delivery of treatment beams that intersect the probe. However, the presented MC models can be effectively integrated into US-guided radiotherapy treatment planning in cases for which beam avoidance is not practical due to anatomy geometry.« less
Orientation perception in rhesus monkeys (Macaca mulatta).
Wakita, Masumi
2008-07-01
It was previously demonstrated that monkeys divide the orientation continuum into cardinal and oblique categories. However, it is still unclear how monkeys perceive within-category orientations. To better understand monkeys' perception of orientation, two experiments were conducted using five monkeys. In experiment 1, they were trained to identify either one cardinal or one oblique target orientation out of six orientations. The results showed that they readily identified the cardinal target whether it was oriented horizontally or vertically. However, a longer training period was needed to identify the oblique target orientation regardless of its degree and direction of tilt. In experiment 2, the same monkeys were trained to identify two-oblique target orientations out of six orientations. These orientations were paired, either sharing the degree of tilt, direction of tilt, or neither property. The results showed that the monkeys readily identified oblique orientations when they had either the same degree or direction of tilt. However, when the target orientations had neither the same degree nor direction of tilt, the animals had difficulty in identifying them. In summary, horizontal and vertical orientations are individually processed, indicating that monkeys do not have a category for cardinal orientation, but they may recognize cardinal orientations as non-obliques. In addition, monkeys efficiently abstract either the degree or the direction of tilt from oblique orientations, but they have difficulty combining these features to identify an oblique orientation. Thus, not all orientations within the oblique category are equally perceived.
Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis
NASA Technical Reports Server (NTRS)
Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)
2003-01-01
Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Orientation Transfer in Vernier and Stereoacuity Training
Snell, Nathaniel; Kattner, Florian; Rokers, Bas; Green, C. Shawn
2015-01-01
Human performance on various visual tasks can be improved substantially via training. However, the enhancements are frequently specific to relatively low-level stimulus dimensions. While such specificity has often been thought to be indicative of a low-level neural locus of learning, recent research suggests that these same effects can be accounted for by changes in higher-level areas–in particular in the way higher-level areas read out information from lower-level areas in the service of highly practiced decisions. Here we contrast the degree of orientation transfer seen after training on two different tasks—vernier acuity and stereoacuity. Importantly, while the decision rule that could improve vernier acuity (i.e. a discriminant in the image plane) would not be transferable across orientations, the simplest rule that could be learned to solve the stereoacuity task (i.e. a discriminant in the depth plane) would be insensitive to changes in orientation. Thus, given a read-out hypothesis, more substantial transfer would be expected as a result of stereoacuity than vernier acuity training. To test this prediction, participants were trained (7500 total trials) on either a stereoacuity (N = 9) or vernier acuity (N = 7) task with the stimuli in either a vertical or horizontal configuration (balanced across participants). Following training, transfer to the untrained orientation was assessed. As predicted, evidence for relatively orientation specific learning was observed in vernier trained participants, while no evidence of specificity was observed in stereo trained participants. These results build upon the emerging view that perceptual learning (even very specific learning effects) may reflect changes in inferences made by high-level areas, rather than necessarily fully reflecting changes in the receptive field properties of low-level areas. PMID:26700311
Orientation Transfer in Vernier and Stereoacuity Training.
Snell, Nathaniel; Kattner, Florian; Rokers, Bas; Green, C Shawn
2015-01-01
Human performance on various visual tasks can be improved substantially via training. However, the enhancements are frequently specific to relatively low-level stimulus dimensions. While such specificity has often been thought to be indicative of a low-level neural locus of learning, recent research suggests that these same effects can be accounted for by changes in higher-level areas--in particular in the way higher-level areas read out information from lower-level areas in the service of highly practiced decisions. Here we contrast the degree of orientation transfer seen after training on two different tasks--vernier acuity and stereoacuity. Importantly, while the decision rule that could improve vernier acuity (i.e. a discriminant in the image plane) would not be transferable across orientations, the simplest rule that could be learned to solve the stereoacuity task (i.e. a discriminant in the depth plane) would be insensitive to changes in orientation. Thus, given a read-out hypothesis, more substantial transfer would be expected as a result of stereoacuity than vernier acuity training. To test this prediction, participants were trained (7500 total trials) on either a stereoacuity (N = 9) or vernier acuity (N = 7) task with the stimuli in either a vertical or horizontal configuration (balanced across participants). Following training, transfer to the untrained orientation was assessed. As predicted, evidence for relatively orientation specific learning was observed in vernier trained participants, while no evidence of specificity was observed in stereo trained participants. These results build upon the emerging view that perceptual learning (even very specific learning effects) may reflect changes in inferences made by high-level areas, rather than necessarily fully reflecting changes in the receptive field properties of low-level areas.
Rotation-invariant features for multi-oriented text detection in natural images.
Yao, Cong; Zhang, Xin; Bai, Xiang; Liu, Wenyu; Ma, Yi; Tu, Zhuowen
2013-01-01
Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing systems are designed to detect and recognize horizontal (or near-horizontal) texts. Due to the increasing popularity of mobile-computing devices and applications, detecting texts of varying orientations from natural images under less controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes. We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in complex natural scenes.
Process Evaluation of AISI 4340 Steel Manufactured by Laser Powder Bed Fusion
NASA Astrophysics Data System (ADS)
Jelis, Elias; Hespos, Michael R.; Ravindra, Nuggehalli M.
2018-01-01
Laser powder bed fusion (L-PBF) involves the consolidation of metal powder, layer by layer, through laser melting and solidification. In this study, process parameters are optimized for AISI 4340 steel to produce dense and homogeneous structures. The optimized process parameters produce mechanical properties at the center of the build plate that are comparable to wrought in the vertical and horizontal orientations after heat treatment and machining. Four subsequent builds are filled with specimens to evaluate the mechanical behavior as a function of location and orientation. Variations in the mechanical properties are likely due to recoater blade interactions with the powder and uneven gas flow. The results obtained in this study are analyzed to assess the reliability and reproducibility of the process. A different build evaluates the performance of near-net-shaped tensile specimens angled 35°-90° from the build plate surface (horizontal). Ductility measurements and surface roughness vary significantly as a function of the build angle. In the stress-relieved and as-built conditions, the mechanical behavior of vertically oriented specimens exhibits somewhat lower and more variable ductility than horizontally oriented specimens. Therefore, several process variables affect the mechanical properties of parts produced by the L-PBF process.
Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing
NASA Astrophysics Data System (ADS)
Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.
2008-07-01
Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.
NASA Astrophysics Data System (ADS)
Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Liu, Jin
2017-03-01
Conventional models of pumping tests in unconfined aquifers often neglect the unsaturated flow process. This study concerns the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells positioned in an unconfined aquifer. A mathematical model is established with special consideration of the coupled unsaturated-saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace-finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W) during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant) in unconfined aquifers affected from above by the unsaturated flow process.
Influence of sampling window size and orientation on parafoveal cone packing density
Lombardo, Marco; Serrao, Sebastiano; Ducoli, Pietro; Lombardo, Giuseppe
2013-01-01
We assessed the agreement between sampling windows of different size and orientation on packing density estimates in images of the parafoveal cone mosaic acquired using a flood-illumination adaptive optics retinal camera. Horizontal and vertical oriented sampling windows of different size (320x160 µm, 160x80 µm and 80x40 µm) were selected in two retinal locations along the horizontal meridian in one eye of ten subjects. At each location, cone density tended to decline with decreasing sampling area. Although the differences in cone density estimates were not statistically significant, Bland-Altman plots showed that the agreement between cone density estimated within the different sampling window conditions was moderate. The percentage of the preferred packing arrangements of cones by Voronoi tiles was slightly affected by window size and orientation. The results illustrated the high importance of specifying the size and orientation of the sampling window used to derive cone metric estimates to facilitate comparison of different studies. PMID:24009995
NASA Technical Reports Server (NTRS)
Gay, Robert S.; Bihari, Brian D.
2008-01-01
Due to mass constraints, the Orion Command Module landing attention system requires that the capsule be oriented in a specific direction with respect to the horizontal surface-relative velocity (Heading) at touchdown in order to keep crew and vehicle loads within specifications. These constraints apply to both land and water landings. In fact, water landings are even more constrained with the addition of impact angle requirements necessary to slice through the water. There are two primary challenges with achieving this touchdown orientation: 1. Navigation knowledge of velocity (needed to determine Heading) with and without GPS, including the effects of the Heading angle itself becoming undefined as horizontal velocity decreases, and 2. Controlling to the desired orientation in the presences of chute torque and wind gusts that may change the Heading just prior to touchdown. This paper will discuss the design and performance of the current Orion navigation and control system used to achieve the desired orientation at touchdown.
Spontaneous Emergence of Legibility in Writing Systems: The Case of Orientation Anisotropy.
Morin, Olivier
2018-03-01
Cultural forms are constrained by cognitive biases, and writing is thought to have evolved to fit basic visual preferences, but little is known about the history and mechanisms of that evolution. Cognitive constraints have been documented for the topology of script features, but not for their orientation. Orientation anisotropy in human vision, as revealed by the oblique effect, suggests that cardinal (vertical and horizontal) orientations, being easier to process, should be overrepresented in letters. As this study of 116 scripts shows, the orientation of strokes inside written characters massively favors cardinal directions, and it is organized in such a way as to make letter recognition easier: Cardinal and oblique strokes tend not to mix, and mirror symmetry is anisotropic, favoring vertical over horizontal symmetry. Phylogenetic analyses and recently invented scripts show that cultural evolution over the last three millennia cannot be the sole cause of these effects. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
NASA Astrophysics Data System (ADS)
Engelder, Terry; Haith, Benjamin F.; Younes, Amgad
2001-07-01
Some Alleghanian joints in black shales of the Geneseo and Middlesex Formations of the Catskill Delta complex, Finger Lakes district, New York, slipped horizontally up to 8 cm. Horizontal slip is measured by the offset of ENE-striking joints. Alleghanian joints striking 330-350° display a right-lateral slip with an average value of 1.9 cm, while joints striking 004-010° slip in the left-lateral sense with an average value of 1.3 cm. The maximum horizontal stress (SH) driving this slip falls between 350° and 004°, the orientation of local Alleghanian layer-parallel shortening as indicated by both disjunctive and pencil cleavage. By commonality of orientation, we infer that slip on Alleghanian joints is driven contemporaneously with layer-parallel shortening. If so, the offset ENE-striking joints predate the Alleghanian stress field. These observations mean that both pre-Alleghanian and early Alleghanian joints persist through a period of penetrative strain.
Three dimensional eye movements of squirrel monkeys following postrotatory tilt
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.; Paige, G. D.; Tomko, D. L.
1993-01-01
Three-dimensional squirrel monkey eye movements were recorded during and immediately following rotation around an earth-vertical yaw axis (160 degrees/s steady state, 100 degrees/s2 acceleration and deceleration). To study interactions between the horizontal angular vestibulo-ocular reflex (VOR) and head orientation, postrotatory VOR alignment was changed relative to gravity by tilting the head out of the horizontal plane (pitch or roll tilt between 15 degrees and 90 degrees) immediately after cessation of motion. Results showed that in addition to post rotatory horizontal nystagmus, vertical nystagmus followed tilts to the left or right (roll), and torsional nystagmus followed forward or backward (pitch) tilts. When the time course and spatial orientation of eye velocity were considered in three dimensions, the axis of eye rotation always shifted toward alignment with gravity, and the postrotatory horizontal VOR decay was accelerated by the tilts. These phenomena may reflect a neural process that resolves the sensory conflict induced by this postrotatory tilt paradigm.
Pettorossi, V E; Errico, P; Ferraresi, A
1997-01-01
Quick phases (QPs) induced by horizontal and vertical sinusoidal vestibular stimulations were studied in rabbits, cats, and humans. In all the animals, large and frequent horizontal QPs were observed following yaw stimulation in prone position. By contrast, QPs were almost absent during roll stimulation in rabbits, and they were small and oblique during pitch stimulation in cats and humans. As a result of these differences, the range of gaze displacement induced by vestibular stimulations was greater in the horizontal plane than in the vertical one. We also found that the trajectory of the QPs in rabbits was kept horizontal even when the yaw rotation was off vertical axis of +/- 45 degrees in the sagittal plane. Moreover, in the rabbit, the rare horizontal QPs induced by roll stimulation did not change their orientation at various pitch angles of roll stimulation axis. The QPs were also analyzed following roll stimulation of the rabbit in supine position. In this condition, in which the otolithic receptors were activated in the opposite way compared to prone position, large vertical QPs were elicited. We concluded that these results provide evidence that the otolithic signal plays a role in controlling occurrence and trajectory orientation of the QPs.
NASA Technical Reports Server (NTRS)
Wood, S. J.; Paloski, W. H.; Reschke, M. F.
1998-01-01
This purpose of this study was to examine the spatial coding of eye movements during static roll tilt (up to +/-45 degrees) relative to perceived earth and head orientations. Binocular videographic recordings obtained in darkness from eight subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the true earth and head orientations. We found that both variability and curvature of gaze trajectories increased with roll tilt. The trajectories of eye movements made along the perceived earth-horizontal (PEH) were more accurate than movements along the perceived head-horizontal (PHH). The trajectories of both PEH and PHH saccades tended to deviate in the same direction as the head tilt. The deviations in gaze trajectories along the perceived earth-vertical (PEV) and perceived head-vertical (PHV) were both similar to the PHH orientation, except that saccades along the PEV deviated in the opposite direction relative to the head tilt. The magnitude of deviations along the PEV, PHH, and PHV corresponded to perceptual overestimations of roll tilt obtained from verbal reports. Both PEV gaze trajectories and perceptual estimates of tilt orientation were different following clockwise rather than counterclockwise tilt rotation; however, the PEH gaze trajectories were less affected by the direction of tilt rotation. Our results suggest that errors in gaze trajectories along PEV and perceived head orientations increase during roll tilt in a similar way to perceptual errors of tilt orientation. Although PEH and PEV gaze trajectories became nonorthogonal during roll tilt, we conclude that the spatial coding of eye movements during roll tilt is overall more accurate for the perceived earth reference frame than for the perceived head reference frame.
Retinal constraints on orientation specificity in cat visual cortex.
Schall, J D; Vitek, D J; Leventhal, A G
1986-03-01
Most retinal ganglion cells (Levick and Thibos, 1982) and cortical cells (Leventhal, 1983; Leventhal et al., 1984) subserving peripheral vision respond best to stimuli that are oriented radially, i.e., like the spokes of a wheel with the area centralis at the hub. We have extended this work by comparing directly the distributions of orientations represented in topographically corresponding regions of retina and visual cortex. Both central and peripheral regions were studied. The relations between the orientations of neighboring ganglion cells and the manner in which the overrepresentation of radial orientations is accommodated in the functional architecture of visual cortex were also studied. Our results are based on an analysis of the orientations of the dendritic fields of 1296 ganglion cells throughout the retina and the preferred orientations of 1389 cells located in retinotopically corresponding regions of cortical areas 17, 18, and 19 in the cat. We find that horizontal and vertical orientations are overrepresented in regions of both retina and visual cortex subserving the central 5 degrees of vision. The distributions of the orientations of retinal ganglion cells and cortical cells subserving the horizontal, vertical, and diagonal meridians outside the area centralis differ significantly. The distribution of the preferred orientations of the S (simple) cells in areas 17, 18 and 19 subserving a given part of the retina corresponds to the distribution of the dendritic field orientations of the ganglion cells in that part of retina. The distribution of the preferred orientations of C (complex) cells with narrow receptive fields in area 17 but not C cells with wide receptive fields in areas 17, 18, or 19 subserving a given part of the retina matches the distribution of the orientations of the ganglion cells in that part of retina. The orientations of all of the alpha-cells in 5-9 mm2 patches of retina along the horizontal, vertical, and oblique meridians were determined. A comparison of the orientations of neighboring cells indicates that other than a mutual tendency to be oriented radially, ganglion cells with similar orientations are not clustered in the retina. Reconstructions of electrode penetrations into regions of visual cortex representing peripheral retina indicate that columns subserving radial orientations are wider than those subserving nonradial orientations. Our results provide evidence that the distribution of the preferred orientations of simple cells in visual cortex subserving any region of the visual field matches the distribution of the orientations of the ganglion cells subserving the same region of the visual field.(ABSTRACT TRUNCATED AT 400 WORDS)
Effect of magnetic pulses on Caribbean spiny lobsters: implications for magnetoreception.
Ernst, David A; Lohmann, Kenneth J
2016-06-15
The Caribbean spiny lobster, Panulirus argus, is a migratory crustacean that uses Earth's magnetic field as a navigational cue, but how these lobsters detect magnetic fields is not known. Magnetic material thought to be magnetite has previously been detected in spiny lobsters, but its role in magnetoreception, if any, remains unclear. As a first step toward investigating whether lobsters might have magnetite-based magnetoreceptors, we subjected lobsters to strong, pulsed magnetic fields capable of reversing the magnetic dipole moment of biogenic magnetite crystals. Lobsters were subjected to a single pulse directed from posterior to anterior and either: (1) parallel to the horizontal component of the geomagnetic field (i.e. toward magnetic north); or (2) antiparallel to the horizontal field (i.e. toward magnetic south). An additional control group was handled but not subjected to a magnetic pulse. After treatment, each lobster was tethered in a water-filled arena located within 200 m of the capture location and allowed to walk in any direction. Control lobsters walked in seemingly random directions and were not significantly oriented as a group. In contrast, the two groups exposed to pulsed fields were significantly oriented in approximately opposite directions. Lobsters subjected to a magnetic pulse applied parallel to the geomagnetic horizontal component walked westward; those subjected to a pulse directed antiparallel to the geomagnetic horizontal component oriented approximately northeast. The finding that a magnetic pulse alters subsequent orientation behavior is consistent with the hypothesis that magnetoreception in spiny lobsters is based at least partly on magnetite-based magnetoreceptors. © 2016. Published by The Company of Biologists Ltd.
Response Classification Images in Vernier Acuity
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Beard, B. L.; Ellis, Stephen R. (Technical Monitor)
1997-01-01
Orientation selective and local sign mechanisms have been proposed as the basis for vernier acuity judgments. Linear image features contributing to discrimination can be determined for a two choice task by adding external noise to the images and then averaging the noises separately for the four types of stimulus/response trials. This method is applied to a vernier acuity task with different spatial separations to compare the predictions of the two theories. Three well-practiced observers were presented around 5000 trials of a vernier stimulus consisting of two dark horizontal lines (5 min by 0.3 min) within additive low-contrast white noise. Two spatial separations were tested, abutting and a 10 min horizontal separation. The task was to determine whether the target lines were aligned or vertically offset. The noises were averaged separately for the four stimulus/response trial types (e.g., stimulus = offset, response = aligned). The sum of the two 'not aligned' images was then subtracted from the sum of the 'aligned' images to obtain an overall image. Spatially smoothed images were quantized according to expected variability in the smoothed images to allow estimation of the statistical significance of image features. The response images from the 10 min separation condition are consistent with the local sign theory, having the appearance of two linear operators measuring vertical position with opposite sign. The images from the abutting stimulus have the same appearance with the two operators closer together. The image predicted by an oriented filter model is similar, but has its greatest weight in the abutting region, while the response images fall to nonsignificance there. The response correlation image method, previously demonstrated for letter discrimination, clarifies the features used in vernier acuity.
Teaching Theory in an Empirically-Oriented Graduate Program.
ERIC Educational Resources Information Center
Warner, R. Stephen
1987-01-01
Stresses that the role of theory is to facilitate cognitive integration, which has a vertical dimension (abstract to concrete) and a horizontal one (across schools and substantive fields). The author emphasizes horizontal integration over upper-level vertical integration to help students communicate across specialities. (Author/DH)
Geotechnical Site Investigation Using S-waves with Implications for Ground Motion Analysis
NASA Astrophysics Data System (ADS)
Hassan, Bilal; Butt, Stephen D.; Hurich, Charles A.
2017-12-01
Evaluation results of shear wave attenuation-based ground motion restricted by fracture orientation and rheology, from among those of an extended experimental study, are presented herein. The issues of competence of fractured bedrock dynamically disturbed multilaterally are assessed. Disturbance is primarily modelled by Sh and Sv stimulation, given fracture orientation, while subjected to direct fracture stress regime conditions varying in time. Hence, directionalities of polarisation and stress are taken into consideration simultaneously following simple site-specific non-erodetic approach. Comparison of spectral curves and spectral ratio curves of attenuation with respect to variations of direction and stress emphasise the amplification of the `seismic response' in one direction compared to the other, i.e. vertical vs. horizontal, in terms of weighing possibilities of or predicting structural integrity against failure. The composite analyses of multiple spectral curves not only enable determination of the orientation of the fracture set/s in space but also allow inferring the nature of more amplified response perpendicular to the crack surface compared to that of a response parallel to the crack surface.
Nikbakht, Nader; Tafreshiha, Azadeh; Zoccolan, Davide; Diamond, Mathew E
2018-02-07
To better understand how object recognition can be triggered independently of the sensory channel through which information is acquired, we devised a task in which rats judged the orientation of a raised, black and white grating. They learned to recognize two categories of orientation: 0° ± 45° ("horizontal") and 90° ± 45° ("vertical"). Each trial required a visual (V), a tactile (T), or a visual-tactile (VT) discrimination; VT performance was better than that predicted by optimal linear combination of V and T signals, indicating synergy between sensory channels. We examined posterior parietal cortex (PPC) and uncovered key neuronal correlates of the behavioral findings: PPC carried both graded information about object orientation and categorical information about the rat's upcoming choice; single neurons exhibited identical responses under the three modality conditions. Finally, a linear classifier of neuronal population firing replicated the behavioral findings. Taken together, these findings suggest that PPC is involved in the supramodal processing of shape. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Beekman, Fred; Badsi, Madjid; van Wees, Jan-Diederik
2000-05-01
Many low-efficiency hydrocarbon reservoirs are productive largely because effective reservoir permeability is controlled by faults and natural fractures. Accurate and low-cost information on basic fault and fracture properties, orientation in particular, is critical in reducing well costs and increasing well recoveries. This paper describes how we used an advanced numerical modelling technique, the finite element method (FEM), to compute site-specific in situ stresses and rock deformation and to predict fracture attributes as a function of material properties, structural position and tectonic stress. Presented are the numerical results of two-dimensional, plane-strain end-member FEM models of a hydrocarbon-bearing fault-propagation-fold structure. Interpretation of the modelling results remains qualitative because of the intrinsic limitations of numerical modelling; however, it still allows comparisons with (the little available) geological and geophysical data. In all models, the weak mechanical strength and flow properties of a thick shale layer (the main seal) leads to a decoupling of the structural deformation of the shallower sediments from the underlying sediments and basement, and results in flexural slip across the shale layer. All models predict rock fracturing to initiate at the surface and to expand with depth under increasing horizontal tectonic compression. The stress regime for the formation of new fractures changes from compressional to shear with depth. If pre-existing fractures exist, only (sub)horizontal fractures are predicted to open, thus defining the principal orientation of effective reservoir permeability. In models that do not include a blind thrust fault in the basement, flexural amplification of the initial fold structure generates additional fracturing in the crest of the anticline controlled by the material properties of the rocks. The folding-induced fracturing expands laterally along the stratigraphic boundaries under enhanced tectonic loading. Models incorporating a blind thrust fault correctly predict the formation of secondary syn- and anti-thetic mesoscale faults in the basement and sediments of the hanging wall. Some of these faults cut reservoir and/or seal layers, and thus may influence effective reservoir permeability and affect seal integrity. The predicted faults divide the sediments across the anticline in several compartments with different stress levels and different rock failure (and proximity to failure). These numerical model outcomes can assist classic interpretation of seismic and well bore data in search of fractured and overpressured hydrocarbon reservoirs.
Reducing economic risk in areally anisotropic formations with multiple-lateral horizontal wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.; Economides, M.J.; Frick, T.P.
1995-12-31
Well orientation is critical to horizontal well performance in areally anisotropic reservoirs. A horizontal well, drilled normal to the direction of maximum permeability, will have higher productivity than one drilled in any other arbitrary direction. Currently, horizontal permeability magnitudes and even indications of direction are rarely measured in the field. Based on well performance modeling and economic evaluation, this study attempts to determine the relative attractiveness of horizontal wells with multiple-laterals. The work exposes the economic risk in ignoring horizontal permeability magnitudes and directions and demonstrates the importance of adequate reservoir testing. A new rationalization for multiple-lateral horizontal wells ismore » the reduction of the economic risk associated with poor reservoir characterization in areally anisotropic formations while increasing the incremental net present value (NPV) over single-horizontal wells.« less
Tilt to horizontal global solar irradiance conversion: application to PV systems data
NASA Astrophysics Data System (ADS)
Housmans, Caroline; Leloux, Jonathan; Bertrand, Cédric
2017-04-01
Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane requiring that at least two of the three solar components (i.e. global, direct and diffuse) are known. When only global irradiance measurements are available, the conversion from horizontal to tilted planes is still possible but in this case transposition models have to be coupled with decomposition models (i.e. models that predict the direct and diffuse components from the global one). Here, two different approaches have been considered to solve the reverse process, i.e. the conversion from tilted to horizontal: (i) one-sensor approach and (ii) multi-sensors approach. Because only one tilted plane is involved in the one-sensor approach, a decomposition model need to be coupled with a transposition model to solve the problem. By contrast, at least two tilted planes being considered in the multi-sensors approach, only a transposition model is required to perform the conversion. First, global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle were used to evaluate the performance of both approaches. Four pyranometers (one mounted in the horizontal plane and three on inclined surfaces with different tilts and orientations) were involved in the validation exercise. Second, the inverse transposition was applied to tilted global solar irradiance values retrieved from the energy production registered at residential PV systems located in the vicinity of Belgian radiometric stations operated by RMI (for validation purposes).
Alink, Arjen; Krugliak, Alexandra; Walther, Alexander; Kriegeskorte, Nikolaus
2013-01-01
The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could result from bottom-up processing, if the preferences of V1 neurons were biased toward particular orientations (e.g., radial from fixation, or cardinal, i.e., vertical or horizontal). Global maps could also arise from local recurrent or top-down processing, reflecting pre-attentive perceptual grouping, attention spreading, or predictive coding of global form. Here we investigate whether fMRI orientation decoding with 2-mm voxels requires (a) globally coherent orientation stimuli and/or (b) global-scale patterns of V1 activity. We used opposite-orientation gratings (balanced about the cardinal orientations) and spirals (balanced about the radial orientation), along with novel patch-swapped variants of these stimuli. The two stimuli of a patch-swapped pair have opposite orientations everywhere (like their globally coherent parent stimuli). However, the two stimuli appear globally similar, a patchwork of opposite orientations. We find that all stimulus pairs are robustly decodable, demonstrating that fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained components of the fMRI patterns reflect visual orientations. Consistent with previous studies, we found evidence for global radial and vertical preference maps in V1. However, these were weak or absent for patch-swapped stimuli, suggesting that global preference maps depend on globally coherent orientations and might arise through recurrent or top-down processes related to the perception of global form.
Klein, Brennan J; Li, Zhi; Durgin, Frank H
2016-04-01
What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides to dissociate egocentric from allocentric reference frames. In Experiment 1, it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Klein, Brennan J.; Li, Zhi; Durgin, Frank H.
2015-01-01
What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides in order to dissociate egocentric from allocentric reference frames. In Experiment 1 it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. PMID:26594884
NASA Astrophysics Data System (ADS)
Kim, Hanna; Xie, Linmao; Min, Ki-Bok; Bae, Seongho; Stephansson, Ove
2017-12-01
It is desirable to combine the stress measurement data produced by different methods to obtain a more reliable estimation of in situ stress. We present a regional case study of integrated in situ stress estimation by hydraulic fracturing, observations of borehole breakouts and drilling-induced fractures, and numerical modeling of a 1 km-deep borehole (EXP-1) in Pohang, South Korea. Prior to measuring the stress, World Stress Map (WSM) and modern field data in the Korean Peninsula are used to construct a best estimate stress model in this area. Then, new stress data from hydraulic fracturing and borehole observations is added to determine magnitude and orientation of horizontal stresses. Minimum horizontal principal stress is estimated from the shut-in pressure of the hydraulic fracturing measurement at a depth of about 700 m. The horizontal stress ratios ( S Hmax/ S hmin) derived from hydraulic fracturing, borehole breakout, and drilling-induced fractures are 1.4, 1.2, and 1.1-1.4, respectively, and the average orientations of the maximum horizontal stresses derived by field methods are N138°E, N122°E, and N136°E, respectively. The results of hydraulic fracturing and borehole observations are integrated with a result of numerical modeling to produce a final rock stress model. The results of the integration give in situ stress ratios of 1.3/1.0/0.8 ( S Hmax/ S V/ S hmin) with an average azimuth of S Hmax in the orientation range of N130°E-N136°E. It is found that the orientation of S Hmax is deviated by more than 40° clockwise compared to directions reported for the WSM in southeastern Korean peninsula.
NASA Astrophysics Data System (ADS)
Mitishita, E.; Costa, F.; Martins, M.
2017-05-01
Photogrammetric and Lidar datasets should be in the same mapping or geodetic frame to be used simultaneously in an engineering project. Nowadays direct sensor orientation is a common procedure used in simultaneous photogrammetric and Lidar surveys. Although the direct sensor orientation technologies provide a high degree of automation process due to the GNSS/INS technologies, the accuracies of the results obtained from the photogrammetric and Lidar surveys are dependent on the quality of a group of parameters that models accurately the user conditions of the system at the moment the job is performed. This paper shows the study that was performed to verify the importance of the in situ camera calibration and Integrated Sensor Orientation without control points to increase the accuracies of the photogrammetric and LIDAR datasets integration. The horizontal and vertical accuracies of photogrammetric and Lidar datasets integration by photogrammetric procedure improved significantly when the Integrated Sensor Orientation (ISO) approach was performed using Interior Orientation Parameter (IOP) values estimated from the in situ camera calibration. The horizontal and vertical accuracies, estimated by the Root Mean Square Error (RMSE) of the 3D discrepancies from the Lidar check points, increased around of 37% and 198% respectively.
Measurements of Inertial Torques on Sedimenting Fibers
NASA Astrophysics Data System (ADS)
Hamati, Rami; Roy, Anubhab; Koch, Don; Voth, Greg
2017-11-01
Stokes flow solutions predict that ellipsoids sedimenting in quiescent fluid keep their initial orientation. However, preferential alignment in low Reynolds number sedimentation is easily observed. For example, sun dogs form from alignment of sedimenting ice crystals. The cause of this preferential alignment is a torque due to non-zero fluid inertia that aligns particles with a long axis in the horizontal direction. These torques are predicted analytically for slender fibers with low Reynolds number based on the fiber diameter (ReD) by Khayat and Cox (JFM 209:435, 1989). Despite increasingly widespread use of these expressions, we did not find experimental measurements of these inertial torques at parameters where the theory was valid, so we performed a set of sedimentation experiments using fore-aft symmetric cylinders and asymmetric cylinders with their center of mass offset from their center of drag. Measured rotation rates as a function of orientation using carefully prepared glass capillaries in silicon oil show good agreement with the theory. We quantify the effect of finite tank size and compare with other experiments in water where the low ReD condition is not met. Supported by Army Research Office Grant W911NF1510205.
NASA Technical Reports Server (NTRS)
Carey, L.D.; Petersen, W.A.; Deierling, W.
2009-01-01
The majority of lightning-related casualties typically occur during thunderstorm initiation (e.g., first flash) or dissipation (e.g., last flash). The physics of electrification and lightning production during thunderstorm initiation is fairly well understood. As such, the literature includes a number of studies presenting various radar techniques (using reflectivity and, if available, other dual-polarimetric parameters) for the anticipation of initial electrification and first lightning flash. These radar techniques have shown considerable skill at forecasting first flash. On the other hand, electrical processes and lightning production during thunderstorm dissipation are not nearly as well understood and few, if any, successful techniques have been developed to anticipate the last flash and subsequent cessation of lightning. One promising approach involves the use of dual-polarimetric radar variables to infer the presence of oriented ice crystals in lightning producing storms. In the absence of strong vertical electric fields, ice crystals fall with their largest (semi-major) axis in the horizontal associated with gravitational and aerodynamic forces. In thunderstorms, strong vertical electric fields (100-200 kV m(sup -1)) have been shown to orient small (less than 2 mm) ice crystals such that their semi-major axis is vertical (or nearly vertical). After a lightning flash, the electric field is typically relaxed and prior radar research suggests that ice crystals rapidly resume their preferred horizontal orientation. In active thunderstorms, the vertical electric field quickly recovers and the ice crystals repeat this cycle of orientation for each nearby flash. This change in ice crystal orientation from primarily horizontal to vertical during the development of strong vertical electric fields prior to a lightning flash forms the physical basis for anticipating lightning initiation and, potentially, cessation. Research has shown that radar reflectivity (Z) and other co-polar back-scattering radar measurements like differential reflectivity (Z(sub dr)) typically measured by operational dual-polarimetric radars are not sensitive to these changes in ice crystal orientation. However, prior research has demonstrated that oriented ice crystals cause significant propagation effects that can be routinely measured by most dual-polarimetric radars from X-band (3 cm) to S-band (10 cm) wavelengths using the differential propagation phase shift (often just called differential phase, phi(sub dp)) or its range derivative, the specific differential phase (K(sub dp)). Advantages of the differential phase include independence from absolute or relative power calibration, attenuation, differential attenuation and relative insensitivity to ground clutter and partial beam occultation effects (as long as the signal remains above noise). In research mode, these sorts of techniques have been used to anticipate initial cloud electrification, lightning initiation, and cessation. In this study, we develop a simplified model of ice crystal size, shape, orientation, dielectric, and associated radar scattering and propagation effects in order to simulate various idealized scenarios of ice crystals responding to a hypothetical electric field and their dual-polarimetric radar signatures leading up to lightning initiation and particularly cessation. The sensitivity of the K(sub dp) ice orientation signature to various ice properties and radar wavelength will be explored. Since K(sub dp) is proportional to frequency in the Rayleigh- Gans scattering regime, the ice orientation signatures should be more obvious at higher (lower) frequencies (wavelengths). As a result, simulations at radar wavelengths from 10 cm down to 1 cm (Ka-band) will be conducted. Resonance effects will be considered using the T-matrix method. Since most K(sub dp) Vbased observations have been shown at S-band, we will present ice orientation signatures from C-band (UAH/NASA ARMOR) and X-bd (UAH MAX) dual-polarimetric radars located in Northern Alabama. Issues related to optimal radar scanning for the detection of oriented ice will be discussed. Preliminary suggestions on how these differential phase signatures of oriented ice could contribute to lightning initiation and cessation algorithms will be presented.
Mathematical modelling of anisotropy of illite-rich shale
Chesnokov, E.M.; Tiwary, D.K.; Bayuk, I.O.; Sparkman, M.A.; Brown, R.L.
2009-01-01
The estimation of illite-rich shale anisotropy to account for the alignment of clays and gas- or brine-filled cracks is presented via mathematical modelling. Such estimation requires analysis to interpret the dominance of one effect over another. This knowledge can help to evaluate the permeability in the unconventional reservoir, stress orientation, and the seal capacity for the conventional reservoir. Effective media modelling is used to predict the elastic properties of the illite-rich shale and to identify the dominant contributions to the shale anisotropy. We consider two principal reasons of the shale anisotropy: orientation of clay platelets and orientation of fluid-filled cracks. In reality, both of these two factors affect the shale anisotropy. The goal of this study is, first, to separately analyse the effect of these two factors to reveal the specific features in P- and S-wave velocity behaviour typical of each of the factors, and, then, consider a combined effect of the factors when the cracks are horizontally or vertically aligned. To do this, we construct four models of shale. The behaviour of P- and S-wave velocities is analysed when gas- and water-filled cracks embedded in a host matrix are randomly oriented, or horizontally or vertically aligned. The host matrix can be either isotropic or anisotropic (of VTI symmetry). In such a modelling, we use published data on mineralogy and clay platelet alignment along with other micromechanical measurements. In the model, where the host matrix is isotropic, the presence of a singularity point (when the difference VS1 - VS2 changes its sign) in shear wave velocities is an indicator of brine-filled aligned cracks. In the model with the VTI host matrix and horizontally aligned cracks filled with gas, an increase in their volume concentration leads to that the azimuth at which the singularity is observed moves toward the symmetry axis. In this case, if the clay content is small (around 20 per cent), the singularity point may even vanish. The Thomsen parameters are helpful in fluid type indication in shale. An indicator of gas-filled aligned cracks is ?? > ??. If aligned cracks in illite-rich shale are brine-filled, ?? < ??. Negative value of ?? indicates brine-filled cracks in illite-rich shale. A shale with brine-filled cracks exhibits higher Vp/Vs ratio in the vertical direction as compared to the gas-filled shale. A disorientation of clay platelets and brine-filled cracks may lead to that the singularity point is absent for brine-saturated shale as well. In this case one can also observe ?? > ?? and decreased values of Vp/Vs in the vertical direction as in the case of gas-filled cracks. In the presence of vertically aligned cracks, shales exhibit distinctly revealed features of orthorhombic symmetry. The results have important applications where seismic measurements are applied to predict the maturity state of the shale. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
Pettorossi, V E; Ermanno, M; Pierangelo, E; Silvarosa, G
2000-03-01
The influence of gravity in the orientation and slow phase eye velocity of the ocular nystagmus following unilateral damage of the cupula in the ampulla of the horizontal semicircular canal (UHCD) was investigated. The nystagmus was analysed at different sagittal head positions using the x-y infrared eye monitor technique. The nystagmus was almost horizontal at 0 degrees head pitch angle and remained partially fixed in space when the head was pitched upward or downward. The reorientation gain of the slow and quick phases was high (about 0.75) within +/- 45 degrees of head pitch angle, but beyond this range, it decreased greatly. The gain value depended on the lesion extension to otolithic receptors. The absolute value of the slow phase eye velocity of UHCD nystagmus was also modified systematically by the head pitch, showing a reduction in the upward and an increase in the downward.
Interactions of light and gravity on growth, orientation, and lignin biosynthesis in mung beans
NASA Technical Reports Server (NTRS)
Jahns, G. C.
1984-01-01
Mung beans (Vigna radiata L.) seedlings grown on the third Space Transport Mission (STS-3) showed marked orientation problems (some of the stems elongated horizontally and many of the roots were growing upward) and had a lower lignin content than the ground based controls. This research was initiated to determine if the atypical growth characteristics of mung beans grown in microgravity could be simulated using horizontal clinostats. Most of the effort focused on the design, construction and testing of the clinostats. In order to closely approximate the growth conditions of the plants grown in the plant growth unit on STS-3, cylindrical lexan minichambers were constructed. Results showed that plants grown using these clinostats in the horizontal position exhibit similar growth characteristics to the plants grown on STS-3 (disorientation of both stems and roots), while the vertical stationary and vertical rotating controls exhibit normal growth.
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum
NASA Astrophysics Data System (ADS)
Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi
2006-05-01
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.
Comparison of three underwater antennas for use in radiotelemetry
Beeman, J.W.; Grant, C.; Haner, P.V.
2004-01-01
The radiation patterns of three versions of underwater radiotelemetry antennas were measured to compare the relative reception ranges in the horizontal and vertical planes, which are important considerations when designing detection systems. The received signal strengths of an antenna made by stripping shielding from a section of coaxial cable (stripped coax) and by two versions of a dipole antenna were measured at several orientations relative to a dipole transmit antenna under controlled field conditions. The received signal strengths were greater when the transmit and receive antennas were parallel to each other than when they were perpendicular, indicating that a parallel orientation provides optimal detection range. The horizontal plane radiation pattern of the flexible, stripped coax antenna was similar to that of a rigid dipole antenna, but movement of underwater stripped coax antennas in field applications could affect the orientation of transmit and receive antennas in some applications, resulting in decreased range and variation in received signal strengths. Compared with a standard dipole, a dipole antenna armored by housing within a polyvinyl chloride fitting had a smaller radiation pattern in the horizontal plane but a larger radiation pattern in the vertical plane. Each of these types of underwater antenna can be useful, but detection ranges can be maximized by choosing an appropriate antenna after consideration of the location, relation between transmit and receive antenna orientations, radiation patterns, and overall antenna resiliency.
Competing Distractors Facilitate Visual Search in Heterogeneous Displays.
Kong, Garry; Alais, David; Van der Burg, Erik
2016-01-01
In the present study, we examine how observers search among complex displays. Participants were asked to search for a big red horizontal line among 119 distractor lines of various sizes, orientations and colours, leading to 36 different feature combinations. To understand how people search in such a heterogeneous display, we evolved the search display by using a genetic algorithm (Experiment 1). The best displays (i.e., displays corresponding to the fastest reaction times) were selected and combined to create new, evolved displays. Search times declined over generations. Results show that items sharing the same colour and orientation as the target disappeared over generations, implying they interfered with search, but items sharing the same colour and were 12.5° different in orientation only interfered if they were also the same size. Furthermore, and inconsistent with most dominant visual search theories, we found that non-red horizontal distractors increased over generations, indicating that these distractors facilitated visual search while participants were searching for a big red horizontally oriented target. In Experiments 2 and 3, we replicated these results using conventional, factorial experiments. Interestingly, in Experiment 4, we found that this facilitation effect was only present when the displays were very heterogeneous. While current models of visual search are able to successfully describe search in homogeneous displays, our results challenge the ability of these models to describe visual search in heterogeneous environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilles, Michael J.
A shipping container containing an unirradiated nuclear fuel assembly is lifted off the ground by operating a crane to raise a lifting tool comprising a winch. The lifting tool is connected with the shipping container by a rigging line connecting with the shipping container at a lifting point located on the shipping container between the top and bottom of the shipping container, and by winch cabling connecting with the shipping container at the top of the shipping container. The shipping container is reoriented by operating the winch to adjust the length of the winch cabling so as to rotate themore » shipping container about the lifting point. Shortening the winch cabling rotates the shipping container about the lifting point from a horizontal orientation to a vertical orientation, while lengthening the winch cabling rotates the shipping container about the lifting point from the vertical orientation to the horizontal orientation.« less
Amphibian egg cytoplasm response to altered g-forces and gravity orientation
NASA Technical Reports Server (NTRS)
Neff, A. W.; Smith, R. C.; Malacinski, G. M.
1986-01-01
Elucidation of dorsal/ventral polarity and primary embryonic axis development in amphibian embryos requires an understanding of cytoplasmic rearrangements in fertile eggs at the biophysical, physiological, and biochemical levels. Evidence is presented that amphibian egg cytoplasmic components are compartmentalized. The effects of altered orientation to the gravitational vector (i.e., egg inversion) and alterations in gravity force ranging from hypergravity (centrifugation) to simulated microgravity (i.e., horizontal clinostat rotation) on cytoplasmic compartment rearrangements are reviewed. The behavior of yolk compartments as well as a newly defined (with monoclonal antibody) nonyolk cytoplasmic compartment, in inverted eggs and in eggs rotated on horizontal clinostats at their buoyant density, is discussed.
Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1977-01-01
Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.
Role of cerebellar nodulus and uvula on the vestibular quick phase spatial constancy.
Pettorossi, V E; Grassi, S; Errico, P; Barmack, N H
2001-01-01
We investigated the orientation of quick phases (QPs) of vestibularly-induced eye movements in rabbits in response to "off-vertical" sinusoidal vestibular stimulation. We also examined the possible role of the cerebellar nodulus and ventral uvula in controlling QP spatial orientation and modification. During "off-vertical" vestibular stimulation QPs remained aligned with the earth's horizontal plane, while the slow phases (SPs) were aligned with the plane of vestibular stimulation. This suggests that QPs are coded in gravito-inertial coordinates and SPs in head coordinates. When rabbits were oscillated in the light (20 degrees peak-to-peak; 0.2 Hz) about an "off-vertical" axis for 2 h, the QPs changed their trajectory, abandoning the earth's horizontal plane to approach the plane of the stimulus. By contrast, in the absence of conjunctive optokinetic stimulation, QPs remained fixed in the earth's horizontal plane even after 2 h of "off-vertical" stimulation. The conjunctive combination of optokinetic and vestibular stimulation caused QPs to change their plane of rotation. After lesion of the nodulus-uvula the ability of rabbits to reorient QPs during conjoint vestibular-optokinetic stimulation was maintained. We conclude that the space orientation and adaptation of QPs do not require cerebellar control.
Role of gravity-based information on the orientation and localization of the perceived body midline.
Ceyte, Hadrien; Cian, Corinne; Nougier, Vincent; Olivier, Isabelle; Trousselard, Marion
2007-01-01
The present study focused on the influence of gravity-based information on the orientation and localization of the perceived body midline. The orientation was investigated by the rolling adjustment of a rod on the subjects' Z-axis and the localization by the horizontal adjustment of a visual dot as being straight ahead. Experiment 1 investigated the effect of the dissociation between the Z-axis and the direction of gravity by placing subjects in roll tilt and supine postures. In roll tilt, the perception of the body midline orientation was deviated in the direction of body tilt and the perception of its localization was deviated in the opposite direction. In the supine body orientation, estimates of the Z-axis and straight-ahead remained veridical as when the body was upright. Experiment 2 highlighted the relative importance of the otolithic and tactile information using diffuse pressure stimulation. The estimation of body midline orientation was modified contrarily to the estimation of its localization. Thus, subjects had no absolute representation of their egocentric space. The main hypothesis regarding the dissociation between the orientation and localization of the body midline may be related to a difference in the integration of sensory information. It can be suggested that the horizontal component of the vestibulo-ocular reflex (VOR) contributed to the perceived localization of the body midline, whereas its orientation was mainly influenced by tactile information.
Culture and Consumer Behavior: The Role of Horizontal and Vertical Cultural Factors
Shavitt, Sharon; Cho, Hyewon
2016-01-01
We examine the influence of culture on consumer behavior with a particular focus on horizontal and vertical individualism and collectivism. Cultures vary in their propensity to emphasize hierarchy, a distinction captured by examining horizontal/vertical cultural orientations or contexts. These cultural factors pattern personal values and goals, power concepts, and normative expectations applied to the exercise of power. We review implications for how consumers respond to brands in the marketplace, service providers, and each others' needs. PMID:28083559
Culture and Consumer Behavior: The Role of Horizontal and Vertical Cultural Factors.
Shavitt, Sharon; Cho, Hyewon
2016-04-01
We examine the influence of culture on consumer behavior with a particular focus on horizontal and vertical individualism and collectivism. Cultures vary in their propensity to emphasize hierarchy, a distinction captured by examining horizontal/vertical cultural orientations or contexts. These cultural factors pattern personal values and goals, power concepts, and normative expectations applied to the exercise of power. We review implications for how consumers respond to brands in the marketplace, service providers, and each others' needs.
Variation in bat detections due to detector orientation in a forest.
Theodore J. Weller; Zabel Cynthia J.
2002-01-01
Bat detectors are widely used to compare bat activity among habitats. We placed 8 Anabat II detectors at 2 heights. 3 directions and 2 angles with respect to horizontal to evaluate the effect of detector orientation on the number of bat detections received. The orientation receiving the maximum number of detections had 70% more detections than the mean of the 7...
Does hemipelvis structure and position influence acetabulum orientation?
Musielak, Bartosz; Jóźwiak, Marek; Rychlik, Michał; Chen, Brian Po-Jung; Idzior, Maciej; Grzegorzewski, Andrzej
2016-03-16
Although acetabulum orientation is well established anatomically and radiographically, its relation to the innominate bone has rarely been addressed. If explored, it could open the discussion on patomechanisms of such complex disorders as femoroacetabular impingement (FAI). We therefore evaluated the influence of pelvic bone position and structure on acetabular spatial orientation. We describe this relation and its clinical implications. This retrospective study was based on computed tomography scanning of three-dimensional models of 31 consecutive male pelvises (62 acetabulums). All measurements were based on CT spatial reconstruction with the use of highly specialized software (Rhinoceros). Relations between acetabular orientation (inclination, tilt, anteversion angles) and pelvic structure were evaluated. The following parameters were evaluated to assess the pelvic structure: iliac opening angle, iliac tilt angle, interspinous distance (ISD), intertuberous distance (ITD), height of the pelvis (HP), and the ISD/ITD/HP ratio. The linear and nonlinear dependence of the acetabular angles and hemipelvic measurements were examined with Pearson's product - moment correlation and Spearman's rank correlation coefficient. Correlations different from 0 with p < 0.05 were considered statistically significant. Comparison of the axis position with pelvis structure with orientation in the horizontal plane revealed a significant positive correlation between the acetabular anteversion angle and the iliac opening angle (p = 0.041 and 0.008, respectively). In the frontal plane, there was a positive correlation between the acetabular inclination angle and the iliac tilt angle (p = 0.025 and 0.014, respectively) and the acetabular inclination angle and the ISD/ITD/HP ratio (both p = 0.048). There is a significant correlation of the hemipelvic structure and acetabular orientation under anatomic conditions, especially in the frontal and horizontal planes. In the anteroposterior view, the more tilted-down innominate bone causes a more caudally oriented acetabulum axis, whereas in the horizontal view this relation is reversed. This study may serve as a basis for the discussion on the role of the pelvis in common disorders of the hip.
A study on aircraft map display location and orientation
NASA Technical Reports Server (NTRS)
Baty, D. L.; Wempe, T.; Huff, E.
1973-01-01
Six airline pilots participated in a fixed-based simulator study to determine the effects of two horizontal situation display (HSD/map) panel locations relative to the vertical situation display (VSD), and of three map orientations on manual piloting performance. Pilot comments and opinions were formally obtained. Significant performance differences were found between wind conditions and among pilots but not between map locations and orientations. The results also illustrate the potential tracking accuracy of such a display. Recommendations concerning display location and map orientation are made.
A study on aircraft map display location and orientation
NASA Technical Reports Server (NTRS)
Baty, D. L.; Wempe, T. E.; Huff, E. M.
1974-01-01
Six airline pilots participated in a fixed-base simulator study to determine the effects of two horizontal situation display (HSD/map) panel locations relative to the vertical situation display (VSD), and of three map orientations on manual piloting performance. Pilot comments and opinions were formally obtained. Significant performance differences were found between wind conditions and among pilots, but not between map locations and orientations. The results also illustrate the potential tracking accuracy of such a display. Recommendations concerning display location and map orientation are made.
NASA Astrophysics Data System (ADS)
Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.
2018-06-01
Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.
Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation
NASA Astrophysics Data System (ADS)
Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.
2017-12-01
The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m-2·s-1 to 70 kg·m-2·s-1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.
Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu
2018-04-01
Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.
Topographic instructions, Book 3, multiplex procedure; Chapter 3 C7a-e
Loud, Edward I.
1952-01-01
By direct projection of overlapping photographs, printed on glass plates, the multiplex produces an exact optical model, in miniature, of the terrain to be mapped. To create the model, the multiplex projectors must be properly positioned and oriented so that they duplicate the orientation of the aerial camera at the instant of each exposure. By means of a floating mark, horizontal and vertical measurements can be made in the model, and planimetry and contours can be drawn. The applicability of the multiplex to a given mapping project depends largely on the contour interval and compilation scale required, and also depends, to a lesser extent, on the vegetation and terrain cover as it may affect accuracy requirements. The steps in multiplex procedure are orientation, stereotriangulation, and compilation of detail. In orientation, the projectors are arranged so that the projected images form a stereoscopic model which can be adjusted to fit horizontal and vertical control points. In stereotriangulation, three or more multiplex projectors are oriented so that the consecutive models fit existing control, permitting the establishment of additional or intermediate control. In compilation, the features appearing in the model are delineated on the map manuscript.
