Sample records for predict space storms

  1. Geomagnetic storm forecasting service StormFocus: 5 years online

    NASA Astrophysics Data System (ADS)

    Podladchikova, Tatiana; Petrukovich, Anatoly; Yermolaev, Yuri

    2018-04-01

    Forecasting geomagnetic storms is highly important for many space weather applications. In this study, we review performance of the geomagnetic storm forecasting service StormFocus during 2011-2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by Dst index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.

  2. Recent Geoeffective Space Weather Events and Technological System Impacts

    NASA Astrophysics Data System (ADS)

    Redmon, R. J.; Denig, W. F.; Loto'aniu, P. T. M.; Singer, H. J.; Wilkinson, D. C.; Knipp, D. J.; Kilcommons, L. M.

    2015-12-01

    We review the state of the space environment for three recent intense geoeffective storms using NOAA observations and model predictions. On February 27, 2014, the US Wide Area Augmentation System (WAAS) navigation service over eastern Alaska and northeastern continental US was degraded due to a strong ionospheric storm. Similarly, on March 17, the St. Patrick's Day geomagnetic storm commenced, resulting in the most intense storm of the solar cycle to date with mid-latitude auroral sightings, intense ionospheric irregularities and WAAS degradation. On June 22, a strong (G4) geomagnetic storm commenced following the impact of 3 coronal mass ejections (CMEs). Late on June 22, solar protons entered the polar regions along open magnetic field lines producing intense radio absorption. We summarize, compare and contrast the space environmental state for each of these events from the perspective of NOAA observations and model predictions. We do so by leveraging GOES and POES/MetOp observations of the space radiation environment, DMSP observations of precipitating particles and bulk plasma parameters, OVATION Prime predictions of the auroral energy input and the US Total Electron Content (USTEC) and D-Region Absorption Prediction (DRAP) modeled response of the ionosphere. We discuss impacts to technological systems as available.

  3. Automatic prediction of solar flares and super geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Song, Hui

    Space weather is the response of our space environment to the constantly changing Sun. As the new technology advances, mankind has become more and more dependent on space system, satellite-based services. A geomagnetic storm, a disturbance in Earth's magnetosphere, may produce many harmful effects on Earth. Solar flares and Coronal Mass Ejections (CMEs) are believed to be the major causes of geomagnetic storms. Thus, establishing a real time forecasting method for them is very important in space weather study. The topics covered in this dissertation are: the relationship between magnetic gradient and magnetic shear of solar active regions; the relationship between solar flare index and magnetic features of solar active regions; based on these relationships a statistical ordinal logistic regression model is developed to predict the probability of solar flare occurrences in the next 24 hours; and finally the relationship between magnetic structures of CME source regions and geomagnetic storms, in particular, the super storms when the D st index decreases below -200 nT is studied and proved to be able to predict those super storms. The results are briefly summarized as follows: (1) There is a significant correlation between magnetic gradient and magnetic shear of active region. Furthermore, compared with magnetic shear, magnetic gradient might be a better proxy to locate where a large flare occurs. It appears to be more accurate in identification of sources of X-class flares than M-class flares; (2) Flare index, defined by weighting the SXR flares, is proved to have positive correlation with three magnetic features of active region; (3) A statistical ordinal logistic regression model is proposed for solar flare prediction. The results are much better than those data published in the NASA/SDAC service, and comparable to the data provided by the NOAA/SEC complicated expert system. To our knowledge, this is the first time that logistic regression model has been applied in solar physics to predict flare occurrences; (4) The magnetic orientation angle [straight theta], determined from a potential field model, is proved to be able to predict the probability of super geomagnetic storms (D= st <=-200nT). The results show that those active regions associated with | [straight theta]| < 90° are more likely to cause a super geomagnetic storm.

  4. Reliability of windstorm predictions in the ECMWF ensemble prediction system

    NASA Astrophysics Data System (ADS)

    Becker, Nico; Ulbrich, Uwe

    2016-04-01

    Windstorms caused by extratropical cyclones are one of the most dangerous natural hazards in the European region. Therefore, reliable predictions of such storm events are needed. Case studies have shown that ensemble prediction systems (EPS) are able to provide useful information about windstorms between two and five days prior to the event. In this work, ensemble predictions with the European Centre for Medium-Range Weather Forecasts (ECMWF) EPS are evaluated in a four year period. Within the 50 ensemble members, which are initialized every 12 hours and are run for 10 days, windstorms are identified and tracked in time and space. By using a clustering approach, different predictions of the same storm are identified in the different ensemble members and compared to reanalysis data. The occurrence probability of the predicted storms is estimated by fitting a bivariate normal distribution to the storm track positions. Our results show, for example, that predicted storm clusters with occurrence probabilities of more than 50% have a matching observed storm in 80% of all cases at a lead time of two days. The predicted occurrence probabilities are reliable up to 3 days lead time. At longer lead times the occurrence probabilities are overestimated by the EPS.

  5. CAWSES Related Projects in Japan : Grant-in-Aid for Creative Scientific Research ügBasic Study of Space Weather Predictionüh and CHAIN (Continuous H Alpha Imaging Network)

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Kurokawa, H.

    The Grant-in-Aid for Creative Scientific Research of the Ministry of Education Science Sports Technology and Culture of Japan The Basic Study of Space Weather Prediction PI K Shibata Kyoto Univ has started in 2005 as 5 years projects with total budget 446Myen The purpose of this project is to develop a physical model of solar-terrestrial phenomena and space storms as a basis of space weather prediction by resolving fundamental physics of key phenomena from solar flares and coronal mass ejections to magnetospheric storms under international cooperation program CAWSES Climate and Weather of the Sun-Earth System Continuous H Alpha Imaging Network CHAIN Project led by H Kurokawa is a key project in this space weather study enabling continuous H alpha full Sun observations by connecting many solar telescopes in many countries through internet which provides the basis of the study of space weather prediction

  6. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  7. Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.

    2013-12-01

    Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space weather and this influences our forecasts. In this presentation, I will discuss the unique challenges that space weather forecasters face when explaining what we know and what we don't know about space weather events to customers and policy makers.

  8. Numerical Study of Solar Storms from the Sun to Earth

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Jiang, Chaowei; Zhou, Yufen

    2017-04-01

    As solar storms are sweeping the Earth, adverse changes occur in geospace environment. How human can mitigate and avoid destructive damages caused by solar storms becomes an important frontier issue that we must face in the high-tech times. It is of both scientific significance to understand the dynamic process during solar storm's propagation in interplanetary space and realistic value to conduct physics-based numerical researches on the three-dimensional process of solar storms in interplanetary space with the aid of powerful computing capacity to predict the arrival times, intensities, and probable geoeffectiveness of solar storms at the Earth. So far, numerical studies based on magnetohydrodynamics (MHD) have gone through the transition from the initial qualitative principle researches to systematic quantitative studies on concrete events and numerical predictions. Numerical modeling community has a common goal to develop an end-to-end physics-based modeling system for forecasting the Sun-Earth relationship. It is hoped that the transition of these models to operational use depends on the availability of computational resources at reasonable cost and that the models' prediction capabilities may be improved by incorporating the observational findings and constraints into physics-based models, combining the observations, empirical models and MHD simulations in organic ways. In this talk, we briefly focus on our recent progress in using solar observations to produce realistic magnetic configurations of CMEs as they leave the Sun, and coupling data-driven simulations of CMEs to heliospheric simulations that then propagate the CME configuration to 1AU, and outlook the important numerical issues and their possible solutions in numerical space weather modeling from the Sun to Earth for future research.

  9. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-03-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  10. Radiation Belt Storm Probes (RBSP) Payload Safety Introduction Briefing

    NASA Technical Reports Server (NTRS)

    Loftin, Chuck; Lampert, Dianna; Herrburger, Eric; Smith, Clay; Hill, Stuart; VonMehlem, Judi

    2008-01-01

    Mission of the Geospace Radiation Belt Storm Probes (RBSP) is: Gain s cientific understanding (to the point of predictability) of how populations of relativistic electrons and ions in space form or change in response to changes in solar activity and the solar wind.

  11. Major Hurricane Matthew Seen from Space on This Week @NASA – October 7, 2016

    NASA Image and Video Library

    2016-10-07

    Cameras outside the International Space Station captured views of Hurricane Matthew during several passes over the major storm, as it made its way north through the Caribbean Sea during the week of Oct. 3. The storm, which reached Category 4 status with winds up to about 145 miles per hour, impacted Haiti, eastern Cuba and the Bahamas. Forecasters predicted Matthew would threaten the southeast coast of the United States, including Florida’s Space Coast. As a precaution, NASA’s Kennedy Space Center closed Oct. 5 after preparing facilities for what could be a direct hit from the storm. Also, One Mars Year of Science for MAVEN, SLS Hardware Being Stacked for Stress Test, Oceans Melting Greenland, Aspira con NASA, and NASA at White House Events!

  12. Evaluation of Deep Learning Representations of Spatial Storm Data

    NASA Astrophysics Data System (ADS)

    Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.

    2017-12-01

    The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being performed to determine how the choice of input variables affects the results.

  13. Predicting Space Weather Effects on Close Approach Events

    NASA Technical Reports Server (NTRS)

    Hejduk, Matthew D.; Newman, Lauri K.; Besser, Rebecca L.; Pachura, Daniel A.

    2015-01-01

    The NASA Robotic Conjunction Assessment Risk Analysis (CARA) team sends ephemeris data to the Joint Space Operations Center (JSpOC) for conjunction assessment screening against the JSpOC high accuracy catalog and then assesses risk posed to protected assets from predicted close approaches. Since most spacecraft supported by the CARA team are located in LEO orbits, atmospheric drag is the primary source of state estimate uncertainty. Drag magnitude and uncertainty is directly governed by atmospheric density and thus space weather. At present the actual effect of space weather on atmospheric density cannot be accurately predicted because most atmospheric density models are empirical in nature, which do not perform well in prediction. The Jacchia-Bowman-HASDM 2009 (JBH09) atmospheric density model used at the JSpOC employs a solar storm active compensation feature that predicts storm sizes and arrival times and thus the resulting neutral density alterations. With this feature, estimation errors can occur in either direction (i.e., over- or under-estimation of density and thus drag). Although the exact effect of a solar storm on atmospheric drag cannot be determined, one can explore the effects of JBH09 model error on conjuncting objects' trajectories to determine if a conjunction is likely to become riskier, less risky, or pass unaffected. The CARA team has constructed a Space Weather Trade-Space tool that systematically alters the drag situation for the conjuncting objects and recalculates the probability of collision for each case to determine the range of possible effects on the collision risk. In addition to a review of the theory and the particulars of the tool, the different types of observed output will be explained, along with statistics of their frequency.

  14. Third National Aeronautics and Space Administration Weather and climate program science review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1977-01-01

    Research results of developing experimental and prototype operational systems, sensors, and space facilities for monitoring, and understanding the atmosphere are reported. Major aspects include: (1) detection, monitoring, and prediction of severe storms; (2) improvement of global forecasting; and (3) monitoring and prediction of climate change.

  15. Space Environment Modelling with the Use of Artificial Intelligence Methods

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.; Wintoft, P.; Wu, J.-G.; Gleisner, H.; Dovheden, V.

    1996-12-01

    Space based technological systems are affected by the space weather in many ways. Several severe failures of satellites have been reported at times of space storms. Our society also increasingly depends on satellites for communication, navigation, exploration, and research. Predictions of the conditions in the satellite environment have therefore become very important. We will here present predictions made with the use of artificial intelligence (AI) techniques, such as artificial neural networks (ANN) and hybrids of AT methods. We are developing a space weather model based on intelligence hybrid systems (IHS). The model consists of different forecast modules, each module predicts the space weather on a specific time-scale. The time-scales range from minutes to months with the fundamental time-scale of 1-5 minutes, 1-3 hours, 1-3 days, and 27 days. Solar and solar wind data are used as input data. From solar magnetic field measurements, either made on the ground at Wilcox Solar Observatory (WSO) at Stanford, or made from space by the satellite SOHO, solar wind parameters can be predicted and modelled with ANN and MHD models. Magnetograms from WSO are available on a daily basis. However, from SOHO magnetograms will be available every 90 minutes. SOHO magnetograms as input to ANNs will therefore make it possible to even predict solar transient events. Geomagnetic storm activity can today be predicted with very high accuracy by means of ANN methods using solar wind input data. However, at present real-time solar wind data are only available during part of the day from the satellite WIND. With the launch of ACE in 1997, solar wind data will on the other hand be available during 24 hours per day. The conditions of the satellite environment are not only disturbed at times of geomagnetic storms but also at times of intense solar radiation and highly energetic particles. These events are associated with increased solar activity. Predictions of these events are therefore also handled with the modules in the Lund Space Weather Model. Interesting Links: Lund Space Weather and AI Center

  16. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation”more » (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.« less

  17. Dust Storm Feature Identification and Tracking from 4D Simulation Data

    NASA Astrophysics Data System (ADS)

    Yu, M.; Yang, C. P.

    2016-12-01

    Dust storms cause significant damage to health, property and the environment worldwide every year. To help mitigate the damage, dust forecasting models simulate and predict upcoming dust events, providing valuable information to scientists, decision makers, and the public. Normally, the model simulations are conducted in four-dimensions (i.e., latitude, longitude, elevation and time) and represent three-dimensional (3D), spatial heterogeneous features of the storm and its evolution over space and time. This research investigates and proposes an automatic multi-threshold, region-growing based identification algorithm to identify critical dust storm features, and track the evolution process of dust storm events through space and time. In addition, a spatiotemporal data model is proposed, which can support the characterization and representation of dust storm events and their dynamic patterns. Quantitative and qualitative evaluations for the algorithm are conducted to test the sensitivity, and capability of identify and track dust storm events. This study has the potential to assist a better early warning system for decision-makers and the public, thus making hazard mitigation plans more effective.

  18. ScienceCast 121: The Effects of Space Weather on Aviation

    NASA Image and Video Library

    2013-10-25

    Ordinary air travelers can be exposed to significant doses of radiation during solar storms. A new computer model developed by NASA aims to help protect the public by predicting space weather hazards to aviation.

  19. Solar-Terrestrial Predictions: Proceedings of a workshop. Volume 2: Geomagnetic and space environment papers and ionosphere papers

    NASA Astrophysics Data System (ADS)

    Thompson, R. J.; Cole, D. G.; Wilkinson, P. J.; Shea, M. A.; Smart, D.

    1990-11-01

    The following subject areas were covered: a probability forecast for geomagnetic activity; cost recovery in solar-terrestrial predictions; magnetospheric specification and forecasting models; a geomagnetic forecast and monitoring system for power system operation; some aspects of predicting magnetospheric storms; some similarities in ionospheric disturbance characteristics in equatorial, mid-latitude, and sub-auroral regions; ionospheric support for low-VHF radio transmission; a new approach to prediction of ionospheric storms; a comparison of the total electron content of the ionosphere around L=4 at low sunspot numbers with the IRI model; the French ionospheric radio propagation predictions; behavior of the F2 layer at mid-latitudes; and the design of modern ionosondes.

  20. Using Flow Charts to Visualize the Decision-Making Process in Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Aung, M. T. Y.; Myat, T.; Zheng, Y.; Mays, M. L.; Ngwira, C.; Damas, M. C.

    2016-12-01

    Our society today relies heavily on technological systems such as satellites, navigation systems, power grids and aviation. These systems are very sensitive to space weather disturbances. When Earth-directed space weather driven by the Sun arrives at the Earth, it causes changes to the Earth's radiation environment and the magnetosphere. Strong disturbances in the magnetosphere of the Earth are responsible for geomagnetic storms that can last from hours to days depending on strength of storms. Geomagnetic storms can severely impact critical infrastructure on Earth, such as the electric power grid, and Solar Energetic Particles that can endanger life in outer space. How can we lessen these adverse effects? They can be lessened through the early warning signals sent by space weather forecasters before CME or high-speed stream arrives. A space weather forecaster's duty is to send predicted notifications to high-tech industries and NASA missions so that they could take extra measures for protection. NASA space weather forecasters make prediction decisions by following certain steps and processes from the time an event occurs at the sun all the way to the impact locations. However, there has never been a tool that helps these forecasters visualize the decision process until now. A flow chart is created to help forecasters visualize the decision process. This flow chart provides basic knowledge of space weather and can be used to train future space weather forecasters. It also helps to cut down the training period and increase consistency in forecasting. The flow chart is also a great reference for people who are already familiar with space weather.

  1. The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Ramsay, A. C.; Beard, E. D.; Boright, A. L.; Cade, W. B.; Hewins, I. M.; McFadden, R. H.; Denig, W. F.; Kilcommons, L. M.; Shea, M. A.; Smart, D. F.

    2016-09-01

    Although listed as one of the most significant events of the last 80 years, the space weather storm of late May 1967 has been of mostly fading academic interest. The storm made its initial mark with a colossal solar radio burst causing radio interference at frequencies between 0.01 and 9.0 GHz and near-simultaneous disruptions of dayside radio communication by intense fluxes of ionizing solar X-rays. Aspects of military control and communication were immediately challenged. Within hours a solar energetic particle event disrupted high-frequency communication in the polar cap. Subsequently, record-setting geomagnetic and ionospheric storms compounded the disruptions. We explain how the May 1967 storm was nearly one with ultimate societal impact, were it not for the nascent efforts of the United States Air Force in expanding its terrestrial weather monitoring-analysis-warning-prediction efforts into the realm of space weather forecasting. An important and long-lasting outcome of this storm was more formal Department of Defense-support for current-day space weather forecasting. This story develops during the rapid rise of solar cycle 20 and the intense Cold War in the latter half of the twentieth century. We detail the events of late May 1967 in the intersecting categories of solar-terrestrial interactions and the political-military backdrop of the Cold War. This was one of the "Great Storms" of the twentieth century, despite the apparent lack of large geomagnetically induced currents. Radio disruptions like those discussed here warrant the attention of today's radio-reliant, cellular-phone and satellite-navigation enabled world.

  2. A Study of the Solar Wind-Magnetosphere Coupling Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Guo; Lundstedt, Henrik

    1996-12-01

    The interaction between solar wind plasma and interplanetary magnetic field (IMF) and Earth's magnetosphere induces geomagnetic activity. Geomagnetic storms can cause many adverse effects on technical systems in space and on the Earth. It is therefore of great significance to accurately predict geomagnetic activity so as to minimize the amount of disruption to these operational systems and to allow them to work as efficiently as possible. Dynamic neural networks are powerful in modeling the dynamics encoded in time series of data. In this study, we use partially recurrent neural networks to study the solar wind-magnetosphere coupling by predicting geomagnetic storms (as measured by the Dstindex) from solar wind measurements. The solar wind, the IMF and the geomagnetic index Dst data are hourly averaged and read from the National Space Science Data Center's OMNI database. We selected these data from the period 1963 to 1992, which cover 10552h and contain storm time periods 9552h and quiet time periods 1000h. The data are then categorized into three data sets: a training set (6634h), across-validation set (1962h), and a test set (1956h). The validation set is used to determine where the training should be stopped whereas the test set is used for neural networks to get the generalization capability (the out-of-sample performance). Based on the correlation analysis between the Dst index and various solar wind parameters (including various combinations of solar wind parameters), the best coupling functions can be found from the out-of-sample performance of trained neural networks. The coupling functions found are then used to forecast geomagnetic storms one to several hours in advance. The comparisons are made on iterating the single-step prediction several times and on making a non iterated, direct prediction. Thus, we will present the best solar wind-magnetosphere coupling functions and the corresponding prediction results. Interesting Links: Lund Space Weather and AI Center

  3. AI techniques in geomagnetic storm forecasting

    NASA Astrophysics Data System (ADS)

    Lundstedt, Henrik

    This review deals with how geomagnetic storms can be predicted with the use of Artificial Intelligence (AI) techniques. Today many different Al techniques have been developed, such as symbolic systems (expert and fuzzy systems) and connectionism systems (neural networks). Even integrations of AI techniques exist, so called Intelligent Hybrid Systems (IHS). These systems are capable of learning the mathematical functions underlying the operation of non-linear dynamic systems and also to explain the knowledge they have learned. Very few such powerful systems exist at present. Two such examples are the Magnetospheric Specification Forecast Model of Rice University and the Lund Space Weather Model of Lund University. Various attempts to predict geomagnetic storms on long to short-term are reviewed in this article. Predictions of a month to days ahead most often use solar data as input. The first SOHO data are now available. Due to the high temporal and spatial resolution new solar physics have been revealed. These SOHO data might lead to a breakthrough in these predictions. Predictions hours ahead and shorter rely on real-time solar wind data. WIND gives us real-time data for only part of the day. However, with the launch of the ACE spacecraft in 1997, real-time data during 24 hours will be available. That might lead to the second breakthrough for predictions of geomagnetic storms.

  4. Predicting global thunderstorm activity for sprite observations from the International Space Station

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Mezuman, K.; Ziv, B.; Priente, M.; Glickman, M.; Takahashi, Y.; Inoue, T.

    2012-04-01

    The global rate of sprites occurring above thunderstorms, estimated from the ISUAL satellite data, is ~0.5 per minute (Chen et al., 2008). During the summer 2011, in the framework of the "Cosmic Shore" project, we conducted a concentrated attempt to image sprites from the ISS. The methodology for target selection was based on that developed for the space shuttle MEIDEX sprite campaign (Ziv et al., 2004). There are several types of convective systems generating thunderstorms which differ in their effectiveness for sprite production (Lyons et al., 2009), and so we had to evaluate the ability of the predicted storms to produce sprites. We used the Aviation Weather Center (http://aviationweather.gov) daily significant weather forecast maps (SIGWX) to select regions with high probability for convective storms and lightning such that they were within the camera filed-of-view as deduced from the ISS trajectory and distance to the limb. In order to enhance the chance for success, only storms with predicted "Frequent Cb" and cloud tops above 45 Kft (~14 km) were selected. Additionally, we targeted tropical storms and hurricanes over the oceans. The accuracy of the forecast method enabled obtaining the first-ever color images of sprites from space. We will report the observations showing various types of sprites in many different geographical locations, and correlated parent lightning properties derived from ELF and global and local lightning location networks. Chen, A. B., et al. (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113,A08306, doi:10.1029/2008JA013101 Lyons, W. A., et al. (2009), The meteorological and electrical structure of TLE-producing convective storms. In: Betz et al. (eds.): Lighting: principles instruments and applications, Springer-Science + Business Media B.V.. Ziv, B., Y. Yair, K. Pressman and M. Fullekrug, (2004), Verification of the Aviation Center global forecasts of Mesoscale Convective Systems. Jour. App. Meteor., 43, 720-726.

  5. Space Weather: What is it, and Why Should a Meteorologist Care?

    NASA Technical Reports Server (NTRS)

    SaintCyr, Chris; Murtagh, Bill

    2008-01-01

    "Space weather" is a term coined almost 15 years ago to describe environmental conditions ABOVE Earth's atmosphere that affect satellites and astronauts. As society has become more dependent on technology, we nave found that space weather conditions increasingly affect numerous commercial and infrastructure sectors: airline operations, the precision positioning industry, and the electric power grid, to name a few. Similar to meteorology where "weather" often refers to severe conditions, "space weather" includes geomagnetic storms, radiation storms, and radio blackouts. But almost all space weather conditions begin at the Sun--our middle-age, magnetically-variable star. At NASA, the science behind space weather takes place in the Heliophysics Division. The Space Weather Prediction Center in Boulder, Colorado, is manned jointly by NCAA and US Air Force personnel, and it provides space weather alerts and warnings for disturbances that can affect people and equipment working in space and on Earth. Organizationally, it resides in NOAA's National Weather Service as one of the National Centers for Environmental Prediction. In this seminar we hope to give the audience a brief introduction to the causes of space weather, discuss some of the effects, and describe the state of the art in forecasting. Our goal is to highlight that meteorologists are increasingly becoming the "first responders" to questions about space weather causes and effects.

  6. RELATIONSHIPs among Geomagnetic storms, interplanetary shocks, magnetic clouds, and SUNSPOT NUMBER during 1995-2012

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.; Lepping, R. P.; Wu, C. C.

    2015-12-01

    During 1995-2012 Wind recorded 168 magnetic clouds (MCs), 197 magnetic cloud-like structures (MCLs), and 358 interplanetary (IP) shocks. Ninety four MCs and 56 MCLs had upstream shock waves. The following features are found: (i) Averages of solar wind speed, interplanetary magnetic field (IMF), duration (<Δt>), strength of Bzmin, and intensity of the associated geomagnetic storm/activity (Dstmin) for MCs with upstream shock waves (MCSHOCK) are higher (or stronger) than those averages for the MCs without upstream shock waves (MCNO-SHOCK). (ii) The <Δt> of MCSHOCK events (≈19.6 hr) is 9% longer than that for MCNO-SHOCK events (≈17.9 hr). (iii) For the MCSHOCK events, the average duration of the sheath (<ΔtSHEATH>) is 12.1 hrs. These findings could be very useful for space weather predictions, i.e. IP shocks driven by MCs are expected to arrive at Wind (or at 1 AU) about ~12 hours ahead of the front of the MCs on average. (iv) The occurrence frequency of IP shocks is well associated with sunspot number (SSN). The average intensity of geomagnetic storms measured by for MCSHOCK and MCNOSHOCK events is -102 and -31 nT, respectively. The is -78, -70, and -35 nT for the 358 IP shocks, 168 MCs, and 197 MCLs, respectively. These results imply that IP shocks, when they occur with MCs/MCLs, must play an important role in the strength of geomagnetic storms. We speculate as to why this is so. Yearly occurrence frequencies of MCSHOCK and IP shocks are well correlated with solar activity (e.g., SSN). Choosing the right Dstmin estimating formula for predicting the intensity of MC-associated geomagnetic storms is crucial for space weather predictions.

  7. Regulation of autonomic nervous system in space and magnetic storms.

    PubMed

    Baevsky, R M; Petrov, V M; Chernikova, A G

    1998-01-01

    Variations in the earth's magnetic field and magnetic storms are known to be a risk factor for the development of cardiovascular disorders. The main "targets" for geomagnetic perturbations are the central nervous system and the neural regulation of vascular tone and heart rate variability. This paper presents the data about effect of geomagnetic fluctuations on human body in space. As a method for research the analysis of heart rate variability was used, which allows evaluating the state of the sympathetic and parasympathetic parts of the autonomic nervous system, vasomotor center and subcortical neural centers activity. Heart rate variability data were analyzed for 30 cosmonauts at the 2nd day of space flight on transport spaceship Soyuz (32nd orbit). There were formed three groups of cosmonauts: without magnetic storm (n=9), on a day with magnetic storm (n=12) and 1-2 days after magnetic storm (n=9). The present study was the first to demonstrate a specific impact of geomagnetic perturbations on the system of autonomic circulatory control in cosmonauts during space flight. The increasing of highest nervous centers activity was shown for group with magnetic storms, which was more significant on 1-2 days after magnetic storm. The use of discriminate analysis allowed to classify indicated three groups with 88% precision. Canonical variables are suggested to be used as criterions for evaluation of specific and non-specific components of cardiovascular reactions to geomagnetic perturbations. The applied aspect of the findings from the present study should be emphasized. They show, in particular, the need to supplement the medical monitoring of cosmonauts with predictions of probable geomagnetic perturbations in view of the prevention of unfavorable states appearances if the adverse reactions to geomagnetic perturbations are added to the tension experienced by regulatory systems during various stresses situations (such as work in the open space).

  8. Radio Emissions from Electrical Activity in Martian Dust Storms

    NASA Astrophysics Data System (ADS)

    Majid, W.; Arabshahi, S.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, event rate, and the strength of the generated electric fields. The detection and characterization of electric activity in Martian dust storms has important implications for habitability, and preparations for human exploration of the red planet. Furthermore, electrostatic discharges may be linked to local chemistry and plays an important role in the predicted global electrical circuit. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the Deep Space Network (DSN) is the only facility in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity from large scale convective dust storms at Mars. We will describe a newly inaugurated program at NASA's Madrid Deep Space Communication Complex to carry out a long-term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The ground-based detections will also have important implications for the design of a future instrument that could make similar in-situ measurements from orbit or from the surface of Mars, with far greater sensitivity and duty cycle, opening up a new window in our understanding of the Martian environment.

  9. Storms in Space

    NASA Astrophysics Data System (ADS)

    Freeman, John W.

    2012-11-01

    Introduction; The cast of characters; Vignettes of the storm; 1. Two kinds of weather; 2. The saga of the storm; 3. Weather stations in space; 4. Lights in the night: the signature of the storm; 5. A walking tour of the magnetosphere; 6. The sun: where it all begins; 7. Nowcasting and forecasting storms in space; 8. Technology and the risks from storms in space; 9. A conversation with Joe Allen; 10. Manned exploration and space weather hazards; 11. The present and future of space weather forecasting; Mathematical appendix. A closer look; Glossary; Figure captions.

  10. The radiation belts and ring current: the relationship between Dst and relativistic electron phase space density

    NASA Astrophysics Data System (ADS)

    Grande, M.; Carter, M.; Perry, C. H.

    2002-03-01

    We briefly review the radiation belts, before moving on to a more detailed examination of the relationship between the Disturbance Storm Time Index (Dst) and relativistic electron flux. We show that there is a strong correlation between the growth phase of storms, as represented by Dst, and dropouts in electron flux. Recovery is accompanied by growth of the electron flux. We calculate Electron Phase Space Density (PSD) as a function of adiabatic invariants using electron particle mesurements from the Imaging Electron Sensor (IES) and the High Sensitivity Telescope (HIST) on the CEPPAD experiment onboard POLAR. We present the time history of the phase space density through the year 1998 as L-sorted plots and look in detail at the May 98 storm. Comparison with the Tsyganenko 96 magnetic field model prediction for the last closed field line suggests that the loss of electrons may be directly caused by the opening of drift shells.

  11. Earth Observations taken by Expedition 34 crewmember

    NASA Image and Video Library

    2012-12-01

    ISS034-E-005437 (2 Dec. 2012) --- One of the Expedition 34 crew members aboard the International Space Station captured this still image of Super Typhoon Bopha on Dec. 2, 2012. The storm was bearing down on the Philippines with winds of 135 miles per hour. Meteorologists are predicting that the storm will make landfall on Mindanao in the early morning of Dec. 4 local time, as either a category 4 or 5.

  12. Integrating Research of the Sun-Earth System

    DOE PAGES

    Jordanova, Vania K.; Borovsky, Joseph E.; Jordanov, Valentin T.

    2017-05-02

    Understanding the complex interactions between the magnetic fields of the Sun and Earth remains an important challenge to space physics research. Processes that occur near the Sun at tens of thousands of kilometers from the Earth can generate geomagnetic storms that affect the entire magnetosphere, down to the upper atmosphere. These storms also threaten the ever more sophisticated technologies that we place into the space environment to sustain us, for example, GPS, the satellites we rely on to monitor our weather, and relays that guide our radio transmissions. Increasingly, we need to develop space weather models that can provide timelymore » and accurate predictions so that we can safeguard our society and the infrastructure we depend on.« less

  13. Integrating Research of the Sun-Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania K.; Borovsky, Joseph E.; Jordanov, Valentin T.

    Understanding the complex interactions between the magnetic fields of the Sun and Earth remains an important challenge to space physics research. Processes that occur near the Sun at tens of thousands of kilometers from the Earth can generate geomagnetic storms that affect the entire magnetosphere, down to the upper atmosphere. These storms also threaten the ever more sophisticated technologies that we place into the space environment to sustain us, for example, GPS, the satellites we rely on to monitor our weather, and relays that guide our radio transmissions. Increasingly, we need to develop space weather models that can provide timelymore » and accurate predictions so that we can safeguard our society and the infrastructure we depend on.« less

  14. Implementation and Verification of the Chen Prediction Technique for Forecasting Large Nonrecurrent Storms*

    NASA Astrophysics Data System (ADS)

    Arge, C. N.; Chen, J.; Slinker, S.; Pizzo, V. J.

    2000-05-01

    The method of Chen et al. [1997, JGR, 101, 27499] is designed to accurately identify and predict the occurrence, duration, and strength of largegeomagnetic storms using real-time solar wind data. The method estimates the IMF and the geoeffectiveness of the solar wind upstream of a monitor and can provide warning times that range from a few hours to more than 10 hours. The model uses physical features of solar wind structures that cause large storms: long durations of southward interplanetary magnetic field. It is currently undergoing testing, improvement, and validation at NOAA/SEC in effort to transition it into a real-time space weather forecasting tool. The original version of the model has modified so that it now makes hourly (as opposed to daily) predictions and has been improved in effort to enhance both its predictive capability and reliability. In this paper, we report on the results of a 2-year historical verification study of the model using ACE real-time data. The prediction performances of the original and improved versions of the model are then compared. A real-time prediction web page has been developed and is on line at NOAA/SEC. *Work supported by ONR.

  15. The Scientific Foundations of Forecasting Magnetospheric Space Weather

    NASA Astrophysics Data System (ADS)

    Eastwood, J. P.; Nakamura, R.; Turc, L.; Mejnertsen, L.; Hesse, M.

    2017-11-01

    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.

  16. Sources of Wind Variability at a Single Station in Complex Terrain During Tropical Cyclone Passage

    DTIC Science & Technology

    2013-12-01

    Mesoscale Prediction System CPA Closest point of approach ET Extratropical transition FNMOC Fleet Numerical Meteorology and Oceanography Center...forecasts. However, 2 the TC forecast tracks and warnings they issue necessarily focus on the large-scale structure of the storm , and are not...winds at one station. Also, this technique is a storm - centered forecast and even if the grid spacing is on order of one kilometer, it is unlikely

  17. Solar-Terrestrial Predictions

    NASA Astrophysics Data System (ADS)

    Thompson, R. J.; Cole, D. G.; Wilkinson, P. J.; Shea, M. A.; Smart, D.

    1990-11-01

    Volume 1: The following subject areas are covered: the magnetosphere environment; forecasting magnetically quiet periods; radiation hazards to human in deep space (a summary with special reference to large solar particle events); solar proton events (review and status); problems of the physics of solar-terrestrial interactions; prediction of solar proton fluxes from x-ray signatures; rhythms in solar activity and the prediction of episodes of large flares; the role of persistence in the 24-hour flare forecast; on the relationship between the observed sunspot number and the number of solar flares; the latitudinal distribution of coronal holes and geomagnetic storms due to coronal holes; and the signatures of flares in the interplanetary medium at 1 AU. Volume 2: The following subject areas were covered: a probability forecast for geomagnetic activity; cost recovery in solar-terrestrial predictions; magnetospheric specification and forecasting models; a geomagnetic forecast and monitoring system for power system operation; some aspects of predicting magnetospheric storms; some similarities in ionospheric disturbance characteristics in equatorial, mid-latitude, and sub-auroral regions; ionospheric support for low-VHF radio transmission; a new approach to prediction of ionospheric storms; a comparison of the total electron content of the ionosphere around L=4 at low sunspot numbers with the IRI model; the French ionospheric radio propagation predictions; behavior of the F2 layer at mid-latitudes; and the design of modern ionosondes.

  18. Specification of the Surface Charging Environment with SHIELDS

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.

    2016-12-01

    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.

  19. 3DCORE: Forward modeling of solar storm magnetic flux ropes for space weather prediction

    NASA Astrophysics Data System (ADS)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-05-01

    3DCORE forward models solar storm magnetic flux ropes called 3-Dimensional Coronal Rope Ejection (3DCORE). The code is able to produce synthetic in situ observations of the magnetic cores of solar coronal mass ejections sweeping over planets and spacecraft. Near Earth, these data are taken currently by the Wind, ACE and DSCOVR spacecraft. Other suitable spacecraft making these kind of observations carrying magnetometers in the solar wind were MESSENGER, Venus Express, MAVEN, and even Helios.

  20. Validation of foF2 and TEC Modeling During Geomagnetic Disturbed Times: Preliminary Outcomes of International Forum for Space Weather Modeling Capabilities Assessment

    NASA Astrophysics Data System (ADS)

    Shim, J. S.; Tsagouri, I.; Goncharenko, L. P.; Kuznetsova, M. M.

    2017-12-01

    To address challenges of assessment of space weather modeling capabilities, the CCMC (Community Coordinated Modeling Center) is leading the newly established "International Forum for Space Weather Modeling Capabilities Assessment." This presentation will focus on preliminary outcomes of the International Forum on validation of modeled foF2 and TEC during geomagnetic storms. We investigate the ionospheric response to 2013 Mar. geomagnetic storm event using ionosonde and GPS TEC observations in North American and European sectors. To quantify storm impacts on foF2 and TEC, we first quantify quiet-time variations of foF2 and TEC (e.g., the median and the average of the five quietest days for the 30 days during quiet conditions). It appears that the quiet time variation of foF2 and TEC are about 10% and 20-30%, respectively. Therefore, to quantify storm impact, we focus on foF2 and TEC changes during the storm main phase larger than 20% and 50%, respectively, compared to 30-day median. We find that in European sector, both foF2 and TEC response to the storm are mainly positive phase with foF2 increase of up to 100% and TEC increase of 150%. In North America sector, however, foF2 shows negative effects (up to about 50% decrease), while TEC shows positive response (the largest increase is about 200%). To assess modeling capability of reproducing the changes of foF2 and TEC due to the storm, we use various model simulations, which are obtained from empirical, physics-based, and data assimilation models. The performance of each model depends on the selected metrics, therefore, only one metrics is not enough to evaluate the models' predictive capabilities in capturing the storm impact. The performance of the model also varies with latitude and longitude.

  1. Overview of the SHIELDS Project at LANL

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, D.; Vernon, L.; Woodroffe, J. R.; Toth, G.; Welling, D. T.; Yu, Y.; Birn, J.; Thomsen, M. F.; Borovsky, J.; Denton, M.; Albert, J.; Horne, R. B.; Lemon, C. L.; Markidis, S.; Young, S. L.

    2015-12-01

    The near-Earth space environment is a highly dynamic and coupled system through a complex set of physical processes over a large range of scales, which responds nonlinearly to driving by the time-varying solar wind. Predicting variations in this environment that can affect technologies in space and on Earth, i.e. "space weather", remains a big space physics challenge. We present a recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program that is developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to specify the dynamics of the hot (keV) particles (the seed population for the radiation belts) on both macro- and micro-scale, including important physics of rapid particle injection and acceleration associated with magnetospheric storms/substorms and plasma waves. This challenging problem is addressed using a team of world-class experts in the fields of space science and computational plasma physics and state-of-the-art models and computational facilities. New data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed in addition to physics-based models. This research will provide a framework for understanding of key radiation belt drivers that may accelerate particles to relativistic energies and lead to spacecraft damage and failure. The ability to reliably distinguish between various modes of failure is critically important in anomaly resolution and forensics. SHIELDS will enhance our capability to accurately specify and predict the near-Earth space environment where operational satellites reside.

  2. The ionospheric contribution to the plasma environment in near-earth space

    NASA Technical Reports Server (NTRS)

    Sharp, R. D.; Lennartsson, W.; Strangeway, R. J.

    1985-01-01

    SCATHA and ISEE 1 satellite ion mass spectrometer data on ion composition near GEO are reviewed. The data were gathered during and close to magnetic storm activity to assess the characteristics of ion composition variations in order to predict the effects of hot GEO plasma on spacecraft instruments. Attention is given to both substorms and storms, the former being associated, at high latitudes, with auroral activity, the latter with ring currents. The ionosphere was found to supply hot H(+), O(+) and He(+) ions to the GEO magnetosphere, while the solar wind carried H(+) and He(+) ions. The ionosphere was the dominant source in both quiet and storm conditions in the inner magnetosphere.

  3. Forecasts of geomagnetic activities and HF radio propagation conditions made at Hiraiso/Japan

    NASA Technical Reports Server (NTRS)

    Marubashi, K.; Miyamoto, Y.; Kidokoro, T.; Ishii, T.

    1979-01-01

    The Hiraiso Branch of RRL prediction techniques are summarized separately for the 27 day recurrent storm and the flare-associated storm. The storm predictions are compared with the actual geomagnetic activities in two ways. The first one is the comparison on a day to day basis. In the second comparison, the accuracy of the storm predictions during 1965-1976 are evaluated. In addition to the storm prediction, short-term predictions of HF radio propagation conditions are conducted at Hiraiso. The HF propagation predictions are briefly described as an example of the applications of the magnetic storm prediction.

  4. The promise of remote sensing in the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Atlas, D.

    1981-01-01

    The applications and advances in remote sensing technology for weather prediction, mesoscale meteorology, severe storms, and climate studies are discussed. Doppler radar permits tracking of the three-dimensional field of motion within storms, thereby increasing the accuracy of convective storm modeling. Single Doppler units are also employed for detecting mesoscale storm vortices and tornado vortex signatures with lead times of 30 min. Clear air radar in pulsed and high resolution FM-CW forms reveals boundary layer convection, Kelvin-Helmoltz waves, shear layer turbulence, and wave motions. Lidar is successfully employed for stratospheric aerosol measurements, while Doppler lidar provides data on winds from the ground and can be based in space. Sodar is useful for determining the structure of the PBL. Details and techniques of satellite-based remote sensing are presented, and results from the GWE and FGGE experiments are discussed.

  5. The Great "Non-Event" of 7 January 2014: Challenges in CME Arrival Time and Geomagnetic Storm Strength Prediction

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; Thompson, B. J.; Jian, L.; Evans, R. M.; Savani, N.; Odstrcil, D.; Nieves-Chinchilla, T.; Richardson, I. G.

    2014-12-01

    We present a case study of the 7 January 2014 event in order to highlight current challenges in space weather forecasting of CME arrival time and geomagnetic storm strength. On 7 January 2014 an X1.2 flare and CME with a radial speed ~2400 km/s was observed from active region 11943. The flaring region was only ten degrees southwest of disk center with extensive dimming south of the active region and preliminary analysis indicated a fairly rapid arrival at Earth (~36 hours). Of the eleven forecasting groups world-wide who participated in CCMC's Space Weather Scoreboard (http://kauai.ccmc.gsfc.nasa.gov/SWScoreBoard), nine predicted early arrivals and six predicted dramatic geomagnetic storm impacts (Kp predictions ranged from 6 to 9). However, the CME only had a glancing blow arrival at Earth - Kp did not rise above 3 and there was no geomagnetic storm. What happened? One idea is that the large coronal hole to the northeast of the active region could have deflected the CME. This coronal hole produced a high speed stream near Earth reaching an uncommon speed of 900 km/s four days after the observed CME arrival. However, no clear CME deflection was observed in the outer coronagraph fields of view (~5-20Rs) where CME measurements are derived to initiate models, therefore deflection seems unlikely. Another idea is the effect of the CME flux rope orientation with respect to Earth orbit. We show that using elliptical major and minor axis widths obtained by GCS fitting for the initial CME parameters in ENLIL would have improved the forecast to better reflect the observed glancing blow in-situ signature. We also explore the WSA-ENLIL+Cone simulations, the background solar wind solution, and compare with the observed CME arrival at Venus (from Venus Express) and Earth.

  6. Investigating storm-time magnetospheric electrodynamics: Multi-spacecraft observations of the June 22, 2015 magnetic storm

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sazykin, S. Y.; Bala, R.; Coffey, V. N.; Chandler, M. O.; Minow, J. I.; Anderson, B. J.; Wolf, R.; Huba, J.; Baker, D. N.; Mauk, B.; Russell, C. T.

    2015-12-01

    The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle. Availability of in situ observations from Magnetospheric Multiscale (MMS), the Van Allen Probes (VAP), and THEMIS in the magnetosphere, field-aligned currents from AMPERE, as well as the ionospheric data from the Floating Potential Measurement Unit (FPMU) instrument suite on board the International Space Station (ISS) represents an exciting opportunity to analyze storm-related dynamics. Our real-time space weather alert system sent out a "red alert" warning users of the event 2 hours in advance, correctly predicting Kp indices greater than 8. During this event, the MMS observatories were taking measurements in the magnetotail, VAP were in the inner magnetosphere, THEMIS was on the dayside, and the ISS was orbiting at 400 km every 90 minutes. Among the initial findings are the crossing of the dayside magnetopause into the region earthward of 8 RE, strong dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS FPI instrument suite. At ionospheric altitudes, the FMPU measurements of the ion densities show dramatic post-sunset depletions at equatorial latitudes that are correlated with the particle flux dropouts measured by the MMS FPI. AMPERE data show highly variable currents varying from intervals of intense high latitude currents to currents at maximum polar cap expansion to 50 deg MLAT and exceeding 20 MA. In this paper, we use numerical simulations with global magnetohydrodynamic (MHD) models and the Rice Convection Model (RCM) of the inner magnetosphere in an attempt to place the observations in the context of storm-time global electrodynamics and cross-check the simulation global Birkeland currents with AMPERE distributions. Specifically, we will look at model-predicted effects of dipolarizations and the global convection on the inner magnetosphere via data-model comparison.

  7. Ionospheric storms—A challenge for empirical forecast of the total electron content

    NASA Astrophysics Data System (ADS)

    Borries, C.; Berdermann, J.; Jakowski, N.; Wilken, V.

    2015-04-01

    Since the last decades, the functioning of society depends more and more on well-functioning communication and navigation systems. As the availability and reliability of most of these satellite-based systems can be severely impacted by ionospheric storms, the accurate forecast of these events becomes a required task for mitigating social and economic risks. Here we aim to make initial steps toward an empirical model for ionospheric perturbations related to space weather events that are observable in the total electron content (TEC). The perturbation TEC forecast model will be a fast and robust approach, improving TEC forecasts based on climatological models during storm conditions. The derivation of such a model is a challenging task, because although a general dependence of the storm features (enhancement or depletion of electron density) on the storm onset time, local time, season and geomagnetic latitude is well known, there is a large deviation from the mean behavior. For a better understanding of storm conditions, this paper presents analyses of ionospheric storms observed in the TEC, broken down into diverse classes of storms. It provides a detailed characterization of the typical ionospheric storm behavior over Europe from high to midlatitudes, beyond case studies. Generally, the typical clear strong TEC enhancement starting in high latitudes and propagating equatorward is found to be strongest for storms starting in the morning hours independent of the season. In midlatitudes, it is strongest during noon. In addition, a clear difference between summer and winter storms is reported. While only winter storms develop high-latitude TEC enhancements, only summer storms typically exhibit TEC depletions during the storm recovery phase. During winter storms TEC enhancements can also occur the day following the storm onset, in contrast to summer storms. Strong correlation of TEC perturbation amplitudes to the Bz component of the interplanetary magnetic field and to a proxy of the polar cap potential are shown especially for summer midlatitude TEC enhancements during storms with and onset in the morning hours (6 to 12 UT over Europe) and for winter high-latitude TEC enhancements (around 60∘N). The results indicate the potential to derive improved predictions of maximum TEC deviations during space weather events, based on solar wind measurements.

  8. Investigation of Thermospheric and Ionospheric Changes during Ionospheric Storms with Satellite and Ground-Based Data and Modeling

    NASA Technical Reports Server (NTRS)

    Richards, Philip G.

    2001-01-01

    The purpose of this proposed research is to improve our basic understanding of the causes of ionospheric storm behavior in the midlatitude F region ionosphere. This objective will be achieved by detailed comparisons between ground based measurements of the peak electron density (N(sub m)F(sub 2)), Atmosphere Explorer satellite measurements of ion and neutral composition, and output from the Field Line Interhemispheric Plasma (FLIP) model. The primary result will be a better understanding of changes in the neutral densities and ion chemistry during magnetic storms that will improve our capability to model the weather of the ionosphere which will be needed as a basis for ionospheric prediction. Specifically, this study seeks to answer the following questions: (1) To what extent are negative ionospheric storm phases caused by changes in the atomic to molecular ratio? (2) Are the changes in neutral density ratio due to increased N2, or decreased O, or both? (3) Are there other chemical processes (e.g., excited N2) that increase O+ loss rates during negative storms? (4) Do neutral density altitude distributions differed from hydrostatic equilibrium? (5) Why do near normal nighttime densities often follow daytime depletions of electron density; and (6) Can changes in h(sub m)F2 fully account for positive storm phases? To answer these questions, we plan to combine ground-based and space-based measurements with the aid of our ionospheric model which is ideally suited to this purpose. These proposed studies will lead to a better capability to predict long term ionospheric variability, leading to better predictions of ionospheric weather.

  9. Predicting thunderstorm evolution using ground-based lightning detection networks

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.

    1990-01-01

    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.

  10. Severe Storms Branch research report (April 1984 April 1985)

    NASA Technical Reports Server (NTRS)

    Dubach, L. (Editor)

    1985-01-01

    The Mesoscale Atmospheric Processes Research Program is a program of integrated studies which are to achieve an improved understanding of the basic behavior of the atmosphere through the use of remotely sensed data and space technology. The program consist of four elements: (1) special observations and analysis of mesoscale systems; (20 the development of quanitative algorithms to use remotely sensed observations; (3) the development of new observing systems; and (4) numerical modeling. The Severe Storms Branch objectives are the improvement of the understanding, diagnosis, and prediction of a wide range of atmospheric storms, which includes severe thunderstorms, tornadoes, flash floods, tropical cyclones, and winter snowstorms. The research often shed light upon various aspects of local weather, such as fog, sea breezes, air pollution, showers, and other products of nonsevere cumulus cloud clusters. The part of the program devoted to boundary layer processes, gust front interactions, and soil moisture detection from satellites gives insights into storm growth and behavior.

  11. Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    NASA Astrophysics Data System (ADS)

    Sheridan, William Michael

    Winter can bring significant snow storm systems or nor'easters to New England. Understanding each factor which can affect nor'easters will allow forecasters to better predict the subsequent weather conditions. One important parameter is the sea surface temperature (SST) of the Atlantic Ocean, where many of these systems strengthen and gain much of their structure. The Weather Research and Forecasting (WRF) model was used to simulate four different nor'easters (Mar 2007, Dec 2007, Jan 2008, Dec 2010) using both observed and warmed SSTs. For the wanner SST simulations, the SSTs over the model domain were increased by 1°C. This change increased the total surface heat fluxes in all of the storms, and the resulting simulated storms were all more intense. The influence on the amount of snowfall over land was highly variable, depending on how close to the coastline the storms were and temperatures across the region.

  12. Nowcasting Ground Magnetic Perturbations with the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Toth, G.; Singer, H. J.; Millward, G. H.; Gombosi, T. I.

    2015-12-01

    Predicting ground-based magnetic perturbations is a critical step towards specifying and predicting geomagnetically induced currents (GICs) in high voltage transmission lines. Currently, the Space Weather Modeling Framework (SWMF), a flexible modeling framework for simulating the multi-scale space environment, is being transitioned from research to operational use (R2O) by NOAA's Space Weather Prediction Center. Upon completion of this transition, the SWMF will provide localized B/t predictions using real-time solar wind observations from L1 and the F10.7 proxy for EUV as model input. This presentation describes the operational SWMF setup and summarizes the changes made to the code to enable R2O progress. The framework's algorithm for calculating ground-based magnetometer observations will be reviewed. Metrics from data-model comparisons will be reviewed to illustrate predictive capabilities. Early data products, such as regional-K index and grids of virtual magnetometer stations, will be presented. Finally, early successes will be shared, including the code's ability to reproduce the recent March 2015 St. Patrick's Day Storm.

  13. NCEP Central Operations

    Science.gov Websites

    Climate Climate Prediction Climate Archives Weather Safety Storm Ready NOAA Central Library Photo Library NCO's MISSION * Execute the NCEP operational model suite - Create climate, weather, ocean, space and ) NCO Organizational Chart NOAA's Weather and Climate Operational Supercomputing System is known as

  14. The impacts of the St. Patrick's Day superstorm on selected technologies

    NASA Astrophysics Data System (ADS)

    Carter, B. A.; Yizengaw, E.; Lin, C. S.; Pradipta, R.; Norman, R.; Tseng, T.; Bennett, J.; Bishop, R. L.; Weygand, J. M.; Francis, M.; Terkildsen, M. B.; Groves, K. M.; Caton, R. G.; Tripathi, N.; Zhang, K.

    2015-12-01

    In the past, significant research efforts have been directed towards understanding how severe geomagnetic storms affect the near-Earth space environment. From this research, we have learned that many technologies are affected by these severe space weather events. The 2015 St. Patrick's Day geomagnetic storm has provided a great opportunity to analyze three selected space weather phenomena that adversely impact modern technologies; (1) Geomagnetically Induced Currents (GICs), (2) increased thermospheric mass density, and (3) the occurrence of Equatorial Plasma Bubbles (EPBs). The serious effects of GICs on power grids in the high-latitude regions is well known. Recent research has indicated that the equatorial region is also susceptible to increased GIC activity due to the equatorial electrojet. Thus, an examination of the equatorial magnetometer data during the St. Patrick's Day storm will be presented. It is also well understood that during geomagnetic storms, the thermospheric mass density at a given altitude increases due to the increase in Joule heating in the high-latitude regions. As a consequence of this, low-Earth orbiting satellites and space debris experience increased atmospheric drag. Changes in atmospheric drag causes orbits to be perturbed, resulting in less accurate orbit predictions. An investigation of the orbits of several low-Earth orbiting satellites will be presented and discussed in the context of collision avoidance, as part of the ongoing space debris problem. Finally, Equatorial Plasma Bubbles (EPBs) are a common phenomenon in the nighttime low-latitude ionosphere. EPBs are known to cause random fluctuations (i.e., scintillations) in the amplitude and phase of trans-ionospheric radio signals. While EPBs have been reported during both geomagnetically quiet and disturbed periods, research clearly indicates that the occurrence of EPBs is dependent on the geomagnetic activity level. The occurrence of EPBs around the world will be presented using data from both ground- and space-based EPB detection platforms. The results will be interpreted in the context of the disturbed ionosphere-thermosphere state and the subsequent impacts on the Generalized Rayleigh-Taylor plasma instability during the St. Patrick's Day storm.

  15. Comparison of Ionospheric TEC Derived from GPS and IRI 2012 Model during Geomagnetic Storms at Indonesia

    NASA Astrophysics Data System (ADS)

    Marlia, Dessi; Wu, Falin

    2016-07-01

    This paper investigates the variations of vertical Total Electron Content (VTEC) at Manado, Indonesia (geographic coordinates : lat 1.34 ° S and long 124.82 ° E) for period 2013. The GPS measured TEC is compared with the TEC derived from the IRI (International Reference Ionosphere) 2012 model. Vertical TEC measurements obtained from dual frequency GPS receiver that is GISTM (GPS Ionospheric Scintillations and TEC monitor). Variation of TEC validate to IRI 2012 model at Manado station has been compared with the model for three different topside of electron density namely NeQuick, IRI-01-Corr and IRI2001.There is a need to investigation on diurnal, seasonal variations, solar activity dependence of TEC and including effects of space weather related events to TEC and modeling of TEC. In this paper, diurnal and seasonal variations of VTEC and the effect of VTEC due to space weather events like Geomagnetic storms are analyzed. The result show that the TEC prediction using IRI-2001 model overestimated the GPS TEC measurements, while IRI-NeQuick and IRI-01-corr show a tendency to underestimates the observed TEC during the day time particularly in low latitude region in the maximum solar activity period (2013). The variations of VTEC during 17th March, 2013, 29th June, 2013 storms are analyzed. During 17th March,2013 storm enhancement in VTEC with Kp value 6 and Disturbance storm index (DST) -132 nT. During 29th June, 2013 storm VTEC depletion with value 7 and DST -98 nT. Significant deviations in VTEC during the main phase of the storms are observed. It is found that the response of ionospheric TEC consist of effects of both enhancement and depletions in ionospheric structures (positive and negative storm). Keywords: TEC ionosphere, GPS, GISTM, IRI 2012 model, solar activity, geomagnetic storm

  16. A new Predictive Model for Relativistic Electrons in Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2017-12-01

    Relativistic electrons trapped in the Earth's outer radiation belt present a highly hazardous radiation environment for spaceborne electronics. These energetic electrons, with kinetic energies up to several megaelectron-volt (MeV), manifest a highly dynamic and event-specific nature due to the delicate interplay of competing transport, acceleration and loss processes. Therefore, developing a forecasting capability for outer belt MeV electrons has long been a critical and challenging task for the space weather community. Recently, the vital roles of electron resonance with waves (including such as chorus and electromagnetic ion cyclotron) have been widely recognized; however, it is still difficult for current diffusion radiation belt models to reproduce the behavior of MeV electrons during individual geomagnetic storms, mainly because of the large uncertainties existing in input parameters. In this work, we expanded our previous cross-energy cross-pitch-angle coherence study and developed a new predictive model for MeV electrons over a wide range of L-shells inside the outer radiation belt. This new model uses NOAA POES observations from low-Earth-orbits (LEOs) as inputs to provide high-fidelity nowcast (multiple hour prediction) and forecast (> 1 day prediction) of the energization of MeV electrons as well as the evolving MeV electron distributions afterwards during storms. Performance of the predictive model is quantified by long-term in situ data from Van Allen Probes and LANL GEO satellites. This study adds new science significance to an existing LEO space infrastructure, and provides reliable and powerful tools to the whole space community.

  17. Space weather modeling using artificial neural network. (Slovak Title: Modelovanie kozmického počasia umelou neurónovou sietou)

    NASA Astrophysics Data System (ADS)

    Valach, F.; Revallo, M.; Hejda, P.; Bochníček, J.

    2010-12-01

    Our modern society with its advanced technology is becoming increasingly vulnerable to the Earth's system disorders originating in explosive processes on the Sun. Coronal mass ejections (CMEs) blasted into interplanetary space as gigantic clouds of ionized gas can hit Earth within a few hours or days and cause, among other effects, geomagnetic storms - perhaps the best known manifestation of solar wind interaction with Earth's magnetosphere. Solar energetic particles (SEP), accelerated to near relativistic energy during large solar storms, arrive at the Earth's orbit even in few minutes and pose serious risk to astronauts traveling through the interplanetary space. These and many other threats are the reason why experts pay increasing attention to space weather and its predictability. For research on space weather, it is typically necessary to examine a large number of parameters which are interrelated in a complex non-linear way. One way to cope with such a task is to use an artificial neural network for space weather modeling, a tool originally developed for artificial intelligence. In our contribution, we focus on practical aspects of the neural networks application to modeling and forecasting selected space weather parameters.

  18. Earth Observations taken by Expedition 34 crewmember

    NASA Image and Video Library

    2012-12-01

    ISS034-E-005476 (2 Dec. 2012) --- One of the Expedition 34 crew members aboard the International Space Station captured this still image of Super Typhoon Bopha on Dec. 2, 2012. The storm was bearing down on the Philippines with winds of 135 miles per hour. Meteorologists are predicting that the storm will make landfall on Mindanao in the early morning of Dec. 4 local time, as either a category 4 or 5. Parts of the orbital outpost are seen in the picture -- the Permanent Multipurpose Module on the left, and Mini-Research Module 1 (MRM1) on the right.

  19. Storm water runoff measurements of copper from a naturally patinated roof and from a parking space. Aspects on environmental fate and chemical speciation.

    PubMed

    Odnevall Wallinder, I; Hedberg, Y; Dromberg, P

    2009-12-01

    Release of copper from a naturally aged copper roof on a shopping centre building in a suburban site of Stockholm has been measured during different rain events after its interaction with the internal drainage system and storm drains made of cast iron and concrete. Concentrations of copper removed by means of urban storm water from a nearby parking space have been determined for comparison. Predictions and measurements of the chemical speciation of released copper are discussed compared to the total concentration, and to threshold values for freshwater and drinking water. The results clearly illustrate that the major part of the released copper from the roof is readily retained already during transport through the internal drainage system of the building, a pathway that also changes the chemical speciation of released copper and its bioavailable fraction. Most copper, not retained by cast iron and concrete surfaces, was strongly complexed to organic matter. The median concentration of free cupric ions and weak copper complexes was less than, or within the range of reported no effect concentrations, NOECs, of copper in surface waters. The parking space contributed with significantly higher and time-dependent concentrations of total copper compared to measured concentrations of copper from the roof after the interaction with the drainage system. Most copper in the surface runoff water was strongly complexed with organic matter, hence reducing the bioavailable fraction significantly to concentrations within the NOEC range. Dilution with other sources of urban storm water will reduce the released concentration of copper even further. The results illustrate that already the internal drainage system and the storm drains made of cast iron and concrete act as efficient sinks for released copper which means that any installation of additional infiltration devices is redundant.

  20. Valley Fever: Earth Observations for Risk Reduction

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2012-12-01

    Advances in satellite Earth observation systems, numerical weather prediction, and dust storm modeling yield new tools for public health warnings, advisories and epidemiology of illnesses associated with airborne desert dust. Valley Fever, endemic from California through the US/Mexico border region into Central and South America, is triggered by inhalation of soil-dwelling fungal spores. The path from fungal growth to airborne threat depends on environmental conditions observable from satellite. And space-based sensors provide initial conditions for dust storm forecasts and baselines for the epidemiology of Valley Fever and other dust-borne aggravation of respiratory and cardiovascular disease. A new Pan-American Center for the World Meteorological Organization Sand and Dust Storm Warning Advisory and Assessment System creates an opportunity to advance Earth science applications in public health.

  1. The May 1967 Great Storm and Radio Disruption Event: The Impacts We Didn't Know About

    NASA Astrophysics Data System (ADS)

    Knipp, D.

    2016-12-01

    Although listed as one of the most significant events of the last 80 years, the space weather storm of late May 1967 has been of mostly fading academic interest. The storm made its initial mark with a colossal solar radio burst causing radio interference at frequencies between 0.01-9.0 GHz and near-simultaneous disruptions of dayside radio communication by intense fluxes of ionizing solar X-rays. Aspects of military control and communication were immediately challenged. Within hours a solar energetic particle event disrupted high frequency communication in the polar cap. Subsequently record-setting geomagnetic and ionospheric storms compounded the disruptions. We explain how the May 1967 storm was nearly one with ultimate societal impact, were it not for the nascent efforts of the United States Air Force in expanding its terrestrial weather monitoring-analysis-warning-prediction efforts into the realm of space weather forecasting. This event is also one with severe impacts on thermospheric temperature and satellite drag. This story develops during the rapid rise of solar cycle 20 and the intense Cold War in the latter half of the 20th Century. We detail the events of late May 1967 in the intersecting categories of solar-terrestrial interactions and the political-military backdrop of the Cold War. This was one of the "Great Storms" of the 20th century, despite the lack of large geomagnetically-induced currents. Radio disruptions like those discussed here warrant the attention of today's radio-reliant, cellular-phone and satellite-navigation enabled world.

  2. Multi-Scale Ionospheric Responses to the St. Patrick's Day Storm (2015) Studied Using a Multimodel Ensemble Prediction System and GPS Data

    NASA Astrophysics Data System (ADS)

    Pi, X.; Butala, M.; Vergados, P.; Mannucci, A. J.; Komjathy, A.; Wang, C.; Rosen, G.; Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.

    2015-12-01

    Under the U.S. NASA and NSF collaborative space weather modeling initiative, a Multimodel Ensemble Prediction System (MEPS) for ionosphere-thermosphere-electrodynamics is being developed. The system includes several Global Assimilative Ionospheric Models (GAIMs) developed by the investigators from Utah State University, Jet Propulsion Laboratory, and University of Southern California. In this study, four GAIMs are applied to a study of ionospheric response to the 17 March 2015 St. Patrick's Day storm. It is the most severe geomagnetic storm in the current solar cycle so far. The daily planetary magnetic Ap index and magnetic Kp, Dst, as well as AE indices reached their very high values, i.e., 108, 8, -202 nT, and 2269 nT, respectively. In the assimilative modeling, GPS data from hundreds of globally-distributed ground stations and a number of COSMIC satellites are assimilated into GAIMs to reproduce ionospheric 3-D volume densities and 2-D total electron content (TEC) during the severe storm. Evolution of strong, latitudinally-dependent, and hemispherically asymmetric ionospheric disturbances is revealed through the assimilative modeling. Using the same GPS data, Global Maps of Ionospheric Irregularities and Scintillation (GMIIS) have also been produced. Comparisons of the modeled large-scale ionospheric disturbances and measured small-scale ionospheric irregularities offer additional insight into the M-I-T coupling processes in different regions during varying storm phases. This presentation will provide a picture of distinguished multi-scale ionospheric response to the coronal mass ejection (CME) event during the major geomagnetic storm.

  3. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  4. Short-term Forecasting Ground Magnetic Perturbations with the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, Daniel; Toth, Gabor; Gombosi, Tamas; Singer, Howard; Millward, George

    2016-04-01

    Predicting ground-based magnetic perturbations is a critical step towards specifying and predicting geomagnetically induced currents (GICs) in high voltage transmission lines. Currently, the Space Weather Modeling Framework (SWMF), a flexible modeling framework for simulating the multi-scale space environment, is being transitioned from research to operational use (R2O) by NOAA's Space Weather Prediction Center. Upon completion of this transition, the SWMF will provide localized dB/dt predictions using real-time solar wind observations from L1 and the F10.7 proxy for EUV as model input. This presentation describes the operational SWMF setup and summarizes the changes made to the code to enable R2O progress. The framework's algorithm for calculating ground-based magnetometer observations will be reviewed. Metrics from data-model comparisons will be reviewed to illustrate predictive capabilities. Early data products, such as regional-K index and grids of virtual magnetometer stations, will be presented. Finally, early successes will be shared, including the code's ability to reproduce the recent March 2015 St. Patrick's Day Storm.

  5. Hindcast experiments of the derecho in Estonia on 08 August, 2010: Modelling derecho with NWP model HARMONIE

    NASA Astrophysics Data System (ADS)

    Toll, Velle; Männik, Aarne; Luhamaa, Andres; Rõõm, Rein

    2015-05-01

    On August 8, 2010, a derecho swept over Northern Europe, causing widespread wind damage and more than 2 million Euros in economic loss in Estonia during its most destructive stage. This paper presents a modelling study of the derecho-producing storm utilising the Hirlam Aladin Research for Mesoscale Operational Numerical Weather Prediction in Europe (HARMONIE) model. The model setup is chosen to mimic near-future, nearly kilometre-scale, operational environments in European national weather services. The model simulations are compared to remote sensing and in situ observations. The HARMONIE model is capable of reproducing the wind gust severity and precipitation intensity. Moreover, 2.5-km grid spacing is shown to be sufficient for producing a reliable signal of the severe convective storm. Storm dynamics are well simulated, including the rear inflow jet. Although the model performance is promising, a strong dependence on the initial data, a weak trailing stratiform precipitation region and an incorrect timing of the storm are identified.

  6. SLR-induced changes on storm flooding in coastal areas: the role of accommodation space

    NASA Astrophysics Data System (ADS)

    Jiménez, Jose A.; Dockx, Stijn; Monbaliu, Jaak

    2015-04-01

    Most of existing predictions of climate-induce changes in coastal storminess in the Mediterranean indicate the absence of any significant increasing trend in neither wave height nor surge. However, this does not mean that magnitude and/or frequency of storm-induced coastal hazards will not be affected by climate change. Thus, sea level rise will induce a series of long-term changes in coastal areas that although not directly affecting storminess will interact with storm-induced processes and, thus, changing coastal storm risks. A typical approach to account SLR-induced effects on coastal inundation by storms is to modify present water level extreme climate by adding expected MWL increase. This implies to consider the coast as a static and passive system to SLR maintaining its configuration from actual to projected (rised) sea level and, as a result of this, the frequency of flood events should increase and, the magnitude of flooding associated to a probability of occurrence will also increase. This will only be realistic for really passive or rigid coasts. However, sandy coastlines will response to SLR and, thus, this approach should undervalue coastal resilience. Within this context, the main aim of this work is to propose a method to assess the effects of SLR on the magnitude of storm-induced coastal flooding on sandy coastlines taking into account their capacity of response. It combines the use of a inundation model (LISFLOOD-FP) for delineating the flood-prone area for given storm conditions and, a coastal module to account for SLR-induced changes in the coastal fringe. The method assumes an equilibrium-type coastal response to SLR which, ideally, implies that the beach profile will be reconstructed under the new higher water level, in such a way that the relative beach configuration will be the same. However, this should only be possible provided there is enough accommodation space in the hinterland. In most of developed coasts, the existence of human built infrastructures conditions and limits the availability of accommodation space and, thus, controls the magnitude of the coastal response and final configuration under SLR. This final configuration will determine potential changes in water level and overtopping regimes under the SLR scenario. Thus, potential SLR effects on storm-inundation will range between no changes for a "complete-equilibrium" response to worst case scenario which corresponds to a non-response (static) situation. The method has been tested in a low-lying coast in Catalonia (Spain, NW Mediterranean) where accommodation space varies along the coastline for different SLR scenarios. Obtained results show that, in spite of any variation in storminess, storm-induced flood risk significantly increase in time due to CC. Moreover, the observed variations in accommodation space along the coast significantly affect the observed increase in flood extension and, in consequence, it becomes one an essential aspect to be controlled for efficient management of future inundation risks.

  7. Validation of Real-time Modeling of Coronal Mass Ejections Using the WSA-ENLIL+Cone Heliospheric Model

    NASA Astrophysics Data System (ADS)

    Romano, M.; Mays, M. L.; Taktakishvili, A.; MacNeice, P. J.; Zheng, Y.; Pulkkinen, A. A.; Kuznetsova, M. M.; Odstrcil, D.

    2013-12-01

    Modeling coronal mass ejections (CMEs) is of great interest to the space weather research and forecasting communities. We present recent validation work of real-time CME arrival time predictions at different satellites using the WSA-ENLIL+Cone three-dimensional MHD heliospheric model available at the Community Coordinated Modeling Center (CCMC) and performed by the Space Weather Research Center (SWRC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. The quality of model operation is evaluated by comparing its output to a measurable parameter of interest such as the CME arrival time and geomagnetic storm strength. The Kp index is calculated from the relation given in Newell et al. (2007), using solar wind parameters predicted by the WSA-ENLIL+Cone model at Earth. The CME arrival time error is defined as the difference between the predicted arrival time and the observed in-situ CME shock arrival time at the ACE, STEREO A, or STEREO B spacecraft. This study includes all real-time WSA-ENLIL+Cone model simulations performed between June 2011-2013 (over 400 runs) at the CCMC/SWRC. We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we show the average absolute CME arrival time error, and the dependence of this error on CME input parameters such as speed, width, and direction. We also present the predicted geomagnetic storm strength (using the Kp index) error for Earth-directed CMEs.

  8. A storm-based CSLE incorporating the modified SCS-CN method for soil loss prediction on the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Shi, Wenhai; Huang, Mingbin

    2017-04-01

    The Chinese Loess Plateau is one of the most erodible areas in the world. In order to reduce soil and water losses, suitable conservation practices need to be designed. For this purpose, there is an increasing demand for an appropriate model that can accurately predict storm-based surface runoff and soil losses on the Loess Plateau. The Chinese Soil Loss Equation (CSLE) has been widely used in this region to assess soil losses from different land use types. However, the CSLE was intended only to predict the mean annual gross soil loss. In this study, a CSLE was proposed that would be storm-based and that introduced a new rainfall-runoff erosivity factor. A dataset was compiled that comprised measurements of soil losses during individual storms from three runoff-erosion plots in each of three different watersheds in the gully region of the Plateau for 3-7 years in three different time periods (1956-1959; 1973-1980; 2010-13). The accuracy of the soil loss predictions made by the new storm-based CSLE was determined using the data for the six plots in two of the watersheds measured during 165 storm-runoff events. The performance of the storm-based CSLE was further compared with the performance of the storm-based Revised Universal Soil Loss Equation (RUSLE) for the same six plots. During the calibration (83 storms) and validation (82 storms) of the storm-based CSLE, the model efficiency, E, was 87.7% and 88.9%, respectively, while the root mean square error (RMSE) was 2.7 and 2.3 t ha-1 indicating a high degree of accuracy. Furthermore, the storm-based CSLE performed better than the storm-based RULSE (E: 75.8% and 70.3%; RMSE: 3.8 and 3.7 t ha-1, for the calibration and validation storms, respectively). The storm-based CSLE was then used to predict the soil losses from the three experimental plots in the third watershed. For these predictions, the model parameter values, previously determined by the calibration based on the data from the initial six plots, were used in the storm-based CSLE. In addition, the surface runoff used by the storm-based CSLE was either obtained from measurements or from the values predicted by the modified Soil Conservation Service Curve Number (SCS-CN) method. When using the measured runoff, the storm-based CSLE had an E of 76.6%, whereas the use of the predicted runoff gave an E of 76.4%. The high E values indicated that the storm-based CSLE incorporating the modified SCS-CN method could accurately predict storm-event-based soil losses resulting from both sheet and rill erosion at the field scale on the Chinese Loess Plateau. This approach could be applicable to other areas of the world once the model parameters have been suitably calibrated.

  9. Hurricane Rita Track Radar Image with Topographic Overlay

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Animation

    About the animation: This simulated view of the potential effects of storm surge flooding on Galveston and portions of south Houston was generated with data from the Shuttle Radar Topography Mission. Although it is protected by a 17-foot sea wall against storm surges, flooding due to storm surges caused by major hurricanes remains a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments.

    About the image: The Gulf Coast from the Mississippi Delta through the Texas coast is shown in this satellite image from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) overlain with data from the Shuttle Radar Topography Mission (SRTM), and the predicted storm track for Hurricane Rita. The prediction from the National Weather Service was published Sept. 22 at 4 p.m. Central Time, and shows the expected track center in black with the lighter shaded area indicating the range of potential tracks the storm could take.

    Low-lying terrain along the coast has been highlighted using the SRTM elevation data, with areas within 15 feet of sea level shown in red, and within 30 feet in yellow. These areas are more at risk for flooding and the destructive effects of storm surge and high waves.

    Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 28 degrees North latitude, 23.5 degrees West longitude Orientation: North toward the top Size:890 by 1447 kilometers (552 by 897 miles) Image Data: MODIS image and colored SRTM elevation model Date Acquired: February 2000

  10. Seasonal Extratropical Storm Activity Potential Predictability and its Origins during the Cold Seasons

    NASA Astrophysics Data System (ADS)

    Pingree-Shippee, K. A.; Zwiers, F. W.; Atkinson, D. E.

    2016-12-01

    Extratropical cyclones (ETCs) often produce extreme hazardous weather conditions, such as high winds, blizzard conditions, heavy precipitation, and flooding, all of which can have detrimental socio-economic impacts. The North American east and west coastal regions are both strongly influenced by ETCs and, subsequently, land-based, coastal, and maritime economic sectors in Canada and the USA all experience strong adverse impacts from extratropical storm activity from time to time. Society would benefit if risks associated with ETCs and storm activity variability could be reliably predicted for the upcoming season. Skillful prediction would enable affected sectors to better anticipate, prepare for, manage, and respond to storm activity variability and the associated risks and impacts. In this study, the potential predictability of seasonal variations in extratropical storm activity is investigated using analysis of variance to provide quantitative and geographical observational evidence indicative of whether it may be possible to predict storm activity on the seasonal timescale. This investigation will also identify origins of the potential predictability using composite analysis and large-scale teleconnections (Southern Oscillation, Pacific Decadal Oscillation, and North Atlantic Oscillation), providing the basis upon which seasonal predictions can be developed. Seasonal potential predictability and its origins are investigated for the cold seasons (OND, NDJ, DJF, JFM) during the 1979-2015 time period using daily mean sea level pressure, absolute pressure tendency, and 10-m wind speed from the ECMWF ERA-Interim reanalysis as proxies for extratropical storm activity. Results indicate potential predictability of seasonal variations in storm activity in areas strongly influenced by ETCs and with origins in the investigated teleconnections. For instance, the North Pacific storm track has considerable potential predictability and with notable origins in the SO and PDO.

  11. Specification of the near-Earth space environment with SHIELDS

    DOE PAGES

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard; ...

    2017-11-26

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less

  12. Specification of the near-Earth space environment with SHIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less

  13. Data Analysis Measurement: Having a Solar Blast! NASA Connect: Program 7 in the 2001-2002 Video Series. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA Connect is an interdisciplinary, instructional distance learning program targeting students in grades 6-8. This videotape explains how engineers and researchers at the National Aeronautics and Space Administration (NASA) use data analysis and measurement to predict solar storms, anticipate how they will affect the Earth, and improve…

  14. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    The Dust Atmospheric Recovery Technology, or DART, spacecraft is being assembled in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  15. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    A researcher at NASA’s Kennedy Space Center in Florida checks a reading on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  16. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    Researchers at NASA’s Kennedy Space Center in Florida check readings on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  17. Improvement of Advanced Storm-scale Analysis and Prediction System (ASAPS) on Seoul Metropolitan Area, Korea

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Gyun; Jee, Joon-Bum

    2017-04-01

    Dangerous weather such as severe rain, heavy snow, drought and heat wave caused by climate change make more damage in the urban area that dense populated and industry areas. Urban areas, unlike the rural area, have big population and transportation, dense the buildings and fuel consumption. Anthropogenic factors such as road energy balance, the flow of air in the urban is unique meteorological phenomena. However several researches are in process about prediction of urban meteorology. ASAPS (Advanced Storm-scale Analysis and Prediction System) predicts a severe weather with very short range (prediction with 6 hour) and high resolution (every hour with time and 1 km with space) on Seoul metropolitan area based on KLAPS (Korea Local Analysis and Prediction System) from KMA (Korea Meteorological Administration). This system configured three parts that make a background field (SUF5), analysis field (SU01) with observation and forecast field with high resolution (SUF1). In this study, we improve a high-resolution ASAPS model and perform a sensitivity test for the rainfall case. The improvement of ASAPS include model domain configuration, high resolution topographic data and data assimilation with WISE observation data.

  18. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts

    USGS Publications Warehouse

    Barnard, Patrick; Maarten van Ormondt,; Erikson, Li H.; Jodi Eshleman,; Hapke, Cheryl J.; Peter Ruggiero,; Peter Adams,; Foxgrover, Amy C.

    2014-01-01

    The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.

  19. Preliminary Study on Coupling Wave-Tide-Storm Surges Prediction System

    NASA Astrophysics Data System (ADS)

    You, S.; Park, S.; Seo, J.; Kim, K.

    2008-12-01

    The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surge, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module on wave heights. However, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (RTSM : Regional Tide/Storm Surges Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The RTSM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and RTSM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the sensitivities and real case prediction of coupling wave-tide-storm surges prediction system.

  20. STEREO as a "Planetary Hazards" Mission

    NASA Technical Reports Server (NTRS)

    Guhathakurta, M.; Thompson, B. J.

    2014-01-01

    NASA's twin STEREO probes, launched in 2006, have advanced the art and science of space weather forecasting more than any other spacecraft or solar observatory. By surrounding the Sun, they provide previously-impossible early warnings of threats approaching Earth as they develop on the solar far side. They have also revealed the 3D shape and inner structure of CMEs-massive solar storms that can trigger geomagnetic storms when they collide with Earth. This improves the ability of forecasters to anticipate the timing and severity of such events. Moreover, the unique capability of STEREO to track CMEs in three dimensions allows forecasters to make predictions for other planets, giving rise to the possibility of interplanetary space weather forecasting too. STEREO is one of those rare missions for which "planetary hazards" refers to more than one world. The STEREO probes also hold promise for the study of comets and potentially hazardous asteroids.

  1. Deflected Propagation of Coronal Mass Ejections: One of the Key Issues in Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shen, C.; Zhuang, B.; Pan, Z.

    2016-12-01

    As the most important driver of severe space weather, coronal mass ejections (CMEs) and their geoeffectiveness have been studied intensively. Previous statistical studies have shown that not all the front-side halo CMEs are geoeffective, and not all non-recurrent geomagnetic storms can be tracked back to a CME. These phenomena may cause some failed predictions of the geoeffectiveness of CMEs. The recent notable event exhibiting such a failure was on 2015 March 15 when a fast CME originated from the west hemisphere. Space Weather Prediction Center (SWPC) of NOAA initially forecasted that the CME would at most cause a very minor geomagnetic disturbance labeled as G1. However, the CME produced the largest geomagnetic storm so far, at G4 level with the provisional Dst value of -223 nT, in the current solar cycle 24 [e.g., Kataoka et al., 2015; Wang et al., 2016]. Such an unexpected phenomenon naturally raises the first question for the forecasting of the geoeffectiveness of a CME, i.e., whether or not a CME will hit the Earth even though we know the source location and initial kinematic properties of the CME. A full understanding of the propagation trajectory, e.g., the deflected propagation, of a CME from the Sun to 1 AU is the key. With a few cases, we show the importance of the deflection effect in the space weather forecasting. An automated CME arrival forecasting system containing a deflected propagation model is presented. References:[1] Kataoka, R., D. Shiota, E. Kilpua, and K. Keika, Pileup accident hypothesis of magnetic storm on 17 March 2015, Geophys. Res. Lett., 42, 5155-5161, 2015.[2] Wang, Yuming, Quanhao Zhang, Jiajia Liu, Chenglong Shen, Fang Shen, Zicai Yang, T. Zic, B. Vrsnak, D. F. Webb, Rui Liu, S. Wang, Jie Zhang, Q. Hu, and B. Zhuang, On the Propagation of a Geoeffective Coronal Mass Ejection during March 15 - 17, 2015, J. Geophys. Res., accepted, doi:10.1002/2016JA022924, 2016.

  2. A survey of customers of space weather information

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Rabanal, J. P.

    2013-09-01

    We present an analysis of the users of space weather information based on 2783 responses to an online survey among subscribers of NOAA's Space Weather Prediction Center e-mail services. The survey requested information focused on the three NOAA space weather scales: geomagnetic storms, solar radiation storms, and radio blackouts. Space weather information is most commonly obtained for reasons of human safety and continuity or reliability of operations. The information is primarily used for situational awareness, as aid to understand anomalies, to avoid impacts on current and near-future operations by implementing mitigating strategies, and to prepare for potential near-future impacts that might occur in conjunction with contingencies that include electric power outages or GPS perturbations. Interest in, anticipated impacts from, and responses to the three main categories of space weather are quite uniform across societal sectors. Approximately 40% of the respondents expect serious to very serious impacts from space weather events if no action were taken to mitigate or in the absence of adequate space weather information. The impacts of space weather are deemed to be substantially reduced because of the availability of, and their response to, space weather forecasts and alerts. Current and near-future space weather conditions are generally highly valued, considered useful, and generally, though not fully, adequate to avoid or mitigate societal impacts. We conclude that even among those receiving space weather information, there is considerable uncertainty about the possible impacts of space weather and thus about how to act on the space weather information that is provided.

  3. Revisiting the synoptic-scale predictability of severe European winter storms using ECMWF ensemble reforecasts

    NASA Astrophysics Data System (ADS)

    Pantillon, Florian; Knippertz, Peter; Corsmeier, Ulrich

    2017-10-01

    New insights into the synoptic-scale predictability of 25 severe European winter storms of the 1995-2015 period are obtained using the homogeneous ensemble reforecast dataset from the European Centre for Medium-Range Weather Forecasts. The predictability of the storms is assessed with different metrics including (a) the track and intensity to investigate the storms' dynamics and (b) the Storm Severity Index to estimate the impact of the associated wind gusts. The storms are well predicted by the whole ensemble up to 2-4 days ahead. At longer lead times, the number of members predicting the observed storms decreases and the ensemble average is not clearly defined for the track and intensity. The Extreme Forecast Index and Shift of Tails are therefore computed from the deviation of the ensemble from the model climate. Based on these indices, the model has some skill in forecasting the area covered by extreme wind gusts up to 10 days, which indicates a clear potential for early warnings. However, large variability is found between the individual storms. The poor predictability of outliers appears related to their physical characteristics such as explosive intensification or small size. Longer datasets with more cases would be needed to further substantiate these points.

  4. KSC-08pd2429

    NASA Image and Video Library

    2008-08-21

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center, this alligator was spotted cruising the flood waters caused by Tropical Storm Fay. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller

  5. A NOAA/SWPC Perspective on Space Weather Forecasts That Fail

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.

    2014-12-01

    The Space Weather Prediction Center (SWPC) at NOAA is the Official US source for space weather watches, warning and alerts. These alerts are provided to a breadth of customers covering a range of industries, including electric utilities, airlines, emergency managers, and users of precision GPS to name a few. This talk will review the current tools used by SWPC to forecast geomagnetic storms, solar flares, and solar energetic particle events and present the SWPC performance in each of these areas. We will include a discussion of the current limitations and examples of events that proved difficult to forecast.

  6. Mediterranean space-time extremes of wind wave sea states

    NASA Astrophysics Data System (ADS)

    Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro; Marcello Falcieri, Francesco; Bonaldo, Davide; Bergamasco, Andrea; Benetazzo, Alvise

    2014-05-01

    Traditionally, wind wave sea states during storms have been observed, modeled, and predicted mostly in the time domain, i.e. at a fixed point. In fact, the standard statistical models used in ocean waves analysis rely on the implicit assumption of long-crested waves. Nevertheless, waves in storms are mainly short-crested. Hence, spatio-temporal features of the wave field are crucial to accurately model the sea state characteristics and to provide reliable predictions, particurly of wave extremes. Indeed, the experimental evidence provided by novel instrumentations, e.g. WASS (Wave Acquisition Stereo System), showed that the maximum sea surface elevation gathered in time over an area, i.e. the space-time extreme, is larger than that one measured in time at a point, i.e. the time extreme. Recently, stochastic models used to estimate maxima of multidimensional Gaussian random fields have been applied to ocean waves statistics. These models are based either on Piterbarg's theorem or Adler and Taylor's Euler Characteristics approach. Besides a probability of exceedance of a certain threshold, they can provide the expected space-time extreme of a sea state, as long as space-time wave features (i.e. some parameters of the directional variance density spectrum) are known. These models have been recently validated against WASS observation from fixed and moving platforms. In this context, our focus was modeling and predicting extremes of wind waves during storms. Thus, to intensively gather space-time extremes data over the Mediterranean region, we used directional spectra provided by the numerical wave model SWAN (Simulating WAves Nearshore). Therefore, we set up a 6x6 km2 resolution grid entailing most of the Mediterranean Sea and we forced it with COSMO-I7 high resolution (7x7 km2) hourly wind fields, within 2007-2013 period. To obtain the space-time features, i.e. the spectral parameters, at each grid node and over the 6 simulated years, we developed a modified version of the SWAN model, the SWAN Space-Time (SWAN-ST). SWAN-ST results were post-processed to obtain the expected space-time extremes over the model domain. To this end, we applied the stochastic model of Fedele, developed starting from Adler and Taylor's approach, which we found to be more accurate and versatile with respect to Piterbarg's theorem. Results we obtained provide an alternative sight on Mediterranean extreme wave climate, which could represent the first step towards operationl forecasting of space-time wave extremes, on the one hand, and the basis for a novel statistical standard wave model, on the other. These results may benefit marine designers, seafarers and other subjects operating at sea and exposed to the frequent and severe hazard represented by extreme wave conditions.

  7. Ionospheric Data Assimilation and Targeted Observation Strategies: Proof of Concept Analysis in a Geomagnetic Storm Event

    NASA Astrophysics Data System (ADS)

    Kostelich, Eric; Durazo, Juan; Mahalov, Alex

    2017-11-01

    The dynamics of the ionosphere involve complex interactions between the atmosphere, solar wind, cosmic radiation, and Earth's magnetic field. Geomagnetic storms arising from solar activity can perturb these dynamics sufficiently to disrupt radio and satellite communications. Efforts to predict ``space weather,'' including ionospheric dynamics, require the development of a data assimilation system that combines observing systems with appropriate forecast models. This talk will outline a proof-of-concept targeted observation strategy, consisting of the Local Ensemble Transform Kalman Filter, coupled with the Thermosphere Ionosphere Electrodynamics Global Circulation Model, to select optimal locations where additional observations can be made to improve short-term ionospheric forecasts. Initial results using data and forecasts from the geomagnetic storm of 26-27 September 2011 will be described. Work supported by the Air Force Office of Scientific Research (Grant Number FA9550-15-1-0096) and by the National Science Foundation (Grant Number DMS-0940314).

  8. The Equatorial Scintillations and Space Weather Effects on its Generation during Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Biktash, Lilia

    Great diversity of the ionospheric phenomena leads to a variety of irregularity types with spatial size from many thousands of kilometers to few centimeters and lifetimes from days to fractions of second. Since the ionosphere strongly influences the propagation of radio waves, signal distortions caused by these irregularities affect short-wave transmissions on Earth, transiono-spheric satellite communications and navigation. In this work the solar wind and the equatorial ionosphere parameters, Kp, Dst, AU, AL indices characterized contribution of different mag-netospheric and ionospheric currents to the H-component of geomagnetic field are examined to test the space weather effect on the generation of ionospheric irregularities producing VLF scintillations. According to the results of the current statistical studies, one can predict scintil-lations from Aarons' criteria using the Dst index, which mainly depicts the magnetospheric ring current field. To amplify Aarons' criteria or to propose new criteria for predicting scintillation characteristics is the question. In the present phase of the experimental investigations of elec-tron density irregularities in the ionosphere new ways are opened up because observations in the interaction between the solar wind -magnetosphere -ionosphere during magnetic storms have progressed greatly. We have examined scintillation relation to magnetospheric and ionospheric currents and show that the factor, which presents during magnetic storms to fully inhibit scin-tillation, is the positive Bz-component of the IMF. During the positive Bz IMF F layer cannot raise altitude where scintillations are formed. The auroral indices and Kp do better for the prediction of the ionospheric scintillations at the equator. The interplanetary magnetic field data and models can be used to explain the relationship between the equatorial ionospheric parameters, h'F, foF2, and the equatorial geomagnetic variations with the polar ionosphere cur-rents and the solar wind. Taking into account the time delay between the solar wind and the ionosphere phenomena, the relationship between the solar wind and the ionosphere parameters can be used for predicting of scintillations.

  9. How Might the Thermosphere and Ionosphere React to an Extreme Space Weather Event?

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T. J.; Fedrizzi, M.; Codrescu, M.; Maruyama, N.; Raeder, J.

    2015-12-01

    If a Carrington-type CME event of 1859 hit Earth how might the thermosphere, ionosphere, and plasmasphere respond? To start with, the response would be dependent on how the magnetosphere reacts and channels the energy into the upper atmosphere. For now we can assume the magnetospheric convection and auroral precipitation inputs would look similar to a 2003 Halloween storm but stronger and more expanded to mid-latitude, much like what the Weimer empirical model predicts if the solar wind Bz and velocity were -60nT and 1500km/s respectively. For a Halloween-level geomagnetic storm event, the sequence of physical process in the thermosphere and ionosphere are thought to be well understood. The physics-based coupled models, however, have been designed and somewhat tuned to simulate the response to this level of event that have been observed in the last two solar cycles. For an extreme solar storm, it is unclear if the response would be a natural linear extrapolation of the response or if non-linear processes would begin to dominate. A numerical simulation has been performed with a coupled thermosphere ionosphere model to quantify the likely response to an extreme space weather event. The simulation predict the neutral atmosphere would experience horizontal winds of 1500m/s, vertical winds exceeding 150m/s, and the "top" of the thermosphere well above 1000km. Predicting the ionosphere response is somewhat more challenging because there is significant uncertainty in quantifying some of the other driver-response relationships such as the magnitude and shielding time-scale of the penetration electric field, the possible feedback to the magnetosphere, and the amount of nitric oxide production. Within the limits of uncertainty of the drivers, the magnitude of the response can be quantified and both linear and non-linear responses are predicted.

  10. Development of Operational Wave-Tide-Storm surges Coupling Prediction System

    NASA Astrophysics Data System (ADS)

    You, S. H.; Park, S. W.; Kim, J. S.; Kim, K. L.

    2009-04-01

    The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surges, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module. In Korea, especially, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (STORM : Storm Surges/Tide Operational Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The STORM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and STORM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. These two operational models are coupled to simulate wave heights for typhoon case. The sea level and current simulated by storm surge model are used for the input of wave model with 3 hour interval. The coupling simulation between wave and storm surge model carried out for Typhoon Nabi (0514), Shanshan(0613) and Nari (0711) which were effected on Korea directly. We simulated significant wave height simulated by wave model and coupling model and compared difference between uncoupling and coupling cases for each typhoon. When the typhoon Nabi hit at southern coast of Kyushu, predicted significant wave height reached over 10 m. The difference of significant wave height between wave and wave-tide-storm surges model represents large variation at the southwestern coast of Korea with about 0.5 m. Other typhoon cases also show similar results with typhoon Nabi case. For typhoon Shanshan case the difference of significant wave height reached up to 0.3 m. When the typhoon Nari was affected in the southern coast of Korea, predicted significant wave height was about 5m. The typhoon Nari case also shows the difference of significant wave height similar with other typhoon cases. Using the observation from ocean buoy operated by KMA, we compared wave information simulated by wave and wave-storm surges coupling model. The significant wave height simulated by wave-tide-storm surges model shows the tidal modulation features in the western and southern coast of Korea. And the difference of significant wave height between two models reached up to 0.5 m. The coupling effect also can be identified in the wave direction, wave period and wave length. In addition, wave spectrum is also changeable due to coupling effect of wave-tide-storm surges model. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the sensitivities and real case prediction of coupling wave-tide-storm surges prediction system.

  11. An empirical probability density distribution of planetary ionosphere storms with geomagnetic precursors

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Stanislawska, Iwona; Arikan, Feza; Arikan, Orhan

    The probability of occurrence of the positive and negative planetary ionosphere storms is evaluated using the W index maps produced from Global Ionospheric Maps of Total Electron Content, GIM-TEC, provided by Jet Propulsion Laboratory, and transformed from geographic coordinates to magnetic coordinates frame. The auroral electrojet AE index and the equatorial disturbance storm time Dst index are investigated as precursors of the global ionosphere storm. The superposed epoch analysis is performed for 77 intense storms (Dst≤-100 nT) and 227 moderate storms (-100

  12. Energy content of stormtime ring current from phase space mapping simulations

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.

    1993-01-01

    We perform a phase space mapping study to estimate the enhancement in energy content that results from stormtime particle transport in the equatorial magnetosphere. Our pre-storm phase space distribution is based on a steady-state transport model. Using results from guiding-center simulations of ion transport during model storms having main phases of 3 hr, 6 hr, and 12 hr, we map phase space distributions of ring current protons from the pre-storm distribution in accordance with Liouville's theorem. We find that transport can account for the entire ten to twenty-fold increase in magnetospheric particle energy content typical of a major storm if a realistic stormtime enhancement of the phase space density f is imposed at the nightside tail plasma sheet (represented by an enhancement of f at the neutral line in our model).

  13. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Kristin Calhoun, a research scientist with NOAA's National Severe Storms Laboratory, speaks to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  14. KSC-08pd2422

    NASA Image and Video Library

    2008-08-21

    CAPE CANAVERAL, Fla. – Debris covers a road eroded by Tropical Storm Fay near Launch Pad 39A at NASA's Kennedy Space Center. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller

  15. KSC-08pd2424

    NASA Image and Video Library

    2008-08-21

    CAPE CANAVERAL, Fla. – Wind and rain from Tropical Storm Fay pummel the area near the Vehicle Assembly Building at NASA's Kennedy Space Center. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller

  16. KSC-08pd2430

    NASA Image and Video Library

    2008-08-21

    CAPE CANAVERAL, Fla. – Due to Tropical Storm Fay, the ground is flooded on a road alongside the turn basin at NASA's Kennedy Space Center. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller

  17. KSC-08pd2423

    NASA Image and Video Library

    2008-08-21

    CAPE CANAVERAL, Fla. – Flooding and some tree damage near the Vehicle Assembly Building are results from Tropical Storm Fay at NASA's Kennedy Space Center. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller

  18. KSC-08pd2431

    NASA Image and Video Library

    2008-08-21

    CAPE CANAVERAL, Fla. – Due to Tropical Storm Fay, the roadside canals and surrounding grounds are flooded at NASA's Kennedy Space Center. In the background is the Vehicle Assembly Building. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Ben Smegelsky

  19. KSC-08pd2428

    NASA Image and Video Library

    2008-08-21

    CAPE CANAVERAL, Fla. – An alligator seeks higher ground alongside a road at NASA's Kennedy Space Center during the onslaught of Tropical Storm Fay. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller

  20. Radiation dose predictions for SPE events during solar cycle 23 from NASA's Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Blattnig, Steve; Slaba, Tony; Kress, Brian; Wiltberger, Michael; Solomon, Stan

    NASA's High Charge and Energy Transport (HZETRN) code is a deterministic model for rapid and accurate calculations of the particle radiation fields in the space environment. HZETRN is used to calculate dosimetric quantities on the International Space Station (ISS) and assess astronaut risk to space radiations, including realistic spacecraft and human geometry for final exposure evaluation. HZETRN is used as an engineering design tool for materials research for radiation shielding protection. Moreover, it is used to calculate HZE propagation through the Earth and Martian atmospheres, and to evaluate radiation exposures for epidemiological studies. A new research project has begun that will use HZETRN as the transport engine for the development of a nowcast prediction of air-crew radiation exposure for both background galactic cosmic ray (GCR) exposure and radiation exposure during solar particle events (SPE) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which utilizes real-time observations from ground-based, atmospheric, and satellite measurements. In this paper, we compute the global distribution of atmospheric radiation dose for several SPE events during solar cycle 23, with particular emphasis on the high-latitude and polar region. We also characterize the suppression of the geomagnetic cutoff rigidity during these storm periods and their subsequent influence on atmospheric radiation exposure.

  1. Real-time SWMF-Geospace at CCMC: assessing the quality of output from continuous operational simulations

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; De Zeeuw, D.; Kuznetsova, M. M.; Rastaetter, L.; Ganushkina, N. Y.; Ilie, R.; Toth, G.; Gombosi, T. I.; van der Holst, B.

    2016-12-01

    The ground-based magnetometer index Dst is a decent measure of the near-Earth current systems, in particular those in the storm-time inner magnetosphere. The ability of a large-scale, physics-based model to reproduce, or even predict, this index is therefore a tangible measure of the overall validity of the code for space weather research and space weather operational usage. Experimental real-time simulations of the Space Weather Modeling Framework (SWMF) are conducted at the Community Coordinated Modeling Center (CCMC), with results available there (http://ccmc.gsfc.nasa.gov/realtime.php), through the CCMC Integrated Space Weather Analysis (iSWA) site (http://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/), and the Michigan SWMF site (http://csem.engin.umich.edu/realtime). Presently, two configurations of the SWMF are running in real time at CCMC, both focusing on the geospace modules, using the BATS-R-US magnetohydrodynamic model, the Ridley Ionosphere Model, and with and without the Rice Convection Model for inner magnetospheric drift physics. While both have been running for several years, nearly continuous results are available since July 2015. Dst from the model output is compared against the Kyoto real-time Dst. Various quantitative measures are presented to assess the goodness of fit between the models and observations. In particular, correlation coefficients, RMSE and prediction efficiency are calculated and discussed. In addition, contingency tables are presented, demonstrating the ability of the model to predict "disturbed times" as defined by Dst values below some critical threshold. It is shown that the SWMF run with the inner magnetosphere model is significantly better at reproducing storm-time values, with prediction efficiencies above 0.25 and Heidke skill scores above 0.5. This work was funded by NASA and NSF grants, and the European Union's Horizon 2020 research and innovation programme under grant agreement 637302 PROGRESS.