Campbell, Diane R; Jürgens, Andreas; Johnson, Steven D
2016-04-01
Floral trait differences between related species may play a key role in reproductive isolation imposed by pollinators. Volatile emissions can influence pollinator choice, but how they act in combination with traits such as flower orientation is rarely studied. We compared flower-opening patterns, morphology, colour, orientation and volatile emissions for two closely related species of Zaluzianskya and their natural hybrids. Hawkmoth pollinators were tested for preference between flowers of the two species, and between flowers with manipulations of volatiles or orientation. Flowers of Z. natalensis and Z. microsiphon open at night and day, respectively, but they overlap during early evening, when hawkmoths showed a strong preference for Z. natalensis. The species have similar flower size and colour, but Z. natalensis emits more floral volatiles in the evening and presents flowers vertically face-up as opposed to horizontally in Z. microsiphon, whereas natural hybrids are intermediate. Adding methyl benzoate and linalool to flowers of Z. microsiphon did not increase hawkmoth attraction, but re-orientation of flowers to face vertically increased attraction when scent cues were present, whereas re-orientation of Z. natalensis flowers to face horizontally decreased attraction. This study highlights the importance of flower orientation in imposing reproductive isolation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
A probabilistic approach for mine burial prediction
NASA Astrophysics Data System (ADS)
Barbu, Costin; Valent, Philip; Richardson, Michael; Abelev, Andrei; Plant, Nathaniel
2004-09-01
Predicting the degree of burial of mines in soft sediments is one of the main concerns of Naval Mine CounterMeasures (MCM) operations. This is a difficult problem to solve due to uncertainties and variability of the sediment parameters (i.e., density and shear strength) and of the mine state at contact with the seafloor (i.e., vertical and horizontal velocity, angular rotation rate, and pitch angle at the mudline). A stochastic approach is proposed in this paper to better incorporate the dynamic nature of free-falling cylindrical mines in the modeling of impact burial. The orientation, trajectory and velocity of cylindrical mines, after about 4 meters free-fall in the water column, are very strongly influenced by boundary layer effects causing quite chaotic behavior. The model's convolution of the uncertainty through its nonlinearity is addressed by employing Monte Carlo simulations. Finally a risk analysis based on the probability of encountering an undetectable mine is performed.
Levitation pressure and friction losses in superconducting bearings
Hull, John R.
2001-01-01
A superconducting bearing having at least one permanent magnet magnetized with a vertical polarization. The lower or stator portion of the bearing includes an array of high-temperature superconducting elements which are comprised of a plurality of annular rings. An annular ring is located below each permanent magnet and an annular ring is offset horizontally from at least one of the permanent magnets. The rings are composed of individual high-temperature superconducting elements located circumferentially along the ring. By constructing the horizontally-offset high-temperature superconducting ring so that the c-axis is oriented in a radial direction, a higher levitation force can be achieved. Such an orientation will also provide substantially lower rotational drag losses in the bearing.
Mohoric; Stepisnik
2000-11-01
This paper describes the influence of natural convection on NMR measurement of a self-diffusion constant of fluid in the earth's magnetic field. To get an estimation of the effect, the Lorenz model of natural convection in a horizontally oriented cylinder, heated from below, is derived. Since the Lorenz model of natural convection is derived for the free boundary condition, its validity is of a limited value for the natural no-slip boundary condition. We point out that even a slight temperature gradient can cause significant misinterpretation of measurements. The chaotic nature of convection enhances the apparent self-diffusion constant of the liquid.
ERIC Educational Resources Information Center
Sun, Yu-Lin
2010-01-01
The Chinese writing system has traditionally organized the typographic text vertically, with one square-shaped character placed on top of another. With the influence of globalization, an increasing number of reading materials have been presented in the Western horizontal format, including school textbooks for children in Taiwan. This study looked…
Vertical and horizontal integration of knowledge and skills - a working model.
Snyman, W D; Kroon, J
2005-02-01
The new integrated outcomes-based curriculum for dentistry was introduced at the University of Pretoria in 1997. The first participants graduated at the end of 2001. Educational principles that underpin the new innovative dental curriculum include vertical and horizontal integration, problem-oriented learning, student-centred learning, a holistic attitude to patient care and the promotion of oral health. The aim of this research project was to develop and assay a model to facilitate vertical integration of knowledge and skills thereby justifying the above mentioned action. The learning methodology proposed for the specific outcome of the Odontology module, namely the diagnosis of dental caries and the design of a primary preventive programme, included problem-solving as the driving force for the facilitation of vertical and horizontal integration, and an instructional design for the integration of the basic knowledge and clinical skills into a single learning programme. The paper describes the methodology of problem-oriented learning as applied in this study together with the detail of the programme. The consensus of those teachers who represent the basic and clinical sciences and who participate in this learning programme is that this model is practical and can assist vertical as well as horizontal integration of knowledge.
Ultrasonic characterization of engineering performanace of oriented strandboard
NASA Astrophysics Data System (ADS)
Vun, Ronnie Yunheu
Direct-contact (DC) and non-contact (NC) ultrasonic transmission (UT) methods were developed to characterize the structural performance of oriented strandboard (OSB). The UT variable velocity was shown to be sensitive to the physical impediments caused by flake interfacial boundaries and embedded voids. Both attenuation and root mean square (RMS) voltage were good indicators of the "zero void" densification level for OSB, a point of the greatest transmissivity of the stress wave energy. For both DC and NC methods, the predicted densities of the model were validated for spatial distribution over each OSB type. Based on the control limits of +/-10% of the panel average density, density prediction improved with higher resin content (RC) and higher nominal density (ND) levels. From the out-of-limits plots, the predicted in-situ densities produced a reasonably spatial coherence to the measured values. All panels made with ND 0.60 g/cm3 or greater conformed well within the limits, with declining conformity towards lower RC panels. For each composite type made of different particle sizes, the equilibrium moisture content showed a decreasing trend toward smaller particle panels. The attenuation and RMS were good indicators for moisture change and densification level for each composite type. The velocity, sensitive to physical resistance of particle sizes, increased with increasing IB strength and sample density, manifesting the positive influence of layering, resin content, and the negative effect of bark as a constituent. The results of the creep rupture tests on commercial OSB using an acoustic emission (AE) technique indicated that the cumulative AE event count parameter was highly correlated with deflection parameter and appropriately represented the accumulation of incipient damage. Under high stress levels, specimens with high moisture content (MC) sustained the worse damages having the shortest creep rupture time followed by specimens with dynamically rising MC. Defects on the compression-side of the bending specimen were found critical to creep rupture than those on the tension-side. The in-plane fracture patterns tended to follow the defect trenches of low-density valleys, and worsened with greater variability of the horizontal density, indicating the need to measure and control the horizontal density variation within reasonable limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... vertical orientation. (4) Push the dummy at the knees and at mid-sternum of the upper torso with just sufficient horizontally oriented force towards the seat back until the back of the upper torso is in contact with the seat back. (5) While maintaining the dummy's position as specified in paragraph (b)(3) and (4...
49 CFR 572.196 - Thorax without arm.
Code of Federal Regulations, 2010 CFR
2010-10-01
... orientation. (4) Push the dummy at the knees and at mid-sternum of the upper torso with just sufficient horizontally oriented force towards the seat back until the back of the upper torso is in contact with the seat back. (5) While maintaining the dummy's position as specified in paragraphs (b)(3) and (4) of this...
49 CFR 572.198 - Pelvis acetabulum.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the dummy is in vertical orientation. (4) Push the dummy at the knees and at mid-sternum of the upper torso with just sufficient horizontally oriented force towards the seat back until the back of the upper torso is in contact with the seat back. (5) While maintaining the dummy's position as specified in...
49 CFR 572.195 - Thorax with arm.
Code of Federal Regulations, 2010 CFR
2010-10-01
... dummy is in vertical orientation. (4) Push the dummy at the knees and at mid-sternum of the upper torso with just sufficient horizontally oriented force towards the seat back until the back of the upper torso is in contact with the seat back. (5) While maintaining the dummy's position as specified in...
Design and Computational Fluid Dynamics Investigation of a Personal, High Flow Inhalable Sampler
Anthony, T. Renée; Landázuri, Andrea C.; Van Dyke, Mike; Volckens, John
2016-01-01
The objective of this research was to develop an inlet to meet the inhalable sampling criterion at 10 l min−1 flow using the standard, 37-mm cassette. We designed a porous head for this cassette and evaluated its performance using computational fluid dynamics (CFD) modeling. Particle aspiration efficiency was simulated in a wind tunnel environment at 0.4 m s−1 freestream velocity for a facing-the-wind orientation, with sampler oriented at both 0° (horizontal) and 30° down angles. The porous high-flow sampler oriented 30° downward showed reasonable agreement with published mannequin wind tunnel studies and humanoid CFD investigations for solid particle aspiration into the mouth, whereas the horizontal orientation resulted in oversampling. Liquid particles were under-aspirated in all cases, however, with 41–84% lower aspiration efficiencies relative to solid particles. A sampler with a single central 15-mm pore at 10 l min−1 was also investigated and was found to match the porous sampler’s aspiration efficiency for solid particles; the single-pore sampler is expected to be more suitable for liquid particle use. PMID:20418278
Numerical simulation of present day tectonic stress across the Indian subcontinent
NASA Astrophysics Data System (ADS)
Yadav, R.; Tiwari, V. M.
2018-04-01
In situ measurements of maximum horizontal stress (S Hmax) in the Indian subcontinent are limited and do not present regional trends of intraplate stress orientation. The observed orientations of S Hmax vary considerably and often differ from the plate velocity direction. We have simulated orientation and magnitude of S Hmax through finite element modeling incorporating heterogeneities in elastic property of the Indian continent and plain stress approximation to understand the variability of S Hmax. Four different scenarios are tested in simulation: (1) homogeneous plate with fixed plate boundary (2) homogeneous plate with boundary forces (3) heterogeneous plate with fixed boundary (4) heterogeneous plate with boundary forces. The estimated orientation and magnitude of S Hmax with a heterogeneous plate with boundary forces in the Himalayan region and an eastern plate boundary comprising the Indo-Burmese arc and Andaman subduction zone are consistent with measured maximum horizontal stress. This study suggests that plate boundary force varies along the northern Indian plate margin and also provides a constraint on the intraplate stress field in the Indian subcontinent.
Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula.
Wearne, S; Raphan, T; Cohen, B
1998-05-01
Spatial orientation of the angular vestibuloocular reflex (aVOR) was studied in rhesus monkeys after complete and partial ablation of the nodulus and ventral uvula. Horizontal, vertical, and torsional components of slow phases of nystagmus were analyzed to determine the axes of eye rotation, the time constants (Tcs) of velocity storage, and its orientation vectors. The gravito-inertial acceleration vector (GIA) was tilted relative to the head during optokinetic afternystagmus (OKAN), centrifugation, and reorientation of the head during postrotatory nystagmus. When the GIA was tilted relative to the head in normal animals, horizontal Tcs decreased, vertical and/or roll time constants (Tc(vert/roll)) lengthened according to the orientation of the GIA, and vertical and/or roll eye velocity components appeared (cross-coupling). This shifted the axis of eye rotation toward alignment with the tilted GIA. Horizontal and vertical/roll Tcs varied inversely, with T(chor) being longest and T(cvert/roll) shortest when monkeys were upright, and the reverse when stimuli were around the vertical or roll axes. Vertical or roll Tcs were longest when the axes of eye rotation were aligned with the spatial vertical, respectively. After complete nodulo-uvulectomy, T(chor) became longer, and periodic alternating nystagmus (PAN) developed in darkness. T(chor) could not be shortened in any of paradigms tested. In addition, yaw-to-vertical/roll cross-coupling was lost, and the axes of eye rotation remained fixed during nystagmus, regardless of the tilt of the GIA with respect to the head. After central portions of the nodulus and uvula were ablated, leaving lateral portions of the nodulus intact, yaw-to-vertical/roll cross-coupling and control of Tc(vert/roll) was lost or greatly reduced. However, control of Tchor was maintained, and T(chor) continued to vary as a function of the tilted GIA. Despite this, the eye velocity vector remained aligned with the head during yaw axis stimulation after partial nodulo-uvulectomy, regardless of GIA orientation to the head. The data were related to a three-dimensional model of the aVOR, which simulated the experimental results. The model provides a basis for understanding how the nodulus and uvula control processing within the vestibular nuclei responsible for spatial orientation of the aVOR. We conclude that the three-dimensional dynamics of the velocity storage system are determined in the nodulus and ventral uvula. We propose that the horizontal and vertical/roll Tcs are separately controlled in the nodulus and uvula with the dynamic characteristics of vertical/roll components modulated in central portions and the horizontal components laterally, presumably in a semicircular canal-based coordinate frame.
Spatial interactions during bimanual coordination patterns: the effect of directional compatibility.
Bogaerts, H; Swinnen, S P
2001-04-01
Whereas previous bimanual coordination research has predominantly focused on the constraining role of timing, the present study addressed the role of spatial (i.e., directional) constraints during the simultaneous production of equilateral triangles with both upper limbs. In addition to coordination modes in which mirror-image and isodirectional movements were performed (compatible patterns), new modes were tested in which the left limb lagged with respect to the right by one triangle side (non-compatible patterns). This resulted in the experimental manipulation of directional compatibility between the limbs. In addition, triangles with either horizontal or vertical orientations were to be drawn in order to assess the role of static images on movement production. Results supported the important role of directional constraints in bimanual coordination. Furthermore, triangles in vertical orientations (with a vertical symmetry axis, i.e., one apex pointing up) were drawn more successfully than those in horizontal orientations (with a horizontal symmetry axis, i.e., one apex pointing left or right), suggesting that the static aspects of a geometric form may affect movement dynamics. Finally, evidence suggested that cognitive processes related to integration of the submovements into a unified plan mediate the performance of new coordination patterns. The implications of the present finding for clinical populations are discussed
Root architecture and wind-firmness of mature Pinus pinaster.
Danjon, Frédéric; Fourcaud, Thierry; Bert, Didier
2005-11-01
This study aims to link three-dimensional coarse root architecture to tree stability in mature timber trees with an average of 1-m rooting depth. Undamaged and uprooted trees were sampled in a stand damaged by a storm. Root architecture was measured by three-dimensional (3-D) digitizing. The distribution of root volume by root type and in wind-oriented sectors was analysed. Mature Pinus pinaster root systems were organized in a rigid 'cage' composed of a taproot, the zone of rapid taper of horizontal surface roots and numerous sinkers and deep roots, imprisoning a large mass of soil and guyed by long horizontal surface roots. Key compartments for stability exhibited strong selective leeward or windward reinforcement. Uprooted trees showed a lower cage volume, a larger proportion of oblique and intermediate depth horizontal roots and less wind-oriented root reinforcement. Pinus pinaster stability on moderately deep soils is optimized through a typical rooting pattern and a considerable structural adaptation to the prevailing wind and soil profile.
Evidence for helical kink instability in the Venus magnetic flux ropes
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Russell, C. T.
1983-01-01
Empirical models of the magnetic field structure of flux ropes found in the Venus ionosphere are seen as suggesting that the ropes are unstable to long-wavelength (more than 100 km) helical-kink perturbations. The onset of such an instability can explain the apparent volume distribution of flux ropes with altitude, as well as their orientation as a function of altitude. In the subsolar region, the fraction of volume occupied by flux ropes increases from approximately 20 percent at high altitudes to more than 50 percent at low altitudes; this is a greater increase than would be expected if ropes convect downward as simple straight horizontal cylinders. The helical kink instability raises the fractional volume occupied by ropes by turning the originally straight, horizontal flux tubes into corkscrew-shaped structures as they convect to lower altitudes. It is noted that this instability also explains why high altitude ropes tend to be horizontal and low altitude ropes appear to have almost any orientation.
NASA Astrophysics Data System (ADS)
Eckert, Andreas; Zhang, Weicheng
2016-02-01
The offshore Nile Delta displays sharply contrasting orientations of the maximum horizontal stress, SH, in regions above Messinian evaporites (suprasalt) and regions below Messinian evaporites (subsalt). Published stress orientation data predominantly show margin-normal suprasalt SH orientations but a margin-parallel subsalt SH orientation. While these data sets provide the first major evidence that evaporite sequences can act as mechanical detachment horizons, the cause for the stress orientation contrast remains unclear. In this study, 3D finite element analysis is used to investigate the causes for stress re-orientation based on two different hypotheses. The modeling study evaluates the influence of different likely salt geometries and whether stress reorientations are the result of basal drag forces induced by gravitational gliding or whether they represent localized variations due to mechanical property contrasts. The modeling results show that when salt is present as a continuous layer, gravitational gliding occurs and basal drag forces induced in the suprasalt layers result in the margin-normal principal stress becoming the maximum horizontal stress. With the margin-normal stress increase being confined to the suprasalt layers, the salt acts as a mechanical detachment horizon, resulting in different SH orientations in the suprasalt compared to the subsalt layers. When salt is present as isolated bodies localized stress variations occur due to the mechanical property contrasts imposed by the salt, also resulting in different SH orientations in the suprasalt compared to the subsalt layers. The modeling results provide additional quantitative evidence to confirm the role of evaporite sequences as mechanical detachment horizons.
Lin, Nan; Wei, Min
2014-01-01
After vestibular labyrinth injury, behavioral deficits partially recover through the process of vestibular compensation. The present study was performed to improve our understanding of the physiology of the macaque vestibular system in the compensated state (>7 wk) after unilateral labyrinthectomy (UL). Three groups of vestibular nucleus neurons were included: pre-UL control neurons, neurons ipsilateral to the lesion, and neurons contralateral to the lesion. The firing responses of neurons sensitive to linear acceleration in the horizontal plane were recorded during sinusoidal horizontal translation directed along six different orientations (30° apart) at 0.5 Hz and 0.2 g peak acceleration (196 cm/s2). This data defined the vector of best response for each neuron in the horizontal plane, along which sensitivity, symmetry, detection threshold, and variability of firing were determined. Additionally, the responses of the same cells to translation over a series of frequencies (0.25–5.0 Hz) either in the interaural or naso-occipital orientation were obtained to define the frequency response characteristics in each group. We found a decrease in sensitivity, increase in threshold, and alteration in orientation of best responses in the vestibular nuclei after UL. Additionally, the phase relationship of the best neural response to translational stimulation changed with UL. The symmetry of individual neuron responses in the excitatory and inhibitory directions was unchanged by UL. Bilateral central utricular neurons still demonstrated two-dimension tuning after UL, consistent with spatio-temporal convergence from a single vestibular end-organ. These neuronal data correlate with known behavioral deficits after unilateral vestibular compromise. PMID:24717349
Steerable vertical to horizontal energy transducer for mobile robots
Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.
2001-01-01
The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.
Graizer, Vladimir;; Kalkan, Erol
2016-01-01
We present a revised ground‐motion prediction equation (GMPE) for computing medians and standard deviations of peak ground acceleration (PGA) and 5% damped pseudospectral acceleration (PSA) response ordinates of the horizontal component of randomly oriented ground motions to be used for seismic‐hazard analyses and engineering applications. This GMPE is derived from the expanded Next Generation Attenuation (NGA)‐West 1 database (see Data and Resources; Chiou et al., 2008). The revised model includes an anelastic attenuation term as a function of quality factor (Q0) to capture regional differences in far‐source (beyond 150 km) attenuation, and a new frequency‐dependent sedimentary‐basin scaling term as a function of depth to the 1.5 km/s shear‐wave velocity isosurface to improve ground‐motion predictions at sites located on deep sedimentary basins. The new Graizer–Kalkan 2015 (GK15) model, developed to be simple, is applicable for the western United States and other similar shallow crustal continental regions in active tectonic environments for earthquakes with moment magnitudes (M) 5.0–8.0, distances 0–250 km, average shear‐wave velocities in the upper 30 m (VS30) 200–1300 m/s, and spectral periods (T) 0.01–5 s. Our aleatory variability model captures interevent (between‐event) variability, which decreases with magnitude and increases with distance. The mixed‐effect residuals analysis reveals that the GK15 has no trend with respect to the independent predictor parameters. Compared to our 2007–2009 GMPE, the PGA values are very similar, whereas spectral ordinates predicted are larger at T<0.2 s and they are smaller at longer periods.
Application of Effective Medium Theory to the Three-Dimensional Heterogeneity of Mantle Anisotropy
NASA Astrophysics Data System (ADS)
Song, X.; Jordan, T. H.
2015-12-01
A self-consistent theory for the effective elastic parameters of stochastic media with small-scale 3D heterogeneities has been developed using a 2nd-order Born approximation to the scattered wavefield (T. H. Jordan, GJI, in press). Here we apply the theory to assess how small-scale variations in the local anisotropy of the upper mantle affect seismic wave propagation. We formulate a anisotropic model in which the local elastic properties are specified by a constant stiffness tensor with hexagonal symmetry of arbitrary orientation. This orientation is guided by a Gaussian random vector field with transversely isotropic (TI) statistics. If the outer scale of the statistical variability is small compared to a wavelength, then the effective seismic velocities are TI and depend on two parameters, a horizontal-to-vertical orientation ratio ξ and a horizontal-to-vertical aspect ratio, η. If ξ = 1, the symmetry axis is isotropically distributed; if ξ < 1, it is vertical biased (bipolar distribution), and if ξ > 1, it is horizontally biased (girdle distribution). If η = 1, the heterogeneity is geometrically isotropic; as η à∞, the medium becomes a horizontal stochastic laminate; as η à0, the medium becomes a vertical stochastic bundle. Using stiffness tensors constrained by laboratory measurements of mantle xenoliths, we explore the dependence of the effective P and S velocities on ξ and η. The effective velocities are strongly controlled by the orientation ratio ξ; e.g., if the hexagonal symmetry axis of the local anisotropy is the fast direction of propagation, then vPH > vPV and vSH > vSV for ξ > 1. A more surprising result is the 2nd-order insensitivity of the velocities to the heterogeneity aspect ratio η. Consequently, the geometrical anisotropy of upper-mantle heterogeneity significantly enhances seismic-wave anisotropy only through local variations in the Voigt-averaged velocities, which depend primarily on rock composition and not deformation history.
Functional analyses of the primate upper cervical vertebral column.
Nalley, Thierra K; Grider-Potter, Neysa
2017-06-01
Recent work has highlighted functional correlations between direct measures of head and neck posture and primate cervical bony morphology. Primates with more horizontal necks exhibit middle and lower cervical vertebral features that indicate increased mechanical advantage for deep nuchal musculature and mechanisms for column curvature formation and maintenance. How features of the C1 and C2 reflect quantified measures of posture have yet to be examined. This study incorporates bony morphology from the upper cervical levels from 20 extant primate species in order to investigate further how posture correlates with cervical vertebrae morphology. Results from phylogenetic generalized least-squares analyses indicate that few vertebral features exhibit a significant relationship with posture when accounting for differences in size. When size-adjusted traits were correlated with posture, vertebral variation had a stronger relationship with neck posture than head posture variables. Two C1 traits-relative posterior arch length and superior facet curvature-were correlated with neck posture variables. Relative posterior arch length exhibits a positive relationship with neck posture, while superior articular facet curvature demonstrates a negative relationship, such that as the neck becomes more horizontal, the greater the facet curvature. Four C2 features were also correlated with neck posture: relative pedicle and lamina lengths, relative superior facet orientation, and dens orientation. Relative pedicle and lamina lengths become craniocaudally longer as the neck becomes more horizontal. Relative C2 superior facet orientation and dens orientation exhibit negative correlations with posture, such that as the neck becomes more horizontal, the superior facet becomes more caudally inclined and the dens more dorsally inclined. These results produce a similar functional signal observed in the middle and lower cervical spine. Modeling the cervical vertebrae of more pronograde taxa within a sigmoidal spinal column model is further discussed and may prove useful in refining and testing future hypotheses of primate cervical mechanics. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Baty, D. L.; Wempe, T. E.; Huff, E. M.
1973-01-01
Six airline pilots participated in a fixed-base simulator study to determine the effects of two Horizontal Situation Display (HSD/map) panel locations relative to the Vertical Situation Display (VSD), and of three map orientations on manual piloting performance. Pilot comments and opinions were formally obtained. Significant performance differences were found between wind conditions, and among pilots, but not between map locations and orientations. The results also illustrate the potential tracking accuracy of such a display. Recommendations concerning display location and map orientation are made.
Cultivating Insect Cells To Produce Recombinant Proteins
NASA Technical Reports Server (NTRS)
Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim
1996-01-01
Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).
The Effect of fluid buoyancy and fracture orientation on CaCO3 Formation in a Fracture
NASA Astrophysics Data System (ADS)
Xu, Z.; Li, Q.; Sheets, J.; Kneafsey, T. J.; Jun, Y. S.; Cole, D. R.; Pyrak-Nolte, L. J.
2016-12-01
Sealing fractures through mineral precipitation is a potential way for improving caprock integrity in subsurface reservoirs. We investigated the effect of buoyancy and fracture orientation on the amount and spatial distribution of calcium carbonate (CaCO3) precipitates in a fracture. To monitor mineral precipitation during reactive flow, transparent acrylic casts of an induced fracture in Austin chalk were used. To trigger CaCO3 precipitates, 1M CaCl2 with either 0.6M NaHCO3 solution (for surface adhering precipitation), or 0.3M Na2CO3 solution (for pore filling precipitation) were injected simultaneously into a saturated fracture. Experiments were performed with the fracture plane oriented either parallel or perpendicular to gravity. Acoustic wave transmission (compressional wave, 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. For the vertical fractures, the denser CaCl2 almost completely displaced the carbonate solution in the fracture and caused strong localization of the precipitates. The width of the precipitated region grew slowly over time. The horizontal fracture caused the less dense carbonate to flow over the CaCl2 solution thus resulting in more mixing and a more even distribution of precipitates throughout the fracture. The acoustic signatures depended on the type of precipitation that occurred. For pore filling experiments, the compressional wave amplitude increased by 5-20% and the velocity increased for both the vertical and horizontal fractures. However, the acoustic responses differed between the vertical and horizontal fractures for surface adhering experiments. Based on the acoustic response, surface adhering precipitation increased fracture specific stiffness more in the horizontal fracture than in the vertical fracture. The horizontal fracture enabled more mixing of the two solutions within the fracture than the vertical fracture. This work was supported by the Center for Nanoscale Controls on Geologic CO (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-05CH11231
NASA Astrophysics Data System (ADS)
Zakharova, N. V.; Goldberg, D.
2013-12-01
Induced seismicity has emerged as one of the primary concerns for large-volume underground injections, such as wastewater disposal and carbon sequestration. In order to mitigate potential seismic risks, detailed knowledge of reservoir geometry, occurrence of faults and fractures, and the distribution of in situ stresses is required to predict the effect of pore pressure increase on formation stability. We present a detailed analysis of in situ stress distribution at a potential carbon sequestration site in the northern Newark basin, and then consider fault and fracture stability under injection conditions taking into account the effects of localized stress perturbations, formation anisotropy and poroelasticity. The study utilizes borehole geophysical data obtained in a 2-km-deep well drilled into Triassic lacustrine sediments in Rockland County, NY. A complex pattern of local variations in the stress field with depth and at multiple scales is revealed by borehole breakouts, including: (i) gradual counter-clockwise rotation of horizontal stress orientation and decrease in relative magnitude with depth, (ii) pronounced rotations of the principal horizontal stresses at two depths, ~800 m and ~1200 m, and (iii) small-scale departures from mean orientation at the scale of meters to tens of meters. Localized stress drop near active faults may explain these observations. Seismic profiling in the vicinity of the borehole and along dip and strike of basin sediments suggests the presence of crosscutting, and potentially active, fault zones but their geometry cannot be accurately resolved. Borehole image data from the site indicates the presence of numerous fractures with increasing density over depth that roughly form two sets: high-angle fractures striking NE-SW and sub-horizontal fractures dipping NW. We perform iterative dislocation modeling for various fault orientations and slip distances to match the observed stress distribution in the borehole. Both intersecting and non-intersecting faults are modeled. Uncertainties introduced by unknown compressive rock strength and heterogeneous lithology are addressed using multivariate statistical analysis of the acquired log data, including elastic wave anisotropy. Our preliminary results suggest that shallow reservoirs (< 1 km depth) are critically stressed and are not viable candidates for underground injections; however, deeper reservoirs (> 1.2 km) may allow injection with up to 15 MPa pore pressure increase before the effective stress reaches the failure limit on critical faults.
Aerosol penetration through a model transport system: Comparison of theory and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarland, A.R.; Wong, F.S.; Anand, N.K.
1991-09-01
Numerical predictions were made of aerosol penetration through a model transport system. A physical model of the system was constructed and tested in an aerosol wind tunnel to obtain comparative data. The system was 26.6 mm in diameter and consisted of an inlet and three straight sections (oriented horizontally, vertically, and at 45{degree}). Particle sizes covered a range in which losses were primarily caused by inertial and gravitational effects (3-25 {mu}m aerodynamic equivalent diameter (AED)). Tests were conducted at two flow rates (70 and 130 l/min) and two inlet orientations (parallel and perpendicular to the free stream). Wind speed wasmore » 3 m/s for all test cases. The cut points for aerosol penetration through the experimental model vis-a-vis the numerical results are as follows: At a flow rate of 70 l/min with the inlet at 0{degree}, the experimentally observed cut point was 16.2 {mu}m AED while the numerically predicted value was 18.2 {mu}m AED while the numerically predicted value was 18.2 {mu}m AED. At 130 l/min and 0{degree}, the experimental cut point was 12.8 {mu}m AED as compared with a numerically value of 13.7 {mu}m AED. At 70l/min and a 90{degree}, the experimental cut point was 12.0 {mu}m AED while the numerically calculated value was 11.1 {mu}m AED. Slopes of the experimental penetration curves are somewhat steeper than the numerically predicted counterparts.« less
Power hand tool kinetics associated with upper limb injuries in an automobile assembly plant.
Ku, Chia-Hua; Radwin, Robert G; Karsh, Ben-Tzion
2007-06-01
This study investigated the relationship between pneumatic nutrunner handle reactions, workstation characteristics, and prevalence of upper limb injuries in an automobile assembly plant. Tool properties (geometry, inertial properties, and motor characteristics), fastener properties, orientation relative to the fastener, and the position of the tool operator (horizontal and vertical distances) were measured for 69 workstations using 15 different pneumatic nutrunners. Handle reaction response was predicted using a deterministic mechanical model of the human operator and tool that was previously developed in our laboratory, specific to the measured tool, workstation, and job factors. Handle force was a function of target torque, tool geometry and inertial properties, motor speed, work orientation, and joint hardness. The study found that tool target torque was not well correlated with predicted handle reaction force (r=0.495) or displacement (r=0.285). The individual tool, tool shape, and threaded fastener joint hardness all affected predicted forces and displacements (p<0.05). The average peak handle force and displacement for right-angle tools were twice as great as pistol grip tools. Soft-threaded fastener joints had the greatest average handle forces and displacements. Upper limb injury cases were identified using plant OSHA 200 log and personnel records. Predicted handle forces for jobs where injuries were reported were significantly greater than those jobs free of injuries (p<0.05), whereas target torque and predicted handle displacement did not show statistically significant differences. The study concluded that quantification of handle reaction force, rather than target torque alone, is necessary for identifying stressful power hand tool operations and for controlling exposure to forces in manufacturing jobs involving power nutrunners. Therefore, a combination of tool, work station, and task requirements should be considered.
Implicit Change Identification: A Replication of Fernandez-Duque and Thornton (2003)
ERIC Educational Resources Information Center
Laloyaux, Cedric; Destrebecqz, Arnaud; Cleeremans, Axel
2006-01-01
Using a simple change detection task involving vertical and horizontal stimuli, I. M. Thornton and D. Fernandez-Duque (2000) showed that the implicit detection of a change in the orientation of an item influences performance in a subsequent orientation judgment task. However, S. R. Mitroff, D. J. Simons, and S. L. Franconeri (2002) were not able…
Stress State of the Earth's Crust in Azerbaijan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agayeva, Solmaz T.
2006-03-23
The study of the crustal stress has a practical implication in hazard mitigation. Knowledge on stress-related ground motion may help to improve the stability of public and private buildings. The stress state of the crust in Azerbaijan is studied in this paper by means of focal mechanism analysis and using different methods to determine the principal stress orientations. Two types of stress states were revealed in the studied regions. The territory of Great and Lesser Caucasus and Talysh folded zone are characterized by near-horizontal compression. The territories of Caspian Sea and Kura depression are characterized by near-horizontal tension. For bothmore » types of stress state, the predominant stress axes are oriented perpendicular to the regional geological structures.« less
Cross-orientation suppression in human visual cortex
Heeger, David J.
2011-01-01
Cross-orientation suppression was measured in human primary visual cortex (V1) to test the normalization model. Subjects viewed vertical target gratings (of varying contrasts) with or without a superimposed horizontal mask grating (fixed contrast). We used functional magnetic resonance imaging (fMRI) to measure the activity in each of several hypothetical channels (corresponding to subpopulations of neurons) with different orientation tunings and fit these orientation-selective responses with the normalization model. For the V1 channel maximally tuned to the target orientation, responses increased with target contrast but were suppressed when the horizontal mask was added, evident as a shift in the contrast gain of this channel's responses. For the channel maximally tuned to the mask orientation, a constant baseline response was evoked for all target contrasts when the mask was absent; responses decreased with increasing target contrast when the mask was present. The normalization model provided a good fit to the contrast-response functions with and without the mask. In a control experiment, the target and mask presentations were temporally interleaved, and we found no shift in contrast gain, i.e., no evidence for suppression. We conclude that the normalization model can explain cross-orientation suppression in human visual cortex. The approach adopted here can be applied broadly to infer, simultaneously, the responses of several subpopulations of neurons in the human brain that span particular stimulus or feature spaces, and characterize their interactions. In addition, it allows us to investigate how stimuli are represented by the inferred activity of entire neural populations. PMID:21775720
Geometric Hitting Set for Segments of Few Orientations
Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S. B.; ...
2016-01-13
Here we study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the \\hitting points"). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. Lastly, we give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.
Contour symmetry detection: the influence of axis orientation and number of objects.
Friedenberg, J; Bertamini, M
2000-09-01
Participants discriminated symmetrical from random contours connected by straight lines to form part of one- or two-objects. In experiment one, symmetrical contours were translated or reflected and presented at vertical, horizontal, and oblique axis orientations with orientation constant within blocks. Translated two-object contours were detected more easily than one, replicating a "lock-and-key" effect obtained previously for vertical orientations only [M. Bertamini, J.D. Friedenberg, M. Kubovy, Acta Psychologica, 95 (1997) 119-140]. A second experiment extended these results to a wider variety of axis orientations under mixed block conditions. The pattern of performance for translation and reflection at different orientations corresponded in both experiments, suggesting that orientation is processed similarly in the detection of these symmetries.
Backscattering of decametric waves on magnetically oriented ionosphere inhomogeneities
NASA Astrophysics Data System (ADS)
Sivokon', V. P.
2017-05-01
The method of study of magnetically oriented ionosphere inhomogeneities based on the analysis of radar decametric emission backscattering on inhomogeneities is proposed. It is shown that certain conditions, including the orientation of the propagation route relative to the Earth's magnetic field lines and the polarization and frequency of the emitted wave, make possible resonant backscattering of radiolocation system emission on magnetically oriented ionosphere inhomogeneities. The paper presents the results of experimental observation of scattering in Kamchatka Peninsula. They demonstrated the opportunity to evaluate the extension of the scattering region, the vertical and horizontal components of the velocities of magnetically oriented inhomogeneities, and the frequency dependence of these parameters.
Ashley, E.L.; Ashley, J.W.; Bowker, H.W.; Hall, R.H.; Kendall, J.W.
1959-02-01
A moderator structure is described for a nuclear reactor of the heterogensous type wherein a large mass of moderator is provided with channels therethrough for the introduction of uranium serving as nuclear fuel and for the passage of a cooling fluid. The structure is comprised of blocks of moderator material in superposed horizontal layers, the blocks of each layer being tied together with spaces between them and oriented to have horizontal Wigner growth. The ties are strips of moderator material, the same as the blocks, with transverse Wigner growth, disposed horizontally along lines crossing at vertical axes of the blocks. The blocks are preferably rectangular with a larger or length dimension transverse to the directions of Wiguer growth and are stood on end to provide for horizontal growth.
Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis
NASA Astrophysics Data System (ADS)
Mullen, J.; Hangarter, R.
Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was supported by the National Aeronautics and Space Administration through grant no. NCC 2-1200.
Neal, Paul R; Anderson, Gregory J
2004-05-01
Fabrics used in pollination bags may exclude pollen carried by biotic vectors, but have varying degrees of permeability to wind-borne pollen. The permeability of bags to wind-borne pollen may have important consequences in studies of pollination and reproductive biology. The permeability of four fabrics commonly used in the construction of pollination bags was examined. Deposition of wind-borne pollen on horizontally and vertically oriented microscope slides was assessed on slides enclosed in pollination bags, as well as on control slides. It was found that the permeability of fabrics to wind-borne pollen, as measured by deposition on both horizontally and vertically oriented slides, decreased with pore size. However, deposition on horizontal slides was always greater than on vertical slides for a given fabric; this could manifest itself as differential success of pollination of flowers in bags-dependent on flower orientation. Obviously, bags with mesh size smaller than most pollen grains are impermeable to pollen. However, material for such bags is very expensive. In addition, it was also observed that bags with even moderately small pore size, such as pores (approx. 200 microm) in twisted fibre cotton muslin, offered highly significant barriers to passage of wind-borne pollen. Such bags are sufficiently effective in most large-sample-size reproductive biology studies.
Hickman, Stephen H.; Healy, John H.; Zoback, Mark D.
1985-01-01
Hydraulic fracturing stress measurements and a borehole televiewer survey were conducted in a 1.6‐km‐deep well at Auburn, New York. This well, which was drilled at the outer margin of the Appalachian Fold and Thrust Belt in the Appalachian Plateau, penetrates approximately 1540 m of lower Paleozoic sedimentary rocks and terminates 60 m into the Precambrian marble basement. Analysis of the hydraulic fracturing tests indicates that the minimum horizontal principal stress increases in a nearly linear fashion from 9.9±0.2 MPa at 593 m to 30.6±0.4 MPa at 1482 m. The magnitude of the maximum horizontal principal stress increases in a less regular fashion from 13.8±1.2 MPa to 49.0±2.0 MPa over the same depth range. The magnitudes of the horizontal principal stresses relative to the calculated overburden stress are somewhat lower than is the norm for this region and are indicative of a strike‐slip faulting regime that, at some depths, is transitional to normal faulting. As expected from the relative aseismicity of central New York State, however, analysis of the magnitudes of the horizontal principal stresses indicates, at least to a depth of 1.5 km, that frictional failure on favorably oriented preexisting fault planes is unlikely. Orientations of the hydraulic fractures at 593 and 919 m indicate that the azimuth of the maximum horizontal principal stress at Auburn is N83°E±15°, in agreement with other stress field indicators for this region. The borehole televiewer log revealed a considerable number of planar features in the Auburn well, the great majority of which are subhorizontal (dips < 5°) and are thought to be bedding plane washouts or drill bit scour marks. In addition, a smaller number of distinct natural fractures were observed on the borehole televiewer log. Of these, the distinct steeply dipping natural fractures in the lower half of the sedimentary section at Auburn tend to strike approximately east‐west, while those in the upper part of the well and in the Precambrian basement exhibit no strong preferred orientation. The origin of this east‐west striking fracture set is uncertain, as it is parallel both to the contemporary direction of maximum horizontal compression and to a late Paleozoic fracture set that has been mapped to the south of Auburn. In addition to these planar features the borehole televiewer log indicates paired dark bands on diametrically opposite sides of the borehole throughout the Auburn well. Processing of the borehole televiewer data in the time domain revealed these features to be irregular depressions in the borehole wall. As these depressions were consistently oriented in a direction at right angles to the direction of maximum horizontal compression, we interpret them to be the result of stress‐induced spalling of the borehole wall (breakouts).
NASA Astrophysics Data System (ADS)
Weinmann, M.; Müller, M. S.; Hillemann, M.; Reydel, N.; Hinz, S.; Jutzi, B.
2017-08-01
In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.
NASA Astrophysics Data System (ADS)
Matthews, Scott T.
1991-12-01
The natural convection heat transfer characteristics of a 3 x 3 array of vertically oriented heated protrusions, immersed in a dielectric liquid, were investigated. Aluminum blocks, 24 x 8 x 6 mm, were used to simulate 20 pin dual in-line packages. Surface temperature measurements of the components were made by imbedding copper-constantan thermocouples below the surface of each component face. A constant heat flux was provided to each component using an Inconel foil heating element. Power supplied to each component varied from 0.115 to 2.90 W. The aluminum blocks were mounted on a plexiglass substrate to form a 3 x 3 array of simulated electronic components. The circuit board containing the components was placed in a rectangular, plexiglass enclosure with inner dimensions: L = 203.2 mm H = 152.0 mm W = 82.6 mm, and a wall thickness of 25.4 mm. The upper boundary was maintained at 10 C, while all other exterior surfaces were insulated. The chamber width, measured from the surface of the circuit board to the opposite, inner wall of the enclosure, was varied from 42 to 7 mm by inserting plexiglass spacers into the enclosure. Two dielectric liquids, FC-75 and FC-43, were used as working fluids. Nondimensional data from this study was combined with the data obtained for a horizontal component orientation, to develop an empirical correlation which predicts the Nusselt number as a function of Rayleigh number, Prandtl number, component orientation, and chamber width.
Assessment of the perception of verticality and horizontality with self-paced saccades.
Pettorossi, V E; Bambagioni, D; Bronstein, A M; Gresty, M A
1998-07-01
We investigated the ability of human subjects (Ss) to make self-paced saccades in the earth-vertical and horizontal directions (space-referenced task) and in the direction of the head-vertical and horizontal axis (self-referenced task) during whole body tilts of 0 degrees, 22.5 degrees, 45 degrees and 90 degrees in the frontal (roll) plane. Saccades were recorded in the dark with computerised video-oculography. During space-referenced tasks, the saccade vectors did not fully counter-rotate to compensate for larger angles of body tilt. This finding is in agreement with the 'A' effect reported for the visual vertical. The error was significantly larger for saccades intended to be space-horizontal than space-vertical. This vertico-horizontal dissociation implies greater difficulty in defining horizontality than verticality with the non-visual motor task employed. In contrast, normal Ss (and an alabyrinthine subject tested) were accurate in orienting saccades to their own (cranio-centric) vertical and horizontal axes regardless of tilt indicating that cranio-centric perception is robust and apparently not affected by gravitational influences.
Oksenberg, Eitan; Popovitz-Biro, Ronit; Rechav, Katya; Joselevich, Ernesto
2015-07-15
Perfectly aligned horizontal ZnSe nano-wires are obtained by guided growth, and easily integrated into high-performance blue-UV photodetectors. Their crystal phase and crystallographic orientation are controlled by the epitaxial relations with six different sapphire planes. Guided growth paves the way for the large-scale integration of nanowires into optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Horizontal and Vertical Cultural Differences in the Content of Advertising Appeals
Shavitt, Sharon; Johnson, Timothy P.; Zhang, Jing
2014-01-01
The distinction between vertical (emphasizing hierarchy) and horizontal (valuing equality) cultures yields novel predictions regarding the prevalence of advertising appeals. A content analysis of 1211 magazine advertisements in five countries (Denmark, Korea, Poland, Russia, U.S.) revealed differences in ad content that underscore the value of this distinction. Patterns in the degree to which ads emphasized status benefits and uniqueness benefits corresponded to the countries' vertical/horizontal cultural classification. These and other patterns of ad benefits are analyzed and the predictions afforded by the vertical/horizontal distinction versus the broader individualism-collectivism distinction are compared and tested. PMID:25554720
Horizontal and Vertical Cultural Differences in the Content of Advertising Appeals.
Shavitt, Sharon; Johnson, Timothy P; Zhang, Jing
2011-05-01
The distinction between vertical (emphasizing hierarchy) and horizontal (valuing equality) cultures yields novel predictions regarding the prevalence of advertising appeals. A content analysis of 1211 magazine advertisements in five countries (Denmark, Korea, Poland, Russia, U.S.) revealed differences in ad content that underscore the value of this distinction. Patterns in the degree to which ads emphasized status benefits and uniqueness benefits corresponded to the countries' vertical/horizontal cultural classification. These and other patterns of ad benefits are analyzed and the predictions afforded by the vertical/horizontal distinction versus the broader individualism-collectivism distinction are compared and tested.
The effect of hand position on perceived finger orientation in left- and right-handers.
Fraser, Lindsey E; Harris, Laurence R
2017-12-01
In the absence of visual feedback, the perceived orientation of the fingers is systematically biased. In right-handers these biases are asymmetrical between the left and right hands in the horizontal plane and may reflect common functional postures for the two hands. Here we compared finger orientation perception in right- and left-handed participants for both hands, across various hand positions in the horizontal plane. Participants rotated a white line on a screen optically superimposed over their hand to indicate the perceived position of the finger that was rotated to one of seven orientations with the hand either aligned with the body midline, aligned with the shoulder, or displaced by twice the shoulder-to-midline distance from the midline. We replicated the asymmetric pattern of biases previously reported in right-handed participants (left hand biased towards an orientation ~30° inward, right hand ~10° inward). However, no such asymmetry was found for left-handers, suggesting left-handers may use different strategies when mapping proprioception to body or space coordinates and/or have less specialization of function between the hands. Both groups' responses rotated further outward as distance of the hand from the body midline increased, consistent with other research showing spatial orientation estimates diverge outward in the periphery. Finally, for right-handers, precision of responses was best when the hand was aligned with the shoulder compared to the other two conditions. These results highlight the unique role of hand dominance and hand position in perception of finger orientation, and provide insight into the proprioceptive position sense of the upper limbs.
NASA Astrophysics Data System (ADS)
Chen, C.; Gong, W.; Hu, Y.; Chen, Y.; Ding, Y.
2017-05-01
The automated building detection in aerial images is a fundamental problem encountered in aerial and satellite images analysis. Recently, thanks to the advances in feature descriptions, Region-based CNN model (R-CNN) for object detection is receiving an increasing attention. Despite the excellent performance in object detection, it is problematic to directly leverage the features of R-CNN model for building detection in single aerial image. As we know, the single aerial image is in vertical view and the buildings possess significant directional feature. However, in R-CNN model, direction of the building is ignored and the detection results are represented by horizontal rectangles. For this reason, the detection results with horizontal rectangle cannot describe the building precisely. To address this problem, in this paper, we proposed a novel model with a key feature related to orientation, namely, Oriented R-CNN (OR-CNN). Our contributions are mainly in the following two aspects: 1) Introducing a new oriented layer network for detecting the rotation angle of building on the basis of the successful VGG-net R-CNN model; 2) the oriented rectangle is proposed to leverage the powerful R-CNN for remote-sensing building detection. In experiments, we establish a complete and bran-new data set for training our oriented R-CNN model and comprehensively evaluate the proposed method on a publicly available building detection data set. We demonstrate State-of-the-art results compared with the previous baseline methods.
NASA Technical Reports Server (NTRS)
Richardson, R. M.; Solomon, S. C.; Sleep, N. H.
1979-01-01
In the present paper, the basic set of global intraplate stress orientation data is plotted and tabulated. Although the global intraplate stress field is complicated, several large-scale patterns can be seen. Much of stable North America is characterized by an E-W to NE-SW trend for the maximum compressive stress. South American lithosphere beneath the Andes, and perhaps farther east in the stable interior, has horizontal compressive stresses trending E-W to NW-SE. Western Europe north of the Alps is characterized by a NW-SE trending maximum horizontal compression, while Asia has the maximum horizontal compressive stress trending more nearly N-S, especially near the Himalayan front.
Determining the orientation of depth-rotated familiar objects.
Niimi, Ryosuke; Yokosawa, Kazuhiko
2008-02-01
How does the human visual system determine the depth-orientation of familiar objects? We examined reaction times and errors in the detection of 15 degrees differences in the depth orientations of two simultaneously presented familiar objects, which were the same objects (Experiment 1) or different objects (Experiment 2). Detection of orientation differences was best for 0 degrees (front) and 180 degrees (back), while 45 degrees and 135 degrees yielded poorer results, and 90 degrees (side) showed intermediate results, suggesting that the visual system is tuned for front, side and back orientations. We further found that those advantages are due to orientation-specific features such as horizontal linear contours and symmetry, since the 90 degrees advantage was absent for objects with curvilinear contours, and asymmetric object diminished the 0 degrees and 180 degrees advantages. We conclude that the efficiency of visually determining object orientation is highly orientation-dependent, and object orientation may be perceived in favor of front-back axes.
Foster, D H; Westland, S
1998-01-01
Visual search for an edge or line element differing in orientation from a background of other edge or line elements can be performed rapidly and effortlessly. In this study, based on psychophysical measurements with ten human observers, threshold values of the angle between a target and background line elements were obtained as functions of background-element orientation, in brief masked displays. A repeated-loess analysis of the threshold functions suggested the existence of several groups of orientation-selective mechanisms contributing to rapid orientated-line detection; specifically, coarse, intermediate and fine mechanisms with preferred orientations spaced at angles of approximately 90 degrees, 35 degrees, and 10 degrees-25 degrees, respectively. The preferred orientations of coarse and some intermediate mechanisms coincided with the vertical or horizontal of the frontoparallel plane, but the preferred orientations of fine mechanisms varied randomly from observer to observer, possibly reflecting individual variations in neuronal sampling characteristics. PMID:9753784
The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xuejun; College of Biology and Chemical Engineering, Panzhihua University, Panzhihua 617000; Ye, Shichao
2008-05-15
A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model ismore » able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)« less
Ozer, Simon
2015-12-01
The number of international students engaging in intercultural education and thereby adjusting to cross-cultural transition has risen conspicuously as a consequence of globalization and increased mobility. This process of acculturation has been associated with increased creativity as well as adaptation challenges. This paper investigates international students' psychological and sociocultural adjustment to studying at Aarhus University in Denmark. Both international students (n = 129) and domestic students (n = 111) participated in the study. The international students did not report impaired psychological conditions as compared to the control group of domestic students. However, the international students reported a significantly lower level of social support. Social support and perceived discrimination were significant predictors of both psychological and sociocultural adjustment. Additionally, the level of English proficiency alone predicted sociocultural adjustment. Values of vertical individualism and horizontal collectivism predicted psychological adjustment. Finally, integration was found to be a significantly more adaptive acculturation orientation than separation in regard to sociocultural adjustment. These findings were discussed in relation to relevant international research and it was concluded that international students comprise a resourceful student sample and that the international academic environment at Aarhus University appears to be an adequately cultural and value-oriented good fit as a context of reception for the multicultural engagement of international students. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Zhou, Hongxuan; Hu, Dan; Wang, Xiaolin; Han, Fengsen; Li, Yuanzheng; Wu, Xiaogang; Ma, Shengli
2016-01-01
The temperature of the surface soil layer around different orientation walls was investigated horizontally along several construction-soil micro-gradients in Beijing, China. On a diurnal scale, similar fluctuating trends in T0 and T50 (temperature of surface soil layer, 0 and 0.5 m from the building baseline) adjacent to the external walls of buildings with the same orientation usually appeared under similar micrometeorological conditions. The difference between T0 and T50 (ΔT0–50) can be considered an indicator of the intensity of the horizontal heat effects: higher ΔT0–50 values correspond to greater intensities. The values of ΔT0–50 for south-, north-, east- and west-facing sides of buildings were highest on sunny days in summer and exhibited values of 6.61 K, 1.64 K, 5.93 K and 2.76 K, respectively. The scope of horizontal heat impacts (Sh) changed on a diurnal scale between zero and the maximum, which fluctuated with the micrometeorological conditions. The maximum values of Sh were 0.30, 0.15, 0.20 and 0.20 m for south-, north-, east-, and west-facing walls. The ΔT0–50 was related to solar radiation, horizontal heat flux, relative humidity, wind speed, soil moisture differences and air temperature; the relative importance of these factors was 36.22%, 31.80%, 19.19%, 2.67%, 3.68% and 6.44%, respectively. PMID:26728627
National Centers for Environmental Prediction
resolution at T574 becomes ~ 23 km T382 Spectral truncation equivalent to horizontal resolution ~37 km T254 Spectral truncation equivalent to horizontal resolution ~50-55 km T190 Spectral truncation equivalent to horizontal resolution ~70 km T126 Spectral truncation equivalent to horizontal resolution ~100 km UM Unified
A horizontal inflatable habitat for SEI
NASA Astrophysics Data System (ADS)
Kennedy, Kriss J.