  2. Challenges in Heliophysics and Space Weather: What Instrumentation for the Future?

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Madhulika

    A hundred years ago, the sun-Earth connection (the field of heliophysics research and space weather impacts) was of interest to only a small number of scientists. Solar activity had little effect on daily life. Today, a single strong solar flare could bring civilization to its knees. Modern society has come to depend on technologies sensitive to solar radiation and geomagnetic storms. Particularly vulnerable are intercontinental power grids, interplanetary robotic and human exploration, satellite operations and communications, and GPS navigation. These technologies are woven into the fabric of daily life, from health care and finance to basic utilities. Both short- and long-term forecasting models are urgently needed to mitigate the effects of solar storms and to anticipate their collective impact on aviation, astronaut safety, terrestrial climate and others. Even during a relatively weak solar maximum, the potential consequences that such events can have on society are too important to ignore. The challenges associated with space weather affect all developed and developing countries. Work on space weather specification, modeling, and forecasting has great societal benefit: It is basic research with a high public purpose. At present, we have a fleet “Heliophysics System Observatory” of dedicated spacecraft titled (e.g. SOHO, STEREO, SDO, ACE), and serendipitous resources contributing data for space weather modeling from both remote observations of the sun and in-situ measurements to provide sparse space weather situational awareness which were mostly built for a 2-3 year lifetime and are wearing out and won’t be around for very long. Missions currently in formulation will significantly enhance the capability of physics-based models that are used to understand and predict the impact of the variable sun. To enhance current models, and make them effective in predicting space weather throughout the solar system, we need a distributed network of spacecraft collecting relevant data that can be assimilated into models. In this talk I will discuss several additional approaches that could be used for the necessary augmentation of the existing HSO capabilities and replacement of aging HSO instruments, enabling interplanetary space weather and climate predictions.

  3. Final Scientific/Technical Report for Subseasonal to Seasonal Prediction of Extratropical Storm Track Activity over the U.S. using NMME data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Edmund Kar-Man

    The goals of the project are: 1) To develop and assess subseasonal to seasonal prediction products for storm track activity derived from NMME data; 2) Assess how much of the predictable signal can be associated with ENSO and other modes of large scale low frequency atmosphere-ocean variability; and 3) Further explore the link between storm track variations and extreme weather statistics. Significant findings of this project include the followings: 1) Our assessment of NMME reforecasts of storm track variability has demonstrated that NMME models have substantial skill in predicting storm track activity in the vicinity of North America - Subseasonalmore » skill is high only for leads of less than 1 month. However, seasonal (winter) prediction skill near North America is high even out to 4 to 5 months lead - Much of the skill for leads of 1 month or longer is related to the influence of ENSO - Nevertheless, lead 0 NMME predictions are significantly more skillful than those based on ENSO influence 2) Our results have demonstrated that storm track variations highly modulate the frequency of occurrence of weather extremes - Extreme cold, high wind, and extreme precipitation events in winter - Extreme heat events in summer - These results suggest that NMME storm track predictions can be developed to serve as a useful guidance to assist the formulation of monthly/seasonal outlooks« less

  4. Solar Cycle Predictions

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  5. Comparison of predictive estimates of high-latitude electrodynamics with observations of global-scale Birkeland currents

    NASA Astrophysics Data System (ADS)

    Anderson, Brian J.; Korth, Haje; Welling, Daniel T.; Merkin, Viacheslav G.; Wiltberger, Michael J.; Raeder, Joachim; Barnes, Robin J.; Waters, Colin L.; Pulkkinen, Antti A.; Rastaetter, Lutz

    2017-02-01

    Two of the geomagnetic storms for the Space Weather Prediction Center Geospace Environment Modeling challenge occurred after data were first acquired by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). We compare Birkeland currents from AMPERE with predictions from four models for the 4-5 April 2010 and 5-6 August 2011 storms. The four models are the Weimer (2005b) field-aligned current statistical model, the Lyon-Fedder-Mobarry magnetohydrodynamic (MHD) simulation, the Open Global Geospace Circulation Model MHD simulation, and the Space Weather Modeling Framework MHD simulation. The MHD simulations were run as described in Pulkkinen et al. (2013) and the results obtained from the Community Coordinated Modeling Center. The total radial Birkeland current, ITotal, and the distribution of radial current density, Jr, for all models are compared with AMPERE results. While the total currents are well correlated, the quantitative agreement varies considerably. The Jr distributions reveal discrepancies between the models and observations related to the latitude distribution, morphologies, and lack of nightside current systems in the models. The results motivate enhancing the simulations first by increasing the simulation resolution and then by examining the relative merits of implementing more sophisticated ionospheric conductance models, including ionospheric outflows or other omitted physical processes. Some aspects of the system, including substorm timing and location, may remain challenging to simulate, implying a continuing need for real-time specification.

  6. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  7. KSC-2014-4900

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – A researcher at NASA’s Kennedy Space Center in Florida checks a reading on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2014-4901

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – A researcher at NASA’s Kennedy Space Center in Florida checks a reading on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-2014-4903

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – Researchers at NASA’s Kennedy Space Center in Florida check readings on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-2014-4902

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – Researchers at NASA’s Kennedy Space Center in Florida check readings on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-2014-4899

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – The Dust Atmospheric Recovery Technology, or DART, spacecraft is being assembled in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2014-4898

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – The Dust Atmospheric Recovery Technology, or DART, spacecraft is being assembled in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  13. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    A researcher from the University of Florida in Gainesville, checks the Dust Atmospheric Recovery Technology, or DART, spacecraft in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  14. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model

    NASA Astrophysics Data System (ADS)

    Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.

    2012-12-01

    Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.

  15. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley; Srikishen, Jayanthi; Medlin, Jeffrey; Wood, Lance

    2014-01-01

    Convection-allowing numerical weather simula- tions have often been shown to produce convective storms that have significant sensitivity to choices of model physical parameterizations. Among the most important of these sensitivities are those related to cloud microphysics, but planetary boundary layer parameterizations also have a significant impact on the evolution of the convection. Aspects of the simulated convection that display sensitivity to these physics schemes include updraft size and intensity, simulated radar reflectivity, timing and placement of storm initi- ation and decay, total storm rainfall, and other storm features derived from storm structure and hydrometeor fields, such as predicted lightning flash rates. In addition to the basic parameters listed above, the simulated storms may also exhibit sensitivity to im- posed initial conditions, such as the fields of soil temper- ature and moisture, vegetation cover and health, and sea and lake water surface temperatures. Some of these sensitivities may rival those of the basic physics sensi- tivities mentioned earlier. These sensitivities have the potential to disrupt the accuracy of short-term forecast simulations of convective storms, and thereby pose sig- nificant difficulties for weather forecasters. To make a systematic study of the quantitative impacts of each of these sensitivities, a matrix of simulations has been performed using all combinations of eight separate microphysics schemes, three boundary layer schemes, and two sets of initial conditions. The first version of initial conditions consists of the default data from large-scale operational model fields, while the second features specialized higher- resolution soil conditions, vegetation conditions and water surface temperatures derived from datasets created at NASA's Short-term Prediction and Operational Research Tran- sition (SPoRT) Center at the National Space Science and Technology Center (NSSTC) in Huntsville, AL. Simulations as outlined above, each 48 in number, were conducted for five midsummer weakly sheared coastal convective events each at two sites, Mobile, AL (MOB) and Houston, TX (HGX). Of special interest to operational forecasters at MOB and HGX were accuracy of timing and placement of convective storm initiation, reflectivity magnitudes and coverage, rainfall and inferred lightning threat.

  16. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  17. The Development of Storm Surge Ensemble Prediction System and Case Study of Typhoon Meranti in 2016

    NASA Astrophysics Data System (ADS)

    Tsai, Y. L.; Wu, T. R.; Terng, C. T.; Chu, C. H.

    2017-12-01

    Taiwan is under the threat of storm surge and associated inundation, which is located at a potentially severe storm generation zone. The use of ensemble prediction can help forecasters to know the characteristic of storm surge under the uncertainty of track and intensity. In addition, it can help the deterministic forecasting. In this study, the kernel of ensemble prediction system is based on COMCOT-SURGE (COrnell Multi-grid COupled Tsunami Model - Storm Surge). COMCOT-SURGE solves nonlinear shallow water equations in Open Ocean and coastal regions with the nested-grid scheme and adopts wet-dry-cell treatment to calculate potential inundation area. In order to consider tide-surge interaction, the global TPXO 7.1 tide model provides the tidal boundary conditions. After a series of validations and case studies, COMCOT-SURGE has become an official operating system of Central Weather Bureau (CWB) in Taiwan. In this study, the strongest typhoon in 2016, Typhoon Meranti, is chosen as a case study. We adopt twenty ensemble members from CWB WRF Ensemble Prediction System (CWB WEPS), which differs from parameters of microphysics, boundary layer, cumulus, and surface. From box-and-whisker results, maximum observed storm surges were located in the interval of the first and third quartile at more than 70 % gauge locations, e.g. Toucheng, Chengkung, and Jiangjyun. In conclusion, the ensemble prediction can effectively help forecasters to predict storm surge especially under the uncertainty of storm track and intensity

  18. Space Weather Prediction

    DTIC Science & Technology

    2014-10-31

    range of solar emissions (electromagnetic, high energy particles, and plasma ) on time scales ranging from hours/days to months/years depending on the...slower than the speed of light and take a finite time to exceed an intensity threshold of operational interest at Earth . Because of the long time scale ...typically 1-3 days) for geoeffective plasma disturbances associated with Coronal Mass Ejections (CMEs) to reach Earth , geomagnetic storm

  19. Tropical Cyclone Intensity in Global Models

    NASA Astrophysics Data System (ADS)

    Davis, C. A.; Wang, W.; Ahijevych, D.

    2017-12-01

    In recent years, global prediction and climate models have begun to depict intense tropical cyclones, even up to Category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, we examine the how well these models treat tropical cyclone intensity, measured from several different perspectives. The models evaluated include the operational Global Forecast System, with a grid spacing of about 13 km, and the Model for Prediction Across Scales, with a variable resolution of 15 km over the Northwest Pacific transitioning to 60 km elsewhere. We focus on the Northwest Pacific for the period July-October, 2016. Results indicate that discrimination of tropical cyclone intensity is reasonably good up to roughly category 3 storms. The models are able to capture storms of category 4 intensity, but still exhibit a negative intensity bias of 20-30 knots at lead times beyond 5 days. This is partly indicative of the large number of super-typhoons that occurred in 2016. The question arises of how well global models should represent intensity, given that it is unreasonable for them to depict the inner core of many intense tropical cyclones with a grid increment of 13-15 km. We compute an expected "best-case" prediction of intensity based on filtering the observed wind profiles of Atlantic tropical cyclones according to different hypothetical model resolutions. The Atlantic is used because of the significant number of reconnaissance missions and more reliable estimate of wind radii. Results indicate that, even under the most optimistic assumptions, models with horizontal grid spacing of 1/4 degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, models with a grid spacing of 1/4 degree or greater are unlikely to systematically discriminate hurricanes with differing intensity. Finally, for simple wind profiles, it is shown how an accurate representation of maximum wind on a coarse grid will lead to an overestimate of horizontally integrated kinetic energy by a factor of two or more.

  20. KSC-08pd2502

    NASA Image and Video Library

    2008-08-23

    CAPE CANAVERAL, Fla. – This aerial view shows the high water surrounding Launch Pad 39A at NASA's Kennedy Space Center following Tropical Storm Fay. In the foreground is the Atlantic Ocean. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Amanda Diller

  1. KSC-08pd2427

    NASA Image and Video Library

    2008-08-21

    CAPE CANAVERAL, Fla. – The median of one of the roads on NASA's Kennedy Space Center is flooded from Tropical Storm Fay. An emergency vehicle illustrates the flooding on the road as well. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller

  2. KSC-08pd2426

    NASA Image and Video Library

    2008-08-21

    CAPE CANAVERAL, Fla. – The large windows of a building at NASA's Kennedy Space Center are covered by plywood and sandbags to protect against the wind and rain driven by Tropical Storm Fay. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller

  3. Satellite Video Shows Movement of Major U.S. Winter Storm

    NASA Image and Video Library

    2014-02-12

    View a video of the storm here: bit.ly/1m9aJFY This visible image of the winter storm over the U.S. south and East Coast was taken by NOAA's GOES-13 satellite on Feb. 12 at 1855 UTC/1:55 p.m. EST. Snow covered ground can be seen over the Great Lakes region and Ohio Valley. On February 12 at 10 a.m. EST, NOAA's National Weather Service or NWS continued to issue watches and warnings from Texas to New England. Specifically, NWS cited Winter Storm Warnings and Winter Weather Advisories were in effect from eastern Texas eastward across the interior section of southeastern U.S. states and across much of the eastern seaboard including the Appalachians. Winter storm watches are in effect for portions of northern New England as well as along the western slopes of northern and central Appalachians. For updates on local forecasts, watches and warnings, visit NOAA's www.weather.gov webpage. NOAA's Weather Prediction Center or WPC noted the storm is expected to bring "freezing rain spreading into the Carolinas, significant snow accumulations are expected in the interior Mid-Atlantic states tonight into Thursday and ice storm warnings and freezing rain advisories are in effect across much of central Georgia. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's WPC website; www.hpc.ncep.noaa.gov/ For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Space Weather, Geomagnetic Disturbances and Impact on the High-Voltage Transmission Systems

    NASA Technical Reports Server (NTRS)

    Pullkkinen, A.

    2011-01-01

    Geomagnetically induced currents (GIC) affecting the performance of high-voltage power transmission systems are one of the most significant hazards space weather poses on the operability of critical US infrastructure. The severity of the threat was emphasized, for example, in two recent reports: the National Research Council (NRC) report "Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report" and the North American Electric Reliability Corporation (NERC) report "HighImpact, Low-Frequency Event Risk to the North American Bulk Power System." The NRC and NERC reports demonstrated the important national security dimension of space weather and GIC and called for comprehensive actions to forecast and mitigate the hazard. In this paper we will give a brief overview of space weather storms and accompanying geomagnetic storm events that lead to GIC. We will also review the fundamental principles of how GIC can impact the power transmission systems. Space weather has been a subject of great scientific advances that have changed the wonder of the past to a quantitative field of physics with true predictive power of today. NASA's Solar Shield system aimed at forecasting of GIC in the North American high-voltage power transmission system can be considered as one of the ultimate fruits of those advances. We will review the fundamental principles of the Solar Shield system and provide our view of the way forward in the science of GIC.

  5. Assessment of Modeling Capability for Reproducing Storm Impacts on TEC

    NASA Astrophysics Data System (ADS)

    Shim, J. S.; Kuznetsova, M. M.; Rastaetter, L.; Bilitza, D.; Codrescu, M.; Coster, A. J.; Emery, B. A.; Foerster, M.; Foster, B.; Fuller-Rowell, T. J.; Huba, J. D.; Goncharenko, L. P.; Mannucci, A. J.; Namgaladze, A. A.; Pi, X.; Prokhorov, B. E.; Ridley, A. J.; Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Zhu, L.

    2014-12-01

    During geomagnetic storm, the energy transfer from solar wind to magnetosphere-ionosphere system adversely affects the communication and navigation systems. Quantifying storm impacts on TEC (Total Electron Content) and assessment of modeling capability of reproducing storm impacts on TEC are of importance to specifying and forecasting space weather. In order to quantify storm impacts on TEC, we considered several parameters: TEC changes compared to quiet time (the day before storm), TEC difference between 24-hour intervals, and maximum increase/decrease during the storm. We investigated the spatial and temporal variations of the parameters during the 2006 AGU storm event (14-15 Dec. 2006) using ground-based GPS TEC measurements in the selected 5 degree eight longitude sectors. The latitudinal variations were also studied in two longitude sectors among the eight sectors where data coverage is relatively better. We obtained modeled TEC from various ionosphere/thermosphere (IT) models. The parameters from the models were compared with each other and with the observed values. We quantified performance of the models in reproducing the TEC variations during the storm using skill scores. This study has been supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) for the space science communities to use.

  6. Regional Differences in Tropical Lightning Distributions.

    NASA Astrophysics Data System (ADS)

    Boccippio, Dennis J.; Goodman, Steven J.; Heckman, Stan

    2000-12-01

    Observations from the National Aeronautics and Space Administration Optical Transient Detector (OTD) and Tropical Rainfall Measuring Mission (TRMM)-based Lightning Imaging Sensor (LIS) are analyzed for variability between land and ocean, various geographic regions, and different (objectively defined) convective `regimes.' The bulk of the order-of-magnitude differences between land and ocean regional flash rates are accounted for by differences in storm spacing (density) and/or frequency of occurrence, rather than differences in storm instantaneous flash rates, which only vary by a factor of 2 on average. Regional variability in cell density and cell flash rates closely tracks differences in 85-GHz microwave brightness temperatures. Monotonic relationships are found with the gross moist stability of the tropical atmosphere, a large-scale `adjusted state' parameter. This result strongly suggests that it will be possible, using TRMM observations, to objectively test numerical or theoretical predictions of how mesoscale convective organization interacts with the larger-scale environment. Further parameters are suggested for a complete objective definition of tropical convective regimes.

  7. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. Briefing participants from left are: Steve Cole of NASA Communications; Dan Lindsey, GOES-R senior scientific advisor for NOAA; Louis Uccellini, director of the National Weather Service for NOAA; Jim Roberts, a scientist with the Earth System Research Laboratory's Office of Atmospheric Research for NOAA; Kristin Calhoun, a research scientist with NOAA's National Severe Storms Laboratory, and George Morrow, deputy director of NASA's Goddard Space Flight Center in Greenbelt, Maryland. GOES-S is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  8. Lightning chemistry on Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Ardaseva, Aleksandra; Rimmer, Paul B.; Waldmann, Ingo; Rocchetto, Marco; Yurchenko, Sergey N.; Helling, Christiane; Tennyson, Jonathan

    2017-09-01

    We present a model for lightning shock-induced chemistry that can be applied to atmospheres of arbitrary H/C/N/O chemistry, hence for extrasolar planets and brown dwarfs. The model couples hydrodynamics and the STAND2015 kinetic gas-phase chemistry. For an exoplanet analogue to the contemporary Earth, our model predicts NO and NO2 yields in agreement with observation. We predict height-dependent mixing ratios during a storm soon after a lightning shock of NO ≈10-3 at 40 km and NO2 ≈10-4 below 40 km, with O3 reduced to trace quantities (≪10-10). For an Earth-like exoplanet with a CO2/N2 dominated atmosphere and with an extremely intense lightning storm over its entire surface, we predict significant changes in the amount of NO, NO2, O3, H2O, H2 and predict a significant abundance of C2N. We find that, for the Early Earth, O2 is formed in large quantities by lightning but is rapidly processed by the photochemistry, consistent with previous work on lightning. The chemical effect of persistent global lightning storms are predicted to be significant, primarily due to NO2, with the largest spectral features present at ˜3.4 and ˜6.2 μm. The features within the transmission spectrum are on the order of 1 ppm and therefore are not likely detectable with the James Webb Space Telescope. Depending on its spectral properties, C2N could be a key tracer for lightning on Earth-like exoplanets with a N2/CO2 bulk atmosphere, unless destroyed by yet unknown chemical reactions.

  9. KSC-08pd2425

    NASA Image and Video Library

    2008-08-21

    CAPE CANAVERAL, Fla. – A member of the "ride-out crew," a group of emergency personnel, at NASA's Kennedy Space Center monitors effects from Tropical Storm Fay. In the background is the Operations Support Building I in the Launch Complex 39 Area. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Jack Pfaller

  10. Simulations of phase space distributions of storm time proton ring current

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Lyons, Larry R.; Schulz, Michael

    1994-01-01

    We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet-time value. We compute the magnetic field produced by the ring current itself and find that radial profiles of the magnetic field depression resemble those obtained from observational data.

  11. The LWS Geospace Storm Investigations Exploring the Extremes of Space Weather

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Geospace mission of the Living With a Star program is a family of investigations focusing on the compelling science questions that advance our ability to specify, understand, and predict the societal impact of solar variance. Two key areas have been identified as combining both importance to society and potential for scientific progress: 1) characterization and understanding of the acceleration, global distribution, and variability of energetic electrons and ions in the inner magnetosphere, and 2) characterization and understanding of the ionosphere and irregularities that affect communications, navigation and radar systems. Under these broad categories specific science questions have emerged as the priority science objectives for the first Geospace Investigations: How and why do relativistic electrons in the outer zone and slot region vary during geomagnetic storms? How does the long- and short-term variability of the Sun affect the global-scale behavior of the ionospheric electron density and irregularities, especially during magnetic storms and at mid-latitudes? The first Geospace mission will attempt to answer these questions.

  12. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  13. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, Sean Potter of NASA Communications, moderates a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  14. Identifying open magnetic field regions of the Sun and their heliospheric counterparts

    NASA Astrophysics Data System (ADS)

    Krista, L. D.; Reinard, A.

    2017-12-01

    Open magnetic regions on the Sun are either long-lived (coronal holes) or transient (dimmings) in nature. Both phenomena are fundamental to our understanding of the solar behavior as a whole. Coronal holes are the sources of high-speed solar wind streams that cause recurrent geomagnetic storms. Furthermore, the variation of coronal hole properties (area, location, magnetic field strength) over the solar activity cycle is an important marker of the global evolution of the solar magnetic field. Dimming regions, on the other hand, are short-lived coronal holes that often emerge in the wake of solar eruptions. By analyzing their physical properties and their temporal evolution, we aim to understand their connection with their eruptive counterparts (flares and coronal mass ejections) and predict the possibility of a geomagnetic storm. The author developed the Coronal Hole Automated Recognition and Monitoring (CHARM) and the Coronal Dimming Tracker (CoDiT) algorithms. These tools not only identify but track the evolution of open magnetic field regions. CHARM also provides daily coronal hole maps, that are used for forecasts at the NOAA Space Weather Prediction Center. Our goal is to better understand the processes that give rise to eruptive and non-eruptive open field regions and investigate how these regions evolve over time and influence space weather.

  15. The Design and Evaluation of the Lighting Imaging Sensor Data Applications Display (LISDAD)

    NASA Technical Reports Server (NTRS)

    Boldi, B.; Hodanish, S.; Sharp, D.; Williams, E.; Goodman, Steven; Raghavan, R.; Matlin, A.; Weber, M.

    1998-01-01

    The design and evaluation of the Lightning Imaging Sensor Data Applications Display (LISDAD). The ultimate goal of the LISDAD system is to quantify the utility of total lightning information in short-term, severe-weather forecasting operations. To this end, scientists from NASA, NWS, and MIT organized an effort to study the relationship of lightning and severe-weather on a storm-by-storm, and even cell-by-cell basis for as many storms as possible near Melbourne, Florida. Melbourne was chosen as it offers a unique combination of high probability of severe weather and proximity to major relevant sensors - specifically: NASA's total lightning mapping system at Kennedy Space Center (the LDAR system at KSC); a NWS/NEXRAD radar (at Melbourne); and a prototype Integrated Terminal Weather System (ITWS, at Orlando), which obtains cloud-to-ground lightning Information from the National Lightning Detection Network (NLDN), and also uses NSSL's Severe Storm Algorithm (NSSL/SSAP) to obtain information about various storm-cell parameters. To assist in realizing this project's goal, an interactive, real-time data processing system (the LISDAD system) has been developed that supports both operational short-term weather forecasting and post facto severe-storm research. Suggestions have been drawn from the operational users (NWS/Melbourne) in the design of the data display and its salient behavior. The initial concept for the users Graphical Situation Display (GSD) was simply to overlay radar data with lightning data, but as the association between rapid upward trends in the total lightning rate and severe weather became evident, the display was significantly redesigned. The focus changed to support the display of time series of storm-parameter data and the automatic recognition of cells that display rapid changes in the total-lightning flash rate. The latter is calculated by grouping discrete LDAR radiation sources into lightning flashes using a time-space association algorithm. Specifically, the GSD presents the user with the Composite Maximum Reflectivity obtained from the NWS/NEXRAD. Superimposed upon this background image are placed small black circles indicating the locations of storm cells identified by the NSSL/SSA. The circles become cyan if lightning is detected within the storm-cell; if the cell has lightning rates indicative of a severe-storm, the circle turns red. This paper will: (1) review the design of LISDAD system; (2) present some examples of its data display; and shown results of the lightning based severe-weather prediction algorithm.

  16. Artificial magnetic field for the space station (Protecting space stations in future space missions)

    NASA Astrophysics Data System (ADS)

    Ahmadi Tara, Miss

    Problem Explanation Strong solar storms and cosmic rays make great disturbances for equip-ment outside the magnetosphere. Also these disturbances are so harmful for biological process of living cells. If one decides to stay more outside the Earth, one's healthy is in a great danger. To investigate space station situation against strong solar storms, 5 recent strong solar storms have been selected. Dst of these storms are more than -300 nT. Each one of these storms has an accurate danger percentage. These data has been shown in Tab I. Tab I. strong solar storms during 1989-2003 and their danger percentage for space equipments and astronauts on outside the magnetic field As has been shown in Tab I. these strong storms are so dangerous and make problem for human outside the Earth layers. Basic on [13] solar activities in next century will be more than this century. That paper shows that the average number of sunspots in this century is less than 77 and this average will be more than 150 sunspots in a century. So we have only 70 years to prepare a suitable space station in other wise building this centre wills has many problem such as health security and long travels. Method explanation Only method to face with energetic particles is magnetic field. Space station is bereft of strong magnetic field to protect herself from energetic particles that released from the Sun and other types of stars in other galaxies (cosmic rays). Therefore the existence of an artificial magnetic field is necessary, this is not important that this field will be for the space station or its inner space because this field performs as magnetosphere. It does not allow energetic particles to enter the field. Also this field loads up to solar magnetic field as magnetosphere. Position of this artificial field is not important because basic on the simulations this field could repulse 85.6Modeling Important feature of this artificial field is its situation against solar magnetic field, i.e. these fields always are anti-aligned because artificial field could change direction by itself basic on the situation of Sun. Relationship between artificial field and solar storm has two types: 1) Artifi-cial field loads up to solar storm's magnetic field and makes magnetic reconnection 2) artificial field repulses energetic solar particles. These below equations show situation of artificial field against magnetic reconnection with magnetic field of solar storm and repulsing particles. Basic on the volume of repulsed particles the strength of field could be: Each one of these storms has an accurate danger percentage. These data has been shown in Tab I. Tab I. strong solar storms during 1989-2003 and their danger percentage for space equipments and astronauts on outside the magnetic field As has been shown in Tab I. these strong storms are so dangerous and make problem for human outside the Earth layers. Basic on [13] solar activities in next century will be more than this century. That paper shows that the average number of sunspots in this century is less than 77 and this average will be more than 150 sunspots in a century. So we have only 70 years to prepare a suitable space station in other wise building this centre wills has many problem such as health security and long travels. Method explanation Only method to face with energetic particles is magnetic field. Space station is bereft of strong magnetic field to protect herself from energetic particles that released from the Sun and other types of stars in other galaxies (cosmic rays). Therefore the existence of an artificial magnetic field is necessary, this is not important that this field will be for the space station or its inner space because this field performs as magnetosphere. It does not allow energetic particles to enter the field. Also this field loads up to solar magnetic field as magnetosphere. Position of this artificial field is not important because basic on the simulations this field could repulse 85.6Modeling Important feature of this artificial field is its situation against solar magnetic field, i.e. these fields always are anti-aligned because artificial field could change direction by itself basic on the situation of Sun. Relationship between artificial field and solar storm has two types: 1) Artificial field loads up to solar storm's magnetic field and makes magnetic reconnection 2) ar-tificial field repulses energetic solar particles. These below equations show situation of artificial field against magnetic reconnection with magnetic field of solar storm and repulsing particles. Basic on the volume of repulsed particles the strength of field could be: General equation of artificial field: Equations of artificial field basic on the magnetic reconnection: Also equation of balance of electrical energy is: That , V and P are denoting respectively density, velocity and pressure. is plasma energy density. J= current density, Bo =artificial magnetic field, B,E=plasma magnetic and electric field. Vs=volume of a sphere with r radius and =resistance General equation of artificial field: Equations of artificial field basic on the magnetic reconnec-tion: Also equation of balance of electrical energy is: That , V and P are denoting respectively density, velocity and pressure. is plasma energy density. J= current density, Bo =artificial magnetic field, B,E=plasma magnetic and electric field. Vs=volume of a sphere with r radius and =resistance Results Tab II. Danger percentage of 5 strong solar storms for equipment and astronauts in the future space station within the influence on artificial field As has been shown in Tab II artificial magnetic field could pass great dangers of solar storms and protect space station wherever of free space. FIG.2) Upper panel shows X-ray flux at two wavelengths 0.5-4 ˚ and 1-8 ˚. Lower Panel shows Proton flux in various energy levels received on the Moon's A A surface from solar storm 2000(obtained from simulation) 0-14(UT) obtained from outside the field, 14-7(UT) obtained from receiver in the field, 7-0(UT) obtained from receiver behind in-strument Conclusion In this brief paper, I describe a way to protect future space station from energetic particles. This field could reduce damage of solar storms and cosmic rays that arrived to the space station outside the Earth magnetic field. This field performs as magnetosphere for space station. It could change its situation and make easy live on the space station. This strong magnetic field must be generated by low-temperature superconductors. They are suit-able material to use at generating a strong magnetic field. These materials could be used in the structure of spacecrafts during long duration space travels in future

  17. Forecast of geomagnetic storms using CME parameters and the WSA-ENLIL model

    NASA Astrophysics Data System (ADS)

    Moon, Y.; Lee, J.; Jang, S.; Na, H.; Lee, J.

    2013-12-01

    Intense geomagnetic storms are caused by coronal mass ejections (CMEs) from the Sun and their forecast is quite important in protecting space- and ground-based technological systems. The onset and strength of geomagnetic storms depend on the kinematic and magnetic properties of CMEs. Current forecast techniques mostly use solar wind in-situ measurements that provide only a short lead time. On the other hand, techniques using CME observations near the Sun have the potential to provide 1-3 days of lead time before the storm occurs. Therefore, one of the challenging issues is to forecast interplanetary magnetic field (IMF) southward components and hence geomagnetic storm strength with a lead-time on the order of 1-3 days. We are going to answer the following three questions: (1) when does a CME arrive at the Earth? (2) what is the probability that a CME can induce a geomagnetic storm? and (3) how strong is the storm? To address the first question, we forecast the arrival time and other physical parameters of CMEs at the Earth using the WSA-ENLIL model with three CME cone types. The second question is answered by examining the geoeffective and non-geoeffective CMEs depending on CME observations (speed, source location, earthward direction, magnetic field orientation, and cone-model output). The third question is addressed by examining the relationship between CME parameters and geomagnetic indices (or IMF southward component). The forecast method will be developed with a three-stage approach, which will make a prediction within four hours after the solar coronagraph data become available. We expect that this study will enable us to forecast the onset and strength of a geomagnetic storm a few days in advance using only CME parameters and the physics-based models.

  18. XBeach-G: a tool for predicting gravel barrier response to extreme storm conditions

    NASA Astrophysics Data System (ADS)

    Masselink, Gerd; Poate, Tim; McCall, Robert; Roelvink, Dano; Russell, Paul; Davidson, Mark

    2014-05-01

    Gravel beaches protect low-lying back-barrier regions from flooding during storm events and their importance to society is widely acknowledged. Unfortunately, breaching and extensive storm damage has occurred at many gravel sites and this is likely to increase as a result of sea-level rise and enhanced storminess due to climate change. Limited scientific guidance is currently available to provide beach managers with operational management tools to predict the response of gravel beaches to storms. The New Understanding and Prediction of Storm Impacts on Gravel beaches (NUPSIG) project aims to improve our understanding of storm impacts on gravel coastal environments and to develop a predictive capability by modelling these impacts. The NUPSIG project uses a 5-pronged approach to address its aim: (1) analyse hydrodynamic data collected during a proto-type laboratory experiment on a gravel beach; (2) collect hydrodynamic field data on a gravel beach under a range of conditions, including storm waves with wave heights up to 3 m; (3) measure swash dynamics and beach response on 10 gravel beaches during extreme wave conditions with wave heights in excess of 3 m; (4) use the data collected under 1-3 to develop and validate a numerical model to model hydrodynamics and morphological response of gravel beaches under storm conditions; and (5) develop a tool for end-users, based on the model formulated under (4), for predicting storm response of gravel beaches and barriers. The aim of this presentation is to present the key results of the NUPSIG project and introduce the end-user tool for predicting storm response on gravel beaches. The model is based on the numerical model XBeach, and different forcing scenarios (wave and tides), barrier configurations (dimensions) and sediment characteristics are easily uploaded for model simulations using a Graphics User Interface (GUI). The model can be used to determine the vulnerability of gravel barriers to storm events, but can also be used to help optimise design criteria for gravel barriers to reduce their vulnerability and enhance their coastal protection ability.

  19. Multispacecraft Observations and Modeling of the 22/23 June 2015 Geomagnetic Storm

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Daou, A. G.; Sazykin, S. Y.; Nakamura, R.; Hairston, M. R.; Coffey, V.; Chandler, M. O.; Anderson, B. J.; Russell, C. T.; Welling, D.; hide

    2016-01-01

    The magnetic storm of 22-23 June 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE (Active Magnetosphere and Planetary Electrodynamics Response), and ionospheric flow data from Defense Meteorological Satellite Program (DMSP). Our real-time space weather alert system sent out a "red alert," correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS Fast Plasma Instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20 MA. We present numerical simulations with the Block Adaptive Tree-Solarwind - Roe - Upwind Scheme (BATS-R-US) global magnetohydrodynamic model linked with the Rice Convection Model. The model predicted the magnitude of the dipolarizations, and varying polar cap convection patterns, which were confirmed by DMSP measurements.

  20. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  1. Deflected Propagation of CMEs and Its Importance on the CME Arrival Forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Yuming; Zhuang, Bin; Shen, Chenglong

    2017-04-01

    As the most important driver of severe space weather, coronal mass ejections (CMEs) and their geoeffectiveness have been studied intensively. Previous statistical studies have shown that not all the front-side halo CMEs are geoeffective, and not all non-recurrent geomagnetic storms can be tracked back to a CME. These phenomena may cause some failed predictions of the geoeffectiveness of CMEs. The recent notable event exhibiting such a failure was on 2015 March 15 when a fast CME originated from the west hemisphere. Space Weather Prediction Center (SWPC) of NOAA initially forecasted that the CME would at most cause a very minor geomagnetic disturbance labeled as G1. However, the CME produced the largest geomagnetic storm so far, at G4 level with the provisional Dst value of -223 nT, in the current solar cycle 24 [e.g., Kataoka et al., 2015; Wang et al., 2016]. Such an unexpected phenomenon naturally raises the first question for the forecasting of the geoeffectiveness of a CME, i.e., whether or not a CME will hit the Earth even though we know the source location and initial kinematic properties of the CME. A full understanding of the propagation trajectory, e.g., the deflected propagation, of a CME from the Sun to 1 AU is the key. With a few cases, we show the importance of the deflection effect in the space weather forecasting. An automated CME arrival forecasting system containing a deflected propagation model is presented.

  2. Analog ensemble and Bayesian regression techniques to improve the wind speed prediction during extreme storms in the NE U.S.

    NASA Astrophysics Data System (ADS)

    Yang, J.; Astitha, M.; Delle Monache, L.; Alessandrini, S.

    2016-12-01

    Accuracy of weather forecasts in Northeast U.S. has become very important in recent years, given the serious and devastating effects of extreme weather events. Despite the use of evolved forecasting tools and techniques strengthened by increased super-computing resources, the weather forecasting systems still have their limitations in predicting extreme events. In this study, we examine the combination of analog ensemble and Bayesian regression techniques to improve the prediction of storms that have impacted NE U.S., mostly defined by the occurrence of high wind speeds (i.e. blizzards, winter storms, hurricanes and thunderstorms). The predicted wind speed, wind direction and temperature by two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) are combined using the mentioned techniques, exploring various ways that those variables influence the minimization of the prediction error (systematic and random). This study is focused on retrospective simulations of 146 storms that affected the NE U.S. in the period 2005-2016. In order to evaluate the techniques, leave-one-out cross validation procedure was implemented regarding 145 storms as the training dataset. The analog ensemble method selects a set of past observations that corresponded to the best analogs of the numerical weather prediction and provides a set of ensemble members of the selected observation dataset. The set of ensemble members can then be used in a deterministic or probabilistic way. In the Bayesian regression framework, optimal variances are estimated for the training partition by minimizing the root mean square error and are applied to the out-of-sample storm. The preliminary results indicate a significant improvement in the statistical metrics of 10-m wind speed for 146 storms using both techniques (20-30% bias and error reduction in all observation-model pairs). In this presentation, we discuss the various combinations of atmospheric predictors and techniques and illustrate how the long record of predicted storms is valuable in the improvement of wind speed prediction.

  3. Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D

    NASA Astrophysics Data System (ADS)

    Gilligan, M. J.; Lovering, J. L.

    2016-02-01

    The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.

  4. KSC-2014-4904

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – A researcher from the University of Florida in Gainesville, checks the Dust Atmospheric Recovery Technology, or DART, spacecraft in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  5. Hubble Observes a New Saturn Storm

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the ringed planet Saturn shows a rare storm that appears as a white arrowhead-shaped feature near the planet's equator. The storm is generated by an upwelling of warmer air, similar to a terrestrial thunderhead. The east-west extent of this storm is equal to the diameter of the Earth (about 7,900 miles). Hubble provides new details about the effects of Saturn's prevailing winds on the storm. The new image shows that the storm's motion and size have changed little since its discovery in September, 1994.

    The storm was imaged with Hubble's Wide Field Planetary Camera 2 (WFPC2) in the wide field mode on December 1, 1994, when Saturn was 904 million miles from the Earth. The picture is a composite of images taken through different color filters within a 6 minute interval to create a 'true-color' rendition of the planet. The blue fringe on the right limb of the planet is an artifact of image processing used to compensate for the rotation of the planet between exposures.

    The Hubble images are sharp enough to reveal that Saturn's prevailing winds shape a dark 'wedge' that eats into the western (left) side of the bright central cloud. The planet's strongest eastward winds (clocked at 1,000 miles per hour from analysis of Voyager spacecraft images taken in 1980-81) are at the latitude of the wedge.

    To the north of this arrowhead-shaped feature, the winds decrease so that the storm center is moving eastward relative to the local flow. The clouds expanding north of the storm are swept westward by the winds at higher latitudes. The strong winds near the latitude of the dark wedge blow over the northern part of the storm, creating a secondary disturbance that generates the faint white clouds to the east (right) of the storm center.

    The storm's white clouds are ammonia ice crystals that form when an upward flow of warmer gases shoves its way through Saturn's frigid cloud tops. This current storm is larger than the white clouds associated with minor storms that have been reported more frequently as bright cloud features.

    Hubble observed a similar, though larger, storm in September 1990, which was one of three major Saturn storms seen over the past two centuries. Although these events were separated by about 57 years (approximately 2 Saturnian years) there is yet no explanation why they apparently follow a cycle -- occurring when it is summer in Saturn's northern hemisphere.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  6. Validation of the Kp Geomagnetic Index Forecast at CCMC

    NASA Astrophysics Data System (ADS)

    Frechette, B. P.; Mays, M. L.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) Space Weather Research Center (SWRC) sub-team provides space weather services to NASA robotic mission operators and science campaigns and prototypes new models, forecasting techniques, and procedures. The Kp index is a measure of geomagnetic disturbances for space weather in the magnetosphere such as geomagnetic storms and substorms. In this study, we performed validation on the Newell et al. (2007) Kp prediction equation from December 2010 to July 2017. The purpose of this research is to understand the Kp forecast performance because it's critical for NASA missions to have confidence in the space weather forecast. This research was done by computing the Kp error for each forecast (average, minimum, maximum) and each synoptic period. Then to quantify forecast performance we computed the mean error, mean absolute error, root mean square error, multiplicative bias and correlation coefficient. A contingency table was made for each forecast and skill scores were computed. The results are compared to the perfect score and reference forecast skill score. In conclusion, the skill score and error results show that the minimum of the predicted Kp over each synoptic period from the Newell et al. (2007) Kp prediction equation performed better than the maximum or average of the prediction. However, persistence (reference forecast) outperformed all of the Kp forecasts (minimum, maximum, and average). Overall, the Newell Kp prediction still predicts within a range of 1, even though persistence beats it.

  7. ISPAE Research Highlights 1995-1997

    NASA Technical Reports Server (NTRS)

    Harwell, Ken

    1997-01-01

    This paper presents ISPAE (Institute for Space Physics, Astrophysics and Education) research highlights from 1995-1997. The topics include: 1) High-Energy Astrophysics (Finding the smoking gun in gamma-ray bursts, Playing peekaboo with gamma ray bursts, and Spectral pulses muddle burst source study, Einstein was right: Black holes do spin, Astronomers find "one-man X-ray band", and Cosmic rays from the supernova next door?); 2) Solar Physics (Bright burst confirms solar storm model, Model predicts speed of solar wind in space, and Angry sunspots snap under the strain); 3) Gravitational Physics; 4) Tether Dynamics; and 5) Space Physics (Plasma winds blow form polar regions, De-SCIFERing thermal electrons, and UVI lets scientists see daytime aurora).

  8. The Role of Substorms in Storm-time Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Daglis, Ioannis A.; Kamide, Yohsuke

    The terrestrial magnetosphere has the capability to rapidly accelerate charged particles up to very high energies over relatively short times and distances. Acceleration of charged particles is an essential ingredient of both magnetospheric substorms and space storms. In the case of space storms, the ultimate result is a bulk flow of electric charge through the inner magnetosphere, commonly known as the ring current. Syun-Ichi Akasofu and Sydney Chapman, two of the early pioneers in space physics, postulated that the bulk acceleration of particles during storms is rather the additive result of partial acceleration during consecutive substorms. This paradigm has been heavily disputed during recent years. The new case is that substorm acceleration may be sufficient to produce individual high-energy particles that create auroras and possibly harm spacecraft, but it cannot produce the massive acceleration that constitutes a storm. This paper is a critical review of the long-standing issue of the storm-substorm relationship, or—in other words—the capability or necessity of substorms in facilitating or driving the build-up of the storm-time ring current. We mainly address the physical effect itself, i.e. the bulk acceleration of particles, and not the diagnostic of the process, i.e. the Dst index, which is rather often the case. Within the framework of particle acceleration, substorms retain their storm-importance due to the potential of substorm-induced impulsive electric fields in obtaining the massive ion acceleration needed for the storm-time ring current buildup.

  9. The Lake Victoria Intense Storm Early Warning System (VIEWS)

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Gudmundsson, Lukas; Bedka, Kristopher; Semazzi, Fredrick; Lhermitte, Stef; Willems, Patrick; van Lipzig, Nicole; Seneviratne, Sonia I.

    2017-04-01

    Weather extremes have harmful impacts on communities around Lake Victoria in East Africa. Every year, intense nighttime thunderstorms cause numerous boating accidents on the lake, resulting in thousands of deaths among fishermen. Operational storm warning systems are therefore crucial. Here we complement ongoing early warning efforts based on NWP, by presenting a new satellite data-driven storm prediction system, the prototype Lake Victoria Intense storm Early Warning System (VIEWS). VIEWS derives predictability from the correlation between afternoon land storm activity and nighttime storm intensity on Lake Victoria, and relies on logistic regression techniques to forecast extreme thunderstorms from satellite observations. Evaluation of the statistical model reveals that predictive power is high and independent of the input dataset. We then optimise the configuration and show that also false alarms contain valuable information. Our results suggest that regression-based models that are motivated through process understanding have the potential to reduce the vulnerability of local fishing communities around Lake Victoria. The experimental prediction system is publicly available under the MIT licence at http://github.com/wthiery/VIEWS.

  10. Magnetic storm generation by large-scale complex structure Sheath/ICME

    NASA Astrophysics Data System (ADS)

    Grigorenko, E. E.; Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.; Riazantseva, M.; Borodkova, N. L.

    2017-12-01

    We study temporal profiles of interplanetary plasma and magnetic field parameters as well as magnetospheric indices. We use our catalog of large-scale solar wind phenomena for 1976-2000 interval (see the catalog for 1976-2016 in web-side ftp://ftp.iki.rssi.ru/pub/omni/ prepared on basis of OMNI database (Yermolaev et al., 2009)) and the double superposed epoch analysis method (Yermolaev et al., 2010). Our analysis showed (Yermolaev et al., 2015) that average profiles of Dst and Dst* indices decrease in Sheath interval (magnetic storm activity increases) and increase in ICME interval. This profile coincides with inverted distribution of storm numbers in both intervals (Yermolaev et al., 2017). This behavior is explained by following reasons. (1) IMF magnitude in Sheath is higher than in Ejecta and closed to value in MC. (2) Sheath has 1.5 higher efficiency of storm generation than ICME (Nikolaeva et al., 2015). The most part of so-called CME-induced storms are really Sheath-induced storms and this fact should be taken into account during Space Weather prediction. The work was in part supported by the Russian Science Foundation, grant 16-12-10062. References. 1. Nikolaeva N.S., Y. I. Yermolaev and I. G. Lodkina (2015), Modeling of the corrected Dst* index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Res., 53(2), 119-127 2. Yermolaev Yu. I., N. S. Nikolaeva, I. G. Lodkina and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Res., , 47(2), 81-94 3. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, 2177-2186 4. Yermolaev Yu. I., I. G. Lodkina, N. S. Nikolaeva and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274 5. Yermolaev Y. I., I. G. Lodkina, N. S. Nikolaeva, M. Y. Yermolaev, M. O. Riazantseva (2017), Some Problems of Identification of Large-Scale Solar Wind types and Their Role in the Physics of the Magnetosphere, Cosmic Res., 55(3), pp. 178-189. DOI: 10.1134/S0010952517030029

  11. An Evaluation of Lightning Flash Rate Parameterizations Based on Observations of Colorado Storms during DC3

    NASA Astrophysics Data System (ADS)

    Basarab, B.; Fuchs, B.; Rutledge, S. A.

    2013-12-01

    Predicting lightning activity in thunderstorms is important in order to accurately quantify the production of nitrogen oxides (NOx = NO + NO2) by lightning (LNOx). Lightning is an important global source of NOx, and since NOx is a chemical precursor to ozone, the climatological impacts of LNOx could be significant. Many cloud-resolving models rely on parameterizations to predict lightning and LNOx since the processes leading to charge separation and lightning discharge are not yet fully understood. This study evaluates predicted flash rates based on existing lightning parameterizations against flash rates observed for Colorado storms during the Deep Convective Clouds and Chemistry Experiment (DC3). Evaluating lightning parameterizations against storm observations is a useful way to possibly improve the prediction of flash rates and LNOx in models. Additionally, since convective storms that form in the eastern plains of Colorado can be different thermodynamically and electrically from storms in other regions, it is useful to test existing parameterizations against observations from these storms. We present an analysis of the dynamics, microphysics, and lightning characteristics of two case studies, severe storms that developed on 6 and 7 June 2012. This analysis includes dual-Doppler derived horizontal and vertical velocities, a hydrometeor identification based on polarimetric radar variables using the CSU-CHILL radar, and insight into the charge structure using observations from the northern Colorado Lightning Mapping Array (LMA). Flash rates were inferred from the LMA data using a flash counting algorithm. We have calculated various microphysical and dynamical parameters for these storms that have been used in empirical flash rate parameterizations. In particular, maximum vertical velocity has been used to predict flash rates in some cloud-resolving chemistry simulations. We diagnose flash rates for the 6 and 7 June storms using this parameterization and compare to observed flash rates. For the 6 June storm, a preliminary analysis of aircraft observations of storm inflow and outflow is presented in order to place flash rates (and other lightning statistics) in the context of storm chemistry. An approach to a possibly improved LNOx parameterization scheme using different lightning metrics such as flash area will be discussed.

  12. An Investigation of Interplanetary Structures for Solar Cycles 23 and 24 and their Space Weather Consequences.

    NASA Astrophysics Data System (ADS)

    Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.

    2017-12-01

    It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.

  13. Weathering a Perfect Storm from Space

    USGS Publications Warehouse

    Love, Jeffrey J.

    2016-01-01

    Extreme space-weather events — intense solar and geomagnetic storms — have occurred in the past: most recently in 1859, 1921 and 1989. So scientists expect that, sooner or later, another extremely intense spaceweather event will strike Earth again. Such storms have the potential to cause widespread interference with and damage to technological systems. A National Academy of Sciences study projects that an extreme space-weather event could end up costing the American economy more than $1 trillion. The question now is whether or not we will take the actions needed to avoid such expensive consequences. Let’s assume that we do. Below is an imagined scenario of how, sometime in the future, an extreme space-weather event might play out.