The inflatable habitat described in this paper is a horizontally-oriented cylindrical pneumatic structure. It is part of NASA's ongoing effort to study inflatables as alternative habitats for the Space Exploration Initiative. This inflatable habitat provides a living and working environment for a crew of 12. It is an 8-m diameter by 45.34-m cylinder containing 2145 cu m of volume. Two levels of living and working areas make up the 547 sq m of floor space.
Savage, W.Z.; Morin, R.H.
2002-01-01
We have applied a previously developed analytical stress model to interpret subsurface stress conditions inferred from acoustic televiewer logs obtained in two municipal water wells located in a valley in the southern Davis Mountains near Alpine, Texas. The appearance of stress-induced breakouts with orientations that shift by 90?? at two different depths in one of the wells is explained by results from exact solutions for the effects of valleys on gravity and tectonically induced subsurface stresses. The theoretical results demonstrate that above a reference depth termed the hinge point, a location that is dependent on Poisson's ratio, valley shape, and magnitude of the maximum horizontal tectonic stress normal to the long axis of the valley, horizontal stresses parallel to the valley axis are greater than those normal to it. At depths below this hinge point the situation reverses and horizontal stresses normal to the valley axis are greater than those parallel to it. Application of the theoretical model at Alpine is accommodated by the fact that nearby earthquake focal mechanisms establish an extensional stress regime with the regional maximum horizontal principal stress aligned perpendicular to the valley axis. We conclude that the localized stress field associated with a valley setting can be highly variable and that breakouts need to be examined in this context when estimating the orientations and magnitudes of regional principal stresses.
Measuring the light scattering and orientation of a spheroidal particle using in-line holography.
Seo, Kyung Won; Byeon, Hyeok Jun; Lee, Sang Joon
2014-07-01
The light scattering properties of a horizontally and vertically oriented spheroidal particle under laser illumination are experimentally investigated using digital in-line holography. The reconstructed wave field shows the bright singular points as a result of the condensed beam formed by a transparent spheroidal particle acting as a lens. The in-plane (θ) and out-of-plane (ϕ) rotating angles of an arbitrarily oriented spheroidal particle are measured by using these scattering properties. As a feasibility test, the 3D orientation of a transparent spheroidal particle suspended in a microscale pipe flow is successfully reconstructed by adapting the proposed method.
Preparation of Horizontal Slices of Adult Mouse Retina for Electrophysiological Studies.
Feigenspan, Andreas; Babai, Norbert Zsolt
2017-01-27
Vertical slice preparations are well established to study circuitry and signal transmission in the adult mammalian retina. The plane of sectioning in these preparations is perpendicular to the retinal surface, making it ideal for the study of radially oriented neurons like photoreceptors and bipolar cells. However, the large dendritic arbors of horizontal cells, wide-field amacrine cells, and ganglion cells are mostly truncated, leaving markedly reduced synaptic activity in these cells. Whereas ganglion cells and displaced amacrine cells can be studied in a whole-mounted preparation of the retina, horizontal cells and amacrine cells located in the inner nuclear layer are only poorly accessible for electrodes in whole retina tissue. To achieve maximum accessibility and synaptic integrity, we developed a horizontal slice preparation of the mouse retina, and studied signal transmission at the synapse between photoreceptors and horizontal cells. Horizontal sectioning allows (1) easy and unambiguous visual identification of horizontal cell bodies for electrode targeting, and (2) preservation of the extended horizontal cell dendritic fields, as a prerequisite for intact and functional cone synaptic input to horizontal cell dendrites. Horizontal cells from horizontal slices exhibited tonic synaptic activity in the dark, and they responded to brief flashes of light with a reduction of inward current and diminished synaptic activity. Immunocytochemical evidence indicates that almost all cones within the dendritic field of a horizontal cell establish synapses with its peripheral dendrites. The horizontal slice preparation is therefore well suited to study the physiological properties of horizontally extended retinal neurons as well as sensory signal transmission and integration across selected synapses.
Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport
Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.
2013-01-01
The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.
Shin, Hyun; Lee, Sunghun; Kim, Kwon-Hyeon; Moon, Chang-Ki; Yoo, Seung-Jun; Lee, Jeong-Hwan; Kim, Jang-Joo
2014-07-16
A high-efficiency blue-emitting organic light-emitting diode (OLED) approaching theoretical efficiency using an exciplex-forming co-host composed of N,N'-dicarbazolyl-3,5-benzene (mCP) and bis-4,6-(3,5-di-3-pyridylphenyl)- 2-methylpyrimidine (B3PYMPM) is fabricated. Iridium(III)bis[(4,6-difluorophenyl)- pyridinato-N,C2']picolinate (FIrpic) is used as the emitter, which turns out to have a preferred horizontal dipole orientation in the emitting layer. The OLED shows a maximum external quantum efficiency of 29.5% (a maximum current efficiency of 62.2 cd A(-1) ), which is in perfect agreement with the theoretical prediction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Desmarais, Jacques K.; Smith, Richard S.
2016-03-01
A novel automatic data interpretation algorithm is presented for modelling airborne electromagnetic (AEM) data acquired over resistive environments, using a single-component (vertical) transmitter, where the position and orientation of a dipole conductor is allowed to vary in three dimensions. The algorithm assumes that the magnetic fields produced from compact vortex currents are expressed as a linear combinations of the fields arising from dipoles in the subsurface oriented parallel to the [1, 0, 0], [0, 1, 0], and [0, 0, 1], unit vectors. In this manner, AEM responses can be represented as 12 terms. The relative size of each term in the decomposition can be used to determine geometrical information about the orientation of the subsurface conductivity structure. The geometrical parameters of the dipole (location, depth, dip, strike) are estimated using a combination of a look-up table and a matrix inverted in a least-squares sense. Tests on 703 synthetic models show that the algorithm is capable of extracting most of the correct geometrical parameters of a dipole conductor when three-component receiver data is included in the interpretation procedure. The algorithm is unstable when the target is perfectly horizontal, as the strike is undefined. Ambiguities may occur in predicting the orientation of the dipole conductor if y-component data is excluded from the analysis. Application of our approach to an anomaly on line 15 of the Reid Mahaffy test site yields geometrical parameters in reasonable agreement with previous authors. However, our algorithm provides additional information on the strike and offset from the traverse line of the conductor. Disparities in the values of predicted dip and depth are within the range of numerical precision. The index of fit was better when strike and offset were included in the interpretation procedure. Tests on the data from line 15701 of the Chibougamau MEGATEM survey shows that the algorithm is applicable to situations where three-component AEM data is available.
Li, Xin; Gao, Deli; Chen, Xuyue
2017-06-08
Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min ≤ Q r ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min < Q max < Q r (Case II), L h is exclusively controlled by L h1 ; while L h is only determined by L h2 when Q r < Q min < Q max (Case III). Furthermore, L h1 first increases and then decreases with the increase in drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.
47 CFR 27.1235 - Post-transition notification.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) The horizontal and vertical pattern of the antenna; (4) EIRP of the main lobe; (5) Orientation; (6) Height of antenna center of radiation; (7) Transmitter output power; (8) All line and combiner losses. (c...
47 CFR 27.1235 - Post-transition notification.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) The horizontal and vertical pattern of the antenna; (4) EIRP of the main lobe; (5) Orientation; (6) Height of antenna center of radiation; (7) Transmitter output power; (8) All line and combiner losses. (c...
47 CFR 27.1235 - Post-transition notification.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) The horizontal and vertical pattern of the antenna; (4) EIRP of the main lobe; (5) Orientation; (6) Height of antenna center of radiation; (7) Transmitter output power; (8) All line and combiner losses. (c...
47 CFR 27.1235 - Post-transition notification.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) The horizontal and vertical pattern of the antenna; (4) EIRP of the main lobe; (5) Orientation; (6) Height of antenna center of radiation; (7) Transmitter output power; (8) All line and combiner losses. (c...
Photovoltaic module and module arrays
Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt
2013-08-27
A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.
Photovoltaic module and module arrays
Botkin, Jonathan [El Cerrito, CA; Graves, Simon [Berkeley, CA; Lenox, Carl J. S. [Oakland, CA; Culligan, Matthew [Berkeley, CA; Danning, Matt [Oakland, CA
2012-07-17
A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.
NASA Technical Reports Server (NTRS)
Moore, R.
1986-01-01
In order to determine what structural changes in graviperceptive cells are associated with onset of root gravicurvature, the redistribution of organelles in columella cells of horizontally-oriented, graviresponding roots of Zea mays has been quantified. Root gravicurvature began by 15 min after reorientation, and did not involve significant changes in the (i) volume of individual columella cells or amyloplasts, (ii) relative volume of any cellular organelle, (iii) number of amyloplasts per columella cell, or (iv) surface area of cellular location of endoplasmic reticulum. Sedimentation of amyloplasts began within 1 to 2 min after reorientation, and was characterized by an intensely staining area of cytoplasm adjacent to the sedimenting amyloplasts. By 5 min after reorientation, amyloplasts were located in the lower distal corner of columella cells, and, by 15 min after reorientation, overlaid the entire length of the lower cell wall. No consistent contact between amyloplasts and any cellular structure was detected at any stage of gravicurvature. Centrally-located nuclei initially migrated upward in columella cells of horizontally-oriented roots, after which they moved to the proximal ends of the cells by 15 min after reorientation. No significant pattern of redistribution of vacuoles, mitochondria, dictyosomes, or hyaloplasm was detected that correlated with the onset of gravicurvature. These results indicate that amyloplasts and nuclei are the only organelles whose movements correlate positively with the onset of gravicurvature by primary roots of this cultivar of Zea mays.
NEAL, PAUL R.; ANDERSON, GREGORY J.
2004-01-01
• Background and Aims Fabrics used in pollination bags may exclude pollen carried by biotic vectors, but have varying degrees of permeability to wind‐borne pollen. The permeability of bags to wind‐borne pollen may have important consequences in studies of pollination and reproductive biology. The permeability of four fabrics commonly used in the construction of pollination bags was examined. • Methods Deposition of wind‐borne pollen on horizontally and vertically oriented microscope slides was assessed on slides enclosed in pollination bags, as well as on control slides. • Key Results It was found that the permeability of fabrics to wind‐borne pollen, as measured by deposition on both horizontally and vertically oriented slides, decreased with pore size. However, deposition on horizontal slides was always greater than on vertical slides for a given fabric; this could manifest itself as differential success of pollination of flowers in bags—dependent on flower orientation. • Conclusions Obviously, bags with mesh size smaller than most pollen grains are impermeable to pollen. However, material for such bags is very expensive. In addition, it was also observed that bags with even moderately small pore size, such as pores (approx. 200 µm) in twisted fibre cotton muslin, offered highly significant barriers to passage of wind‐borne pollen. Such bags are sufficiently effective in most large‐sample‐size reproductive biology studies. PMID:15037446
Defense Standardization Program Journal, January/March 2013
2013-03-01
image plane , representing half the distance across the iris along the horizontal Pupil-to-iris ratio Degree to which the pupil is dilated or constricted... the Poincare indices, ori- entation zone coherences, entropy of local orientations, and core orien- tation field masks Number of deltas Detected deltas...based on the combination of the Poincare indices, ori- entation zone coherences, entropy of local orientations, and delta ori- entation field masks
Unconscious analyses of visual scenes based on feature conjunctions.
Tachibana, Ryosuke; Noguchi, Yasuki
2015-06-01
To efficiently process a cluttered scene, the visual system analyzes statistical properties or regularities of visual elements embedded in the scene. It is controversial, however, whether those scene analyses could also work for stimuli unconsciously perceived. Here we show that our brain performs the unconscious scene analyses not only using a single featural cue (e.g., orientation) but also based on conjunctions of multiple visual features (e.g., combinations of color and orientation information). Subjects foveally viewed a stimulus array (duration: 50 ms) where 4 types of bars (red-horizontal, red-vertical, green-horizontal, and green-vertical) were intermixed. Although a conscious perception of those bars was inhibited by a subsequent mask stimulus, the brain correctly analyzed the information about color, orientation, and color-orientation conjunctions of those invisible bars. The information of those features was then used for the unconscious configuration analysis (statistical processing) of the central bars, which induced a perceptual bias and illusory feature binding in visible stimuli at peripheral locations. While statistical analyses and feature binding are normally 2 key functions of the visual system to construct coherent percepts of visual scenes, our results show that a high-level analysis combining those 2 functions is correctly performed by unconscious computations in the brain. (c) 2015 APA, all rights reserved).
An absolute method for determination of misalignment of an immersion ultrasonic transducer.
Narayanan, M M; Singh, Narender; Kumar, Anish; Babu Rao, C; Jayakumar, T
2014-12-01
An absolute methodology has been developed for quantification of misalignment of an ultrasonic transducer using a corner-cube retroreflector. The amplitude based and the time of flight (TOF) based C-scans of the reflector are obtained for various misalignments of the transducer. At zero degree orientation of the transducer, the vertical positions of the maximum amplitude and the minimum TOF in the C-scan coincide. At any other orientation of the transducer with the horizontal plane, there is a vertical shift in the position of the maximum amplitude with respect to the minimum TOF. The position of the minimum (TOF) remains the same irrespective of the orientation of the transducer and hence is used as a reference for any misalignment of the transducer. With the measurement of the vertical shift and the horizontal distance between the transducer and the vertex of the reflector, the misalignment of the transducer is quantified. Based on the methodology developed in the present study, retroreflectors are placed in the Indian 500MWe Prototype Fast Breeder Reactor for assessment of the orientation of the ultrasonic transducer prior to the under-sodium ultrasonic scanning for detection of any protrusion of the subassemblies. Copyright © 2014 Elsevier B.V. All rights reserved.
Simulating the Oceanic Migration of Silver Japanese Eels
Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie
2016-01-01
The oceanic migration of silver Japanese eels starts from their continental growth habitats in East Asia and ends at the spawning area near the West Mariana Ridge seamount chain. However, the actual migration routes remain unknown. In this study, we examined the possible oceanic migration routes and strategies of silver Japanese eels using a particle tracking method in which virtual eels (v-eels) were programmed to move vertically and horizontally in an ocean circulation model (Japan Coastal Ocean Predictability Experiment 2, JCOPE2). Four horizontal swimming strategies were tested: random heading, true navigation (readjusted heading), orientation toward the spawning area (fixed heading), and swimming against the Kuroshio. We found that all strategies, except random swimming, allowed v-eels swimming at 0.65 m s−1 to reach the spawning area within eight months after their departure from the south coast of Japan (end of the spawning season). The estimated minimum swimming speed required to reach the area spawning within eight months was 0.1 m s−1 for true navigation, 0.12 m s−1 for constant compass heading, and 0.35 m s−1 for swimming against the Kuroshio. The lowest swimming speed estimated from tracked Japanese eels at sea was 0.03 m.s−1, which would not allow them to reach the spawning area within eight months, through any of the tested orientation strategies. Our numerical experiments also showed that ocean circulation significantly affected the migration of Japanese v-eels. A strong Kuroshio could advect v-eels further eastward. In addition, western Pacific ocean currents accelerated the migration of navigating v-eels. The migration duration was shortened in years with a stronger southward flow, contributed by a stronger recirculation south of Japan, an enhanced subtropical gyre, or a higher southward Kuroshio velocity. PMID:26982484
Simulating the Oceanic Migration of Silver Japanese Eels.
Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie
2016-01-01
The oceanic migration of silver Japanese eels starts from their continental growth habitats in East Asia and ends at the spawning area near the West Mariana Ridge seamount chain. However, the actual migration routes remain unknown. In this study, we examined the possible oceanic migration routes and strategies of silver Japanese eels using a particle tracking method in which virtual eels (v-eels) were programmed to move vertically and horizontally in an ocean circulation model (Japan Coastal Ocean Predictability Experiment 2, JCOPE2). Four horizontal swimming strategies were tested: random heading, true navigation (readjusted heading), orientation toward the spawning area (fixed heading), and swimming against the Kuroshio. We found that all strategies, except random swimming, allowed v-eels swimming at 0.65 m s-1 to reach the spawning area within eight months after their departure from the south coast of Japan (end of the spawning season). The estimated minimum swimming speed required to reach the area spawning within eight months was 0.1 m s-1 for true navigation, 0.12 m s-1 for constant compass heading, and 0.35 m s-1 for swimming against the Kuroshio. The lowest swimming speed estimated from tracked Japanese eels at sea was 0.03 m.s-1, which would not allow them to reach the spawning area within eight months, through any of the tested orientation strategies. Our numerical experiments also showed that ocean circulation significantly affected the migration of Japanese v-eels. A strong Kuroshio could advect v-eels further eastward. In addition, western Pacific ocean currents accelerated the migration of navigating v-eels. The migration duration was shortened in years with a stronger southward flow, contributed by a stronger recirculation south of Japan, an enhanced subtropical gyre, or a higher southward Kuroshio velocity.
Karube, Fuyuki; Sári, Katalin; Kisvárday, Zoltán F
2017-04-01
To uncover the functional topography of layer 6 neurons, optical imaging was combined with three-dimensional neuronal reconstruction. Apical dendrite morphology of 23 neurons revealed three distinct types. Type Aa possessed a short apical dendrite with many oblique branches, Type Ab was characterized by a short and less branched apical dendrite, whereas Type B had a long apical dendrite with tufts in layer 2. Each type had a similar number of boutons, yet their spatial distribution differed from each other in both radial and horizontal extent. Boutons of Type Aa and Ab were almost restricted to the column of the parent soma with a laminar preference to layer 4 and 5/6, respectively. Only Type B contributed to long horizontal connections (up to 1.5 mm) mostly in deep layers. For all types, bouton distribution on orientation map showed an almost equal occurrence at iso- (52.6 ± 18.8 %) and non-iso-orientation (oblique, 27.7 ± 14.9 % and cross-orientation 19.7 ± 10.9 %) sites. Spatial convergence of axons of nearby layer 6 spiny neurons depended on soma separation of the parent cells, but only weakly on orientation preference, contrary to orientation dependence of converging axons of layer 4 spiny cells. The results show that layer 6 connections have only a weak dependence on orientation preference compared with those of layers 2/3 (Buzás et al., J Comp Neurol 499:861-881, 2006) and 4 (Karube and Kisvárday, Cereb Cortex 21:1443-1458, 2011).
Effects of horizontal plyometric training volume on soccer players' performance.
Yanci, Javier; Los Arcos, Asier; Camara, Jesús; Castillo, Daniel; García, Alberto; Castagna, Carlo
2016-01-01
The aim of this study was to examine the dose response effect of strength and conditioning programmes, involving horizontally oriented plyometric exercises, on relevant soccer performance variables. Sixteen soccer players were randomly allocated to two 6-week plyometric training groups (G1 and G2) differing by imposed (twice a week) training volume. Post-training G1 (4.13%; d = 0.43) and G2 (2.45%; d = 0.53) moderately improved their horizontal countermovement jump performance. Significant between-group differences (p < 0.01) in the vertical countermovement jump for force production time (T2) were detected post-training. No significant and practical (p > 0.05, d = trivial or small) post-training improvements in sprint, change of direction ability (CODA) and horizontal arm swing countermovement jump were reported in either group. Horizontal plyometric training was effective in promoting improvement in injury prevention variables. Doubling the volume of a horizontal plyometric training protocol was shown to have no additional effect over functional aspects of soccer players' performance.
Optical Tracker For Longwall Coal Shearer
NASA Technical Reports Server (NTRS)
Poulsen, Peter D.; Stein, Richard J.; Pease, Robert E.
1989-01-01
Photographic record yields information for correction of vehicle path. Tracking system records lateral movements of longwall coal-shearing vehicle. System detects lateral and vertical deviations of path of vehicle moving along coal face, shearing coal as it goes. Rides on rails in mine tunnel, advancing on toothed track in one of rails. As vehicle moves, retroreflective mirror rides up and down on teeth, providing series of pulsed reflections to film recorder. Recorded positions of pulses, having horizontal and vertical orientations, indicate vertical and horizontal deviations, respectively, of vehicle.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Kim, Shinwoo; Woodward, Tracey; Wang, T. G.
1992-01-01
The effects on microstructure of crucible orientation with respect to the earth's gravitational vector, g, during directional solidification of low-volume fraction copper and aluminum, Pb-Cu, and Sn-Al alloys are examined. It is demonstrated that horizontal alignment (i.e. perpendicular to g) in combination with axial rotation of the crucible during growth is sufficient to negate factors which initiate macrosegregation, e.g. density gradients attributed to temperature and/or compositional differences, and promotes a uniform microstructure.
NASA Astrophysics Data System (ADS)
Roeloffs, E. A.
2016-12-01
A Gladwin Tensor Strainmeter (GTSM) is designed to measure changes of the horizontal strain tensor, derived as linear combinations of radial elongations or contractions of the strainmeter's cylindrical housing measured at four azimuths. Each radial measurement responds to changes in the areal, horizontal shear and vertical components of the strain tensor in the surrounding formation. The elastic response coefficients to these components depend on the relative elastic moduli of the housing, formation, and cement. These coefficients must be inferred for each strainmeter after it is cemented into its borehole by analyzing the instrument response to well-characterized strain signals such as earth tides. For some GTSMs of the Earthscope Plate Boundary Observatory (PBO), however, reconciling observed earth-tide signals with modeled tidal strains requires response coefficients that differ substantially between the instrument's four gauges, and/or orientation corrections of tens of degrees. GTSM response coefficients can also be estimated from high-resolution records of teleseismic Love waves from great earthquakes around the world. Such records can be used in conjunction with apparent propagation azimuths from nearby broadband seismic stations to determine the GTSM's orientation. Knowing the orientation allows the ratios between the shear strain response coefficients of a GTSM's four gauges to be estimated. Applying this analysis to 14 PBO GTSMs confirms that orientations of some instruments differ significantly from orientations measured during installation. Orientations inferred from earth-tide response tend to agree with those inferred from Love waves for GTSMs far from tidal water bodies, but to differ for GTSMs closer to coastlines. Orientations derived from teleseismic Love waves agree with those estimated by Grant and Langston (2010) using strains from a broadband seismic array near Anza, California. PBO GTSM recordings of teleseismic Love waves show differences of more than 20% among the shear-strain response coefficients of the four gauges. Love-wave derived orientations and relative shear-strain response coefficients can reduce uncertainties in shear strains derived from PBO GTSM data.
Lam, Walter Y H; Hsung, Richard T C; Choi, Winnie W S; Luk, Henry W K; Cheng, Leo Y Y; Pow, Edmond H N
2017-09-29
Accurate articulator-mounted casts are essential for occlusion analysis and for fabrication of dental prostheses. Although the axis orbital plane has been commonly used as the reference horizontal plane, some clinicians prefer to register the horizontal plane with a spirit level when the patient is in the natural head position (NHP) to avoid anatomic landmark variations. This article presents a digital workflow for registering the patient's horizontal plane in NHP on a virtual articulator. An orientation reference board is used to calibrate a stereophotogrammetry device and a 3-dimensional facial photograph with the patient in NHP. The horizontal plane can then be automatically registered to the patient's virtual model and aligned to the virtual articulator at the transverse horizontal axis level. This technique showed good repeatability with positional differences of less than 1 degree and 1 mm in 5 repeated measurements in 1 patient. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Buckley, Sean F.; Lane, John W.
2012-01-01
The detection and characterization of subsurface voids plays an important role in the study of karst formations and clandestine tunnels. Horizontal velocity and attenuation tomography (HVAT) using offset‐fan shooting and a towed seismic land streamer is a simple, rapid, minimally invasive method that shows promise for detecting near‐surface voids and providing information on the orientation of linear voids. HVAT surveys were conducted over a known subsurface steam tunnel on the University of Connecticut Depot Campus, Storrs, Connecticut. First‐arrival travel‐time and amplitude data were used to produce two‐dimensional (2D) horizontal (map view) velocity and attenuation tomograms. In addition, attenuation tomograms were produced based on normalized total trace energy (TTE). Both the velocity and TTE attenuation tomograms depict an anomaly consistent with the location and orientation of the known tunnel; the TTE method, however, requires significantly less processing time, and therefore may provide a path forward to semi‐automated, near real‐time detection of near‐surface voids. Further study is needed to assess the utility of the HVAT method to detect deeper voids and the effects of a more complex geology on HVAT results.
Kinematically aligned TKA can align knee joint line to horizontal.
Ji, Hyung-Min; Han, Jun; Jin, Dong San; Seo, Hyunseok; Won, Ye-Yeon
2016-08-01
The joint line of the native knee is horizontal to the floor and perpendicular to the vertical weight-bearing axis of the patient in a bipedal stance. The purposes of this study were as follows: (1) to find out the distribution of the native joint line in a population of normal patients with normal knees; (2) to compare the native joint line orientation between patients receiving conventional mechanically aligned total knee arthroplasty (TKA), navigated mechanically aligned TKA, and kinematically aligned TKA; and (3) to determine which of the three TKA methods aligns the postoperative knee joint perpendicular to the weight-bearing axis of the limb in bipedal stance. To determine the joint line orientation of a native knee, 50 full-length standing hip-to-ankle digital radiographs were obtained in 50 young, healthy individuals. The angle between knee joint line and the line parallel to the floor was measured and defined as joint line orientation angle (JLOA). JLOA was also measured prior to and after conventional mechanically aligned TKA (65 knees), mechanically aligned TKA using imageless navigation (65 knees), and kinematically aligned TKA (65 knees). The proportion of the knees similar to the native joint line was calculated for each group. The mean JLOA in healthy individuals was parallel to the floor (0.2° ± 1.1°). The pre-operative JLOA of all treatment groups slanted down to the lateral side. Postoperative JLOA slanted down to the lateral side in conventional mechanically aligned TKA (-3.3° ± 2.2°) and in navigation mechanically aligned TKA (-2.6° ± 1.8°), while it was horizontal to the floor in kinematically aligned TKA (0.6° ± 1.7°). Only 6.9 % of the conventional mechanically aligned TKA and 16.9 % of the navigation mechanically aligned TKA were within one SD of the mean JLOA of the native knee, while the proportion was significantly higher (50.8 %) in kinematically aligned TKA. The portion was statistically greater in mechanically aligned TKA group than the other two. Postoperative joint line orientation after kinematically aligned TKA was more similar to that of native knees than that of mechanically aligned TKA and horizontal to the floor. Kinematically aligned TKA can restore pre-arthritic knee joint line orientation, while mechanically aligned TKA is inefficient in achieving the purpose even if navigation TKA is employed. III.
Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics
Girshick, Ahna R.; Landy, Michael S.; Simoncelli, Eero P.
2011-01-01
Humans are remarkably good at performing visual tasks, but experimental measurements reveal substantial biases in the perception of basic visual attributes. An appealing hypothesis is that these biases arise through a process of statistical inference, in which information from noisy measurements is fused with a probabilistic model of the environment. But such inference is optimal only if the observer’s internal model matches the environment. Here, we provide evidence that this is the case. We measured performance in an orientation-estimation task, demonstrating the well-known fact that orientation judgements are more accurate at cardinal (horizontal and vertical) orientations, along with a new observation that judgements made under conditions of uncertainty are strongly biased toward cardinal orientations. We estimate observers’ internal models for orientation and find that they match the local orientation distribution measured in photographs. We also show how a neural population could embed probabilistic information responsible for such biases. PMID:21642976
Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.
Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas
2016-10-17
Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Control and prediction components of movement planning in stuttering vs. nonstuttering adults
Daliri, Ayoub; Prokopenko, Roman A.; Flanagan, J. Randall; Max, Ludo
2014-01-01
Purpose Stuttering individuals show speech and nonspeech sensorimotor deficiencies. To perform accurate movements, the sensorimotor system needs to generate appropriate control signals and correctly predict their sensory consequences. Using a reaching task, we examined the integrity of these control and prediction components, separately, for movements unrelated to the speech motor system. Method Nine stuttering and nine nonstuttering adults made fast reaching movements to visual targets while sliding an object under the index finger. To quantify control, we determined initial direction error and end-point error. To quantify prediction, we calculated the correlation between vertical and horizontal forces applied to the object—an index of how well vertical force (preventing slip) anticipated direction-dependent variations in horizontal force (moving the object). Results Directional and end-point error were significantly larger for the stuttering group. Both groups performed similarly in scaling vertical force with horizontal force. Conclusions The stuttering group's reduced reaching accuracy suggests limitations in generating control signals for voluntary movements, even for non-orofacial effectors. Typical scaling of vertical force with horizontal force suggests an intact ability to predict the consequences of planned control signals. Stuttering may be associated with generalized deficiencies in planning control signals rather than predicting the consequences of those signals. PMID:25203459
Shimokita, Keisuke; Saito, Itsuki; Yamamoto, Katsuhiro; Takenaka, Mikihito; Yamada, Norifumi L; Miyazaki, Tsukasa
2018-02-27
We have investigated the relationship between the peel strength of a block copolymer-based pressure-sensitive adhesive comprising of poly(methyl methacrylate) (PMMA) and poly(n-butyl acrylate) (PnBA) components from the substrate and the microdomain orientations in the interfacial region between the adhesive and the substrate. For the PMMA substrate, the PMMA component in the adhesive with a strong affinity for the substrate is attached to the surface of the substrate during an aging process of the sample at 140 °C. Next, the PMMA layer adjacent to the substrate surface is overlaid with a PnBA layer, which gets covalently connected, resulting in the horizontal alignment of the lamellae in the interfacial region. The peel strength of the adhesive substantially increases during aging at 140 °C, which takes the same time as the completion of the horizontally oriented lamellar structure. However, in the case of the polystyrene (PS) substrate, both the components in the adhesive repel the substrate, leading to the formation of the vertically oriented lamellar structure. As a result, the peel strength of the adhesive with respect to its PS substrate does not entirely increase on aging. It is suggested that the peel strength of the adhesive is highly correlated with the interfacial energy between the adhesive and substrate, which can be estimated from the microdomain orientation in the interfacial region.
Multi-objective Optimization of Solar Irradiance and Variance at Pertinent Inclination Angles
NASA Astrophysics Data System (ADS)
Jain, Dhanesh; Lalwani, Mahendra
2018-05-01
The performance of photovoltaic panel gets highly affected bychange in atmospheric conditions and angle of inclination. This article evaluates the optimum tilt angle and orientation angle (surface azimuth angle) for solar photovoltaic array in order to get maximum solar irradiance and to reduce variance of radiation at different sets or subsets of time periods. Non-linear regression and adaptive neural fuzzy interference system (ANFIS) methods are used for predicting the solar radiation. The results of ANFIS are more accurate in comparison to non-linear regression. These results are further used for evaluating the correlation and applied for estimating the optimum combination of tilt angle and orientation angle with the help of general algebraic modelling system and multi-objective genetic algorithm. The hourly average solar irradiation is calculated at different combinations of tilt angle and orientation angle with the help of horizontal surface radiation data of Jodhpur (Rajasthan, India). The hourly average solar irradiance is calculated for three cases: zero variance, with actual variance and with double variance at different time scenarios. It is concluded that monthly collected solar radiation produces better result as compared to bimonthly, seasonally, half-yearly and yearly collected solar radiation. The profit obtained for monthly varying angle has 4.6% more with zero variance and 3.8% more with actual variance, than the annually fixed angle.
Membrane Perturbation Induced by Interfacially Adsorbed Peptides
Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio
2004-01-01
The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model; the peptide axes are parallel to the membrane plane. The elastic and interfacial contributions to the perturbation free energy of the “peptide-dressed” membrane are evaluated as a function of: the peptide penetration depth into the bilayer's hydrophobic core, the membrane thickness, the polar angle, and the lipid/peptide ratio. The structural properties calculated include the shape and extent of the distorted (stretched and bent) lipid chains surrounding the adsorbed peptide, and their orientational (C-H) bond order parameter profiles. The changes in bond order parameters attendant upon peptide adsorption are in good agreement with magnetic resonance measurements. Also consistent with experiment, our model predicts that peptide adsorption results in membrane thinning. Our calculations reveal pronounced, membrane-mediated, attractive interactions between the adsorbed peptides, suggesting a possible mechanism for lateral aggregation of membrane-bound peptides. As a special case of interest, we have also investigated completely hydrophobic peptides, for which we find a strong energetic preference for the transmembrane (inserted) orientation over the horizontal (adsorbed) orientation. PMID:15189858
Fin field effect transistor directionality impacts printing of implantation shapes
NASA Astrophysics Data System (ADS)
Wang, Xiren; Granik, Yuri
2018-01-01
In modern integrated circuit (IC) fabrication processes, the photoresist receives considerable illumination energy that is reflected by underlying topography during optical lithography of implantation layers. Bottom antireflective coating (BARC) is helpful to mitigate the reflection. Often, however, BARC is not used, because its removal is technically challenging, in addition to its relatively high economic cost. Furthermore, the advanced technology nodes, such as 14/10-nm nodes, have introduced fin field effect transistor (FinFET), which makes reflection from nonuniform silicon substrates exceptionally complicated. Therefore, modeling reflection from topography becomes obligatory to accurately predict printing of implantation shapes. Typically, FinFET is always fixed in one direction in realistic designs. However, the same implantation rectangle may be oriented in either horizontal or vertical direction. Then, there are two types of relations between the critical dimension (CD) and FinFET, namely a parallel-to and a perpendicular-to relation. We examine the fin directionality impact on CD. We found that this impact may be considerable in some cases. We use our in-house rigorous optical topography simulator to reveal underlining physical reasons. One of the major causes of the CD differences is that in the parallel orientation, the solid sidewalls of the fins conduct considerable light reflections unlike for the perpendicular orientation. This finding can aid the compact modeling in optical proximity correction of implantation masks.
Taylor, J Eric T; Lam, Timothy K; Chasteen, Alison L; Pratt, Jay
2015-01-01
Embodied cognition holds that abstract concepts are grounded in perceptual-motor simulations. If a given embodied metaphor maps onto a spatial representation, then thinking of that concept should bias the allocation of attention. In this study, we used positive and negative self-esteem words to examine two properties of conceptual cueing. First, we tested the orientation-specificity hypothesis, which predicts that conceptual cues should selectively activate certain spatial axes (in this case, valenced self-esteem concepts should activate vertical space), instead of any spatial continuum. Second, we tested whether conceptual cueing requires semantic processing, or if it can be achieved with shallow visual processing of the cue words. Participants viewed centrally presented words consisting of high or low self-esteem traits (e.g., brave, timid) before detecting a target above or below the cue in the vertical condition, or on the left or right of the word in the horizontal condition. Participants were faster to detect targets when their location was compatible with the valence of the word cues, but only in the vertical condition. Moreover, this effect was observed when participants processed the semantics of the word, but not when processing its orthography. The results show that conceptual cueing by spatial metaphors is orientation-specific, and that an explicit consideration of the word cues' semantics is required for conceptual cueing to occur.
The fibre orientation influence in cementitious composite against extreme load resistance
NASA Astrophysics Data System (ADS)
Lovichova, R.; Fornusek, J.; Mara, M.; Kocova, M.; Rihova, Z.
2018-02-01
This paper is focused on resistance of steel fibre-reinforced cement composite against impact of the deformable projectile shot from the 7.62 × 39 caliber. Different values of resistance against impact of the projectile are caused by different orientation of the fibres. The influence of formwork position, which is the main cause of the different orientation of the fibres, is investigated. The resistance was examined on thirty slabs made of ultra-high performance fibre-reinforced concrete (UHPFRC). Fifteen specimens with vertical orientation of formwork and fifteen with horizontal orientation of formwork was made. The resistance is classified according to the visual evaluation and local damage measurement on the front side and the rear side of the examined specimens. The experiment shown positive influence of vertically oriented formwork on the slabs according to their resistance against impact of the projectile.
NASA Astrophysics Data System (ADS)
Soh, I.; Chang, C.
2017-12-01
The techniques for estimating present-day stress states by inverting multiple earthquake focal mechanism solutions (FMS) provide orientations of the three principal stresses and their relative magnitudes. In order to estimate absolute magnitudes of the stresses that are generally required to analyze faulting mechanics, we combine the relative stress magnitude parameter (R-value) derived from the inversion process and the concept of frictional equilibrium of stress state defined by Coulomb friction law. The stress inversion in Korean Peninsula using 152 FMS data (magnitude≥2.5) conducted at regularly spaced grid points yields a consistent strike-slip faulting regime in which the maximum (S1) and the minimum (S3) principal stresses act in horizontal planes (with an S1 azimuth in ENE-WSW) and the intermediate principal stress (S2) close to vertical. However, R-value varies from 0.28 to 0.75 depending on locations, systematically increasing eastward. Based on the assumptions that the vertical stress is lithostatic, pore pressure is hydrostatic, and the maximum differential stress (S1-S3) is limited by Byerlee's friction of optimally oriented faults for slip, we estimate absolute magnitudes of the two horizontal principal stresses using R-value. As R-value increases, so do the magnitudes of the horizontal stresses. Our estimation of the stress magnitudes shows that the maximum horizontal principal stress (S1) normalized by vertical stress tends to increase from 1.3 in the west to 1.8 in the east. The estimated variation of stress magnitudes is compatible with distinct clustering of faulting types in different regions. Normal faulting events are densely populated in the west region where the horizontal stress is relatively low, whereas numerous reverse faulting events prevail in the east offshore where the horizontal stress is relatively high. Such a characteristic distribution of distinct faulting types in different regions can only be explained in terms of stress magnitude variation.
Deformation, crystal preferred orientations, and seismic anisotropy in the Earth's D″ layer
NASA Astrophysics Data System (ADS)
Tommasi, Andréa; Goryaeva, Alexandra; Carrez, Philippe; Cordier, Patrick; Mainprice, David
2018-06-01
We use a forward multiscale model that couples atomistic modeling of intracrystalline plasticity mechanisms (dislocation glide ± twinning) in MgSiO3 post-perovskite (PPv) and periclase (MgO) at lower mantle pressures and temperatures to polycrystal plasticity simulations to predict crystal preferred orientations (CPO) development and seismic anisotropy in D″. We model the CPO evolution in aggregates of 70% PPv and 30% MgO submitted to simple shear, axial shortening, and along corner-flow streamlines, which simulate changes in flow orientation similar to those expected at the transition between a downwelling and flow parallel to the core-mantle boundary (CMB) within D″ or between CMB-parallel flow and upwelling at the borders of the large low shear wave velocity provinces (LLSVP) in the lowermost mantle. Axial shortening results in alignment of PPv [010] axes with the shortening direction. Simple shear produces PPv CPO with a monoclinic symmetry that rapidly rotates towards parallelism between the dominant [100](010) slip system and the macroscopic shear. These predictions differ from MgSiO3 post-perovskite textures formed in diamond-anvil cell experiments, but agree with those obtained in simple shear and compression experiments using CaIrO3 post-perovskite. Development of CPO in PPv and MgO results in seismic anisotropy in D″. For shear parallel to the CMB, at low strain, the inclination of ScS, Sdiff, and SKKS fast polarizations and delay times vary depending on the propagation direction. At moderate and high shear strains, all S-waves are polarized nearly horizontally. Downwelling flow produces Sdiff, ScS, and SKKS fast polarization directions and birefringence that vary gradually as a function of the back-azimuth from nearly parallel to inclined by up to 70° to CMB and from null to ∼5%. Change in the flow to shear parallel to the CMB results in dispersion of the CPO, weakening of the anisotropy, and strong azimuthal variation of the S-wave splitting up to 250 km from the corner. Transition from horizontal shear to upwelling also produces weakening of the CPO and complex seismic anisotropy patterns, with dominantly inclined fast ScS and SKKS polarizations, over most of the upwelling path. Models that take into account twinning in PPv explain most observations of seismic anisotropy in D″, but heterogeneity of the flow at scales <1000 km is needed to comply with the seismological evidence for low apparent birefringence in D″.
47 CFR 27.1235 - Post-transition notification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 27.1235 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service...) The horizontal and vertical pattern of the antenna; (4) EIRP of the main lobe; (5) Orientation; (6...
Cytochemical localization of calcium in cap cells of primary roots of Zea mays L
NASA Technical Reports Server (NTRS)
Moore, R.
1985-01-01
The cellular distribution of Ca in caps of primary roots of Zea mays was examined during the onset and early stages of gravicurvature to determine its possible role in root gravitropism. Staining becomes associated with the portion of the cell wall adjacent to the distal end of the cell after five minutes, and persists throughout the onset of gravicurvature. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like channels in their cell walls. Data suggest that Ca is not transported laterally through the columella tissue,but rather that the movement of Ca to the lower side of caps of horizontally-oriented roots is at least partially through and/or on the mucilage of the cap, and via an electrochemical gradient. An important role in root gravitropism is indicated for Ca secretion by peripheral cells.
CFD analysis of a Darrieus wind turbine
NASA Astrophysics Data System (ADS)
Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.
2017-07-01
The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.
NASA Astrophysics Data System (ADS)
Housmans, Caroline; Bertrand, Cédric
2017-02-01
Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane. The inverse process, i.e. the conversion from tilted to horizontal is investigated here based upon seven months of in-plane global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle (Longitude 4.35° E, Latitude 50.79° N). Up to three pyranometers mounted on inclined planes of different tilts and orientations were involved in the inverse transposition process. Our results indicate that (1) the tilt to horizontal irradiance conversion is improved when measurements from more than one tilted pyranometer are considered (i.e. by using a multi-pyranometer approach) and (2) the improvement from using an isotropic model to anisotropic models in the inverse transposition problem is not significant.
Changes in paleostress and its magnitude related to seismic cycles in the Chelung-pu Fault, Taiwan
NASA Astrophysics Data System (ADS)
Hashimoto, Yoshitaka; Tobe, Kota; Yeh, En-Chao; Lin, Weiren; Song, Sheng-Rong
2015-12-01
Paleostress analysis was conducted through a multiple stress inversion method using slip data recoded for the core samples from the Taiwan Chelung-pu Fault Drilling Project (TCDP). Two stress fields were obtained; one of these had horizontally plunging σ1, and the other has horizontally plunging σ2 or σ3 in the compressional stress direction of the Chi-Chi earthquake. Stress magnitude for both the stress fields was constrained by stress polygons, which indicated larger SHmax for horizontally plunging σ1 than that in the case of horizontally plunging σ2 or σ3. These differences in stress orientations and stress magnitude suggest that the change in stress filed can be caused by stress drop and stress buildup associated with seismic cycles. The seismic cycles recoded in the core samples from TCDP could include many events at geological timescale and not only the 1999 Chi-Chi earthquake.
Use of an adjustable hand plate in studying the perceived horizontal plane during simulated flight.
Tribukait, Arne; Eiken, Ola; Lemming, Dag; Levin, Britta
2013-07-01
Quantitative data on spatial orientation would be valuable not only in assessing the fidelity of flight simulators, but also in evaluation of spatial orientation training. In this study a manual indicator was used for recording the subjective horizontal plane during simulated flight. In a six-degrees-of-freedom hexapod hydraulic motion platform simulator, simulating an F-16 aircraft, seven fixed-wing student pilots were passively exposed to two flight sequences. The first consisted in a number of coordinated turns with visual contact with the landscape below. The visually presented roll tilt was up to a maximum 670. The second was a takeoff with a cabin pitch up of 100, whereupon external visual references were lost. The subjects continuously indicated, with the left hand on an adjustable plate, what they perceived as horizontal in roll and pitch. There were two test occasions separated by a 3-d course on spatial disorientation. Responses to changes in simulated roll were, in general, instantaneous. The indicated roll tilt was approximately 30% of the visually presented roll. There was a considerable interindividual variability. However, for the roll response there was a correlation between the two occasions. The amplitude of the response to the pitch up of the cabin was approximately 75%; the response decayed much more slowly than the stimulus. With a manual indicator for recording the subjective horizontal plane, individual characteristics in the response to visual tilt stimuli may be detected, suggesting a potential for evaluation of simulation algorithms or training programs.
Directional control-response relationships for mining equipment.
Burgess-Limerick, R; Krupenia, V; Wallis, G; Pratim-Bannerjee, A; Steiner, L
2010-06-01
A variety of directional control-response relationships are currently found in mining equipment. Two experiments were conducted in a virtual environment to determine optimal direction control-response relationships in a wide variety of circumstances. Direction errors were measured as a function of control orientation (horizontal or vertical), location (left, front, right) and directional control-response relationships. The results confirm that the principles of consistent direction and visual field compatibility are applicable to the majority of situations. An exception is that fewer direction errors were observed when an upward movement of a horizontal lever or movement of a vertical lever away from the participants caused extension (lengthening) of the controlled device, regardless of whether the direction of movement of the control is consistent with the direction in which the extension occurs. Further, both the control of slew by horizontally oriented controls and the control of device movements in a frontal plane by the perpendicular movements of vertical levers were associated with relatively high rates of directional errors, regardless of the directional control-response relationship, and these situations should be avoided. STATEMENT OF RELEVANCE: The results are particularly applicable to the design of mining equipment such as drilling and bolting machines, and have been incorporated into MDG35.1 Guideline for bolting & drilling plant in mines (Industry & Investment NSW, 2010). The results are also relevant to the design of any equipment where vertical or horizontal levers are used to control the movement of equipment appendages, e.g. cranes mounted to mobile equipment and the like.
NASA Astrophysics Data System (ADS)
Hast, Michael; Howe, Christine
2013-07-01
Events involving motion in fall are differentiated psychologically from events involving horizontal motion. Do children associate motion down inclines more with motion along horizontals or more with motion in fall, or do they even treat it as an integration of the two? The question was raised over 20 years ago but never satisfactorily answered, so the principal aim of the reported research was to take matters forward. Children (n = 144) aged 5-11 years were assessed while predicting natural dynamic events along a horizontal, in fall and down an incline. They were required to make predictions of speed with heavy and light balls and under changes in incline heights. The results show that, consistent with previous work, faster horizontal motion was associated with the light ball across all ages, whereas faster fall was associated with the heavy ball. However, while the younger children predicted faster incline motion for the lighter ball, there was a shift in this conception towards older children predicting faster motion for the heavier ball. Understanding of how changes in incline height affect speed was generally good, with this aspect of the study helping to establish how children perceive diagonal dimensions. How supported horizontal motion and unsupported fall motion may affect children's changing understanding of incline motion is discussed, thus providing more complete insight into children's understanding of natural object motion than has been established so far.
NASA Astrophysics Data System (ADS)
Pascal, Christophe; Roberts, David; Gabrielsen, Roy H.
2005-05-01
Fieldwork was conducted in Finnmark, northern Norway, with the purpose of detecting and measuring stress-relief features, induced by quarrying and road works, and to derive from them valuable information on the shallow-crustal stress orientations and magnitudes. Two kinds of stress-relief features were considered in this study. The first consists of drillhole offsets that were found along blasted road-cuts and which were triggered by the sudden rock unloading following the actual blasting. Vertical axial fractures found in the concave remains of boreholes represent the second kind of stress-relief feature. The axial fractures are tension fractures produced by gas overpressure inside the drillhole when the blast occurs. As such, their strike reflects the orientation of the ambient maximum horizontal stress axis. The borehole offsets show mostly reverse-slip displacements to the E-SE and the axial fractures trend NW-SE on average, in agreement with NW-SE compression induced by North Atlantic ridge-push forces. Mechanical considerations of the slip planes offsetting some of the drillholes lead to the conclusion that the magnitude of the maximum horizontal stress at the surface is in the range ˜0.1-˜1 MPa. This range of magnitudes is 1-2 orders less than the horizontal stress magnitudes measured at the surface in other post-glacial environments (e.g. Canada). It is suggested that this difference is related to the marked decline in stress that followed the tremendous post-glacial burst of earthquake activity that affected Fennoscandia but apparently not the Canadian Shield.
Zebeib, Ameen M; Naini, Farhad B
2014-12-01
The purpose of this study was to assess the reliability of the Frankfort horizontal (FH), sella-nasion horizontal, and optic planes in terms of their variabilities in relation to a true horizontal line in orthognathic surgery patients. Thirty-six consecutive presurgical orthognathic patients (13 male, 23 female; age range, 16-35 years; 30 white, 6 African Caribbean) had lateral cephalometric radiographs taken in natural head position, with a plumb line orientating the true vertical line, and the true horizontal line perpendicular to the true vertical. The inclinations of the anatomic reference planes were compared with the true horizontal. The FH plane was found to be on average closest to the true horizontal, with a mean of -1.6° (SD, 3.4°), whereas the sella-nasion horizontal and the optic plane had means of 2.1° (SD, 5.1°) and 3.2° (SD, 4.7°), respectively. The FH showed the least variability of the 3 anatomic planes. The ranges of variability were high for all anatomic planes: -8° to 8° for the FH, -8° to 15° for the sella-nasion horizontal, and -6° to 13° for the optic plane. No significant differences were found in relation to patients' sex, skeletal patterns, or ethnic backgrounds. The clinically significant variability in the inclinations of anatomic reference planes in relation to the true horizontal plane makes their use unreliable in orthognathic patients. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
James, R. (Inventor)
1981-01-01
A display device is disclosed which is particularly suited for providing the pilot of an aircraft with combined inflight attitude, heading, altitude, and horizontal situation information previously available only by using two or three devices providing separate displays. The preferred embodiment combines a commonly used and commercially available flight director-type device for providing a display in combination with a miniature aircraft supported for angular displacement from a vertical orientation to indicate heading error, or heading offset, and an extended course deviation indicator bar which projects into juxtaposition with the miniature aircraft for providing a true picture of the aircraft's horizontal situation relative to a selective VOR, ILS, or MLS course.
On the Convection of a Binary Mixture in a Horizontal Layer Under High-frequency Vibrations
NASA Astrophysics Data System (ADS)
Smorodin, B. L.; Ishutov, S. M.; Myznikova, B. I.
2018-02-01
The convective instability and non-linear flows are considered in a horizontal, binary-mixture layer with negative Soret coupling, subjected to the high-frequency vibration whose axis is directed at an arbitrary angle to the layer boundaries. The limiting case of long-wave disturbances is studied using the perturbation method. The influence of the intensity and direction of vibration on the spatially-periodic traveling wave solution is analyzed. It is shown that the shift in the Rayleigh number range, in which the traveling wave regime exists, toward higher values is a response to a horizontal-to-vertical transition in the vibration axis orientation. The characteristics of amplitude- and phase-modulated traveling waves are obtained and discussed.
Threshold wind velocity dynamics as a driver of aeolian sediment mas flux
USDA-ARS?s Scientific Manuscript database
Horizontal (saltation) mass flux is a key driver of aeolian dust emission. Estimates of the horizontal mass flux underpin assessments of the global dust budget and influence our understanding of the dust cycle and its interactions. Current equations for predicting horizontal mass flux are based on l...
Text String Detection from Natural Scenes by Structure-based Partition and Grouping
Yi, Chucai; Tian, YingLi
2012-01-01
Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) Image partition to find text character candidates based on local gradient features and color uniformity of character components. 2) Character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method, and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in non-horizontal orientations. PMID:21411405
Analysis of Mining-induced Valley Closure Movements
NASA Astrophysics Data System (ADS)
Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.
2016-05-01
Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.
NASA Astrophysics Data System (ADS)
Paulsen, T.; Wilson, T. J.; Demosthenous, C.; Millan, C.; Jarrard, R. D.; Laufer, A.