  14. KSC-08pd2503

    NASA Image and Video Library

    2008-08-23

    CAPE CANAVERAL, Fla. – Launch Pad 39A seems to be an island in the high water surrounding it caused by Tropical Storm Fay. In the distance is the Atlantic Ocean. The storm passed over the center Aug. 20 and then stalled offshore, bringing with it heavy rain and tropical storm force wind. Kennedy closed Aug. 19 because of Fay and reopened for normal operations Aug. 22. Based on initial assessments, there was no damage to space flight hardware, such as the space shuttles and Hubble Space Telescope equipment. Some facilities did sustain minor damage. Photo credit: NASA/Amanda Diller

  15. Interannual Modulation of Northern Hemisphere Winter Storm Tracks by the QBO

    NASA Astrophysics Data System (ADS)

    Wang, Jiabao; Kim, Hye-Mi; Chang, Edmund K. M.

    2018-03-01

    Storm tracks, defined as the preferred regions of extratropical synoptic-scale disturbances, have remarkable impacts on global weather and climate systems. Causes of interannual storm track variation have been investigated mostly from a troposphere perspective. As shown in this study, Northern Hemisphere winter storm tracks are significantly modulated by the tropical stratosphere through the quasi-biennial oscillation (QBO). The North Pacific storm track shifts poleward during the easterly QBO winters associated with a dipole change in the eddy refraction and baroclinicity. The North Atlantic storm track varies vertically with a downward shrinking (upward expansion) in easterly (westerly) QBO winters associated with the change of the tropopause height. These results not only fill the knowledge gap of QBO-storm track relationship but also suggest a potential route to improve the seasonal prediction of extratropical storm activities owing to the high predictability of the QBO.

  16. Satellite Sees Winter Storm March Over Mid-Atlantic

    NASA Image and Video Library

    2014-03-03

    On March 3, a major winter storm brought snow to the mid-Atlantic, freezing rain to the Carolinas and rain and some freezing rain to the Gulf Coast states. NOAA's GOES-East satellite captured an image of the clouds associated with the winter storm on March 3 at 12:45 p.m. EST (1745 UTC)/ as it continued on its march over the mid-Atlantic. Bands of snow and sometimes heavy snow affected the Washington, D.C., region, Delaware and central Virginia, stretching west into West Virginia and eastern Kentucky. Snow also stretched back into the Ohio and Tennessee valleys while rain and freezing rain affected the Carolinas, and while the Gulf Coast states received rain. National Weather Service Winter Storm Warnings remained in effect until 6 p.m. EST on March 3 for Washington, D.C., and Baltimore, Md. In Richmond and Norfolk, Va., the Winter Storm warnings were in effect for six additional hours ending at midnight. On March 3, NOAA's National Weather Prediction Center in College Park, Md., noted the late-season winter storm will continue to shift eastward through the Tennessee Valley and the mid-Atlantic today, making for hazardous travel conditions. NOAA noted that unseasonably cold temperatures more typical of January will prevail east of the Rocky Mountains for the next few days keeping winter around for a while longer. The clouds are associated with a cold front that stretched from eastern Maine through Maryland and west into the Tennessee Valley. At NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md., the cloud data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the position of this major winter storm. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center, Greenbelt, Md. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    NASA Astrophysics Data System (ADS)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  18. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Jim Roberts, a scientist with the Earth System Research Laboratory's Office of Atmospheric Research for NOAA, left, and Kristin Calhoun, a research scientist with NOAA's National Severe Storms Laboratory, speak to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  19. Early warnings of hazardous thunderstorms over Lake Victoria

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Gudmundsson, Lukas; Bedka, Kristopher; Semazzi, Fredrick H. M.; Lhermitte, Stef; Willems, Patrick; van Lipzig, Nicole P. M.; Seneviratne, Sonia I.

    2017-07-01

    Weather extremes have harmful impacts on communities around Lake Victoria in East Africa. Every year, intense nighttime thunderstorms cause numerous boating accidents on the lake, resulting in thousands of deaths among fishermen. Operational storm warning systems are therefore crucial. Here we complement ongoing early warning efforts based on numerical weather prediction, by presenting a new satellite data-driven storm prediction system, the prototype Lake Victoria Intense storm Early Warning System (VIEWS). VIEWS derives predictability from the correlation between afternoon land storm activity and nighttime storm intensity on Lake Victoria, and relies on logistic regression techniques to forecast extreme thunderstorms from satellite observations. Evaluation of the statistical model reveals that predictive power is high and independent of the type of input dataset. We then optimise the configuration and show that false alarms also contain valuable information. Our results suggest that regression-based models that are motivated through process understanding have the potential to reduce the vulnerability of local fishing communities around Lake Victoria. The experimental prediction system is publicly available under the MIT licence at http://github.com/wthiery/VIEWS.

  20. SHIELDS Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania Koleva

    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. “space weather”, remains a big space physics challenge. A new capability was developed at Los Alamos National Laboratory (LANL) to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. This framework simulates the dynamics of the Surface Charging Environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. In addition to using physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data frommore » LANL instruments on the Van Allen Probes and geosynchronous satellites were developed. An order of magnitude improvement in the accuracy in the simulation of the spacecraft surface charging environment was thus obtained. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code and to evaluate anomalies' relation to SCE dynamics. Such diagnostics is critically important when performing forensic analyses of space-system failures.« less

  1. Detection and Prediction of Hail Storms in Satellite Imagery using Deep Learning

    NASA Astrophysics Data System (ADS)

    Pullman, M.; Gurung, I.; Ramachandran, R.; Maskey, M.

    2017-12-01

    Natural hazards, such as damaging hail storms, dramatically disrupt both industry and agriculture, having significant socio-economic impacts in the United States. In 2016, hail was responsible for 3.5 billion and 23 million dollars in damage to property and crops, respectively, making it the second costliest 2016 weather phenomenon in the United States. The destructive nature and high cost of hail storms has driven research into the development of more accurate hail-prediction algorithms in an effort to mitigate societal impacts. Recently, weather forecasting efforts have turned to deep learning neural networks because neural networks can more effectively model complex, nonlinear, dynamical phenomenon that exist in large datasets through multiple stages of transformation and representation. In an effort to improve hail-prediction techniques, we propose a deep learning technique that leverages satellite imagery to detect and predict the occurrence of hail storms. The technique is applied to satellite imagery from 2006 to 2016 for the contiguous United States and incorporates hail reports obtained from the National Center for Environmental Information Storm Events Database for training and validation purposes. In this presentation, we describe a novel approach to predicting hail via a neural network model that creates a large labeled dataset of hail storms, the accuracy and results of the model, and its applications for improving hail forecasting.

  2. Modeling the refraction of microbaroms by the winds of a large maritime storm.

    PubMed

    Blom, Philip; Waxler, Roger

    2017-12-01

    Continuous infrasonic signals produced by the ocean surface interacting with the atmosphere, termed microbaroms, are known to be generated by a number of phenomena including large maritime storms. Storm generated microbaroms exhibit axial asymmetry when observed at locations far from the storm due to the source location being offset from the storm center. Because of this offset, a portion of the microbarom energy will radiate towards the storm center and interact with the winds in the region. Detailed here are predictions for the propagation of microbaroms through an axisymmetric, three-dimensional model storm. Geometric propagation methods have been utilized and the predicted horizontal refraction is found to produce signals that appear to emanate from a virtual source near the storm center when observed far from the storm. This virtual source near the storm center is expected to be observed only from a limited arc around the storm system with increased extent associated with more intense wind fields. This result implies that identifying the extent of the arc observing signal from the virtual source could provide a means to estimate the wind structure using infrasonic observations far from the storm system.

  3. Prediction of Winter Storm Tracks and Intensities Using the GFDL fvGFS Model

    NASA Astrophysics Data System (ADS)

    Rees, S.; Boaggio, K.; Marchok, T.; Morin, M.; Lin, S. J.

    2017-12-01

    The GFDL Finite-Volume Cubed-Sphere Dynamical core (FV3) is coupled to a modified version of the Global Forecast System (GFS) physics and initial conditions, to form the fvGFS model. This model is similar to the one being implemented as the next-generation operational weather model for the NWS, which is also FV3-powered. Much work has been done to verify fvGFS tropical cyclone prediction, but little has been done to verify winter storm prediction. These costly and dangerous storms impact parts of the U.S. every year. To verify winter storms we ran the NCEP operational cyclone tracker, developed at GFDL, on semi-real-time 13 km horizontal resolution fvGFS forecasts. We have found that fvGFS compares well to the operational GFS in storm track and intensity, though often predicts slightly higher intensities. This presentation will show the track and intensity verification from the past two winter seasons and explore possible reasons for bias.

  4. Improvements of Storm Surge Modelling in the Gulf of Venice with Satellite Data: The ESA Due Esurge-Venice Project

    NASA Astrophysics Data System (ADS)

    De Biasio, F.; Bajo, M.; Vignudelli, S.; Papa, A.; della Valle, A.; Umgiesser, G.; Donlon, C.; Zecchetto, S.

    2016-08-01

    Among the most detrimental natural phenomena, storm surges heavily endanger the environment, the economy and the everyday life of sea-side countries and coastal zones. Considering that 120.000.000 people live in the Mediterranean area, with additional 200.000.000 presences in Summer for tourism purposes, the correct prediction of storm surges is crucial to avoid fatalities and economic losses. Earth Observation (EO) can play an important role in operational storm surge forecasting, yet it is not widely diffused in the storm surge community. In 2011 the European Space Agency (ESA), through its Data User Element (DUE) programme, financed two projects aimed at encouraging the uptake of EO data in this sector: eSurge and eSurge-Venice (eSV). The former was intended to address the issues of a wider users' community, while the latter was focused on a restricted geographical area: the northern Adriatic Sea and the Gulf of Venice. Among the objectives of the two projects there were a number of storm surge hindcast experiments using satellite data, to demonstrate the improvements on the surge forecast brought by EO. We report here the results of the hindcast experiments of the eSV project. They were aimed to test the sensitivity of a storm surge model to a forcing wind field modified with scatterometer data in order to reduce the bias between simulated and observed winds. Hindcast experiments were also performed to test the response of the storm surge model to the assimilation, with a dual 4D-Var system, of satellite altimetry observations as model errors of the initial state of the sea surface level. Remarkable improvements on the storm surge forecast have been obtained for what concerns the modified model wind forcing. Encouraging results have been obtained also in the assimilation experiments.

  5. Hurricane Ike Deposits on the Bolivar Peninsula, Galveston Bay, Texas

    NASA Astrophysics Data System (ADS)

    Evans, C. A.; Wilkinson, M. J.; Eppler, D.

    2011-12-01

    In September 2008, Hurricane Ike made landfall on Galveston Bay, close to the NASA Johnson Space Center (JSC). The storm flooded much of the area with a storm surge ranging from 11-20 feet. The Bolivar peninsula, the southeastern coast of Galveston Bay, experienced the brunt of the surge. Several agencies collected excellent imagery baselines before the storm and complementary data a few days afterward that helped define the impacts of the storm. In April of 2011, a team of scientists and astronauts from JSC conducted field mapping exercises along the Bolivar Peninsula, the section of the Galveston Bay coast most impacted by the storm. Astronauts routinely observe and document coastal changes from orbit aboard the International Space Station. As part of their basic Earth Science training, scientists at the Johnson Space Center take astronauts out for field mapping exercises so that they can better recognize and understand features and processes that they will later observe from the International Space Station. Using pre-storm baseline images of the Bolivar Peninsula near Rollover Pass and Gilchrist (NOAA/Google Earth Imagery and USGS aerial imagery and lidar data), the astronauts mapped current coastline positions at defined locations, and related their findings to specific coastal characteristics, including channel, jetties, and other developments. In addition to mapping, we dug trenches along both the Gulf of Mexico coast as well as the Galveston Bay coast of the Bolivar peninsula to determine the depth of the scouring from the storm on the Gulf side, and the amount of deposition of the storm surge deposits on the Bay side of the peninsula. The storm signature was easy to identify by sharp sediment transitions and, in the case of storm deposits, a layer of storm debris (roof shingles, PVC pipes, etc) and black, organic rich layers containing buried sea grasses in areas that were marshes before the storm. The amount of deposition was generally about 20-25 cm; the local areas experiencing obvious deposition are readily obvious in post-Ike imagery of the region. We used a March 2010 aerial photograph from the NOAA-Google Earth collection because construction and vegetation recovery was minimal. Based on the before and after aerial imagery and the trenching data collected over two days, we can begin to characterize the material transported and deposited by Hurricane Ike along one stretch of the Bolivar peninsula. We summarize the results from our mapping and trenching data. The basic data collected 2.5 years after the storm are ephemeral as the storm deposits become reworked and overprinted by coastal processes, vegetation regrowth and reconstruction.

  6. Hurricane Ike Deposits on the Bolivar Peninsula, Galveston Bay, Texas

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Wilkinson, M. J.; Eppler, Dean

    2011-01-01

    In September 2008, Hurricane Ike made landfall on Galveston Bay, close to the NASA Johnson Space Center (JSC). The storm flooded much of the area with a storm surge ranging from 11 -20 feet. The Bolivar peninsula, the southeastern coast of Galveston Bay, experienced the brunt of the surge. Several agencies collected excellent imagery baselines before the storm and complementary data a few days afterward that helped define the impacts of the storm. In April of 2011, a team of scientists and astronauts from JSC conducted field mapping exercises along the Bolivar Peninsula, the section of the Galveston Bay coast most impacted by the storm. Astronauts routinely observe and document coastal changes from orbit aboard the International Space Station. As part of their basic Earth Science training, scientists at the Johnson Space Center take astronauts out for field mapping exercises so that they can better recognize and understand features and processes that they will later observe from the International Space Station. Using pre -storm baseline images of the Bolivar Peninsula near Rollover Pass and Gilchrist (NOAA/Google Earth Imagery and USGS aerial imagery and lidar data), the astronauts mapped current coastline positions at defined locations, and related their findings to specific coastal characteristics, including channel, jetties, and other developments. In addition to mapping, we dug trenches along both the Gulf of Mexico coast as well as the Galveston Bay coast of the Bolivar peninsula to determine the depth of the scouring from the storm on the Gulf side, and the amount of deposition of the storm surge deposits on the Bay side of the peninsula. The storm signature was easy to identify by sharp sediment transitions and, in the case of storm deposits, a layer of storm debris (roof shingles, PVC pipes, etc) and black, organic rich layers containing buried sea grasses in areas that were marshes before the storm. The amount of deposition was generally about 20 -25 cm; the local areas experiencing obvious deposition are readily obvious in post -Ike imagery of the region. We used a March 2010 aerial photograph from the NOAA -Google Earth collection because construction and vegetation recovery was minimal. Based on the before and after aerial imagery and the trenching data collected over two days, we can begin to characterize the material transported and deposited by Hurricane Ike along one stretch of the Bolivar peninsula. We summarize the results from our mapping and trenching data. The basic data collected 2.5 years after the storm are ephemeral as the storm deposits become reworked and overprinted by coastal processes, vegetation regrowth and reconstruction.

  7. Down to Earth with an electric hazard from space

    USGS Publications Warehouse

    Love, Jeffrey J.; Bedrosian, Paul A.; Schultz, Adam

    2017-01-01

    In reaching across traditional disciplinary boundaries, solid-Earth geophysicists and space physicists are forging new collaborations to map magnetic-storm hazards for electric-power grids. Future progress in evaluation storm time geoelectric hazards will come primarily through monitoring, surveys, and modeling of related data.

  8. A Flux-Corrected Transport Based Hydrodynamic Model for the Plasmasphere Refilling Problem following Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Chatterjee, K.; Schunk, R. W.

    2017-12-01

    The refilling of the plasmasphere following a geomagnetic storm remains one of the longstanding problems in the area of ionosphere-magnetosphere coupling. Both diffusion and hydrodynamic approximations have been adopted for the modeling and solution of this problem. The diffusion approximation neglects the nonlinear inertial term in the momentum equation and so this approximation is not rigorously valid immediately after the storm. Over the last few years, we have developed a hydrodynamic refilling model using the flux-corrected transport method, a numerical method that is extremely well suited to handling nonlinear problems with shocks and discontinuities. The plasma transport equations are solved along 1D closed magnetic field lines that connect conjugate ionospheres and the model currently includes three ion (H+, O+, He+) and two neutral (O, H) species. In this work, each ion species under consideration has been modeled as two separate streams emanating from the conjugate hemispheres and the model correctly predicts supersonic ion speeds and the presence of high levels of Helium during the early hours of refilling. The ultimate objective of this research is the development of a 3D model for the plasmasphere refilling problem and with additional development, the same methodology can potentially be applied to the study of other complex space plasma coupling problems in closed flux tube geometries. Index Terms: 2447 Modeling and forecasting [IONOSPHERE] 2753 Numerical modeling [MAGNETOSPHERIC PHYSICS] 7959 Models [SPACE WEATHER

  9. Rainfall Data Simulation

    Treesearch

    T.L. Rogerson

    1980-01-01

    A simple simulation model to predict rainfall for individual storms in central Arkansas is described. Output includes frequency distribution tables for days between storms and for storm size classes; a storm summary by day number (January 1 = 1 and December 31 = 365) and rainfall amount; and an annual storm summary that includes monthly values for rainfall and number...

  10. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    NASA Astrophysics Data System (ADS)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  11. The symmetry and mass of halo Coronal Mass Ejections (CMEs) as quantitative predictors for severe space weather at Earth.

    NASA Astrophysics Data System (ADS)

    Fuselier, S.; Allegrini, F.; Bzowski, M.; Dayeh, M. A.; Desai, M. I.; Funsten, H. O.; Galli, A.; Heirtzler, D.; Janzen, P. H.; Kubiak, M. A.; Kucharek, H.; Lewis, W. S.; Livadiotis, G.; McComas, D. J.; Moebius, E.; Petrinec, S. M.; Quinn, M. S.; Schwadron, N.; Sokol, J. M.; Trattner, K. J.

    2014-12-01

    The Bureau of Meteorology's Space Weather Service operates an alert service for severe space weather events. The service relies on a statistical model which ingests observations of M and X class solar flares at or shortly after the time of the flare to predict the occurrence and severity of terrestrial impacts with a lead time of 1 to 4 days. This model has been operational since 2012 and caters to the needs of critical infrastructure groups in the Australian region. This paper reports on improvements to the forecast model by including SOHO LASCO coronagraph observations of Coronal Mass Ejections (CMEs). The coronagraphs are analysed to determine the Earthward direction parameter and the integrated intensity as a measure of the CME mass. Both of these parameters can help to predict whether a CME will be geo-effective. This work aims to increase the accuracy of the model predictions and lower the rate of false positives, as well as providing an estimate of the expected level of geomagnetic storm intensity.

  12. The symmetry and mass of halo Coronal Mass Ejections (CMEs) as quantitative predictors for severe space weather at Earth.

    NASA Astrophysics Data System (ADS)

    Freeland, L. E.; Terkildsen, M. B.

    2015-12-01

    The Bureau of Meteorology's Space Weather Service operates an alert service for severe space weather events. The service relies on a statistical model which ingests observations of M and X class solar flares at or shortly after the time of the flare to predict the occurrence and severity of terrestrial impacts with a lead time of 1 to 4 days. This model has been operational since 2012 and caters to the needs of critical infrastructure groups in the Australian region. This paper reports on improvements to the forecast model by including SOHO LASCO coronagraph observations of Coronal Mass Ejections (CMEs). The coronagraphs are analysed to determine the Earthward direction parameter and the integrated intensity as a measure of the CME mass. Both of these parameters can help to predict whether a CME will be geo-effective. This work aims to increase the accuracy of the model predictions and lower the rate of false positives, as well as providing an estimate of the expected level of geomagnetic storm intensity.

  13. Catastrophic Storm Seen from Space on This Week @NASA – September 1, 2017

    NASA Image and Video Library

    2017-09-01

    We worked with our partner agencies to use space-based assets to capture imagery of Hurricane Harvey that impacted the Texas-Louisiana Gulf Coast region. Imagery captured from the vantage point of space, provides data that weather forecasters, emergency responders and other officials can use to better inform the public. Views from the International Space Station, and NOAA’s GOES East satellite showed the massive size and movement of the storm. While our Global Precipitation Measurement (GPM) Mission analyzed the storm’s record-breaking rainfall – which led to catastrophic flooding in Texas and Louisiana. Due to the storm, our Johnson Space Center in Houston is closed through Labor Day, while the region recovers, but Mission Control remains operational in support of the crew aboard the International Space Station. Also, Final RS-25 Engine Test of the Summer, Key SLS Rocket Hardware Finished, and Researching Quiet Supersonic Flight!

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renno, Nilton O.; Ruf, Christopher S., E-mail: renno@alum.mit.edu

    Ruf et al. used the Deep Space Network (DSN) to search for the emission of non-thermal radiation by martian dust storms, theoretically predicted by Renno et al. They detected the emission of non-thermal radiation that they were searching for, but were surprised that it contained spectral peaks suggesting modulation at various frequencies and their harmonics. Ruf et al. hypothesized that the emission of non-thermal radiation was caused by electric discharges in a deep convective dust storm, modulated by Schumann resonances (SRs). Anderson et al. used the Allen Telescope Array (ATA) to search for similar emissions. They stated that they foundmore » only radio frequency interference (RFI) during their search for non-thermal emission by martian dust storms and implicitly suggested that the signal detected by Ruf et al. was also RFI. However, their search was not conducted during the dust storm season when deep convective storms are most likely to occur. Here, we show that the ubiquitous dust devils and small-scale dust storms that were instead likely present during their observations are too shallow to excite SRs and produce the signals detected by Ruf et al. We also show that the spectral and temporal behavior of the signals detected by Anderson et al. corroborates the idea that they originated from man-made pulse-modulated telecommunication signals rather than martian electric discharges. In contrast, an identical presentation of the signals detected by Ruf et al. demonstrates that they do not resemble man-made signals. The presentation indicates that the DSN signals were consistent with modulation by martian SRs, as originally hypothesized by Ruf et al. We propose that a more comprehensive search for electrostatic discharges be conducted with either the ATA or DSN during a future martian dust storm season to test the hypothesis proposed by Ruf et al.« less

  15. Geomagnetic storms, the Dst ring-current myth and lognormal distributions

    USGS Publications Warehouse

    Campbell, W.H.

    1996-01-01

    The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with remarkable accuracy from measurements made during the Dst growth phase. In the lognormal formulation, the mean, standard deviation and field count within standard deviation limits become definitive Dst storm parameters.

  16. Microwave Imager Measures Sea Surface Temperature Through Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake which might last as long as two weeks. Forecasters can quantify the difference in surface temperatures between this footprint and the surrounding temperatures and use that information to better predict storm intensity. If another storm intersects with this cold water trail, it is likely to lose significant strength due to the fact that the colder water does not contain as much potential energy as warm water. TRMM Fact Sheet Predicting Hurricane Intensity Far from Land Remote Sensing Systems Image courtesy TRMM Project, Remote Sensing Systems, and Scientific Visualization Studio, NASA Goddard Space Flight Center

  17. Session on techniques and resources for storm-scale numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Droegemeier, Kelvin

    1993-01-01

    The session on techniques and resources for storm-scale numerical weather prediction are reviewed. The recommendations of this group are broken down into three area: modeling and prediction, data requirements in support of modeling and prediction, and data management. The current status, modeling and technological recommendations, data requirements in support of modeling and prediction, and data management are addressed.

  18. Model design for predicting extreme precipitation event impacts on water quality in a water supply reservoir

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Jeznach, L. C.; Park, M. H.; Tobiason, J. E.

    2016-12-01

    Extreme precipitation events such as tropical storms and hurricanes are by their nature rare, yet have disproportionate and adverse effects on surface water quality. In the context of drinking water reservoirs, common concerns of such events include increased erosion and sediment transport and influx of natural organic matter and nutrients. As part of an effort to model the effects of an extreme precipitation event on water quality at the reservoir intake of a major municipal water system, this study sought to estimate extreme-event watershed responses including streamflow and exports of nutrients and organic matter for use as inputs to a 2-D hydrodynamic and water quality reservoir model. Since extreme-event watershed exports are highly uncertain, we characterized and propagated predictive uncertainty using a quasi-Monte Carlo approach to generate reservoir model inputs. Three storm precipitation depths—corresponding to recurrence intervals of 5, 50, and 100 years—were converted to streamflow in each of 9 tributaries by volumetrically scaling 2 storm hydrographs from the historical record. Rating-curve models for concentratoin, calibrated using 10 years of data for each of 5 constituents, were then used to estimate the parameters of a multivariate lognormal probability model of constituent concentrations, conditional on each scenario's storm date and streamflow. A quasi-random Halton sequence (n = 100) was drawn from the conditional distribution for each event scenario, and used to generate input files to a calibrated CE-QUAL-W2 reservoir model. The resulting simulated concentrations at the reservoir's drinking water intake constitute a low-discrepancy sample from the estimated uncertainty space of extreme-event source water-quality. Limiting factors to the suitability of this approach include poorly constrained relationships between hydrology and constituent concentrations, a high-dimensional space from which to generate inputs, and relatively long run-time for the reservoir model. This approach proved useful in probing a water supply's resilience to extreme events, and to inform management responses, particularly in a region such as the American Northeast where climate change is expected to bring such events with higher frequency and intensity than have occurred in the past.

  19. What Properties of CMEs are Most Important for Space Weather?

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    Severe space weather is characterized by intense particle radiation from the Sun and major geomagnetic storm caused by magnetized solar plasmas arriving at Earth. Coronal mass ejections (CMEs) are key players in both these aspects. CMEs traveling at super-Alfv nic speeds drive fast-mode MHD shocks that create the high levels of particle radiation. When a CME arrives at Earth, the CME-associated magnetic fields reconnect with Earth s magnetopause fields resulting in solar plasma entry into the magnetosphere and a geomagnetic storm depending on the magnetic structure of the CME. Particle radiation starts affecting geospace as soon as the CMEs leave the Sun and the geospace may be immersed in the radiation for several days. On the other hand, the geomagnetic storm happens only upon CME arrival at Earth. The requirements for the production of particles and magnetic storms by CMEs are different in a number of respects: solar source location, CME magnetic structure, conditions in the ambient solar wind, and shock-driving ability of CMEs. Intense shocks arriving at Earth have additional space weather effects such as sudden impulse that shrinks the magnetosphere often exposing satellites in geosynchronous orbit to the solar wind and energetic storm particle events. This paper highlights these space weather effects using CME observations space and ground based instruments during of solar cycles 23 and 24.

  20. Developing Local Scale, High Resolution, Data to Interface with Numerical Storm Models

    NASA Astrophysics Data System (ADS)

    Witkop, R.; Becker, A.; Stempel, P.

    2017-12-01

    High resolution, physical storm models that can rapidly predict storm surge, inundation, rainfall, wind velocity and wave height at the intra-facility scale for any storm affecting Rhode Island have been developed by Researchers at the University of Rhode Island's (URI's) Graduate School of Oceanography (GSO) (Ginis et al., 2017). At the same time, URI's Marine Affairs Department has developed methods that inhere individual geographic points into GSO's models and enable the models to accurately incorporate local scale, high resolution data (Stempel et al., 2017). This combination allows URI's storm models to predict any storm's impacts on individual Rhode Island facilities in near real time. The research presented here determines how a coastal Rhode Island town's critical facility managers (FMs) perceive their assets as being vulnerable to quantifiable hurricane-related forces at the individual facility scale and explores methods to elicit this information from FMs in a format usable for incorporation into URI's storm models.

  1. A Short-term ESPERTA-based Forecast Tool for Moderate-to-extreme Solar Proton Events

    NASA Astrophysics Data System (ADS)

    Laurenza, M.; Alberti, T.; Cliver, E. W.

    2018-04-01

    The ESPERTA (Empirical model for Solar Proton Event Real Time Alert) forecast tool has a Probability of Detection (POD) of 63% for all >10 MeV events with proton peak intensity ≥10 pfu (i.e., ≥S1 events, S1 referring to minor storms on the NOAA Solar Radiation Storms scale), from 1995 to 2014 with a false alarm rate (FAR) of 38% and a median (minimum) warning time (WT) of ∼4.8 (0.4) hr. The NOAA space weather scale includes four additional categories: moderate (S2), strong (S3), severe (S4), and extreme (S5). As S1 events have only minor impacts on HF radio propagation in the polar regions, the effective threshold for significant space radiation effects appears to be the S2 level (100 pfu), above which both biological and space operation impacts are observed along with increased effects on HF propagation in the polar regions. We modified the ESPERTA model to predict ≥S2 events and obtained a POD of 75% (41/55) and an FAR of 24% (13/54) for the 1995–2014 interval with a median (minimum) WT of ∼1.7 (0.2) hr based on predictions made at the time of the S1 threshold crossing. The improved performance of ESPERTA for ≥S2 events is a reflection of the big flare syndrome, which postulates that the measures of the various manifestations of eruptive solar flares increase as one considers increasingly larger events.

  2. GOES-R Liftoff

    NASA Image and Video Library

    2016-11-19

    At Cape Canaveral Air Force Station's Space Launch Complex 41, an Atlas V rocket with NOAA's Geostationary Operational Environmental Satellite, or GOES-R, lifts off at 6:42 p.m. EST. GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  3. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, Steven Goodman, NOAA's GOES-R program scientist, speaks to the media during a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  4. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, Sandra Cauffman, deputy director of NASA's Earth Science Division, speaks to the media during a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  5. GOES-S Liftoff

    NASA Image and Video Library

    2018-03-01

    A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying the NOAA Geostationary Operational Environmental Satellite, or GOES-S. Liftoff was at 5:02 p.m. EST. GOES-S is the second satellite in a series of next-generation weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting.

  6. Seamless Modeling for Research & Predictability of Severe Tropical Storms from Weather-to-Climate Timescales

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Chen, J. H.; Delworth, T. L.; Knutson, T. R.; Lin, S. J.; Murakami, H.; Vecchi, G. A.

    2017-12-01

    Damages from catastrophic tropical storms such as the 2017 destructive hurricanes compel an acceleration of scientific advancements to understand the genesis, underlying mechanisms, frequency, track, intensity, and landfall of these storms. The advances are crucial to provide improved early information for planners and responders. We discuss the development and utilization of a global modeling capability based on a novel atmospheric dynamical core ("Finite-Volume Cubed Sphere or FV3") which captures the realism of the recent tropical storms and is a part of the NOAA Next-Generation Global Prediction System. This capability is also part of an emerging seamless modeling system at NOAA/ Geophysical Fluid Dynamics Laboratory for simulating the frequency of storms on seasonal and longer timescales with high fidelity e.g., Atlantic hurricane frequency over the past decades. In addition, the same modeling system has also been employed to evaluate the nature of projected storms on the multi-decadal scales under the influence of anthropogenic factors such as greenhouse gases and aerosols. The seamless modeling system thus facilitates research into and the predictability of severe tropical storms across diverse timescales of practical interest to several societal sectors.

  7. Disturbance dynamo effects over low-latitude F region: A study by network of VHF spaced receivers

    NASA Astrophysics Data System (ADS)

    Kakad, B.; Surve, G.; Tiwari, P.; Yadav, V.; Bhattacharyya, A.

    2017-05-01

    Generation of equatorial spread F (ESF) irregularities resulting from magnetic disturbance is known for past few decades. However, better prediction models for this phenomenon are still lacking. Magnetic storms also affects the F region plasma drifts. In this work we examined variability in (i) occurrence of such freshly generated ESF and (ii) low-latitude F region zonal plasma drifts over Indian longitude. For this purpose simultaneous observations of amplitude scintillations on 251 MHz signal, recorded by a network of spaced receivers located at low-latitude stations, are utilized. Observational stations are situated such that it longitudinally (latitudinally) covers an area of 5.6° (13°). Here effect of disturbance dynamo (DD) electric field at low-latitude F region and its variability are studied for three magnetic storms occurring in 2011. These magnetic storms are having nearly similar type characteristics except their start time. We find that as time difference (i.e., ΔT) between local sunset and start of magnetic activity decreases, the DD effects seen at low-latitude F region zonal irregularity drift around midnight becomes stronger. For a given magnetic storm the DD effect on F region zonal irregularity drifts is found to be only marginally stronger at dip equator in comparison to off-equatorial stations. Although effect of DD on F region zonal irregularity drifts are felt simultaneously, generation of fresh ESF is variable within a smaller longitudinal belt of 5.6°. It is attributed to the presence of LSWS at the bottomside of F region, as initiation of ESF is highly likely (unlikely) in the vicinity of crest (trough) of such LSWS.

  8. Enhanced outage prediction modeling for strong extratropical storms and hurricanes in the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Cerrai, D.; Anagnostou, E. N.; Wanik, D. W.; Bhuiyan, M. A. E.; Zhang, X.; Yang, J.; Astitha, M.; Frediani, M. E.; Schwartz, C. S.; Pardakhti, M.

    2016-12-01

    The overwhelming majority of human activities need reliable electric power. Severe weather events can cause power outages, resulting in substantial economic losses and a temporary worsening of living conditions. Accurate prediction of these events and the communication of forecasted impacts to the affected utilities is necessary for efficient emergency preparedness and mitigation. The University of Connecticut Outage Prediction Model (OPM) uses regression tree models, high-resolution weather reanalysis and real-time weather forecasts (WRF and NCAR ensemble), airport station data, vegetation and electric grid characteristics and historical outage data to forecast the number and spatial distribution of outages in the power distribution grid located within dense vegetation. Recent OPM improvements consist of improved storm classification and addition of new predictive weather-related variables and are demonstrated using a leave-one-storm-out cross-validation based on 130 severe extratropical storms and two hurricanes (Sandy and Irene) in the Northeast US. We show that it is possible to predict the number of trouble spots causing outages in the electric grid with a median absolute percentage error as low as 27% for some storm types, and at most around 40%, in a scale that varies between four orders of magnitude, from few outages to tens of thousands. This outage information can be communicated to the electric utility to manage allocation of crews and equipment and minimize the recovery time for an upcoming storm hazard.

  9. NARX neural network Prediction of SYMH and ASYH indices for geomagnetic storms of solar cycle 24 including recent St. Patrick's day, 2015 storm

    NASA Astrophysics Data System (ADS)

    Bhaskar, A. T.; Vichare, G.

    2017-12-01

    Here, an attempt is made to develop a prediction model for SYMH and ASYH geomagnetic indices using Artificial Neural Network (ANN). SYMH and ASYH indices represent longitudinal symmetric and asymmetric component of the ring current. The ring current state depends on its past conditions therefore, it is necessary to consider its history for prediction. To account this effect Nonlinear Autoregressive Network with eXogenous inputs (NARX) is implemented. This network considers input history of 30 minutes and output feedback of 120 minutes. Solar wind parameters mainly velocity, density and interplanetary magnetic field are used as inputs. SYMH and ASYH indices during geomagnetic storms of 1998-2013, having minimum SYMH <-85 nT are used as the target for training two independent networks. We present the prediction of SYMH and ASYH indices during 9 geomagnetic storms of solar cycle 24 including the recent largest storm occurred on St. Patrick's day, 2015. The present prediction model reproduces the entire time profile of SYMH and ASYH indices along with small variations of 10-30 minutes to good extent within noise level, indicating significant contribution of interplanetary sources and past state of the magnetosphere. However, during the main phase of major storms, residuals (observed-modeled) are found to be large, suggesting influence of internal factors such as magnetospheric processes.

  10. Regional dust storm modeling for health services: The case of valley fever

    NASA Astrophysics Data System (ADS)

    Sprigg, William A.; Nickovic, Slobodan; Galgiani, John N.; Pejanovic, Goran; Petkovic, Slavko; Vujadinovic, Mirjam; Vukovic, Ana; Dacic, Milan; DiBiase, Scott; Prasad, Anup; El-Askary, Hesham

    2014-09-01

    On 5 July 2011, a massive dust storm struck Phoenix, Arizona (USA), raising concerns for increased cases of valley fever (coccidioidomycosis, or, cocci). A quasi-operational experimental airborne dust forecast system predicted the event and provides model output for continuing analysis in collaboration with public health and air quality communities. An objective of this collaboration was to see if a signal in cases of valley fever in the region could be detected and traced to the storm - an American haboob. To better understand the atmospheric life cycle of cocci spores, the DREAM dust model (also herein, NMME-DREAM) was modified to simulate spore emission, transport and deposition. Inexact knowledge of where cocci-causing fungus grows, the low resolution of cocci surveillance and an overall active period for significant dust events complicate analysis of the effect of the 5 July 2011 storm. In the larger context of monthly to annual disease surveillance, valley fever statistics, when compared against PM10 observation networks and modeled airborne dust concentrations, may reveal a likely cause and effect. Details provided by models and satellites fill time and space voids in conventional approaches to air quality and disease surveillance, leading to land-atmosphere modeling and remote sensing that clearly mark a path to advance valley fever epidemiology, surveillance and risk avoidance.

  11. Tropical and Extratropical Cyclone Damages under Climate Change

    NASA Astrophysics Data System (ADS)

    Ranson, M.; Kousky, C.; Ruth, M.; Jantarasami, L.; Crimmins, A.; Tarquinio, L.

    2014-12-01

    This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone losses under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 296 estimates of the temperature-damage relationship from twenty studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models (84 and 92 percent, respectively) predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5°C increase in global surface air temperature would cause hurricane damages to increase by 62 percent. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are approximately one third of that magnitude. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.

  12. An Ionospheric Index Model based on Linear Regression and Neural Network Approaches

    NASA Astrophysics Data System (ADS)

    Tshisaphungo, Mpho; McKinnell, Lee-Anne; Bosco Habarulema, John

    2017-04-01

    The ionosphere is well known to reflect radio wave signals in the high frequency (HF) band due to the present of electron and ions within the region. To optimise the use of long distance HF communications, it is important to understand the drivers of ionospheric storms and accurately predict the propagation conditions especially during disturbed days. This paper presents the development of an ionospheric storm-time index over the South African region for the application of HF communication users. The model will result into a valuable tool to measure the complex ionospheric behaviour in an operational space weather monitoring and forecasting environment. The development of an ionospheric storm-time index is based on a single ionosonde station data over Grahamstown (33.3°S,26.5°E), South Africa. Critical frequency of the F2 layer (foF2) measurements for a period 1996-2014 were considered for this study. The model was developed based on linear regression and neural network approaches. In this talk validation results for low, medium and high solar activity periods will be discussed to demonstrate model's performance.

  13. Hurdles to Overcome to Model Carrington Class Events

    NASA Astrophysics Data System (ADS)

    Engel, M.; Henderson, M. G.; Jordanova, V. K.; Morley, S.

    2017-12-01

    Large geomagnetic storms pose a threat to both space and ground based infrastructure. In order to help mitigate that threat a better understanding of the specifics of these storms is required. Various computer models are being used around the world to analyze the magnetospheric environment, however they are largely inadequate for analyzing the large and extreme storm time environments. Here we report on the first steps towards expanding and robustifying the RAM-SCB inner magnetospheric model, used in conjunction with BATS-R-US and the Space Weather Modeling Framework, in order to simulate storms with Dst > -400. These results will then be used to help expand our modelling capabilities towards including Carrington-class events.

  14. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope.

    PubMed

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-05-28

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

  15. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope

    PubMed Central

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-01-01

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current. PMID:26074636

  16. Multivariate Statistical Models for Predicting Sediment Yields from Southern California Watersheds

    USGS Publications Warehouse

    Gartner, Joseph E.; Cannon, Susan H.; Helsel, Dennis R.; Bandurraga, Mark

    2009-01-01

    Debris-retention basins in Southern California are frequently used to protect communities and infrastructure from the hazards of flooding and debris flow. Empirical models that predict sediment yields are used to determine the size of the basins. Such models have been developed using analyses of records of the amount of material removed from debris retention basins, associated rainfall amounts, measures of watershed characteristics, and wildfire extent and history. In this study we used multiple linear regression methods to develop two updated empirical models to predict sediment yields for watersheds located in Southern California. The models are based on both new and existing measures of volume of sediment removed from debris retention basins, measures of watershed morphology, and characterization of burn severity distributions for watersheds located in Ventura, Los Angeles, and San Bernardino Counties. The first model presented reflects conditions in watersheds located throughout the Transverse Ranges of Southern California and is based on volumes of sediment measured following single storm events with known rainfall conditions. The second model presented is specific to conditions in Ventura County watersheds and was developed using volumes of sediment measured following multiple storm events. To relate sediment volumes to triggering storm rainfall, a rainfall threshold was developed to identify storms likely to have caused sediment deposition. A measured volume of sediment deposited by numerous storms was parsed among the threshold-exceeding storms based on relative storm rainfall totals. The predictive strength of the two models developed here, and of previously-published models, was evaluated using a test dataset consisting of 65 volumes of sediment yields measured in Southern California. The evaluation indicated that the model developed using information from single storm events in the Transverse Ranges best predicted sediment yields for watersheds in San Bernardino, Los Angeles, and Ventura Counties. This model predicts sediment yield as a function of the peak 1-hour rainfall, the watershed area burned by the most recent fire (at all severities), the time since the most recent fire, watershed area, average gradient, and relief ratio. The model that reflects conditions specific to Ventura County watersheds consistently under-predicted sediment yields and is not recommended for application. Some previously-published models performed reasonably well, while others either under-predicted sediment yields or had a larger range of errors in the predicted sediment yields.

  17. Central Pacific Hurricane Center - Honolulu, Hawai`i

    Science.gov Websites

    distance between lat/lon points Saffir-Simpson Scale Tropical Storm - winds 39-73 mph (34-63 kt) Category 1 Research and Development NOAA Hurricane Research Division Joint Hurricane Testbed Hurricane Forecast WFO Honolulu Weather Prediction Center Storm Prediction Center Ocean Prediction Center Local Forecast

  18. Evaluation of geomagnetic field models using magnetometer measurements for satellite attitude determination system at low earth orbits: Case studies

    NASA Astrophysics Data System (ADS)

    Cilden-Guler, Demet; Kaymaz, Zerefsan; Hajiyev, Chingiz

    2018-01-01

    In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.

  19. Scaling properties of rainfall-runoff generation processes and nutrient flushing mechanisms in the Oregon Cascade Mountain

    NASA Astrophysics Data System (ADS)

    Segura, C.; Nickolas, L. B.; Leshchinsky, B. A.

    2015-12-01

    Even though it is widely recognized that water quality and availability are crucial to society and wildlife sustainability, we are still not able to predict how much water is moved through a given catchment after a storm event nor what nutrients, solutes, and contaminates are mobilized. We will present preliminary results of a study incorporating of hydrometric information, water stable isotopes (δ18O), and concentrations of total nitrogen (TN), ammonia (NH3), and nitrate (NO3) within 4 sites in a nested framework at the HJ Andrews Experimental Forest (HJA), OR. Preliminary analysis of 2 storms (54mm and 145mm) indicate highly variable responses across space along with a positive relation between transit time of event water and storm magnitude in all catchments. In addition there appears to be a moisture threshold after which transit time scales with drainage area across the landscape likely related to higher degree of connectivity. We also found a strong correlation between transit times computed based on temporal variability of δ18O and electrical connectivity (EC). This lead to the analysis of over 50 storm across 10 catchments in the HJA during the last 3 years. In-stream NO3- during storm response are highest within the smaller catchments (1-5 km2) and tend to remain elevated throughout the response period. The larger catchments (15-64 km2) demonstrate smaller increases in NO3-, the response time lags behind that of the smaller catchments, and the concentration returns rapidly to baseflow conditions rather than remaining elevated. In contrast, in-stream NH3 show a higher degree of similarity between sites in terms of magnitude and timing of increases in concentration over the duration of the response period. Ultimately we found that fractions of inorganic nitrogen correlate with transit time and drainage area, opening the possibility of a catchment wide model of nutrient export prediction.

  20. The developing stages of the Martian yellow storm of 1971

    NASA Technical Reports Server (NTRS)

    Capen, C. F.; Martin, L. J.

    1971-01-01

    A history of the yellow storm on Mars which occurred in 1971 is presented. It is compared to the Great 1956 Yellow Cloud, and possible yellow storms are predicted for 1973. Photographs of the stages of evolution and the path of the storm are included.

  1. Synthetic calibration of a Rainfall-Runoff Model

    USGS Publications Warehouse

    Thompson, David B.; Westphal, Jerome A.; ,

    1990-01-01

    A method for synthetically calibrating storm-mode parameters for the U.S. Geological Survey's Precipitation-Runoff Modeling System is described. Synthetic calibration is accomplished by adjusting storm-mode parameters to minimize deviations between the pseudo-probability disributions represented by regional regression equations and actual frequency distributions fitted to model-generated peak discharge and runoff volume. Results of modeling storm hydrographs using synthetic and analytic storm-mode parameters are presented. Comparisons are made between model results from both parameter sets and between model results and observed hydrographs. Although mean storm runoff is reproducible to within about 26 percent of the observed mean storm runoff for five or six parameter sets, runoff from individual storms is subject to large disparities. Predicted storm runoff volume ranged from 2 percent to 217 percent of commensurate observed values. Furthermore, simulation of peak discharges was poor. Predicted peak discharges from individual storm events ranged from 2 percent to 229 percent of commensurate observed values. The model was incapable of satisfactorily executing storm-mode simulations for the study watersheds. This result is not considered a particular fault of the model, but instead is indicative of deficiencies in similar conceptual models.

  2. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996

    NASA Astrophysics Data System (ADS)

    Xie, L.; Pietrafesa, L. J.; Wu, K.

    2003-02-01

    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  3. Dust Storms and Mortality in the United States, 1995-2005

    EPA Science Inventory

    Extreme weather events, such as dust storms, are predicted to become more frequent as the global climate warms through the 21st century. The impact of dust storms on human health has been studied extensively in the context of Asian, Saharan, Arabian, and Australian storms, but t...

  4. Templates of Change: Storms and Shoreline Hazards.

    ERIC Educational Resources Information Center

    Dolan, Robert; Hayden, Bruce

    1980-01-01

    Presents results of research designed to assess and predict the storm-related hazards of living on the coast. Findings suggest that certain sections of coastline are more vulnerable than others to storm damage. (WB)

  5. NASA Sees Heavy Rainfall in Tropical Storm Andrea

    NASA Image and Video Library

    2013-06-06

    NASA’s Terra satellite passed over Tropical Storm Andrea on June 5 at 16:25 UTC (12:25 p.m. EDT) and the MODIS instrument captured this visible image of the storm. Andrea’s clouds had already extended over more than half of Florida. Credit: NASA Goddard MODIS Rapid Response Team --- NASA Sees Heavy Rainfall in Tropical Storm Andrea NASA’s TRMM satellite passed over Tropical Storm Andrea right after it was named, while NASA’s Terra satellite captured a visible image of the storm’s reach hours beforehand. TRMM measures rainfall from space and saw that rainfall rates in the southern part of the storm was falling at almost 5 inches per hour. NASA’s Terra satellite passed over Tropical Storm Andrea on June 5 at 16:25 UTC (12:25 p.m. EDT) and the Moderate Resolution Imaging Spectroradiometer or MODIS instrument, captured a visible image of the storm. At that time, Andrea’s clouds had already extended over more than half of Florida. At 8 p.m. EDT on Wednesday, June 5, System 91L became the first tropical storm of the Atlantic Ocean hurricane season. Tropical Storm Andrea was centered near 25.5 North and 86.5 West, about 300 miles (485 km) southwest of Tampa, Fla. At the time Andrea intensified into a tropical storm, its maximum sustained winds were near 40 mph (65 kph). Full updates can be found at NASA's Hurricane page: www.nasa.gov/hurricane Rob Gutro NASA’s Goddard Space Flight Center

  6. NASA Sees Heavy Rainfall in Tropical Storm Andrea

    NASA Image and Video Library

    2017-12-08

    This NOAA GOES-East satellite animation shows the development of System 91L into Tropical Storm Andrea over the course of 3 days from June 4 to June 6, just after Andrea was officially designated a tropical storm. Credit: NASA's GOES Project --- NASA Sees Heavy Rainfall in Tropical Storm Andrea NASA’s TRMM satellite passed over Tropical Storm Andrea right after it was named, while NASA’s Terra satellite captured a visible image of the storm’s reach hours beforehand. TRMM measures rainfall from space and saw that rainfall rates in the southern part of the storm was falling at almost 5 inches per hour. NASA’s Terra satellite passed over Tropical Storm Andrea on June 5 at 16:25 UTC (12:25 p.m. EDT) and the Moderate Resolution Imaging Spectroradiometer or MODIS instrument, captured a visible image of the storm. At that time, Andrea’s clouds had already extended over more than half of Florida. At 8 p.m. EDT on Wednesday, June 5, System 91L became the first tropical storm of the Atlantic Ocean hurricane season. Tropical Storm Andrea was centered near 25.5 North and 86.5 West, about 300 miles (485 km) southwest of Tampa, Fla. At the time Andrea intensified into a tropical storm, its maximum sustained winds were near 40 mph (65 kph). Full updates can be found at NASA's Hurricane page: www.nasa.gov/hurricane Rob Gutro NASA’s Goddard Space Flight Center

  7. Squeezing of particle distributions by expanding magnetic turbulence and space weather variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffolo, D.; Seripienlert, A.; Tooprakai, P.

    Among the space weather effects due to gradual solar storms, greatly enhanced high-energy ion fluxes contribute to radiation damage to satellites, spacecraft, and astronauts and dominate the hazards to air travelers, which motivates examination of the transport of high-energy solar ions to Earth's orbit. Ions of low kinetic energy (up to ∼2 MeV nucleon{sup –1}) from impulsive solar events exhibit abrupt changes due to filamentation of the magnetic connection from the Sun, indicating that anisotropic, field-aligned magnetic flux tubelike structures persist to Earth's orbit. By employing a corresponding spherical two-component model of Alfvénic (slab) and two-dimensional magnetic fluctuations to tracemore » simulated trajectories in the solar wind, we show that the distribution of high-energy (E ≥ 1 GeV) protons from gradual solar events is squeezed toward magnetic flux structures with a specific polarity because of the conical shape of the flux structures. Conical flux structures and the squeezing of energetic particle distributions should occur in any astrophysical wind or jet with expanding, magnetized, turbulent plasma. This transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions from solar storms, presenting a fundamental uncertainty in space weather prediction.« less

  8. Satellite Video Shows Movement of Major U.S. Winter Storm

    NASA Image and Video Library

    2014-02-12

    A new NASA video of NOAA's GOES satellite imagery shows three days of movement of the massive winter storm that stretches from the southern U.S. to the northeast. Visible and infrared imagery from NOAA's GOES-East or GOES-13 satellite from Feb. 10 at 1815 UTC/1:15 p.m. EST to Feb. 12 to 1845 UTC/1:45 p.m. EST were compiled into a video made by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. In the video, viewers can see the development and movement of the clouds associated with the progression of the frontal system and related low pressure areas that make up the massive storm. The video also shows the snow covered ground over the Great Lakes region and Ohio Valley that stretches to northern New England. The clouds and fallen snow data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites. On February 12 at 10 a.m. EST, NOAA's National Weather Service or NWS continued to issue watches and warnings from Texas to New England. Specifically, NWS cited Winter Storm Warnings and Winter Weather Advisories were in effect from eastern Texas eastward across the interior section of southeastern U.S. states and across much of the eastern seaboard including the Appalachians. Winter storm watches are in effect for portions of northern New England as well as along the western slopes of northern and central Appalachians. For updates on local forecasts, watches and warnings, visit NOAA's www.weather.gov webpage. NOAA's Weather Prediction Center or WPC noted the storm is expected to bring "freezing rain spreading into the Carolinas, significant snow accumulations are expected in the interior Mid-Atlantic states tonight into Thursday and ice storm warnings and freezing rain advisories are in effect across much of central Georgia. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's WPC website; www.hpc.ncep.noaa.gov/ For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Workshop Report on Space Weather Risks and Society

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie R.; Straume, Tore

    2012-01-01

    As technological innovations produce new capabilities, complexities, and interdependencies, our susceptibility to the societal impacts of space weather increase. There is real concern in the scientific community that our infrastructure would be at significant risk if a major geomagnetic storm should occur. To discuss the societal impacts of space weather, we brought together an interdisciplinary group of subject matter experts and societal stakeholders to participate in a workshop entitled Space Weather Risks and Society. The workshop was held at Ames Research Center (ARC) on 15-16 October 2011. The workshop was co-sponsored by NASA Ames Research Center (ARC), the Lockheed Martin Advanced Technology Center (LMATC), the Space Weather Prediction Center (SWPC, part of the National Oceanic and Atmospheric Administration NOAA), and the Rutherford Appleton Laboratory (RAL, part of the UK Science and Technology Facilities Council STFC). The workshop is part of a series of informal weekend workshops hosted by Center Director Pete Worden.

  10. Subtropical Storm Andrea

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The circling clouds of an intense low-pressure system sat off the southeast coast of the United States on May 8, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image. By the following morning, the storm developed enough to be classified as a subtropical storm, a storm that forms outside of the tropics, but has many of the characteristics--hurricane-force winds, driving rains, low pressure, and sometimes an eye--of a tropical storm. Although it arrived several weeks shy of the official start of the hurricane season (June 1), Subtropical Storm Andrea became the first named storm of the 2007 Atlantic hurricane season. The storm has the circular shape of a tropical cyclone in this image, but lacks the tight organization seen in more powerful storms. By May 9, the storm's winds reached 75 kilometers per hour (45 miles per hour), and the storm was not predicted to get any stronger, said the National Hurricane Center. Though Subtropical Storm Andrea was expected to remain offshore, its strong winds and high waves pummeled coastal states, prompting a tropical storm watch. The winds fueled wild fires (marked with red boxes) in Georgia and Florida. The wind-driven flames generated thick plumes of smoke that concentrated in a gray-brown mass over Tampa Bay, Florida. Unfortunately for Georgia and Florida, which are experiencing moderate to severe drought, Subtropical Storm Andrea was not predicted to bring significant rain to the region right away, according to reports on the Washington Post Website.

  11. Meteor Search by Spirit, Sol 668

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668

    The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets.

    The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on the rover team planned some observations to try to detect predicted meteor storms in October and November, 2005. The views shown here are a composite of nine 60-second exposures taken with the panoramic camera on Spirit during night hours of sol 668 (Nov. 18, 2005), during a week when Mars was predicted to pass through a meteor stream associated with Halley's comet. The south celestial pole is at the center of the frame. Many stars can be seen in the images, appearing as short, curved streaks forming arcs around the center point. The star trails are curved because Mars is rotating while the camera takes the images. The brightest stars in this view would be easily visible to the naked eye, but the faintest ones are slightly dimmer than the human eye can detect.

    In addition to the star trails, there are several smaller linear streaks, dots and splotches that are the trails left by cosmic rays hitting the camera detectors. Cosmic rays are high-energy particles that are created in the Sun and in other stars throughout our galaxy and travel through space in all directions. Some of them strike Earth or other planets, and ones that strike a digital camera detector can leave little tracks or splotches like those seen in these images. Because they come from all directions, some strike the detector face-on, and others strike at glancing angles. Some even skip across the detector like flat rocks skipped across a pond. These are very common phenomena to astronomers used to working with sensitive digital cameras like those in the Mars rovers, the Hubble Space Telescope, or other space probes, and while they can be a nuisance when taking pictures, they generally do not cause any lasting damage to the cameras. Three of the streaks in the image, including one spanning most of the distance from the left edge of the frame to the center, might be meteor trails or could be the marks of other cosmic rays.

    While hunting for meteors on Mars is fun, ultimately the team wants to use the images and results for scientific purposes. These include helping to validate the models and predictions for interplanetary meteor storms, providing information on the rate of impacts of small meteoroids with Mars for comparison with rates for the Earth and Moon, assessing the rate and intensity of cosmic ray impact events in the Martian environment, and looking at whether some bright stars are being dimmed occasionally by water ice or dust clouds occurring at night during different Martian seasons.

  12. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections.

    PubMed

    Liu, Ying D; Luhmann, Janet G; Kajdič, Primož; Kilpua, Emilia K J; Lugaz, Noé; Nitta, Nariaki V; Möstl, Christian; Lavraud, Benoit; Bale, Stuart D; Farrugia, Charles J; Galvin, Antoinette B

    2014-03-18

    Space weather refers to dynamic conditions on the Sun and in the space environment of the Earth, which are often driven by solar eruptions and their subsequent interplanetary disturbances. It has been unclear how an extreme space weather storm forms and how severe it can be. Here we report and investigate an extreme event with multi-point remote-sensing and in situ observations. The formation of the extreme storm showed striking novel features. We suggest that the in-transit interaction between two closely launched coronal mass ejections resulted in the extreme enhancement of the ejecta magnetic field observed near 1 AU at STEREO A. The fast transit to STEREO A (in only 18.6 h), or the unusually weak deceleration of the event, was caused by the preconditioning of the upstream solar wind by an earlier solar eruption. These results provide a new view crucial to solar physics and space weather as to how an extreme space weather event can arise from a combination of solar eruptions.

  13. Space Weather Research in the Equatorial Region: A Philosophical Reinforcement

    NASA Astrophysics Data System (ADS)

    Chukwuma, Victor; Odunaike, Rasaki; Laoye, John

    Investigations using radio waves reflected from the ionosphere, at high-and mid-latitudes indicate that ionospheric absorption can strongly increase following geomagnetic storms; which appears to suggest some definite relationship between ionospheric radio wave absorption and geomagnetic storms at these latitudes. However, corresponding earlier studies in the equatorial region did not appear to show any explicit relationship between ionospheric radio wave absorption and geomagnetic storm activity. This position appeared acceptable to the existing scientific paradigm, until in an act of paradigm shift, by a change of storm selection criteria, some more recent space weather investigations in the low latitudes showed that ionospheric radio wave absorption in the equatorial region clearly increases after intense storms. Given that these results in the equatorial region stood against the earlier results, this paper presently attempts to highlight their philosophical underpinning and posit that they constitute a scientific statement.

  14. Earth Observing System (EOS) Aqua and Aura Space Weather Effects on Operational Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2017-01-01

    This presentation will describe recent EOS Aqua and Aura operational collision avoidance experience during periods of solar and geomagnetic storm activity. It will highlight challenges faced by the operations team during short-notice, high-risk predicted close approaches. The presentation will highlight the evolution of the operational collision avoidance process for the EOS Aqua and Aura missions. The presentation will highlight operational challenges that have occurred, process improvements that have been implemented and identify potential future challenges.

  15. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, Joseph A. Pica, director of the National Weather Service Office of Observations, speaks to the media during a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  16. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, Damon Penn, assistant administrator for response at the Federal Emergency Management Agency, speaks to the media during a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  17. KSC-20180301-VP-CDC01_0001-GOES_S_Launch_Commentary-3182524

    NASA Image and Video Library

    2018-03-01

    A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying the NOAA Geostationary Operational Environmental Satellite, or GOES-S. Liftoff was at 5:02 p.m. EST. GOES-S is the second satellite in a series of next-generation weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting.

  18. The causes of geomagnetic storms during solar maximum

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Gonzalez, Walter D.

    1994-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. In investigating the causes of geomagnetic storms occurring during solar maximum, the following topics are discussed: solar phenomena; types of solar wind; magnetic reconnection and magnetic storms; an interplanetary example; and future space physics missions.

  19. Verification of Space Weather Forecasts Issued by the Met Office Space Weather Operations Centre

    NASA Astrophysics Data System (ADS)

    Sharpe, M. A.; Murray, S. A.

    2017-10-01

    The Met Office Space Weather Operations Centre was founded in 2014 and part of its remit is a daily Space Weather Technical Forecast to help the UK build resilience to space weather impacts; guidance includes 4 day geomagnetic storm forecasts (GMSF) and X-ray flare forecasts (XRFF). It is crucial for forecasters, users, modelers, and stakeholders to understand the strengths and weaknesses of these forecasts; therefore, it is important to verify against the most reliable truth data source available. The present study contains verification results for XRFFs using Geo-Orbiting Earth Satellite 15 satellite data and GMSF using planetary K-index (Kp) values from the GFZ Helmholtz Centre. To assess the value of the verification results, it is helpful to compare them against a reference forecast and the frequency of occurrence during a rolling prediction period is used for this purpose. An analysis of the rolling 12 month performance over a 19 month period suggests that both the XRFF and GMSF struggle to provide a better prediction than the reference. However, a relative operating characteristic and reliability analysis of the full 19 month period reveals that although the GMSF and XRFF possess discriminatory skill, events tend to be overforecast.

  20. Evaluation of the precipitation-runoff modeling system, Beaver Creek basin, Kentucky

    USGS Publications Warehouse

    Bower, D.E.

    1985-01-01

    The Precipitation Runoff Modeling System (PRMS) was evaluated with data from Cane branch and Helton Branch in the Beaver Creek basin of Kentucky. Because of previous studies, 10.6 years of record were available to establish a data base for the basin including 60 storms for Cane Branch and 50 storms for Helton Branch. The model was calibrated initially using data from the 1956-58 water years. Runoff predicted by the model was 94.7% of the observed runoff at Cane Branch (mined area) and 96.9% at Helton Branch (unmined area). After the model and data base were modified, the model was refitted to the 1956-58 data for Helton Branch. It then predicted 98.6% of the runoff for the 10.6-year period. The model parameters from Helton Branch were then used to simulate the Cane Branch runoff and discharge. The model predicted 102.6% of the observed runoff at Cane Branch for the 10.6 years. The simulations produced reasonable storm volumes and peak discharges. Sensitivity analysis of model parameters indicated the parameters associated with soil moisture are the most sensitive. The model was used to predict sediment concentration and daily sediment load for selected storm periods. The sediment computations indicated the model can be used to predict sediment concentrations during storm events. (USGS)

  1. Methodology for Time-Domain Estimation of Storm-Time Electric Fields Using the 3D Earth Impedance

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Balch, C. C.; Pulkkinen, A. A.; Egbert, G. D.; Love, J. J.; Rigler, E. J.; Fujii, I.

    2016-12-01

    Magnetic storms can induce geoelectric fields in the Earth's electrically conducting interior, interfering with the operations of electric-power grid industry. The ability to estimate these electric fields at Earth's surface in close to real-time and to provide local short-term predictions would improve the ability of the industry to protect their operations. At any given time, the electric field at the Earth's surface is a function of the time-variant magnetic activity (driven by the solar wind), and the local electrical conductivity structure of the Earth's crust and mantle. For this reason, implementation of an operational electric field estimation service requires an interdisciplinary, collaborative effort between space science, real-time space weather operations, and solid Earth geophysics. We highlight in this talk an ongoing collaboration between USGS, NOAA, NASA, Oregon State University, and the Japan Meteorological Agency, to develop algorithms that can be used for scenario analyses and which might be implemented in a real-time, operational setting. We discuss the development of a time domain algorithm that employs discrete time domain representation of the impedance tensor for a realistic 3D Earth, known as the discrete time impulse response (DTIR), convolved with the local magnetic field time series, to estimate the local electric field disturbances. The algorithm is validated against measured storm-time electric field data collected in the United States and Japan. We also discuss our plans for operational real-time electric field estimation using 3D Earth impedances.

  2. The development of the Australian Space Forecast Centre (ASFC)

    NASA Astrophysics Data System (ADS)

    Wilkinson, Phil; Kennewell, John A.; Cole, David

    2018-05-01

    The Ionospheric Prediction Service (IPS) was formed in 1947 to provide monthly prediction services for high frequency (HF) radio, in particular to support HF communications with the United Kingdom. It was quickly recognized that to be effective such a service also had to provide advice when ionospheric storms prevented HF communications from taking place. With the advent of the International Geophysical Year (IGY), short-term forecasts were also required for research programmes and the task of supplying the Australian input to these was given to Frank Cook, of the IPS, while Jack Turner, also of the IPS, supervised the generation of ionospheric maps to support high latitude HF communications. These two important IGY activities formed the platform on which all future IPS services would be built. This paper reviews the development of the Australian Space Forecast Centre (ASFC), which arose from these early origins.

  3. 77 FR 74788 - Long-Term Cooling and Unattended Water Makeup of Spent Fuel Pools

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... frequency estimate of 1 in 100 years (1E-2/yr) for extreme space weather/ geomagnetic disturbance to perform... Accidents B. Geomagnetic Storms and Effects on the Earth C. Frequency of Geomagnetic Storms With Potential... commercial electric power grids are vulnerable to prolonged outage caused by extreme space weather, such as...

  4. Space Weather Effects Produced by the Ring Current Particles

    NASA Astrophysics Data System (ADS)

    Ganushkina, Natalia; Jaynes, Allison; Liemohn, Michael

    2017-11-01

    One of the definitions of space weather describes it as the time-varying space environment that may be hazardous to technological systems in space and/or on the ground and/or endanger human health or life. The ring current has its contributions to space weather effects, both in terms of particles, ions and electrons, which constitute it, and magnetic and electric fields produced and modified by it at the ground and in space. We address the main aspects of the space weather effects from the ring current starting with brief review of ring current discovery and physical processes and the Dst-index and predictions of the ring current and storm occurrence based on it. Special attention is paid to the effects on satellites produced by the ring current electrons. The ring current is responsible for several processes in the other inner magnetosphere populations, such as the plasmasphere and radiation belts which is also described. Finally, we discuss the ring current influence on the ionosphere and the generation of geomagnetically induced currents (GIC).

  5. Diffusive vs. impulsive energetic electron transport during radiation belt storms

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Koepke, M.; Tornquist, M.

    2008-12-01

    Earth's electron radiation belts are continually replenished by inward particle transport (as well as other, local acceleration processes) taking place during radiation belt storms. For some storms the radial transport is primarily diffusive while for others it is impulsive, or characterized by injections. To distinguish between these types of inward transport, we first use a dynamic model of the phase-space density as measured by POLAR/HIST and expressed in terms of adiabatic invariants [Green and Kivelson, 2004]. In a review of storms from 1997 to 2004 the coefficients of the model are peaked at characteristic temporal and phase- space (mu, k, L*) scales during specific storms. The transport is quantified in terms of those invariants which are violated and identified with peaks of the electron distribution in invariant space. Second, we run guiding- center simulations in wave fields fitted to in situ measurements complemented at low and high L by ground ULF pulsations. The modes of response identified in earlier studies from SAMPEX and POLAR electron flux measurements are now associated with primarily diffusive transport in the central range of the outer belt, L=4-8, and primarily impulsive transport near the plasmapause boundary, L=3-4.

  6. A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty

    USGS Publications Warehouse

    Friedel, Michael J.

    2011-01-01

    This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.

  7. Squeezing of Particle Distributions by Expanding Magnetic Turbulence and Space Weather Variability

    NASA Astrophysics Data System (ADS)

    Ruffolo, D. J.; Tooprakai, P.; Seripienlert, A.; Chuychai, P.; Matthaeus, W. H.

    2014-12-01

    Among the space weather effects due to gradual solar storms, greatly enhanced high-energy ion fluxes can cause radiation damage to satellites, spacecraft, and astronauts, which motivates examination of the transport of high-energy solar ions to Earth orbit. Ions of low kinetic energy (up to ˜2sim 2 MeV/nucleon) from impulsive solar events exhibit abrupt changes due to filamentation of magnetic connection from the Sun, indicating that anisotropic, field-aligned magnetic flux tube-like structures persist to Earth orbit. By employing a corresponding spherical two-component model of Alfv'enic (slab) and 2D magnetic fluctuations to trace simulated trajectories in the solar wind, we show that the distribution of high-energy (E≥1Egeq1 GeV) protons from gradual solar events is squeezed toward magnetic flux structures with a specific polarity due to the conical shape of the flux structures, which results from the expanding flow of the solar wind. It is difficult to observationally determine what polarity of flux structure the Earth is in at a given time, so this transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions from solar storms, presenting a fundamental uncertainty in space weather prediction. Partially supported by the Thailand Research Fund, a Postdoctoral Fellowship from the Thailand Center of Excellence in Physics, a Research Fellowship from the Faculty of Science, Mahidol University, the U.S. NSF (AGS-1063439 and SHINE AGS-1156094), NASA (Heliophysics Theory NNX08AI47G & NNX11AJ44G), and the Solar Probe Plus/ISIS project. KEYWORDS: [7807] SPACE PLASMA PHYSICS / Charged particle motion and acceleration, [7863] SPACE PLASMA PHYSICS / Turbulence, [2118] INTERPLANETARY PHYSICS / Energetic particles, solar, [7984] SPACE WEATHER / Space radiation environment

  8. Irma Tracked from Space on This Week @NASA – September 8, 2017

    NASA Image and Video Library

    2017-09-08

    During the week of Sept. 5, spacecraft captured imagery of hurricane Irma as the storm reached category 5 status in the Atlantic Ocean. Irma was seen from the International Space Station, Global Precipitation Measurement mission or GPM, and the Suomi National Polar-orbiting Partnership satellite. Imagery from space is used to help forecasters and officials track and characterize storms and other natural events. Also, Johnson Space Center Recovering from Harvey, Whitson and Fischer Return to Earth, 40 Years of Voyager, and Bridenstine Nominated for Administrator!

  9. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups.

    PubMed

    Jin, Xue; Shi, Xiaoxia; Gao, Jintian; Xu, Tongbin; Yin, Kedong

    2018-03-27

    Storm surge has become an important factor restricting the economic and social development of China's coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.

  10. Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups

    PubMed Central

    Shi, Xiaoxia; Xu, Tongbin; Yin, Kedong

    2018-01-01

    Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation. PMID:29584628

  11. Modeling Wave Overtopping on the Chandeleur Islands during Hurricane Katrina using XBeach

    NASA Astrophysics Data System (ADS)

    Lindemer, C. A.; Plant, N.; Puleo, J.; Thompson, D.

    2008-12-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines of along the Gulf Coast. Much of the Gulf Coast is ringed with barrier islands that provide inland marshes and the mainland some protection from storm events. The Chandeleur Islands, are located 161 km east of New Orleans, Louisiana and are oriented from north to south, and act to dissipate some of this energy. After a series of major storm events between 2001 and 2005, Hurricane Katrina's devastation in the fall of 2005 was particularly violent, destroying two-thirds of the area associated with the island chain. We would like to evaluate the predictability of hurricane-induced barrier island erosion and accretion. We test the ability of a time-dependent hydrodynamic and morphodynamic model, XBeach, to predict the impact of Hurricane Katrina on portions of Chandeleur Islands. Pre-storm LIDAR-derived bathymetry/topography and surge and wave data were used to drive a number of XBeach simulations. Model-predicted morphology was compared to post-storm LIDAR data. The accuracy of these predictions, including model sensitivity tests with varying grid size and temporal resolutions, are presented.

  12. Development of a CME-associated geomagnetic storm intensity prediction tool

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; DeHart, J. M.

    2015-12-01

    From 1995 to 2012, the Wind spacecraft recorded 168 magnetic cloud (MC) events. Among those events, 79 were found to have upstream shock waves and their source locations on the Sun were identified. Using a recipe of interplanetary magnetic field (IMF) Bz initial turning direction after shock (Wu et al., 1996, GRL), it is found that the north-south polarity of 66 (83.5%) out of the 79 events were accurately predicted. These events were tested and further analyzed, reaffirming that the Bz intial turning direction was accurate. The results also indicate that 37 of the 79 MCs originate from the north (of the Sun) averaged a Dst_min of -119 nT, whereas 42 of the MCs originating from the south (of the Sun) averaged -89 nT. In an effort to provide this research to others, a website was built that incorporated various tools and pictures to predict the intensity of the geomagnetic storms. The tool is capable of predicting geomagnetic storms with different ranges of Dst_min (from no-storm to gigantic storms). This work was supported by Naval Research Lab HBCU/MI Internship program and Chief of Naval Research.

  13. Potential Seasonal Predictability for Winter Storms over Europe

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2017-04-01

    Reliable seasonal forecasts of strong extra-tropical cyclones and windstorms would have great social and economical benefits, as these events are the most costly natural hazards over Europe. In a previous study we have shown good agreement of spatial climatological distributions of extra-tropical cyclones and wind storms in state-of-the-art multi-member seasonal prediction systems with reanalysis. We also found significant seasonal prediction skill of extra-tropical cyclones and windstorms affecting numerous European countries. We continue this research by investigating the mechanisms and precursor conditions (primarily over the North Atlantic) on a seasonal time scale leading to enhanced extra-tropical cyclone activity and winter storm frequency over Europe. Our results regarding mechanisms show that an increased surface temperature gradient at the western edge of the North Atlantic can be related to enhanced winter storm frequency further downstream causing for example a greater number of storms over the British Isles, as observed in winter 2013-14.The so-called "Horseshoe Index", a SST tripole anomaly pattern over the North Atlantic in the summer months can also cause a higher number of winter storms over Europe in the subsequent winter. We will show results of AMIP-type sensitivity experiments using an AGCM (ECHAM5), supporting this hypothesis. Finally we will analyse whether existing seasonal forecast systems are able to capture these identified mechanisms and precursor conditions affecting the models' seasonal prediction skill.

  14. Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.

    2016-07-01

    The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.

  15. Can we predict seasonal changes in high impact weather in the United States?

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Kirtman, Ben P.

    2016-07-01

    Severe convective storms cause catastrophic losses each year in the United States, suggesting that any predictive capability is of great societal benefit. While it is known that El Niño and the Southern Oscillation (ENSO) influence high impact weather events, such as a tornado activity and severe storms, in the US during early spring, this study highlights that the influence of ENSO on US severe storm characteristics is weak during May-July. Instead, warm water in the Gulf of Mexico is a potential predictor for moist instability, which is an important factor in influencing the storm characteristics in the US during May-July.

  16. Solar Storm GIC Forecasting: Solar Shield Extension Development of the End-User Forecasting System Requirements

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.

    2015-01-01

    A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.

  17. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, George Morrow, deputy director of NASA's Goddard Space Flight Center in Greenbelt, Maryland, speaks to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  18. Cloudsat tropical cyclone database

    NASA Astrophysics Data System (ADS)

    Tourville, Natalie D.

    CloudSat (CS), the first 94 GHz spaceborne cloud profiling radar (CPR), launched in 2006 to study the vertical distribution of clouds. Not only are CS observations revealing inner vertical cloud details of water and ice globally but CS overpasses of tropical cyclones (TC's) are providing a new and exciting opportunity to study the vertical structure of these storm systems. CS TC observations are providing first time vertical views of TC's and demonstrate a unique way to observe TC structure remotely from space. Since December 2009, CS has intersected every globally named TC (within 1000 km of storm center) for a total of 5,278 unique overpasses of tropical systems (disturbance, tropical depression, tropical storm and hurricane/typhoon/cyclone (HTC)). In conjunction with the Naval Research Laboratory (NRL), each CS TC overpass is processed into a data file containing observational data from the afternoon constellation of satellites (A-TRAIN), Navy's Operational Global Atmospheric Prediction System Model (NOGAPS), European Center for Medium range Weather Forecasting (ECMWF) model and best track storm data. This study will describe the components and statistics of the CS TC database, present case studies of CS TC overpasses with complementary A-TRAIN observations and compare average reflectivity stratifications of TC's across different atmospheric regimes (wind shear, SST, latitude, maximum wind speed and basin). Average reflectivity stratifications reveal that characteristics in each basin vary from year to year and are dependent upon eye overpasses of HTC strength storms and ENSO phase. West Pacific (WPAC) basin storms are generally larger in size (horizontally and vertically) and have greater values of reflectivity at a predefined height than all other basins. Storm structure at higher latitudes expands horizontally. Higher vertical wind shear (≥ 9.5 m/s) reduces cloud top height (CTH) and the intensity of precipitation cores, especially in HTC strength storms. Average zero and ten dBZ height thresholds confirm WPAC storms loft precipitation sized particles higher into the atmosphere than in other basins. Two CS eye overpasses (32 hours apart) of a weakening Typhoon Nida in 2009 reveal the collapse of precipitation cores, warm core anomaly and upper tropospheric ice water content (IWC) under steady moderate shear conditions.

  19. Predicting forest road surface erosion and storm runoff from high-elevation sites

    Treesearch

    J. M. Grace III

    2017-01-01

    Forest roads are a concern in management because they represent areas of elevated risks associated with soil erosion and storm runoff connectivity to stream systems. Storm runoff emanating from forest roads and their connectivity to downslope resources can be influenced by a myriad of factors, including storm characteristics, management practices, and the interaction...

  20. A novel ice storm manipulation experiment in a northern hardwood forest

    Treesearch

    Lindsey E. Rustad; John L. Campbell

    2012-01-01

    Ice storms are an important natural disturbance within forest ecosystems of the northeastern United States. Current models suggest that the frequency and severity of ice storms may increase in the coming decades in response to changes in climate. Because of the stochastic nature of ice storms and difficulties in predicting their occurrence, most past investigations of...

  1. Earth Obsersation taken by the Expedition 11 crew

    NASA Image and Video Library

    2005-07-09

    ISS011-E-10252 (9 July 2005) --- This easterly-looking image from the International Space Station shows Hurricane Dennis after the storm had already crossed Cuba and was heading for the northern Gulf of Mexico. Dennis was a Category 3 storm, packing winds of 115 miles per hour, at the time of exposure and located approximately 385 miles southeast of Biloxi, Mississippi or 280 miles south of Panama City, Florida. The image was exposed at 22:06:35 (GMT), July 9, 2005. The storm's eye is at frame center. The black triangle in extreme lower left is part of the Space Station's window.

  2. Super Typhoon Utor Impacts the Philippines

    NASA Image and Video Library

    2017-12-08

    With maximum sustained wind speeds of 140 mph, Super Typhoon Utor made landfall in the Philippines on August 11, 2013 around 18:00z. The storm crossed over the island of Luzon and into the South China Sea. The Joint Typhoon Warning Center predicts Utor will head for the Chinese mainland and make landfall again around 12:00z on the 14th about 200 miles southwest of Hong Kong. This colorized infrared image from the Suomi NPP satellite shows the storm on August 11th at 4:30z. NASA/NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Predicting the magnetospheric plasma of weather

    NASA Technical Reports Server (NTRS)

    Dawson, John M.

    1986-01-01

    The prediction of the plasma environment in time, the plasma weather, is discussed. It is important to be able to predict when large magnetic storms will produce auroras, which will affect the space station operating in low orbit, and what precautions to take both for personnel and sensitive control (computer) equipment onboard. It is also important to start to establish a set of plasma weather records and a record of the ability to predict this weather. A successful forecasting system requires a set of satellite weather stations to provide data from which predictions can be made and a set of plasma weather codes capable of accurately forecasting the status of the Earth's magnetosphere. A numerical magnetohydrodynamic fluid model which is used to model the flow in the magnetosphere, the currents flowing into and out of the auroral regions, the magnetopause, the bow shock location and the magnetotail of the Earth is discussed.

  4. AGN STORM: A Leap Forward In Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Dalla Bontà, Elena; AGN STORM Team

    2016-10-01

    Reverberation mapping is a tomographic technique that can be used to determine the structure and kinematics of the broad- line emitting region at the center of active galactic nuclei. By-products of these investigations are the masses of the central black holes and information about the structure of the accretion disk. I will show some of the most recent results from the AGN Space Telescope and Optical Reverberation Mapping (AGN STORM) project, which was built around 180 daily observations of the bright Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope. AGN STORM included observations made with Swift, XMM, and several ground-based telescopes, including the 1.22-m telescope at Asiago Observatory. Elena Dalla Bonta` on behalf of the AGN STORM Team.

  5. Observations of storm morphodynamics using Coastal Lidar and Radar Imaging System (CLARIS): Importance of wave refraction and dissipation over complex surf-zone morphology at a shoreline erosional hotspot

    NASA Astrophysics Data System (ADS)

    Brodie, Katherine L.

    Elevated water levels and large waves during storms cause beach erosion, overwash, and coastal flooding, particularly along barrier island coastlines. While predictions of storm tracks have greatly improved over the last decade, predictions of maximum water levels and variations in the extent of damage along a coastline need improvement. In particular, physics based models still cannot explain why some regions along a relatively straight coastline may experience significant erosion and overwash during a storm, while nearby locations remain seemingly unchanged. Correct predictions of both the timing of erosion and variations in the magnitude of erosion along the coast will be useful to both emergency managers and homeowners preparing for an approaching storm. Unfortunately, research on the impact of a storm to the beach has mainly been derived from "pre" and "post" storm surveys of beach topography and nearshore bathymetry during calm conditions. This has created a lack of data during storms from which to ground-truth model predictions and test hypotheses that explain variations in erosion along a coastline. We have developed Coastal Lidar and Radar Imaging System (CLARIS), a mobile system that combines a terrestrial scanning laser and an X-band marine radar system using precise motion and location information. CLARIS can operate during storms, measuring beach topography, nearshore bathymetry (from radar-derived wave speed measurements), surf-zone wave parameters, and maximum water levels remotely. In this dissertation, we present details on the development, design, and testing of CLARIS and then use CLARIS to observe a 10 km section of coastline in Kitty Hawk and Kill Devil Hills on the Outer Banks of North Carolina every 12 hours during a Nor'Easter (peak wave height in 8 m of water depth = 3.4 m). High decadal rates of shoreline change as well as heightened erosion during storms have previously been documented to occur within the field site. In addition, complex bathymetric features that traverse the surf-zone into the nearshore are present along the southern six kilometers of the field site. In addition to the CLARIS observations, we model wave propagation over the complex nearshore bathymetry for the same storm event. Data reveal that the complex nearshore bathymetry is mirrored by kilometer scale undulations in the shoreline, and that both morphologies persist during storms, contrary to common observations of shoreline and surf-zone linearization by large storm waves. We hypothesize that wave refraction over the complex nearshore bathymetry forces flow patterns which may enhance or stabilize the shoreline and surf-zone morphology during storms. In addition, our semi-daily surveys of the beach indicate that spatial and temporal patterns of erosion are strongly correlated to the steepness of the waves. Along more than half the study site, fifty percent or more of the erosion that occurred during the first 12 hours of the storm was recovered within 24 hours of the peak of the storm as waves remained large (>2.5 m), but transitioned to long period swell. In addition, spatial variations in the amount of beach volume change during the building portion of the storm were strongly correlated with observed wave dissipation within the inner surf zone, as opposed to predicted inundation elevations or alongshore variations in wave height.

  6. Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach

    DTIC Science & Technology

    2012-09-30

    characterization of extratropical storms and extremes and link these to LFV modes. Mingfang Ting, Yochanan Kushnir, Andrew W. Robertson...simulating and predicting a wide range of climate phenomena including ENSO, tropical Atlantic sea surface temperatures (SSTs), storm track variability...into empirical prediction models. Use observations to improve low-order dynamical MJO models. Adam Sobel, Daehyun Kim. Extratropical variability

  7. Adjustment of regional regression models of urban-runoff quality using data for Chattanooga, Knoxville, and Nashville, Tennessee

    USGS Publications Warehouse

    Hoos, Anne B.; Patel, Anant R.

    1996-01-01

    Model-adjustment procedures were applied to the combined data bases of storm-runoff quality for Chattanooga, Knoxville, and Nashville, Tennessee, to improve predictive accuracy for storm-runoff quality for urban watersheds in these three cities and throughout Middle and East Tennessee. Data for 45 storms at 15 different sites (five sites in each city) constitute the data base. Comparison of observed values of storm-runoff load and event-mean concentration to the predicted values from the regional regression models for 10 constituents shows prediction errors, as large as 806,000 percent. Model-adjustment procedures, which combine the regional model predictions with local data, are applied to improve predictive accuracy. Standard error of estimate after model adjustment ranges from 67 to 322 percent. Calibration results may be biased due to sampling error in the Tennessee data base. The relatively large values of standard error of estimate for some of the constituent models, although representing significant reduction (at least 50 percent) in prediction error compared to estimation with unadjusted regional models, may be unacceptable for some applications. The user may wish to collect additional local data for these constituents and repeat the analysis, or calibrate an independent local regression model.

  8. A survey of of uses and value of space weather information

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Rabanal, J.

    2013-12-01

    We analyze some 2,800 responses to a survey among subscribers of NOAA's Space Weather Prediction Center email services. Interest in, anticipated impacts from, and responses to solar flares, energetic particle events, and geomagnetic storms are quite uniform across societal sectors. Approximately 40% of the respondents expect serious to very serious impacts from space weather events if no action were taken to mitigate or in the absence of adequate space weather information. The impacts of space weather are deemed to be substantially reduced because of the availability of, and the response to, space-weather forecasts and alerts. Space weather information is primarily used as aid to understand anomalies, to implement mitigating strategies designed to avoid impacts on operations, and to prepare for potential contingencies related directly or indirectly to space weather. Current and near-future space-weather conditions are generally highly valued, considered useful, and generally, though not fully, adequate to avoid or mitigate societal impacts (related most frequently to human safety and reliability of operations). We conclude that even among those receiving space weather information, there is considerable uncertainty about how to act on the information provided.

  9. Evaluation of the NCEP CFSv2 45-day Forecasts for Predictability of Intraseasonal Tropical Storm Activities

    NASA Astrophysics Data System (ADS)

    Schemm, J. E.; Long, L.; Baxter, S.

    2013-12-01

    Evaluation of the NCEP CFSv2 45-day Forecasts for Predictability of Intraseasonal Tropical Storm Activities Jae-Kyung E. Schemm, Lindsey Long and Stephen Baxter Climate Prediction Center, NCEP/NWS/NOAA Predictability of intraseasonal tropical storm (TS) activities is assessed using the 1999-2010 CFSv2 hindcast suite. Weekly TS activities in the CFSv2 45-day forecasts were determined using the TS detection and tracking method devised by Carmago and Zebiak (2002). The forecast periods are divided into weekly intervals for Week 1 through Week 6, and also the 30-day mean. The TS activities in those intervals are compared to the observed activities based on the NHC HURDAT and JTWC Best Track datasets. The CFSv2 45-day hindcast suite is made of forecast runs initialized at 00, 06, 12 and 18Z every day during the 1999 - 2010 period. For predictability evaluation, forecast TS activities are analyzed based on 20-member ensemble forecasts comprised of 45-day runs made during the most recent 5 days prior to the verification period. The forecast TS activities are evaluated in terms of the number of storms, genesis locations and storm tracks during the weekly periods. The CFSv2 forecasts are shown to have a fair level of skill in predicting the number of storms over the Atlantic Basin with the temporal correlation scores ranging from 0.73 for Week 1 forecasts to 0.63 for Week 6, and the average RMS errors ranging from 0.86 to 1.07 during the 1999-2010 hurricane season. Also, the forecast track density distribution and false alarm statistics are compiled using the hindcast analyses. In real-time applications of the intraseasonal TS activity forecasts, the climatological TS forecast statistics will be used to make the model bias corrections in terms of the storm counts, track distribution and removal of false alarms. An operational implementation of the weekly TS activity prediction is planned for early 2014 to provide an objective input for the CPC's Global Tropical Hazards Outlooks.

  10. Prediction of Sym-H index by NARX neural network from IMF and solar wind data

    NASA Astrophysics Data System (ADS)

    Cai, L.; Ma, S.-Y.; Liu, R.-S.; Schlegel, K.; Zhou, Y.-L.; Luehr, H.

    2009-04-01

    Similar to Dst, the Sym-H index is also an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study an artificial neural network (ANN) of Nonlinear Auto Regressive with eXogenous inputs (NARX) has been developed to predict for the first time Sym-H index from solar wind and IMF parameters. In total 73 great storm events during 1998 to 2006 are used, out of which 67 are selected to train the network and the other 6 samples including 2 super-storms for test. The newly developed NARX model shows much better capability than usual BP and Elman network in Sym-H prediction. When using IMF Bz, By and total B with a history length of 90 minutes along with solar wind proton density Np and velocity Vsw as the original external inputs of the ANN to predict Sym-H index one hour later, the cross-correlation between NARX network predicted and Kyoto observed Sym-H is 0.95 for the 6 test storms as a whole, even as high as 0.95 and 0.98 respectively for the two super-storms. This excellent performance of the NARX model can mainly be attributed to a feedback from the output neuron with a suitable length of about 120 min. to the external input. It is such a feedback that makes the ring current status properly brought into effect in the prediction of storm-time Sym-H index by our NARX network. Furthermore, different parameter combinations with different history length (70 to 120 min.) for IMF and solar wind data as external inputs are examined along with different hidden neuron number. It is found that the NARX network with 10 hidden units and with 100 min. length of Bz, Np and Vsw as external inputs provides the best results in Sym-H prediction. Besides, efforts have also been made to predict Sym-H longer time ahead, showing that the NARX network can predict Sym-H index 180 min. ahead with correlation coefficient of 0.94 between predicted and observed Sym-H and RMSE less than 19 nT for the 6 test samples.

  11. Monitoring Changes of Tropical Extreme Rainfall Events Using Differential Absorption Barometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, R. Wes; Hu, Yongxiang; Min, Qilong

    2015-01-01

    This work studies the potential of monitoring changes in tropical extreme rainfall events such as tropical storms from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 gigahertz O2 absorption band to remotely measure sea surface air pressure. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 5 millibars (approximately 1 millibar) under all weather conditions. With these sea level pressure measurements, the forecasts, analyses and understanding of these extreme events in both short and long time scales can be improved. Severe weathers, especially hurricanes, are listed as one of core areas that need improved observations and predictions in WCRP (World Climate Research Program) and NASA Decadal Survey (DS) and have major impacts on public safety and national security through disaster mitigation. Since the development of the DiBAR concept about a decade ago, our team has made substantial progress in advancing the concept. Our feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. We have developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with our instrumentation goals. Observational system simulation experiments for space DiBAR performance show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on tropical extreme rainfall weather and climate conditions.

  12. Clustering of European winter storms: A multi-model perspective

    NASA Astrophysics Data System (ADS)

    Renggli, Dominik; Buettner, Annemarie; Scherb, Anke; Straub, Daniel; Zimmerli, Peter

    2016-04-01

    The storm series over Europe in 1990 (Daria, Vivian, Wiebke, Herta) and 1999 (Anatol, Lothar, Martin) are very well known. Such clusters of severe events strongly affect the seasonally accumulated damage statistics. The (re)insurance industry has quantified clustering by using distribution assumptions deduced from the historical storm activity of the last 30 to 40 years. The use of storm series simulated by climate models has only started recently. Climate model runs can potentially represent 100s to 1000s of years, allowing a more detailed quantification of clustering than the history of the last few decades. However, it is unknown how sensitive the representation of clustering is to systematic biases. Using a multi-model ensemble allows quantifying that uncertainty. This work uses CMIP5 decadal ensemble hindcasts to study clustering of European winter storms from a multi-model perspective. An objective identification algorithm extracts winter storms (September to April) in the gridded 6-hourly wind data. Since the skill of European storm predictions is very limited on the decadal scale, the different hindcast runs are interpreted as independent realizations. As a consequence, the available hindcast ensemble represents several 1000 simulated storm seasons. The seasonal clustering of winter storms is quantified using the dispersion coefficient. The benchmark for the decadal prediction models is the 20th Century Reanalysis. The decadal prediction models are able to reproduce typical features of the clustering characteristics observed in the reanalysis data. Clustering occurs in all analyzed models over the North Atlantic and European region, in particular over Great Britain and Scandinavia as well as over Iberia (i.e. the exit regions of the North Atlantic storm track). Clustering is generally weaker in the models compared to reanalysis, although the differences between different models are substantial. In contrast to existing studies, clustering is driven by weak and moderate events, and not by extreme storms. Thus, the decision which climate model to use to quantify clustering can have a substantial impact on the risk assessment in the (re)insurance business.

  13. Empirical model for the electron density peak height disturbance in response to solar wind conditions

    NASA Astrophysics Data System (ADS)

    Blanch, E.; Altadill, D.

    2009-04-01

    Geomagnetic storms disturb the quiet behaviour of the ionosphere, its electron density and the electron density peak height, hmF2. Many works have been done to predict the variations of the electron density but few efforts have been dedicated to predict the variations the hmF2 under disturbed helio-geomagnetic conditions. We present the results of the analyses of the F2 layer peak height disturbances occurred during intense geomagnetic storms for one solar cycle. The results systematically show a significant peak height increase about 2 hours after the beginning of the main phase of the geomagnetic storm, independently of both the local time position of the station at the onset of the storm and the intensity of the storm. An additional uplift is observed in the post sunset sector. The duration of the uplift and the height increase are dependent of the intensity of the geomagnetic storm, the season and the local time position of the station at the onset of the storm. An empirical model has been developed to predict the electron density peak height disturbances in response to solar wind conditions and local time which can be used for nowcasting and forecasting the hmF2 disturbances for the middle latitude ionosphere. This being an important output for EURIPOS project operational purposes.

  14. Applying AI tools to operational space environmental analysis

    NASA Technical Reports Server (NTRS)

    Krajnak, Mike; Jesse, Lisa; Mucks, John

    1995-01-01

    The U.S. Air Force and National Oceanic Atmospheric Agency (NOAA) space environmental operations centers are facing increasingly complex challenges meeting the needs of their growing user community. These centers provide current space environmental information and short term forecasts of geomagnetic activity. Recent advances in modeling and data access have provided sophisticated tools for making accurate and timely forecasts, but have introduced new problems associated with handling and analyzing large quantities of complex data. AI (Artificial Intelligence) techniques have been considered as potential solutions to some of these problems. Fielding AI systems has proven more difficult than expected, in part because of operational constraints. Using systems which have been demonstrated successfully in the operational environment will provide a basis for a useful data fusion and analysis capability. Our approach uses a general purpose AI system already in operational use within the military intelligence community, called the Temporal Analysis System (TAS). TAS is an operational suite of tools supporting data processing, data visualization, historical analysis, situation assessment and predictive analysis. TAS includes expert system tools to analyze incoming events for indications of particular situations and predicts future activity. The expert system operates on a knowledge base of temporal patterns encoded using a knowledge representation called Temporal Transition Models (TTM's) and an event database maintained by the other TAS tools. The system also includes a robust knowledge acquisition and maintenance tool for creating TTM's using a graphical specification language. The ability to manipulate TTM's in a graphical format gives non-computer specialists an intuitive way of accessing and editing the knowledge base. To support space environmental analyses, we used TAS's ability to define domain specific event analysis abstractions. The prototype system defines events covering reports of natural phenomena such as solar flares, bursts, geomagnetic storms, and five others pertinent to space environmental analysis. With our preliminary event definitions we experimented with TAS's support for temporal pattern analysis using X-ray flare and geomagnetic storm forecasts as case studies. We are currently working on a framework for integrating advanced graphics and space environmental models into this analytical environment.

  15. Model Improvement by Assimilating Observations of Storm-Induced Coastal Change

    NASA Astrophysics Data System (ADS)

    Long, J. W.; Plant, N. G.; Sopkin, K.

    2010-12-01

    Discrete, large scale, meteorological events such as hurricanes can cause wide-spread destruction of coastal islands, habitats, and infrastructure. The effects can vary significantly along the coast depending on the configuration of the coastline, variable dune elevations, changes in geomorphology (sandy beach vs. marshland), and alongshore variations in storm hydrodynamic forcing. There are two primary methods of determining the changing state of a coastal system. Process-based numerical models provide highly resolved (in space and time) representations of the dominant dynamics in a physical system but must employ certain parameterizations due to computational limitations. The predictive capability may also suffer from the lack of reliable initial or boundary conditions. On the other hand, observations of coastal topography before and after the storm allow the direct quantification of cumulative storm impacts. Unfortunately these measurements suffer from instrument noise and a lack of necessary temporal resolution. This research focuses on the combination of these two pieces of information to make more reliable forecasts of storm-induced coastal change. Of primary importance is the development of a data assimilation strategy that is efficient, applicable for use with highly nonlinear models, and able to quantify the remaining forecast uncertainty based on the reliability of each individual piece of information used in the assimilation process. We concentrate on an event time-scale and estimate/update unobserved model information (boundary conditions, free parameters, etc.) by assimilating direct observations of coastal change with those simulated by the model. The data assimilation can help estimate spatially varying quantities (e.g. friction coefficients) that are often modeled as homogeneous and identify processes inadequately characterized in the model.

  16. Solar Eruptions, CMEs and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    Coronal mass ejections (CMEs) are large-scale magnetized plasma structures ejected from the Sun and propagate far into the interplanetary medium. CMEs represent energy output from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of solar storms.

  17. Ionospheric Observations During a Geomagnetic Storm from LITES on the ISS

    NASA Astrophysics Data System (ADS)

    Finn, S. C.; Stephan, A. W.; Cook, T.; Budzien, S. A.; Chakrabarti, S.; Erickson, P. J.; Geddes, G.

    2017-12-01

    The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an extreme-ultraviolet imaging spectrograph that launched in February 2017 and was installed on the International Space Station (ISS). LITES is limb-viewing ( 150 - 350 km tangent altitude) and measures airglow emissions from 60 - 140 nm with 0.2° angular and 1 nm spectral resolutions. We present early LITES results of observations during a G2 geomagnetic storm in April 2017. In addition to LITES data, we will show complementary ground-based incoherent scatter radar (ISR) observations from Millstone Hill during this storm. The combination of LITES EUV space-based observations with the ground-based radio data is an example of the capability of campaign-style measurements of the ionosphere-thermosphere system using multiwavelength ground- and space-based instruments.

  18. The Unknown Hydrogen Exosphere: Space Weather Implications

    NASA Astrophysics Data System (ADS)

    Krall, J.; Glocer, A.; Fok, M.-C.; Nossal, S. M.; Huba, J. D.

    2018-03-01

    Recent studies suggest that the hydrogen (H) density in the exosphere and geocorona might differ from previously assumed values by factors as large as 2. We use the SAMI3 (Sami3 is Also a Model of the Ionosphere) and Comprehensive Inner Magnetosphere-Ionosphere models to evaluate scenarios where the hydrogen density is reduced or enhanced, by a factor of 2, relative to values given by commonly used empirical models. We show that the rate of plasmasphere refilling following a geomagnetic storm varies nearly linearly with the hydrogen density. We also show that the ring current associated with a geomagnetic storm decays more rapidly when H is increased. With respect to these two space weather effects, increased exosphere hydrogen density is associated with reduced threats to space assets during and following a geomagnetic storm.

  19. Strides made in understanding space weather at Earth

    NASA Astrophysics Data System (ADS)

    Buonsanto, M. J.; Fuller-Rowell, T. J.