2013-12-01
Strain analyses of mechanically twinned calcite in veins and faults hosted by Neogene (13.6 Ma to 4.3 Ma) sedimentary and volcanic rocks recovered within the ANDRILL AND-1B drill core from the Terror Rift in the southern Ross Sea, Antarctica, yield prolate and oblate ellipsoids with principal shortening and extension strains ranging from 0.1% to 8.5%. The majority of samples show homogeneous coaxial strain predominantly characterized by subvertical shortening, which we attribute to lithostatic loading in an Andersonian normal faulting stress regime during sedimentary and ice sheet burial of the stratigraphic sequence. The overall paucity of a non-coaxial layer-parallel shortening signal in the AND-1B twin populations suggests that horizontal compressive stresses predicted by Neogene transtensional kinematic models for the rift system have been absent or of insufficient magnitude to cause a widespread noncoaxial strain overprint. Limited numbers of oriented samples yield a possible average ESE extension direction for the rift that is subparallel to other indicators of Neogene extension. The lack of horizontal shortening in the twin data suggests the Neogene Terror Rift system either lacks a strong longitudinal strike-slip component, or that spatial partitioning of strain controls the maximum shortening axes seen in rocks of this age.
Approach for Improving the Integrated Sensor Orientation
NASA Astrophysics Data System (ADS)
Mitishita, E.; Ercolin Filho, L.; Graça, N.; Centeno, J.
2016-06-01
The direct determination of exterior orientation parameters (EOP) of aerial images via integration of the Inertial Measurement Unit (IMU) and GPS is often used in photogrammetric mapping nowadays. The accuracies of the EOP depend on the accurate parameters related to sensors mounting when the job is performed (offsets of the IMU relative to the projection centre and the angles of boresigth misalignment between the IMU and the photogrammetric coordinate system). In principle, when the EOP values do not achieve the required accuracies for the photogrammetric application, the approach, known as Integrated Sensor Orientation (ISO), is used to refine the direct EOP. ISO approach requires accurate Interior Orientation Parameters (IOP) and standard deviation of the EOP under flight condition. This paper investigates the feasibility of use the in situ camera calibration to obtain these requirements. The camera calibration uses a small sub block of images, extracted from the entire block. A digital Vexcel UltraCam XP camera connected to APPLANIX POS AVTM system was used to get two small blocks of images that were use in this study. The blocks have different flight heights and opposite flight directions. The proposed methodology improved significantly the vertical and horizontal accuracies of the 3D point intersection. Using a minimum set of control points, the horizontal and vertical accuracies achieved nearly one image pixel of resolution on the ground (GSD). The experimental results are shown and discussed.
Dianat, Iman; Rahimi, Soleyman; Nedaei, Moein; Asghari Jafarabadi, Mohammad; Oskouei, Ali E
2017-03-01
The effects of tool handle dimension (three modified designs of wrenches with 30-50 mm diameter cylindrical handles and traditional design with rectangular cross-sectional (5 mm × 25 mm) handle), workpiece orientation (vertical/horizontal) and workpiece size (small/large) as well as user's hand size on wrist ulnar/radial (U/R) torque strength, usability and discomfort, and also the relationship between these variables were evaluated in a maximum torque task using wrenches. The highest and lowest levels of maximal wrist U/R torque strength were recorded for the 30 mm diameter handle and traditional wrench design, respectively. The prototype handle with 30 mm diameter, together with 40 mm diameter handle, was also better than other designs as they received higher usability ratings and caused less discomfort. The mean wrist torque strength exerted on a vertically oriented workpiece (in the sagittal plane) was 23.8% higher than that exerted on a horizontally oriented one (in the transverse plane). The user's hand size had no effect on torque exertions. The wrist torque strength and usability were negatively correlated with hand and finger discomfort ratings. The results are also discussed in terms of their implications for hand tool and workstation configuration in torque tasks involving wrenches. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Suarez, G.; Gagnepain, J. J.; Cisternas, A.; Hatzfeld, D.; Molnar, P.; Ocola, L.; Roecker, S. W.; Viode, J. P.
1983-01-01
The vast majority of the microearthquakes recorded occurred to the east: on the Huaytapallana fault in the Eastern Cordillera or in the western margin of the sub-Andes. The sub-Andes appear to be the physiographic province subjected to the most intense seismic deformation. Focal depths for the crustal events here are as deep as 50 km, and the fault plane solutions, show thrust faulting on steep planes oriented roughly north-south. The Huaytapallana fault in the Cordillera Oriental also shows relatively high seismicity along a northeast-southwest trend that agrees with the fault scarp and the east dipping nodal plane of two large earthquakes that occurred on this fault in 1969. The recorded microearthquakes of intermediate depth show a flat seismic zone about 25 km thick at a depth of about 100 km. This agrees with the suggestion that beneath Peru the slab first dips at an angle of 30 deg to a depth of 100 km and then flattens following a quasi-horizontal trajectory. Fault plane solutions of intermediate depth microearthquakes have horizontal T axes oriented east-west.
Kicking against the pricks: vaccine sceptics have a different social orientation.
Luyten, Jeroen; Desmet, Pieter; Dorgali, Veronica; Hens, Niel; Beutels, Philippe
2014-04-01
In any country, part of the population is sceptical about the utility of vaccination. To develop successful vaccination programmes, it is important to study and understand the defining characteristics of vaccine sceptics. Research till now mainly focused either on the underlying motives of vaccine refusal, or on socio-demographic differences between vaccine sceptics and non-sceptics. It remained till now unexplored whether both groups differ in terms of basic psychological dispositions. We held a population survey in a representative sample of the population in Flanders, Belgium (N = 1050), in which we investigated whether respondents' attitude to vaccination was associated with their basic disposition toward other community members or society in general, as measured by the Triandis and Gelfand social orientation scale. We found that sceptics and non-sceptics have a different social orientation, even when several variables are controlled for. More specifically, vaccine sceptics scored significantly lower on both horizontal individualism and horizontal collectivism, indicating a lower disposition to see others as equals. These findings need confirmation in the context of different countries. Such insights can be valuable to optimize the design of effective communication strategies on vaccination programmes.
NASA Technical Reports Server (NTRS)
Nelson, A. J.; Evans, M. L.
1986-01-01
A computer-based video digitizer system is described which allows automated tracking of markers placed on a plant surface. The system uses customized software to calculate relative growth rates at selected positions along the plant surface and to determine rates of gravitropic curvature based on the changing pattern of distribution of the surface markers. The system was used to study the time course of gravitropic curvature and changes in relative growth rate along the upper and lower surface of horizontally-oriented roots of maize (Zea mays L.). The growing region of the root was found to extend from about 1 mm behind the tip to approximately 6 mm behind the tip. In vertically-oriented roots the relative growth rate was maximal at about 2.5 mm behind the tip and declined smoothly on either side of the maximum. Curvature was initiated approximately 30 min after horizontal orientation with maximal (50 degrees) curvature being attained in 3 h. Analysis of surface extension patterns during the response indicated that curvature results from a reduction in growth rate along both the upper and lower surfaces with stronger reduction along the lower surface.
GPS coordinate time series measurements in Ontario and Quebec, Canada
NASA Astrophysics Data System (ADS)
Samadi Alinia, Hadis; Tiampo, Kristy F.; James, Thomas S.
2017-06-01
New precise network solutions for continuous GPS (cGPS) stations distributed in eastern Ontario and western Québec provide constraints on the regional three-dimensional crustal velocity field. Five years of continuous observations at fourteen cGPS sites were analyzed using Bernese GPS processing software. Several different sub-networks were chosen from these stations, and the data were processed and compared to in order to select the optimal configuration to accurately estimate the vertical and horizontal station velocities and minimize the associated errors. The coordinate time series were then compared to the crustal motions from global solutions and the optimized solution is presented here. A noise analysis model with power-law and white noise, which best describes the noise characteristics of all three components, was employed for the GPS time series analysis. The linear trend, associated uncertainties, and the spectral index of the power-law noise were calculated using a maximum likelihood estimation approach. The residual horizontal velocities, after removal of rigid plate motion, have a magnitude consistent with expected glacial isostatic adjustment (GIA). The vertical velocities increase from subsidence of almost 1.9 mm/year south of the Great Lakes to uplift near Hudson Bay, where the highest rate is approximately 10.9 mm/year. The residual horizontal velocities range from approximately 0.5 mm/year, oriented south-southeastward, at the Great Lakes to nearly 1.5 mm/year directed toward the interior of Hudson Bay at stations adjacent to its shoreline. Here, the velocity uncertainties are estimated at less than 0.6 mm/year for the horizontal component and 1.1 mm/year for the vertical component. A comparison between the observed velocities and GIA model predictions, for a limited range of Earth models, shows a better fit to the observations for the Earth model with the smallest upper mantle viscosity and the largest lower mantle viscosity. However, the pattern of horizontal deformation is not well explained in the north, along Hudson Bay, suggesting that revisions to the ice thickness history are needed to improve the fit to observations.
Morin, R.H.; Flamand, R.
1999-01-01
Deep Sea Drilling Project (DSDP) Hole 504B is located in the eastern equatorial Pacific Ocean and extends to a total depth of 2111 m beneath the seafloor (mbsf). Several acoustic televiewer logs have been obtained in this well during successive stages of drilling, and the resulting digital images have revealed numerous oval-shaped fractures seemingly etched into the borehole wall. A theoretical examination of these stress-induced features identifies a unique and ephemeral set of stress distributions and magnitudes that are necessary for their production. Consequently, the ovals provide a basis for quantifying the magnitudes and orientations of the maximum and minimum horizontal principal stresses, SH and Sh, at this site. Vertical, truncated breakouts and horizontal tensile fractures define the spatial boundaries of the ovals. Explicit criteria for their occurrence are combined with estimates for various physical properties of the rock to yield a range of possible values for the horizontal principal stresses. The conspicuous oval geometry is completed by a curved fracture that joins the vertical and horizontal components. Its degree of curvature is delineated by the modified Griffith failure criterion and is directly related to the principal stress difference (SH - Sh). Matching a series of type curves corresponding to specific values for (SH - Sh) with the actual undistorted well bore images allows the magnitude of the stress difference to be further constrained. With a value for (SH - Sh) of 45 ?? 5 MPa the individual magnitudes of SH and Sh are determined more precisely. Final estimates for the horizontal principal stresses in DSDP Hole 504B at a depth of 1200 mbsf are 141 MPa ??? SH ??? 149 MPa and 91 MPa ??? Sh ??? 109 MPa. Stress magnitudes derived from this approach rely heavily upon the values of a variety of physical properties, and complementary laboratory measurements performed on relevant rock samples provide critical information. Uncertainties in estimating these properties translate into less precise predictions of principal stresses. Copyright 1999 by the American Geophysical Union.
Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics
NASA Technical Reports Server (NTRS)
Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie
2009-01-01
Lift-off acoustic environments generated by the future Ares I launch vehicle are assessed by the NASA Marshall Space Flight Center (MSFC) acoustics team using several prediction tools. This acoustic environment is directly caused by the Ares I First Stage booster, powered by the five-segment Reusable Solid Rocket Motor (RSRMV). The RSRMV is a larger-thrust derivative design from the currently used Space Shuttle solid rocket motor, the Reusable Solid Rocket Motor (RSRM). Lift-off acoustics is an integral part of the composite launch vibration environment affecting the Ares launch vehicle and must be assessed to help generate hardware qualification levels and ensure structural integrity of the vehicle during launch and lift-off. Available prediction tools that use free field noise source spectrums as a starting point for generation of lift-off acoustic environments are described in the monograph NASA SP-8072: "Acoustic Loads Generated by the Propulsion System." This monograph uses a reference database for free field noise source spectrums which consist of subscale rocket motor firings, oriented in horizontal static configurations. The phrase "subscale" is appropriate, since the thrust levels of rockets in the reference database are orders of magnitude lower than the current design thrust for the Ares launch family. Thus, extrapolation is needed to extend the various reference curves to match Ares-scale acoustic levels. This extrapolation process yields a subsequent amount of uncertainty added upon the acoustic environment predictions. As the Ares launch vehicle design schedule progresses, it is important to take every opportunity to lower prediction uncertainty and subsequently increase prediction accuracy. Never before in NASA s history has plume acoustics been measured for large scale solid rocket motors. Approximately twice a year, the RSRM prime vendor, ATK Launch Systems, static fires an assembled RSRM motor in a horizontal configuration at their test facility in Utah. The remaining RSRM static firings will take place on elevated terrain, with the nozzle exit plume being mostly undeflected and the landscape allowing placement of microphones within direct line of sight to the exhaust plume. These measurements will help assess the current extrapolation process by direct comparison between subscale and full scale solid rocket motor data.
Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives.
Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan
2014-01-01
The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.
Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives
Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan
2014-01-01
The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context. PMID:24550798
Thermoelastic stress in oceanic lithosphere due to hotspot reheating
NASA Technical Reports Server (NTRS)
Zhu, Anning; Wiens, Douglas A.
1991-01-01
The effect of hotspot reheating on the intraplate stress field is investigated by modeling the three-dimensional thermal stress field produced by nonuniform temperature changes in an elastic plate. Temperature perturbations are calculated assuming that the lithosphere is heated by a source in the lower part of the thermal lithosphere. A thermal stress model for the elastic lithosphere is calculated by superposing the stress fields resulting from temperature changes in small individual elements. The stress in an elastic plate resulting from a temperature change in each small element is expressed as an infinite series, wherein each term is a source or an image modified from a closed-from half-space solution. The thermal stress solution is applied to midplate swells in oceanic lithosphere with various thermal structures and plate velocities. The results predict a stress field with a maximum deviatoric stress on the order of 100 MPa covering a broad area around the hotspot plume. The predicted principal stress orientations show a complicated geographical pattern, with horizontal extension perpendicular to the hotspot track at shallow depths and compression along the track near the bottom of the elastic lithosphere.
Effect of horizontal curves on urban arterial crashes.
Banihashemi, Mohamadreza
2016-10-01
The crash prediction models of the Highway Safety Manual (HSM), 2010 estimate the expected number of crashes for different facility types. Models in Part C Chapter 12 of the first edition of the HSM include crash prediction models for divided and undivided urban arterials. Each of the HSM crash prediction models for highway segments is comprised of a "Safety Performance Function," a function of AADT and segment length, plus, a series of "Crash Modification Factors" (CMFs). The SPF estimates the expected number of crashes for the site if the site features are of base condition. The effects of the other features of the site, if their values are different from base condition, are carried out through use of CMFs. The existing models for urban arterials do not have any CMF for horizontal curvature. The goal of this research is to investigate if the horizontal alignment has any significant effect on crashes on any of these types of facilities and if so, to develop a CMF for this feature. Washington State cross sectional data from the Highway Safety Information System (HSIS), 2014 was used in this research. Data from 2007 to 2009 was used to conduct the investigation. The 2010 data was used to validate the results. As the results showed, the horizontal curvature has significant safety effect on two-lane undivided urban arterials with speed limits of 35 mph and higher and using a CMF for horizontal curvature in the crash prediction model of this type of facility improves the prediction of crashes significantly, for both tangent and curve segments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor
NASA Astrophysics Data System (ADS)
Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.
2017-12-01
Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar
Simulations of surface winds at the Viking Lander sites using a one-level model
NASA Technical Reports Server (NTRS)
Bridger, Alison F. C.; Haberle, Robert M.
1992-01-01
The one-level model developed by Mass and Dempsey for use in predicting surface flows in regions of complex terrain was adapted to simulate surface flows at the Viking lander sites on Mars. In the one-level model, prediction equations for surface winds and temperatures are formulated and solved. Surface temperatures change with time in response to diabatic heating, horizontal advection, adiabatic heating and cooling effects, and horizontal diffusion. Surface winds can change in response to horizontal advection, pressure gradient forces, Coriolis forces, surface drag, and horizontal diffusion. Surface pressures are determined by integration of the hydrostatic equation from the surface to some reference level. The model has successfully simulated surface flows under a variety of conditions in complex-terrain regions on Earth.
Powder collection apparatus/method
Anderson, I.E.; Terpstra, R.L.; Moore, J.A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.
NASA Astrophysics Data System (ADS)
Dupuy, Stéphane; Lainé, Gérard; Tassin, Jacques; Sarrailh, Jean-Michel
2013-12-01
This article's goal is to explore the benefits of using Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from LiDAR acquisitions for characterizing the horizontal structure of different facies in forested areas (primary forests vs. secondary forests) within the framework of an object-oriented classification. The area under study is the island of Mayotte in the western Indian Ocean. The LiDAR data were the data originally acquired by an airborne small-footprint discrete-return LiDAR for the "Litto3D" coastline mapping project. They were used to create a Digital Elevation Model (DEM) at a spatial resolution of 1 m and a Digital Canopy Model (DCM) using median filtering. The use of two successive segmentations at different scales allowed us to adjust the segmentation parameters to the local structure of the landscape and of the cover. Working in object-oriented mode with LiDAR allowed us to discriminate six vegetation classes based on canopy height and horizontal heterogeneity. This heterogeneity was assessed using a texture index calculated from the height-transition co-occurrence matrix. Overall accuracy exceeds 90%. The resulting product is the first vegetation map of Mayotte which emphasizes the structure over the composition.
Vestibular afferent responses to linear accelerations in the alert squirrel monkey
NASA Technical Reports Server (NTRS)
Somps, Christopher J.; Schor, Robert H.; Tomko, David L.
1994-01-01
The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.
Powder collection apparatus/method
Anderson, Iver E.; Terpstra, Robert L.; Moore, Jeffery A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing.
Reschke, Millard F; Wood, Scott J; Clément, Gilles
2018-01-01
Ground-based studies have reported shifts of the vestibulo-ocular reflex (VOR) slow phase velocity (SPV) axis toward the resultant gravito-inertial force vector. The VOR was examined during eccentric roll rotation before, during and after an 8-day orbital mission. On orbit this vector is aligned with the head z-axis. Our hypothesis was that eccentric roll rotation on orbit would generate horizontal eye movements. Two subjects were rotated in a semi-supine position with the head nasal-occipital axis parallel to the axis of rotation and 0.5 m off-center. The chair accelerated at 120 deg/s2 to 120 deg/s, rotated at constant velocity for one minute, and then decelerated to a stop in similar fashion. On Earth, the stimulation primarily generated torsional VOR. During spaceflight, in one subject torsional VOR became horizontal VOR, and then decayed very slowly. In the other subject, torsional VOR was reduced on orbit relative to pre- and post-flight, but the SPV axis did not rotate. We attribute the shift from torsional to horizontal VOR on orbit to a spatial orientation of velocity storage toward alignment with the gravito-inertial force vector, and the inter-individual difference to cognitive factors related to the subjective straight-ahead.
Germination of pine seed in weightlessness (investigation in Kosmos 782)
NASA Technical Reports Server (NTRS)
Platonova, R. N.; Parfenov, G. P.; Olkhovenko, V. P.; Karpova, N. I.; Pichugov, M. Y.
1978-01-01
An investigation was made of the orientation of aboveground and underground organs of pine plants grown from seed in weightlessness. Orientation was found to be caused by the position of the seeds relative to the substrate surface. Normal growth was manifest only for the plants grown from seed oriented with embryo toward the substrate. Differences were noted between experiment and control as to the quantitative content of nucleoli in the meristematic cells of the rootlets and the shape of cells in the cotyledonous leaflets. No complete agreement was found between data obtained in weightlessness and when gravity was compensated (clinostat treatment with horizontal rotation).
Two-stage magnetic orientation of uric acid crystals as gout initiators
NASA Astrophysics Data System (ADS)
Takeuchi, Y.; Miyashita, Y.; Mizukawa, Y.; Iwasaka, M.
2014-01-01
The present study focuses on the magnetic behavior of uric acid crystals, which are responsible for gout. Under a sub-Tesla (T)-level magnetic field, rotational motion of the crystals, which were caused by diamagnetic torque, was observed. We used horizontal magnetic fields with a maximum magnitude of 500 mT generated by an electromagnet to observe the magnetic orientation of the uric acid microcrystals by a microscope. The uric acid crystals showed a perpendicular magnetic field orientation with a minimum threshold of 130 mT. We speculate that the distinct diamagnetic anisotropy in the uric acid crystals resulted in their rotational responses.
1986-10-31
constructed from TeO2 sisting of lenses L6 and L- and a cylindrical lens C- material which is oriented to operate in the slow shear shape the Bragg...to focus the light into a horizontal line for efficient illumination. The Bragg cells are constructed from TeO2 material which is oriented to operate...source is a 10 mW He-Ne laser for which = 632.8 nm. The holographic element was constructed on a SO-120 glass plate with a reference-to-signal beam
Cooperation, competition and goal interdependence in work teams: a multilevel approach.
Aritzeta, Aitor; Balluerka, Nekane
2006-11-01
The aim of this research was to predict cooperative and competitive conflict management styles in 26 new start-up work teams (time 1), and after one year of functioning (time 2) in an automotive company. Vertical-horizontal, individualism-collectivism cultural patterns were used as predictive variables. It was predicted that goal interdependence would moderate the relationship between cultural patterns and conflict management styles. Because of the hierarchically nested data structure, a Multilevel Analysis approach was used. Horizontal and vertical collectivism increased cooperation, and horizontal and vertical individualism increased competition. Only when work teams had been functioning for a year, goal interdependence increased cooperation and interaction effects between goal interdependence and vertical types of individualism and collectivism were observed. Implications for team-building as organizational transformational strategies are discussed.
NASA Astrophysics Data System (ADS)
Powell, Charles; Jiang, Jing; Walters, Diane; Ediger, Mark
Vapor-deposited glasses are widely investigated for use in organic electronics including the emitting layers of OLED devices. These materials, while macroscopically homogenous, have anisotropic packing and molecular orientation. By controlling this orientation, outcoupling efficiency can be increased by aligning the transition dipole moment of the light-emitting molecules parallel to the substrate. Light-emitting molecules are typically dispersed in a host matrix, as such, it is imperative to understand molecular orientation in two-component systems. In this study we examine two-component vapor-deposited films and the orientations of the constituent molecules using spectroscopic ellipsometry, UV-vis and IR spectroscopy. The role of temperature, composition and molecular shape as it effects molecular orientation is examined for mixtures of DSA-Ph in Alq3 and in TPD. Deposition temperature relative to the glass transition temperature of the two-component mixture is the primary controlling factor for molecular orientation. In mixtures of DSA-Ph in Alq3, the linear DSA-Ph has a horizontal orientation at low temperatures and slight vertical orientation maximized at 0.96Tg,mixture, analogous to one-component films.
Self-regulation: from goal orientation to job performance.
Porath, Christine L; Bateman, Thomas S
2006-01-01
The authors investigated the effects on job performance of 3 forms of goal orientation and 4 self-regulation (SR) tactics. In a longitudinal field study with salespeople, learning and performance-prove goal orientation predicted subsequent sales performance, whereas performance-avoid goal orientation negatively predicted sales performance. The SR tactics functioned as mediating variables between learning and performance-prove goal orientations and performance. Social competence and proactive behavior directly and positively predicted sales performance, and emotional control negatively predicted performance. (c) 2006 APA, all rights reserved.
The development and testing of a novel cross axis wind turbine
NASA Astrophysics Data System (ADS)
Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.
2016-06-01
A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).
Deng, Jingen; Luo, Yong; Guo, Shisheng; Zhang, Haishan; Tan, Qiang; Zhao, Kai; Hu, Lianbo
2013-01-01
Long-term oil and gas exploitation in reservoir will lead to pore pressure depletion. The pore pressure depletion will result in changes of horizontal in-situ stresses both in reservoirs and caprock formations. Using the geophysics logging data, the magnitude and orientation changes of horizontal stresses in caprock and reservoir are studied. Furthermore, the borehole stability can be affected by in-situ stresses changes. To address this issue, the dehydration from caprock to reservoir and roof effect of caprock are performed. Based on that, the influence scope and magnitude of horizontal stresses reduction in caprock above the depleted reservoirs are estimated. The effects of development on borehole stability in both reservoir and caprock are studied step by step with the above geomechanical model. PMID:24228021
Orientation of human optokinetic nystagmus to gravity: a model-based approach
NASA Technical Reports Server (NTRS)
Gizzi, M.; Raphan, T.; Rudolph, S.; Cohen, B.
1994-01-01
Optokinetic nystagmus (OKN) was induced by having subjects watch a moving display in a binocular, head-fixed apparatus. The display was composed of 3.3 degrees stripes moving at 35 degrees/s for 45 s. It subtended 88 degrees horizontally by 72 degrees vertically of the central visual field and could be oriented to rotate about axes that were upright or tilted 45 degrees or 90 degrees. The head was held upright or was tilted 45 degrees left or right on the body during stimulation. Head-horizontal (yaw axis) and head-vertical (pitch axis) components of OKN were recorded with electro-oculography (EOG). Slow phase velocity vectors were determined and compared with the axis of stimulation and the spatial vertical (gravity axis). With the head upright, the axis of eye rotation during yaw axis OKN was coincident with the stimulus axis and the spatial vertical. With the head tilted, a significant vertical component of eye velocity appeared during yaw axis stimulation. As a result the axis of eye rotation shifted from the stimulus axis toward the spatial vertical. Vertical components developed within 1-2 s of stimulus onset and persisted until the end of stimulation. In the six subjects there was a mean shift of the axis of eye rotation during yaw axis stimulation of approximately 18 degrees with the head tilted 45 degrees on the body. Oblique optokinetic stimulation with the head upright was associated with a mean shift of the axis of eye rotation toward the spatial vertical of 9.2 degrees. When the head was tilted and the same oblique stimulation was given, the axis of eye rotation rotated to the other side of the spatial vertical by 5.4 degrees. This counterrotation of the axis of eye rotation is similar to the "Muller (E) effect," in which the perception of the upright is counterrotated to the opposite side of the spatial vertical when subjects are tilted in darkness. The data were simulated by a model of OKN with a "direct" and "indirect" pathway. It was assumed that the direct visual pathway is oriented in a body, not a spatial frame of reference. Despite the short optokinetic after-nystagmus time constants, strong horizontal to vertical cross-coupling could be produced if the horizontal and vertical time constants were in proper ratio and there were no suppression of nystagmus in directions orthogonal to the stimulus direction. The model demonstrates that the spatial orientation of OKN can be achieved by restructuring the system matrix of velocity storage. We conclude that an important function of velocity storage is to orient slow-phase velocity toward the spatial vertical during movement in a terrestrial environment.
Dragging a floating horizontal cylinder
NASA Astrophysics Data System (ADS)
Lee, Duck-Gyu; Kim, Ho-Young
2010-11-01
A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.
Liu, Yun-feng; Wang, Russell; Baur, Dale A.; Jiang, Xian-feng
2018-01-01
Objective: To investigate the stress distribution to the mandible, with and without impacted third molars (IM3s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography (CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces (Load I-front blow and Load II left blow) were evaluated using finite element analysis (FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3s. The condylar region had the highest stress when IM3s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk. PMID:29308606
Schouten, P; Parisi, A V
2011-02-07
Several broadband ultraviolet (UV) radiation angular distribution investigations have been previously presented. As the biologically damaging effectiveness of UV radiation is known to be wavelength dependent, it is necessary to expand this research into the distribution of the spectral UV. UV radiation is also susceptible to Rayleigh and Mie scattering processes, both of which are completely wavelength dependent. Additionally, the majority of previous measurements detailing the biologically damaging effect of spectral UV radiation have been oriented with respect to the horizontal plane or in a plane directed towards the sun (sun-normal), with the irradiance weighted against action spectra formulated specifically for human skin and tissue. However, the human body consists of very few horizontal or sun-normal surfaces. Extending the previous research by measuring the distribution of the spectral irradiance across the sky for the complete terrestrial solar UV waveband and weighting it against erythemal, photoconjunctivital and photokeratital action spectra allowed for the analysis of the differences between the biologically effective irradiance (UV(BE)) values intercepted at different orientations and the effect of scattering processes upon the homogeneity of these UV(BE) distributions. It was established that under the local atmospheric environment, the distribution profile of the UV(BE) for each biological response was anisotropic, with the highest intensities generally intercepted at inclination angles situated between the horizontal and vertical planes along orientations closely coinciding with the sun-normal. A finding from this was that the angular distributions of the erythemal UV(BE) and the photoconjunctivital UV(BE) were different, due to the differential scattering between the shorter and longer UV wavelengths within the atmosphere. Copyright © 2010 Elsevier B.V. All rights reserved.
Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Jenkins, Andrew
Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the stimulation treatment plan.
NASA Astrophysics Data System (ADS)
Heredia, A.; Bdikin, I.; Kopyl, S.; Mishina, E.; Semin, S.; Sigov, A.; German, K.; Bystrov, V.; Gracio, J.; Kholkin, A. L.
2010-11-01
Diphenylalanine (FF) peptide nanotubes (PNTs) represent a unique class of self-assembled functional biomaterials owing to a wide range of useful properties including nanostructural variability, mechanical rigidity and chemical stability. In addition, strong piezoelectric activity has recently been observed paving the way to their use as nanoscale sensors and actuators. In this work, we fabricated both horizontal and vertical FF PNTs and examined their optical second harmonic generation and local piezoresponse as a function of temperature. The measurements show a gradual decrease in polarization with increasing temperature accompanied by an irreversible phase transition into another crystalline phase at about 140-150 °C. The results are corroborated by the molecular dynamic simulations predicting an order-disorder phase transition into a centrosymmetric (possibly, orthorhombic) phase with antiparallel polarization orientation in neighbouring FF rings. Partial piezoresponse hysteresis indicates incomplete polarization switching due to the high coercive field in FF PNTs.
ERIC Educational Resources Information Center
McLean, Gary N.
1993-01-01
Principles of quality management applicable to education for secondary special populations include process orientation, cascading, top commitment, vertical/horizontal communication, continuous improvement, shared vision, primacy of customers, investment in people, constancy of purpose, and shared goal setting. (JOW)
Spatiotemporally Controlled Microchannels of Periodontal Mimic Scaffolds
Park, C.H.; Kim, K.H.; Rios, H.F.; Lee, Y.M.; Giannobile, W.V.; Seol, Y.J.
2014-01-01
Physiologic bioengineering of the oral, dental, and craniofacial complex requires optimized geometric organizations of fibrous connective tissues. A computer-designed, fiber-guiding scaffold has been developed to promote tooth-supporting periodontal tissue regeneration and functional restoration despite limited printing resolution for the manufacture of submicron-scaled features. Here, we demonstrate the use of directional freeze-casting techniques to control pore directional angulations and create mimicked topographies to alveolar crest, horizontal, oblique, and apical fibers of natural periodontal ligaments. For the differing anatomic positions, the gelatin displayed varying patterns of ice growth, determined via internal pore architectures. Regardless of the freezing coordinates, the longitudinal pore arrangements resulted in submicron-scaled diameters (~50 µm), along with corresponding high biomaterial porosity (~90%). Furthermore, the horizontal + coronal ((x→−y→) freezing orientation facilitated the creation of similar structures to major fibers in the periodontal ligament interface. This periodontal tissue-mimicking microenvironment is a potential tissue platform for the generation of naturally oriented ligamentous tissues consistent with periodontal ligament neogenesis. PMID:25216511
Cukur, Cem Safak; de Guzman, Maria Rosario T; Carlo, Gustavo
2004-12-01
The authors examined the links between two dimensions that have been useful in understanding cross-cultural differences and similarities, namely, individualism-collectivism (I-C) and value orientations. The authors examined the relations and parallels between the two variables by directly relating them and examining the patterns of relations that both have with a third variable, religiosity. Participants were 475 college students from the Philippines, the United States, and Turkey who responded to measures of horizontal and vertical I-C, value orientations, and religiosity. The authors found partial support for the parallels between I-C and value types, particularly for collectivism and conservative values. Moreover, religiosity was associated positively with conservative values and collectivism, across all three cultures. The authors found individualism to also relate to openness-to-change values, though the patterns were not as consistent as those that they found between collectivism and conservation. Differences and similarities emerged in links of I-C-values to religiosity across the three samples.
Information on stress conditions in the oceanic crust from oval fractures in a deep borehole
Morin, R.H.
1990-01-01
Oval images etched into the wall of a deep borehole were detected in DSDP Hole 504B, eastern equatorial Pacific Ocean, from analysis of an acoustic televiewer log. A systematic inspection of these ovals has identified intriguing consistencies in appearance that cannot be explained satisfactorily by a random, coincidental distribution of pillow lavas. As an alternative hypothesis, Mohr-Coulomb failure criterion is used to account for the generation and orientation of similarly curved, stress-induced fractures. Consequently, these oval features can be interpreted as fractures and related directly to stress conditions in the oceanic crust at this site. The azimuth of the oval center corresponds to the orientation of maximum horizontal principal stress (SH), and the oval width, which spans approximately 180?? of the borehole, is aligned with the azimuth of minimum horizontal principal stress (Sh). The oval height is controlled by the fracture angle and thus is a function of the coefficient of internal friction of the rock. -from Author
Visual and visually mediated haptic illusions with Titchener's ⊥.
Landwehr, Klaus
2014-05-01
For a replication and expansion of a previous experiment of mine, 14 newly recruited participants provided haptic and verbal estimates of the lengths of the two lines that make up Titchener's ⊥. The stimulus was presented at two different orientations (frontoparallel vs. horizontal) and rotated in steps of 45 deg around 2π. Haptically, the divided line of the ⊥ was generally underestimated, especially at a horizontal orientation. Verbal judgments also differed according to presentation condition and to which line was the target, with the overestimation of the undivided line ranging between 6.2 % and 15.3 %. The results are discussed with reference to the two-visual-systems theory of perception and action, neuroscientific accounts, and also recent historical developments (the use of handheld touchscreens, in particular), because the previously reported "haptic induction effect" (the scaling of haptic responses to the divided line of the ⊥, depending on the length of the undivided one) did not replicate.
Lithology-dependent In Situ Stress in Heterogeneous Carbonate Reservoirs
NASA Astrophysics Data System (ADS)
Pham, C. N.; Chang, C.
2017-12-01
Characterization of in situ stress state for various geomechanical aspects in petroleum development may be particularly difficult in carbonate reservoirs in which rock properties are generally heterogeneous. We demonstrate that the variation of in situ stress in highly heterogeneous carbonate reservoirs is closely related to the heterogeneity in rock mechanical property. The carbonate reservoir studied consists of numerous sequential layers gently folded, exhibiting wide ranges of porosity (0.01 - 0.29) and Young's modulus (25 - 85 GPa) depending on lithology. Wellbore breakouts and drilling-induced tensile fractures (DITFs) observed in the image logs obtained from several wells indicate that the in situ state of stress orientation changes dramatically with depth and location. Even in a wellbore, the azimuth of the maximum horizontal stress changes by as much as 60° within a depth interval of 500 m. This dramatic change in stress orientation is inferred to be due to the contrast in elastic properties between different rock layers which are bent by folding in the reservoir. The horizontal principal stress magnitudes are constrained by back-calculating stress conditions necessary to induce the observed wellbore failures using breakout width and the presence of DITFs. The horizontal stresses vary widely, which cannot be represented by a constant stress gradient with depth. The horizontal principal stress gradient increases with Young's modulus of layer monotonically, indicating that a stiffer layer conveys a higher horizontal stress. This phenomenon can be simulated using a numerical modelling, in which the horizontal stress magnitudes depend on stiffness of individual layers although the applied far-field stress conditions are constant. The numerical results also suggest that the stress concentration at the wellbore wall is essentially higher in a stiffer layer, promoting the possibility of wellbore breakout formation. These results are in agreement with our observation that breakouts are predominantly developed in the relatively stiff rocks, which corroborates the lithology-dependent in situ stress. Our study suggests that in situ stress may be estimated from rock mechanical properties if a unique relation can be found between stress and lithology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, S; Lu, H; Flanz, J
2015-06-15
Purpose: To ascertain the necessity of a proton gantry, as compared to the feasibility of using a horizontal fixed proton beam-line for treatment with advanced technology. Methods: To calculate the percentage of patients that can be treated with a horizontal fixed beam-line instead of a gantry, we analyze the distributions of beam orientations of our proton gantry patients treated over the past 10 years. We identify three horizontal fixed beam geometries (FIXED, BEND and MOVE) with the patient in lying and/or sitting positions. The FIXED geometry includes only table/chair rotations and translations. In BEND, the beam can be bent up/downmore » for up to 20 degrees. MOVE allows for patient head/body angle adjustment. Based on the analysis, we select eight patients whose plan involves beams which are still challenging to achieve with a horizontal fixed beam. These beams are removed in the pencil beam scanning (PBS) plan optimized for the fixed beam-line (PBS-fix). We generate non-coplanar PBS-gantry plans for comparison, and perform a robustness analysis. Results: The percentage of patients with head-and-neck/brain tumors that can be treated with horizontal fixed beam is 44% in FIXED, 70% in 20-degrees BEND, and 100% in 90-degrees MOVE. For torso regions, 99% of the patients can be treated in 20-degree BEND. The target coverage is more homogeneous with PBS-fix plans compared to the clinical scattering treatment plans. The PBS-fix plans reduce the mean dose to organs-at-risk by a factor of 1.1–28.5. PBS-gantry plans are as good as PBS-fix plans, sometimes marginally better. Conclusion: The majority of the beam orientations can be realized with a horizontal fixed beam-line. Challenging non-coplanar beams can be eliminated with PBS delivery. Clinical implementation of the proposed fixed beam-line requires use of robotic patient positioning, further developments in immobilization, and image guidance. However, our results suggest that fixed beam-lines can be as effective as gantries.« less
Fault reactivation and seismicity risk from CO2 sequestration in the Chinshui gas field, NW Taiwan
NASA Astrophysics Data System (ADS)
Sung, Chia-Yu; Hung, Jih-Hao
2015-04-01
The Chinshui gas field located in the fold-thrust belt of western Taiwan was a depleted reservoir. Recently, CO2 sequestration has been planned at shallower depths of this structure. CO2 injection into reservoir will generate high fluid pressure and trigger slip on reservoir-bounding faults. We present detailed in-situ stresses from deep wells in the Chinshui gas field and evaluated the risk of fault reactivation for underground CO2 injection. The magnitudes of vertical stress (Sv), formation pore pressure (Pf) and minimum horizontal stress (Shmin) were obtained from formation density logs, repeat formation tests, sonic logs, mud weight, and hydraulic fracturing including leak-off tests and hydraulic fracturing. The magnitude of maximum horizontal stress (SHmax) was constrained by frictional limit of critically stressed faults. Results show that vertical stress gradient is about 23.02 MPa/km (1.02 psi/ft), and minimum horizontal stress gradient is 18.05 MPa/km (0.80 psi/ft). Formation pore pressures were hydrostatic at depths 2 km, and increase with a gradient of 16.62 MPa/km (0.73 psi/ft). The ratio of fluid pressure and overburden pressure (λp) is 0.65. The upper bound of maximum horizontal stress constrained by strike-slip fault stress regime (SHmax>Sv>Shmin) and coefficient of friction (μ=0.6) is about 18.55 MPa/km (0.82 psi/ft). The orientation of maximum horizontal stresses was calculated from four-arm caliper tools through the methodology suggested by World Stress Map (WMS). The mean azimuth of preferred orientation of borehole breakouts are in ~65。N. Consequently, the maximum horizontal stress axis trends in 155。N and sub-parallel to the far-field plate-convergence direction. Geomechanical analyses of the reactivation of pre-existing faults was assessed using 3DStress and Traptester software. Under current in-situ stress, the middle block fault has higher slip tendency, but still less than frictional coefficient of 0.6 a common threshold value for motion on incohesive faults. The results also indicate that CO2 injection in the Chinshui gas field will not compromise the stability of faults.
Callegary, J.B.; Ferré, T.P.A.; Groom, R.W.
2007-01-01
Vertical spatial sensitivity and effective depth of exploration (d e) of low-induction-number (LIN) instruments over a layered soil were evaluated using a complete numerical solution to Maxwell's equations. Previous studies using approximate mathematical solutions predicted a vertical spatial sensitivity for instruments operating under LIN conditions that, for a given transmitter-receiver coil separation (s), coil orientation, and transmitter frequency, should depend solely on depth below the land surface. When not operating under LIN conditions, vertical spatial sensitivity and de also depend on apparent soil electrical conductivity (??a) and therefore the induction number (??). In this new evaluation, we determined the range of ??a and ?? values for which the LIN conditions hold and how de changes when they do not. Two-layer soil models were simulated with both horizontal (HCP) and vertical (VCP) coplanar coil orientations. Soil layers were given electrical conductivity values ranging from 0.1 to 200 mS m-1. As expected, de decreased as ??a increased. Only the least electrically conductive soil produced the de expected when operating under LIN conditions. For the VCP orientation, this was 1.6s, decreasing to 0.8s in the most electrically conductive soil. For the HCP orientation, de decreased from 0.76s to 0.51s. Differences between this and previous studies are attributed to inadequate representation of skin-depth effect and scattering at interfaces between layers. When using LIN instruments to identify depth to water tables, interfaces between soil layers, and variations in salt or moisture content, it is important to consider the dependence of de on ??a. ?? Soil Science Society of America.
NASA Astrophysics Data System (ADS)
Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.
2017-11-01
The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.
Sullivan, Sarah; Eucker, Stephanie A; Gabrieli, David; Bradfield, Connor; Coats, Brittany; Maltese, Matthew R; Lee, Jongho; Smith, Colin; Margulies, Susan S
2015-08-01
A systematic correlation between finite element models (FEMs) and histopathology is needed to define deformation thresholds associated with traumatic brain injury (TBI). In this study, a FEM of a transected piglet brain was used to reverse engineer the range of optimal shear moduli for infant (5 days old, 553-658 Pa) and 4-week-old toddler piglet brain (692-811 Pa) from comparisons with measured in situ tissue strains. The more mature brain modulus was found to have significant strain and strain rate dependencies not observed with the infant brain. Age-appropriate FEMs were then used to simulate experimental TBI in infant (n=36) and preadolescent (n=17) piglets undergoing a range of rotational head loads. The experimental animals were evaluated for the presence of clinically significant traumatic axonal injury (TAI), which was then correlated with FEM-calculated measures of overall and white matter tract-oriented tissue deformations, and used to identify the metric with the highest sensitivity and specificity for detecting TAI. The best predictors of TAI were the tract-oriented strain (6-7%), strain rate (38-40 s(-1), and strain times strain rate (1.3-1.8 s(-1) values exceeded by 90% of the brain. These tract-oriented strain and strain rate thresholds for TAI were comparable to those found in isolated axonal stretch studies. Furthermore, we proposed that the higher degree of agreement between tissue distortion aligned with white matter tracts and TAI may be the underlying mechanism responsible for more severe TAI after horizontal and sagittal head rotations in our porcine model of nonimpact TAI than coronal plane rotations.
Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation
NASA Technical Reports Server (NTRS)
Foster, J. L.; Barton, J. S.; Chang, A. T. C.; Hall, D. K.
1999-01-01
For this study, consideration is given to the role crystal orientation plays in scattering and absorbing microwave radiation. A discrete dipole scattering model is used to measure the passive microwave radiation, at two polarizations (horizontal and vertical), scattered by snow crystals oriented in random and non random positions, having various sizes (ranging between 1 micrometers to 10,000 micrometers in radius), and shapes (including spheroids, cylinders, hexagons). The model results demonstrate that for the crystal sizes typically found in a snowpack, crystal orientation is insignificant compared to crystal size in terms of scattering microwave energy in the 8,100 gm (37 GHz) region of the spectrum. Therefore, the assumption used in radiative transfer approaches, where snow crystals are modeled as randomly oriented spheres, is adequate to account for the transfer of microwave energy emanating from the ground and passing through a snowpack.
Orientation priming of grasping decision for drawings of objects and blocks, and words.
Chainay, Hanna; Naouri, Lucie; Pavec, Alice
2011-05-01
This study tested the influence of orientation priming on grasping decisions. Two groups of 20 healthy participants had to select a preferred grasping orientation (horizontal, vertical) based on drawings of everyday objects, geometric blocks or object names. Three priming conditions were used: congruent, incongruent and neutral. The facilitating effects of priming were observed in the grasping decision task for drawings of objects and blocks but not object names. The visual information about congruent orientation in the prime quickened participants' responses but had no effect on response accuracy. The results are discussed in the context of the hypothesis that an object automatically potentiates grasping associated with it, and that the on-line visual information is necessary for grasping potentiation to occur. The possibility that the most frequent orientation of familiar objects might be included in object-action representation is also discussed.
Gravity modulates Listing's plane orientation during both pursuit and saccades
NASA Technical Reports Server (NTRS)
Hess, Bernhard J M.; Angelaki, Dora E.
2003-01-01
Previous studies have shown that the spatial organization of all eye orientations during visually guided saccadic eye movements (Listing's plane) varies systematically as a function of static and dynamic head orientation in space. Here we tested if a similar organization also applies to the spatial orientation of eye positions during smooth pursuit eye movements. Specifically, we characterized the three-dimensional distribution of eye positions during horizontal and vertical pursuit (0.1 Hz, +/-15 degrees and 0.5 Hz, +/-8 degrees) at different eccentricities and elevations while rhesus monkeys were sitting upright or being statically tilted in different roll and pitch positions. We found that the spatial organization of eye positions during smooth pursuit depends on static orientation in space, similarly as during visually guided saccades and fixations. In support of recent modeling studies, these results are consistent with a role of gravity on defining the parameters of Listing's law.
Visuo-oculomotor skills related to the visual demands of sporting environments.
Ceyte, Hadrien; Lion, Alexis; Caudron, Sébastien; Perrin, Philippe; Gauchard, Gérome C
2017-01-01
The aim of this study was to assess the visuo-oculomotor skills of gaze orientation in selected sport activities relative to visual demands of the sporting environment. Both temporal and spatial demands of the sporting environment were investigated: The latency and accuracy of horizontal saccades and the gain of the horizontal smooth pursuit of the sporting environment were investigated in 16 fencers, 19 tennis players, 12 gymnasts, 9 swimmers and 18 sedentary participants. For the saccade test, two sequences were tested: In the fixed sequence, participants knew in advance the time interval between each target, as well as the direction and the amplitude of its reappearance; in the Freyss sequence however, the spatial changes of the target (direction and amplitude) were known in advance by participants but the time interval between each target was unknown. For the smooth-pursuit test, participants were instructed to smoothly track a target moving in a predictable sinusoidal, horizontal way without corrective ocular saccades, nor via anticipation or head movements. The results showed no significant differences between specificities of selected sporting activities via the saccade latency (although shorter than in non-athletes), contrary to saccade accuracy and the gain of smooth pursuit. Higher saccade accuracy was observed overall in fencers compared to non-athletes and all other sportsmen with the exception of tennis players. In the smooth-pursuit task, only tennis players presented a significantly higher gain compared to non-athletes and gymnasts. These sport-specific characteristics of the visuo-oculomotor skills are discussed with regard to the different cognitive skills such as attentional allocation and cue utilization ability as well as with regard to the difference in motor preparation.
Evidence against global attention filters selective for absolute bar-orientation in human vision.
Inverso, Matthew; Sun, Peng; Chubb, Charles; Wright, Charles E; Sperling, George
2016-01-01
The finding that an item of type A pops out from an array of distractors of type B typically is taken to support the inference that human vision contains a neural mechanism that is activated by items of type A but not by items of type B. Such a mechanism might be expected to yield a neural image in which items of type A produce high activation and items of type B low (or zero) activation. Access to such a neural image might further be expected to enable accurate estimation of the centroid of an ensemble of items of type A intermixed with to-be-ignored items of type B. Here, it is shown that as the number of items in stimulus displays is increased, performance in estimating the centroids of horizontal (vertical) items amid vertical (horizontal) distractors degrades much more quickly and dramatically than does performance in estimating the centroids of white (black) items among black (white) distractors. Together with previous findings, these results suggest that, although human vision does possess bottom-up neural mechanisms sensitive to abrupt local changes in bar-orientation, and although human vision does possess and utilize top-down global attention filters capable of selecting multiple items of one brightness or of one color from among others, it cannot use a top-down global attention filter capable of selecting multiple bars of a given absolute orientation and filtering bars of the opposite orientation in a centroid task.
Modelling of the UV Index on vertical and 40° tilted planes for different orientations.
Serrano, D; Marín, M J; Utrillas, M P; Tena, F; Martínez-Lozano, J A
2012-02-01
In this study, estimated data of the UV Index on vertical planes are presented for the latitude of Valencia, Spain. For that purpose, the UVER values have been generated on vertical planes by means of four different geometrical models a) isotropic, b) Perez, c) Gueymard, d) Muneer, based on values of the global horizontal UVER and the diffuse horizontal UVER, measured experimentally. The UVER values, obtained by any model, overestimate the experimental values for all orientations, with the exception of the Perez model for the East plane. The results show statistical values of the MAD parameter (Mean Absolute Deviation) between 10% and 25%, the Perez model being the one that obtained a lower MAD for all levels. As for the statistic RMSD parameter (Root Mean Square Deviation), the results show values between 17% and 32%, and again the Perez model provides the best results in all vertical planes. The difference between the estimated UV Index and the experimental UV Index, for vertical and 40° tilted planes, was also calculated. 40° is an angle close to the latitude of Burjassot, Valencia, (39.5°), which, according to various studies, is the optimum angle to capture maximum radiation on tilted planes. We conclude that the models provide a good estimate of the UV Index, as they coincide or differ in one unit compared to the experimental values in 99% of cases, and this is valid for all orientations. Finally, we examined the relation between the UV Index on vertical and 40° tilted planes, both the experimental and estimated by the Perez model, and the experimental UV Index on a horizontal plane at 12 GMT. Based on the results, we can conclude that it is possible to estimate with a good approximation the UV Index on vertical and 40° tilted planes in different directions on the basis of the experimental horizontal UVI value, thus justifying the interest of this study. This journal is © The Royal Society of Chemistry and Owner Societies 2012
Slip-parallel seismic lineations on the Northern Hayward Fault, California
Waldhauser, F.; Ellsworth, W.L.; Cole, A.
1999-01-01
A high-resolution relative earthquake location procedure is used to image the fine-scale seismicity structure of the northern Hayward fault, California. The seismicity defines a narrow, near-vertical fault zone containing horizontal alignments of hypocenters extending along the fault zone. The lineations persist over the 15-year observation interval, implying the localization of conditions on the fault where brittle failure conditions are met. The horizontal orientation of the lineations parallels the slip direction of the fault, suggesting that they are the result of the smearing of frictionally weak material along the fault plane over thousands of years.
Laboratory research of fracture geometry in multistage HFF in triaxial state
NASA Astrophysics Data System (ADS)
Bondarenko, T. M.; Hou, B.; Chen, M.; Yan, L.
2017-05-01
Multistage hydraulic fracturing of formation (HFF) in wells with horizontal completion is an efficientmethod for intensifying oil extraction which, as a rule, is used to develop nontraditional collectors. It is assumed that the complicated character of HFF fractures significantly influences the fracture geometry in the rock matrix. Numerous theoretical models proposed to predict the fracture geometry and the character of interaction of mechanical stresses in the multistage HFF have not been proved experimentally. In this paper, we present the results of laboratory modeling of the multistage HFF performed on a contemporary laboratory-scale plant in the triaxial stress state by using a gel-solution as the HFF agent. As a result of the experiment, a fracturing pattern was formed in the cubic specimen of the model material. The laboratory results showed that a nearly plane fracture is formed at the firstHFF stage, while a concave fracture is formed at the second HFF stage. The interaction of the stress fields created by the two principal HFF fractures results in the growth of secondary fractures whose directions turned out to be parallel to the modeled well bore. But this stress interference leads to a decrease in the width of the second principal fracture. It is was discovered that the penny-shaped fracture model is more appropriate for predicting the geometry of HFF fractures in horizontal wells than the two-dimensional models of fracture propagation (PKN model, KGD model). A computational experiment based on the boundary element method was carried out to obtain the qualitative description of the multistage HFF processes. As a result, a mechanical model of fracture propagation was constructed,which was used to obtain the mechanical stress field (the stress contrast) and the fracture opening angle distribution over fracture length and fracture orientation direction. The conclusions made in the laboratory modeling of the multistage HFF technology agree well with the conclusions made in the computational experiment. Special attention must be paid to the design of the HFF stage spacing density in the implementation of the multistage HFF in wells with horizontal completion.