    Disturbances on the Sun can produce dramatic effects in the space environment surrounding the Earth. Energetic particle effects become more intense and pose a hazard to astronauts and damage spacecraft electronics; satellite lifetimes are shortened by increased atmospheric drag, and communications and navigation are disrupted by the changing plasma environment.“Space weather” has become the modern idiom for these effects, and periods of high activity are called geomagnetic storms. During a storm the ionosphere can be severely altered. A typical episode may reveal either a large decrease (negative phase) or increase (positive phase) in the normal daily peak ion density (NmF2) or total electron content (TEC). These changes in ion density are sometimes called ionospheric storms, and often persist for more than a day after a period of high geomagnetic activity.

  20. Quantitative Evaluation of Ionosphere Models for Reproducing Regional TEC During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Shim, J. S.; Kuznetsova, M.; Rastaetter, L.; Bilitza, D.; Codrescu, M.; Coster, A. J.; Emery, B.; Foster, B.; Fuller-Rowell, T. J.; Goncharenko, L. P.; Huba, J.; Mitchell, C. N.; Ridley, A. J.; Fedrizzi, M.; Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Zhu, L.

    2015-12-01

    TEC (Total Electron Content) is one of the key parameters in description of the ionospheric variability that has influence on the accuracy of navigation and communication systems. To assess current TEC modeling capability of ionospheric models during geomagnetic storms and to establish a baseline against which future improvement can be compared, we quantified the ionospheric models' performance by comparing modeled vertical TEC values with ground-based GPS TEC measurements and Multi-Instrument Data Analysis System (MIDAS) TEC. The comparison focused on North America and Europe sectors during selected two storm events: 2006 AGU storm (14-15 Dec. 2006) and 2013 March storm (17-19 Mar. 2013). The ionospheric models used for this study range from empirical to physics-based, and physics-based data assimilation models. We investigated spatial and temporal variations of TEC during the storms. In addition, we considered several parameters to quantify storm impacts on TEC: TEC changes compared to quiet time, rate of TEC change, and maximum increase/decrease during the storms. In this presentation, we focus on preliminary results of the comparison of the models performance in reproducing the storm-time TEC variations using the parameters and skill scores. This study has been supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) for the space science communities to use.

  1. The Global Statistical Response of the Outer Radiation Belt During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Watt, C. E. J.; Mann, I. R.; Jonathan Rae, I.; Sibeck, D. G.; Boyd, A. J.; Forsyth, C. F.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J.

    2018-05-01

    Using the total radiation belt electron content calculated from Van Allen Probe phase space density, the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using phase space density reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and nonadiabatic effects and revealing a clear modality and repeatable sequence of events in storm time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ)-dependent behavior in the seed (150 MeV/G), relativistic (1,000 MeV/G), and ultrarelativistic (4,000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, while the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

  2. (abstract) Application of the GPS Worldwide Network in the Study of Global Ionospheric Storms

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Mannucci, A. J.; Lindqwister, U. J.; Pi, X.; Sparks, L. C.; Rao, A. M.; Wilsion, B. D.; Yuan, D. N.; Reyes, M.

    1997-01-01

    Ionospheric storm dynamics as a response to the geomagnetic storms is a very complicated global process involving many different mechanisms. Studying ionospheric storms will help us to understand the energy coupling process between the Sun and Earth and possibly also to effectively forecast space weather changes. Such a study requires a worldwide monitoring system. The worldwide GPS network, for the first time, makes near real-time global ionospheric TEC measurements a possibility.

  3. Satellite Sees Major Winter Storm Ready to Wallop Mid-Atlantic

    NASA Image and Video Library

    2014-03-02

    A major winter storm is poised to wallop the Mid-Atlantic and bring large amounts of snow to cities including Baltimore, Md., Washington, D.C. area on March 2 and 3, according to NOAA's National Weather Service. NOAA's GOES-East satellite captured this image of the clouds associated with the winter storm as it continued moving east toward those cities. On March 2, the National Weather Prediction Center in College Park, Md. noted that there is a slight risk for severe thunderstorms over parts of the western Gulf Coast and the Lower Mississippi Valley as a result of the southern portion of the system. The update at 7 a.m. EST noted that freezing rain/sleet is possible over parts of the lower Mississippi Valley and parts of the central Appalachians, while eastern Texas and the lower Mississippi Valley into the Ohio Valley are expected to experience heavy rain. The NWS Short Range Forecast Discussion stated "A strong storm over the Southern Plains/Lower Mississippi Valley will advance northeastward along a quasi-stationary front to off the Southern Mid-Atlantic Coast by Monday evening. Moisture from the Gulf of Mexico will overrun and pool along the associated front producing an area of snow extending from the Central Plains into the Northeast." The clouds are associated with a cold from that stretches from eastern Maine through Maryland and west into the Tennessee Valley. The low pressure center associated with the front was located over Arkansas. At NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. the cloud data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the position of this major winter storm. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA Goddard Space Flight Center, Greenbelt, Md. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Extreme Magnetic Storms: Their Characteristics and Possible Consequences for Humanity

    NASA Astrophysics Data System (ADS)

    Falkowski, B. J.; Tsurutani, B.; Lakhina, G. S.; Deng, Y.; Mannucci, A. J.

    2015-12-01

    The solar and interplanetary conditions necessary to create an extreme magnetic storm will be discussed. The Carrington 1859 event was not the largest possible. It will be shown that different facets of fast ICMEs/extreme magnetic storms will have different limitations. Some possible adverse effects of such extreme space weather events on society will be addressed.

  5. View from Space Shows Winter Storm Sweep Over U.S. East Coast

    NASA Image and Video Library

    2015-03-05

    A winter storm was bringing snow, sleet and freezing rain from lower Mississippi Valley to Northeastern U.S. on Thursday, March 5, 2015. A new NASA animation of NOAA's GOES-East satellite imagery showed the progression of the clouds associated with the storm system that triggered winter storm warnings and winter weather advisories from the southern Plains eastward through the Mid-Atlantic and southern New England coast. The system also triggered flood warnings along and to the west of the central Appalachians. An animation of GOES satellite visible and infrared imagery from March 3 through March 5 showed clouds associated with a cold front push over U.S. East coast. Behind the front, Arctic air is expected to drop low temperatures into the single numbers from Washington, D.C. to Minnesota overnight. Temperatures in the Carolinas and Tennessee are expected to drop to the low 20s. NOAA's National Weather Service Weather Prediction Center (NWS NPC) in College Park, Maryland noted "a strong cold front moving across the eastern U.S. will bring heavy snow from parts of the Ohio Valley to the Northeast today (March 5) with rain, freezing rain and sleet possible from parts of the lower Mississippi Valley across the Southeast to the southern Mid-Atlantic. Snowfall totals of 5 to 10 inches are possible for some areas. Winter Storm Warnings remain in effect from Texas to Nantucket." The animation ends at 17:45 UTC (12:45 p.m. EST). Before the end of the animation, the low pressure center along an arctic frontal boundary was nearly stationary over western North Carolina at 9 a.m. EST on March 5, according to the NWS NPC. NWS radar and surface observations indicated an extended swath of precipitation from near the Texas Gulf Coast through the interior eastern U.S. into southern New England. NPC's storm summary noted at that time "rain was changing to sleet/freezing rain and to all snow along a band within this swath as colder air continues to filter in from the north. Some areas in Tennessee, the northern mid-Atlantic and southern New England were reporting moderate to heavy snow." To create the video and imagery, NASA/NOAA's GOES Project takes the cloud data from NOAA's GOES-East satellite and overlays it on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the storm and show its movement. After the storm system passes, the snow on the ground becomes visible. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. The use of copula functions for predictive analysis of correlations between extreme storm tides

    NASA Astrophysics Data System (ADS)

    Domino, Krzysztof; Błachowicz, Tomasz; Ciupak, Maurycy

    2014-11-01

    In this paper we present a method used in quantitative description of weakly predictable hydrological, extreme events at inland sea. Investigations for correlations between variations of individual measuring points, employing combined statistical methods, were carried out. As a main tool for this analysis we used a two-dimensional copula function sensitive for correlated extreme effects. Additionally, a new proposed methodology, based on Detrended Fluctuations Analysis (DFA) and Anomalous Diffusion (AD), was used for the prediction of negative and positive auto-correlations and associated optimum choice of copula functions. As a practical example we analysed maximum storm tides data recorded at five spatially separated places at the Baltic Sea. For the analysis we used Gumbel, Clayton, and Frank copula functions and introduced the reversed Clayton copula. The application of our research model is associated with modelling the risk of high storm tides and possible storm flooding.

  7. Testing Taylor’s hypothesis in Amazonian rainfall fields during the WETAMC/LBA experiment

    NASA Astrophysics Data System (ADS)

    Poveda, Germán; Zuluaga, Manuel D.

    2005-11-01

    Taylor's hypothesis (TH) for rainfall fields states that the spatial correlation of rainfall intensity at two points at the same instant of time can be equated with the temporal correlation at two instants of time at some fixed location. The validity of TH is tested in a set of 12 storms developed in Rondonia, southwestern Amazonia, Brazil, during the January-February 1999 Wet Season Atmospheric Meso-scale Campaign. The time Eulerian and Lagrangian Autocorrelation Functions (ACF) are estimated, as well as the time-averaged space ACF, using radar rainfall rates of storms spanning between 3.2 and 23 h, measured at 7-10-min time resolution, over a circle of 100 km radius, at 2 km spatial resolution. TH does not hold in 9 out of the 12 studied storms, due to their erratic trajectories and very low values of zonal wind velocity at 700 hPa, independently from underlying atmospheric stability conditions. TH was shown to hold for 3 storms, up to a cutoff time scale of 10-15 min, which is closely related to observed features of the life cycle of convective cells in the region. Such cutoff time scale in Amazonian storms is much shorter than the 40 min identified in mid-latitude convective storms, due to much higher values of CAPE and smaller values of storm speed in Amazonian storms as compared to mid-latitude ones, which in turn contribute to a faster destruction of the rainfall field isotropy. Storms satisfying TH undergo smooth linear trajectories over space, and exhibit the highest negative values of maximum, mean and minimum zonal wind velocity at 700 hPa, within narrow ranges of atmospheric stability conditions. Non-dimensional parameters involving CAPE (maximum, mean and minimum) and CINE (mean) are identified during the storms life cycle, for which TH holds: CAPE mean/CINE mean = [30-35], CAPE max/CINE mean = [32-40], and CAPE min/CINE mean = [22-28]. These findings are independent upon the timing of storms within the diurnal cycle. Also, the estimated Eulerian time ACF's decay faster than the time-averaged space and the Lagrangian time ACF's, irrespectively of TH validity. The Eulerian ACF's exhibit shorter e-folding times, reflecting smaller correlations over short time scales, but also shorter scale of fluctuation, reflecting less persistence in time than over space. No significant associations (linear, exponential or power law) were found between estimated e-folding times and scale of fluctuation, with all estimates of CAPE and CINE. Secondary correlation maxima appear between 50 and 70 min in the Lagrangian time ACF's for storms satisfying TH. No differences were found in the behavior of each of the three ACF's for storms developed during either the Easterly or Westerly zonal wind regimes which characterize the development of meso-scale convective systems over the region. These results have important implications for modelling and downscaling rainfall fields over tropical land areas.

  8. Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations

    NASA Technical Reports Server (NTRS)

    Mertens, C. J.; Xu, X.; Fernandez, J. R.; Bilitza, D.; Russell, J. M., III; Mlynczak, M. G.

    2009-01-01

    Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.

  9. Strong convective storm nowcasting using a hybrid approach of convolutional neural network and hidden Markov model

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jiang, Ling; Han, Lei

    2018-04-01

    Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.

  10. Atmosphere-Wave-Ocean Coupling from Regional to Global Earth System Models for High-Impact Extreme Weather Prediction

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Curcic, M.

    2017-12-01

    The need for acurrate and integrated impact forecasts of extreme wind, rain, waves, and storm surge is growing as coastal population and built environment expand worldwide. A key limiting factor in forecasting impacts of extreme weather events associated with tropical cycle and winter storms is fully coupled atmosphere-wave-ocean model interface with explicit momentum and energy exchange. It is not only critical for accurate prediction of storm intensity, but also provides coherent wind, rian, ocean waves and currents forecasts for forcing for storm surge. The Unified Wave INterface (UWIN) has been developed for coupling of the atmosphere-wave-ocean models. UWIN couples the atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). It is a physically based and computationally efficient coupling sytem that is flexible to use in a multi-model system and portable for transition to the next generation global Earth system prediction mdoels. This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It has been used and extensively tested and verified in regional coupled model forecasts of tropical cycles and winter storms (Chen and Curcic 2016, Curcic et al. 2016, and Judt et al. 2016). We will present 1) an overview of UWIN and its applications in fully coupled atmosphere-wave-ocean model predictions of hurricanes and coastal winter storms, and 2) implenmentation of UWIN in the NASA GMAO GEOS-5.

  11. How and in Which way Space Weather Changed the Ionospheric Irregularities Occurrence During the St. Patricḱs Storm

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Barbosa, F. R. E., Sr.; Kavutarapu, V.; Fejer, B. G.; Pillat, V. G.; De Nardin, C. M.; Muella, M.

    2017-12-01

    During the solar cycle 24 there was a very intense geomagnetic storm, called St. Patricḱs Day storm and the effects of this storm on ionosphere has become a topic of extensive space weather investigation. The Dst during this storm reached -223 nT on March 17, 2015 at 23:00 UT. Special efforts have been devoted so far to investigate many aspects of the St. Patricḱs Day ionospheric storm such as the prompt penetration electric fields (PPEFs), GPS-TEC changes, electron density disturbances, plasma drift, O+ concentration modification, hemispherical asymmetry developments, equatorial ionization anomaly (EIA) modification, and ionospheric irregularities. Besides all these important studies, there are some essential aspects, which have not been addressed yet, related to the occurrence of ionospheric irregularities with different scale sizes. In this paper, we present and discuss the generation and suppression of ionospheric irregularities during March 2015, using the observations conducted in the Latin American Sector from 4 ionosondes (ESF) and 20 GPS-TEC stations (ROT phase fluctuation), which includes the St. Patricḱs Day geomagnetic storm period. Suppression of large-small scales ionospheric irregularities has occurred during the main and second night of the recovery phases. However, during the first night of recovery phase there was post-midnight ionospheric irregularities.

  12. Quantifications of Geomagnetic Storm Impact on TEC and NmF2 during 2013 Mar. event

    NASA Astrophysics Data System (ADS)

    Shim, J. S.; Tsagouri, I.; Goncharenko, L. P.; Mays, M. L.; Taktakishvili, A.; Rastaetter, L.; Kuznetsova, M. M.

    2016-12-01

    We investigate the ionospheric response to 2013 Mar. geomagnetic storm event using GPS TEC, ISR and ionosonde observations in North American sector. In order to quantify variations of TEC and NmF2 (or foF2) due to the storm, we remove the background quiet-time values (e.g., TEC of one day prior to the storm, NmF2 median and average of five quietest days for 30 days prior to the storm). In addition, in order to assess modeling capability of reproducing storm impacts on TEC and NmF2, we compare the observations with various model simulations, which are obtained from empirical, physics-based, and data assimilation models. Further, we investigate how uncertainty in the interplanetary magnetic field (IMF) impacts on TEC and NmF2 during the geomagnetic storm event. For this uncertainty study, we use a physics-based coupled ionosphere-thermosphere model, CTIPe, and solar wind parameters obtained from ensemble of WSA-ENLIL+Cone model simulations. This study has been supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) for the space science communities to use.

  13. Satellite Eyes New England Winter Storm Breaking Records

    NASA Image and Video Library

    2015-02-09

    Another large snowstorm affecting New England was dropping more snow on the region and breaking records on February 9, as NOAA's GOES-East satellite captured an image of the clouds associated with the storm system. On Feb. 9, NOAA's National Weather Service in Boston, Massachusetts noted that "The 30-day snowfall total at Boston ending 7 a.m. this morning is 61.6 inches. This exceeds the previous maximum 30 day snowfall total on record at Boston, which was 58.8 inches ending Feb 7 1978." The GOES-East image was created by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. It showed a blanket of clouds over the U.S. northeast that stretched down to the Mid-Atlantic where there was no snow on the ground in Washington, D.C. NOAA's National Weather Service Weather Prediction Center provided a look at the extent of the storm system and noted "Heavy snow will impact portions of New York State and New England as the new week begins. Freezing rain will spread from western Pennsylvania to Long Island, with rain for the mid-Atlantic states." The low pressure area bringing the snow to the northeast was located in central Pennsylvania. A cold front extended southward from the low across the Tennessee Valley while a stationary boundary extended eastward from the low across the central mid-Atlantic. To create the image, NASA/NOAA's GOES Project takes the cloud data from NOAA's GOES-East satellite and overlays it on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the storm. NOAA's GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric triggers for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Earth Obsersation taken by the Expedition 11 crew

    NASA Image and Video Library

    2005-07-09

    ISS011-E-10257 (9 July 2005) --- This easterly-looking image from the International Space Station shows Hurricane Dennis after the storm had already crossed Cuba and was heading for the northern Gulf of Mexico. Dennis was a Category 3 storm, packing winds of 115 miles per hour, at the time of exposure and located approximately 385 miles southeast of Biloxi, Mississippi or 280 miles south of Panama City, Florida. The image was exposed at 22:07:26 (GMT), July 9, 2005. The storm's eye is just to the right of frame center. The black triangle in extreme lower right is part of the Space Station's window.

  15. Storm surge and tidal range energy

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew; Angeloudis, Athanasios; Robins, Peter; Evans, Paul; Neill, Simon

    2017-04-01

    The need to reduce carbon-based energy sources whilst increasing renewable energy forms has led to concerns of intermittency within a national electricity supply strategy. The regular rise and fall of the tide makes prediction almost entirely deterministic compared to other stochastic renewable energy forms; therefore, tidal range energy is often stated as a predictable and firm renewable energy source. Storm surge is the term used for the non-astronomical forcing of tidal elevation, and is synonymous with coastal flooding because positive storm surges can elevate water-levels above the height of coastal flood defences. We hypothesis storm surges will affect the reliability of the tidal range energy resource; with negative surge events reducing the tidal range, and conversely, positive surge events increasing the available resource. Moreover, tide-surge interaction, which results in positive storm surges more likely to occur on a flooding tide, will reduce the annual tidal range energy resource estimate. Water-level data (2000-2012) at nine UK tide gauges, where the mean tidal amplitude is above 2.5m and thus suitable for tidal-range energy development (e.g. Bristol Channel), were used to predict tidal range power with a 0D modelling approach. Storm surge affected the annual resource estimate by between -5% to +3%, due to inter-annual variability. Instantaneous power output were significantly affected (Normalised Root Mean Squared Error: 3%-8%, Scatter Index: 15%-41%) with spatial variability and variability due to operational strategy. We therefore find a storm surge affects the theoretical reliability of tidal range power, such that a prediction system may be required for any future electricity generation scenario that includes large amounts of tidal-range energy; however, annual resource estimation from astronomical tides alone appears sufficient for resource estimation. Future work should investigate water-level uncertainties on the reliability and predictability of tidal range energy with 2D hydrodynamic models.

  16. Detection of severe storm signatures in loblolly pine using seven-year periodic standardized averages and standard deviations

    Treesearch

    Stevenson Douglas; Thomas Hennessey; Thomas Lynch; Giulia Caterina; Rodolfo Mota; Robert Heineman; Randal Holeman; Dennis Wilson; Keith Anderson

    2016-01-01

    A loblolly pine plantation near Eagletown, Oklahoma was used to test standardized tree ring widths in detecting snow and ice storms. Widths of two rings immediately following suspected storms were standardized against widths of seven rings following the storm (Stan1 and Stan2). Values of Stan1 less than -0.900 predict a severe (usually ice) storm when Stan 2 is less...

  17. Phosphorus export during storm events from a human perturbed watershed, southeast China: Implications for coastal ecology

    NASA Astrophysics Data System (ADS)

    Chen, Nengwang; Wu, Yinqi; Chen, Zhuhong; Hong, Huasheng

    2015-12-01

    Understanding how major storms impact riverine nutrient export to estuaries and the coastal region is crucial in the context of increasing anthropogenic climate and environmental perturbation. In this study, the effects of major storms on river phosphorus (P) were investigated in an agricultural river (SE China), through continuous sampling of dissolved and particulate P during the three largest storm events (A-C) in 2013. There was a major increase in the total P load (3.4-16 fold compared with baseflow). The event mean concentration of storm A was the highest likely due to the first flush effect mobilizing accumulated waste. The flux of DOP and DRP was controlled by discharge as DOP in storm B and DRP in storm C with a relatively simple hysteresis effect with higher fluxes on the rising limb being diluted by rainfall on the falling limb. DOP in storm B remained relatively constant due to delay in DOP flushed from upstream areas balancing dilution by rainfall down stream. DRP in storm C also remained relatively constant caused by successive release of soil DRP to the river from previous unsaturated surface layers. TPP export was greatest towards the early to high stages of the storm events suggesting that most of the eroded sediment and resuspended sediment-bound P are exported during the early stages of the storm. The total flux of P is elevated in watersheds with high levels of human perturbation while climate change is predicted to increase the frequency of major storms. The results of this study are important in predicting the ecosystem response of estuarine and coastal regions to major storms in the riverine catchment area.

  18. Dust Storms in the United States are Associated with Increased Cardiovascular Mortality

    EPA Science Inventory

    Background: Extreme weather events such as dust storms are predicted to become more frequent as the global climate warms through the 21st century. Studies of Asian, Saharan, Arabian, and Australian dust storms have found associations with cardiovascular and total non-accidental...

  19. Compilation of Abstracts of Theses Submitted by Candidates for Degrees, 1 October 1981 - 30 September 1982.

    DTIC Science & Technology

    1983-05-01

    the European Center for Medium Range Weather Forecasts is used to define the storm and to calculate the budgets. Important differences are found...geopotential field at 850, 700 and 500mb on a 120 point grid with 5 degree latitude and longitude spacing that is centered on the storm . The 120 EOF... storm movement and intensity during the past 36 hours. The EOF-based regression equations are verified over an independent sample of 50 storms , and

  20. Contaminant Concentrations in Storm Water Entering the Sinclair/Dyes Inlet Subasin of the Puget Sound, USA During Storm Event and Baseflow Conditions

    DTIC Science & Technology

    2007-03-01

    Contaminant Concentrations in Storm Water Entering the Sinclair/Dyes Inlet Subasin of the Puget Sound , USA During Storm Event and Baseflow Conditions...Johnston1 (Space and Naval Warfare Systems Center, Bremerton, WA, USA), Dwight E. Leisle, Bruce Beckwith, and Gerald Sherrell ( Puget Sound Naval Shipyard...The Sinclair and Dyes Inlet watershed is located on the west side of Puget Sound in Kitsap County, Washington, U.S.A. (Figure 1). Puget Sound Naval

  1. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). Briefing participants included Steven Goodman, NOAA's GOES-R program scientist, and Joseph A. Pica, director of the National Weather Service Office of Observations. GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  2. A Triple Tropical Tempest Train: Karina, Lowell, Mariest

    NASA Image and Video Library

    2014-08-22

    NASA and NOAA satellites are studying the triple tropical tempests that are now romping through the Eastern Pacific Ocean. NOAA's GOES-West satellite captured Tropical Storm Karina, Tropical Storm Lowell and newly formed Tropical Storm Marie on August 22. NOAA's GOES-West satellite captured all three storms in an infrared image at 0900 UTC (5 a.m. EDT), and Tropical Lowell clearly dwarfs Karina to its west, and Marie to the east. The infrared image was created at NASA/NOAA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Maryland. For more information about Lowell, visit: www.nasa.gov/content/goddard/12e-eastern-pacific-ocean/ For more information about Karina, visit: www.nasa.gov/content/goddard/karina-eastern-pacific/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. The ionosphere of Europe and North America before the magnetic storm of October 28, 2003

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.; Macdugall, J. W.; Pyatkova, A. V.

    2006-05-01

    The X17 solar flare occurred on October 28, 2003, and was followed by the X10 flare on October 29. These flares caused very strong geomagnetic storms (Halloween storms). The aim of the present study is to compare the variations in two main ionospheric parameters ( foF2 and hmF2) at two chains of ionosondes located in Europe and North America for the period October 23-28, 2003. This interval began immediately before the storm of October 28 and includes its commencement. Another task of the work is to detect ionospheric precursors of the storm or substorm expansion phase. An analysis is based on SPIDR data. The main results are as follows. The positive peak of δ foF2 (where δ is the difference between disturbed and quiet values) is observed several hours before the magnetic storm or substorm commencement. This peak can serve as a disturbance precursor. The amplitude of δ foF2 values varies from 20 to 100% of the foF2 values. The elements of similarity in the variations in the δ foF2 values at two chains are as follows: (a) the above δ foF2 peak is as a rule observed simultaneously at two chains before the disturbance; (b) the δ foF2 variations are similar at all midlatitude (or, correspondingly, high-latitude) ionosondes of the chain. The differences in the δ foF2 values are as follows: (a) the effect of the main phase and the phase of strong storm recovery at one chain differs from such an effect at another chain; (b) the manifestation of disturbances at high-latitude stations of the chain differ from the manifestations at midlatitude stations. The δ hmF2 variations are approximately opposite to the δ foF2 variations, and the δ hmF2 values lie in the interval 15-25% of the hmF2 values. The performed study is useful and significant in studying the problems of the space weather, especially in a short-term prediction of ionospheric disturbances caused by magnetospheric storms or substorms.

  4. Severe storms and local weather research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Developments in the use of space related techniques to understand storms and local weather are summarized. The observation of lightning, storm development, cloud development, mesoscale phenomena, and ageostrophic circulation are discussed. Data acquisition, analysis, and the development of improved sensor and computer systems capability are described. Signal processing and analysis and application of Doppler lidar data are discussed. Progress in numerous experiments is summarized.

  5. Aurora Composite Image

    NASA Image and Video Library

    2017-12-08

    This composite image presents the three most visible elements of space weather: a storm from the Sun, aurora as seen from space, and aurora as seen from the Earth. The solar storm is a corona mass ejection (CME) composite from EIT 304Å superimposed on a LASCO C2 image, both from SOHO. The middle image from Polar’s VIS imager shows charged particles as they spread down across the U.S. during a large solar storm event on July 14, 2000. Lastly, Jan Curtis took this image of an aurora display in Alaska, the visible evidence of space weather that we see here on Earth. Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  6. Forecast for the Remainder of the Leonid Storm Season

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The dust trails of comet 55P/Tempel-Tuttle lead to Leonid storms on Earth, threatening satellites in orbit. We present a new model that accounts in detail for the observed properties of dust tails evolved by the comet at previous oppositions. The prediction model shows the 1767-dust trail closer to Earth's orbit in 2001 than originally thought; increasing expected peak rates for North America observers. Predictions for the 2002 storms are less affected. We demonstrate that the observed shower profiles can be understood as a projection of the comet lightcurve.

  7. Improvement of Storm Forecasts Using Gridded Bayesian Linear Regression for Northeast United States

    NASA Astrophysics Data System (ADS)

    Yang, J.; Astitha, M.; Schwartz, C. S.

    2017-12-01

    Bayesian linear regression (BLR) is a post-processing technique in which regression coefficients are derived and used to correct raw forecasts based on pairs of observation-model values. This study presents the development and application of a gridded Bayesian linear regression (GBLR) as a new post-processing technique to improve numerical weather prediction (NWP) of rain and wind storm forecasts over northeast United States. Ten controlled variables produced from ten ensemble members of the National Center for Atmospheric Research (NCAR) real-time prediction system are used for a GBLR model. In the GBLR framework, leave-one-storm-out cross-validation is utilized to study the performances of the post-processing technique in a database composed of 92 storms. To estimate the regression coefficients of the GBLR, optimization procedures that minimize the systematic and random error of predicted atmospheric variables (wind speed, precipitation, etc.) are implemented for the modeled-observed pairs of training storms. The regression coefficients calculated for meteorological stations of the National Weather Service are interpolated back to the model domain. An analysis of forecast improvements based on error reductions during the storms will demonstrate the value of GBLR approach. This presentation will also illustrate how the variances are optimized for the training partition in GBLR and discuss the verification strategy for grid points where no observations are available. The new post-processing technique is successful in improving wind speed and precipitation storm forecasts using past event-based data and has the potential to be implemented in real-time.

  8. Orbit-spin coupling and the interannual variability of global-scale dust storm occurrence on Mars

    NASA Astrophysics Data System (ADS)

    Shirley, James H.; Mischna, Michael A.

    2017-05-01

    A new physical hypothesis predicts that a weak coupling of the orbital and rotational motions of extended bodies may give rise to a modulation of circulatory flows within their atmospheres. Driven cycles of intensification and relaxation of large-scale circulatory flows are predicted, with the phasing of these changes linked directly to the rate of change of the orbital angular momentum, dL/dt, with respect to inertial frames. We test the hypothesis that global-scale dust storms (GDS) on Mars may occur when periods of circulatory intensification (associated with positive and negative extrema of the dL/dt waveform) coincide with the southern summer dust storm season on Mars. The orbit-spin coupling hypothesis additionally predicts that the intervening 'transitional' periods, which are characterized by the disappearance and subsequent sign change of dL/dt, may be unfavorable for the occurrence of GDS, when they occur during the southern summer dust storm season. These hypotheses are strongly supported by comparisons between calculated dynamical time series of dL/dt and historic observations. All of the nine known global-scale dust storms on Mars took place during Mars years when circulatory intensification during the dust storm season is 'retrodicted' under the orbit-spin coupling hypothesis. None of the historic global-scale dust storms of our catalog occurred during transitional intervals. Orbit-spin coupling appears to play an important role in the excitation of the interannual variability of the atmospheric circulation of Mars.

  9. An empirical model for prediction of geomagnetic storms using initially observed CME parameters at the Sun

    NASA Astrophysics Data System (ADS)

    Kim, R.-S.; Cho, K.-S.; Moon, Y.-J.; Dryer, M.; Lee, J.; Yi, Y.; Kim, K.-H.; Wang, H.; Park, Y.-D.; Kim, Yong Ha

    2010-12-01

    In this study, we discuss the general behaviors of geomagnetic storm strength associated with observed parameters of coronal mass ejection (CME) such as speed (V) and earthward direction (D) of CMEs as well as the longitude (L) and magnetic field orientation (M) of overlaying potential fields of the CME source region, and we develop an empirical model to predict geomagnetic storm occurrence with its strength (gauged by the Dst index) in terms of these CME parameters. For this we select 66 halo or partial halo CMEs associated with M-class and X-class solar flares, which have clearly identifiable source regions, from 1997 to 2003. After examining how each of these CME parameters correlates with the geoeffectiveness of the CMEs, we find several properties as follows: (1) Parameter D best correlates with storm strength Dst; (2) the majority of geoeffective CMEs have been originated from solar longitude 15°W, and CMEs originated away from this longitude tend to produce weaker storms; (3) correlations between Dst and the CME parameters improve if CMEs are separated into two groups depending on whether their magnetic fields are oriented southward or northward in their source regions. Based on these observations, we present two empirical expressions for Dst in terms of L, V, and D for two groups of CMEs, respectively. This is a new attempt to predict not only the occurrence of geomagnetic storms, but also the storm strength (Dst) solely based on the CME parameters.

  10. Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model

    NASA Astrophysics Data System (ADS)

    Elsberry, Russell L.; Jordan, Mary S.; Vitart, Frederic

    2010-05-01

    The objective of this study is to provide evidence of predictability on intraseasonal time scales (10-30 days) for western North Pacific tropical cyclone formation and subsequent tracks using the 51-member ECMWF 32-day forecasts made once a week from 5 June through 25 December 2008. Ensemble storms are defined by grouping ensemble member vortices whose positions are within a specified separation distance that is equal to 180 n mi at the initial forecast time t and increases linearly to 420 n mi at Day 14 and then is constant. The 12-h track segments are calculated with a Weighted-Mean Vector Motion technique in which the weighting factor is inversely proportional to the distance from the endpoint of the previous 12-h motion vector. Seventy-six percent of the ensemble storms had five or fewer member vortices. On average, the ensemble storms begin 2.5 days before the first entry of the Joint Typhoon Warning Center (JTWC) best-track file, tend to translate too slowly in the deep tropics, and persist for longer periods over land. A strict objective matching technique with the JTWC storms is combined with a second subjective procedure that is then applied to identify nearby ensemble storms that would indicate a greater likelihood of a tropical cyclone developing in that region with that track orientation. The ensemble storms identified in the ECMWF 32-day forecasts provided guidance on intraseasonal timescales of the formations and tracks of the three strongest typhoons and two other typhoons, but not for two early season typhoons and the late season Dolphin. Four strong tropical storms were predicted consistently over Week-1 through Week-4, as was one weak tropical storm. Two other weak tropical storms, three tropical cyclones that developed from precursor baroclinic systems, and three other tropical depressions were not predicted on intraseasonal timescales. At least for the strongest tropical cyclones during the peak season, the ECMWF 32-day ensemble provides guidance of formation and tracks on 10-30 day timescales.

  11. SLR-induced temporal and spatial changes in hotspots to storms along the Catalan coast

    NASA Astrophysics Data System (ADS)

    Jiménez, Jose A.; Sanuy, Marc; Valdemoro, Herminia

    2017-04-01

    Coastal hotspots to storms can be simply defined as locations where the magnitude of the storm-induced risk is significantly higher than neighbouring areas for a given probability of occurrence. Their distribution along the coast depends on the magnitude of storm-induced hazards and on the coastal resilient capacity. Increasing damages observed in our coasts during the last decades have driven the need to include specific chapters on risk management in ICZM plans. In this context, the identification of hotspots is one of the first points to be considered. This permits to better allocate resources for risk management by concentrating efforts in specific locations. Within this context, we have identified hotspots along the Catalan coast (Spanish Mediterranean) to storm-induced erosion and inundation hazards. This has been done by using the methodology developed within the RISCKIT EU project where storm-induced hazards (erosion and inundation) are characterised in probabilistic terms by using simple inundation and erosion models as a function of water level and wave climates and local coastal morphology. The final result was a set of inundation and erosion hotspots along the coast under current conditions for selected probabilities of occurrences, P. For low return periods, Tr, few hotspots appear and they represent coastal locations frequently affected by the corresponding hazard. On the other, for high Tr, a larger number (and of larger extension) of hotspots appear, that although less frequently affected, they are subjected to a larger impact. Although this is valuable information for coastal managers, it is only valid for making decisions for a short time horizon or under steady conditions. However, since the proper time scale for coastal planning is in the order of several decades, it is not likely that conditions will remain steady. Thus, although most of existing predictions of climate-induce changes in storminess in the Mediterranean indicate the absence of any significant increasing trend, this does not imply that storm-induced coastal hazards will not change. Thus, SLR will induce a series of long-term changes in coastal areas that although not directly affecting storminess will modify the coastal resilient capacity and, thus, changing coastal storm risks. To provide long-term predictions of hotspot, we have assessed the long-term SLR influence on erosion and inundation risks. To do this, an equilibrium-based approach has been adopted in which background SLR-induced shoreline retreat and beach vertical response are assessed for different SLR scenarios. Obtained values are used to predict future coastal morphology and to compute the resilient capacity for each beach at any time horizon. With this information, future erosion and inundation risks and corresponding new spatial distributions of coastal hotspots are calculated for selected probabilities. Obtained results show a significant increase in hotspots along the coast, with most of the changes concentrated in areas with small accommodation space and dominated by mild slope shorefaces. The extension of the new hotspots seems to indicate than unless land planning is considered as a tool for risk reduction, massive protection need to be implemented in certain areas.

  12. Procedures for minimizing the effects of high solar activity on satellite tracking and ephemeris generation

    NASA Technical Reports Server (NTRS)

    Bredvik, Gordon D.

    1990-01-01

    We are currently experiencing a period of high solar radiation combined with wide short-term fluctuations in the radiation. The short-term fluctuations, especially when combined with highly energetic solar flares, can adversely affect the mission of U.S. Space Command's Space Surveillance Center (SSC) which catalogs and tracks the satellites in orbit around the Earth. Rapidly increasing levels of solar electromagnetic and/or particle radiation (solar wind) causes atmospheric warming, which, in turn, causes the upper-most portions of the atmosphere to expand outward, into the regime of low altitude satellites. The increased drag on satellites from this expansion can cause large, unmodeled, in-track displacements, thus undermining the SSC's ability to track and predict satellite position. On 13 March 1989, high solar radiation levels, combined with a high-energy solar flare, caused an exceptional amount of short-term atmospheric warming. The SSC temporarily lost track of over 1300 low altitude satellites--nearly half of the low altitude satellite population. Observational data on satellites that became lost during the days following the 13 March 'solar event' was analyzed and compared with the satellites' last element set prior to the event (referred to as a geomagnetic storm because of the large increase in magnetic flux in the upper atmosphere). The analysis led to a set of procedures for reducing the impact of future geomagnetic storms. These procedures adjust selected software limit parameters in the differential correction of element sets and in the observation association process and must be manually initiated at the onset of a geomagnetic storm. Sensor tasking procedures must be adjusted to ensure that a minimum of four observations per day are received for low altitude satellites. These procedures have been implemented and, thus far, appear to be successful in minimizing the effect of subsequent geomagnetic storms on satellite tracking and ephemeris computation.

  13. The extreme dipolarization during the Galaxy 15 spacecraft anomaly

    NASA Astrophysics Data System (ADS)

    Loto'aniu, P. T. M.; Redmon, R. J.; Welling, D. T.; Rodriguez, J. V.; Haiducek, J. D.

    2016-12-01

    The substorm just prior to the Galaxy 15 spacecraft anomaly on 5 April 2010 was intriguing for a number of reasons, including that multiple spacecraft were well located near-midnight to observe the event. Another reason is that the associated dipolarization was one of the most severe ever observed by GOES satellites, even though the solar wind conditions were moderate. In this study, we compare the Galaxy 15 event to other substorms in order to understand why the dipolarization was so extreme. Presented will be simulations from the Space Weather Modeling Framework (SWMF) of different storms and comparisons made to model results for the Galaxy 15 anomaly event. The SWMF does well in predicting some storms, particularly when heavier O+ ions outflowing from the ionosphere are included. However, the SWMF significantly under-predicts the magnitude of the Galaxy 15 event, regardless of the inclusion of a heavy ion outflow model. The model dipolarization occurs around 30 minutes later than the observed event, while the strength of the dipolarization in terms of the magnetic field was not predicted by the model, although, the model does well overall predicting Dst and Kp. We will also present statistical results representing a survey of dipolarizations observed by the GOES spacecraft over a solar cycle when the satellites were located in the near-midnight local time region. The statistical results are used to determine the occurrence rate and characteristics of similar events to the Galaxy 15 dipolarization event.

  14. Observing storm surges from space: Hurricane Igor off Newfoundland

    PubMed Central

    Han, Guoqi; Ma, Zhimin; Chen, Dake; deYoung, Brad; Chen, Nancy

    2012-01-01

    Coastal communities are becoming increasingly more vulnerable to storm surges under a changing climate. Tide gauges can be used to monitor alongshore variations of a storm surge, but not cross-shelf features. In this study we combine Jason-2 satellite measurements with tide-gauge data to study the storm surge caused by Hurricane Igor off Newfoundland. Satellite observations reveal a storm surge of 1 m in the early morning of September 22, 2010 (UTC) after the passage of the storm, consistent with the tide-gauge measurements. The post-storm sea level variations at St. John's and Argentia are associated with free equatorward-propagating continental shelf waves (with a phase speed of ~10 m/s and a cross-shelf decaying scale of ~100 km). The study clearly shows the utility of satellite altimetry in observing and understanding storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models. PMID:23259048

  15. Probabilistic Storm Surge Forecast For Venice

    NASA Astrophysics Data System (ADS)

    Mel, Riccardo; Lionello, Piero

    2013-04-01

    This study describes an ensemble storm surge prediction procedure for the city of Venice, which is potentially very useful for its management, maintenance and for operating the movable barriers that are presently being built. Ensemble Prediction System (EPS) is meant to complement the existing SL forecast system by providing a probabilistic forecast and information on uncertainty of SL prediction. The procedure is applied to storm surge events in the period 2009-2010 producing for each of them an ensemble of 50 simulations. It is shown that EPS slightly increases the accuracy of SL prediction with respect to the deterministic forecast (DF) and it is more reliable than it. Though results are low biased and forecast uncertainty is underestimated, the probability distribution of maximum sea level produced by the EPS is acceptably realistic. The error of the EPS mean is shown to be correlated with the EPS spread. SL peaks correspond to maxima of uncertainty and uncertainty increases linearly with the forecast range. The quasi linear dynamics of the storm surges produces a modulation of the uncertainty after the SL peak with period corresponding to that of the main Adriatic seiche.

  16. Changing Characteristics of convective storms: Results from a continental-scale convection-permitting climate simulations

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Ikeda, K.; Liu, C.; Bullock, R.; Rasmussen, R.

    2016-12-01

    Convective storms are causing extremes such as flooding, landslides, and wind gusts and are related to the development of tornadoes and hail. Convective storms are also the dominant source of summer precipitation in most regions of the Contiguous United States. So far little is known about how convective storms might change due to global warming. This is mainly because of the coarse grid spacing of state-of-the-art climate models that are not able to resolve deep convection explicitly. Instead, coarse resolution models rely on convective parameterization schemes that are a major source of errors and uncertainties in climate change projections. Convection-permitting climate simulations, with grid-spacings smaller than 4 km, show significant improvements in the simulation of convective storms by representing deep convection explicitly. Here we use a pair of 13-year long current and future convection-permitting climate simulations that cover large parts of North America. We use the Method for Object-Based Diagnostic Evaluation (MODE) that incorporates the time dimension (MODE-TD) to analyze the model performance in reproducing storm features in the current climate and to investigate their potential future changes. We show that the model is able to accurately reproduce the main characteristics of convective storms in the present climate. The comparison with the future climate simulation shows that convective storms significantly increase in frequency, intensity, and size. Furthermore, they are projected to move slower which could result in a substantial increase in convective storm-related hazards such as flash floods, debris flows, and landslides. Some regions, such as the North Atlantic, might experience a regime shift that leads to significantly stronger storms that are unrepresented in the current climate.

  17. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  18. Terrestrial Gamma Ray Flashes due to Particle Acceleration in Tropical Storm Systems

    NASA Technical Reports Server (NTRS)

    Roberts, O. S.; Fitzpatrick, G.; Priftis, G.; Bedka, K.; Chronis, T.; Mcbreen, S.; Briggs, M.; Cramer, E.; Mailyan, B.; Stanbro, M.

    2017-01-01

    Terrestrial gamma ray flashes (TGFs) are submillisecond flashes of energetic radiation that are believed to emanate from intracloud lightning inside thunderstorms. This emission can be detected hundreds of kilometers from the source by space-based observatories such as the Fermi Gamma-ray Space Telescope (Fermi). The location of the TGF-producing storms can be determined using very low frequency (VLF) radio measurements made simultaneously with the Fermi detection, allowing additional insight into the mechanisms which produce these phenomena. In this paper, we report 37 TGFs originating from tropical storm systems for the first time. Previous studies to gain insight into how tropical cyclones formed and how destructive they can be include the investigation of lightning flash rates and their dependence on storm evolution. We find TGFs to emanate from a broad range of distances from the storm centers. In hurricanes and severe tropical cyclones, the TGFs are observed to occur predominately from the outer rainbands. A majority of our sample also show TGFs occurring during the strengthening phase of the encompassing storm system. These results verify that TGF production closely follows when and where lightning predominately occurs in cyclones. The intrinsic characteristics of these TGFs were not found to differ from other TGFs reported in larger samples. We also find that some TGF-producing storm cells in tropical storm systems far removed from land have a low number of WWLLN sferics. Although not unique to tropical cyclones, this TGF/sferic ratio may imply a high efficiency for the lightning in these storms to generate TGFs.

  19. Stability and bistability in a one-dimensional model of coastal foredune height

    NASA Astrophysics Data System (ADS)

    Goldstein, Evan B.; Moore, Laura J.

    2016-05-01

    On sandy coastlines, foredunes provide protection from coastal storms, potentially sheltering low areas—including human habitat—from elevated water level and wave erosion. In this contribution we develop and explore a one-dimensional model for coastal dune height based on an impulsive differential equation. In the model, coastal foredunes continuously grow in a logistic manner as the result of a biophysical feedback and they are destroyed by recurrent storm events that are discrete in time. Modeled dunes can be in one of two states: a high "resistant-dune" state or a low "overwash-flat" state. The number of stable states (equilibrium dune heights) depends on the value of two parameters, the nondimensional storm frequency (the ratio of storm frequency to the intrinsic growth rate of dunes) and nondimensional storm magnitude (the ratio of total water level during storms to the maximum theoretical dune height). Three regions of phase space exist (1) when nondimensional storm frequency is small, a single high resistant-dune attracting state exists; (2) when both the nondimensional storm frequency and magnitude are large, there is a single overwash-flat attracting state; (3) within a defined region of phase space model dunes exhibit bistable behavior—both the resistant-dune and the low overwash-flat states are stable. Comparisons to observational studies suggest that there is evidence for each state to exist independently, the coexistence of both states (i.e., segments of barrier islands consisting of overwash-flats and segments of islands having large dunes that resist erosion by storms), as well as transitions between states.

  20. How to Recognize and Distinguish Low-Latitude Ionospheric Storms Disturbances Produced by TIDs or PPEFs During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Ribeiro, B. A.; Kavutarapu, V.; Fejer, B. G.; Pillat, V. G.

    2016-12-01

    The effects of geomagnetic storms on ionosphere are one of the important aspects of the space weather and identifying the possible sources of these perturbations is important. Among the possible sources of ionospheric perturbations, the Travelling Ionospheric Disturbance (TID) and Prompt Penetration Electric Field (PPEF) are the most important. In this study, we present and discuss the ionospheric response in the Brazilian sector due to geomagnetic storms occurred during January 2013 and March 2015. These space weather events were investigated using a network of 100 GPS-TEC stations. It has been noticed that the VTEC was disturbed during main phase in both storms. During the first event (January), a positive ionospheric storm peak in TEC is observed first beyond the EIA crest and sometime later at low-latitude and equatorial region. This delayed response at different latitudes could be a signature of TID propagation. In this specific event a TID propagating to northwest direction with a velocity of about 200 m/s. However, during the second event (March), 3 positive ionospheric storm peaks were observed in the VTEC from equator to low latitudes during the storm main phase, but these 3 peaks do not present wave propagation characteristics. Probably, an eastward electric field penetrated at equatorial and low-latitude regions uplifts the F-region where the recombination rates are lower leading to a positive ionospheric storm. To distinguish if the positive ionospheric storm was produced by TID or PPEF, it is important to observe the positive ionospheric storm changes along the meridional direction. In case of TIDs, a meridional propagation of the disturbance wave with a phase and speed will be observed. Therefore, the perturbation occurs first beyond the EIA crest and sometime later at the low latitudes and finally at the equatorial region. In case of PPEF the positive ionospheric storm takes place almost simultaneously from beyond the EIA crest to equatorial region.

  1. Adjustment of regional regression equations for urban storm-runoff quality using at-site data

    USGS Publications Warehouse

    Barks, C.S.

    1996-01-01

    Regional regression equations have been developed to estimate urban storm-runoff loads and mean concentrations using a national data base. Four statistical methods using at-site data to adjust the regional equation predictions were developed to provide better local estimates. The four adjustment procedures are a single-factor adjustment, a regression of the observed data against the predicted values, a regression of the observed values against the predicted values and additional local independent variables, and a weighted combination of a local regression with the regional prediction. Data collected at five representative storm-runoff sites during 22 storms in Little Rock, Arkansas, were used to verify, and, when appropriate, adjust the regional regression equation predictions. Comparison of observed values of stormrunoff loads and mean concentrations to the predicted values from the regional regression equations for nine constituents (chemical oxygen demand, suspended solids, total nitrogen as N, total ammonia plus organic nitrogen as N, total phosphorus as P, dissolved phosphorus as P, total recoverable copper, total recoverable lead, and total recoverable zinc) showed large prediction errors ranging from 63 percent to more than several thousand percent. Prediction errors for 6 of the 18 regional regression equations were less than 100 percent and could be considered reasonable for water-quality prediction equations. The regression adjustment procedure was used to adjust five of the regional equation predictions to improve the predictive accuracy. For seven of the regional equations the observed and the predicted values are not significantly correlated. Thus neither the unadjusted regional equations nor any of the adjustments were appropriate. The mean of the observed values was used as a simple estimator when the regional equation predictions and adjusted predictions were not appropriate.

  2. Near Real Time Data for Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2014-12-01

    Space weather operations presents unique challenges for data systems and providers. Space weather events evolve more quickly than terrestrial weather events. While terrestrial weather occurs on timescales of minutes to hours, space weather storms evolve on timescales of seconds to minutes. For example, the degradation of the High Frequency Radio communications between the ground and commercial airlines is nearly instantaneous when a solar flare occurs. Thus the customer is observing impacts at the same time that the operational forecast center is seeing the event unfold. The diversity and spatial scale of the space weather system is such that no single observation can capture the salient features. The vast space that encompasses space weather and the scarcity of observations further exacerbates the situation and make each observation even more valuable. The physics of interplanetary space, through which many major storms propagate, is very different from the physics of the ionosphere where most of the impacts are felt. And while some observations can be made from ground-based observatories, many of the most critical data comes from satellites, often in unique orbits far from Earth. In this presentation, I will describe some of the more important sources and types of data that feed into the operational alerts, watches, and warnings of space weather storms. Included will be a discussion of some of the new space weather forecast models and the data challenges that they bring forward.

  3. View of a South Pacific storm photographed from Skylab space station

    NASA Image and Video Library

    1973-12-02

    SL4-136-3388 (2 Dec. 1973) --- This excellent view of a South Pacific storm was photographed from the Skylab space station in Earth orbit by one of the Skylab 4 crewmen. The camera used was a hand-held 70mm Hasselblad, with SO-368 medium-speed Ektachrome film. This photograph of a low pressure area and associated frontal activity was taken for studying the development of such storm systems. The low sun angle enhances the relief, giving much of the picture a three-dimensional appearance. The good definition of the clouds with the cumulonimbus (thunderstorm clouds) penetrating the cirrus cloud layer makes this an interesting photograph to study. This storm, located east of New Zealand at 170 degrees west longitude and 50 degrees south latitude, is not and never became a typhoon. However, in some ways it may look similar. Photo credit: NASA

  4. Spatially explicit shallow landslide susceptibility mapping over large areas

    USGS Publications Warehouse

    Bellugi, Dino; Dietrich, William E.; Stock, Jonathan D.; McKean, Jim; Kazian, Brian; Hargrove, Paul

    2011-01-01

    Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so it has generated downscaled precipitation maps for the storm. To predict the corresponding pattern of shallow landslide susceptibility across the state, we have used the model Shalstab (a coupled steady state runoff and infinite slope stability model) which susceptibility spatially explicit estimates of relative potential instability. Such slope stability models that include the effects of subsurface runoff on potentially destabilizing pore pressure evolution require water routing and hence the definition of upslope drainage area to each potential cell. To calculate drainage area efficiently over a large area we developed a parallel framework to scale-up Shalstab and specifically introduce a new efficient parallel drainage area algorithm which produces seamless results. The single seamless shallow landslide susceptibility map for all of California was accomplished in a short run time, and indicates that much larger areas can be efficiently modelled. As landslide maps generally over predict the extent of instability for any given storm. Local empirical data on the fraction of predicted unstable cells that failed for observed rainfall intensity can be used to specify the likely extent of hazard for a given storm. This suggests that campaigns to collect local precipitation data and detailed shallow landslide location maps after major storms could be used to calibrate models and improve their use in hazard assessment for individual storms.

  5. Deep Learning for Space Weather Prediction

    NASA Astrophysics Data System (ADS)

    Pauly, M.; Shah, Y.; Cheung, C. M. M.

    2016-12-01

    Through the use of our current fleet of in-orbit solar observatories, we have accumulated a vast amount of high quality solar event data which has greatly helped us to understand the underlying mechanisms of how the Sun works. However, we still lack an accurate and robust system for autonomously predicting solar eruptive events, which are known to cause geomagnetic storms, disturbances in electrical grids, radio black outs, increased drag on satellites, and increased radiation exposure to astronauts. We address the need for a flare prediction system by developing deep neural networks (DNNs) trained with solar data taken by the Helioseismic & Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments onboard the Solar Dynamics Observatory and X-ray flux data taken by the GOES satellites. We describe the architecture of the DNNs trained and compare the performance between different implementations.

  6. Hurricane Matthew Damage Survey

    NASA Image and Video Library

    2016-10-08

    The Kennedy Space Center Visitor Complex is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  7. Hurricane Matthew Damage Assessment

    NASA Image and Video Library

    2016-10-08

    An aerial survey of NASA's Kennedy Space Center in Florida was conducted after Hurricane Matthew hit the Space Coast area. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  8. Morphology of Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Vestine, E. H.

    1961-01-01

    This publication is a product of the continuing study of the properties of charged particles and fields in space being conducted by The RAND Corporation under contract No. NAS5-276 for the National Aeronautics and Space Administration. Magnetic storms, revealed by world-wide changes in the intensity of the earth's magnetic field, and emphasized by disturbances in electromagnetic communication channels, form detectable patterns on the surface of the earth and above it. The author draws together data from various times, places, and altitudes and, coupling these with what is known or inferred about the aurora, the ionosphere, and the relationship between them and the earth's radiation belts, creates a picture of what is believed to occur during a magnetic storm.

  9. Lightning activity observed in upper and lower portions of storms and its relationship to storm structure from VHF mapping and Doppler radar

    NASA Technical Reports Server (NTRS)

    Taylor, W. L.; Rust, W. D.; Macgorman, D. R.; Brandes, E. A.

    1983-01-01

    Space time mapping of very high frequencies (VHF) sources reveals lightning processes for cloud to ground (CG) and for large intracloud (IC) flashes are confined to an altitude below about 10 km and closely associated with the central high reflectivity region of a storm. Another class of IC flashes was identified that produces a splattering of small sources within the main electrically active volume of a storm and also within a large divergent wind canopy at the top of a storm. There is no apparent temporal association between the small high altitude IC flashes occurring almost continuously and the large IC and CG flashes sporadically occurring in the lower portions of storms.

  10. Integrated modeling of storm drain and natural channel networks for real-time flash flood forecasting in large urban areas

    NASA Astrophysics Data System (ADS)

    Habibi, H.; Norouzi, A.; Habib, A.; Seo, D. J.

    2016-12-01

    To produce accurate predictions of flooding in urban areas, it is necessary to model both natural channel and storm drain networks. While there exist many urban hydraulic models of varying sophistication, most of them are not practical for real-time application for large urban areas. On the other hand, most distributed hydrologic models developed for real-time applications lack the ability to explicitly simulate storm drains. In this work, we develop a storm drain model that can be coupled with distributed hydrologic models such as the National Weather Service Hydrology Laboratory's Distributed Hydrologic Model, for real-time flash flood prediction in large urban areas to improve prediction and to advance the understanding of integrated response of natural channels and storm drains to rainfall events of varying magnitude and spatiotemporal extent in urban catchments of varying sizes. The initial study area is the Johnson Creek Catchment (40.1 km2) in the City of Arlington, TX. For observed rainfall, the high-resolution (500 m, 1 min) precipitation data from the Dallas-Fort Worth Demonstration Network of the Collaborative Adaptive Sensing of the Atmosphere radars is used.

  11. Surrogate modeling of joint flood risk across coastal watersheds

    NASA Astrophysics Data System (ADS)

    Bass, Benjamin; Bedient, Philip

    2018-03-01

    This study discusses the development and performance of a rapid prediction system capable of representing the joint rainfall-runoff and storm surge flood response of tropical cyclones (TCs) for probabilistic risk analysis. Due to the computational demand required for accurately representing storm surge with the high-fidelity ADvanced CIRCulation (ADCIRC) hydrodynamic model and its coupling with additional numerical models to represent rainfall-runoff, a surrogate or statistical model was trained to represent the relationship between hurricane wind- and pressure-field characteristics and their peak joint flood response typically determined from physics based numerical models. This builds upon past studies that have only evaluated surrogate models for predicting peak surge, and provides the first system capable of probabilistically representing joint flood levels from TCs. The utility of this joint flood prediction system is then demonstrated by improving upon probabilistic TC flood risk products, which currently account for storm surge but do not take into account TC associated rainfall-runoff. Results demonstrate the source apportionment of rainfall-runoff versus storm surge and highlight that slight increases in flood risk levels may occur due to the interaction between rainfall-runoff and storm surge as compared to the Federal Emergency Management Association's (FEMAs) current practices.

  12. Numerical simulation of "An American Haboob"

    NASA Astrophysics Data System (ADS)

    Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.

    2013-10-01

    A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High resolution numerical models are required for accurate simulation of the small-scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM with 3.5 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the Normalized Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~ 25 km), the model PM10 surface dust concentration reached ~ 2500 μg m-3, but underestimated the values measured by the PM10stations within the city. Model results are also validated by the MODIS aerosol optical depth (AOD), employing deep blue (DB) algorithms for aerosol loadings. Model validation included Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), equipped with the lidar instrument, to disclose the vertical structure of dust aerosols as well as aerosol subtypes. Promising results encourage further research and application of high-resolution modeling and satellite-based remote sensing to warn of approaching severe dust events and reduce risks for safety and health.

  13. Superposed epoch analysis of physiological fluctuations: possible space weather connections

    NASA Astrophysics Data System (ADS)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  14. Superposed epoch analysis of physiological fluctuations: possible space weather connections.

    PubMed

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  15. Hard X-ray Detectability of Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, A.; Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Smith, D. M.; Hannah, I. G.

    2016-12-01

    The nanoflare heating theory predicts the ubiquitous presence of hot ( >5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare "storms" that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.

  16. Impacts of Extreme Space Weather Events on Power Grid Infrastructure: Physics-Based Modelling of Geomagnetically-Induced Currents (GICs) During Carrington-Class Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Henderson, M. G.; Bent, R.; Chen, Y.; Delzanno, G. L.; Jeffery, C. A.; Jordanova, V. K.; Morley, S.; Rivera, M. K.; Toth, G.; Welling, D. T.; Woodroffe, J. R.; Engel, M.

    2017-12-01

    Large geomagnetic storms can have devastating effects on power grids. The largest geomagnetic storm ever recorded - called the Carrington Event - occurred in 1859 and produced Geomagnetically Induced Currents (GICs) strong enough to set fires in telegraph offices. It has been estimated that if such a storm occurred today, it would have devastating, long-lasting effects on the North American power transmission infrastructure. Acutely aware of this imminent threat, the North American Electric Reliability Corporation (NERC) was recently instructed to establish requirements for transmission system performance during geomagnetic disturbance (GMD) events and, although the benchmarks adopted were based on the best available data at the time, they suffer from a severely limited physical understanding of the behavior of GMDs and the resulting GICs for strong events. To rectify these deficiencies, we are developing a first-of-its-kind data-informed modelling capability that will provide transformational understanding of the underlying physical mechanisms responsible for the most harmful intense localized GMDs and their impacts on real power transmission networks. This work is being conducted in two separate modes of operation: (1) using historical, well-observed large storm intervals for which robust data-assimilation can be performed, and (2) extending the modelling into a predictive realm in order to assess impacts of poorly and/or never-before observed Carrington-class events. Results of this work are expected to include a potential replacement for the current NERC benchmarking methodology and the development of mitigation strategies in real power grid networks. We report on progress to date and show some preliminary results of modeling large (but not yet extreme) events.

  17. Acceleration of Relativistic Electrons: A Comparison of Two Models

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Kivelson, M. G.

    2001-12-01

    Observations of relativistic electron fluxes show order of magnitude increases during some geomagnetic storms. Many electron acceleration models have been proposed to explain the flux enhancements but attempts to validate these models have yielded ambiguous results. Here we examine two models of electron acceleration, radial diffusion via enhanced ULF wave activity [Elkington et al.,1999] and acceleration by resonant interaction with whistler waves[Summers,1998; Roth et al.,1999]. Two methods are used to compare observations with features predicted by the models. First, the evolution of phase space density as a function of L during flux enhancement events is evaluated. The phase space density (PSD) is calculated at constant first, second and third adiabatic invariants using data obtained by the CEPPAD-HIST instrument and the MFE instrument onboard the Polar spacecraft. Liouville's theorem states that PSD calculated at constant adiabatic invariants does not change with time unless some mechanism violates one of the invariants. The radial diffusion model predicts that only the flux invariant will be violated during the acceleration process while acceleration by whistler waves violates the first invariant. Therefore, the two models predict a different evolution of the PSD as a function of time and L. Previous examinations of the evolution of PSD have yielded ambiguous results because PSD calculations are highly dependent on the global accuracy of magnetic field models. We examine the PSD versus L profiles for a series of geomagnetic storms and in addition determine how errors in the Tsyganenko 96 field model affect the results by comparing the measured magnetic field to the model magnetic field used in the calculations. Second, the evolution of the relativistic electron pitch angle distributions is evaluated. Previous studies of pitch angle distributions were limited because few spacecraft have the necessary instrumentation and global coverage. The CEPPAD-HIST instrument measures 16 look directions and along with measurements from the MFE experiment allows calculation of complete pitch angle distributions. The evolving orbit of the Polar spacecraft over the 6 years mission has given measurements over a wide range of L and local time. Using data extending over the entire mission we use superposed epoch analysis to examine the evolution of pitch angle distributions during flux enhancement events as a function of L, magnetic local time, and storm phase.

  18. Dynamical complexity detection in geomagnetic activity indices using wavelet transforms and Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Balasis, G.; Daglis, I. A.; Papadimitriou, C.; Kalimeri, M.; Anastasiadis, A.; Eftaxias, K.

    2008-12-01

    Dynamical complexity detection for output time series of complex systems is one of the foremost problems in physics, biology, engineering, and economic sciences. Especially in magnetospheric physics, accurate detection of the dissimilarity between normal and abnormal states (e.g. pre-storm activity and magnetic storms) can vastly improve space weather diagnosis and, consequently, the mitigation of space weather hazards. Herein, we examine the fractal spectral properties of the Dst data using a wavelet analysis technique. We show that distinct changes in associated scaling parameters occur (i.e., transition from anti- persistent to persistent behavior) as an intense magnetic storm approaches. We then analyze Dst time series by introducing the non-extensive Tsallis entropy, Sq, as an appropriate complexity measure. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). The Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization.

  19. The storm-time equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.

    1977-01-01

    A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed, and the large field depression at the flight time must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.

  20. The storm-time equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.

    1976-01-01

    A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed and the large field depression, at the flight time, must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.

  1. Vulnerability Assessment of Dust Storms in the United States under a Changing Climate Scenario

    EPA Science Inventory

    Severe weather events, such as flooding, drought, forest fires, and dust storms can have a serious impact on human health. Dust storm events are not well predicted in the United States, however they are expected to become more frequent as global climate warms through the 21st cen...

  2. Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina

    USGS Publications Warehouse

    Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.

    2010-01-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.

  3. Comparison between three algorithms for Dst predictions over the 2003 2005 period

    NASA Astrophysics Data System (ADS)

    Amata, E.; Pallocchia, G.; Consolini, G.; Marcucci, M. F.; Bertello, I.

    2008-02-01

    We compare, over a two and half years period, the performance of a recent artificial neural network (ANN) algorithm for the Dst prediction called EDDA [Pallocchia, G., Amata, E., Consolini, G., Marcucci, M.F., Bertello, I., 2006. Geomagnetic Dst index forecast based on IMF data only. Annales Geophysicae 24, 989-999], based on IMF inputs only, with the performance of the ANN Lundstedt et al. [2002. Operational forecasts of the geomagnetic Dst index. Geophysical Research Letters 29, 341] algorithm and the Wang et al. [2003. Influence of the solar wind dynamic pressure on the decay and injection of the ring current. Journal of Geophysical Research 108, 51] algorithm based on differential equations, which both make use of both IMF and plasma inputs. We show that: (1) all three algorithms perform similarly for "small" and "moderate" storms; (2) the EDDA and Wang algorithms perform similarly and considerably better than the Lundstedt et al. [2002. Operational forecasts of the geomagnetic Dst index. Geophysical Research Letters 29, 341] algorithm for "intense" and for "severe" storms; (3) the EDDA algorithm has the clear advantage, for space weather operational applications, that it makes use of IMF inputs only. The advantage lies in the fact that plasma data are at times less reliable and display data gaps more often than IMF measurements, especially during large solar disturbances, i.e. during periods when space weather forecast are most important. Some considerations are developed on the reasons why EDDA may forecast the Dst index without making use of solar wind density and velocity data.

  4. KSC-06pd1980

    NASA Image and Video Library

    2006-08-29

    KENNEDY SPACE CENTER, FLA. - A serene scene surrounds Space Shuttle Atlantis as it begins rolling off Launch Pad 39B to return to the Vehicle Assembly Building. First motion off the pad was at 10:04 a.m. EDT. The crawler is 131 feet long, 113 feet wide and 20 feet high. It weights 5.5 million pounds unloaded. The combined weight of crawler, mobile launcher platform and a space shuttle is 12 million pounds. Unloaded, the crawler moves at 2 mph. Loaded, the snail's pace slows to 1 mph. The rollback is a safety precaution as the area waits for the arrival of Tropical Storm Ernesto. The storm is forecast to be bringing 58-mph to 70-mph winds in the next 24 hours. The shuttle will be moved into high bay 2, on the southwest side of the VAB, for protection from the storm. Photo credit: NASA/Ken Thornsley

  5. The Future of Geomagnetic Storm Predictions: Implications from Recent Solar and Interplanetary Observations

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Gonzalez, W. D.

    1995-01-01

    Within the last 7-8 years, there has been a substantial growth in out knowledge of the solar and interplanetary causes of geomagnetic storms at Earth. This review article will not attempt to cover all of the work done during this period. This can be found elsewhere. Our emphasis here will be on recent efforts that expose important, presently unanswered questions that must be addressed and solved before true predictability of storms can be possible. Hopefully, this article will encourage some readers to join this effort and perhaps make major contributions to the field.

  6. Evaluation and development of satellite inferences of convective storm intensity using combined case study and thunderstorm model simulations

    NASA Technical Reports Server (NTRS)

    Cotton, W. R.; Tripoli, G. J.

    1982-01-01

    Observational requirements for predicting convective storm development and intensity as suggested by recent numerical experiments are examined. Recent 3D numerical experiments are interpreted with regard to the relationship between overshooting tops and surface wind gusts. The development of software for emulating satellite inferred cloud properties using 3D cloud model predicted data and the simulation of Heymsfield (1981) Northern Illinois storm are described as well as the development of a conceptual/semi-quantitative model of eastward propagating, mesoscale convective complexes forming to the lee of the Rocky Mountains.

  7. Environment, behavior and physiology: do birds use barometric pressure to predict storms?

    PubMed

    Breuner, Creagh W; Sprague, Rachel S; Patterson, Stephen H; Woods, H Arthur

    2013-06-01

    Severe storms can pose a grave challenge to the temperature and energy homeostasis of small endothermic vertebrates. Storms are accompanied by lower temperatures and wind, increasing metabolic expenditure, and can inhibit foraging, thereby limiting energy intake. To avoid these potential problems, most endotherms have mechanisms for offsetting the energetic risks posed by storms. One possibility is to use cues to predict oncoming storms and to alter physiology and behavior in ways that make survival more likely. Barometric pressure declines predictably before inclement weather, and several lines of evidence indicate that animals alter behavior based on changes in ambient pressure. Here we examined the effects of declining barometric pressure on physiology and behavior in the white-crowned sparrow, Zonotrichia leucophrys. Using field data from a long-term study, we first evaluated the relationship between barometric pressure, storms and stress physiology in free-living white-crowned sparrows. We then manipulated barometric pressure experimentally in the laboratory and determined how it affects activity, food intake, metabolic rates and stress physiology. The field data showed declining barometric pressure in the 12-24 h preceding snowstorms, but we found no relationship between barometric pressure and stress physiology. The laboratory study showed that declining barometric pressure stimulated food intake, but had no effect on metabolic rate or stress physiology. These data suggest that white-crowned sparrows can sense and respond to declining barometric pressure, and we propose that such an ability may be common in wild vertebrates, especially small ones for whom individual storms can be life-threatening events.

  8. Comparative analysis of GPS-derived TEC estimates and foF2 observations during storm conditions towards the expansion of ionospheric forecasting capabilities over Europe

    NASA Astrophysics Data System (ADS)

    Tsagouri, Ioanna; Belehaki, Anna; Elias, Panagiotis

    2017-04-01

    This paper builts the discussion on the comparative analysis of the variations in the peak electron density at F2 layer and the TEC parameter during a significant number of geomagnetic storm events that occurred in the present solar cycle 24. The ionospheric disturbances are determined through the comparison of actual observations of the foF2 critical frequency and GPS-TEC estimates obtained over European locations with the corresponding median estimates, and they are analysed in conjunction to the solar wind conditions at L1 point that are monitored by the ACE spacecraft. The quantification of the storm impact on the TEC parameter in terms of possible limitations introduced by different TEC derivation methods is carefully addressed.The results reveal similarities and differences in the response of the two parameters with respect to the solar wind drivers of the storms, as well as the local time and the latitude of the observation point. The aforementioned dependences drive the storm-time forecasts of the SWIF model (Solar Wind driven autorgressive model for Ionospheric short-term Forecast), which is operationally implemented in the DIAS system (http://dias.space.noa.gr) and extensively tested in performance at several occassions. In its present version, the model provides alerts and warnings for upcoming ionospheric disturbances, as well as single site and regional forecasts of the foF2 characteristic over Europe up to 24 hours ahead based on the assesment of the solar wind conditions at ACE location. In that respect, the results obtained above support the upgrade of the SWIF's modeling technique in forecasting the storm-time TEC variation within an operational environment several hours in advance. Preliminary results on the evaluation of the model's efficiency in TEC prediction are also discussed, giving special attention in the assesment of the capabilities through the TEC-derivation uncertanties for future discussions.

  9. Effects of Urban Stormwater Infrastructure and Spatial Scale on Nutrient Export and Runoff from Semi-Arid Urban Catchments

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.

    2011-12-01

    There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (<200ha) watersheds had uniform land cover (medium density residential), but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe-drained sites and therefore stormwater has higher concentrations of nutrients, although total loads are significantly lower. Nonlinearities in cross-storm rainfall-nutrient loading relationships for the wash and retention basin watersheds suggest that these systems may become supply limited during large rain events. Results show that characteristics of the hydrologic network such as hydrologic connectivity mediate terrestrial-aquatic linkages. Specifically, we see that increased hydrologic connectivity, as in the piped watershed, actually decreases the predictive power of storm size with regard to nutrient export, whereas nutrient loads from poorly connected watersheds are strongly predicted by storm size.

  10. Dune recovery after storm erosion on a high-energy beach: Vougot Beach, Brittany (France)

    NASA Astrophysics Data System (ADS)

    Suanez, Serge; Cariolet, Jean-Marie; Cancouët, Romain; Ardhuin, Fabrice; Delacourt, Christophe

    2012-02-01

    On 10th March 2008, the high energy storm Johanna hit the French Atlantic coast, generating severe dune erosion on Vougot Beach (Brittany, France). In this paper, the recovery of the dune of Vougot Beach is analysed through a survey of morphological changes and hydrodynamic conditions. Data collection focused on the period immediately following storm Johanna until July 2010, i.e. over two and a half years. Results showed that the dune retreated by a maximum of almost 6 m where storm surge and wave attack were the most energetic. Dune retreat led to the creation of accommodation space for the storage of sediment by widening and elevating space between the pre- and post-storm dune toe, and reducing impacts of the storm surge. Dune recovery started in the month following the storm event and is still ongoing. It is characterised by the construction of "secondary" embryo dunes, which recovered at an average rate of 4-4.5 cm per month, although average monthly volume changes varied from - 1 to 2 m 3.m - 1 . These embryo dunes accreted due to a large aeolian sand supply from the upper tidal beach to the existing foredune. These dune-construction processes were facilitated by growth of vegetation on low-profile embryo dunes promoting backshore accretion. After more than two years of survey, the sediment budget of the beach/dune system showed that more than 10,000 m 3 has been lost by the upper tidal beach. We suggest that seaward return currents generated during the storm of 10th March 2008 are responsible for offshore sediment transport. Reconstitution of the equilibrium beach profile following the storm event may therefore have generated cross-shore sediment redistribution inducing net erosion in the tidal zone.

  11. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    An aerial survey of NASA's Kennedy Space Center in Florida was conducted on September 12, 2017. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm's onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  12. Investigating repeatable ionospheric features during large space storms and superstorms

    DTIC Science & Technology

    2014-08-25

    operated under continuous disturbance dynamo electric field effects. Thus, this storm offered the opportunity to study the impact of eastward PPEF on the...daytime Equatorial Ionization Anomaly (EIA) while the disturbance dynamo continued. The 25 September 1998 great storm (Dst = -220 nT) was a unique...as the prompt penetration electric field (PPEF) developed and operated under continuous disturbance dynamo electric field (DDEF) effects. Thus, this

  13. SeaWiFS: North Pacific Storm

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An extratropical storm can be seen swirling over the North Pacific just south of Alaska. This SeaWiFS image was collected yesterday at 23:20 GMT. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  14. Environmental and Water Quality Operational Studies: Proceedings of the DeGray Lake Symposium Held in Arkadelphia, Arkansas.

    DTIC Science & Technology

    1987-03-01

    statistics for storm water quality variables and fractions of phosphorus, solids, and carbon are presented in Tables 7 and 8, respectively. The correlation...matrix and factor analysis (same method as used for baseflow) of storm water quality variables suggested three groups: Group I - TMG, TCA, TNA, TSI...models to predict storm water quality . The 11 static and 3 dynamic storm variables were used as potential dependent variables. All independent and

  15. Improved Orbit Determination and Forecasts with an Assimilative Tool for Satellite Drag Specification

    NASA Astrophysics Data System (ADS)

    Pilinski, M.; Crowley, G.; Sutton, E.; Codrescu, M.

    2016-09-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. As the population of satellites in Earth orbit grows, higher space-weather prediction accuracy is required for critical missions, such as accurate catalog maintenance, collision avoidance for manned and unmanned space flight, reentry prediction, satellite lifetime prediction, defining on-board fuel requirements, and satellite attitude dynamics. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. In this paper, we will review the driving requirements for our model, summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models. As part of the analysis, we compare the drag observed by a variety of satellites which were not used as part of the assimilation-dataset and whose perigee altitudes span a range from 200 km to 700 km.

  16. Space Science

    NASA Image and Video Library

    2002-06-01

    NASA's Marshall Space Flight Center (MSFC) and university scientists from the National Space Science and Technology Center (NSSTC) in Huntsville, Alabama, are watching the Sun in an effort to better predict space weather - blasts of particles and magnetic fields from the Sun that impact the magnetosphere, the magnetic bubble around the Earth. Filled by charged particles trapped in the Earth's magnetic field, the spherical comet-shaped magnetosphere extends out 40,000 miles from Earth's surface in the sunward direction and more in other directions. This image illustrates the Sun-Earth cornection. When massive solar explosions, known as coronal mass ejections, blast through the Sun's outer atmosphere and plow toward Earth at speeds of thousands of miles per second, the resulting effects can be harmful to communication satellites and astronauts outside the Earth's magnetosphere. Like severe weather on Earth, severe space weather can be costly. On the ground, magnetic storms wrought by these solar particles can knock out electric power. By using the Solar Vector Magnetograph, a solar observation facility at MSFC, scientists are learning what signs to look for as indicators of potential severe space weather.

  17. Predicting the next storm surge flood

    USGS Publications Warehouse

    Stamey, B.; Wang, Hongfang; Koterba, M.

    2007-01-01

    The Virginia Institute of Marine Science (VIMS), National Weather Services (NWS) Sterling and Wakefield, Weather Forecast Offices (WFO), and the Chesapeake Bay Observing System (CBOS) jointly developed a prototype system of a regional capability to address national problem. The system was developed to integrate high-resolution atmospheric and hydrodynamic and storm surge models, evaluate the ability of the prototype to predict land inundation in the Washington, D.C., and provide flooding results to Emergency Managers (EM) using portive. The system is a potential tool for NWS WFOs to provide support to the EMs, first in the Chesapeake Bay region and then in other coastal regions by applying similar approaches in other coastal and Great Lakes regions. The Chesapeake Inundation Prediction System (CIPS) also is building on the initial prototype to predict the combined effects of storm surge and tidal and river flow inundation in the Chesapeake Bay and its tributaries.

  18. The environment associated with significant tornadoes in Bangladesh

    NASA Astrophysics Data System (ADS)

    Bikos, Dan; Finch, Jonathan; Case, Jonathan L.

    2016-01-01

    This paper investigates the environmental parameters favoring significant tornadoes in Bangladesh through a simulation of ten high-impact events. A climatological perspective is first presented on classifying significant tornadoes in Bangladesh, noting the challenges since reports of tornadoes are not documented in a formal manner. The statistical relationship between United States and Bangladesh tornado-related deaths suggests that significant tornadoes do occur in Bangladesh so this paper identifies the most significant tornadic events and analyzes the environmental conditions associated with these events. Given the scarcity of observational data to assess the near-storm environment in this region, high-resolution (3-km horizontal grid spacing) numerical weather prediction simulations are performed for events identified to be associated with a significant tornado. In comparison to similar events over the United States, significant tornado environments in Bangladesh are characterized by relatively high convective available potential energy, sufficient deep-layer vertical shear, and a propensity for deviant (i.e., well to the right of the mean flow) storm motion along a low-level convergence boundary.

  19. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by the interaction of the high voltage US solar arrays with the F2-region ionospheric plasma environment. We are working to fully understand the charging behavior of the ISS solar arrays and determine how well future charging behavior can be predicted from in-situ measurements of plasma density and temperature. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that may be encountered at ISS orbital altitudes (approximately 400 km), the latitudes over which they occur, and the time periods for which the disturbances persist. We will present preliminary results from a study of ionospheric disturbances in the "mid-latitude" region defined as the approximately 30 - 60 degree extra-equatorial magnetic latitudes sampled by ISS. The study is focused on geomagnetic storm periods because they are well known drivers for disturbances in the high-latitude and mid-latitude ionospheric plasma. Changes in the F2 peak electron density obtained from ground based ionosonde records are compared to in-situ electron density and temperature measurements from the CHAMP and ISS spacecraft at altitudes near, or above, the F2 peak. Results from a number of geomagnetic storms will be presented and their potential impact on ISS charging will be discussed.

  20. Analysis and Forecast of Two Storms Characterized by Extreme Deepening Rates

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Riishojgaard, Lars Peter

    2003-01-01

    Between 25 and 27 December 1999 two very intense cyclones, named Lothar and Martin, swept across northern and western France causing substantial life and property loss. In this work, the finite volume general circulation model and data assimilation system (fvDAS) developed at the Data Assimilation Office of the NASA Goddard Space and Flight Center is being used to investigate these storms. In the first part of this article the dynamics of the storms is analyzed, and some important mechanisms are unveiled. The second part describes a set of eleven data assimilation experiments to study the impact of different data types on the automated analyses. Cloud-track winds provided by EUMETSAT and surface winds from QuikSCAT are being used. These data are assimilated with a range of different parameter settings of the forecast error covariance model. The results show that generally the additional wind data set have positive impacts on the analyses: particularly, the analysis of Lothar can be slightly improved by using the Eumetsat winds, and the analysis of Martin can be strongly improved by using the full-resolution QuikSCAT winds with a more localized influence. The third part of this article is focused on the forecast of Lothar which is very well predicted in the 1-5 day range by the fvDAS system.

  1. A deep belief network approach using VDRAS data for nowcasting

    NASA Astrophysics Data System (ADS)

    Han, Lei; Dai, Jie; Zhang, Wei; Zhang, Changjiang; Feng, Hanlei

    2018-04-01

    Nowcasting or very short-term forecasting convective storms is still a challenging problem due to the high nonlinearity and insufficient observation of convective weather. As the understanding of the physical mechanism of convective weather is also insufficient, the numerical weather model cannot predict convective storms well. Machine learning approaches provide a potential way to nowcast convective storms using various meteorological data. In this study, a deep belief network (DBN) is proposed to nowcast convective storms using the real-time re-analysis meteorological data. The nowcasting problem is formulated as a classification problem. The 3D meteorological variables are fed directly to the DBN with dimension of input layer 6*6*80. Three hidden layers are used in the DBN and the dimension of output layer is two. A box-moving method is presented to provide the input features containing the temporal and spatial information. The results show that the DNB can generate reasonable prediction results of the movement and growth of convective storms.

  2. Dynamics of the Trapped Electron Phase Space Density in Relation to the Wave Activity in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Green, J.

    2008-05-01

    The phase space density fe of the radiation belt electron population is reconstructed based on measurements made by POLAR/HIST. The density peaks in invariant space (mu, K, L*) are shown to be responding to changes in the solar wind velocity and density, and the interplanetary magnetic field. We have associated specific types of storms with the appearance of peaks thereby producing a climatology of fe. We will report on comparing the phase space density changes during these storms to the ULF wave power in the inner magnetosphere remote- sensed by the IMAGE magnetometer array and related properties of the wave environment.

  3. Hemispheric Asymmetries of Magnetosphere-Ionosphere-Thermosphere Dynamics

    NASA Astrophysics Data System (ADS)

    Perlongo, Nicholas James

    The geospace environment, comprised of the magnetosphere-ionosphere-thermosphere system, is a highly variable and non-linearly coupled region. The dynamics of the system are driven primarily by electromagnetic and particle radiation emanating from the Sun that occasionally intensify into what are known as solar storms. Understanding the interaction of these storms with the near Earth space environment is essential for predicting and mitigating the risks associated with space weather that can irreparably damage spacecraft, harm astronauts, disrupt radio and GPS communications, and even cause widespread power outages. The geo-effectiveness of solar storms has hemispheric, seasonal, local time, universal time, and latitudinal dependencies. This dissertation investigates those dependencies through a series of four concentrated modeling efforts. The first study focuses on how variations in the solar wind electric field impact the thermosphere at different times of the day. Idealized simulations using the Global Ionosphere Thermosphere Model (GITM) revealed that perturbations in thermospheric temperature and density were greater when the universal time of storm onset was such that the geomagnetic pole was pointed more towards the sun. This universal time effect was greater in the southern hemisphere where the offset of the geomagnetic pole is larger. The second study presents a model validation effort using GITM and the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) compared to GPS Total Electron Content (TEC) observations. The results were divided into seasonal, regional, and local time bins finding that the models performed best near the poles and on the dayside. Diffuse aurora created by electron loss in the inner magnetosphere is an important input to GITM that has primarily been modeled using empirical relationships. In the third study, this was addressed by developing the Hot Election Ion Drift Integrator (HEIDI) ring current model to include a self-consistent description of the aurora and electric field. The model was then coupled to GITM, allowing for a more physical aurora. Using this new configuration in the fourth study, the ill-constrained electron scattering rate was shown to have a large impact on auroral results. This model was applied to simulate a geomagnetic storm during each solstice. The hemispheric asymmetry and seasonal dependence of the storm-time TEC was investigated, finding that northern hemisphere winter storms are most geo-effective when the North American sector is on the dayside. Overall, the research presented in this thesis strives to accomplish two major goals. First, it describes an advancement of a numerical model of the ring current that can be further developed and used to improve our understanding of the interactions between the ionosphere and magnetosphere. Second, the time and spatial dependencies of the geospace response to solar forcing were discovered through a series of modeling efforts. Despite these advancements, there are still numerous open questions, which are also discussed.

  4. The Framework of a Coastal Hazards Model - A Tool for Predicting the Impact of Severe Storms

    USGS Publications Warehouse

    Barnard, Patrick L.; O'Reilly, Bill; van Ormondt, Maarten; Elias, Edwin; Ruggiero, Peter; Erikson, Li H.; Hapke, Cheryl; Collins, Brian D.; Guza, Robert T.; Adams, Peter N.; Thomas, Julie

    2009-01-01

    The U.S. Geological Survey (USGS) Multi-Hazards Demonstration Project in Southern California (Jones and others, 2007) is a five-year project (FY2007-FY2011) integrating multiple USGS research activities with the needs of external partners, such as emergency managers and land-use planners, to produce products and information that can be used to create more disaster-resilient communities. The hazards being evaluated include earthquakes, landslides, floods, tsunamis, wildfires, and coastal hazards. For the Coastal Hazards Task of the Multi-Hazards Demonstration Project in Southern California, the USGS is leading the development of a modeling system for forecasting the impact of winter storms threatening the entire Southern California shoreline from Pt. Conception to the Mexican border. The modeling system, run in real-time or with prescribed scenarios, will incorporate atmospheric information (that is, wind and pressure fields) with a suite of state-of-the-art physical process models (that is, tide, surge, and wave) to enable detailed prediction of currents, wave height, wave runup, and total water levels. Additional research-grade predictions of coastal flooding, inundation, erosion, and cliff failure will also be performed. Initial model testing, performance evaluation, and product development will be focused on a severe winter-storm scenario developed in collaboration with the Winter Storm Working Group of the USGS Multi-Hazards Demonstration Project in Southern California. Additional offline model runs and products will include coastal-hazard hindcasts of selected historical winter storms, as well as additional severe winter-storm simulations based on statistical analyses of historical wave and water-level data. The coastal-hazards model design will also be appropriate for simulating the impact of storms under various sea level rise and climate-change scenarios. The operational capabilities of this modeling system are designed to provide emergency planners with the critical information they need to respond quickly and efficiently and to increase public safety and mitigate damage associated with powerful coastal storms. For instance, high resolution local models will predict detailed wave heights, breaking patterns, and current strengths for use in warning systems for harbor-mouth navigation and densely populated coastal regions where beach safety is threatened. The offline applications are intended to equip coastal managers with the information needed to manage and allocate their resources effectively to protect sections of coast that may be most vulnerable to future severe storms.

  5. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2007-01-01

    Hurricane Katrina hit southwestern Mississippi on August 29, 2005, at 9:45 a.m. CDT as a category 3 storm with surges up to approx. 9 m and sustained winds of approx. 120 mph. The hurricane's wind, rain, and flooding devastated several coastal towns, from New Orleans through Mobile. The storm also caused significant damage to infrastructure and vegetation of NASA's SSC (Stennis Space Center). Storm recovery at SSC involved not only repairs of critical infrastructure but also forest damage mitigation (via timber harvests and control burns to reduce fire risk). This presentation discusses an effort to use commercially available high spatial resolution multispectral IKONOS data for vegetation damage assessment, based on data collected over SSC on September 2, 2005.

  6. Ionospheric parameters as the precursors of disturbed geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.; Sergeeva, M. A.; Kozlovsky, A.

    2017-12-01

    Geomagnetic storms and substorms are the principal elements of the disturbed Space Weather conditions. The aim of the study was to reveal the ionospheric precursors that can be used to forecast geomagnetic disturbance beginning. To study the ionospheric processes before, during and after magnetic storms and substorms data from Sodankylä Geophysical Observatory was used (geomagnetic coordinates: 64.1oN, 119.2oE). In earlier works the Main Effect (ME) was revealed for substorms. It consists of the following steps: (a) the increase of critical frequency foF2 from its quiet median before and during the substorm growth phase, four-five hours before To moment that is the moment of the expansion phase onset, (b) the foF2 decrease to the level lower than its median just after To and until Te that is the moment of the end of the expansion phase, (c) the issue ;a; repeated during the recovery phase (d) two bell-shape spikes in the cutoff frequency values foEs: first spike occurs three hours before To, second spike - during the expansion phase within the interval between To and Te. In the present work it is shown that ME manifestations can be used as precursors of magnetic substorms at high-latitudes (geomagnetic latitudes 50oN-65oN). In particular, the foF2 growth some hours before To can be used as a precursor of substorm development. The first foEs bell-shaped spike also can be used for short-term forecasting, two-three hours in advance of a substorm. Furthermore, the storms between 2008 and 2012 were studied. It was revealed that the similar ME also takes place in the case of magnetic storms but within the different time scale. More specifically, the first ME maximum in foF2 values occurs one-two days before the storm beginning and can be used as its precursor. In addition, the foEs spike takes place approximately ten hours before a storm and also can be used for the prediction of the storm beginning.

  7. Storm Prediction Center Storm Reports

    Science.gov Websites

    Current Watches Meso. Discussions Conv. Outlooks Tstm. Outlooks Fire Wx Outlooks XML logo RSS Feeds E-Mail , Mesoscale Discussions, Outlooks, Fire Weather, All Products, Contact Us NOAA / National Weather Service

  8. Evaluation of wave runup predictions from numerical and parametric models

    USGS Publications Warehouse

    Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.

    2014-01-01

    Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.

  9. KSC-2012-2669

    NASA Image and Video Library

    2012-05-03

    CAPE CANAVERAL, Fla. – In the clean room high bay at the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, Applied Physics Laboratory technicians remove the protective shroud from around NASA's Radiation Belt Storm Probe B. Its twin, Radiation Belt Storm Probe A, in the background, has already been uncovered. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP instruments will provide the measurements needed to characterize and quantify the plasma processes that produce very energetic ions and relativistic electrons. The mission is part of NASA’s broader Living With a Star Program that was conceived to explore fundamental processes that operate throughout the solar system, particularly those that generate hazardous space weather effects in the vicinity of Earth and phenomena that could impact solar system exploration. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after launch. Launch aboard a United Launch Alliance Atlas V rocket is scheduled for August 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann

  10. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    A.J. Sandora, Lockheed Martin's GOES-R Series Mechanical Operations Assembly, Test and Launch Operations (ATLO) manager, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. Built by Lockheed Martin Space Systems of Littleton, Colorado, the spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  11. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Neergaard Parker, Linda

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by interaction of the US high voltage solar arrays with the F2-region ionosphere plasma environment. ISS solar array charging is enhanced in a high electron density environment due to the increased thermal electron currents to the edges of the solar cells. High electron temperature environments suppress charging due to formation of barrier potentials on the charged solar cell cover glass that restrict the charging currents to the cell edge [Mandell et al., 2003]. Environments responsible for strong solar array charging are therefore characterized by high electron densities and low electron temperatures. In support of the ISS space environmental effects engineering community, we are working to understand a number of features of solar array charging and to determine how well future charging behavior can be predicted from in-situ plasma density and temperature measurements. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that occur at ISS orbital altitudes (approximately 400 km) over time scales of days, the latitudes over which significant variations occur, and the time periods over which the disturbances persist once they start. This presentation provides examples of mid-latitude electron density and temperature disturbances at altitudes relevant to ISS using data sets and tools developed for our ISS plasma environment study. "Mid-latitude" is defined as the extra-tropical region between approx. 30 degrees to approx. 60 degrees magnetic latitude sampled by ISS over its 51.6 degree inclination orbit. We focus on geomagnetic storm periods because storms are well known drivers for disturbances in the ionospheric plasma environment.

  12. Why Did the Storm Ex-Gaston (2010) Fail to Redevelop During the PREDICT Experiment

    DTIC Science & Technology

    2016-07-13

    License. Why did the storm ex-Gaston (2010) fail to redevelop during the PREDICT experiment ? Thomas M. Freismuth1, Blake Rutherford2, Mark A. Boothe1, and...2013), recent case studies in the field in the western North Pacific during the Tropical Cyclone Structure Experiment 2008 (TCS08, Montgomery et al...of ex-Gaston (2010) during the PREDICT experiment is arguably one of the most exten- sively observed non-developing tropical disturbances ever. The 5

  13. ULF Wave Analysis and Radial Diffusion Calculation Using a Global MHD Model for the 17 March 2015 Storm and Comparison with the 17 March 2013 Storm

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hudson, M.; Paral, J.; Wiltberger, M. J.; Boyd, A. J.; Turner, D. L.

    2016-12-01

    The 17 March 2015 `St. Patrick's Day Storm' is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. Local heating has been modeled by other groups for this and the 17 March 2013 storm, only slightly weaker and showing a similar effect on electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level and an even greater slow increase likely due to radial diffusion. The latter can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements with the Magneotsphere-Ionosphere Coupler (MIX), we have simulated both `St. Patrick's Day'events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code using the measured electron phase space density profile following the local heating and as the outer boundary condition for subsequent temporally evolution over the next 12 days, beginning 18 March 2015. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument on Van Allen Probes (30 keV - 4 MeV) was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.

  14. Summary of the NASA/MSFC FY-79 Severe Storm and Local Weather research review. [cloud physics, atmospheric electricity, and mesoscale/storm dynamics reserach

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Significant acomplishments, current focus of work, plans for FY-80, and recommendations for new research are outlined for 36 research projects proposed for technical monitoring by the Atmospheric Sciences Division at Marshall Space Flight Center. Topics of the investigations, which were reviewed at a two-day meeting, relate to cloud physics, atmospheric electricity, and mesoscale/storm dynamics.

  15. Deciphering storm-event runoff behavior in a coastal plain watershed using chemical and physical hydrograph separation techniques

    Treesearch

    Timothy Callahan; Austin E. Morrison

    2016-01-01

    Interpreting storm-event runoff in coastal plain watersheds is challenging because of the space- and time-variable nature of different sources that contribute to stream flow. These flow vectors and the magnitude of water flux is dependent on the pre-storm soil moisture (as estimated from depth to water table) in the lower coastal plain (LCP) region.

  16. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    A boat dock torn apart is seen during a survey of NASA's Kennedy Space Center in Florida on September 12, 2017. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm's onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  17. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    The Beach House is seen during an aerial survey of NASA's Kennedy Space Center in Florida on September 12, 2017. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm's onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  18. Decadal predictability of winter windstorm frequency in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Höschel, Ines; Grieger, Jens; Ulbrich, Uwe

    2017-04-01

    Winter windstorms are one of the most impact relevant extreme-weather events in Europe. This study is focussed on windstorm frequency in Eastern Europe at multi-year time scale. Individual storms are identified by using 6-hourly 10m-wind-fields. The impact-oriented tracking algorithm is based on the exceedance of the local 98 percentile of wind speed and a minimum duration of 18 hours. Here, storm frequency is the number of 1000km-footprints of identified windstorms touching the location during extended boreal winter from October to March. The temporal development of annual storm frequencies in Eastern Europe shows variations on a six to fifteen years period. Higher than normal windstorm frequency occurred end of the 1950s and in beginning of the seventies, while lower than normal frequency were around 1960 and in the forties, for example. The correlation between bandpass filtered storm frequency and North Atlantic sea surface temperature shows a significant pattern with a positive correlation in the subtropical East Atlantic and significant negative correlations in the Gulfstream region. The relationship between these multi-year variations and predictability on decadal time scales is discussed. The resulting skill of winter wind storms in the German decadal prediction system MiKlip, based on the numerical earth system model MPI-ESM, will be presented.

  19. Assessing the Predictability of Convection using Ensemble Data Assimilation of Simulated Radar Observations in an LETKF system

    NASA Astrophysics Data System (ADS)

    Lange, Heiner; Craig, George

    2014-05-01

    This study uses the Local Ensemble Transform Kalman Filter (LETKF) to perform storm-scale Data Assimilation of simulated Doppler radar observations into the non-hydrostatic, convection-permitting COSMO model. In perfect model experiments (OSSEs), it is investigated how the limited predictability of convective storms affects precipitation forecasts. The study compares a fine analysis scheme with small RMS errors to a coarse scheme that allows for errors in position, shape and occurrence of storms in the ensemble. The coarse scheme uses superobservations, a coarser grid for analysis weights, a larger localization radius and larger observation error that allow a broadening of the Gaussian error statistics. Three hour forecasts of convective systems (with typical lifetimes exceeding 6 hours) from the detailed analyses of the fine scheme are found to be advantageous to those of the coarse scheme during the first 1-2 hours, with respect to the predicted storm positions. After 3 hours in the convective regime used here, the forecast quality of the two schemes appears indiscernible, judging by RMSE and verification methods for rain-fields and objects. It is concluded that, for operational assimilation systems, the analysis scheme might not necessarily need to be detailed to the grid scale of the model. Depending on the forecast lead time, and on the presence of orographic or synoptic forcing that enhance the predictability of storm occurrences, analyses from a coarser scheme might suffice.

  20. A predictive model of geosynchronous magnetopause crossings

    NASA Astrophysics Data System (ADS)

    Dmitriev, A.; Suvorova, A.; Chao, J.-K.

    2011-05-01

    We have developed a model predicting whether or not the magnetopause crosses geosynchronous orbit at a given location for given solar wind pressure Psw, Bz component of the interplanetary magnetic field (IMF), and geomagnetic conditions characterized by 1 min SYM-H index. The model is based on more than 300 geosynchronous magnetopause crossings (GMCs) and about 6000 min when geosynchronous satellites of GOES and Los Alamos National Laboratory (LANL) series are located in the magnetosheath (so-called MSh intervals) in 1994-2001. Minimizing of the Psw required for GMCs and MSh intervals at various locations, Bz, and SYM-H allows describing both an effect of magnetopause dawn-dusk asymmetry and saturation of Bz influence for very large southward IMF. The asymmetry is strong for large negative Bz and almost disappears when Bz is positive. We found that the larger the amplitude of negative SYM-H, the lower the solar wind pressure required for GMCs. We attribute this effect to a depletion of the dayside magnetic field by a storm time intensification of the cross-tail current. It is also found that the magnitude of threshold for Bz saturation increases with SYM-H index such that for small negative and positive SYM-H the effect of saturation diminishes. This supports an idea that enhanced thermal pressure of the magnetospheric plasma and ring current particles during magnetic storms results in the saturation of magnetic effect of the IMF Bz at the dayside magnetopause. A noticeable advantage of the model's prediction capabilities in comparison with other magnetopause models makes the model useful for space weather predictions.

  1. Predictive features associated with thyrotoxic storm and management.

    PubMed

    Bacuzzi, Alessandro; Dionigi, Gianlorenzo; Guzzetti, Luca; De Martino, Alessandro Ivan; Severgnini, Paolo; Cuffari, Salvatore

    2017-10-01

    Thyroid storm (TS) is an endocrine emergency characterized by rapid deterioration, associated with high mortality rate therefore rapid diagnosis and emergent treatment is mandatory. In the past, thyroid surgery was the most common cause of TS, but recent preoperative medication creates a euthyroid state before performing surgery. An active approach during perioperative period could determine an effective clinical treatment of this life-threating diseases. Recently, the Japan Thyroid Association and Japan Endocrine Society developed diagnostic criteria for TS focusing on premature and prompt diagnosis avoiding inopportune e useless drugs. This review analyses predictive features associated with thyrotoxic storm highlighting recent literature to optimize the patient quality of care.