Active stress along the ne external margin of the Apennines: the Ferrara arc, northern Italy
NASA Astrophysics Data System (ADS)
Montone, Paola; Mariucci, M. Teresa
1999-09-01
We have analysed borehole breakout data from 12 deep wells in order to constrain the direction of the minimum and maximum horizontal stress in a part of the Po Plain, northern Italy, characterised by a ˜N-S prevailing compressional stress regime, and in order to shed light on the regional state of stress and on the correlation between the active stress field and the orientation of tectonic structures. The results have been compared with seismological data relating to 1988-1995 crustal seismicity (2.5< Md<4.8) and to the 1983 Parma ( Ms=5.0) and the 1996 Reggio Emilia ( Ms=5.1) events. Plio-Pleistocene mesostructural data are also described in order to better define the present-day stress field and to understand the active tectonic processes in particular stress provinces. The borehole breakout analysis, in accordance with the seismicity and mesostructural data, shows the presence of a predominant compression area, characterised by approximately N-S maximum horizontal stress, along the outer thrust of the Ferrara arc. Particularly, the breakout analysis indicates a minimum horizontal stress, N81W±22° relative to a total of eleven analysed wells, with 3746 m cumulative total length of breakout zones. Among these, nine wells are located in the same tectonic structure, consisting of an arc of asymmetric folds overthrust towards the NE. The breakout results for these wells are quite similar in terms of minimum horizontal stress direction (˜E-W oriented). The other two wells are located in the outside sector of the arc and one of them shows a different minimum horizontal stress direction, probably distinctive of another tectonic unit. On the basis of these new reliable stress indicators, the active compressive front in this area is located along the termination of the external northern Apenninic arc.
An examination of the degrees of freedom of human jaw motion in speech and mastication.
Ostry, D J; Vatikiotis-Bateson, E; Gribble, P L
1997-12-01
The kinematics of human jaw movements were assessed in terms of the three orientation angles and three positions that characterize the motion of the jaw as a rigid body. The analysis focused on the identification of the jaw's independent movement dimensions, and was based on an examination of jaw motion paths that were plotted in various combinations of linear and angular coordinate frames. Overall, both behaviors were characterized by independent motion in four degrees of freedom. In general, when jaw movements were plotted to show orientation in the sagittal plane as a function of horizontal position, relatively straight paths were observed. In speech, the slopes and intercepts of these paths varied depending on the phonetic material. The vertical position of the jaw was observed to shift up or down so as to displace the overall form of the sagittal plane motion path of the jaw. Yaw movements were small but independent of pitch, and vertical and horizontal position. In mastication, the slope and intercept of the relationship between pitch and horizontal position were affected by the type of food and its size. However, the range of variation was less than that observed in speech. When vertical jaw position was plotted as a function of horizontal position, the basic form of the path of the jaw was maintained but could be shifted vertically. In general, larger bolus diameters were associated with lower jaw positions throughout the movement. The timing of pitch and yaw motion differed. The most common pattern involved changes in pitch angle during jaw opening followed by a phase predominated by lateral motion (yaw). Thus, in both behaviors there was evidence of independent motion in pitch, yaw, horizontal position, and vertical position. This is consistent with the idea that motions in these degrees of freedom are independently controlled.
SU-G-BRB-12: Polarity Effects in Small Volume Ionization Chambers in Small Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, V; Parsai, E; Mathew, D
2016-06-15
Purpose: Dosimetric quantities such as the polarity correction factor (Ppol) are important parameters for determining the absorbed dose and can influence the choice of dosimeter. Ppol has been shown to depend on beam energy, chamber design, and field size. This study is to investigate the field size and detector orientation dependence of Ppol in small fields for several commercially available micro-chambers. Methods: We evaluate the Exradin A26, Exradin A16, PTW 31014, PTW 31016, and two prototype IBA CC-01 micro-chambers in both horizontal and vertical orientations. Measurements were taken at 10cm depth and 100cm SSD in a Wellhofer BluePhantom2. Measurements weremore » made at square fields of 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.4, 3.0, and 5.0 cm on each side using 6MV with both ± 300VDC biases. PPol was evaluated as described in TG-51, reported using −300VDC bias for Mraw. Ratios of PPol measured in the clinical field to the reference field are presented. Results: A field size dependence of Ppol was observed for all chambers, with increased variations when mounted vertically. The maximum variation observed in PPol over all chambers mounted horizontally was <1%, and occurred at different field sizes for different chambers. Vertically mounted chambers demonstrated variations as large as 3.2%, always at the smallest field sizes. Conclusion: Large variations in Ppol were observed for vertically mounted chambers compared to horizontal mountings. Horizontal mountings demonstrated a complicated relationship between polarity variation and field size, probably relating to differing details in each chambers construction. Vertically mounted chambers consistently demonstrated the largest PPol variations for the smallest field sizes. Measurements obtained with a horizontal mounting appear to not need significant polarity corrections for relative measurements, while those obtained using a vertical mounting should be corrected for variations in PPol.« less
2015-12-11
diameter) are consistent with theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short...theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short-term (less than a few seconds... turbulent , quasi-horizontal interfaces, or “sheets”. Collocated in- situ and optical field measurements conducted in the atmospheric surface layer
Image segregation in strabismic amblyopia.
Levi, Dennis M
2007-06-01
Humans with naturally occurring amblyopia show deficits thought to involve mechanisms downstream of V1. These include excessive crowding, abnormal global image processing, spatial sampling and symmetry detection and undercounting. Several recent studies suggest that humans with naturally occurring amblyopia show deficits in global image segregation. The current experiments were designed to study figure-ground segregation in amblyopic observers with documented deficits in crowding, symmetry detection, spatial sampling and counting, using similar stimuli. Observers had to discriminate the orientation of a figure (an "E"-like pattern made up of 17 horizontal Gabor patches), embedded in a 7x7 array of Gabor patches. When the 32 "background" patches are vertical, the "E" pops-out, due to segregation by orientation and performance is perfect; however, if the background patches are all, or mostly horizontal, the "E" is camouflaged, and performance is random. Using a method of constant stimuli, we varied the number of "background" patches that were vertical and measured the probability of correct discrimination of the global orientation of the E (up/down/left/right). Surprisingly, amblyopes who showed strong crowding and deficits in symmetry detection and counting, perform normally or very nearly so in this segregation task. I therefore conclude that these deficits are not a consequence of abnormal segregation of figure from background.
NASA Astrophysics Data System (ADS)
van Cauwelaert, Javier; Cleveland, Robin O.
2003-10-01
Micro computed tomography (CT) imaging was used to follow the progressive development of cracks in artificial kidney stones. The artificial stones were made from U30 cement with a cylindrical shape (6.5 mm diameter and 8.5 mm long). The stones were held within a polypropylene vial in one of three orientations: vertical, horizontal, and angled at 45 deg. The stones were treated with an electromagnetic lithotripter and the initiation and growth of cracks was observed using microCT. The images show that the orientation of the stones with respect to the shock changes the dominant mechanism for fragmentation. Vertical stones developed a spall-like crack near the distal surface, which propagated from the surface to the interior of the stone. Initiation of a secondary spall-like crack was observed proximal to the first crack. Little surface damage was observed. Horizontal stones presented pitting in the proximal surface and erosion in lateral faces, indicating the action of cavitation. Angled stones presented both spall-like fracture in either the leading or the distal corners and surface damage (pitting) in the proximal surface. Experiments are being performed to follow the development of cracks in human kidney stones. [Work supported by the Whitaker Foundation.
Predicting catastrophes of non-autonomous networks with visibility graphs and horizontal visibility
NASA Astrophysics Data System (ADS)
Zhang, Haicheng; Xu, Daolin; Wu, Yousheng
2018-05-01
Prediction of potential catastrophes in engineering systems is a challenging problem. We first attempt to construct a complex network to predict catastrophes of a multi-modular floating system in advance of their occurrences. Response time series of the system can be mapped into an virtual network by using visibility graph or horizontal visibility algorithm. The topology characteristics of the networks can be used to forecast catastrophes of the system. Numerical results show that there is an obvious corresponding relationship between the variation of topology characteristics and the onset of catastrophes. A Catastrophe Index (CI) is proposed as a numerical indicator to measure a qualitative change from a stable state to a catastrophic state. The two approaches, the visibility graph and horizontal visibility algorithms, are compared by using the index in the reliability analysis with different data lengths and sampling frequencies. The technique of virtual network method is potentially extendable to catastrophe predictions of other engineering systems.
How predation shaped fish: the impact of fin spines on body form evolution across teleosts.
Price, S A; Friedman, S T; Wainwright, P C
2015-11-22
It is well known that predators can induce morphological changes in some fish: individuals exposed to predation cues increase body depth and the length of spines. We hypothesize that these structures may evolve synergistically, as together, these traits will further enlarge the body dimensions of the fish that gape-limited predators must overcome. We therefore expect that the orientation of the spines will predict which body dimension increases in the presence of predators. Using phylogenetic comparative methods, we tested this prediction on the macroevolutionary scale across 347 teleost families, which display considerable variation in fin spines, body depth and width. Consistent with our predictions, we demonstrate that fin spines on the vertical plane (dorsal and anal fins) are associated with a deeper-bodied optimum. Lineages with spines on the horizontal plane (pectoral fins) are associated with a wider-bodied optimum. Optimal body dimensions across lineages without spines paralleling the body dimension match the allometric expectation. Additionally, lineages with longer spines have deeper and wider body dimensions. This evolutionary relationship between fin spines and body dimensions across teleosts reveals functional synergy between these two traits and a potential macroevolutionary signature of predation on the evolutionary dynamics of body shape. © 2015 The Author(s).
Optical and neural anisotropy in peripheral vision
Zheleznyak, Len; Barbot, Antoine; Ghosh, Atanu; Yoon, Geunyoung
2016-01-01
Optical blur in the peripheral retina is known to be highly anisotropic due to nonrotationally symmetric wavefront aberrations such as astigmatism and coma. At the neural level, the visual system exhibits anisotropies in orientation sensitivity across the visual field. In the fovea, the visual system shows higher sensitivity for cardinal over diagonal orientations, which is referred to as the oblique effect. However, in the peripheral retina, the neural visual system becomes more sensitive to radially-oriented signals, a phenomenon known as the meridional effect. Here, we examined the relative contributions of optics and neural processing to the meridional effect in 10 participants at 0°, 10°, and 20° in the temporal retina. Optical anisotropy was quantified by measuring the eye's habitual wavefront aberrations. Alternatively, neural anisotropy was evaluated by measuring contrast sensitivity (at 2 and 4 cyc/deg) while correcting the eye's aberrations with an adaptive optics vision simulator, thus bypassing any optical factors. As eccentricity increased, optical and neural anisotropy increased in magnitude. The average ratio of horizontal to vertical optical MTF (at 2 and 4 cyc/deg) at 0°, 10°, and 20° was 0.96 ± 0.14, 1.41 ± 0.54 and 2.15 ± 1.38, respectively. Similarly, the average ratio of horizontal to vertical contrast sensitivity with full optical correction at 0°, 10°, and 20° was 0.99 ± 0.15, 1.28 ± 0.28 and 1.75 ± 0.80, respectively. These results indicate that the neural system's orientation sensitivity coincides with habitual blur orientation. These findings support the neural origin of the meridional effect and raise important questions regarding the role of peripheral anisotropic optical quality in developing the meridional effect and emmetropization. PMID:26928220
Biagioni, Audrey Francisco; dos Anjos-Garcia, Tayllon; Ullah, Farhad; Fisher, Isaac René; Falconi-Sobrinho, Luiz Luciano; de Freitas, Renato Leonardo; Felippotti, Tatiana Tocchini; Coimbra, Norberto Cysne
2016-02-01
Inhibition of GABAergic neural inputs to dorsal columns of the periaqueductal grey matter (dPAG), posterior (PH) and dorsomedial (DMH) hypothalamic nuclei elicits distinct types of escape behavioural reactions. To differentiate between the variety and intensity of panic-related behaviours, the pattern of defensive behaviours evoked by blockade of GABAA receptors in the DMH, PH and dPAG were compared in a circular open-field test and in a recently designed polygonal arena. In the circular open-field, the defensive behaviours induced by microinjection of bicuculline into DMH and PH were characterised by defensive alertness behaviour and vertical jumps preceded by rearing exploratory behaviour. On the other hand, explosive escape responses interspersed with horizontal jumps and freezing were observed after the blockade of GABAA receptors on dPAG neurons. In the polygonal arena apparatus, the escape response produced by GABAergic inhibition of DMH and PH neurons was directed towards the burrow. In contrast, the blockade of GABAA receptors in dPAG evoked non-oriented escape behaviour characterised by vigorous running and horizontal jumps in the arena. Our findings support the hypothesis that the hypothalamic nuclei organise oriented escape behavioural responses whereas non-oriented escape is elaborated by dPAG neurons. Additionally, the polygonal arena with a burrow made it easy to discriminate and characterise these two different patterns of escape behavioural responses. In this sense, the polygonal arena with a burrow can be considered a good methodological tool to discriminate between these two different patterns of escape behavioural responses and is very useful as a new experimental animal model of panic attacks. Copyright © 2015 Elsevier B.V. All rights reserved.
Herman, Matthew W.; Herrmann, Robert B.; Benz, Harley M.; Furlong, Kevin P.
2014-01-01
On September 3, 2010, a MW 7.0 (U.S. Geological Survey moment magnitude) earthquake ruptured across the Canterbury Plains in South Island, New Zealand. Since then, New Zealand GNS Science has recorded over 10,000 aftershocks ML 2.0 and larger, including three destructive ~ MW 6.0 earthquakes near Christchurch. We treat the Canterbury earthquake sequence as an intraplate earthquake sequence, and compare its kinematics to an Andersonian model for fault slip in a uniform stress field. We determined moment magnitudes and double couple solutions for 150 earthquakes having MW 3.7 and larger through the use of a waveform inversion technique using data from broadband seismic stations on South Island, New Zealand. The majority (126) of these double couple solutions have strike-slip focal mechanisms, with right-lateral slip on ENE fault planes or equivalently left-lateral slip on SSE fault planes. The remaining focal mechanisms indicate reverse faulting, except for two normal faulting events. The strike-slip segments have compatible orientations for slip in a stress field with a horizontal σ1 oriented ~ N115°E, and horizontal σ3. The preference for right lateral strike-slip earthquakes suggests that these structures are inherited from previous stages of deformation. Reverse slip is interpreted to have occurred on previously existing structures in regions with an absence of existing structures optimally oriented for strike-slip deformation. Despite the variations in slip direction and faulting style, most aftershocks had nearly the same P-axis orientation, consistent with the regional σ1. There is no evidence for significant changes in these stress orientations throughout the Canterbury earthquake sequence.
NASA Astrophysics Data System (ADS)
Soh, Inho; Chang, Chandong; Lee, Junhyung; Hong, Tae-Kyung; Park, Eui-Seob
2018-05-01
We characterize the present-day stress state in and around the Korean Peninsula using formal inversions of earthquake focal mechanisms. Two different methods are used to select preferred fault planes in the double-couple focal mechanism solutions: one that minimizes average misfit angle and the other choosing faults with higher instability. We invert selected sets of fault planes for estimating the principal stresses at regularly spaced grid points, using a circular-area data-binning method, where the bin radius is optimized to yield the best possible stress inversion results based on the World Stress Map quality ranking scheme. The inversions using the two methods yield well constrained and fairly comparable results, which indicate that the prevailing stress regime is strike-slip, and the maximum horizontal principal stress (SHmax) is oriented ENE-WSW throughout the study region. Although the orientation of the stresses is consistent across the peninsula, the relative stress magnitude parameter (R-value) varies significantly, from 0.22 in the northwest to 0.89 in the southeast. Based on our knowledge of the R-values and stress regime, and using a value for vertical stress (Sv) estimated from the overburden weight of rock, together with a value for the maximum differential stress (based on the Coulomb friction of faults optimally oriented for slip), we estimate the magnitudes of the two horizontal principal stresses. The horizontal stress magnitudes increase from west to east such that SHmax/Sv ratio rises from 1.5 to 2.4, and the Shmin/Sv ratio from 0.6 to 0.8. The variation in the magnitudes of the tectonic stresses appears to be related to differences in the rigidity of crustal rocks. Using the complete stress tensors, including both orientations and magnitudes, we assess the possible ranges of frictional coefficients for different types of faults. We show that normal and reverse faults have lower frictional coefficients than strike-slip faults, suggesting that the former types of faults can be activated under a strike-slip stress regime. Our observations of the seismicity, with normal faulting concentrated offshore to the northwest and reverse faulting focused offshore to the east, are compatible with the results of our estimates of stress magnitudes.
Ernst, Udo A.; Schiffer, Alina; Persike, Malte; Meinhardt, Günter
2016-01-01
Processing natural scenes requires the visual system to integrate local features into global object descriptions. To achieve coherent representations, the human brain uses statistical dependencies to guide weighting of local feature conjunctions. Pairwise interactions among feature detectors in early visual areas may form the early substrate of these local feature bindings. To investigate local interaction structures in visual cortex, we combined psychophysical experiments with computational modeling and natural scene analysis. We first measured contrast thresholds for 2 × 2 grating patch arrangements (plaids), which differed in spatial frequency composition (low, high, or mixed), number of grating patch co-alignments (0, 1, or 2), and inter-patch distances (1° and 2° of visual angle). Contrast thresholds for the different configurations were compared to the prediction of probability summation (PS) among detector families tuned to the four retinal positions. For 1° distance the thresholds for all configurations were larger than predicted by PS, indicating inhibitory interactions. For 2° distance, thresholds were significantly lower compared to PS when the plaids were homogeneous in spatial frequency and orientation, but not when spatial frequencies were mixed or there was at least one misalignment. Next, we constructed a neural population model with horizontal laminar structure, which reproduced the detection thresholds after adaptation of connection weights. Consistent with prior work, contextual interactions were medium-range inhibition and long-range, orientation-specific excitation. However, inclusion of orientation-specific, inhibitory interactions between populations with different spatial frequency preferences were crucial for explaining detection thresholds. Finally, for all plaid configurations we computed their likelihood of occurrence in natural images. The likelihoods turned out to be inversely related to the detection thresholds obtained at larger inter-patch distances. However, likelihoods were almost independent of inter-patch distance, implying that natural image statistics could not explain the crowding-like results at short distances. This failure of natural image statistics to resolve the patch distance modulation of plaid visibility remains a challenge to the approach. PMID:27757076
Longitudinal Retention of Anatomical Knowledge in Second-year Medical Students
ERIC Educational Resources Information Center
Doomernik, Denise E.; van Goor, Harry; Kooloos, Jan G. M.; ten Broek, Richard P.
2017-01-01
The Radboud University Medical Center has a problem-based, learner-oriented, horizontally, and vertically integrated medical curriculum. Anatomists and clinicians have noticed students' decreasing anatomical knowledge and the disability to apply knowledge in diagnostic reasoning and problem solving. In a longitudinal cohort, the retention of…
Code of Federal Regulations, 2010 CFR
2010-01-01
... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... orientation of the hinge axis shall be horizontal. A plane surface shall be applied to any protrusion from the... direction along the axis of the nipple. The normal of the plane surface shall be maintained parallel to the...
Gender Stereotypes and Gendered Vocational Aspirations among Swiss Secondary School Students
ERIC Educational Resources Information Center
Hadjar, Andreas; Aeschlimann, Belinda
2015-01-01
Background: Horizontal gender inequalities appear to be rather stable, with girls more often choosing "female" service professions, and boys choosing career paths related to science, technology, engineering or Mathematics. Purpose: Non-egalitarian patriarchal gender-role orientations and gender associations (perceived femininity) of the…
NASA Technical Reports Server (NTRS)
Eberhard, Wynn L.
1993-01-01
Many lidar researchers have occasionally observed zenith-enhanced backscatter (ZEB) from middle and high clouds. The ZEB signature consists of strong backscatter when the lidar is pointed directly at zenith and a dramatic decline in backscatter as the zenith angle dips slightly off zenith. Mirror-like reflection from horizontal facets of oriented crystals (especially plates) is generally accepted as the cause. It was found during a 3-year observation program that approximately 50 percent of ice clouds had ZEB, regardless of cloud height. The orientation of crystals and the ZEB they cause are important to study and understand for several reasons. First, radiative transfer in clouds with oriented crystals is different than if the same particles were randomly oriented. Second, crystal growth depends partly on the orientation of the particles. Third, ZEB measurements may provide useful information about cirrus microphysical and radiative properties. Finally, the remarkable effect of ZEB on lidar signals should be understood in order to properly interpret lidar data.
Modeling human vestibular responses during eccentric rotation and off vertical axis rotation
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Paloski, W. H. (Principal Investigator)
1995-01-01
A mathematical model has been developed to help explain human multi-sensory interactions. The most important constituent of the model is the hypothesis that the nervous system incorporates knowledge of sensory dynamics into an "internal model" of these dynamics. This internal model allows the nervous system to integrate the sensory information from many different sensors into a coherent estimate of self-motion. The essence of the model is unchanged from a previously published model of monkey eye movement responses; only a few variables have been adjusted to yield the prediction of human responses. During eccentric rotation, the model predicts that the axis of eye rotation shifts slightly toward alignment with gravito-inertial force. The model also predicts that the time course of the perception of tilt following the acceleration phase of eccentric rotation is much slower than that during deceleration. During off vertical axis rotation (OVAR) the model predicts a small horizontal bias along with small horizontal, vertical, and torsional oscillations. Following OVAR stimulation, when stopped right- or left-side down, a small vertical component is predicted that decays with the horizontal post-rotatory response. All of the predictions are consistent with measurements of human responses.
Ibrahim, Imad; Bachmatiuk, Alicja; Warner, Jamie H; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H
2012-07-09
Single-walled carbon nanotubes (SWCNTs) have attractive electrical and physical properties, which make them very promising for use in various applications. For some applications however, in particular those involving electronics, SWCNTs need to be synthesized with a high degree of control with respect to yield, length, alignment, diameter, and chirality. With this in mind, a great deal of effort is being directed to the precision control of vertically and horizontally aligned nanotubes. In this review the focus is on the latter, horizontally aligned tubes grown by chemical vapor deposition (CVD). The reader is provided with an in-depth review of the established vapor deposition orientation techniques. Detailed discussions on the characterization routes, growth parameters, and growth mechanisms are also provided. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?
NASA Technical Reports Server (NTRS)
Edwards, K. L.
1985-01-01
The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.
Gravitational stresses in anisotropic rock masses
Amadei, B.; Savage, W.Z.; Swolfs, H.S.
1987-01-01
This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Yoojin
In this study, we have developed an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs where fluid flow through the fracture is radial. The dimensionless forms of the governing equations and the initial and boundary conditions in the radial flow system can be written in a form identical to those in the linear flow system developed by Jung and Pruess [Jung, Y., and K. Pruess (2012), A Closed-Form Analytical Solution for Thermal Single-Well Injection-Withdrawal Tests, Water Resour. Res., 48, W03504, doi:10.1029/2011WR010979], and therefore the analytical solutions developed in Jung and Pruess (2012) can be applied to computemore » the time dependence of temperature recovery at the injection/withdrawal well in a horizontally oriented fracture with radial flow.« less
How a GNSS Receiver Is Held May Affect Static Horizontal Position Accuracy
Weaver, Steven A.; Ucar, Zennure; Bettinger, Pete; Merry, Krista
2015-01-01
The static horizontal position accuracy of a mapping-grade GNSS receiver was tested in two forest types over two seasons, and subsequently was tested in one forest type against open sky conditions in the winter season. The main objective was to determine whether the holding position during data collection would result in significantly different static horizontal position accuracy. Additionally, we wanted to determine whether the time of year (season), forest type, or environmental variables had an influence on accuracy. In general, the F4Devices Flint GNSS receiver was found to have mean static horizontal position accuracy levels within the ranges typically expected for this general type of receiver (3 to 5 m) when differential correction was not employed. When used under forest cover, in some cases the GNSS receiver provided a higher level of static horizontal position accuracy when held vertically, as opposed to held at an angle or horizontally (the more natural positions), perhaps due to the orientation of the antenna within the receiver, or in part due to multipath or the inability to use certain satellite signals. Therefore, due to the fact that numerous variables may affect static horizontal position accuracy, we only conclude that there is weak to moderate evidence that the results of holding position are significant. Statistical test results also suggest that the season of data collection had no significant effect on static horizontal position accuracy, and results suggest that atmospheric variables had weak correlation with horizontal position accuracy. Forest type was found to have a significant effect on static horizontal position accuracy in one aspect of one test, yet otherwise there was little evidence that forest type affected horizontal position accuracy. Since the holding position was found in some cases to be significant with regard to the static horizontal position accuracy of positions collected in forests, it may be beneficial to have an understanding of antenna positioning within the receiver to achieve the greatest accuracy during data collection. PMID:25923667
How a GNSS Receiver Is Held May Affect Static Horizontal Position Accuracy.
Weaver, Steven A; Ucar, Zennure; Bettinger, Pete; Merry, Krista
2015-01-01
The static horizontal position accuracy of a mapping-grade GNSS receiver was tested in two forest types over two seasons, and subsequently was tested in one forest type against open sky conditions in the winter season. The main objective was to determine whether the holding position during data collection would result in significantly different static horizontal position accuracy. Additionally, we wanted to determine whether the time of year (season), forest type, or environmental variables had an influence on accuracy. In general, the F4Devices Flint GNSS receiver was found to have mean static horizontal position accuracy levels within the ranges typically expected for this general type of receiver (3 to 5 m) when differential correction was not employed. When used under forest cover, in some cases the GNSS receiver provided a higher level of static horizontal position accuracy when held vertically, as opposed to held at an angle or horizontally (the more natural positions), perhaps due to the orientation of the antenna within the receiver, or in part due to multipath or the inability to use certain satellite signals. Therefore, due to the fact that numerous variables may affect static horizontal position accuracy, we only conclude that there is weak to moderate evidence that the results of holding position are significant. Statistical test results also suggest that the season of data collection had no significant effect on static horizontal position accuracy, and results suggest that atmospheric variables had weak correlation with horizontal position accuracy. Forest type was found to have a significant effect on static horizontal position accuracy in one aspect of one test, yet otherwise there was little evidence that forest type affected horizontal position accuracy. Since the holding position was found in some cases to be significant with regard to the static horizontal position accuracy of positions collected in forests, it may be beneficial to have an understanding of antenna positioning within the receiver to achieve the greatest accuracy during data collection.
Anatomy and biomechanics of gluteus maximus and the thoracolumbar fascia at the sacroiliac joint.
Barker, P J; Hapuarachchi, K S; Ross, J A; Sambaiew, E; Ranger, T A; Briggs, C A
2014-03-01
Biomechanical models predict that recruitment of gluteus maximus (GMax) will exert a compressive force across the sacroiliac joint (SIJ), yet this muscle requires morphologic assessment. The aims of this study were to document GMax's proximal attachments and assess their capacity to generate forces including compressive force at the SIJ. In 11 embalmed cadaver limbs, attachments of GMax crossing the SIJ were dissected and their fascicle orientation, length and attachment volume documented. The physiological cross-sectional area (PCSA) of each attachment was calculated along with its estimated maximum force at the SIJ and lumbar spine. GMax fascicles originated from the gluteus medius fascia, ilium, thoracolumbar fascia, erector spinae aponeurosis, sacrum, coccyx, dorsal sacroiliac and sacrotuberous ligaments in all specimens. Their mean fascicle orientation ranged from 32 to 45° below horizontal and mean length from 11 to 18 cm. The mean total PCSA of GMax was 26 cm(2) (range 16-36), of which 70% crossed the SIJ. The average maximum force predicted to be generated by GMax's total attachments crossing each SIJ was 891 N (range 572-1,215), of which 70% (702 N: range 450-1,009) could act perpendicular to the plane of the SIJ. The capacity of GMax to generate an extensor moment at lower lumbar segments was estimated at 4 Nm (range 2-9.5). GMax may generate compressive forces at the SIJ through its bony and fibrous attachments. These may assist effective load transfer between lower limbs and trunk. Copyright © 2013 Wiley Periodicals, Inc.
A New Dynamical Core Based on the Prediction of the Curl of the Horizontal Vorticity
NASA Astrophysics Data System (ADS)
Konor, C. S.; Randall, D. A.; Heikes, R. P.
2015-12-01
The Vector-Vorticity Dynamical core (VVM) developed by Jung and Arakawa (2008) has important advantages for the use with the anelastic and unified systems of equations. The VVM predicts the horizontal vorticity vector (HVV) at each interface and the vertical vorticity at the top layer of the model. To guarantee that the three-dimensional vorticity is nondivergent, the vertical vorticity at the interior layers is diagnosed from the horizontal divergence of the HVV through a vertical integral from the top to down. To our knowledge, this is the only dynamical core that guarantees the nondivergence of the three-dimensional vorticity. The VVM uses a C-type horizontal grid, which allows a computational mode. While the computational mode does not seem to be serious in the Cartesian grid applications, it may be serious in the icosahedral grid applications because of the extra degree of freedom in such grids. Although there are special filters to minimize the effects of this computational mode, we prefer to eliminate it altogether. We have developed a new dynamical core, which uses a Z-grid to avoid the computational mode mentioned above. The dynamical core predicts the curl of the HVV and diagnoses the horizontal divergence of the HVV from the predicted vertical vorticity. The three-dimensional vorticity is guaranteed to be nondivergent as in the VVM. In this presentation, we will introduce the new dynamical core and show results obtained by using Cartesian and hexagonal grids. We will also compare the solutions to that obtained by the VVM.
Improved prediction of antibody VL–VH orientation
Marze, Nicholas A.; Lyskov, Sergey; Gray, Jeffrey J.
2016-01-01
Antibodies are important immune molecules with high commercial value and therapeutic interest because of their ability to bind diverse antigens. Computational prediction of antibody structure can quickly reveal valuable information about the nature of these antigen-binding interactions, but only if the models are of sufficient quality. To achieve high model quality during complementarity-determining region (CDR) structural prediction, one must account for the VL–VH orientation. We developed a novel four-metric VL–VH orientation coordinate frame. Additionally, we extended the CDR grafting protocol in RosettaAntibody with a new method that diversifies VL–VH orientation by using 10 VL–VH orientation templates rather than a single one. We tested the multiple-template grafting protocol on two datasets of known antibody crystal structures. During the template-grafting phase, the new protocol improved the fraction of accurate VL–VH orientation predictions from only 26% (12/46) to 72% (33/46) of targets. After the full RosettaAntibody protocol, including CDR H3 remodeling and VL–VH re-orientation, the new protocol produced more candidate structures with accurate VL–VH orientation than the standard protocol in 43/46 targets (93%). The improved ability to predict VL–VH orientation will bolster predictions of other parts of the paratope, including the conformation of CDR H3, a grand challenge of antibody homology modeling. PMID:27276984
Chan, Alan H S; Hoffmann, Errol R
2012-01-01
Stereotype strength and reversibility were determined for displays that were in the Front, Right and Left orientations relative to the operator, along with rotary, horizontally and vertically-moving controls located in the overhead, left-sagittal and right-sagittal planes. In each case, responses were made using the left and right hands. The arrangements used were (i) rotary control with a circular display (ii) horizontal/transverse control moving forward/rearward in the left and right-sagittal planes or transversely in the overhead plane and (iii) vertical/longitudinal control moving vertically in the left and right-sagittal planes and longitudinally in the overhead plane. These are all combinations not previously researched. Stereotype strength varied with display plane, type of control and plane of control. Models for the stereotype strength are developed, showing the contribution of various components to the overall stereotype strength. The major component for horizontally-moving controls comes from the "visual field" model of Worringham and Beringer (1998); for the rotary control important factors are "clockwise-for-clockwise" and the hand/control location effect (Hoffmann, 2009a). Vertically-moving controls are governed by a simple 'up-for-up' relationship between displays and controls. Overall stereotype strength is a maximum when all components add positively. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Creveaux, Thomas; Sevrez, Violaine; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle
2018-03-01
The aim of this study was to examine the respective aptitudes of three rotation sequences (Y t X f 'Y h '', Z t X f 'Y h '', and X t Z f 'Y h '') to effectively describe the orientation of the humerus relative to the thorax during a movement involving a large horizontal abduction/adduction component: the tennis forehand drive. An optoelectronic system was used to record the movements of eight elite male players, each performing ten forehand drives. The occurrences of gimbal lock, phase angle discontinuity and incoherency in the time course of the three angles defining humerothoracic rotation were examined for each rotation sequence. Our results demonstrated that no single sequence effectively describes humerothoracic motion without discontinuities throughout the forehand motion. The humerothoracic joint angles can nevertheless be described without singularities when considering the backswing/forward-swing and the follow-through phases separately. Our findings stress that the sequence choice may have implications for the report and interpretation of 3D joint kinematics during large shoulder range of motion. Consequently, the use of Euler/Cardan angles to represent 3D orientation of the humerothoracic joint in sport tasks requires the evaluation of the rotation sequence regarding singularity occurrence before analysing the kinematic data, especially when the task involves a large shoulder range of motion in the horizontal plane.
The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP)
NASA Astrophysics Data System (ADS)
Chepfer, H.; Bony, S.; Winker, D.; Cesana, G.; Dufresne, J. L.; Minnis, P.; Stubenrauch, C. J.; Zeng, S.
2010-01-01
This article presents the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP) designed to evaluate the cloudiness simulated by general circulation models (GCMs). For this purpose, Cloud-Aerosol Lidar with Orthogonal Polarization L1 data are processed following the same steps as in a lidar simulator used to diagnose the model cloud cover that CALIPSO would observe from space if the satellite was flying above an atmosphere similar to that predicted by the GCM. Instantaneous profiles of the lidar scattering ratio (SR) are first computed at the highest horizontal resolution of the data but at the vertical resolution typical of current GCMs, and then cloud diagnostics are inferred from these profiles: vertical distribution of cloud fraction, horizontal distribution of low, middle, high, and total cloud fractions, instantaneous SR profiles, and SR histograms as a function of height. Results are presented for different seasons (January-March 2007-2008 and June-August 2006-2008), and their sensitivity to parameters of the lidar simulator is investigated. It is shown that the choice of the vertical resolution and of the SR threshold value used for cloud detection can modify the cloud fraction by up to 0.20, particularly in the shallow cumulus regions. The tropical marine low-level cloud fraction is larger during nighttime (by up to 0.15) than during daytime. The histograms of SR characterize the cloud types encountered in different regions. The GOCCP high-level cloud amount is similar to that from the TIROS Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). The low-level and middle-level cloud fractions are larger than those derived from passive remote sensing (International Satellite Cloud Climatology Project, Moderate-Resolution Imaging Spectroradiometer-Cloud and Earth Radiant Energy System Polarization and Directionality of Earth Reflectances, TOVS Path B, AIRS-Laboratoire de Météorologie Dynamique) because the latter only provide information on the uppermost cloud layer.
Evidence for Functional Groupings of Vibrissae across the Rodent Mystacial Pad
Hobbs, Jennifer A.; Towal, R. Blythe; Hartmann, Mitra J. Z.
2016-01-01
During natural exploration, rats exhibit two particularly conspicuous vibrissal-mediated behaviors: they follow along walls, and “dab” their snouts on the ground at frequencies related to the whisking cycle. In general, the walls and ground may be located at any distance from, and at any orientation relative to, the rat’s head, which raises the question of how the rat might determine the position and orientation of these surfaces. Previous studies have compellingly demonstrated that rats can accurately determine the horizontal angle at which a vibrissa first touches an object, and we therefore asked whether this parameter could provide the rat with information about the pitch, distance, and yaw of a surface relative to its head. We used a three-dimensional model of the whisker array to construct mappings between the horizontal angle of contact of each vibrissa and every possible (pitch, distance, and yaw) configuration of the head relative to a flat surface. The mappings revealed striking differences in the patterns of contact for vibrissae in different regions of the array. The exterior (A, D, E) rows provide information about the relative pitch of the surface regardless of distance. The interior (B, C) rows provide distance cues regardless of head pitch. Yaw is linearly correlated with the difference between the number of right and left whiskers touching the surface. Compared to the long reaches that whiskers can make to the side and below the rat, the reachable distance in front of the rat’s nose is relatively small. We confirmed key predictions of these functional groupings in a behavioral experiment that monitored the contact patterns that the vibrissae made with a flat vertical surface. These results suggest that vibrissae in different regions of the array are not interchangeable sensors, but rather functionally grouped to acquire particular types of information about the environment. PMID:26745501
Spatial and physical frames of reference in positioning a limb.
Garrett, S R; Pagano, C; Austin, G; Turvey, M T
1998-10-01
Splints attached to the right forearm were used to rotate the forearm's physical reference frame, as defined by the eigenvectors of its inertia tensor, relative to its spatial reference frame. In two experiments, when subjects were required to orient the forearm parallel to, or at 45 degrees to, the environmental horizontal, they produced limb orientations that were systematically deflected from the forearm's longitudinal spatial axis in the direction of the forearm's physical axes. The position sense seems to be based on inertial eigenvectors rather than on joint angles or gravitational torques.
How Prevalent Is Object-Based Attention?
Pilz, Karin S.; Roggeveen, Alexa B.; Creighton, Sarah E.; Bennett, Patrick J.; Sekuler, Allison B.
2012-01-01
Previous research suggests that visual attention can be allocated to locations in space (space-based attention) and to objects (object-based attention). The cueing effects associated with space-based attention tend to be large and are found consistently across experiments. Object-based attention effects, however, are small and found less consistently across experiments. In three experiments we address the possibility that variability in object-based attention effects across studies reflects low incidence of such effects at the level of individual subjects. Experiment 1 measured space-based and object-based cueing effects for horizontal and vertical rectangles in 60 subjects comparing commonly used target detection and discrimination tasks. In Experiment 2 we ran another 120 subjects in a target discrimination task in which rectangle orientation varied between subjects. Using parametric statistical methods, we found object-based effects only for horizontal rectangles. Bootstrapping methods were used to measure effects in individual subjects. Significant space-based cueing effects were found in nearly all subjects in both experiments, across tasks and rectangle orientations. However, only a small number of subjects exhibited significant object-based cueing effects. Experiment 3 measured only object-based attention effects using another common paradigm and again, using bootstrapping, we found only a small number of subjects that exhibited significant object-based cueing effects. Our results show that object-based effects are more prevalent for horizontal rectangles, which is in accordance with the theory that attention may be allocated more easily along the horizontal meridian. The fact that so few individuals exhibit a significant object-based cueing effect presumably is why previous studies of this effect might have yielded inconsistent results. The results from the current study highlight the importance of considering individual subject data in addition to commonly used statistical methods. PMID:22348018
Cortical columns and the tendency of neighboring neurons to act similarly.
Legéndy, C R
1978-12-08
A tendency by neighboring cortical neurons to act similarly (spatial assimilation) is derived analytically from an assumed facilitatory interaction between the involved neurons at an early age, possibly before the critical period in the cat, an assumed plastic modifiability of the thalamo-cortical contacts at the same earlier time, and exposure of the network at the same time to a largely arbitrary sequence of inputs coming from outside the cortex. The calculational result is that during the assumed period of thalamo-cortical plasticity neuron responses tend toward greater similarity within the approximate range where cortico-cortical excitation dominates over inhibition and toward greater dissimilarity where inhibition dominates over excitation. Through the result, the calculation correctly predicts the horizontal extent of certain cortical columns. In the visual cortex of certain animals the horizontal distance of most dissimilar preferred orientation (90 degrees difference) is about the same as the distance of most dissimilar eye preference (from center of left-eye to center of right-eye region), and both are roughly the same as the range of strongest intracortical inhibition. The sequence of inputs coming from outside the cortex is mathematically allowed to be random, which suggests that signals originating inside the nervous system, as exist in a sensorially deprived animal, without help from genetic specifications, are adequate to give rise to spatial assimilation.
NASA Technical Reports Server (NTRS)
Wellck, R. E.; Pearce, M. L.
1976-01-01
As part of the SEASAT program of NASA, a set of four hemispheric, atmospheric prediction models were developed. The models, which use a polar stereographic grid in the horizontal and a sigma coordinate in the vertical, are: (1) PECHCV - five sigma layers and a 63 x 63 horizontal grid, (2) PECHFV - ten sigma layers and a 63 x 63 horizontal grid, (3) PEFHCV - five sigma layers and a 187 x 187 horizontal grid, and (4) PEFHFV - ten sigma layers and a 187 x 187 horizontal grid. The models and associated computer programs are described.
Chill Down Process of Hydrogen Transport Pipelines
NASA Technical Reports Server (NTRS)
Mei, Renwei; Klausner, James
2006-01-01
A pseudo-steady model has been developed to predict the chilldown history of pipe wall temperature in the horizontal transport pipeline for cryogenic fluids. A new film boiling heat transfer model is developed by incorporating the stratified flow structure for cryogenic chilldown. A modified nucleate boiling heat transfer correlation for cryogenic chilldown process inside a horizontal pipe is proposed. The efficacy of the correlations is assessed by comparing the model predictions with measured values of wall temperature in several azimuthal positions in a well controlled experiment by Chung et al. (2004). The computed pipe wall temperature histories match well with the measured results. The present model captures important features of thermal interaction between the pipe wall and the cryogenic fluid, provides a simple and robust platform for predicting pipe wall chilldown history in long horizontal pipe at relatively low computational cost, and builds a foundation to incorporate the two-phase hydrodynamic interaction in the chilldown process.
Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong
2012-01-01
Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467
Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong
2012-01-01
Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.
Coding of Velocity Storage in the Vestibular Nuclei.
Yakushin, Sergei B; Raphan, Theodore; Cohen, Bernard
2017-01-01
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.
Coding of Velocity Storage in the Vestibular Nuclei
Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard
2017-01-01
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons. PMID:28861030
ERIC Educational Resources Information Center
Gessler, Michael; Moreno Herrera, Lázaro
2015-01-01
The design of vocational didactics has to meet special requirements. Six core assumptions are identified: outcome orientation, cultural-historical embedding, horizontal structure, vertical structure, temporal structure, and the changing nature of work. Different approaches and discussions from school-based systems (Spain and Sweden) and dual…
Mirror Image Confusability in Adults.
ERIC Educational Resources Information Center
Wolff, Peter
Several studies have indicated that children have difficulty differentiating mirror-image stimuli. In the present study adults were required to classify pairs of horseshoe stimuli as same or different. Response times were compared for stimulus pairs that varied in orientation (left-right vs up-down) and spatial plane of the pair (horizontal vs.…
Manifold to uniformly distribute a solid-liquid slurry
Kern, Kenneth C.
1983-01-01
This invention features a manifold that divides a stream of coal particles and liquid into several smaller streams maintaining equal or nearly equal mass compositions. The manifold consists of a horizontal, variable area header having sharp-edged, right-angled take-offs which are oriented on the bottom of the header.
A new method to estimate average hourly global solar radiation on the horizontal surface
NASA Astrophysics Data System (ADS)
Pandey, Pramod K.; Soupir, Michelle L.
2012-10-01
A new model, Global Solar Radiation on Horizontal Surface (GSRHS), was developed to estimate the average hourly global solar radiation on the horizontal surfaces (Gh). The GSRHS model uses the transmission function (Tf,ij), which was developed to control hourly global solar radiation, for predicting solar radiation. The inputs of the model were: hour of day, day (Julian) of year, optimized parameter values, solar constant (H0), latitude, and longitude of the location of interest. The parameter values used in the model were optimized at a location (Albuquerque, NM), and these values were applied into the model for predicting average hourly global solar radiations at four different locations (Austin, TX; El Paso, TX; Desert Rock, NV; Seattle, WA) of the United States. The model performance was assessed using correlation coefficient (r), Mean Absolute Bias Error (MABE), Root Mean Square Error (RMSE), and coefficient of determinations (R2). The sensitivities of parameter to prediction were estimated. Results show that the model performed very well. The correlation coefficients (r) range from 0.96 to 0.99, while coefficients of determination (R2) range from 0.92 to 0.98. For daily and monthly prediction, error percentages (i.e. MABE and RMSE) were less than 20%. The approach we proposed here can be potentially useful for predicting average hourly global solar radiation on the horizontal surface for different locations, with the use of readily available data (i.e. latitude and longitude of the location) as inputs.
Fundamental movement skills testing in children with cerebral palsy.
Capio, Catherine M; Sit, Cindy H P; Abernethy, Bruce
2011-01-01
To examine the inter-rater reliability and comparative validity of product-oriented and process-oriented measures of fundamental movement skills among children with cerebral palsy (CP). In total, 30 children with CP aged 6 to 14 years (Mean = 9.83, SD = 2.5) and classified in Gross Motor Function Classification System (GMFCS) levels I-III performed tasks of catching, throwing, kicking, horizontal jumping and running. Process-oriented assessment was undertaken using a number of components of the Test of Gross Motor Development (TGMD-2), while product-oriented assessment included measures of time taken, distance covered and number of successful task completions. Cohen's kappa, Spearman's rank correlation coefficient and tests to compare correlated correlation coefficients were performed. Very good inter-rater reliability was found. Process-oriented measures for running and jumping had significant associations with GMFCS, as did seven product-oriented measures for catching, throwing, kicking, running and jumping. Product-oriented measures of catching, kicking and running had stronger associations with GMFCS than the corresponding process-oriented measures. Findings support the validity of process-oriented measures for running and jumping and of product-oriented measures of catching, throwing, kicking, running and jumping. However, product-oriented measures for catching, kicking and running appear to have stronger associations with functional abilities of children with CP, and are thus recommended for use in rehabilitation processes.
Cluster glass induced exchange biaslike effect in the perovskite cobaltites
NASA Astrophysics Data System (ADS)
Luo, Wanju; Wang, Fangwei
2007-04-01
Exchange biaslike phenomenon is observed in the Ba doped perovskite polycrystalline LaCoO3. The magnetic hysteresis loop shifts in both horizontal and vertical directions at 5K when the samples are cooled down to 5K in a magnetic field. The nature of this magnetic anisotropy is ascribed to the freezing properties of the local anisotropy in the cluster glass system. The magnetic shifts in horizontal and vertical directions can be derived directly under the principle that the spins of a cluster are frozen in random orientations and aligned to the field direction upon zero field and field cooling, respectively.
A NOTE ON THE RELATIVE PHOTOSENSORY EFFECT OF POLARIZED LIGHT
Crozier, W. J.; Mangelsdorf, A. F.
1924-01-01
Experiments were made to compare the stimulating effectiveness of vertically and horizontally polarized lights and non-polarized lights of equal intensity upon phototropic movements of the beetle Tetraopes tetraopthalmus; and to compare the effectiveness of two light beams polarized at right angles to one another upon phototropic orientation of the land isopod Cylisticus convexus. Tetraopes is positively, and Cylisticus, negatively phototropic. Tests were also made of the intensities of horizontally and of vertically polarized light required to inhibit stereotropism in larvæ of Tenebrio. Under the conditions of the tests, no certain qualitative effect connected with polarization could be detected. PMID:19872110
Circadian timed episodic-like memory - a bee knows what to do when, and also where.
Pahl, Mario; Zhu, Hong; Pix, Waltraud; Tautz, Juergen; Zhang, Shaowu
2007-10-01
This study investigates how the colour, shape and location of patterns could be memorized within a time frame. Bees were trained to visit two Y-mazes, one of which presented yellow vertical (rewarded) versus horizontal (non-rewarded) gratings at one site in the morning, while another presented blue horizontal (rewarded) versus vertical (non-rewarded) gratings at another site in the afternoon. The bees could perform well in the learning tests and various transfer tests, in which (i) all contextual cues from the learning test were present; (ii) the colour cues of the visual patterns were removed, but the location cue, the orientation of the visual patterns and the temporal cue still existed; (iii) the location cue was removed, but other contextual cues, i.e. the colour and orientation of the visual patterns and the temporal cue still existed; (iv) the location cue and the orientation cue of the visual patterns were removed, but the colour cue and temporal cue still existed; (v) the location cue, and the colour cue of the visual patterns were removed, but the orientation cue and the temporal cue still existed. The results reveal that the honeybee can recall the memory of the correct visual patterns by using spatial and/or temporal information. The relative importance of different contextual cues is compared and discussed. The bees' ability to integrate elements of circadian time, place and visual stimuli is akin to episodic-like memory; we have therefore named this kind of memory circadian timed episodic-like memory.
Parametric analysis of synthetic aperture radar data acquired over truck garden vegetation
NASA Technical Reports Server (NTRS)
Wu, S. T.
1984-01-01
An airborne X-band SAR acquired multipolarization and multiflight pass SAR images over a truck garden vegetation area. Based on a variety of land cover and row crop direction variations, the vertical (VV) polarization data contain the highest contrast, while cross polarization contains the least. When the radar flight path is parallel to the row direction, both horizontal (HH) and VV polarization data contain very high return which masks out the specific land cover that forms the row structure. Cross polarization data are not that sensitive to row orientation. The inclusion of like and cross polarization data help delineate special surface features (e.g., row crop against non-row-oriented land cover, very-rough-surface against highly row-oriented surface).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Donald M.; Smith, Kenneth D.; Parashar, Rishi
Regional stress may exert considerable control on the permeability and hydraulic function (i.e., barrier to and/or conduit for fluid flow) of faults and fractures at Pahute Mesa, Nevada National Security Site (NNSS). In-situ measurements of the stress field are sparse in this area, and short period earthquake focal mechanisms are used to delineate principal horizontal stress orientations. Stress field inversion solutions to earthquake focal mechanisms indicate that Pahute Mesa is located within a transtensional faulting regime, represented by oblique slip on steeply dipping normal fault structures, with maximum horizontal stress ranging from N29°E to N63°E and average of N42°E. Averagemore » horizontal stress directions are in general agreement with large diameter borehole breakouts from Pahute Mesa analyzed in this study and with stress measurements from other locations on the NNSS.« less
EXAMINATION OF MODEL PREDICTIONS AT DIFFERENT HORIZONTAL GRID RESOLUTIONS
While fluctuations in meteorological and air quality variables occur on a continuum of spatial scales, the horizontal grid spacing of coupled meteorological and photochemical models sets a lower limit on the spatial scales that they can resolve. However, both computational costs ...
Stress rotation along pre-Cenozoic basement structures
NASA Astrophysics Data System (ADS)
Reiter, K.; Heidbach, O.; Henk, A.
2017-12-01
The in-situ stress state of the Earth's crust is under investigation since decades for both, scientific and economic purposes. Several methods have been established to indicate the contemporary orientation of the maximum compressive horizontal stress (SHmax). It is assumed that the same forces that drive plate motion are the first order stress sources and one could presume that SHmax is always parallel to plate motion, which is the case for some regions. However, deviations from this general trend occur in many regions. Therefore, second and third order sources of stress have been identified that potentially cause regional and local stress rotation with respect to the long wave-length trend imposed by plate tectonic forces. One group of such subordinate stress sources are lateral heterogeneities based on structures, petrothermal or petrophysical properties. The World Stress Map (WSM) project compiles systematically data records of the present day SHmax orientation. The increasing amount of stress orientation data allows to investigate areas with consistent stress rotation, divergent to the regional stress pattern. In our work we analyse the stress pattern variability and its causes beneath Germany. In the Molasse Basin in the Alpine foreland the SHmax orientation is perpendicular to the Alpine front as a consequence of gravitational potential energy of the orogen. SHmax is oriented in N-S direction in the central Alpine foreland and within the North German Basin. Between both, within the Mid-German Crystalline High, SHmax is divergent oriented in SE-NW direction. Neither gravitational potential energy nor petrothermal effects can be indicated as stress source. But when comparing the stress pattern with the Variscan basement structures it is obvious that SHmax is perpendicular oriented to this Palaeozoic basement structures. Therefore, petrophysical heterogeneities can be expected as reason for the observed stress rotation. Two assumptions can be made for the Mid-German Crystalline High based on this presumption. 1. The magnitude of SHmax and the minimum horizontal stress (Shmin) in the region is close by, allowing local stress rotation. 2. The stiffness contrast perpendicular to the strike of the Variscan basement structures is large enough as stress source to cause significant rotation of the stress pattern.
Reynolds, A.M; Reynolds, D.R; Riley, J.R
2008-01-01
Large migrating insects, such as noctuid moths and acridoid grasshoppers, flying within the stable nocturnal boundary layer commonly become concentrated into horizontal layers. These layers frequently occur near the top of the surface temperature inversion where warm fast-moving airflows provide good conditions for downwind migration. On some occasions, a layer may coincide with a higher altitude temperature maximum such as a subsidence inversion, while on others, it may seem unrelated to any obvious feature in the vertical profile of meteorological variables. Insects within the layers are frequently orientated, either downwind or at an angle to the wind, but the mechanisms involved in both layer formation and common orientation have remained elusive. Here, we show through the results of numerical simulations that if insects are treated as neutrally buoyant particles, they tend to be advected by vertical gusts (through the ‘turbophoretic’ mechanism) into layers in the atmosphere where the turbulent kinetic energy has local minima. These locations typically coincide with local maxima in the wind speed and/or air temperature, and they may also provide cues for orientation. However, the degree of layering predicted by this model is very much weaker than that observed in the field. We have therefore hypothesized that insects behave in a way that amplifies the turbophoretic effect by initiating climbs or descents in response to vertical gusts. New simulations incorporating this behaviour demonstrated the formation of layers that closely mimic field observations, both in the degree of concentration in layers and the rate at which they form. PMID:18611845
Reynolds, A M; Reynolds, D R; Riley, J R
2009-01-06
Large migrating insects, such as noctuid moths and acridoid grasshoppers, flying within the stable nocturnal boundary layer commonly become concentrated into horizontal layers. These layers frequently occur near the top of the surface temperature inversion where warm fast-moving airflows provide good conditions for downwind migration. On some occasions, a layer may coincide with a higher altitude temperature maximum such as a subsidence inversion, while on others, it may seem unrelated to any obvious feature in the vertical profile of meteorological variables. Insects within the layers are frequently orientated, either downwind or at an angle to the wind, but the mechanisms involved in both layer formation and common orientation have remained elusive. Here, we show through the results of numerical simulations that if insects are treated as neutrally buoyant particles, they tend to be advected by vertical gusts (through the 'turbophoretic' mechanism) into layers in the atmosphere where the turbulent kinetic energy has local minima. These locations typically coincide with local maxima in the wind speed and/or air temperature, and they may also provide cues for orientation. However, the degree of layering predicted by this model is very much weaker than that observed in the field. We have therefore hypothesized that insects behave in a way that amplifies the turbophoretic effect by initiating climbs or descents in response to vertical gusts. New simulations incorporating this behaviour demonstrated the formation of layers that closely mimic field observations, both in the degree of concentration in layers and the rate at which they form.
NASA Technical Reports Server (NTRS)
Shirer, H. N. (Editor); Dutton, J. A. (Editor)
1985-01-01
A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, the stability, and the long term evaluation of incipient unstable waves. The flow is forced by latitudinally dependent radiational heating. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance. The properties of the steady Hadley and Rossby required for a thermally forced rotating fluid on a sphere are further explained. An objective parameterization technique is developed for general nonlinear hydrodynamical systems. The typical structure is one in which the rates of change of the dependent variables depend on homogeneous quadratic and linear forms, as well as on inhomogeneous forcing terms. Also documented is a steady, axisymmetric model of the general circulation developed as a basis for climate stability studies. The model includes the effects of heating, rotation, and internal friction, but neglects topography. Included is further research on cloud street phenomena. Orientation angles and horizontal wavelengths of boundary layer rolls and cloud streets are determined from an analysis of a truncated spectral model of three dimensional shallow moist Boussinesq convection in a shearing environment is further explained. Relatively broadly spaced roll clouds have orientations for which the Fourier component of the roll perpendicular shear is nearly zero, but the second corresponds to narrowly spaced rolls having orientations for which the Fourier coefficients of both the perpendicular and the parallel components of the shear are nearly equal.
NASA Astrophysics Data System (ADS)
Wiesmann, William P.; Pranger, L. Alex; Bogucki, Mary S.
1998-05-01
Remote monitoring of physiologic data from individual high- risk workers distributed over time and space is a considerable challenge. This is often due to an inadequate capability to accurately integrate large amounts of data into usable information in real time. In this report, we have used the vertical and horizontal organization of the 'fireground' as a framework to design a distributed network of sensors. In this system, sensor output is linked through a hierarchical object oriented programing process to accurately interpret physiological data, incorporate these data into a synchronous model and relay processed data, trends and predictions to members of the fire incident command structure. There are several unique aspects to this approach. The first includes a process to account for variability in vital parameter values for each individual's normal physiologic response by including an adaptive network in each data process. This information is used by the model in an iterative process to baseline a 'normal' physiologic response to a given stress for each individual and to detect deviations that indicate dysfunction or a significant insult. The second unique capability of the system orders the information for each user including the subject, local company officers, medical personnel and the incident commanders. Information can be retrieved and used for training exercises and after action analysis. Finally this system can easily be adapted to existing communication and processing links along with incorporating the best parts of current models through the use of object oriented programming techniques. These modern software techniques are well suited to handling multiple data processes independently over time in a distributed network.
Assimilation of Satellite to Improve Cloud Simulation in Wrf Model
NASA Astrophysics Data System (ADS)
Park, Y. H.; Pour Biazar, A.; McNider, R. T.
2012-12-01
A simple approach has been introduced to improve cloud simulation spatially and temporally in a meteorological model. The first step for this approach is to use Geostationary Operational Environmental Satellite (GOES) observations to identify clouds and estimate the clouds structure. Then by comparing GOES observations to model cloud field, we identify areas in which model has under-predicted or over-predicted clouds. Next, by introducing subsidence in areas with over-prediction and lifting in areas with under-prediction, erroneous clouds are removed and new clouds are formed. The technique estimates a vertical velocity needed for the cloud correction and then uses a one dimensional variation schemes (1D_Var) to calculate the horizontal divergence components and the consequent horizontal wind components needed to sustain such vertical velocity. Finally, the new horizontal winds are provided as a nudging field to the model. This nudging provides the dynamical support needed to create/clear clouds in a sustainable manner. The technique was implemented and tested in the Weather Research and Forecast (WRF) Model and resulted in substantial improvement in model simulated clouds. Some of the results are presented here.
USDA-ARS?s Scientific Manuscript database
Western trailing blackberries (Genus Rubus subgenus Rubus Watson) are susceptible to low temperature injury and are not grown commercially in the central or eastern United States. Seven-year-old trailing 'Siskiyou' blackberry plants were trained to the rotating cross-arm (RCA) trellis system. In w...
USDA-ARS?s Scientific Manuscript database
Western trailing blackberries (Genus Rubus subgenus Rubus Watson) are susceptible to low temperature injury and are not generally grown commercially in the central or eastern United States. Seven-year-old trailing ‘Siskiyou’ blackberry plants were trained to the rotating cross-arm (RCA) trellis sys...
Spatial Associations for Musical Stimuli: A Piano in the Head?
ERIC Educational Resources Information Center
Lidji, Pascale; Kolinsky, Regine; Lochy, Aliette; Morais, Jose
2007-01-01
This study was aimed at examining whether pitch height and pitch change are mentally represented along spatial axes. A series of experiments explored, for isolated tones and 2-note intervals, the occurrence of effects analogous to the spatial numerical association of response codes (SNARC) effect. Response device orientation (horizontal vs.…
Orientation Guidance and Control for Marine Vehicles in the Horizontal Plane
1991-06-01
FIELD GROUP SUB-GROUP Autonomous vehicles , Guidance and control, Stability, Path keeping 19 ABSIRACT (Continue on reverse if necessary and identify by...following in 3-D space. 33 LIST OF REFERENCES 1. Kanayama, Y. and Hartman, B.I. (1989) " Smooth local path planning for autonomous vehicles , " Proceeding
Horizontal and Vertical Structures: The Dynamics of Organization in Higher Education
ERIC Educational Resources Information Center
Keeling, Richard P.; Underhile, Ric; Wall, Andrew F.
2007-01-01
The organization of institutions of higher education has been seen as operating with ambiguous purposes in vertically oriented structures that are only loosely connected. The rationale for this ambiguity is twofold: (1) to allow for creative thinking, and (2) to respect--and even encourage--the autonomy of different disciplines. But ambiguity of…
ETV Report:Siemens Model H-4XE-HO Open Channel UV System
Verification testing of the Siemens Barrier Sunligt H-4XE-HO UV System was completed at the UV Validation and Research Center of New York (UV Center), located in Johnstown, NY. The H-4XE System utilizes 16 high-output, low-pressure lamps oriented horizontally and parallel to the...
An "oblique effect" in the visual evoked potential of the cat.
Bonds, A B
1982-01-01
An oblique effect was observed in the amplitude of the VEP recorded from area 17 of the cat. The ratio of the responses to oblique gratings compared with responses to horizontal and vertical gratings averaged 0.77. Orientation dependence was strongest at low spatial frequencies, unlike the effect found in primates.
Effects of Varying Response Formats on Self-Ratings of Life-Satisfaction
ERIC Educational Resources Information Center
Mazaheri, Mehrdad; Theuns, Peter
2009-01-01
A sample of 1,737 volunteering students, randomly assigned to 12 conditions, rated their current overall (dis)satisfaction with life. Each condition used 1 of 12 response formats, differing in (1) "polarity" ("bipolar" versus "unipolar"), (2) "orientation" ("horizontal" versus "vertical"), and (3) "anchoring" (-5 to +5, "Not Numbered," and 0 "to"…
NASA Technical Reports Server (NTRS)
Fritts, David C.; Wang, Ding-Yi
1991-01-01
Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.
Does Vertical Reading Help People with Macular Degeneration: An Exploratory Study
Calabrèse, Aurélie; Liu, Tingting; Legge, Gordon E.
2017-01-01
Individuals with macular degeneration often develop a Preferred Retinal Locus (PRL) used in place of the impaired fovea. It is known that many people adopt a PRL left of the scotoma, which is likely to affect reading by occluding text to the right of fixation. For such individuals, we examined the possibility that reading vertical text, in which words are rotated 90° with respect to the normal horizontal orientation, would be beneficial for reading. Vertically oriented words would be tangential to the scotoma instead of being partially occluded by it. Here we report the results of an exploratory study that aimed at investigating this hypothesis. We trained individuals with macular degeneration who had PRLs left of their scotoma to read text rotated 90° clockwise and presented using rapid serial visual presentation (RSVP). Although training resulted in improved reading of vertical text, the training did not result in reading speeds that appreciably exceeded reading speeds following training with horizontal text. These results do not support the hypothesis that people with left PRLs read faster with vertical text. PMID:28114373
Wang, Jizeng; Li, Long
2015-01-01
Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity–diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand–receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand–receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. PMID:25411410
Forward Monte Carlo Computations of Polarized Microwave Radiation
NASA Technical Reports Server (NTRS)
Battaglia, A.; Kummerow, C.
2000-01-01
Microwave radiative transfer computations continue to acquire greater importance as the emphasis in remote sensing shifts towards the understanding of microphysical properties of clouds and with these to better understand the non linear relation between rainfall rates and satellite-observed radiance. A first step toward realistic radiative simulations has been the introduction of techniques capable of treating 3-dimensional geometry being generated by ever more sophisticated cloud resolving models. To date, a series of numerical codes have been developed to treat spherical and randomly oriented axisymmetric particles. Backward and backward-forward Monte Carlo methods are, indeed, efficient in this field. These methods, however, cannot deal properly with oriented particles, which seem to play an important role in polarization signatures over stratiform precipitation. Moreover, beyond the polarization channel, the next generation of fully polarimetric radiometers challenges us to better understand the behavior of the last two Stokes parameters as well. In order to solve the vector radiative transfer equation, one-dimensional numerical models have been developed, These codes, unfortunately, consider the atmosphere as horizontally homogeneous with horizontally infinite plane parallel layers. The next development step for microwave radiative transfer codes must be fully polarized 3-D methods. Recently a 3-D polarized radiative transfer model based on the discrete ordinate method was presented. A forward MC code was developed that treats oriented nonspherical hydrometeors, but only for plane-parallel situations.
Form preferences in successive discrimination learning of young chicks.
Zolman, J F; Pursley, D G; Hall, J A; Sahley, C L
1975-12-01
In four experiments the effects of form and orientation pecking preferences of 1- and 3-day old Vantress X Arbor Acre chicks on successive discrimination learning were determined, using heat reinforcement. Major findings were as follows: (a) The young chick has both circle and verticle orientation pecking preferences that are present during at least the first 3 days after hatching; (b) when either of these preferred cues is the nonreinforced cue, the young chick has difficulty in learning not to respond to it but learns quickly not to respond to an unpreferred cue (e.g., triangle and horizontal oriented dots or bar); and (c) these pecking preferences can be modified by heat reinforcement, and the effects of this conditioning is evidenct in subsequent extinction and retention tests. The main conclusion from these experiments is that form and orientation preferences, like brightness and color preferences, are important developmental constraints on conditioning of the young chick.
NASA Astrophysics Data System (ADS)
Scherneck, Hans-Georg; Haas, Rüdiger
We show the influence of horizontal displacements due to ocean tide loading on the determination of polar motion and UT1 (PMU) on the daily and subdaily timescale. So called ‘virtual PMU variations’ due to modelling errors of ocean tide loading are predicted for geodetic Very Long Baseline Interferometry (VLBI) networks. This leads to errors of subdaily determination of PMU. The predicted effects are confirmed by the analysis of geodetic VLBI observations.
Evaluation of Innovative Approaches to Curve Delineation for Two-Lane Rural Roads
DOT National Transportation Integrated Search
2018-06-01
Run-off-road crashes are a major problem for rural roads. These roads tend to be unlit, and drivers may have difficulty seeing or correctly predicting the curvature of horizontal curves. This leads to vehicles entering horizontal curves at speeds tha...
Quantifying the safety effects of horizontal curves on two-way, two-lane rural roads.
Gooch, Jeffrey P; Gayah, Vikash V; Donnell, Eric T
2016-07-01
The objective of this study is to quantify the safety performance of horizontal curves on two-way, two-lane rural roads relative to tangent segments. Past research is limited by small samples sizes, outdated statistical evaluation methods, and unreported standard errors. This study overcomes these drawbacks by using the propensity scores-potential outcomes framework. The impact of adjacent curves on horizontal curve safety is also explored using a cross-sectional regression model of only horizontal curves. The models estimated in the present study used eight years of crash data (2005-2012) obtained from over 10,000 miles of state-owned two-lane rural roads in Pennsylvania. These data included information on roadway geometry (e.g., horizontal curvature, lane width, and shoulder width), traffic volume, roadside hazard rating, and the presence of various low-cost safety countermeasures (e.g., centerline and shoulder rumble strips, curve and intersection warning pavement markings, and aggressive driving pavement dots). Crash prediction is performed by means of mixed effects negative binomial regression using the explanatory variables noted previously, as well as attributes of adjacent horizontal curves. The results indicate that both the presence of a horizontal curve and its degree of curvature must be considered when predicting the frequency of total crashes on horizontal curves. Both are associated with an increase in crash frequency, which is consistent with previous findings in the literature. Mixed effects negative binomial regression models for total crash frequency on horizontal curves indicate that the distance to adjacent curves is not statistically significant. However, the degree of curvature of adjacent curves in close proximity (within 0.75 miles) was found to be statistically significant and negatively correlated with crash frequency on the subject curve. This is logical, as drivers exiting a sharp curve are likely to be driving slower and with more awareness as they approach the next horizontal curve. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guided Growth of Horizontal p-Type ZnTe Nanowires
2016-01-01
A major challenge toward large-scale integration of nanowires is the control over their alignment and position. A possible solution to this challenge is the guided growth process, which enables the synthesis of well-aligned horizontal nanowires that grow according to specific epitaxial or graphoepitaxial relations with the substrate. However, the guided growth of horizontal nanowires was demonstrated for a limited number of materials, most of which exhibit unintentional n-type behavior. Here we demonstrate the vapor–liquid–solid growth of guided horizontal ZnTe nanowires and nanowalls displaying p-type behavior on four different planes of sapphire. The growth directions of the nanowires are determined by epitaxial relations between the nanowires and the substrate or by a graphoepitaxial effect that guides their growth along nanogrooves or nanosteps along the surface. We characterized the crystallographic orientations and elemental composition of the nanowires using transmission electron microscopy and photoluminescence. The optoelectronic and electronic properties of the nanowires were studied by fabricating photodetectors and top-gate thin film transistors. These measurements showed that the guided ZnTe nanowires are p-type semiconductors and are photoconductive in the visible range. The guided growth of horizontal p-type nanowires opens up the possibility of parallel nanowire integration into functional systems with a variety of potential applications not available by other means. PMID:27885331
“Taller and Shorter”: Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings
Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan
2015-01-01
Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants’ drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings. PMID:26509927
"Taller and Shorter": Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings.
Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan
2015-01-01
Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants' drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings.
Guided Growth of Horizontal p-Type ZnTe Nanowires.
Reut, Gilad; Oksenberg, Eitan; Popovitz-Biro, Ronit; Rechav, Katya; Joselevich, Ernesto
2016-08-04
A major challenge toward large-scale integration of nanowires is the control over their alignment and position. A possible solution to this challenge is the guided growth process, which enables the synthesis of well-aligned horizontal nanowires that grow according to specific epitaxial or graphoepitaxial relations with the substrate. However, the guided growth of horizontal nanowires was demonstrated for a limited number of materials, most of which exhibit unintentional n-type behavior. Here we demonstrate the vapor-liquid-solid growth of guided horizontal ZnTe nanowires and nanowalls displaying p-type behavior on four different planes of sapphire. The growth directions of the nanowires are determined by epitaxial relations between the nanowires and the substrate or by a graphoepitaxial effect that guides their growth along nanogrooves or nanosteps along the surface. We characterized the crystallographic orientations and elemental composition of the nanowires using transmission electron microscopy and photoluminescence. The optoelectronic and electronic properties of the nanowires were studied by fabricating photodetectors and top-gate thin film transistors. These measurements showed that the guided ZnTe nanowires are p-type semiconductors and are photoconductive in the visible range. The guided growth of horizontal p-type nanowires opens up the possibility of parallel nanowire integration into functional systems with a variety of potential applications not available by other means.
Cross Spectral Analysis of Acoustic Signals
1978-03-01
homogeneous equations involving P 0, o10 and horizontal and vertical components of rio are obtained. If this system is to have a unique solution, the...ate4 where the coordinate system is oriented so that a unit vector is along k,, the first :oordinate of k, we have P1 0 (k) P1 1 (kl) 6(k 2 ) 6(k 3 ) (15...and Pl(r,t) I P 1 1 (kI)eik-(r-tvo) e-iwt dk (16) Here 6 denotes the delta function (that is, the coordinate system is oriented in the direction of
Yadollahi, Aref; Simsiriwong, Jutima; Thompson, Scott M; Shamsaei, Nima
2016-06-01
Axial fully-reversed strain-controlled ([Formula: see text]) fatigue experiments were performed to obtain data demonstrating the effects of building orientation (i.e. vertical versus horizontal) and heat treatment on the fatigue behavior of 17-4 PH stainless steel (SS) fabricated via Selective Laser Melting (SLM) (Yadollahi et al., submitted for publication [1]). This data article provides detailed experimental data including cyclic stress-strain responses, variations of peak stresses during cyclic deformation, and fractography of post-mortem specimens for SLM 17-4 PH SS.
Yadollahi, Aref; Simsiriwong, Jutima; Thompson, Scott M.; Shamsaei, Nima
2016-01-01
Axial fully-reversed strain-controlled (R=−1) fatigue experiments were performed to obtain data demonstrating the effects of building orientation (i.e. vertical versus horizontal) and heat treatment on the fatigue behavior of 17–4 PH stainless steel (SS) fabricated via Selective Laser Melting (SLM) (Yadollahi et al., submitted for publication [1]). This data article provides detailed experimental data including cyclic stress-strain responses, variations of peak stresses during cyclic deformation, and fractography of post-mortem specimens for SLM 17–4 PH SS. PMID:26955653
NASA Astrophysics Data System (ADS)
Yamaguchi, M.; Hashimoto, Y.; Yamaguchi, A.; Kimura, G.
2011-12-01
Seismic surveys along accretionary prisms have revealed that the out-of sequence thrusts (OSTs) are commonly developed within accretionary wedges branching from seismogenic subduction plate boundaries. The OSTs are also recognized in on-land accretionary complexes as large thrust faults cutting paleo-thermal structures. The OSTs are thought to play a role in tsunami genesis at a coseismic event. Stress history on OSTs is significant to understand the OSTs' role in seismic cycles. We estimated, thus palaeostresses from micro-faults along an OST in an on-land accretionary complexes. We focused on the Nobeoka fault which is an OST in an on-land accretionary complex, the Shimato Belt, Kyusyu, SW Japan. A gap in paleothermal temperature (up to 70 degree C) is observed at the fault. The Nobeoka thrust strikes almost EW at coastline. The Cretaceous Makimine formation and Paleogene Kitagawa formation are located at the hanging wall of the fault, comprising mainly of pelitic schist. The footwall of the fault is the Paleogene Hyuga formation composed mainly of shale. A lot of micro-faults are well developed just below the thrust for a few hundred meters to the south. Those micro faults are considered to be related to the Nobeoka thurst because slip direction and sense of the micro-faults are consistent with that of the Nobeoka thrust. The micro-faults are commonly accompanied by mineral veins of quartz and ankerite. Yamaguchi et al. (2010) suggested that the differences of mineral veins are possibly related to the seismic cycle. In this study, we conducted stress inversion analysis for the micro-faults to examine the change in stress between them, which might be related to the seismic cycle. We divided the micro-fault into two as a micro-fault with quartz veins and that with ankerite veins. Slip direction from slicken fibers and slip sense by slicken steps were obtained. HIM (hough inversion method) by Yamaji et al. (2006) was used to estimate the stress. Two stress states and three stress states are identified in the results for ankerite veins and quartz veins, respectively. For ankerite veins, SE oriented and relatively higher dipping sigma3 with axial extension and SE oriented and relatively lower dipping sigma1 with axial compression are recognized. For quartz veins, SE oriented and relatively higher dipping sigma3 with axial extension, NE oriented and almost horizontal sigma1 with triaxial stress ratio, and NW oriented and lower dipping sigma1 with axial compression are observed. While NW-SE axial stress states are observed both from ankelite and quatz veins, NE oriented triaxial stress is identified only from quartz veins. The change in stress states from NW-SE axial stress to NE triaxial stress might be explained by the dynamic Coulomb wedge model suggested by Wang and Hu (2006). The model predicts that the stress within accretionary wedge can be change with seismic cycle, horizontal sigma1 with axial compression at the co-seismic slip and relatively higher dipping sigma1 with triaxial stress in inter-seimsic period.
Plasma-electric field controlled growth of oriented graphene for energy storage applications
NASA Astrophysics Data System (ADS)
Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya
2018-04-01
It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.
Structural basis of orientation sensitivity of cat retinal ganglion cells.
Leventhal, A G; Schall, J D
1983-11-10
We investigated the structural basis of the physiological orientation sensitivity of retinal ganglion cells (Levick and Thibos, '82). The dendritic fields of 840 retinal ganglion cells labeled by injections of horseradish peroxidase into the dorsal lateral geniculate nucleus (LGNd) or optic tracts of normal cats. Siamese cats, and cat deprived of patterned visual experience from birth by monocular lid-suture (MD) were studied. Mathematical techniques designed to analyze direction were used to find the dendritic field orientation of each cell. Statistical techniques designed for angular data were used to determine the relationship between dendritic field orientation and angular position on the retina (polar angle). Our results indicate that 88% of retinal ganglion cells have oriented dendritic fields and that dendritic field orientation is related systematically to retinal position. In all regions of retina more that 0.5 mm from the area centralis the dendritic fields of retinal ganglion cells are oriented radially, i.e., like the spokes of a wheel having the area centralis at its hub. This relationship was present in all animals and cell types studied and was strongest for cells located close to the horizontal meridian (visual streak) of the retina. Retinal ganglion cells appear to be sensitive to stimulus orientation because they have oriented dendritic fields.
Where is straight ahead to a patient with unilateral vestibular loss?
Saj, Arnaud; Honoré, Jacques; Bernard-Demanze, Laurence; Devèze, Arnaud; Magnan, Jacques; Borel, Liliane
2013-05-01
The vestibular system is classically associated with postural control, oculomotor reflexes and self-motion perception. The patients with vestibular loss are primarily concerned with balance and gait problems including head and trunk tilt and walking trajectory deviation to the lesioned side. These long-lasting postural and locomotor biases are thought to originate from changes in spatial perception of self. Indeed, we show here that vestibular cues are necessary for an accurate representation of body orientation. Patients with right (RVN; n=11) or left vestibular neurotomy (LVN; 9) as a treatment for Menière's disease were compared with 10 healthy controls. The subjective straight ahead (SSA) was investigated using a method disentangling lateral shift and tilt components of error. In the horizontal plane, subjects were required to align a rod with their body midline. In the frontal plane, they were asked to align the rod with the midline of head or trunk. The analysis of SSA clearly showed distinct results according to the side of the lesion. The LVN patients had a contralesional lateral shift of SSA. In addition, they showed an ipsilesional tilt, more severe for the head than for the trunk. By contrast, in RVN patients, the representation of the body midline was fairly accurate in both the horizontal and frontal planes and did not differ from that of control subjects. The present study shows deviations in body orientation representation after unilateral vestibular loss. Deviations are observed in the horizontal as well as in the frontal planes. Interestingly, only patients with left vestibular loss were concerned with these changes in perception of self-orientation in space. These data support the hypothesis of an asymmetric vestibular function in healthy subjects and confirm the similarity of functional disorders in patients with vestibular deficits or spatial neglect. For the first time, this similarity is found at the level of body representation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lin, Hsiu-Hsia; Chuang, Ya-Fang; Weng, Jing-Ling; Lo, Lun-Jou
2015-01-01
Background Three-dimensional computed tomographic imaging has become popular in clinical evaluation, treatment planning, surgical simulation, and outcome assessment for maxillofacial intervention. The purposes of this study were to investigate whether there is any correlation among landmark-based horizontal reference planes and to validate the reproducibility and reliability of landmark identification. Materials and Methods Preoperative and postoperative cone-beam computed tomographic images of patients who had undergone orthognathic surgery were collected. Landmark-oriented reference planes including the Frankfort horizontal plane (FHP) and the lateral semicircular canal plane (LSP) were established. Four FHPs were defined by selecting 3 points from the orbitale, porion, or midpoint of paired points. The LSP passed through both the lateral semicircular canal points and nasion. The distances between the maxillary or mandibular teeth and the reference planes were measured, and the differences between the 2 sides were calculated and compared. The precision in locating the landmarks was evaluated by performing repeated tests, and the intraobserver reproducibility and interobserver reliability were assessed. Results A total of 30 patients with facial deformity and malocclusion—10 patients with facial symmetry, 10 patients with facial asymmetry, and 10 patients with cleft lip and palate—were recruited. Comparing the differences among the 5 reference planes showed no statistically significant difference among all patient groups. Regarding intraobserver reproducibility, the mean differences in the 3 coordinates varied from 0 to 0.35 mm, with correlation coefficients between 0.96 and 1.0, showing high correlation between repeated tests. Regarding interobserver reliability, the mean differences among the 3 coordinates varied from 0 to 0.47 mm, with correlation coefficients between 0.88 and 1.0, exhibiting high correlation between the different examiners. Conclusions The 5 horizontal reference planes were reliable and comparable for 3D craniomaxillofacial analysis. These reference planes were useful in standardizing the orientation of 3D skull models. PMID:25668209
Lin, Hsiu-Hsia; Chuang, Ya-Fang; Weng, Jing-Ling; Lo, Lun-Jou
2015-01-01
Three-dimensional computed tomographic imaging has become popular in clinical evaluation, treatment planning, surgical simulation, and outcome assessment for maxillofacial intervention. The purposes of this study were to investigate whether there is any correlation among landmark-based horizontal reference planes and to validate the reproducibility and reliability of landmark identification. Preoperative and postoperative cone-beam computed tomographic images of patients who had undergone orthognathic surgery were collected. Landmark-oriented reference planes including the Frankfort horizontal plane (FHP) and the lateral semicircular canal plane (LSP) were established. Four FHPs were defined by selecting 3 points from the orbitale, porion, or midpoint of paired points. The LSP passed through both the lateral semicircular canal points and nasion. The distances between the maxillary or mandibular teeth and the reference planes were measured, and the differences between the 2 sides were calculated and compared. The precision in locating the landmarks was evaluated by performing repeated tests, and the intraobserver reproducibility and interobserver reliability were assessed. A total of 30 patients with facial deformity and malocclusion--10 patients with facial symmetry, 10 patients with facial asymmetry, and 10 patients with cleft lip and palate--were recruited. Comparing the differences among the 5 reference planes showed no statistically significant difference among all patient groups. Regarding intraobserver reproducibility, the mean differences in the 3 coordinates varied from 0 to 0.35 mm, with correlation coefficients between 0.96 and 1.0, showing high correlation between repeated tests. Regarding interobserver reliability, the mean differences among the 3 coordinates varied from 0 to 0.47 mm, with correlation coefficients between 0.88 and 1.0, exhibiting high correlation between the different examiners. The 5 horizontal reference planes were reliable and comparable for 3D craniomaxillofacial analysis. These reference planes were useful in standardizing the orientation of 3D skull models.
NASA Astrophysics Data System (ADS)
Hosseini, Seiyed Mossa; Tosco, Tiziana; Ataie-Ashtiani, Behzad; Simmons, Craig T.
2018-03-01
Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and isotropic aquifer, and verified using particle tracking simulations performed using the semi-analytical particle tracking and pathlines model (PMPATH). Nine batch experiments were then performed to investigate the impact of mixed nano-ZVI, NZVI (0 to 2 g l-1) and micro-ZVI, MZVI (0 to 4 g l-1) on the nitrate removal rate (with initial NO3-=132 mg l-1). The NPRWs system was tested in a bench-scale sand medium (60 cm length × 40 cm width × 25 cm height) for three orientations of NPRWs (vertical, horizontal, and slanted with inclination angle of 45°). A mixture of nano/micro ZVI, was used, applying constant conditions of pore water velocity (0.024 mm s-1) and initial nitrate concentration (128 mg l-1) for five pore volumes. The results of the batch tests showed that mixing nano and micro Fe0 outperforms these individual materials in nitrate removal rates. The final products of nitrate degradation in both batch and bench-scale experiments were NO2-, NH4+, and N2(gas). The results of sand-box experiments indicated that the slanted NPRWs have a higher nitrate reduction rate (57%) in comparison with vertical (38%) and horizontal (41%) configurations. The results also demonstrated that three factors have pivotal roles in expected HCT and Wcz, namely the contrast between the hydraulic conductivity of aquifer and reactive materials within the wells, the mass of Fe0 in the NPRWs, and the orientation of NPRWs adopted. A trade-off between these factors should be considered to increase the efficiency of remediation using the NPRWs system.
Acoustic Monitoring of Gravity-Driven Controls on CaCO3 Precipitates in a Fracture
NASA Astrophysics Data System (ADS)
Xu, Z.; Sheets, J.; Zhang, L.; Kim, D.; Kneafsey, T. J.; Cole, D. R.; Jun, Y. S.; Pyrak-Nolte, L. J.
2017-12-01
Sealing fractures by mineral precipitation is an important process for improving caprock integrity in subsurface reservoirs. In this study, the ability to monitor precipitate distribution in fractures with buoyant fluids was examined. Fractures with uniform aperture distributions of 0.5, 1.0 and 2.0 mm were created from acrylic plates to enable direct imaging of precipitate formation over time. CaCO3 precipitation was induced in a fracture from invasion of 1M CaCl2 and 0.3M Na2CO3 solutions. During chemical invasion, a fracture plane was oriented either parallel or perpendicular to gravity. Acoustic (P) wave transmission ( 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. Precipitate particle sizes during formation were determined using SAXS and WAXS. In both horizontal and vertical fractures, the density contrast between the two solutions affected the spatial distribution of precipitation. In vertical fractures, the denser CaCl2 solution almost completely displaced the NaCO3 solution, causing strong localization of precipitates. However, in the horizontal fractures, flow stratification occurred in the 2 mm aperture fractures, with the less dense Na2CO3 flowing over the CaCl2 solution, resulting in a more even distribution of precipitates cross the fracture plane. P-wave amplitudes increased up to 8% and the arrival time decreased with precipitate accumulation in the horizontal fracture. This is consistent with a three-layered approach as the seismic impedance inside the fracture increases. The initial contact between the two was observed as a decrease in the P-wave amplitude. As precipitates accumulated, the amplitude recovered and increased, with greater increases observed along the mixing flow path. Fractures in the subsurface may seal differently depending on the orientation thus affecting the ability of a fracture to self-heal if oriented vertically. This work was supported by the Center for Nanoscale Controls on Geologic CO (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-05CH11231
Present-day stress state analysis on the Big Island of Hawaíi, USA
NASA Astrophysics Data System (ADS)
Pierdominici, Simona; Kueck, Jochem; Millett, John; Planke, Sverre; Jerram, Dougal A.; Haskins, Eric; Thomas, Donald
2017-04-01
We analyze and interpret the stress features from a c. 1.5 km deep fully cored borehole (PTA2) on the Big Island of Hawaíi within the Humúula saddle region, between the Mauna Kea and Mauna Loa volcanoes. The Big Island of Hawaii comprises the largest and youngest island of the Hawaiian-Emperor seamount chain and is volumetrically dominated by shield stage tholeiitic volcanic rocks. Mauna Kea is dormant whereas Mauna Loa is still active. There are also a series of normal faults on Mauna Loa's northern and western slopes, between its two major rift zones, that are believed to be the result of combined circumferential tension from the two rift zones and from added pressure due to the westward growth of the neighboring Kīlauea volcano. The PTA2 borehole was drilled in 2013 into lava dominated formation (Pahoehoe and Aā) as part of the Humúula Groundwater Research Project (HGPR) with the purpose of characterizing the groundwater resource potential in this area. In 2016 two downhole logging campaigns were performed by the Operational Support Group of the International Continental Scientific Drilling Program (ICDP) to acquire a set of geophysical data as part of the Volcanic Margin Petroleum Prospectivity (VMAPP) project. The main objective of the logging campaign was to obtain high quality wireline log data to enable a detailed core-log integration of the volcanic sequence and to improve understanding of the subsurface expression of volcanic rocks. We identify stress features (e.g. borehole breakouts) and volcanic structures (e.g. flow boundaries, vesicles and jointing) at depth using borehole images acquired with an ABI43 acoustic borehole televiewer. We analyzed and interpreted the stress indicators and compared their orientation with the regional stress pattern. We identified a set of stress indicators along the hole dominantly concentrated within the lower logged interval of the PTA2 borehole. Two primary horizontal stress indicators have been taken into account: borehole breakouts (bidirectional enlargements) (BB) and drilling induced tensile fractures (DIF). BB and DIF occur when the stresses around the borehole exceed the compressive and tensile yield stress of the borehole wall rock respectively causing failure. A breakout is caused by the development of intersecting conjugate shear planes that cause pieces of the borehole wall to spall off. For a breakout to develop, the stress concentration around a vertical borehole is largest in the direction of the minimum horizontal stress. Hence, BB develops approximately parallel to the orientation of the minimum horizontal stress. For the DIF, the stress concentration around a vertical borehole is at a minimum in the maximum horizontal stress direction. Hence, DIF develop approximately parallel to the orientation of the maximum horizontal stress. Based on the World Stress Map, the present-day stress in this area is defined only by focal mechanism solutions. These data give a unique opportunity to characterize the orientation of the present-day stress field between two large volume shield volcanoes on an active volcanic island using a different approach and stress indicators.
NASA Astrophysics Data System (ADS)
Lee, H.; Chang, C.; Ong, S.; Song, I.
2013-12-01
Stress-induced borehole breakouts have long been used as a reliable indicator of both the orientation and magnitude of in-situ stresses on the basis of the systematic alignment with the minimum horizontal principal far-field stress (σh), and the well-defined correlation between the breakout dimensions and in-situ stress magnitudes. Although breakouts can serve as a reliable stress indicator, cautions must be exercised when using them to constrain the orientation and magnitude of in-situ stresses because the breakout geometry can be altered by some geological characteristics in addition to the usual geomechanical parameters. Two factors are discussed here. We observed alterations in breakout geometry from some of the boreholes drilled along a transection of the Nankai subduction zone. In the C0002A hole, breakouts formed along the depth interval where the beddings are horizontal or sub-horizontal were consistently oriented along the regional σh direction. In contrast, a gradual rotation in breakout orientation with depth and a significant breakout widening at the borehole wall were observed along the deeper section where the beddings are steep (>40o). A geomechanical modeling taking into account the bedding effect shows that such breakout rotation and widening result from strength anisotropy inherent within the thinly bedded formations, and the misalignment between in-situ stresses and bedding dip directions. The model also revealed that there is a considerable difference in the stress magnitudes estimated with and without considering the bedding effect particularly in the steeply bedding intervals. This observation suggests that bedding effects on breakout geometry must be taken into account when using breakouts developed in such formations to estimate the orientation and magnitude of in-situ stresses, failure which would likely to lead to erroneous results. The second factor to discuss is the time-dependent growth of breakouts. While it was straightforward to estimate the stress direction based on the breakout azimuth, an ambiguity occurred when the breakout width widened significantly with time. Two independent borehole wall images of the same depth interval, captured at the bottom and the top of a 30m long logging-while-drilling (LWD) bottom-hole-assembly, indicate that breakout widths grew from 42o immediately after bit run to 135o about an hour later. Triaxial compression tests in cores revealed that all the specimens failed in a brittle mode immediately when the stresses reach the condition required for failure, suggesting that for the purpose of stress estimation, the use of breakout width immediately after the drill-bit passes is appropriate.
NASA Technical Reports Server (NTRS)
Hess, B. J.; Angelaki, D. E.
1997-01-01
The kinematic constraints of three-dimensional eye positions were investigated in rhesus monkeys during passive head and body rotations relative to gravity. We studied fast and slow phase components of the vestibulo-ocular reflex (VOR) elicited by constant-velocity yaw rotations and sinusoidal oscillations about an earth-horizontal axis. We found that the spatial orientation of both fast and slow phase eye positions could be described locally by a planar surface with torsional variation of <2.0 +/- 0.4 degrees (displacement planes) that systematically rotated and/or shifted relative to Listing's plane. In supine/prone positions, displacement planes pitched forward/backward; in left/right ear-down positions, displacement planes were parallel shifted along the positive/negative torsional axis. Dynamically changing primary eye positions were computed from displacement planes. Torsional and vertical components of primary eye position modulated as a sinusoidal function of head orientation in space. The torsional component was maximal in ear-down positions and approximately zero in supine/prone orientations. The opposite was observed for the vertical component. Modulation of the horizontal component of primary eye position exhibited a more complex dependence. In contrast to the torsional component, which was relatively independent of rotational speed, modulation of the vertical and horizontal components of primary position depended strongly on the speed of head rotation (i.e., on the frequency of oscillation of the gravity vector component): the faster the head rotated relative to gravity, the larger was the modulation. Corresponding results were obtained when a model based on a sinusoidal dependence of instantaneous displacement planes (and primary eye position) on head orientation relative to gravity was fitted to VOR fast phase positions. When VOR fast phase positions were expressed relative to primary eye position estimated from the model fits, they were confined approximately to a single plane with a small torsional standard deviation ( approximately 1.4-2.6 degrees). This reduced torsional variation was in contrast to the large torsional spread (well >10-15 degrees ) of fast phase positions when expressed relative to Listing's plane. We conclude that primary eye position depends dynamically on head orientation relative to space rather than being fixed to the head. It defines a gravity-dependent coordinate system relative to which the torsional variability of eye positions is minimized even when the head is moved passively and vestibulo-ocular reflexes are evoked. In this general sense, Listing's law is preserved with respect to an otolith-controlled reference system that is defined dynamically by gravity.
Decoding the future from past experience: learning shapes predictions in early visual cortex.
Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe
2015-05-01
Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.
Fitzsimmons, Eric J; Kvam, Vanessa; Souleyrette, Reginald R; Nambisan, Shashi S; Bonett, Douglas G
2013-01-01
Despite recent improvements in highway safety in the United States, serious crashes on curves remain a significant problem. To assist in better understanding causal factors leading to this problem, this article presents and demonstrates a methodology for collection and analysis of vehicle trajectory and speed data for rural and urban curves using Z-configured road tubes. For a large number of vehicle observations at 2 horizontal curves located in Dexter and Ames, Iowa, the article develops vehicle speed and lateral position prediction models for multiple points along these curves. Linear mixed-effects models were used to predict vehicle lateral position and speed along the curves as explained by operational, vehicle, and environmental variables. Behavior was visually represented for an identified subset of "risky" drivers. Linear mixed-effect regression models provided the means to predict vehicle speed and lateral position while taking into account repeated observations of the same vehicle along horizontal curves. Speed and lateral position at point of entry were observed to influence trajectory and speed profiles. Rural horizontal curve site models are presented that indicate that the following variables were significant and influenced both vehicle speed and lateral position: time of day, direction of travel (inside or outside lane), and type of vehicle.
Effect of Ply Orientation and Crack Location on SIFs in Finite Multilayers with Aligned Cracks
NASA Astrophysics Data System (ADS)
Chen, Linfeng; Pindera, Marek-Jerzy
2008-02-01
An exact elasticity solution is presented for arbitrarily laminated finite multilayers in a state of generalized plane deformation under horizontally pinned end constraints that are weakened by aligned cracks. Based on half-range Fourier series and the local/global stiffness matrix approach, the mixed boundary-value problem is reduced to Cauchy-type singular integral equations in the unknown displacement discontinuities. Solution to these equations is obtained using the approach developed by Erdogan and co-workers. Numerical results quantify the thus-far undocumented geometric and material effects on Mode I, II and III stress intensity factors in composite multilayers with interacting cracks under uniform vertical displacement. These effects include finite dimensions, crack location, material anisotropy due to a unidirectional fiber-reinforced layer/s orientation, and orientational grading.
Motivational predictors of prosocial and antisocial behaviour in football.
Kavussanu, Maria
2006-06-01
This study examined (a) the main and interactive effects of goal orientations and perceived motivational climate on prosocial and antisocial behaviour, and (b) whether number of seasons one has played for the team interacts with motivational climate in predicting prosocial and antisocial behaviour in association football. Participants were 325 male association football players, whose age ranged from 12 to 17 years. Athletes completed questionnaires measuring frequency of prosocial and antisocial behaviours in football, goal orientation, motivational climate and social desirability, and indicated the number of seasons they had played for their current team. Regression analyses revealed that task orientation and mastery climate were positive predictors of prosocial behaviour, whereas ego orientation and performance climate were positive predictors of antisocial behaviour. In addition, task orientation negatively predicted antisocial behaviour, while ego orientation negatively predicted prosocial behaviour. No significant interactions between task and ego orientation and mastery and performance motivational climate were found. Finally, mastery climate negatively predicted antisocial behaviour for those who had played many seasons for the team. In conclusion, strengthening task orientation and mastery climate and weakening ego orientation may enhance prosocial behaviour. However, for antisocial conduct to be eliminated from the context of association football, ego orientation and performance climate need to be tempered, as these constructs exert unique independent effects on antisocial behaviour.
Horizontal Contraction of Oceanic Lithosphere Tested Using Azimuths of Transform Faults
NASA Astrophysics Data System (ADS)
Gordon, R. G.; Mishra, J. K.
2012-12-01
A central hypothesis or approximation of plate tectonics is that the plates are rigid, which implies that oceanic lithosphere does not contract horizontally as it cools (hereinafter "no contraction"). An alternative hypothesis is that vertically averaged tensional thermal stress in the competent lithosphere is fully relieved by horizontal thermal contraction (hereinafter "full contraction"). These two hypotheses predict different azimuths for transform faults. We build on prior predictions of horizontal thermal contraction of oceanic lithosphere as a function of age to predict the bias induced in transform-fault azimuths by full contraction for 140 azimuths of transform faults that are globally distributed between 15 plate pairs. Predicted bias increases with the length of adjacent segments of mid-ocean ridges and depends on whether the adjacent ridges are stepped, crenellated, or a combination of the two. All else being equal, the bias decreases with the length of a transform fault and modestly decreases with increasing spreading rate. The value of the bias varies along a transform fault. To correct the observed transform-fault azimuths for the biases, we average the predicted values over the insonified portions of each transform fault. We find the bias to be as large as 2.5°, but more typically is ≤ 1.0°. We test whether correcting for the predicted biases improves the fit to plate motion data. To do so, we determine the sum-squared normalized misfit for various values of γ, which we define to be the fractional multiple of bias predicted for full contraction. γ = 1 corresponds to the full contraction, while γ = 0 corresponds to no contraction. We find that the minimum in sum-squared normalized misfit is obtained for γ = 0.9 ±0.4 (95% confidence limits), which excludes the hypothesis of no contraction, but is consistent with the hypothesis of full contraction. Application of the correction reduces but does not eliminate the longstanding misfit between the azimuth of the Kane transform fault with respect to those of the other North America-Nubia transform faults. We conclude that significant ridge-parallel horizontal thermal contraction occurs in young oceanic lithosphere and that it is accommodated by widening of transform-fault valleys, which causes biases in transform-fault azimuths up to 2.5°.
Comparison and Analysis of Energy Performance of Baseline and Enhanced Temporary Army Shelters
2015-09-01
modeling .................................................................................................... 37 4.4 Predicted vs. field- measured data...with remote access capability ......................... 35 4-2 Direct normal solar radiation measured at weather station and estimated with the... Measured global horizontal radiation and EnergyPlus calculated incident solar radiation on a horizontal surface
NASA Astrophysics Data System (ADS)
Kim, D.; Ahn, M. S.; DeMott, C. A.; Jiang, X.; Klingaman, N. P.; Kim, H. M.; Lee, J. H.; Lim, Y.; Xavier, P. K.
2017-12-01
The Madden-Julian Oscillation (MJO) influences the global weather-climate system, thereby providing the source of predictability on the intraseasonal timescales worldwide. An accurate representation of the MJO, however, is still one of the most challenging tasks for many contemporary global climate models (GCMs). Identifying aspects of the GCMs that are tightly linked to GCMs' MJO simulation capability is a step toward improving the GCM representation of the MJO. This study surveys recent modeling work that collectively evidence that the horizontal distribution of the basic state low-tropospheric humidity is crucial to a successful simulation and prediction of the MJO. Specifically, the simulated horizontal and meridional gradients of the mean low-tropospheric humidity determine the magnitude of the moistening (drying) to the east (west) of the enhance MJO, thereby enabling or disabling the eastward propagation of the MJO. Supporting this argument, many MJO-incompetent GCMs also exhibit biases in the mean humidity that weaken the horizontal moisture gradient. Also, MJO prediction skill of the S2S models is tightly related to the biases in the mean moisture gradient. Implications of the robust relationship between the MJO and the mean state on MJO modeling and prediction will be discussed.
Sensory and Postural Input in the Occurrence of a Gender Difference in Orienting Liquid Surfaces
ERIC Educational Resources Information Center
Robert, Michele; Longpre, Sophie
2005-01-01
In the water-level task, both spatial skill and physical knowledge contribute to representing the surface of a liquid as horizontal irrespective of the container's tilt. Under the standard visual format of the task, men systematically surpass women at drawing correct water lines in outlines of tilted containers. The present exploratory experiments…
The Managerial Grid; Key Orientations for Achieving Production through People.
ERIC Educational Resources Information Center
Blake, Robert R; Mouton, Jane S.
The Managerial Grid arranges a concern for production on the horizontal axis and a concern for people on the vertical axis of a coordinate system: 1,1 shows minimum concern for production and people; 9,1 shows major production emphasis and minimum human considerations; 1,9 shows maximum concern for friendly working conditions and minimum…
ERIC Educational Resources Information Center
Liben, Lynn S.; Kastens, Kim A.; Christensen, Adam E.
2011-01-01
To study the role of spatial concepts in science learning, 125 college students with high, medium, or low scores on a horizontality (water-level) spatial task were given information about geological strike and dip using existing educational materials. Participants mapped an outcrop's strike and dip, a rod's orientation, pointed to a distant…
ERIC Educational Resources Information Center
Schumacher, Robin F.; Malone, Amelia S.
2017-01-01
The goal of this study was to describe fraction-calculation errors among fourth-grade students and to determine whether error patterns differed as a function of problem type (addition vs. subtraction; like vs. unlike denominators), orientation (horizontal vs. vertical), or mathematics-achievement status (low-, average-, or high-achieving). We…
Determining OBS Instrument Orientations: A Comparison of Algorithms
NASA Astrophysics Data System (ADS)
Doran, A. K.; Laske, G.
2015-12-01
The alignment of the orientation of the horizontal seismometer components with the geographical coordinate system is critical for a wide variety of seismic analyses, but the traditional deployment method of ocean bottom seismometers (OBS) precludes knowledge of this parameter. Current techniques for determining the orientation predominantly rely on body and surface wave data recorded from teleseismic events with sufficiently large magnitudes. Both wave types experience lateral refraction between the source and receiver as a result of heterogeneity and anisotropy, and therefore the arrival angle of any one phase can significantly deviate from the great circle minor arc. We systematically compare the results and uncertainties obtained through current determination methods, as well as describe a new algorithm that uses body wave, surface wave, and differential pressure gauge data (where available) to invert for horizontal orientation. To start with, our method is based on the easily transportable computer code of Stachnik et al. (2012) that is publicly available through IRIS. A major addition is that we utilize updated global dispersion maps to account for lateral refraction, as was done by Laske (1995). We also make measurements in a wide range of frequencies, and analyze surface wave trains of repeat orbits. Our method has the advantage of requiring fewer total events to achieve high precision estimates, which is beneficial for OBS deployments that can be as short as weeks. Although the program is designed for the purpose of use with OBS instruments, it also works with standard land installations. We intend to provide the community with a program that is easy to use, requires minimal user input, and is optimized to work with data cataloged at the IRIS DMC.
Polarized object detection in crabs: a two-channel system.
Basnak, Melanie Ailín; Pérez-Schuster, Verónica; Hermitte, Gabriela; Berón de Astrada, Martín
2018-05-25
Many animal species take advantage of polarization vision for vital tasks such as orientation, communication and contrast enhancement. Previous studies have suggested that decapod crustaceans use a two-channel polarization system for contrast enhancement. Here, we characterize the polarization contrast sensitivity in a grapsid crab . We estimated the polarization contrast sensitivity of the animals by quantifying both their escape response and changes in heart rate when presented with polarized motion stimuli. The motion stimulus consisted of an expanding disk with an 82 deg polarization difference between the object and the background. More than 90% of animals responded by freezing or trying to avoid the polarized stimulus. In addition, we co-rotated the electric vector (e-vector) orientation of the light from the object and background by increments of 30 deg and found that the animals' escape response varied periodically with a 90 deg period. Maximum escape responses were obtained for object and background e-vectors near the vertical and horizontal orientations. Changes in cardiac response showed parallel results but also a minimum response when e-vectors of object and background were shifted by 45 deg with respect to the maxima. These results are consistent with an orthogonal receptor arrangement for the detection of polarized light, in which two channels are aligned with the vertical and horizontal orientations. It has been hypothesized that animals with object-based polarization vision rely on a two-channel detection system analogous to that of color processing in dichromats. Our results, obtained by systematically varying the e-vectors of object and background, provide strong empirical support for this theoretical model of polarized object detection. © 2018. Published by The Company of Biologists Ltd.
Orienting Ocean Bottom Seismic Sensors from Ship Noise Polarization Analysis
NASA Astrophysics Data System (ADS)
Barruol, Guilhem; Dreo, Richard; Fontaine, Fabrice R.; Scholz, John R.; Sigloch, Karin; Geay, Bruno; Bouillon, Alexandre
2017-04-01
For the RHUM-RUM project (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel, www.rhum-rum.net), a network of 57 ocean-bottom seismometers (OBS) was installed on the ocean floor around La Réunion Island in the SW Indian Ocean. Part of the network happened to be located beneath a route of heavy ship traffic connecting SE-Asia and the South-Atlantic region. We analysed the ship noise recorded on the OBS and show that it can be used for determining the horizontal orientations of the seismic instruments as they were recording on the ocean floor. The OBS, provided by the German DEPAS and the French INSU OBS national pools, were equipped with wide-band or broad-band three-components seismic and hydro-acoustic sensors. They were deployed in Nov. 2012 by R/V Marion Dufresne and recovered by R/V Meteor one year later. Depending on the configuration, the OBS recorded for 8 to 13 months. By combining the trajectories of passing ships - provided by AIS (Automatic Identification system) GPS data - with our geophysical data recorded on the ocean floor, we show that both hydro-acoustic and seismic spectral analyses exhibit clear signals associated with vessels between 1 and 50 Hz, in the high-frequency range of our instruments. Large cargo vessels are detected several hours before and after their closest point of approach (CPA) and show clear Doppler effects which put quantitative constraints on their distances and speeds. By analysing the continuous noise polarization on the three seismic components, we show that the polarization of the noise emitted by ships passing in the neighbourhood of an ocean-bottom seismometer can be used for retrieving the orientation of the OBS horizontal components on the ocean floor with respect to the geographic reference frame. We find good agreement between OBS orientations thus calculated from ship noise and the OBS orientations determined independently from teleseismic body and surface wave polarization methods (Scholz et al., GJI, 2017).
NASA Astrophysics Data System (ADS)
Evanzia, D. A. D.; Lamb, S. H.; Savage, M. K.
2017-12-01
The southern North Island, New Zealand is located at the southern Hikurangi Margin, where the Pacific Plate is obliquely subducting westward underneath the Australian Plate. The orientations of the principle stresses in the overriding plate are determined from microseismic focal mechanisms detected and located using the temporary SAHKE and permanent GeoNet seismic array operating during 2009-2010. The microseismic earthquakes are located with the NonLinLoc method, using a New Zealand specific 3D velocity model; only those earthquakes located above the modelled subduction plate interface are used. Strain rate parameters calculations are calculated using cGPS velocities from 56 stations located from the central North Island to the northernmost South Island, New Zealand. In the region west of the Tararua-range-bounding Wairarapa fault (the Western region), the orientations of stresses indicate a normal regime (S1: vertical; S2 & S3: horizontal), with SHmax trending ENE. In the Central Basin region (east of the Wairarapa fault) the orientations of the stresses indicate a reverse regime (S3: vertical; S1 & S2: horizontal), with SHmax orientated NW. The low seismicity rates in the Eastern region make the results unreliable. There is a distinct difference between the strain rate and vorticity on either side the Wairarapa fault. Strain rate and vorticity rates increase west and decreased east of the Wairarapa; this correlates well with the pattern of observed seismicity. The southern North Island is predominately contracting, except for a region on the West coast, where some expansion is occurs. This pattern of expansion in the West and contraction in the center of the study area, calculated from cGPS, is similar the stress inversion results calculated from focal mechanisms. These similarities suggest that the present stress and strain rates are collinear, as occurs in isotropic media.
Adaptive cellular structures and devices with internal features for enhanced structural performance
NASA Astrophysics Data System (ADS)
Pontecorvo, Michael Eugene
This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement and force inputs are contrasted in relation to these metrics. The key innovation to the early structural elements presented here is the combination of the VMT with the pin-jointed hexagonal cell. Chapter 3 explores several prototypes of repeatable structural elements for simultaneous load-carrying capability and energy dissipation that are based on this innovation. The final demonstration prototype presented in this chapter is a column-like element that is based on a hexagonal cell containing two horizontal springs and one vertical damper. The unit is enclosed by a pair of buckling plates that serve to give the prototype a high initial stiffness and load carrying capability. The prototype is tested in both displacement and force input and its behavior is compared to simulation. Chapter 4 builds on the conceptual designs of Chapter 3 with the introduction of a plate-like element, that contains two compact VMTs connected by a horizontally oriented damper. Pre-loaded springs are used in the prototype to perform the same load carrying function as the buckling plates in the column-like prototype with increased predictability. The plate-like prototype is studied under impact to demonstrate its effectiveness as a protective layer. It is shown to reduce peak impact loads transmitted to the base of the device by over 60%. In most cases, the prototype compares well with a conventional protective rubber layer, and in cases of extreme impact loads, it exceeds the performance of the rubber layer. In addition to impact testing, the prototype is also experimentally tested under harmonic displacement input, and is simulated under both harmonic displacement and force input. The experiments illustrate that while the VMT parameters of a single layer can be optimized to a particular harmonic load amplitude, having two layers with softer and stiffer VMTs allows the system to show good energy dissipation characteristics at different harmonic load amplitude levels. Chapter 5 examines using PAM inclusions within planar hexagonal cells as variable stiffness springs to create a variable modulus cellular structure. The proposed concept is envisioned as a first step toward a structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the pressure supplied to the individual muscles. To begin, a pin-jointed cell is considered, loaded in the horizontal direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an "H" configuration between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then compared to experimental measurement of the unit cell modulus in the horizontal direction over a pressure range up to 682 kPa. An increase in cell modulus of 200% and a corresponding change in cell angle of 1.53 degrees are demonstrated experimentally. A design study via simulation predicts that differential pressurization of the PAMs up to 1992 kPa can increase the cell modulus in the horizontal direction by a factor of 6.66 with a change in cell angle of only 2.75 degrees. Additionally, simulation predicts that variation of unpressurized cell equilibrium angle and vertical wall length coefficient can result in changes in cell modulus greater than 1000%. A drawback of the pin-jointed cell with PAM inclusions is that it is inherently underconstrained. To solve this problem, the pin-jointed cell walls are replaced with a continuous Delrin hexagon which gives the cell kinematic stability and allows for experimental measurement of modulus in both the horizontal and vertical directions. The Delrin cell is designed to have a modulus on the same order as that of the pin-jointed cell at zero pressure and is experimentally measured without the PAM inclusions. These measurements validate the use of a combined flexural/hinging analytical model that accurately simulates the cell modulus. This analysis is then combined with the PAM force equations to model the complete hexagonal cell with PAM inclusions. Simulation and experimental measurement of the cell modulus with the PAM inclusions are compared in both the horizontal and vertical directions over an expanded pressure range up to 1302 kPa. The interplay between the contraction ratio and pressure in orthogonal sets of PAMs is highlighted as the primary driver of overall cell modulus.
Strong Recurrent Networks Compute the Orientation-Tuning of Surround Modulation in Primate V1
Shushruth, S.; Mangapathy, Pradeep; Ichida, Jennifer M.; Bressloff, Paul C.; Schwabe, Lars; Angelucci, Alessandra
2012-01-01
In macaque primary visual cortex (V1) neuronal responses to stimuli inside the receptive field (RF) are modulated by stimuli in the RF surround. This modulation is orientation-specific. Previous studies suggested that for some cells this specificity may not be fixed, but changes with the stimulus orientation presented to the RF. We demonstrate, in recording studies, that this tuning behavior is instead highly prevalent in V1 and, in theoretical work, that it arises only if V1 operates in a regime of strong local recurrence. Strongest surround suppression occurs when the stimuli in the RF and the surround are iso-oriented, and strongest facilitation when the stimuli are cross-oriented. This is the case even when the RF is sub-optimally activated by a stimulus of non-preferred orientation, but only if this stimulus can activate the cell when presented alone. This tuning behavior emerges from the interaction of lateral inhibition (via the surround pathways), which is tuned to the RF’s preferred orientation, with weakly-tuned, but strong, local recurrent connections, causing maximal withdrawal of recurrent excitation at the feedforward input orientation. Thus, horizontal and feedback modulation of strong recurrent circuits allows the tuning of contextual effects to change with changing feedforward inputs. PMID:22219292
Superposed ruptile deformational events revealed by field and VOM structural analysis
NASA Astrophysics Data System (ADS)
Kumaira, Sissa; Guadagnin, Felipe; Keller Lautert, Maiara
2017-04-01
Virtual outcrop models (VOM) is becoming an important application in the analysis of geological structures due to the possibility of obtaining the geometry and in some cases kinematic aspects of analyzed structures in a tridimensional photorealistic space. These data are used to gain quantitative information on the deformational features which coupled with numeric models can assist in understands deformational processes. Old basement units commonly register superposed deformational events either ductile or ruptile along its evolution. The Porongos Belt, located at southern Brazil, have a complex deformational history registering at least five ductile and ruptile deformational events. In this study, we presents a structural analysis of a quarry in the Porongos Belt, coupling field and VOM structural information to understand process involved in the last two deformational events. Field information was acquired using traditional structural methods for analysis of ruptile structures, such as the descriptions, drawings, acquisition of orientation vectors and kinematic analysis. VOM was created from the image-based modeling method through photogrammetric data acquisition and orthorectification. Photogrammetric data acquisition was acquired using Sony a3500 camera and a total of 128 photographs were taken from ca. 10-20 m from the outcrop in different orientations. Thirty two control point coordinates were acquired using a combination of RTK dGPS surveying and total station work, providing a precision of few millimeters for x, y and z. Photographs were imported into the Photo Scan software to create a 3D dense point cloud from structure from-motion algorithm, which were triangulated and textured to generate the VOM. VOM was georreferenced (oriented and scaled) using the ground control points, and later analyzed in OpenPlot software to extract structural information. Data was imported in Wintensor software to obtain tensor orientations, and Move software to process and interpret geometrical and kinematic data. Planar and linear structural orientations and kinematic indicators revealed superposition of three deformational events: i) compressive, ii) transtensional, and iii) extensional paleostress regimes. The compressive regime was related to a radial to pure compression with N-S horizontal maximum compression vector. This stress regime corresponds mainly to the development of dextral tension fractures and NE-SW reverse faults. The transtensional regime has NW-SE sub-horizontal extension, NE-SW horizontal compressional, and sub-vertical intermediate tensors, generating mainly shear fractures by reactivation of the metamorphic foliation (anisotropy), NE-SW reverse faults and NE-vertical veins and gashes. The extensional regime of strike-slip type presents a NE-SW sub-horizontal extension and NW-SE trending sub-vertical maximum compression vector. Structures related to this regime are sub-vertical tension gashes, conjugate fractures and NW-SE normal faults. Cross-cutting relations show that compression was followed by transtension, which reactivate the ductile foliation, and in the last stage, extension dominated. Most important findings show that: i) local stress fields can modify expected geometry and ii) anisotropy developed by previous structures control the nucleation of new fractures and reactivations. Use of field data integrated in a VOM has great potential as analogues for structured reservoirs.
Modeling the impact of spatial relationships on horizontal curve safety.
Findley, Daniel J; Hummer, Joseph E; Rasdorf, William; Zegeer, Charles V; Fowler, Tyler J
2012-03-01
The curved segments of roadways are more hazardous because of the additional centripetalforces exerted on a vehicle, driver expectations, and other factors. The safety of a curve is dependent on various factors, most notably by geometric factors, but the location of a curve in relation to other curves is also thought to influence the safety of those curves because of a driver's expectation to encounter additional curves. The link between an individual curve's geometric characteristics and its safety performance has been established, but spatial considerations are typically not included in a safety analysis. The spatial considerations included in this research consisted of four components: distance to adjacent curves, direction of turn of the adjacent curves, and radius and length of the adjacent curves. The primary objective of this paper is to quantify the spatial relationship between adjacent horizontal curves and horizontal curve safety using a crash modification factor. Doing so enables a safety professional to more accurately estimate safety to allocate funding to reduce or prevent future collisions and more efficiently design new roadway sections to minimize crash risk where there will be a series of curves along a route. The most important finding from this research is the statistical significance of spatial considerations for the prediction of horizontal curve safety. The distances to adjacent curves were found to be a reliable predictor of observed collisions. This research recommends a model which utilizes spatial considerations for horizontal curve safety prediction in addition to current Highway Safety Manual prediction capabilities using individual curve geometric features. Copyright © 2011 Elsevier Ltd. All rights reserved.
Summary of the Fourth AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.;
2010-01-01
Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.
Relationship between saccadic eye movements and formation of the Krukenberg's spindle-a CFD study.
Boushehrian, Hamidreza Hajiani; Abouali, Omid; Jafarpur, Khosrow; Ghaffarieh, Alireza; Ahmadi, Goodarz
2017-09-01
In this research, a series of numerical simulations for evaluating the effects of saccadic eye movement on the aqueous humour (AH) flow field and movement of pigment particles in the anterior chamber (AC) was performed. To predict the flow field of AH in the AC, the unsteady forms of continuity, momentum balance and conservation of energy equations were solved using the dynamic mesh technique for simulating the saccadic motions. Different orientations of the human eye including horizontal, vertical and angles of 10° and 20° were considered. The Lagrangian particle trajectory analysis approach was used to find the trajectories of pigment particles in the eye. Particular attention was given to the relation between the saccadic eye movement and potential formation of Krukenberg's spindle in the eye. The simulation results revealed that the natural convection flow was an effective mechanism for transferring pigment particles from the iris to near the cornea. In addition, the saccadic eye movement was the dominant mechanism for deposition of pigment particles on the cornea, which could lead to the formation of Krukenberg's spindle. The effect of amplitude of saccade motion angle in addition to the orientation of the eye on the formation of Krukenberg's spindle was investigated. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
NASA Technical Reports Server (NTRS)
Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques;
2015-01-01
A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.
Radiating Instabilities of Internal Inertio-gravity Waves
NASA Astrophysics Data System (ADS)
Kwasniok, F.; Schmitz, G.
The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.
Horizontal exploitation of the Upper Cretaceous Austin Chalk of south Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkowski, R.; Hand, L.; Dickerson, D.
1990-05-01
Horizontal drilling in the fractured Austin Chalk of south Texas has proven to be a viable technology for exploiting reserve opportunities in mature trends as well as in frontier areas. To date, the results of an interdisciplinary approach to the regional analysis of structure and stress regimes combined with studies of the depositional characteristics of the Austin Chalk and Eagleford Shale have been a success. Productive characteristics of the Austin Chalk indicate the influence of regional fractures on the preferential flow direction and partitioning in the Pearsall field area of the trend. Well bore orientation and inclination are designed suchmore » that multiple fracture swarms at several stratigraphic horizons are intersected with a single horizontal well bore. As a result of the greater frequency of fracture contacts with the well bore, there is a significant increase in the ultimate recovery of hydrocarbons in place. Conventional vertical drilling techniques are frequently ineffective at encountering these laterally partitioned fracture sets, resulting in lower volumes of recoverable hydrocarbons. Additionally, horizontal well bores may increase ultimate recovery of hydrocarbons by lowering the pressure gradient to the well bore and maximizing the reservoir energy.« less
Regulation of reaction forces during the golf swing.
McNitt-Gray, J L; Munaretto, J; Zaferiou, A; Requejo, P S; Flashner, H
2013-06-01
During the golf swing, the reaction forces applied at the feet control translation and rotation of the body-club system. In this study, we hypothesized that skilled players using a 6-iron would regulate shot distance by scaling the magnitude of the resultant horizontal reaction force applied to the each foot with minimal modifications in force direction. Skilled players (n = 12) hit golf balls using a 6-iron. Shot distance was varied by hitting the ball as they would normally and when reducing shot distance using the same club. During each swing, reaction forces were measured using dual force plates (1200 Hz) and three-dimensional kinematics were simultaneously captured (110 Hz). The results indicate that, on average, the peak resultant horizontal reaction forces of the target leg were significantly less than normal (5%, p < 0.05) when reducing shot distance. No significant differences in the orientation of the peak resultant horizontal reaction forces were observed. Resultant horizontal reaction force-angle relationships within leg and temporal relationships between target and rear legs during the swing were consistent within player across shot conditions. Regulation of force magnitude with minimal modification in force direction is expected to provide advantages from muscle activation, coordination, and performance points of view.
Purpora, Christina; Blegen, Mary A; Stotts, Nancy A
2015-01-01
To test hypotheses from a horizontal violence and quality and safety of patient care model: horizontal violence (negative behavior among peers) is inversely related to peer relations, quality of care and it is positively related to errors and adverse events. Additionally, the association between horizontal violence, peer relations, quality of care, errors and adverse events, and nurse and work characteristics were determined. A random sample (n= 175) of hospital staff Registered Nurses working in California. Nurses participated via survey. Bivariate and multivariate analyses tested the study hypotheses. Hypotheses were supported. Horizontal violence was inversely related to peer relations and quality of care, and positively related to errors and adverse events. Including peer relations in the analyses altered the relationship between horizontal violence and quality of care but not between horizontal violence, errors and adverse events. Nurse and hospital characteristics were not related to other variables. Clinical area contributed significantly in predicting the quality of care, errors and adverse events but not peer relationships. Horizontal violence affects peer relationships and the quality and safety of patient care as perceived by participating nurses. Supportive peer relationships are important to mitigate the impact of horizontal violence on quality of care.
Horizontal technology helps spark Louisiana`s Austin chalk trend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koen, A.D.
1996-04-29
A handful of companies paced by some of the most active operators in the US are pressing the limits of horizontal technology to ramp up Cretaceous Austin chalk exploration and development (E and D) across Louisiana. Companies find applications in Louisiana for lessons learned drilling horizontal wells to produce chalk intervals in Texas in Giddings, Pearsall, and Brookeland fields. Continuing advances in horizontal well technology are helping operators deal with deeper, hotter reservoirs in more complex geological settings that typify the chalk in Louisiana. Better horizontal drilling, completion, formation evaluation, and stimulation techniques have enabled operators to produce oil andmore » gas from formations previously thought to be uneconomical. Most of the improved capabilities stem from better horizontal tools. Horizontal drilling breakthroughs include dual powered mud motors and retrievable whipstocks, key links in the ability to drill wells with more than one horizontal lateral. Better geosteering tools have enabled operators to maintain horizontal wellbores in desired intervals by signaling bit positions downhole while drilling. This paper reviews the technology and provides a historical perspective on the various drilling programs which have been completed in this trend. It also makes predictions on future drilling successes.« less
Mesoudi, Alex; Magid, Kesson; Hussain, Delwar
2016-01-01
Cultural psychologists have shown that people from Western, Educated, Industrialised, Rich, Democratic (WEIRD) countries often exhibit different psychological processing to people from less-WEIRD countries. The former exhibit more individualistic and less collectivistic social orientation, and more analytic and less holistic cognition, than non-Westerners. Yet the mechanisms responsible for maintaining this cultural variation are unclear. Immigration is an ideal ‘natural experiment’ for uncovering such mechanisms. We used a battery of psychological measures previously shown to vary cross-culturally to compare the social orientation and cognitive style of 286 residents of East London from three cultural backgrounds: (i) 1st-generation British Bangladeshi immigrants; (ii) 2nd-generation British Bangladeshis raised in the UK to Bangladeshi-raised parents; and (iii) non-migrants whose parents were born and raised in the UK. Model comparison revealed that individualism and dispositional attribution, typical of Western societies, are driven primarily by horizontal cultural transmission (e.g. via mass media), with parents and other family members having little or no effect, while collectivism, social closeness and situational attribution were driven by a mix of vertical/oblique cultural transmission (e.g. via family contact) and horizontal cultural transmission. These individual-level transmission dynamics can explain hitherto puzzling population-level phenomena, such as the partial acculturation of 2nd-generation immigrants on measures such as collectivism (due to the mix of vertical and horizontal cultural transmission), or the observation in several countries of increasing individualism (which is transmitted horizontally and therefore rapidly) despite little corresponding change in collectivism (which is transmitted partly vertically and therefore more slowly). Further consideration of cultural transmission mechanisms, in conjunction with the study of migrant communities and model comparison statistics, can shed light on the persistence of, and changes in, culturally-variable psychological processes. PMID:26760972
Present-day stress field of Southeast Asia
NASA Astrophysics Data System (ADS)
Tingay, Mark; Morley, Chris; King, Rosalind; Hillis, Richard; Coblentz, David; Hall, Robert
2010-02-01
It is now well established that ridge push forces provide a major control on the plate-scale stress field in most of the Earth's tectonic plates. However, the Sunda plate that comprises much of Southeast Asia is one of only two plates not bounded by a major spreading centre and thus provides an opportunity to evaluate other forces that control the intraplate stress field. The Cenozoic tectonic evolution of the Sunda plate is usually considered to be controlled by escape tectonics associated with India-Eurasia collision. However, the Sunda plate is bounded by a poorly understood and complex range of convergent and strike-slip zones and little is known about the effect of these other plate boundaries on the intraplate stress field in the region. We compile the first extensive stress dataset for Southeast Asia, containing 275 A-D quality (177 A-C) horizontal stress orientations, consisting of 72 stress indicators from earthquakes (located mostly on the periphery of the plate), 202 stress indicators from breakouts and drilling-induced fractures and one hydraulic fracture test within 14 provinces in the plate interior. This data reveals that a variable stress pattern exists throughout Southeast Asia that is largely inconsistent with the Sunda plate's approximately ESE absolute motion direction. The present-day maximum horizontal stress in Thailand, Vietnam and the Malay Basin is predominately north-south, consistent with the radiating stress patterns arising from the eastern Himalayan syntaxis. However, the present-day maximum horizontal stress is primarily oriented NW-SE in Borneo, a direction that may reflect plate-boundary forces or topographic stresses exerted by the central Borneo highlands. Furthermore, the South and Central Sumatra Basins exhibit a NE-SW maximum horizontal stress direction that is perpendicular to the Indo-Australian subduction front. Hence, the plate-scale stress field in Southeast Asia appears to be controlled by a combination of Himalayan orogeny-related deformation, forces related to subduction (primarily trench suction and collision) and intraplate sources of stress such as topography and basin geometry.
Mesoudi, Alex; Magid, Kesson; Hussain, Delwar
2016-01-01
Cultural psychologists have shown that people from Western, Educated, Industrialised, Rich, Democratic (WEIRD) countries often exhibit different psychological processing to people from less-WEIRD countries. The former exhibit more individualistic and less collectivistic social orientation, and more analytic and less holistic cognition, than non-Westerners. Yet the mechanisms responsible for maintaining this cultural variation are unclear. Immigration is an ideal 'natural experiment' for uncovering such mechanisms. We used a battery of psychological measures previously shown to vary cross-culturally to compare the social orientation and cognitive style of 286 residents of East London from three cultural backgrounds: (i) 1st-generation British Bangladeshi immigrants; (ii) 2nd-generation British Bangladeshis raised in the UK to Bangladeshi-raised parents; and (iii) non-migrants whose parents were born and raised in the UK. Model comparison revealed that individualism and dispositional attribution, typical of Western societies, are driven primarily by horizontal cultural transmission (e.g. via mass media), with parents and other family members having little or no effect, while collectivism, social closeness and situational attribution were driven by a mix of vertical/oblique cultural transmission (e.g. via family contact) and horizontal cultural transmission. These individual-level transmission dynamics can explain hitherto puzzling population-level phenomena, such as the partial acculturation of 2nd-generation immigrants on measures such as collectivism (due to the mix of vertical and horizontal cultural transmission), or the observation in several countries of increasing individualism (which is transmitted horizontally and therefore rapidly) despite little corresponding change in collectivism (which is transmitted partly vertically and therefore more slowly). Further consideration of cultural transmission mechanisms, in conjunction with the study of migrant communities and model comparison statistics, can shed light on the persistence of, and changes in, culturally-variable psychological processes.
FIBER ORIENTATION IN INJECTION MOLDED LONG CARBON FIBER THERMOPLASTIC COMPOSITES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jin; Nguyen, Ba Nghiep; Mathur, Raj N.
2015-03-23
A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the anisotropic rotary diffusion and the reduced strain closure models. The phenomenological parameters of the orientation models were carefully identified by fitting to the measured orientation data. The fiber orientation predictions show very good agreement with the experimental data.
Comfort Contours: Inter-Axis Equivalence
NASA Astrophysics Data System (ADS)
Griefahn, B.; Bröde, P.
1997-07-01
Inter-axis equivalence for sinusoidal vibrations as stipulated by ISO/DIS 2631 for seated persons was studied by adjusting the acceleration of a horizontal sinusoidal test vibration (x∨y) until it caused equal sensation as a vertical sinusoidal reference motion of the same frequency. The reference vibrations consisted of sine waves ranging from 1·6 to 12·5Hz and were presented with three weighted accelerations ofazw=0·3, 0·6 and 1·2ms-2r.m.s. (reference contours). 26 subjects (15 men, 11 women, 20-55yrs, 153-187cm) participated in the respective experiments. Based on the three reference contours, predicted values for horizontal motions were calculated by using the weighting factors provided in ISO/DIS 2631. The International standard was confirmed insofar as the shape of the contours determined for horizontal motions was independent from vibration magnitudes as sensitivity to fore-and-aft and to lateral motions was similar. However, the accelerations adjusted for horizontal vibrations were considerably lower than predicted, suggesting that the weighing factors provided in ISO/DIS 2631 need to be corrected.
Wang, Jizeng; Li, Long
2015-01-06
Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity-diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand-receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand-receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN
2002-11-19
This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.
Deep Space Detection of Oriented Ice Crystals
NASA Astrophysics Data System (ADS)
Marshak, A.; Varnai, T.; Kostinski, A. B.
2017-12-01
The deep space climate observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sun-lit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We constructed a yearlong time series of flash latitudes, scattering angles and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice crystals floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo.
NASA Astrophysics Data System (ADS)
Hansen, Uwe J.
2005-09-01
A speaker, driven by an amplified audio signal is used to set up a standing wave in a 3b-ft-long, 4-in.-diam transparent tube. Initially the tube is oriented horizontally, and Styrofoam packing peanuts accumulate near the pressure nodes. When the tube is turned to a position with the axis oriented vertically, the peanuts drop slightly, until the gravitational force on the peanuts is balanced by the force due to the sound pressure, at which point levitation is observed. Sound-pressure level measurements are used to map the air column normal mode pattern. Similarly, standing waves are established between an ultrasonic horn and a metal reflector and millimeter size Styrofoam balls are levitated.
Autonomic straightening after gravitropic curvature of cress roots
NASA Technical Reports Server (NTRS)
Stankovic, B.; Volkmann, D.; Sack, F. D.
1998-01-01
Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62 degrees and 88 degrees after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle -36 degrees closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation.
Reviving a neglected celestial underwater polarization compass for aquatic animals.
Waterman, Talbot H
2006-02-01
Substantial in situ measurements on clear days in a variety of marine environments at depths in the water down to 200 m have demonstrated the ubiquitous daytime presence of sun-related e-vector (=plane of polarization) patterns. In most lines of sight the e-vectors tilt from horizontal towards the sun at angles equal to the apparent underwater refracted zenith angle of the sun. A maximum tilt-angle of approximately 48.5 degrees , is reached in horizontal lines of sight at 90 degrees to the sun's bearing (the plane of incidence). This tilt limit is set by Snell's window, when the sun is on the horizon. The biological literature since the 1980s has been pervaded with assumptions that daytime aquatic e-vectors are mainly horizontal. This review attempts to set the record straight concerning the potential use of underwater e-vectors as a visual compass and to reopen the field to productive research on aquatic animals' orientation and navigation.
Guided growth of horizontal GaN nanowires on quartz and their transfer to other substrates.
Goren-Ruck, Lior; Tsivion, David; Schvartzman, Mark; Popovitz-Biro, Ronit; Joselevich, Ernesto
2014-03-25
The guided growth of horizontal nanowires has so far been demonstrated on a limited number of substrates. In most cases, the nanowires are covalently bonded to the substrate where they grow and cannot be transferred to other substrates. Here we demonstrate the guided growth of well-aligned horizontal GaN nanowires on quartz and their subsequent transfer to silicon wafers by selective etching of the quartz while maintaining their alignment. The guided growth was observed on different planes of quartz with varying degrees of alignment. We characterized the crystallographic orientations of the nanowires and proposed a new mechanism of "dynamic graphoepitaxy" for their guided growth on quartz. The transfer of the guided nanowires enabled the fabrication of back-gated field-effect transistors from aligned nanowire arrays on oxidized silicon wafers and the production of crossbar arrays. The guided growth of transferrable nanowires opens up the possibility of massively parallel integration of nanowires into functional systems on virtually any desired substrate.
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawerence D.; Brunning, Eric C.; Blakeslee, Richard
2013-01-01
Four electrified snowfall cases are examined using total lightning measurements from lightning mapping arrays (LMAs), and the National Lightning Detection Network (NLDN) from Huntsville, AL and Washington D.C. In each of these events, electrical activity was in conjunction with heavy snowfall rates, sometimes exceeding 5-8 cm hr-1. A combination of LMA, and NLDN data also indicate that many of these flashes initiated from tall communications towers and traveled over large horizontal distances. During events near Huntsville, AL, the Advanced Radar for Meteorological and Operational Research (ARMOR) C-band polarimetric radar was collecting range height indicators (RHIs) through regions of heavy snowfall. The combination of ARMOR polarimetric radar and VHF LMA observations suggested contiguous layer changes in height between sloping aggregate-dominated layers and horizontally-oriented crystals. These layers may have provided ideal conditions for the development of extensive regions of charge and resultant horizontal propagation of the lightning flashes over large distances.
Sensory factors limiting horizontal and vertical visual span for letter recognition
Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.
2014-01-01
Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline. PMID:25187253
Sensory factors limiting horizontal and vertical visual span for letter recognition
Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.
2014-01-01
Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline.
How barn owls (Tyto alba) visually follow moving voles (Microtus socialis) before attacking them.
Fux, Michal; Eilam, David
2009-09-07
The present study focused on the movements that owls perform before they swoop down on their prey. The working hypothesis was that owl head movements reflect the capacity to efficiently follow visually and auditory a moving prey. To test this hypothesis, five tame barn owls (Tyto alba) were each exposed 10 times to a live vole in a laboratory setting that enabled us to simultaneously record the behavior of both owl and vole. Bi-dimensional analysis of the horizontal and vertical projections of movements revealed that owl head movements increased in amplitude parallel to the vole's direction of movement (sideways or away from/toward the owl). However, the owls also performed relatively large repetitive horizontal head movements when the voles were progressing in any direction, suggesting that these movements were critical for the owl to accurately locate the prey, independent of prey behavior. From the pattern of head movements we conclude that owls orient toward the prospective clash point, and then return to the target itself (the vole) - a pattern that fits an interception rather than a tracking mode of following a moving target. The large horizontal component of head movement in following live prey may indicate that barn owls either have a horizontally narrow fovea or that these movements serve in forming a motion parallax along with preserving image acuity on a horizontally wide fovea.
NASA Astrophysics Data System (ADS)
Song, Hyeong Yong; Salehiyan, Reza; Li, Xiaolei; Lee, Seung Hak; Hyun, Kyu
2017-11-01
In this study, the effects of cone-plate (C/P) and parallel-plate (P/P) geometries were investigated on the rheological properties of various complex fluids, e.g. single-phase (polymer melts and solutions) and multiphase systems (polymer blend and nanocomposite, and suspension). Small amplitude oscillatory shear (SAOS) tests were carried out to compare linear rheological responses while nonlinear responses were compared using large amplitude oscillatory shear (LAOS) tests at different frequencies. Moreover, Fourier-transform (FT)-rheology method was used to analyze the nonlinear responses under LAOS flow. Experimental results were compared with predictions obtained by single-point correction and shear rate correction. For all systems, SAOS data measured by C/P and P/P coincide with each other, but results showed discordance between C/P and P/P measurements in the nonlinear regime. For all systems except xanthan gum solutions, first-harmonic moduli were corrected using a single horizontal shift factor, whereas FT rheology-based nonlinear parameters ( I 3/1, I 5/1, Q 3, and Q 5) were corrected using vertical shift factors that are well predicted by single-point correction. Xanthan gum solutions exhibited anomalous corrections. Their first-harmonic Fourier moduli were superposed using a horizontal shift factor predicted by shear rate correction applicable to highly shear thinning fluids. The distinguished corrections were observed for FT rheology-based nonlinear parameters. I 3/1 and I 5/1 were superposed by horizontal shifts, while the other systems displayed vertical shifts of I 3/1 and I 5/1. Q 3 and Q 5 of xanthan gum solutions were corrected using both horizontal and vertical shift factors. In particular, the obtained vertical shift factors for Q 3 and Q 5 were twice as large as predictions made by single-point correction. Such larger values are rationalized by the definitions of Q 3 and Q 5. These results highlight the significance of horizontal shift corrections in nonlinear oscillatory shear data.
Peng, Chunwang; Liu, Jie; Zhao, Daohui; Zhou, Jian
2014-09-30
In this work, the adsorptions of hydrophobin (HFBI) on four different self-assembled monolayers (SAMs) (i.e., CH3-SAM, OH-SAM, COOH-SAM, and NH2-SAM) were investigated by parallel tempering Monte Carlo and molecular dynamics simulations. Simulation results indicate that the orientation of HFBI adsorbed on neutral surfaces is dominated by a hydrophobic dipole. HFBI adsorbs on the hydrophobic CH3-SAM through its hydrophobic patch and adopts a nearly vertical hydrophobic dipole relative to the surface, while it is nearly horizontal when adsorbed on the hydrophilic OH-SAM. For charged SAM surfaces, HFBI adopts a nearly vertical electric dipole relative to the surface. HFBI has the narrowest orientation distribution on the CH3-SAM, and thus can form an ordered monolayer and reverse the wettability of the surface. For HFBI adsorption on charged SAMs, the adsorption strength weakens as the surface charge density increases. Compared with those on other SAMs, a larger area of the hydrophobic patch is exposed to the solution when HFBI adsorbs on the NH2-SAM. This leads to an increase of the hydrophobicity of the surface, which is consistent with the experimental results. The binding of HFBI to the CH3-SAM is mainly through hydrophobic interactions, while it is mediated through a hydration water layer near the surface for the OH-SAM. For the charged SAM surfaces, the adsorption is mainly induced by electrostatic interactions between the charged surfaces and the oppositely charged residues. The effect of a hydrophobic dipole on protein adsorption onto hydrophobic surfaces is similar to that of an electric dipole for charged surfaces. Therefore, the hydrophobic dipole may be applied to predict the probable orientations of protein adsorbed on hydrophobic surfaces.
NASA Astrophysics Data System (ADS)
Jarosiński, Marek; Pachytel, Radomir
2017-04-01
Depending on the pressure distribution within Stimulated Reservoir Volume (SRV), a different modes of hydraulic fracturing or tectonic fracture reactivation are active. Hydraulic pressure-driven shortening or expansion of reservoir produces changes in stress field that results in decrease of differential stress either by increasing of horizontal stress minimum (Shmin) or/and by decreasing of horizontal stress maximum (SHmax). For further considerations we assume initial strike-slip stress regime which prevails in the Polish part of the Lower Paleozoic Baltic Basin (BB), as well as in majority of the USA shale basins. The data come from vertical and horizontal shale gas exploration wells drilled from one pad located in the middle of the BB. Structural survey of a long core interval combined with stress analysis based on microfrac tests and fracturing tests allow to reconstruct the initial structural and geomechanical state of reservoir. Further geomechanical evolution of the SRV depends on the hydraulic pressure bubble growth, which is in general unknown. However, the state of pressure can be determined close to the injection borehole and in the front of the SRV migrating in time. In our case, we are able to distinguish four stimulation zones characterized by increasingly diverse stimulation modes and successively closer to the borehole injection zone: (1) shear on preexisting fractures generates microseismic events that produce open fractures propped by their natural asperities being impenetrable for proppant grains; (2) above + initial hydraulic opening of natural fractures that are preferentially oriented to the Shmin, which favors microseismic events triggered by secondary shear on bedding planes and produces open spaces supported by natural fracture asperities and fine-grained proppant; (3) above + failure of primary hydraulic fractures, which increases extensional component of the microseismic events and opens space for coarse-grained proppant; (4) above + opening of horizontal bedding fractures, that do not prevail any microseismic mechanism, stabilizes the stresses at the level close to the thrust fault regime and opens space for large amount of proppant. This stimulation mode is undesirable because horizontal bedding fractures do not drain shale matrix efficiently due to low vertical permeability of shale and sealing of bedding planes by high clay content that enhances embedment effect on proppant. The number and order of stimulation zones is site- or basin-specific and may not apply directly to other locations. In the case of strong mechanical layering the stimulation mode can also vary among formations. Large number of preferentially oriented natural fractures (like in majority of boreholes in the BB), may cause the technological hydraulic fractures to play a subordinate role. Because in the BB tectonic fractures are filled with calcite, it may negatively influence gas drainage to stimulated fractures. In our scenario, also the primary shear failure mode is not achieved due to low differential stress in respect to compressive strength of shale. The shape of stimulation zones might not be regular but adjusted to the pattern of stimulated fractures creating principal pathways for hydraulic pressure propagation into reservoir. Bearing in mind the sequence of stimulation mode zones we are able to better understand the pattern of microseismic events and predict, to some extend, the proppant distribution within SRV.
Buehler, Roger; McFarland, Cathy; Spyropoulos, Vassili; Lam, Kent C H
2007-09-01
This article examines the role of motivational factors in affective forecasting. The primary hypothesis was that people predict positive emotional reactions to future events when they are motivated to enhance their current feelings. Three experiments manipulated participants' moods (negative vs. neutral) and orientation toward their moods (reflective vs. ruminative) and then assessed the positivity of their affective predictions for future events. As hypothesized, when participants adopted a reflective orientation, and thus should have been motivated to engage in mood-regulation processes, they predicted more positive feelings in the negative than in the neutral mood condition. This pattern of mood-incongruent affective prediction was not exhibited when participants adopted a ruminative orientation. Additionally, within the negative mood condition, generating affective forecasts had a more positive emotional impact on reflectors than on ruminators. The findings suggest that affective predictions are sometimes driven by mood-regulatory motives.
Georgiou, Stelios N; Fousiani, Kyriaki; Michaelides, Michalis; Stavrinides, Panayiotis
2013-01-01
The purpose of the present study was to examine the existing association between cultural value orientation, authoritarian parenting, and bullying and victimization at school. The participants (N = 231) were early adolescents, randomly selected from 11 different schools in urban and rural areas of Cyprus. Participants completed self reports measuring cultural value orientation, authoritarian parenting, bullying, and victimization. These instruments were the following: the cultural value scale (CVS), the parental authority questionnaire (PAQ), and the revised bullying and victimization questionnaire (BVQ-R). Structural equation modeling (SEM) was used to examine mediation effects. It was found that vertical individualism acted as a mediator between authoritarian parenting and bullying. Statistically significant positive correlations were found between authoritarian parenting and the vertical dimensions of both cultural value orientations (individualism and collectivism), but not with the horizontal dimensions of either cultural orientation. Further, authoritarian parenting was also positively associated with bullying and victimization at school. The main contribution of the present study is the finding that vertical individualism significantly mediates the relationship between authoritarian parental style and bullying propensity.
In Situ Observational Constraints on GIA in Antarctica
NASA Astrophysics Data System (ADS)
Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Konfal, S.; Dalziel, I. W.; Smalley, R.; Willis, M. J.; Wiens, D. A.; Heeszel, D. S.
2012-12-01
Geodetic and seismologic data sets have been acquired across a significant portion of Antarctica through deployment of autonomous, remote instrumentation by the Antarctic Network (ANET) project of the Polar Earth Observing Network (POLENET). Continuous GPS measurements of bedrock crustal motions are yielding a synoptic picture of vertical and horizontal crustal motion patterns from the Transantarctic Mountains to the Ellsworth-Whitmore Mountains and Marie Byrd Land regions. Vertical motion patterns are broadly compatible with predictions from current GIA models, but the magnitudes of the vertical motions are substantially lower than predicted. Slower rates of uplift due to GIA can be attributed to factors including errors in ice history, a superposed solid earth response to modern ice mass change, and/or the influence of laterally varying earth properties on the GIA response. Patterns of horizontal motions measured by ANET show that the role of laterally varying earth rheology is extremely important in Antarctica. Crustal motion vectors are closely aligned and document motion from East toward West Antarctica, in contradiction to ice sheet reconstructions placing maximum LGM ice mass loss in West Antarctica and GIA models that predict motions in the opposite direction. When compared to earth structure mapped by seismology, the horizontal crustal motions are consistently near-perpendicular to the very strong gradient in crust and mantle properties, perhaps the first confirmation of predictions from modeling studies that horizontal motions can be deflected or even reversed where such a lateral earth property exists. Accurate GIA models for Antarctica clearly require a laterally-varying earth model and tuning based on these new GPS and seismological constraints.
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.
1996-01-01
A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is positioned vertically. The ground-based experiments are sufficient preliminary tests of theory and should be of significant interest regarding vapor deposited films in microgravity.
Kuroe, Kazuto; Rosas, Antonio; Molleson, Theya
2004-04-01
The aim of this study was to analyse the effects of cranial base orientation on the morphology of the craniofacial system in human populations. Three geographically distant populations from Europe (72), Africa (48) and Asia (24) were chosen. Five angular and two linear variables from the cranial base component and six angular and six linear variables from the facial component based on two reference lines of the vertical posterior maxillary and Frankfort horizontal planes were measured. The European sample presented dolichofacial individuals with a larger face height and a smaller face depth derived from a raised cranial base and facial cranium orientation which tended to be similar to the Asian sample. The African sample presented brachyfacial individuals with a reduced face height and a larger face depth as a result of a lowered cranial base and facial cranium orientation. The Asian sample presented dolichofacial individuals with a larger face height and depth due to a raised cranial base and facial cranium orientation. The findings of this study suggest that cranial base orientation and posterior cranial base length appear to be valid discriminating factors between different human populations.
NASA Astrophysics Data System (ADS)
Mahya, M. J.; Sanny, T. A.
2017-04-01
Lembang and Cimandiri fault are active faults in West Java that thread people near the faults with earthquake and surface deformation risk. To determine the deformation, GPS measurements around Lembang and Cimandiri fault was conducted then the data was processed to get the horizontal velocity at each GPS stations by Graduate Research of Earthquake and Active Tectonics (GREAT) Department of Geodesy and Geomatics Engineering Study Program, ITB. The purpose of this study is to model the displacement distribution as deformation parameter in the area along Lembang and Cimandiri fault using 2-dimensional boundary element method (BEM) using the horizontal velocity that has been corrected by the effect of Sunda plate horizontal movement as the input. The assumptions that used at the modeling stage are the deformation occurs in homogeneous and isotropic medium, and the stresses that acted on faults are in elastostatic condition. The results of modeling show that Lembang fault had left-lateral slip component and divided into two segments. A lineament oriented in southwest-northeast direction is observed near Tangkuban Perahu Mountain separating the eastern and the western segments of Lembang fault. The displacement pattern of Cimandiri fault shows that Cimandiri fault is divided into the eastern segment with right-lateral slip component and the western segment with left-lateral slip component separated by a northwest-southeast oriented lineament at the western part of Gede Pangrango Mountain. The displacement value between Lembang and Cimandiri fault is nearly zero indicating that Lembang and Cimandiri fault are not connected each other and this area is relatively safe for infrastructure development.
Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.
Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B
2002-10-01
The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).
Influence of gravitoinertial force level on vestibular and visual velocity storage in yaw and pitch.
Dizio, P; Lackner, J R
1992-01-01
Velocity storage is an important aspect of sensory-motor control of body orientation. The effective decay rate and three-dimensional organization of velocity storage are dependent upon body orientation relative to gravity and also are influenced by gravitoinertial force (G) level. Several of the inputs to velocity storage including otolithic, somatosensory, proprioceptive, and possibly motor are highly dependent on G level. To see whether the G dependency of velocity storage is related to changes in the effective coupling of individual sensory inputs to the velocity storage mechanism or to alterations in the time constant of velocity storage per se, we have studied horizontal vestibular nystagmus, horizontal optokinetic after nystagmus (OKAN) and vertical vestibular nystagmus as a function of force level. Horizontal OKAN and vestibular nystagmus both showed no effect of G level on their initial or peak slow phase velocities but their decay rates were quicker in 0G and 1.8G than in 1G. Vertical vestibular nystagmus also showed no effect of G level on peak velocity but decayed quicker in 0G relative to 1G. These-findings indicate that the intrinsic decay rate of a common velocity storage mechanism is affected by the magnitude of G. A negligible amount of slow phase eye velocity was observed in planes outside the planes of stimulation, thus short-term changes in G across multiple body axes can change velocity storage, but the change is restricted to the axis common to the rotary stimulus and the G vector.
Ventilator-associated pneumonia: role of positioning.
Li Bassi, Gianluigi; Torres, Antoni
2011-02-01
Ventilator-associated pneumonia (VAP) is a lung infection commonly acquired following tracheal intubation. This review assesses the role of the supine semirecumbent and the prone position as VAP preventive strategies and calls attention for further investigation on novel body positions that could potentially reduce risks of VAP. The most recent studies on the semirecumbent position failed to achieve an orientation of the head of the bed higher than 30° and did not corroborate any benefit of the semirecumbent position on VAP, as reported in earlier studies. To date, there is clear evidence that the supine horizontal body position increases risks of pulmonary aspiration and VAP, particularly when patients are enterally fed. Laboratory reports are emphasizing the importance of an endotracheal tube-oropharynx-trachea axis below horizontal to avoid VAP. The prone position potentially increases drainage of oropharyngeal and airways secretions and recent evidence is supporting its beneficial effects. However, several associated adverse effects preclude its regular use as a VAP preventive strategy for patients other than those with acute respiratory distress syndrome. Body position greatly affects several pathogenetic mechanisms of VAP. The current evidence recommends avoidance of supine horizontal position in order to prevent aspiration of colonized gastric contents. The semirecumbent position has proven benefits and should be routinely used but there is still limited evidence to recommend the lowest orientation of the bed at which the patient can be safely maintained. Results from pioneering laboratory investigation call attention to new possible positions, that is lateral Trendelenburg position, aimed to avoid pulmonary aspiration and to enhance mucus clearance in intubated patients.
ERIC Educational Resources Information Center
Schumacher, Robin F.; Malone, Amelia S.
2017-01-01
The goal of the present study was to describe fraction-calculation errors among 4th-grade students and determine whether error patterns differed as a function of problem type (addition vs. subtraction; like vs. unlike denominators), orientation (horizontal vs. vertical), or mathematics-achievement status (low- vs. average- vs. high-achieving). We…
49 CFR 178.609 - Test requirements for packagings for infectious substances.
Code of Federal Regulations, 2011 CFR
2011-10-01
... free-fall drops onto a rigid, nonresilient, flat, horizontal surface from a height of 9 m (30 feet... must be dropped, one in each of the following orientation: (i) Flat on the base; (ii) Flat on the top; (iii) Flat on the longest side; (iv) Flat on the shortest side; and (v) On a corner. (2) Where the...
Modeling of High Capacity Passive Cooling System
2009-03-01
Pulsating Heat Pipes : Closed Loop Pulsating Heat Pipes , which is also known as Meandering Capillary Tube Heat Pipe or Closed Loop Oscillating Heat ... Pipe , has emerged in the recent years as a new electronics cooling technology. The Pulsating Heat Pipe is an innovating technology that has gained...horizontal orientation, the operating temperatures are lower. Pulsating heat pipes are capable of higher heat
Tracheid dimensions in rootwood of southern pine
Floyd G. Manwiller
1972-01-01
In samples from 20 trees aged 12 to 89 years, rootwood tracheids were one-third longer and one-third larger in diameter and had walls 18 percent thinner and lumens almost two-thirds larger than stemwood tracheids measured at stump height. Tracheids from horizontal roots were longer and had thicker walls than those from roots of other orientations; length, cell diameter...
Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study.
Chernetsov, Nikita; Kishkinev, Dmitry; Kosarev, Vladislav; Bolshakov, Casimir V
2011-08-01
Migratory birds are able to use the sun and associated polarised light patterns, stellar cues and the geomagnetic field for orientation. No general agreement has been reached regarding the hierarchy of orientation cues. Recent data from naturally migrating North American Catharus thrushes suggests that they calibrate geomagnetic information daily from twilight cues. Similar results have been shown in caged birds in a few studies but not confirmed in others. We report that free-flying European migrants, song thrushes Turdus philomelos, released after pre-exposure to a horizontally rotated magnetic field, do not recalibrate their magnetic compass from solar cues, but rather show a simple domination of either the magnetic or the stellar compass. We suggest that different songbird species possess different hierarchies of orientation cues, depending on the geographic and ecological challenges met by the migrants.
Delta-configurations - Flare activity and magnetic-field structure
NASA Technical Reports Server (NTRS)
Patty, S. R.; Hagyard, M. J.
1986-01-01
Complex sunspots in four active regions of April and May 1980, all exhibiting regions of magnetic classification delta, were studied using data from the NASA Marshall Space Flight Center vector magnetograph. The vector magnetic field structure in the vicinity of each delta was determined, and the location of the deltas in each active region was correlated with the locations and types of flare activity for the regions. Two types of delta-configuration were found to exist, active and inactive, as defined by the relationships between magnetic field structure and activity. The active delta exhibited high flare activity, strong horizontal gradients of the longitudinal (line-of-sight) magnetic field component, a strong transverse (perpendicular to line-of-sight) component, and a highly nonpotential orientation of the photospheric magnetic field, all indications of a highly sheared magnetic field. The inactive delta, on the other hand, exhibited little or no flare production, weaker horizontal gradients of the longitudinal component, weaker transverse components, and a nearly potential, nonsheared orientation of the magnetic field. It is concluded that the presence of such sheared fields is the primary signature by which the active delta may be distinguished, and that it is this shear which produces the flare activity of the active delta.
Bin Hamzah, Hairul Hisham; Keattch, Oliver; Covill, Derek; Patel, Bhavik Anil
2018-06-14
Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.
NASA Astrophysics Data System (ADS)
Chrysikopoulos, C. V.; Syngouna, V. I.
2013-12-01
The role of gravitational force on biocolloid and colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with biocolloids (bacteriophages: ΦΧ174, MS2) and colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q=1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one dimensional, colloid transport model, accounting for gravity effects. The results revealed that flow direction has a significant influence on particle deposition. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for biocolloid and colloid deposition. Schematic illustration of a packed column with up-flow velocity having orientation (-i) with respect to gravity. The gravity vector components are: g(i)= g(-z) sinβ i, and g(-j)= -g(-z) cosβ j. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.
Organization of cortical microtubules in graviresponding maize roots
NASA Technical Reports Server (NTRS)
Blancaflor, E. B.; Hasenstein, K. H.
1993-01-01
Immunofluorescence labeling of cortical microtubules (MTs) was used to investigate the relationship between MT arrangement and changes in growth rate of the upper and lower sides of horizontally placed roots of maize (Zea mays L. cv. Merit). Cap cells and cells of the elongation zone of roots grown vertically in light or darkness showed MT arrangements that were transverse (perpendicular) to the growth direction. Microtubules of cells basal to the elongation zone typically showed oblique orientation. Two hours after horizontal reorientation, cap cells of gravicompetent, light-grown and curving roots contained MTs parallel to the gravity vector. The MT arrangement on the upper side of the elongation zone remained transverse but the MTs of the outer four to five layers of cortical cells along the lower side of the elongation zone showed reorientation parallel to the axis of the root. The MTs of the lower epidermis retained their transverse orientation. Dark-grown roots did not curve and did not show reorientation of MTs in cells of the root cap or elongation zone. The data indicate that MT depolymerization and reorientation is correlated with reduction in growth rate, and that MT reorientation is one of the steps of growth control of graviresponding roots.
The Modulation of Biological Production by Oceanic Mesoscale Turbulence
NASA Astrophysics Data System (ADS)
Lévy, Marina
This chapter reviews the current state of knowledge on bio-physical interactions at mesoscale and at sub-mesoscale. It is focused on the mid-latitudes open ocean. From examples taken from my own studies or selected in the literature, I show how high-resolution process-oriented model studies have helped to improve our understanding. I follow a process oriented approach; I first discuss the role of mesoscale eddies in moderating the nutrient flux into the well-lit euphotic zone. Then I address the impact on biogeochemistry of transport occurring on a horizontal scale smaller than the scale of an eddy. I show that submesoscale processes modulate biogeochemical budgets in a number of ways, through intense upwelling of nutrients, subduction of phytoplankton, and horizontal stirring. Finally, I emphasize that mesoscale and submesoscale dynamics have a strong impact on productivity through their influence on the stratification of the surface of the ocean. These processes have in common that they concern the short-term, local effect of oceanic turbulence on biogeochemistry. Efforts are still needed before we can get a complete picture, which would also include the far-field long-term effect of the eddies.
Caldwell-Harris, Catherine L; Ayçiçegi, Ayse
2006-09-01
Because humans need both autonomy and interdependence, persons with either an extreme collectivist orientation (allocentrics) or extreme individualist values (idiocentrics) may be at risk for possession of some features of psychopathology. Is an extreme personality style a risk factor primarily when it conflicts with the values of the surrounding society? Individualism-collectivism scenarios and a battery of clinical and personality scales were administered to nonclinical samples of college students in Boston and Istanbul. For students residing in a highly individualistic society (Boston), collectivism scores were positively correlated with depression, social anxiety, obsessive-compulsive disorder and dependent personality. Individualism scores, particularly horizontal individualism, were negatively correlated with these same scales. A different pattern was obtained for students residing in a collectivist culture, Istanbul. Here individualism (and especially horizontal individualism) was positively correlated with scales for paranoid, schizoid, narcissistic, borderline and antisocial personality disorder. Collectivism (particularly vertical collectivism) was associated with low report of symptoms on these scales. These results indicate that having a personality style which conflicts with the values of society is associated with psychiatric symptoms. Having an orientation inconsistent with societal values may thus be a risk factor for poor mental health.
NASA Astrophysics Data System (ADS)
Fadeeva, A. I.; Gorbunov, V. A.; Litunenko, T. A.
2017-08-01
Using the molecular dynamics and the Monte Carlo methods, we have studied the structural features and growth mechanism of the pentacene film on graphite and polymethylmethacrylate /graphite surfaces. Monolayer capacity and molecular area, optimal angles between the pentacene molecules and graphite and PMMA/graphite surfaces as well as the characteristic angles between the neighboring pentacene molecules in the adsorption layer were estimated. It is shown that the orientation of the pentacene molecules in the film is determined by a number of factors, including the surface concentration of the molecules, relief of the surface, presence or absence of the polymer layer and its thickness. The pentacene molecules adsorbed on the graphite surface keep a horizontal position relative to the long axis at any surface coverage/thickness of the film. In the presence of the PMMA layer on the graphite, the increase of the number of pentacene molecules as well as the thickness of the PMMA layer induce the change of molecular orientation from predominantly horizontal to vertical one. The reason for such behavior is supposed to be the roughness of the PMMA surface.
NASA Astrophysics Data System (ADS)
Chanard, K.; Fleitout, L.; Calais, E.; Barbot, S.; Avouac, J. P.
2016-12-01
Elastic deformation of the Earth induced by seasonal variations in hydrology is now well established. We compute the vertical and horizontal deformation induced by large variations of continental water storage at a set of 195 globally distributed continuous Global Positioning System (cGPS) stations. Seasonal loading is derived from the Gravity and Recovery Climate experiment (GRACE) equivalent water height data, where we first account for non observable degree-1 components using previous results (Swenson et al., 2010). While the vertical displacements are well predicted by the model, the horizontal components are systematically underpredicted and out-of- phase with the observations. This global result confirms previous difficulties to predict horizontal seasonal site positions at a regional scale. We discuss possible contributions to this misfit (thermal expansion, draconitic effects, etc.) and show a dramatic improvement when we derive degree-one deformation plus reference frame differences between model and observations. The fit in phase and amplitude of the seasonal deformation model to the horizontal GPS measurements is improved and the fit to the vertical component is not affected. However, the amplitude of global seasonal horizontal displacement remains slightly underpredicted. We explore several hypothesis including the validity of a purely elastic model derived from seismic estimates at an annual time scale. We show that mantle volume variations due to mineral phase transitions may play a role in the seasonal deformation and, as a by-product, use this seasonal deformation to provide a lower bound of the transient astenospheric viscosity. Our study aims at providing an accurate model for horizontal and vertical seasonal deformation of the Earth induced by variations in surface hydrology derived from GRACE.
Buzás, P; Eysel, U T; Kisvárday, Z F
1998-11-01
Pyramidal cells mediating long-range corticocortical connections have been assumed to play an important role in visual perceptual mechanisms [C.D. Gilbert, Horizontal integration and cortical dynamics, Neuron 9 (1992) 1-13]. However, no information is available as yet on the specificity of individual pyramidal cells with respect to functional maps, e.g., orientation map. Here, we show a combination of techniques with which the functional topography of single pyramidal neurons can be explored in utmost detail. To this end, we used optical imaging of intrinsic signals followed by intracellular recording and staining with biocytin in vivo. The axonal and dendritic trees of the labelled neurons were reconstructed in three dimensions and aligned with corresponding functional orientation maps. The results indicate that, contrary to the sharp orientation tuning of neurons shown by the recorded spike activity, the efferent connections (axon terminal distribution) of the same pyramidal cells were found to terminate at a much broader range of orientations. Copyright 1998 Elsevier Science B.V.
Otsubo, Kazuya; Haraguchi, Tomoyuki; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2012-06-13
Fabrication of a crystalline ordered thin film based on the porous metal-organic frameworks (MOFs) is one of the practical applications of the future functional nanomaterials. Here, we report the creation of a highly oriented three-dimensional (3-D) porous pillared-layer-type MOF thin film on a metal substrate using a step-by-step approach based on liquid-phase epitaxy. Synchrotron X-ray diffraction (XRD) study clearly indicates that the thin film is crystalline and its orientation is highly controlled in both horizontal and vertical directions relative to the substrate. This report provides the first confirmation of details of not only the crystallinity but also the orientation of 3-D MOF thin film using synchrotron XRD. Moreover, we also demonstrate its guest adsorption/desorption behavior by using in situ XRD measurements. The results presented here would promise useful insights for fabrication of MOF-based nanodevices in the future.
A magnetic method for determining the geometry of hydraulic fractures
Byerlee, J.D.; Johnston, M.J.S.
1976-01-01
We propose a method that may be used to determine the spatial orientation of the fracture plane developed during hydraulic fracture. In the method, magnetic particles are injected into the crack with the fracturing fluid so as to generate a sheet of magnetized material. Since the magnetization of a body with extreme dimension ratios, such as a crack, exceeds that of an equidimensional body and since this magnetization is sensitive both to orientation and geometry, this could be used to obtain information about the crack. By measuring the vertical and horizontal components of the magnetic field and field gradients at the earth's surface surrounding the injection well with superconducting magnetometers having 10-4 gamma sensitivity and also by measuring field direction within the well itself, it should be possible to calculate the orientation and perhaps infer the approximate geometry of the fracture surface. Experiments on electric field potential operated in conjunction with this experiment could further constrain estimates of shape and orientation. ?? 1976 Birkha??user Verlag.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Morse, H.E.
A drum tie-down apparatus for securing drum-like containers in an upright position to a floor or platform of a transportation vehicle having spaced apart cargo tie-down points. The apparatus comprises a pair of cylindrical, hollow tube segments horizontally oriented and engageable with a drum lid adjacent opposite rim edges, flexible strap segments for connecting upper and lower central portions of the tube segments together across the drum lid and a pair of elongated flexible tie-down segments, one extending horizontally through each of the tube segments, the ends thereof being attached to said spaced apart tie-down points such that end portions of the pair of tie-down segments extend downwardly and radially outwardly from the tube segments to the tie-down points.
Morse, Harvey E.
1984-01-01
A drum tie-down apparatus for securing drum-like containers in an upright position to a floor or platform of a transportation vehicle having spaced apart cargo tie-down points. The apparatus comprises a pair of cylindrical, hollow tube segments horizontally oriented and engageable with a drum lid adjacent opposite rim edges, flexible strap segments for connecting upper and lower central portions of the tube segments together across the drum lid and a pair of elongated flexible tie-down segments, one extending horizontally through each of the tube segments, the ends thereof being attached to said spaced apart tie-down points such that end portions of the pair of tie-down segments extend downwardly and radially outwardly from the tube segments to the tie-down points.
Earth fissures and localized differential subsidence
Holzer, Thomas L.; Pampeyan, Earl H.
1981-01-01
Long linear tension cracks associated with declining groundwater levels at four sites in subsiding areas in south-central Arizona, Fremont Valley, California, and Las Vegas Valley, Nevada, occur near points of maximum convex-upward curvature in subsidence profiles oriented perpendicular to the cracks. Profiles are based on repeated precise vertical control surveys of lines of closely spaced bench marks. Association of these fissures with zones of localized differential subsidence indicates that linear earth fissures are caused by horizontal tensile strains probably resulting from localized differential compaction. Horizontal tensile strains across the fissures at the point of maximum convex-upward curvature, ranging from approximately 100 to 700 microstrains (0.01 to 0.07% per year), were indicated based on measurements with a tape or electronic distance meter.
D region disturbances caused by electromagnetic pulses from lightning
NASA Technical Reports Server (NTRS)
Rodriguez, Juan V.; Inan, Umran S.; Bell, Timothy F.
1992-01-01
Attention is given to a simple formulation of the propagation and absorption in a magnetized collisional plasma of EM pulses from lightning which describes the effect of discharge orientation and radiated electric field on the structure and magnitude of heating and secondary ionization in the D region. Radiation from most lightning discharges can heat substantially, but only the most intense (not less than 20 V/m) are likely to cause ionization enhancements not less than 10 percent of the ambient in a single ionization cycle. This dependence on the radiated electric field is modified by the discharge radiation pattern: a horizontal cloud discharge tends to cause larger heating and ionizaton maxima while a vertical return stroke causes disturbances of a larger horizontal extent.
Becker, Mark W; Miller, James R; Liu, Taosheng
2013-04-01
Previous research has suggested that two color patches can be consolidated into visual short-term memory (VSTM) via an unlimited parallel process. Here we examined whether the same unlimited-capacity parallel process occurs for two oriented grating patches. Participants viewed two gratings that were presented briefly and masked. In blocks of trials, the gratings were presented either simultaneously or sequentially. In Experiments 1 and 2, the presentation of the stimuli was followed by a location cue that indicated the grating on which to base one's response. In Experiment 1, participants responded whether the target grating was oriented clockwise or counterclockwise with respect to vertical. In Experiment 2, participants indicated whether the target grating was oriented along one of the cardinal directions (vertical or horizontal) or was obliquely oriented. Finally, in Experiment 3, the location cue was replaced with a third grating that appeared at fixation, and participants indicated whether either of the two test gratings matched this probe. Despite the fact that these responses required fairly coarse coding of the orientation information, across all methods of responding we found superior performance for sequential over simultaneous presentations. These findings suggest that the consolidation of oriented gratings into VSTM is severely limited in capacity and differs from the consolidation of color information.
Childhood Sex-Typed Behavior and Sexual Orientation: A Conceptual Analysis and Quantitative Review.
ERIC Educational Resources Information Center
Bailey, J. Michael; Zucker, Kenneth J.
1995-01-01
Reviews research examining the predictive aspects of childhood sex-typed behavior for sexual orientation. Prospective studies suggest that childhood cross-typed behavior is strongly predictive of adult homosexual orientation for men, whereas retrospective studies are useful in determining how many homosexual individuals displayed cross-sex…
Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.
de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo
2018-03-01
Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.
NASA Astrophysics Data System (ADS)
Varghese, Saji; Langmann, Baerbel; Ceburnis, Darius; O'Dowd, Colin D.
2011-08-01
Horizontal resolution sensitivity can significantly contribute to the uncertainty in predictions of meteorology and air-quality from a regional climate model. In the study presented here, a state-of-the-art regional scale atmospheric climate-chemistry-aerosol model REMOTE is used to understand the influence of spatial model resolutions of 1.0°, 0.5° and 0.25° on predicted meteorological and aerosol parameters for June 2003 for the European domain comprising North-east Atlantic and Western Europe. Model precipitation appears to improve with resolution while wind speed has shown best results for 0.25° resolution for most of the stations compared with ECAD data. Low root mean square error and spatial bias for surface pressure, precipitation and surface temperature show that the model is very reliable. Spatial and temporal variation in black carbon, primary organic carbon, sea-salt and sulphate concentrations and their burden are presented. In most cases, chemical species concentrations at the surface show no particular trend or improvement with increase in resolution. There has been a pronounced influence of horizontal resolution on the vertical distribution pattern of some aerosol species. Some of these effects are due to the improvement in topographical details, flow characteristics and associated vertical and horizontal dynamic processes. The different sink processes have contributed very differently to the various aerosol species in terms of deposition (wet and dry) and sedimentation which are strongly linked to the meteorological processes. Overall, considering the performance of meteorological parameters and chemical species concentrations, a horizontal model resolution of 0.5° is suggested to achieve reasonable results within the limitations of this model.
Finite element prediction on the chassis design of UniART4 racing car
NASA Astrophysics Data System (ADS)
Zaman, Z. I.; Basaruddin, K. S.; Basha, M. H.; Rahman, M. T. Abd; Daud, R.
2017-09-01
This paper presents the analysis and evaluation of the chassis design for University Automotive Racing Team No. 4 (UniART4) car based on finite element analysis. The existing UniART4 car chassis was measured and modelled geometrically using Solidwork before analysed in FEA software (ANSYS). Four types of static structural analysis were used to predict the chassis design capability under four different loading conditions; vertical bending, lateral bending, lateral torsion and horizontal lozenging. The results showed the chassis subjected to the highest stress and strain under horizontal lozenging, whereas the minimum stress and strain response was obtained under lateral bending. The present analysis result could provide valuable information in predicting the sustainability of the current UniART car chassis design.
Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen
2005-01-01
The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...
Deformation due to the distension of cylindrical igneous contacts: A kinematic model
NASA Astrophysics Data System (ADS)
Morgan, John
1980-06-01
A simple kinematic model is described that predicts the state of overall wall-rock strain resulting from the distension of igneous contacts. It applies to the axially symmetric expansion of any pluton whose overall shape is a cylinder with circular cross section i.e. to late magmatic plutons which are circular or annular in cross section. The model is not capable of predicting the strain distribution in the zone of contact strain, but does predict components of overall strain whose magnitudes are calculated from the change in shape of the zone of contact strain. These strain components are: (1) overall radial shortening of the wall rocks overlineer; (2) overall vertical extension overlineev; and (3) overall horizontal extension parallel to the contact overlineeh (the axis of symmetry is arbitrarily oriented vertically). In addition, one local strain magnitude can be predicted, namely the horizontal extension of the contact surface ehc. The four strain parameters and {(1 + overlineev) }/{(1 + overlineeh}) are graphed as functions of two independent variables: (1) outward distension of the contact ( r - r0)/ r; and (2) depth of contact strain ( rd - r)/ r. r is the present, observed radius of the pluton, r0 is the original radius and rd is the radius of contact strain. If ( rd- r)/ r is reduced or ( r - r0)/ r is increased, absolute values of the overall strain components are increased, ehc increases with ( r - r0)/ r but is independent of ( r d - r)/r · (1 + overlineev)/(l + overlineeh) ≅ 1 over a large range of values of both independent variables. The model has been applied to two Archean plutons in northwestern Ontario. According to a previous study, strain near the contact of the Bamaji-Blackstone batholith is characterized by large values of extension parallel to the contact and shortening normal to the contact, ( r - r0)/r and ( rd - r)/ r are estimated to be less than 0.20 and 0.27 respectively. The horizontal extension parallel to the contact is apparently a minimum estimate of ehc and the depth of contact strain was previously underestimated. The range of values of ehc indicates that ( r - r0)/ r is larger than previously estimated by a factor of at least three. A similar problem has been encountered at the convex boundary of the Marmion Lake crescentic pluton. The pluton was emplaced along an older contact between greenstone and tonalitic gneiss. A minimum value of the outward displacement of the convex boundary of the pluton can be estimated from a major fold in the greenstone. It is found that the magnitude of this outward displacement is greater than the width of the pluton or ( r - r0). Apparently, the folding pre-dates the emplacement of the crescent; it probably dates from the emplacement of the tonalitic gneiss into greenstone cover.
The effect of short-term training on cardinal and oblique orientation discrimination: an ERP study.
Song, Yan; Sun, Li; Wang, You; Zhang, Xuemin; Kang, Jing; Ma, Xiaoli; Yang, Bin; Guan, Yijie; Ding, Yulong
2010-03-01
The adult brain shows remarkable plasticity, as demonstrated by the improvement in most visual discrimination tasks after intensive practice. However, previous studies have demonstrated that practice improved the discrimination only around oblique orientations, while performance around cardinal orientations (vertical or horizontal orientations) remained stable despite extensive training. The two experiments described here used event-related potentials (ERPs) to investigate the neural substrates underlying different training effects in the two kinds of orientation. Event-related potentials were recorded from subjects when they were trained with a grating orientation discrimination task. Psychophysical threshold measurements were performed before and after the training. For oblique gratings, psychophysical thresholds decreased significantly across training sessions. ERPs showed larger P2 and P3 amplitudes and smaller N1 amplitudes over the parietal/occipital areas with more practice. In line with the psychophysical thresholds, the training effect on the P2 and P3 was specific to stimulus orientation. However, the N1 effect was generalized over differently oriented gratings stimuli. For cardinally oriented gratings, no significant changes were found in the psychophysical thresholds during the training. ERPs still showed similar generalized N1 effect as the oblique gratings. However, the amplitudes of P2 and P3 were unchanged during the whole training. Compared with cardinal orientations, more visual processing stages and later ERP components were involved in the training of oblique orientation discrimination. These results contribute to understanding the neural basis of the asymmetry between cardinal and oblique orientation training effects. Copyright 2009 Elsevier B.V. All rights reserved.
Lithofacies classification of the Barnett Shale gas reservoir using neural network
NASA Astrophysics Data System (ADS)
Aliouane, Leila; Ouadfeul, Sid-Ali
2017-04-01
Here, we show the contribution of the artificial intelligence such as neural network to predict the lithofacies in the lower Barnett shale gas reservoir. The Multilayer Perceptron (MLP) neural network with Hidden Weight Optimization Algorithm is used. The input is raw well-logs data recorded in a horizontal well drilled in the Lower Barnett shale formation, however the output is the concentration of the Clay and the Quartz calculated using the ELAN model and confirmed with the core rock measurement. After training of the MLP machine weights of connection are calculated, the raw well-logs data of two other horizontal wells drilled in the same reservoir are propagated though the neural machine and an output is calculated. Comparison between the predicted and measured clay and Quartz concentrations in these two horizontal wells shows the ability of neural network to improve shale gas reservoirs characterization.
A fluid-mechanical sewing machine
NASA Astrophysics Data System (ADS)
Lister, John; Chiu-Webster, Sunny
2004-11-01
It is a breakfast-table experience that when a viscous fluid thread falls a sufficient height onto a stationary horizontal surface the thread is undergoes a coiling instability. We describe experimental observations of a viscous thread falling onto a steadily moving horizontal belt. Low (or zero) belt speeds produce coiling as expected. High belt speeds produce a steady thread, whose shape is well-predicted by theory for a stretching catenary with surface tension and inertia. Intermediate belt speeds show various modes of oscillation, which produce a variety of `stitching' patterns on the belt. The onset of oscillations is predicted theoretically.
Should tsunami simulations include a nonzero initial horizontal velocity?
NASA Astrophysics Data System (ADS)
Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.
2017-08-01
Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.[Figure not available: see fulltext.
Should tsunami models use a nonzero initial condition for horizontal velocity?
NASA Astrophysics Data System (ADS)
Nava, G.; Lotto, G. C.; Dunham, E. M.
2017-12-01
Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require two initial conditions: one on sea surface height and another on depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). We run several full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor, using both idealized structures and a more realistic Tohoku structure. Substantial horizontal momentum is imparted to the ocean, but almost all momentum is carried away in the form of ocean acoustic waves. We compare tsunami propagation in each full-physics simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial conditions. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves (from ocean acoustic and seismic waves) at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.
Expectancy modulates pupil size during endogenous orienting of spatial attention.
Dragone, Alessio; Lasaponara, Stefano; Pinto, Mario; Rotondaro, Francesca; De Luca, Maria; Doricchi, Fabrizio
2018-05-01
fMRI investigations in healthy humans have documented phasic changes in the level of activation of the right temporal-parietal junction (TPJ) during cued voluntary orienting of spatial attention. Cues that correctly predict the position of upcoming targets in the majority of trials, i.e., predictive cues, produce higher deactivation of the right TPJ as compared with non-predictive cues. Since the right TPJ is the recipient of noradrenergic (NE) innervation, it has been hypothesised that changes in the level of TPJ activity are matched with changes in the level of NE activity. Based on aforementioned fMRI findings, this might imply that orienting with predictive cues is matched with different levels of NE activity as compared with non-predictive cues. To test this hypothesis, we measured changes in pupil dilation, an indirect index of NE activity, during voluntary orienting of attention with highly predictive (80% validity) or non-predictive (50% validity) cues. In agreement with current interpretations of the tonic/phasic activity of the Locus Coeruleus-Norepinephrinic system (LC-NE), we found that the steady level of cue predictiveness that characterised both the predictive and non-predictive conditions caused, across consecutive blocks of trials, a progressive decrement in pupil dilation during the baseline-fixation period that anticipated the cue period. With predictive cues we observed increased pupil dilation as compared with non-predictive cues. In addition, the relative reduction in pupil size observed with non-predictive cues increased as a function of cue-duration. These results show that changes in the predictiveness of cues that guide voluntary orienting of spatial attention are matched with changes in pupil dilation and, putatively, with corresponding changes in LC-NE activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Spalding, Jennifer; Schneider, David
2016-04-01
Intra-cratonic regions are generally characterized by tectonic stability and low seismicity. In southern Ontario, Canada, moderate levels of seismicity have been recorded over the last few decades reaching magnitudes of 5 MN, indicating that the geosphere is not as stable as predicted. The stratigraphy of the region consists of Ordovician limestone with a thickness of ~200 m that unconformably overlays the Mesoproterozoic crystalline Grenville Province. Subsequent tectonism including repeated Paleozoic orogenies and rifting along the east coast of North America has reactivated Proterozoic structures that have propagated into the overlying carbonate platform forming mesoscopic-scale brittle structures. Exposed along the shores of Lake Ontario are decameter-scale fracture zones, with a fracture spacing of 0.5 to 10 meters. The dominant fracture set trends E-W, and often forms conjugate sets with less prominent NNE-oriented fractures. More locally, an older NW-oriented fracture set is cross cut by the E-W and NNE oriented fractures. Regionally, there have been six directions of maximum horizontal stress in southern Ontario since the Precambrian, with the current orientation of maximum stress oriented ENE as a consequence of far field Atlantic ridge-push forces generated at distant plate boundaries. Calcite mineralization along fractured surfaces locally form sub-horizontal slickenside fabrics which are covered by a layer of euhedral calcite crystals, suggesting that fracture dilation (and fluid flow) occurred after fracture slip to allow the growth of calcite crystals. Due to the proximity of the carbonate units to the crystalline basement, we expect the calcitic veins to be enriched in rare earth elements and are presently conducting geochemical analyses. The calcite veins and surfaces vary from 2.5 cm to 1 mm thicknesses, often with larger calcite crystals in the center of the vein and smaller crystals at the vein boundaries, likely representing nucleation on small grains of the wall rock. Some veins show minor displacement, including the mm-scale with fractured and displaced fossil fragments, and cm-scale offsets at the outcrop. The calcite veins show evidence of low temperature deformation (~200°C) through undulous extinction, bulging grain boundaries, tension gashes structures, and extensive lamellar twinning. The width and density of twinning (twin planes/mm) provides information regarding the temperature of deformation. The calcite crystals show two populations of twinning: type I (>10 μm), and type II (tabular twinning) with an average thickness of 35 μm, and a maximum thickness of 81 μm. Twinning can only accommodate a limited amount of strain such that the calcite lamellar twinning is often kinked, broken and offset, suggesting reactivation of the calcite-filled fractures. U-Pb calcite ages from calcitic veins in the Ordovician units within the Ottawa graben are c. 400 Ma and within Devonian units at the edge of the Michigan Basin in Canada are c. 110 Ma. Additional geochronology on the calcite from southern Ontario will help resolve the timing of fracture reactivation and is an important factor in consideration of the location of a deep geological repository for Canada's nuclear waste.
A linear model fails to predict orientation selectivity of cells in the cat visual cortex.
Volgushev, M; Vidyasagar, T R; Pei, X
1996-01-01
1. Postsynaptic potentials (PSPs) evoked by visual stimulation in simple cells in the cat visual cortex were recorded using in vivo whole-cell technique. Responses to small spots of light presented at different positions over the receptive field and responses to elongated bars of different orientations centred on the receptive field were recorded. 2. To test whether a linear model can account for orientation selectivity of cortical neurones, responses to elongated bars were compared with responses predicted by a linear model from the receptive field map obtained from flashing spots. 3. The linear model faithfully predicted the preferred orientation, but not the degree of orientation selectivity or the sharpness of orientation tuning. The ratio of optimal to non-optimal responses was always underestimated by the model. 4. Thus non-linear mechanisms, which can include suppression of non-optimal responses and/or amplification of optimal responses, are involved in the generation of orientation selectivity in the primary visual cortex. PMID:8930828
NASA Astrophysics Data System (ADS)
Vélez-García, Gregorio M.; Ortman, Kevin C.; Eberle, Aaron P. R.; Wapperom, Peter; Baird, Donald G.
2008-07-01
A 2D coupled Hele-Shaw flow approximation for predicting the flow-induced orientation of high aspect ratio particles in injection molded composite parts is presented. For a highly concentrated short glass fiber PBT suspension, the impact of inter-particle interactions and the orientation at the gate is investigated for a center-gated disk using material parameters determined from rheometry. Experimental orientation is determined from confocal laser micrographs using the methods of ellipses. The constitutive equations are discretized using discontinuous Galerkin Finite Elements. Model predictions are significantly improved by using a localized orientation measured experimentally at the gate region instead of random or averaged gapwise measured orientation assumed in previous studies. The predicted profile in different radial positions can be related to the layered structure along the gapwise direction. Model modifications including interactions have lower impact than the initial conditions.
Perception of passage through openings depends on the size of the body in motion
Franchak, John M.; Celano, Emma C.; Adolph, Karen E.
2012-01-01
Walkers need to modify their ongoing actions to meet the demands of everyday environments. Navigating through openings requires gait modifications if the size of the opening is too small relative to the body. Here we ask if the spatial requirements for navigating horizontal and vertical openings differ, and, if so, whether walkers are sensitive to those requirements. To test walkers’ sensitivity to demands for gait modification, we asked participants to judge whether they could walk through horizontal openings without shoulder rotation and through vertical openings without ducking. Afterward, participants walked through the openings so that we could determine which opening sizes elicited gait modifications. Participants turned their shoulders with more space available than the space they left themselves for ducking. Larger buffers for horizontal openings may reflect different spatial requirements created by lateral sway of the body during walking compared to vertical bounce. In addition, greater variability of turning from trial to trial compared with ducking may lead walkers to adopt a more conservative buffer to avoid errors. Verbal judgments accurately predicted whether openings required gait modifications. For horizontal openings, participants’ judgments were best predicted by the body’s dynamic abilities, not static shoulder width. The differences between horizontal and vertical openings illustrate that walkers account for the dynamic properties of walking in addition to scaling decisions to body dimensions. PMID:22990292
Perception of passage through openings depends on the size of the body in motion.
Franchak, John M; Celano, Emma C; Adolph, Karen E
2012-11-01
Walkers need to modify their ongoing actions to meet the demands of everyday environments. Navigating through openings requires gait modifications if the size of the opening is too small relative to the body. Here we ask whether the spatial requirements for navigating horizontal and vertical openings differ, and, if so, whether walkers are sensitive to those requirements. To test walkers' sensitivity to demands for gait modification, we asked participants to judge whether they could walk through horizontal openings without shoulder rotation and through vertical openings without ducking. Afterward, participants walked through the openings, so that we could determine which opening sizes elicited gait modifications. Participants turned their shoulders with more space available than the space they left themselves for ducking. Larger buffers for horizontal openings may reflect different spatial requirements created by lateral sway of the body during walking compared to vertical bounce. In addition, greater variability of turning from trial to trial compared with ducking may lead walkers to adopt a more conservative buffer to avoid errors. Verbal judgments accurately predicted whether openings required gait modifications. For horizontal openings, participants' judgments were best predicted by the body's dynamic abilities, not static shoulder width. The differences between horizontal and vertical openings illustrate that walkers account for the dynamic properties of walking in addition to scaling decisions to body dimensions.
Murray, M.H.; Marshall, G.A.; Lisowski, M.; Stein, R.S.
1996-01-01
We invert geodetic measurements of coseismic surface displacements to determine a dislocation model for the April 25, 1992, M=7 Cape Mendocino, California, earthquake. The orientation of the model slip vector, which nearly parallels North America-Juan de Fuca relative plate convergence, and the location and orientation of the model fault relative to the offshore Cascadia megathrust, suggest that the 1992 Cape Mendocino earthquake is the first well-recorded event to relieve strain associated with the Cascadia subduction zone. We use data from three geodetic techniques: (1) the horizontal and vertical displacements of 13 monuments surveyed with the Global Positioning System, corrected for observed horizontal interseismic strain accumulation, (2) 88 section-elevation differences between leveling monuments, and (3) the uplift of 12 coastal sites observed from the die-off of intertidal marine organisms. Maximum observed displacements are 0.4 m of horizontal movement and 1.5 m of uplift along the coast. We use Monte Carlo techniques to estimate an optimal uniform slip rectangular fault geometry and its uncertainties. The optimal model using all the data resolves 4.9 m of slip on a 14 by 15 km fault that dips 28?? SE. The fault extends from 1.5 to 8.7 km in depth and the main-shock hypocenter is close to the downdip projection of the fault. The shallowly dipping fault plane is consistent with the observed aftershock locations, and the estimated geodetic moment is 3.1??1019 N m, 70% of the seismic moment. Other models that exclude leveling data collected in 1935 and 1942 are more consistent with seismological estimates of the fault geometry. If the earthquake is characteristic for this segment, the estimated horizontal slip vector compared with plate convergence rates suggests a recurrence interval of 140 years, with a 95% confidence range of 100-670 years. The coseismic uplift occurred in a region that also has high Quaternary uplift rates determined from marine terrace studies. If repeated ruptures of this southernmost segment of the Cascadia megathrust are responsible for the Quaternary uplift, a comparison of the coseismic uplift with coastal uplift rates suggests a recurrence interval of 200-400 years. Thus comparing horizontal and vertical coseismic to long-term deformation suggests a recurrence interval of about 100-300 years for M=7 events at the south end of the Cascadia megathrust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domenico, Janna; Foster, Michael E.; Spoerke, Erik D.
Here, the efficiency of dye-sensitized solar cells (DSSCs) is strongly influenced by dye molecule orientation and interactions with the substrate. Understanding the factors controlling the surface orientation of sensitizing organic molecules will aid in the improvement of both traditional DSSCs and other devices that integrate molecular linkers at interfaces. Here, we describe a general approach to understand relative dye–substrate orientation and provide analytical expressions predicting orientation. We consider the effects of substrate, solvent, and protonation state on dye molecule orientation. In the absence of solvent, our model predicts that most carboxylic acid-functionalized molecules prefer to lie flat (parallel) on themore » surface, due to van der Waals interactions, as opposed to a tilted orientation with respect to the surface that is favored by covalent bonding of the carboxylic acid group to the substrate. When solvation effects are considered, however, the molecules are predicted to orient perpendicular to the surface. We extend this approach to help understand and guide the orientation of metal–organic framework (MOF) thin-film growth on various metal–oxide substrates. A two-part analytical model is developed on the basis of the results of DFT calculations and ab initio MD simulations that predicts the binding energy of a molecule by chemical and dispersion forces on rutile and anatase TiO 2 surfaces, and quantifies the dye solvation energy for two solvents. The model is in good agreement with the DFT calculations and enables rapid prediction of dye molecule and MOF linker binding preference on the basis of the size of the adsorbing molecule, identity of the surface, and the solvent environment. We establish the threshold molecular size, governing dye molecule orientation, for each condition.« less
Domenico, Janna; Foster, Michael E.; Spoerke, Erik D.; ...
2018-04-25
Here, the efficiency of dye-sensitized solar cells (DSSCs) is strongly influenced by dye molecule orientation and interactions with the substrate. Understanding the factors controlling the surface orientation of sensitizing organic molecules will aid in the improvement of both traditional DSSCs and other devices that integrate molecular linkers at interfaces. Here, we describe a general approach to understand relative dye–substrate orientation and provide analytical expressions predicting orientation. We consider the effects of substrate, solvent, and protonation state on dye molecule orientation. In the absence of solvent, our model predicts that most carboxylic acid-functionalized molecules prefer to lie flat (parallel) on themore » surface, due to van der Waals interactions, as opposed to a tilted orientation with respect to the surface that is favored by covalent bonding of the carboxylic acid group to the substrate. When solvation effects are considered, however, the molecules are predicted to orient perpendicular to the surface. We extend this approach to help understand and guide the orientation of metal–organic framework (MOF) thin-film growth on various metal–oxide substrates. A two-part analytical model is developed on the basis of the results of DFT calculations and ab initio MD simulations that predicts the binding energy of a molecule by chemical and dispersion forces on rutile and anatase TiO 2 surfaces, and quantifies the dye solvation energy for two solvents. The model is in good agreement with the DFT calculations and enables rapid prediction of dye molecule and MOF linker binding preference on the basis of the size of the adsorbing molecule, identity of the surface, and the solvent environment. We establish the threshold molecular size, governing dye molecule orientation, for each condition.« less
Observations of specular reflective particles and layers in crystal clouds.
Balin, Yurii S; Kaul, Bruno V; Kokhanenko, Grigorii P; Penner, Ioganes E
2011-03-28
In the present article, results of observations of high crystal clouds with high spatial and temporal resolution using the ground-based polarization LOSA-S lidar are described. Cases of occurrence of specularly reflective layers formed by particles oriented predominantly in the horizontal plane are demonstrated. Results of measuring echo-signal depolarization are compared for linear and circular polarization states of the initial laser beam.
2010-07-01
known as Darrieus turbines or, after the German inventors of these devices, Voith-Schneider propellers. Their main advantage is the ability to produce... turbines (VAWT), named for the typical orientation of the main shaft. While their efficiency is similar to that of the more common horizontal axis wind ...Oscillating Systems’, Cambridge University Press, 2002 [11] G. M. Darrieus , ’ Turbine having its rotating shaft transverse to the flow of the current
Remeasuring tree heights on permanent plots using rectangular coordinates and one angle per tree
Robert L. Neal
1973-01-01
Heights of permanent sample trees with tops visible from any point can be measured from that point with any clinometer, measuring one vertical angle per tree. Two horizontal angles and one additional vertical angle per observation point are necessary to orient the point to the plot. Permanently recorded coordinates and elevations of tree locations are used with the...
Annotated Bibliography of Sediment Transport Occurring over Ebb-Tidal Deltas.
1985-09-01
and trough cross stratification from the shallower channel, should be expected. Swash-generated, horizontal plane laminations or * slightly inclined... laminations from the shallow channel sides. Transitional inlets would produce a variety of sequences, the exact nature of which would reflect the relative...and tidal currents. The beach face is characterized by flatbeds and antidunes; the runnel contains cuspate megaripples and current ripples oriented
Mechanical Behavior of Additive Manufactured Layered Materials, Part 2: Stainless Steels
2015-04-30
and/or excellent cyclic fatigue behavior: stainless - steel 316L and 17-4PH. Additive materials were fabricated at a leading-edge facility using their...Tensile deformation Representative engineering stress- strain data from measurements obtained with our stainless steel specimens are shown in... fatigue behavior Cyclic fatigue strengths demonstrated by the DMLS stainless steels fabricated in the horizontal orientation were almost equal to
Winship, I R; Wylie, D R
2001-11-01
The responses of neurons in the medial column of the inferior olive to translational and rotational optic flow were recorded from anaesthetized pigeons. Panoramic translational or rotational flowfields were produced by mechanical devices that projected optic flow patterns onto the walls, ceiling and floor of the room. The axis of rotation/translation could be positioned to any orientation in three-dimensional space such that axis tuning could be determined. Each neuron was assigned a vector representing the axis about/along which the animal would rotate/translate to produce the flowfield that elicited maximal modulation. Both translation-sensitive and rotation-sensitive neurons were found. For neurons responsive to translational optic flow, the preferred axis is described with reference to a standard right-handed coordinate system, where +x, +y and +z represent rightward, upward and forward translation of the animal, respectively (assuming that all recordings were from the right side of the brain). t(+y) neurons were maximally excited in response to a translational optic flowfield that results from self-translation upward along the vertical (y) axis. t(-y) neurons also responded best to translational optic flow along the vertical axis but showed the opposite direction preference. The two remaining groups, t(-x+z) and t(-x-z) neurons, responded best to translational optic flow along horizontal axes that were oriented 45 degrees to the midline. There were two types of neurons responsive to rotational optic flow: rVA neurons preferred rotation about the vertical axis, and rH135c neurons preferred rotation about a horizontal axis at 135 degrees contralateral azimuth. The locations of marking lesions indicated a clear topographical organization of the six response types. In summary, our results reinforce that the olivo-cerebellar system dedicated to the analysis of optic flow is organized according to a reference frame consisting of three approximately orthogonal axes: the vertical axis, and two horizontal axes oriented 45 degrees to either side the midline. Previous research has shown that the eye muscles, vestibular semicircular canals and postural control system all share a similar spatial frame of reference.
Orientation-crowding within contours.
Glen, James C; Dakin, Steven C
2013-07-15
We examined how crowding (the breakdown of object recognition in the periphery caused by interference from "clutter") depends on the global arrangement of target and distracting flanker elements. Specifically we probed orientation discrimination using a near-vertical target Gabor flanked by two vertical distractor Gabors (one above and one below the target). By applying variable (opposite-sign) horizontal offsets to the positions of the two flankers we arranged the elements so that on some trials they formed contours with the target and on others they did not. While the presence of flankers generally elevated orientation discrimination thresholds for the target we observe maximal crowding not when flanker and targets were co-aligned but when a small spatial offset was applied to flanker location, so that contours formed between flanker and targets only when the target orientation was cued. We also report that observers' orientation judgments are biased, with target orientation appearing either attracted or repulsed by the global/contour orientation. A second experiment reveals that the sign of this effect is dependent both on observer and on eccentricity. In general, the magnitude of repulsion is reduced with eccentricity but whether this becomes attraction (of element orientation to contour orientation) is dependent on observer. We note however that across observers and eccentricities, the magnitude of repulsion correlates positively with the amount of release from crowding observed with co-aligned targets and flankers, supporting the notion of fluctuating bias as the basis for elevated crowding within contours.
Heating equipment installation system
Meuschke, Robert E.; Pomaibo, Paul P.
1991-01-01
A method for installing a heater unit assembly (52, 54) in a reactor pressure vessel (2) for performance of an annealing treatment on the vessel (2), the vessel (2) having a vertical axis, being open at the top, being provided at the top with a flange (6) having a horizontal surface, and being provided internally, at a location below the flange (6), with orientation elements (8) which are asymmetrical with respect to the vertical axis, by the steps of: providing an orientation fixture (10) having an upwardly extending guide member (18) and orientation elements (14, 16) and installing the orientation fixture (10) in the vessel (2) so that the orientation elements (14,16) of the orientation fixture (10) mate with the orientation elements (8) of the pressure vessel (2) in order to establish a defined position of the orientation fixture (10) in the pressure vessel (2), and so that the guide member (18) projects above the pressure vessel (2) flange (6); placing a seal ring (30) in a defined position on the pressure vessel (2) flange (6) with the aid of the guide member (18); mounting at least one vertical, upwardly extending guide stud (40) upon the seal ring (30); withdrawing the orientation fixture (10) from the pressure vessel (2); and moving the heater unit assembly (52,54) vertically downwardly into the pressure vessel (2) while guiding the heater unit assembly (52,54) along a path with the aid of the guide stud (40).
Get a Grip: Substrate Orientation and Digital Grasping Pressures in Strepsirrhines.
Congdon, Kimberly A; Ravosa, Matthew J
2016-01-01
Skeletal functional morphology in primates underlies many fossil interpretations. Understanding the functional correlates of arboreal grasping is central to identifying locomotor signatures in extinct primates. We tested 3 predictions linking substrate orientation and digital grasping pressures: (1) below-branch pressures are greater than above-branch and vertical-branch pressures; (2) there is no difference in pressure exerted across digits within autopods at any substrate orientation, and (3) there is no difference in pressure exerted between homologous digits across autopods at any substrate orientation. Adult males and females from 3 strepsirrhine species crossed an artificial arboreal substrate oriented for above-, below- and vertical-branch locomotion. We compared digital pressures within and across behaviors via ANOVA and Tukey's Honest Significant Difference test. Results show limited support for all predictions: below-branch pressures exceeded vertical-branch pressures and above-branch pressures for some digits and species (prediction 1), lateral digits often exerted greater pressures than medial digits (prediction 2), and pedal digits occasionally exerted greater pressures than manual digits during above-branch and vertical orientations but less often for below-branch locomotion (prediction 3). We observed functional variability across autopods, substrate and species that could underlie morphological variation within and across primates. Future work should consider the complexity of arboreality when inferring locomotor modes in fossils. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Cavallo, Ann M. Liberatore; Schafer, Larry E.
This study explored factors predicting the extent to which high school students (N = 140) acquired meaningful understanding of the biological topics of meiosis, the Punnett-square method, and the relationships between these topics. This study (a) examined mental modeling as a technique for measuring students' meaningful understanding of the topics, (b) measured students' predisposed, generalized tendency to learn meaningfully (meaningful learning orientation), (c) determined the extent to which students' meaningful learning orientation predicted meaningful understanding beyond that predicted by aptitude and achievement motivation, (d) experimentally tested two instructional treatments (relationships presented to students, relationships generated by students), (e) explored the relationships of meaningful learning orientation, prior knowledge, instructional treatment, and all interactions of these variables in predicting meaningful understanding. The results of correlations and multiple regressions indicated that meaningful learning orientation contributed to students' attainment of meaningful understanding independent of aptitude and achievement motivation. Meaningful learning orientation and prior knowledge interacted in unique ways for each topic to predict students' attainment of meaningful understanding. Instructional treatment had relatively little relationship to students' acquisition of meaningful understanding, except for learners midrange between meaningful and rote. These findings imply that a meaningful learning approach among students may be important, perhaps as much or more than aptitude and achievement motivation, for their acquisition of interrelated, meaningful understandings of science.
A Simple Model of Cirrus Horizontal Inhomogeneity and Cloud Fraction
NASA Technical Reports Server (NTRS)
Smith, Samantha A.; DelGenio, Anthony D.
1998-01-01
A simple model of horizontal inhomogeneity and cloud fraction in cirrus clouds has been formulated on the basis that all internal horizontal inhomogeneity in the ice mixing ratio is due to variations in the cloud depth, which are assumed to be Gaussian. The use of such a model was justified by the observed relationship between the normalized variability of the ice water mixing ratio (and extinction) and the normalized variability of cloud depth. Using radar cloud depth data as input, the model reproduced well the in-cloud ice water mixing ratio histograms obtained from horizontal runs during the FIRE2 cirrus campaign. For totally overcast cases the histograms were almost Gaussian, but changed as cloud fraction decreased to exponential distributions which peaked at the lowest nonzero ice value for cloud fractions below 90%. Cloud fractions predicted by the model were always within 28% of the observed value. The predicted average ice water mixing ratios were within 34% of the observed values. This model could be used in a GCM to produce the ice mixing ratio probability distribution function and to estimate cloud fraction. It only requires basic meteorological parameters, the depth of the saturated layer and the standard deviation of cloud depth as input.
Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems
Hadgu, Teklu; Kalinina, Elena Arkadievna; Lowry, Thomas Stephen
2016-01-30
Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. As a result, the vertical well doublet is impacted significantly more than the horizontal wellmore » doublet« less
An evaluation of carbon steel corrosion under stagnant seawater conditions.
Lee, Jason S; Ray, Richard I; Lemieux, Edward J; Falster, Alexander U; Little, Brenda J
2004-01-01
Corrosion of 1020 carbon steel coupons in natural seawater over a 1-year period was more aggressive under strictly anaerobic stagnant conditions than under aerobic stagnant conditions as measured by weight loss and instantaneous corrosion rate (polarization resistance). Under oxygenated conditions, a two-tiered oxide layer of lepidocrocite/goethite formed. The inner layer was extremely tenacious and resistant to acid cleaning. Under anaerobic conditions, the corrosion product was initially a non-tenacious sulphur-rich corrosion product, mackinawite, with enmeshed bacteria. As more sulphide was produced the mackinawite was transformed to pyrrhotite. In both aerobic and anaerobic exposures, corrosion was more aggressive on horizontally oriented coupons compared to vertically oriented samples.
NASA Technical Reports Server (NTRS)
Herr, R. W.
1974-01-01
The effects of several cable suspension configurations on the first free-free flexural frequency of uniform beams have been determined by experiment and analysis. The results of this study confirm that in general the larger the test vehicle the larger is the flexural frequency measurement error attributable to a given cable suspension configuration. For horizontally oriented beams representing modern aerospace vehicles of average size and flexibility, the restraining effects of all but the shortest support cables were minor. The restraining effects of support cables of moderate length attached near the base of vertically oriented vehicles were overshadowed by the effects of beam compression due to gravity.
Elongate summit calderas as Neogene paleostress indicators in Antarctica
Paulsen, T.S.; Wilson, T.J.
2007-01-01
The orientations and ages of elongate summit calderas on major polygenetic volcanoes were compiled to document Miocene to Pleistocene Sh (minimum horizontal stress) directions on the western and northern flanks of the West Antarctic rift system. Miocene to Pleistocene summit calderas along the western Ross Sea show relatively consistent ENE long axis trends, which are at a high angle to the Transantarctic Mountain Front and parallel to the N77ºE Sh direction at Cape Roberts. The elongation directions of many Miocene to Pleistocene summit calderas in Marie Byrd Land parallel the alignment of polygenetic volcanoes in which they occur, except several Pleistocene calderas with consistent NNE to NE trends. The overall pattern of elongate calderas in Marie Byrd Land is probably due to a combination of structurally controlled orientations and regional stress fields in which Sh is oriented NNE to NE at a moderate to high angle to the trace of the West Antarctic rift system.
The Impact of Power on Information Processing Depends on Cultural Orientation
Torelli, Carlos J.; Shavitt, Sharon
2011-01-01
Two studies show that different culturally based concepts of interpersonal power have distinct implications for information processing. People with a vertical individualist (VI) cultural orientation view power in personalized terms (power is for gaining status over and recognition by others), whereas people with a horizontal collectivist (HC) cultural orientation view power in socialized terms (power is for benefitting and helping others). The distinct goals associated with these power concepts are served by different mindsets, such as stereotyping others versus learning the individuating needs of others. Therefore, for high-VI individuals, making personalized power salient increases stereotyping in processing product information. That is, they recognize better information that is congruent with their prior product expectations, relative to their recognition of incongruent information. In contrast, for high-HC people, making socialized power salient increases individuating processes, characterized by better memory for incongruent information. PMID:21779130
NASA Astrophysics Data System (ADS)
Ali, Sajid; Kamran, Muhammad Ali; Khan, Sikandar
2017-11-01
The fluid sloshing in partially filled road tankers has significantly increased the number of road accidents for the last few decades. Significant research is needed to investigate and to come up with optimum baffles designs that can help to increase the rollover stability of the partially filled tankers. In this investigation, a detailed analysis of the anti-slosh effectiveness of different baffle configurations is presented. This investigation extends the already available studies in the literature by introducing new modified rectangular tank's shapes that correspond to maximum rollover stability as compared to the already available standard tank designs. The various baffles configurations that are analysed in this study are horizontal, vertical, vertical-horizontal and diagonal. In the current study, numerical investigations are performed for rectangular, elliptical and circular tank shapes. Lateral sloshing, caused by constant radius turn manoeuvre, was simulated numerically using the volume-of-fluid method, and effect of the different baffle configurations was analysed. The effect of tank fill levels on sloshing measured in terms of horizontal force and pressure moments is also reported for with and without baffles configurations. Vertical baffles were the most effective at reducing sloshing in modified rectangular tanks, whereas a combination of horizontal and vertical baffles gave better results for the circular and elliptical tanks geometries.
An exact solution for effects of topography on free Rayleigh waves
Savage, W.Z.
2004-01-01
An exact solution for the effects of topography on Rayleigh wave amplification is presented. The solution is obtained by incorporating conformal mapping into complex-variable stress functions developed for free Rayleigh wave propagation in an elastic half-space with a flat upper surface. Results are presented for free Rayleigh wave propagation across isolated symmetric ridges and valleys. It is found for wavelengths that are comparable to ridge widths that horizontal Rayleigh wave amplitudes are amplified at ridge crests and that vertical amplitudes are strongly reduced near ridge crests relative to horizontal and vertical amplitudes of free Rayleigh waves in the flat case. Horizontal amplitudes are strongly deamplified at valley bottoms relative to those for the flat case for Rayleigh wavelengths comparable to valley widths. Wave amplitudes in the symmetric ridges and valleys asymptotically approach those for the flat case with increased wavelengths, increased ridge and valley widths, and with horizontal distance from and depth below the isolated ridges and valleys. Also, prograde particle motion is predicted near crests of narrow ridges and near the bottoms of narrow valleys. Finally, application of the theory at two sites known for topographic wave amplification gives a predicted surface wave amplification ratio of 3.80 at the ridge center for a frequency of 1.0 Hz at Robinwood Ridge in northern California and a predicted surface wave amplification ratio of 1.67 at the ridge center for the same frequency at the Cedar Hill Nursery site at Tarzana in southern California.
Infantile Nystagmus and Abnormalities of Conjugate Eye Movements in Down Syndrome.
Weiss, Avery H; Kelly, John P; Phillips, James O
2016-03-01
Subjects with Down syndrome (DS) have an anatomical defect within the cerebellum that may impact downstream oculomotor areas. This study characterized gaze holding and gains for smooth pursuit, saccades, and optokinetic nystagmus (OKN) in DS children with infantile nystagmus (IN). Clinical data of 18 DS children with IN were reviewed retrospectively. Subjects with constant strabismus were excluded to remove any contribution of latent nystagmus. Gaze-holding, horizontal and vertical saccades to target steps, horizontal smooth pursuit of drifting targets, OKN in response to vertically or horizontally-oriented square wave gratings drifted at 15°/s, 30°/s, and 45°/s were recorded using binocular video-oculography. Seven subjects had additional optical coherence tomography imaging. Infantile nystagmus was associated with one or more gaze-holding instabilities (GHI) in each subject. The majority of subjects had a combination of conjugate horizontal jerk with constant or exponential slow-phase velocity, asymmetric or symmetric, and either monocular or binocular pendular nystagmus. Six of seven subjects had mild (Grade 0-1) persistence of retinal layers overlying the fovea, similar to that reported in DS children without nystagmus. All subjects had abnormal gains across one or more stimulus conditions (horizontal smooth pursuit, saccades, or OKN). Saccade velocities followed the main sequence. Down syndrome subjects with IN show a wide range of GHI and abnormalities of conjugate eye movements. We propose that these ocular motor abnormalities result from functional abnormalities of the cerebellum and/or downstream oculomotor circuits, perhaps due to extensive miswiring.