  2. Construction of Social Reality during Early Adolescence: Can Expecting Storm and Stress Increase Real or Perceived Storm and Stress?

    ERIC Educational Resources Information Center

    Buchanan, Christy M.; Hughes, Johna L.

    2009-01-01

    This study examines whether mothers' or adolescents' expectations concerning "storm and stress" behaviors at adolescence predict subsequent real or perceived adolescent behavior and attributes during the early years of adolescence. The study used a short-term longitudinal design. Participants were 6th- and 7th-grade adolescents and their mothers…

  3. Forecasting Propagation and Evolution of CMEs in an Operational Setting: What Has Been Learned

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Macneice, Peter; Odstrcil, Dusan; Mays, M. L.; Rastaetter, Lutz; Pulkkinen, Antti; Taktakishvili, Aleksandre; Hesse, Michael; Kuznetsova, M. Masha; Lee, Hyesook; hide

    2013-01-01

    One of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a 24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.

  4. Forecasting propagation and evolution of CMEs in an operational setting: What has been learned

    NASA Astrophysics Data System (ADS)

    Zheng, Yihua; Macneice, Peter; Odstrcil, Dusan; Mays, M. L.; Rastaetter, Lutz; Pulkkinen, Antti; Taktakishvili, Aleksandre; Hesse, Michael; Masha Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna

    2013-10-01

    of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a 24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.

  5. Storm Clouds Roll In Over The Vehicle Assembly Building

    NASA Image and Video Library

    2009-07-12

    Storm clouds roll in over the NASA Vehicle Assembly building moments after STS-127 Space Shuttle Launch Director Pete Nickolenko and the launch team called the launch a "No Go" due to weather conditions at the NASA Kennedy Space Center in Cape Canaveral, Florida, Sunday, July 12, 2009. Endeavour will be launching with the crew of STS-127 on a 16-day mission that will feature five spacewalks and complete construction of the Japan Aerospace Exploration Agency's Kibo laboratory. Photo Credit: (NASA/Bill Ingalls)

  6. Storm Clouds Roll In Over The Vehicle Assembly Building

    NASA Image and Video Library

    2009-07-11

    Storm clouds roll in over the NASA Vehicle Assembly building moments after STS-127 Space Shuttle Launch Director Pete Nickolenko and the launch team called the launch a "No Go" due to weather conditions at the NASA Kennedy Space Center in Cape Canaveral, Florida, Sunday, July 12, 2009. Endeavour will be launching with the crew of STS-127 on a 16-day mission that will feature five spacewalks and complete construction of the Japan Aerospace Exploration Agency's Kibo laboratory. Photo Credit: (NASA/Bill Ingalls)

  7. A Small Revolution in Space: An Analysis of the Challenges to US Military Adoption of Small Satellite Constellations

    DTIC Science & Technology

    2017-06-01

    IDd Descriptione Technical Analysisf Bridges 6 4.5 1.5 1 0.3 Communications Radar 3 1 0.3 0.15 0.015 Radio 3 1.5 0.3 0.15 0.015 Troop Units (in... communications . 11 This percentage was achieved despite demand exceeding supply in both bandwidth and 9 David N...Military Satellite Communications .” 11 Air Force Space Command, Desert Storm Hot Wash “AFSPACECOM Desert Shield/Desert Storm Lessons Learned,” (12

  8. Mid-latitude Plasma Irregularities During Sub-Auroral Polarization Streams

    NASA Astrophysics Data System (ADS)

    Smith, N.; Loper, R. D.

    2017-12-01

    Geomagnetic storming impacts the ionosphere in different ways at different latitudes. In the mid latitudes, Sub-Auroral Polarization Streams (SAPS) may trigger a redistribution of plasma leading to the creation of ionospheric troughs, storm enhanced density plumes, and acceleration of sub-auroral ion drifts. Solar cycle data, real time space weather satellite data, and radar data will be analyzed to study mid-latitude plasma densities and characterize the plasma anomalies SAPS create in order to increase short-term mid-latitude space weather forecasting.

  9. The Major Solar Eruptive Event in July 2012: Defining Extreme Space Weather Scenarios (Invited)

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2013-12-01

    A key goal for the space weather community is to define extreme conditions that might plausibly afflict human technology. On 23 July 2012 solar active region 1520 (~133°W heliographic longitude) gave rise to a powerful coronal mass ejection (CME) with an initial speed that was determined to be >3000 km/s. The eruption was directed away from Earth toward 144°W longitude. STEREO-A sensors detected the CME arrival only about 18 hours later and made in situ measurements of the solar wind and interplanetary magnetic field. We have posed the question of what would have happened if this huge interplanetary event had been Earthward directed. Using a well-proven geomagnetic storm forecast model, we find that the 23-24 July event would certainly have produced a geomagnetic storm that was comparable to the largest events of the 20th Century (Dst ~ -500nT). Using plausible assumptions about seasonal and time-of-day orientation of the Earth's magnetic dipole, the most extreme modeled value of storm-time disturbance would have been Dst=-1182nT. This is probably considerably larger than the famous Carrington storm of 1859. This finding has far reaching implications because it demonstrates that extreme space weather conditions such as those during March of 1989 or September of 1859 can happen even during a modest solar activity cycle such as the one presently underway. We argue that this extreme event should immediately be employed by the space weather community to model severe space weather effects on technological systems such as the electric power grid.

  10. Numerical simulation of "an American haboob"

    NASA Astrophysics Data System (ADS)

    Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.

    2014-04-01

    A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran Desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM (Non-hydrostatic Mesoscale Model on E grid, Janjic et al., 2001; Dust REgional Atmospheric Model, Nickovic et al., 2001; Pérez et al., 2006) with 4 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The scope of this paper is validation of the dust model performance, and not use of the model as a tool to investigate mechanisms related to the storm. Results demonstrate the potential technical capacity and availability of the relevant data to build an operational system for dust storm forecasting as a part of a warning system. Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~25 km), the model PM10 surface dust concentration reached ~2500 μg m-3, but underestimated the values measured by the PM10 stations within the city. Model results are also validated by the MODIS aerosol optical depth (AOD), employing deep blue (DB) algorithms for aerosol loadings. Model validation included Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), equipped with the lidar instrument, to disclose the vertical structure of dust aerosols as well as aerosol subtypes. Promising results encourage further research and application of high-resolution modeling and satellite-based remote sensing to warn of approaching severe dust events and reduce risks for safety and health.

  11. Predicting severe winter coastal storm damage

    NASA Astrophysics Data System (ADS)

    Hondula, David M.; Dolan, Robert

    2010-07-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the North Carolina coast would rank amongst the all-time most costly natural disasters to have occurred in the United States, with up to 1 billion in losses in North Carolina alone.

  12. Tropical storm interannual and interdecadal variability in an ensemble of GCM integrations

    NASA Astrophysics Data System (ADS)

    Vitart, Frederic Pol.

    1999-11-01

    A T42L18 Atmospheric General Circulation Model forced by observed SSTs has been integrated for 10 years with 9 different initial conditions. An objective procedure for tracking model-generated tropical storms has been applied to this ensemble. Statistical tools have been applied to the ensemble frequency, intensity and location of tropical storms, leading to the conclusion that the potential predictability is particularly strong over the western North Pacific, the eastern North Pacific and the western North Atlantic. An EOF analysis of local SSts and a combined EOF analysis of vertical wind shear, 200 mb and 850 mb vorticity indicate that the simulated tropical storm interannual variability is mostly constrained by the large scale circulation as in observations. The model simulates a realistic interannual variability of tropical storms over the western North Atlantic, eastern North Pacific, western North Pacific and Australian basin where the model simulates a realistic large scale circulation. Several experiments with the atmospheric GCM forced by imposed SSTs demonstrate that the GCM simulates a realistic impact of ENSO on the simulated Atlantic tropical storms. In addition the GCM simulates fewer tropical storms over the western North Atlantic with SSTs of the 1950s than with SSTs of the 1970s in agreement with observations. Tropical storms simulated with RAS and with MCA have been compared to evaluate their sensitivity to a change in cumulus parameterization. Composites of tropical storm structure indicate stronger tropical storms with higher warm cores with MCA. An experiment using the GFDL hurricane model and several theoretical calculations indicate that the mean state may be responsible for the difference in intensity and in the height of the warm core. With the RAS scheme, increasing the threshold which determines when convection can occur increases the tropical storm frequency almost linearly. The increase of tropical storm frequency seems to be linked to an increase of CAPE. Tropical storms predicted by a coupled model produce a strong cooling of SSTs and their intensity is lower than in the simulations. An ensemble of coupled GCM integrations displays some skill in forecasting the tropical storm frequency when starting on July 1st.

  13. Treatment of Storm Fears Using Virtual Reality and Progressive Muscle Relaxation.

    PubMed

    Lima, Jessica; McCabe-Bennett, Hanna; Antony, Martin M

    2018-03-01

    The present study examined the efficacy of virtual reality (VR) exposure therapy for treating individuals with storm fears by comparing a one-session VR exposure treatment with a one-session progressive muscle relaxation (PMR) and psychoeducation session. It was predicted that there would be a reduction in storm-related fear post-treatment for individuals in both conditions, but that this reduction would be greater for those in the VR exposure condition. It was predicted that improvements would be maintained at 30-day follow-up only for those in the VR exposure condition. Thirty-six participants each received one of the two treatment conditions. Those in the PMR treatment group received approximately 30 minutes of PMR and approximately 15 minutes of psychoeducation regarding storms. Those in the VR treatment group received approximately 1 hour of VR exposure. Additionally, participants were asked to complete a pre-treatment and post-treatment 5-minute behavioural approach test to assess changes in storm fears. They were also asked to complete a measure assessing storm phobia. There was a significant interaction between treatment group and self-reported fear at post-treatment, such that fear decreased for both groups, although the reduction was stronger in the VR group. Results also showed that reductions in storm fear were maintained at 30-day follow-up for both groups. Although this study used a small non-clinical sample, these results offer preliminary support for the use of VR exposure therapy in the treatment of storm-related fear.

  14. A short-term ionospheric forecasting empirical regional model (IFERM) to predict the critical frequency of the F2 layer during moderate, disturbed, and very disturbed geomagnetic conditions over the European area

    NASA Astrophysics Data System (ADS)

    Pietrella, M.

    2012-02-01

    A short-term ionospheric forecasting empirical regional model (IFERM) has been developed to predict the state of the critical frequency of the F2 layer (foF2) under different geomagnetic conditions. IFERM is based on 13 short term ionospheric forecasting empirical local models (IFELM) developed to predict foF2 at 13 ionospheric observatories scattered around the European area. The forecasting procedures were developed by taking into account, hourly measurements of foF2, hourly quiet-time reference values of foF2 (foF2QT), and the hourly time-weighted accumulation series derived from the geomagnetic planetary index ap, (ap(τ)), for each observatory. Under the assumption that the ionospheric disturbance index ln(foF2/foF2QT) is correlated to the integrated geomagnetic disturbance index ap(τ), a set of statistically significant regression coefficients were established for each observatory, over 12 months, over 24 h, and under 3 different ranges of geomagnetic activity. This data was then used as input to compute short-term ionospheric forecasting of foF2 at the 13 local stations under consideration. The empirical storm-time ionospheric correction model (STORM) was used to predict foF2 in two different ways: scaling both the hourly median prediction provided by IRI (STORM_foF2MED,IRI model), and the foF2QT values (STORM_foF2QT model) from each local station. The comparison between the performance of STORM_foF2MED,IRI, STORM_foF2QT, IFELM, and the foF2QT values, was made on the basis of root mean square deviation (r.m.s.) for a large number of periods characterized by moderate, disturbed, and very disturbed geomagnetic activity. The results showed that the 13 IFELM perform much better than STORM_foF2,sub>MED,IRI and STORM_foF2QT especially in the eastern part of the European area during the summer months (May, June, July, and August) and equinoctial months (March, April, September, and October) under disturbed and very disturbed geomagnetic conditions, respectively. The performance of IFELM is also very good in the western and central part of the Europe during the summer months under disturbed geomagnetic conditions. STORM_foF2MED,IRI performs particularly well in central Europe during the equinoctial months under moderate geomagnetic conditions and during the summer months under very disturbed geomagnetic conditions. The forecasting maps generated by IFERM on the basis of the results provided by the 13 IFELM, show very large areas located at middle-high and high latitudes where the foF2 predictions quite faithfully match the foF2 measurements, and consequently IFERM can be used for generating short-term forecasting maps of foF2 (up to 3 h ahead) over the European area.

  15. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    The Central Campus construction site is seen during an aerial survey of NASA's Kennedy Space Center in Florida on September 12, 2017. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  16. KSC-2012-3130

    NASA Image and Video Library

    2012-05-30

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility near NASA's Kennedy Space Center in Florida, a technician performs a black light inspection on one of the Radiation Belt Storm Probes. Black light inspection uses UVA fluorescence to detect possible microcontamination, small cracks or fluid leaks. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett

  17. Report on the survey for electrostatic discharges on Mars using NASA's Deep Space Network (DSN)

    NASA Astrophysics Data System (ADS)

    Arabshahi, S.; Majid, W.; Geldzahler, B.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Mars atmosphere has strong dust activity. It is suggested that the larger regional storms are capable of producing electric fields large enough to initiate electrostatic discharges. The storms have charging process similar to terrestrial dust devils and have hot cores and complicated vortex winds similar to terrestrial thunderstorms. However, due to uncertainties in our understanding of the electrical environment of the storms and absence of related in-situ measurements, the existence (or non-existence) of such electrostatic discharges on the planet is yet to be confirmed. Knowing about the electrical activity on Mars is essential for future human explorations of the planet. We have recently launched a long-term monitoring campaign at NASA's Madrid Deep Space Communication Complex (MDSCC) to search for powerful discharges on Mars. The search occurs during routine tracking of Mars orbiting spacecraft by Deep Space Network (DSN) radio telescope. In this presentation, we will report on the result of processing and analysis of the data from the first six months of our campaign.

  18. Verification of space weather forecasts at the UK Met Office

    NASA Astrophysics Data System (ADS)

    Bingham, S.; Sharpe, M.; Jackson, D.; Murray, S.

    2017-12-01

    The UK Met Office Space Weather Operations Centre (MOSWOC) has produced space weather guidance twice a day since its official opening in 2014. Guidance includes 4-day probabilistic forecasts of X-ray flares, geomagnetic storms, high-energy electron events and high-energy proton events. Evaluation of such forecasts is important to forecasters, stakeholders, model developers and users to understand the performance of these forecasts and also strengths and weaknesses to enable further development. Met Office terrestrial near real-time verification systems have been adapted to provide verification of X-ray flare and geomagnetic storm forecasts. Verification is updated daily to produce Relative Operating Characteristic (ROC) curves and Reliability diagrams, and rolling Ranked Probability Skill Scores (RPSSs) thus providing understanding of forecast performance and skill. Results suggest that the MOSWOC issued X-ray flare forecasts are usually not statistically significantly better than a benchmark climatological forecast (where the climatology is based on observations from the previous few months). By contrast, the issued geomagnetic storm activity forecast typically performs better against this climatological benchmark.

  19. Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics.

    PubMed

    Madarang, Krish J; Kang, Joo-Hyon

    2014-06-01

    Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R(2) and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Space Weather Studies at Istanbul Technical University

    NASA Astrophysics Data System (ADS)

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  1. A simple model for the spatially-variable coastal response to hurricanes

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H.; Holman, R.A.; Howd, P.A.

    2007-01-01

    The vulnerability of a beach to extreme coastal change during a hurricane can be estimated by comparing the relative elevations of storm-induced water levels to those of the dune or berm. A simple model that defines the coastal response based on these elevations was used to hindcast the potential impact regime along a 50-km stretch of the North Carolina coast to the landfalls of Hurricane Bonnie on August 27, 1998, and Hurricane Floyd on September 16, 1999. Maximum total water levels at the shoreline were calculated as the sum of modeled storm surge, astronomical tide, and wave runup, estimated from offshore wave conditions and the local beach slope using an empirical parameterization. Storm surge and wave runup each accounted for ∼ 48% of the signal (the remaining 4% is attributed to astronomical tides), indicating that wave-driven process are a significant contributor to hurricane-induced water levels. Expected water levels and lidar-derived measures of pre-storm dune and berm elevation were used to predict the spatially-varying storm-impact regime: swash, collision, or overwash. Predictions were compared to the observed response quantified using a lidar topography survey collected following hurricane landfall. The storm-averaged mean accuracy of the model in predicting the observed impact regime was 55.4%, a significant improvement over the 33.3% accuracy associated with random chance. Model sensitivity varied between regimes and was highest within the overwash regime where the accuracies were 84.2% and 89.7% for Hurricanes Bonnie and Floyd, respectively. The model not only allows for prediction of the general coastal response to storms, but also provides a framework for examining the longshore-variable magnitudes of observed coastal change. For Hurricane Bonnie, shoreline and beach volume changes within locations that experienced overwash or dune erosion were two times greater than locations where wave runup was confined to the foreshore (swash regime). During Hurricane Floyd, this pattern became more pronounced as magnitudes of change were four times greater within the overwash regime than in the swash regime. Comparisons of pre-storm topography to a calm weather survey collected one year after Hurricane Floyd's landfall show long-term beach volume loss at overwash locations. Here, the volume of sand eroded from the beach was balanced by the volume of overwash deposits, indicating that the majority of the sand removed from the beach was transported landward across the island rather than being transported offshore. In overwash locations, sand was removed from the nearshore system and unavailable for later beach recovery, resulting in a more permanent response than observed within the other regimes. These results support the predictive capabilities of the storm scaling model and illustrate that the impact regimes provide a framework for explaining the longshore-variable coastal response to hurricanes.

  2. Helio-geomagnetic influence in cardiological cases

    NASA Astrophysics Data System (ADS)

    Katsavrias, Ch.; Preka-Papadema, P.; Moussas, X.; Apostolou, Th.; Theodoropoulou, A.; Papadima, Th.

    2013-01-01

    The effects of the energetic phenomena of the Sun, flares and coronal mass ejections (CMEs) on the Earth's ionosphere-magnetosphere, through the solar wind, are the sources of the geomagnetic disturbances and storms collectively known as Space Weather. The research on the influence of Space Weather on biological and physiological systems is open. In this work we study the Space Weather impact on Acute Coronary Syndromes (ACS) distinguishing between ST-segment elevation acute coronary syndromes (STE-ACS) and non-ST-segment elevation acute coronary syndromes (NSTE-ACS) cases. We compare detailed patient records from the 2nd Cardiologic Department of the General Hospital of Nicaea (Piraeus, Greece) with characteristics of geomagnetic storms (DST), solar wind speed and statistics of flares and CMEs which cover the entire solar cycle 23 (1997-2007). Our results indicate a relationship of ACS to helio-geomagnetic activity as the maximum of the ACS cases follows closely the maximum of the solar cycle. Furthermore, within very active periods, the ratio NSTE-ACS to STE-ACS, which is almost constant during periods of low to medium activity, changes favouring the NSTE-ACS. Most of the ACS cases exhibit a high degree of association with the recovery phase of the geomagnetic storms; a smaller, yet significant, part was found associated with periods of fast solar wind without a storm.

  3. OSSE Assessment of Ocean Observing System Enhancements to Improve Coupled Tropical Cyclone Intensity Prediction

    NASA Astrophysics Data System (ADS)

    Halliwell, G. R., Jr.; Mehari, M. F.; Dong, J.; Kourafalou, V.; Atlas, R. M.; Kang, H.; Le Henaff, M.

    2016-02-01

    A new ocean OSSE system validated in the tropical/subtropical Atlantic Ocean is used to evaluate ocean observing strategies during the 2014 hurricane season with the goal of improving coupled tropical cyclone forecasts. Enhancements to the existing operational ocean observing system are evaluated prior to two storms, Edouard and Gonzalo, where ocean measurements were obtained during field experiments supported by the 2013 Disaster Relief Appropriation Act. For Gonzalo, a reference OSSE is performed to evaluate the impact of two ocean gliders deployed north and south of Puerto Rico and two Alamo profiling floats deployed in the same general region during most of the hurricane season. For Edouard, a reference OSSE is performed to evaluate impacts of the pre-storm ocean profile survey conducted by NOAA WP-3D aircraft. For both storms, additional OSSEs are then conducted to evaluate more extensive seasonal and pre-storm ocean observing strategies. These include (1) deploying a larger number of synthetic ocean gliders during the hurricane season, (2) deploying pre-storm synthetic thermistor chains or synthetic profiling floats along one or more "picket fence" lines that cross projected storm tracks, and (3) designing pre-storm airborne profiling surveys to have larger impacts than the actual pre-storm survey conducted for Edouard. Impacts are evaluated based on error reduction in ocean parameters important to SST cooling and hurricane intensity such as ocean heat content and the structure of the ocean eddy field. In all cases, ocean profiles that sample both temperature and salinity down to 1000m provide greater overall error reduction than shallower temperature profiles obtained from AXBTs and thermistor chains. Large spatial coverage with multiple instruments spanning a few degrees of longitude and latitude is necessary to sufficiently reduce ocean initialization errors over a region broad enough to significantly impact predicted surface enthalpy flux into the storm. Error reduction in hurricane intensity forecasts resulting from the additional ocean observations is then assessed by initializing the ocean component of the HYCOM-HWRF coupled prediction system with analyses produced by the OSSE system.

  4. Space-to-Ground: Tracking a Monster: 09/08/2017

    NASA Image and Video Library

    2017-09-07

    Three crew members said farewell to the station...the station had eyes on a monstrous storm...and what kind of weather can you have in space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  5. Lorentz-Shaped Comet Dust Trail Cross Section from New Hybrid Visual and Video Meteor Counting Technique - Implications for Future Leonid Storm Encounters

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Crawford, Chris; Butow, Steven J.; Nugent, David; Koop, Mike; Holman, David; Houston, Jane; Jobse, Klaas; Kronk, Gary

    2000-01-01

    A new hybrid technique of visual and video meteor observations was developed to provide high precision near real-time flux measurements for satellite operators from airborne platforms. A total of 33,000 Leonids. recorded on video during the 1999 Leonid storm, were watched by a team of visual observers using a video head display and an automatic counting tool. The counts reveal that the activity profile of the Leonid storm is a Lorentz profile. By assuming a radial profile for the dust trail that is also a Lorentzian, we make predictions for future encounters. If that assumption is correct, we passed 0.0003 AU deeper into the 1899 trailet than expected during the storm of 1999 and future encounters with the 1866 trailet will be less intense than. predicted elsewhere.

  6. Flood Frequenices and Bridge and Culvert Sizes for Forested Mountains of North Carolina

    Treesearch

    James E. Douglass

    1974-01-01

    A method is presented for predicting flood discharge from the forested Blue Ridge Mountains of North Carolina for storms at recurrence intervals of 2.33, 5, 10, 20, 30, 40, and 50 years. These predictions are based on area and maximum elevation of the drainage. Once storm discharge has been estimated, the proper size of culvert can be determined from tables which list...

  7. Storm Prediction Center May 27, 2018 1730 UTC Day 2 Convective Outlook

    Science.gov Websites

    services. < Day 1 Outlook Day 3 Outlook > May 27, 2018 1730 UTC Day 2 Convective Outlook Updated: Sun May 27 17:24:17 UTC 2018 (Print Version | 20180527 1730Z Day 2 shapefile | 20180527 1730Z Day JavaScript/Active Scripting. Forecast Discussion SPC AC 271724 Day 2 Convective Outlook NWS Storm Prediction

  8. Storm Prediction Center May 28, 2018 0100 UTC Day 1 Convective Outlook

    Science.gov Websites

    services. Day 2 Outlook > May 28, 2018 0100 UTC Day 1 Convective Outlook Updated: Mon May 28 01:01:01 UTC 2018 (Print Version | 20180528 0100Z Day 1 shapefile | 20180528 0100Z Day 1 KML ) Probabilistic to . Forecast Discussion SPC AC 280101 Day 1 Convective Outlook NWS Storm Prediction Center Norman OK 0801 PM

  9. Microwave Remote Sensing of Ocean Surface Wind Speed and Rain Rates over Tropical Storms

    NASA Technical Reports Server (NTRS)

    Swift, C. T.; Dehority, D. C.; Black, P. G.; Chien, J. Z.

    1984-01-01

    The value of using narrowly spaced frequencies within a microwave band to measure wind speeds and rain rates over tropical storms with radiometers is reviewed. The technique focuses on results obtained in the overflights of Hurricane Allen during 5 and 8 of August, 1980.

  10. Exploratory Meeting on Atmospheric Electricity and Severe Storms

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W. (Editor)

    1978-01-01

    The meeting was arranged to discuss atmospheric electricity and its relationship to severe storms, the feasibility of developing a set of instruments for either a Space Shuttle or an unmanned satellite, and the scientific rationale which would warrant further in-depth assessment, involvement and development of supporting activities by NASA.

  11. HUBBLE TRACKS 'PERFECT STORM' ON MARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Two dramatically different faces of our Red Planet neighbor appear in these comparison images showing how a global dust storm engulfed Mars with the onset of Martian spring in the Southern Hemisphere. When NASA's Hubble Space Telescope imaged Mars in June, the seeds of the storm were caught brewing in the giant Hellas Basin (oval at 4 o'clock position on disk) and in another storm at the northern polar cap. When Hubble photographed Mars in early September, the storm had already been raging across the planet for nearly two months obscuring all surface features. The fine airborne dust blocks a significant amount of sunlight from reaching the Martian surface. Because the airborne dust is absorbing this sunlight, it heats the upper atmosphere. Seasonal global Mars dust storms have been observed from telescopes for over a century, but this is the biggest storm ever seen in the past several decades. Mars looks gibbous in the right photograph because it is 26 million miles farther from Earth than in the left photo (though the pictures have been scaled to the same angular size), and our viewing angle has changed. The left picture was taken when Mars was near its closest approach to Earth for 2001 (an event called opposition); at that point the disk of Mars was fully illuminated as seen from Earth because Mars was exactly opposite the Sun. Both images are in natural color, taken with Hubble's Wide Field Planetary Camera 2. Credit: NASA, James Bell (Cornell Univ.), Michael Wolff (Space Science Inst.), and the Hubble Heritage Team (STScI/AURA)

  12. Lightning activity and severe storm structure

    NASA Technical Reports Server (NTRS)

    Taylor, W. L.; Brandes, E. A.; Rust, W. D.; Macgorman, D. R.

    1984-01-01

    Space-time mapping of VHF sources from four severe storms on June 19, 1980 reveals that lightning processes for cloud-to-ground (CG) and large intracloud (IC) flashes are confined to an altitude below about 10 km and closely associated with the central regions of high reflectivity. Another class of IC flashes produces a splattering of sources within the storms' main electrically active volumes and also within the large divergent wind canopy aloft. There is no apparent temporal association between the small high altitude IC flashes that occur almost continuously and the large IC and CG flashes that occur sporadically in the lower portions of storms.

  13. Storm loads of culturable and molecular fecal indicators in an inland urban stream.

    PubMed

    Liao, Hehuan; Krometis, Leigh-Anne H; Cully Hession, W; Benitez, Romina; Sawyer, Richard; Schaberg, Erin; von Wagoner, Emily; Badgley, Brian D

    2015-10-15

    Elevated concentrations of fecal indicator bacteria in receiving waters during wet-weather flows are a considerable public health concern that is likely to be exacerbated by future climate change and urbanization. Knowledge of factors driving the fate and transport of fecal indicator bacteria in stormwater is limited, and even less is known about molecular fecal indicators, which may eventually supplant traditional culturable indicators. In this study, concentrations and loading rates of both culturable and molecular fecal indicators were quantified throughout six storm events in an instrumented inland urban stream. While both concentrations and loading rates of each fecal indicator increased rapidly during the rising limb of the storm hydrographs, it is the loading rates rather than instantaneous concentrations that provide a better estimate of transport through the stream during the entire storm. Concentrations of general fecal indicators (both culturable and molecular) correlated most highly with each other during storm events but not with the human-associated HF183 Bacteroides marker. Event loads of general fecal indicators most strongly correlated with total runoff volume, maximum discharge, and maximum turbidity, while event loads of HF183 most strongly correlated with the time to peak flow in a hydrograph. These observations suggest that collection of multiple samples during a storm event is critical for accurate predictions of fecal indicator loading rates and total loads during wet-weather flows, which are required for effective watershed management. In addition, existing predictive models based on general fecal indicators may not be sufficient to predict source-specific genetic markers of fecal contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A Bayesian Approach Based Outage Prediction in Electric Utility Systems Using Radar Measurement Data

    DOE PAGES

    Yue, Meng; Toto, Tami; Jensen, Michael P.; ...

    2017-05-18

    Severe weather events such as strong thunderstorms are some of the most significant and frequent threats to the electrical grid infrastructure. Outages resulting from storms can be very costly. While some tools are available to utilities to predict storm occurrences and damage, they are typically very crude and provide little means of facilitating restoration efforts. This study developed a methodology to use historical high-resolution (both temporal and spatial) radar observations of storm characteristics and outage information to develop weather condition dependent failure rate models (FRMs) for different grid components. Such models can provide an estimation or prediction of the outagemore » numbers in small areas of a utility’s service territory once the real-time measurement or forecasted data of weather conditions become available as the input to the models. Considering the potential value provided by real-time outages reported, a Bayesian outage prediction (BOP) algorithm is proposed to account for both strength and uncertainties of the reported outages and failure rate models. The potential benefit of this outage prediction scheme is illustrated in this study.« less

  15. A Bayesian Approach Based Outage Prediction in Electric Utility Systems Using Radar Measurement Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Meng; Toto, Tami; Jensen, Michael P.

    Severe weather events such as strong thunderstorms are some of the most significant and frequent threats to the electrical grid infrastructure. Outages resulting from storms can be very costly. While some tools are available to utilities to predict storm occurrences and damage, they are typically very crude and provide little means of facilitating restoration efforts. This study developed a methodology to use historical high-resolution (both temporal and spatial) radar observations of storm characteristics and outage information to develop weather condition dependent failure rate models (FRMs) for different grid components. Such models can provide an estimation or prediction of the outagemore » numbers in small areas of a utility’s service territory once the real-time measurement or forecasted data of weather conditions become available as the input to the models. Considering the potential value provided by real-time outages reported, a Bayesian outage prediction (BOP) algorithm is proposed to account for both strength and uncertainties of the reported outages and failure rate models. The potential benefit of this outage prediction scheme is illustrated in this study.« less

  16. Development of a severe local storm prediction system: A 60-day test of a mesoscale primitive equation model

    NASA Technical Reports Server (NTRS)

    Paine, D. A.; Zack, J. W.; Kaplan, M. L.

    1979-01-01

    The progress and problems associated with the dynamical forecast system which was developed to predict severe storms are examined. The meteorological problem of severe convective storm forecasting is reviewed. The cascade hypothesis which forms the theoretical core of the nested grid dynamical numerical modelling system is described. The dynamical and numerical structure of the model used during the 1978 test period is presented and a preliminary description of a proposed multigrid system for future experiments and tests is provided. Six cases from the spring of 1978 are discussed to illustrate the model's performance and its problems. Potential solutions to the problems are examined.

  17. Satellites, scientists track storm from Sun to surface

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    1997-02-01

    On January 6, the Sun spat a coronal mass ejection (CME) into the solar wind and toward Earth; by January 10, a cloud of charged particles buffeted the face of the planet. It was, by several accounts, a run-of-the-mill space weather event. But the scientific work surrounding the storm was anything but run-of-the-mill. For the first time, space physicists observed and recorded a space weather event from start to finish, from solar surface to earthly impact. Researchers are calling it the first true success story of the four-year-old International Solar Terrestrial Physics program (ISTP), which includes NASA's WIND and POLAR spacecraft; the joint Solar and Heliospheric Observatory (SOHO) mission of NASA and the European Space Agency; the joint Geotail mission of NASA and Japan's Institute of Space and Aeronautical Science; and Russia's Interball satellites.

  18. KSC-06pd1038

    NASA Image and Video Library

    2006-06-13

    KENNEDY SPACE CENTER, FLA. - During a break in the rain storms from Tropical Storm Alberto, the STS-121 crew arrives at NASA's Kennedy Space Center aboard a Grumman G2 aircraft to take part in a Terminal Countdown Demonstration Test, or TCDT. Greeting the crew is Shuttle Launch Director Mike Leinbach, here shaking hands with Mission Specialist Thomas Reiter, who represents the European Space Agency. Other crew members are Mission Commander Steven Lindsey, Pilot Mark Kelly, and Mission Specialists Piers Sellers, Michael Fossum, Lisa Nowak and Stephanie Wilson. Over several days, the crew will practice emergency egress from the pad and suit up in their orange flight suits for the simulated countdown to launch. Space Shuttle Discovery is designated to launch July 1 on mission STS-121. It will carry supplies to the International Space Station. Photo credit: NASA/Kim Shiflett

  19. Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 2. Geomagnetic response

    NASA Astrophysics Data System (ADS)

    Savani, N. P.; Vourlidas, A.; Richardson, I. G.; Szabo, A.; Thompson, B. J.; Pulkkinen, A.; Mays, M. L.; Nieves-Chinchilla, T.; Bothmer, V.

    2017-02-01

    This is a companion to Savani et al. (2015) that discussed how a first-order prediction of the internal magnetic field of a coronal mass ejection (CME) may be made from observations of its initial state at the Sun for space weather forecasting purposes (Bothmer-Schwenn scheme (BSS) model). For eight CME events, we investigate how uncertainties in their predicted magnetic structure influence predictions of the geomagnetic activity. We use an empirical relationship between the solar wind plasma drivers and Kp index together with the inferred magnetic vectors, to make a prediction of the time variation of Kp (Kp(BSS)). We find a 2σ uncertainty range on the magnetic field magnitude (|B|) provides a practical and convenient solution for predicting the uncertainty in geomagnetic storm strength. We also find the estimated CME velocity is a major source of error in the predicted maximum Kp. The time variation of Kp(BSS) is important for predicting periods of enhanced and maximum geomagnetic activity, driven by southerly directed magnetic fields, and periods of lower activity driven by northerly directed magnetic field. We compare the skill score of our model to a number of other forecasting models, including the NOAA/Space Weather Prediction Center (SWPC) and Community Coordinated Modeling Center (CCMC)/SWRC estimates. The BSS model was the most unbiased prediction model, while the other models predominately tended to significantly overforecast. The True skill score of the BSS prediction model (TSS = 0.43 ± 0.06) exceeds the results of two baseline models and the NOAA/SWPC forecast. The BSS model prediction performed equally with CCMC/SWRC predictions while demonstrating a lower uncertainty.

  20. The Last Word: Magnetic Storm-Still an Adequate Name?

    NASA Astrophysics Data System (ADS)

    Daglis, Ioannis A.

    The magnetic storm is the principal and most complex collective phenomenon in geospace. It involves the magnetic fields of the Sun and the Earth, as well as plasma originating in the solar and terrestrial atmosphere. Magnetic storms involve more than just the geomagnetic field, as the original perception suggests. They involve a variety of dynamic processes among which charged particle acceleration and electric current intensification are the most important. Is the name still adequate, or should we switch to something more general and wide-ranging, such as ``space storms,'' or ``geospace storms''? The oldest printed record of ``magnetic storms'' that I was able to find appears in a letter published in Annalen der Physik written by the famous explorer Alexander von Humboldt to Paul Erman. I located this paper in the amazingly rich library of the Air Force Research Laboratory at Hanscom Air Force Base in Massachusetts with the kind help of Mike Heinemann.

  1. HDSC/OWP

    Science.gov Websites

    Maximum Precipitation Documents Miscellaneous Publications Storm Analysis Record Precipitation Contact Us ; - Probability analysis for selected historical storm events learn more > - Record point precipitation for the Oceanic and Atmospheric Administration National Weather Service Office of Water Prediction (OWP) 1325 East

  2. NASA Aquarius Detects Possible Effects of Tropical Storm Lee in Gulf

    NASA Image and Video Library

    2011-12-07

    Tropical Storm Lee made landfall over New Orleans on Sept. 2-3, 2011, with predicted rainfall of 15 to 20 inches 38 to 51 centimeters over southern Louisiana. These charts are from NASA Aquarius spacecraft.

  3. Comparison of Dst Forecast Models for Intense Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Ji, Eun-Young; Moon, Y.-J.; Gopalswamy, N.; Lee, D.-H.

    2012-01-01

    We have compared six disturbance storm time (Dst) forecast models using 63 intense geomagnetic storms (Dst <=100 nT) that occurred from 1998 to 2006. For comparison, we estimated linear correlation coefficients and RMS errors between the observed Dst data and the predicted Dst during the geomagnetic storm period as well as the difference of the value of minimum Dst (Delta Dst(sub min)) and the difference in the absolute value of Dst minimum time (Delta t(sub Dst)) between the observed and the predicted. As a result, we found that the model by Temerin and Li gives the best prediction for all parameters when all 63 events are considered. The model gives the average values: the linear correlation coefficient of 0.94, the RMS error of 14.8 nT, the Delta Dst(sub min) of 7.7 nT, and the absolute value of Delta t(sub Dst) of 1.5 hour. For further comparison, we classified the storm events into two groups according to the magnitude of Dst. We found that the model of Temerin and Lee is better than the other models for the events having 100 <= Dst < 200 nT, and three recent models (the model of Wang et al., the model of Temerin and Li, and the model of Boynton et al.) are better than the other three models for the events having Dst <= 200 nT.

  4. CME Arrival-time Validation of Real-time WSA-ENLIL+Cone Simulations at the CCMC/SWRC

    NASA Astrophysics Data System (ADS)

    Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Jian, L.; Odstrcil, D.; MacNeice, P. J.

    2016-12-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations worldwide to model CME propagation, as such it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). The SWRC is a CCMC sub-team that provides space weather services to NASA robotic mission operators and science campaigns, and also prototypes new forecasting models and techniques. CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME shock observations near Earth (ACE, Wind), STEREO-A and B for simulations completed between March 2010 - July 2016 (over 1500 runs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we compute the bias, RMSE, and average absolute CME arrival time error, and the dependence of these errors on CME input parameters. We compare the predicted geomagnetic storm strength (Kp index) to the CME arrival time error for Earth-directed CMEs. The predicted Kp index is computed using the WSA-ENLIL+Cone plasma parameters at Earth with a modified Newell et al. (2007) coupling function. We also explore the impact of the multi-spacecraft observations on the CME parameters used initialize the model by comparing model validation results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). This model validation exercise has significance for future space weather mission planning such as L5 missions.

  5. Can single molecule localization microscopy be used to map closely spaced RGD nanodomains?

    PubMed Central

    Nicovich, Philip R.; Soeriyadi, Alexander; Nieves, Daniel J.; Gooding, J. Justin; Gaus, Katharina

    2017-01-01

    Cells sense and respond to nanoscale variations in the distribution of ligands to adhesion receptors. This makes single molecule localization microscopy (SMLM) an attractive tool to map the distribution of ligands on nanopatterned surfaces. We explore the use of SMLM spatial cluster analysis to detect nanodomains of the cell adhesion-stimulating tripeptide arginine-glycine-aspartic acid (RGD). These domains were formed by the phase separation of block copolymers with controllable spacing on the scale of tens of nanometers. We first determined the topology of the block copolymer with atomic force microscopy (AFM) and then imaged the localization of individual RGD peptides with direct stochastic optical reconstruction microscopy (dSTORM). To compare the data, we analyzed the dSTORM data with DBSCAN (density-based spatial clustering application with noise). The ligand distribution and polymer topology are not necessary identical since peptides may attach to the polymer outside the nanodomains and/or coupling and detection of peptides within the nanodomains is incomplete. We therefore performed simulations to explore the extent to which nanodomains could be mapped with dSTORM. We found that successful detection of nanodomains by dSTORM was influenced by the inter-domain spacing and the localization precision of individual fluorophores, and less by non-specific absorption of ligands to the substratum. For example, under our imaging conditions, DBSCAN identification of nanodomains spaced further than 50 nm apart was largely independent of background localisations, while nanodomains spaced closer than 50 nm required a localization precision of ~11 nm to correctly estimate the modal nearest neighbor distance (NDD) between nanodomains. We therefore conclude that SMLM is a promising technique to directly map the distribution and nanoscale organization of ligands and would benefit from an improved localization precision. PMID:28723958

  6. Are the Leonid Meteor Storms Coming?

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.; Yau, K.; Weissman, P. R.

    1995-01-01

    On Nov. 17, 1996 an extraordinary Leonid meteor storm (144,000 per hour) was witnessed by observers in central and western United States. With an orbital period of 33 years, the next return to perihelion will be Feb. 28, 1998. Because the distribution of the particles flying in formation with the parent comet is poorly known, no secure predictions can be made for Leonid meteor storms in the coming years.

  7. Recent Naval Postgraduate School Publications.

    DTIC Science & Technology

    1985-09-30

    of the performance of a new storm tracking methodology Prepared for Naval Environmental Prediction Res. Facility Monterey, Calif., Naval Postgraduate...Aerospace Sci. Mtg., Jr’., 1983. Sarpkaya, T; Storm , M A ydrodynamic forces from combined wave and current flow on smooth and rough circular cylinders...Houston, Tx., May, 1982. IN Proc 1982 Offshore Technol. Conf., vol. 1, p.731-736, (1982). Sarpkaya, T; Storm , M A ydrodynamic forces from combined wave

  8. A framework for modeling scenario-based barrier island storm impacts

    USGS Publications Warehouse

    Mickey, Rangley; Long, Joseph W.; Dalyander, P. Soupy; Plant, Nathaniel G.; Thompson, David M.

    2018-01-01

    Methods for investigating the vulnerability of existing or proposed coastal features to storm impacts often rely on simplified parametric models or one-dimensional process-based modeling studies that focus on changes to a profile across a dune or barrier island. These simple studies tend to neglect the impacts to curvilinear or alongshore varying island planforms, influence of non-uniform nearshore hydrodynamics and sediment transport, irregular morphology of the offshore bathymetry, and impacts from low magnitude wave events (e.g. cold fronts). Presented here is a framework for simulating regionally specific, low and high magnitude scenario-based storm impacts to assess the alongshore variable vulnerabilities of a coastal feature. Storm scenarios based on historic hydrodynamic conditions were derived and simulated using the process-based morphologic evolution model XBeach. Model results show that the scenarios predicted similar patterns of erosion and overwash when compared to observed qualitative morphologic changes from recent storm events that were not included in the dataset used to build the scenarios. The framework model simulations were capable of predicting specific areas of vulnerability in the existing feature and the results illustrate how this storm vulnerability simulation framework could be used as a tool to help inform the decision-making process for scientists, engineers, and stakeholders involved in coastal zone management or restoration projects.

  9. Space-to-Ground: Light Storm: 180216

    NASA Image and Video Library

    2018-02-16

    This week on station, a spacewalk and vehicle docking. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. For more information about STEM on Station: https://www.nasa.gov/audience/foreducators/stem_on_station/

  10. Modeling Earth's Ring Current Using The CIMI Model

    NASA Astrophysics Data System (ADS)

    Craven, J. D., II; Perez, J. D.; Buzulukova, N.; Fok, M. C. H.

    2015-12-01

    Earth's ring current is a result of the injection of charged particles trapped in the magnetosphere from solar storms. The enhancement of the ring current particles produces magnetic depressions and disturbances to the Earth's magnetic field known as geomagnetic storms, which have been modeled using the comprehensive inner magnetosphere-ionosphere (CIMI) model. The purpose of this model is to identify and understand the physical processes that control the dynamics of the geomagnetic storms. The basic procedure was to use the CIMI model for the simulation of 15 storms since 2009. Some of the storms were run multiple times, but with varying parameters relating to the dynamics of the Earth's magnetic field, particle fluxes, and boundary conditions of the inner-magnetosphere. Results and images were placed in the TWINS online catalog page for further analysis and discussion. Particular areas of interest were extreme storm events. A majority of storms simulated had average DST values of -100 nT; these extreme storms exceeded DST values of -200 nT. The continued use of the CIMI model will increase knowledge of the interactions and processes of the inner-magnetosphere as well as lead to a better understanding of extreme solar storm events for the future advancement of space weather physics.

  11. Earth Obsersation taken by the Expedition 11 crew

    NASA Image and Video Library

    2005-07-09

    ISS011-E-10258 (9 July 2005) --- This easterly-looking image from the International Space Station shows Hurricane Dennis after the storm had already crossed Cuba and was heading for the northern Gulf of Mexico. Dennis was a Category 3 storm, packing winds of 115 miles per hour, at the time of exposure and located approximately 385 miles southeast of Biloxi, Mississippi or 280 miles south of Panama City, Florida. The ill-defined eye is in the lower right corner. The black triangle in extreme lower right is part of the Space Station's window.

  12. Revised forecast: Another stormy summer ahead

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    After predicting in November 1995 that the 1996 hurricane season would be less active than the typical year (Eos, December 12, 1995), William Gray and his colleagues from Colorado State University have revised their forecast. Plugging updated atmospheric data into their statistical model, the researchers are now predicting seven hurricanes—two of them intense (category 3, 4, or 5)—and 11 named storms for the summer and fall of 1996. Net tropical cyclone activity for the hurricane season, which lasts from June 1 to December 1, should be 105% of the 25-year average, according to Gray.In November, Gray and Chris Landsea of NOAA's Hurricane Research Division predicted eight tropical storms and five hurricanes (two intense), less than the historical averages of 9.3 named storms and 5.7 hurricanes per season. The change in expectations is the result of new accounting for trends in temperature and barometric pressure in Africa and around the Atlantic Basin.

  13. Application of Nimbus-6 microwave data to problems in precipitation prediction for the Pacific west coast

    NASA Technical Reports Server (NTRS)

    Viezee, W.; Shigeishi, H.; Chang, A. T. C.

    1979-01-01

    The preliminary results of a research study that emphasizes the analysis and interpretation of data related to total precipitable water and nonprecipitating cloud liquid water obtained from NIMBUS-6 SCAMS are reported. Sixteen cyclonic storm situations in the northeastern Pacific Ocean that resulted in significant rainfall along the west coast of the United States during the winter season October 1975 through February 1976 are analyzed in terms of their distributions and amounts of total water vapor and liquid water, as obtained from SCAMS data. The water-substance analyses for each storm case are related to the distribution and amount of coastal precipitation observed during the subsequent time period when the storm system crosses the coastline. Concomitant precipitation predictions from the LFM are also incorporated. Techniques by which satellite microwave data over the ocean can be used to improve precipitation prediction for the Pacific West Coast are emphasized.

  14. IRI STORM validation over Europe

    NASA Astrophysics Data System (ADS)

    Haralambous, Haris; Vryonides, Photos; Demetrescu, Crişan; Dobrică, Venera; Maris, Georgeta; Ionescu, Diana

    2014-05-01

    The International Reference Ionosphere (IRI) model includes an empirical Storm-Time Ionospheric Correction Model (STORM) extension to account for storm-time changes of the F layer peak electron density (NmF2) during increased geomagnetic activity. This model extension is driven by past history values of the geomagnetic index ap (The magnetic index applied is the integral of ap over the previous 33 hours with a weighting function deduced from physically based modeling) and it adjusts the quiet-time F layer peak electron density (NmF2) to account for storm-time changes in the ionosphere. In this investigation manually scaled hourly values of NmF2 measured during the main and recovery phases of selected storms for the maximum solar activity period of the current solar cycle are compared with the predicted IRI-2012 NmF2 over European ionospheric stations using the STORM model option. Based on the comparison a subsequent performance evaluation of the STORM option during this period is quantified.

  15. The USGS geomagnetism program and its role in space weather monitoring

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.

    2011-01-01

    Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of global positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space weather starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space weather are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space weather monitoring.

  16. The USGS Geomagnetism Program and its role in Space-Weather Monitoring

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.

    2011-01-01

    Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of global positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space weather starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space weather are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space weather monitoring.

  17. On the Log-Normality of Historical Magnetic-Storm Intensity Statistics: Implications for Extreme-Event Probabilities

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Rigler, E. J.; Pulkkinen, A. A.; Riley, P.

    2015-12-01

    An examination is made of the hypothesis that the statistics of magnetic-storm-maximum intensities are the realization of a log-normal stochastic process. Weighted least-squares and maximum-likelihood methods are used to fit log-normal functions to -Dst storm-time maxima for years 1957-2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power-law function. In general, the maximum-likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least-squares. From extrapolation of maximum-likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, -Dst > 850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42, 2.41] times per century; a 100-yr magnetic storm is identified as having a -Dst > 880 nT (greater than Carrington) but a wide 95% confidence interval of [490, 1187] nT. This work is partially motivated by United States National Science and Technology Council and Committee on Space Research and International Living with a Star priorities and strategic plans for the assessment and mitigation of space-weather hazards.

  18. A Stealth CME Bracketed between Slow and Fast Wind Producing Unexpected Geoeffectiveness

    NASA Astrophysics Data System (ADS)

    He, Wen; Liu, Ying D.; Hu, Huidong; Wang, Rui; Zhao, Xiaowei

    2018-06-01

    We investigate how a weak coronal mass ejection (CME) launched on 2016 October 8 without obvious signatures in the low corona produced a relatively intense geomagnetic storm. Remote sensing observations from SDO, STEREO, and SOHO and in situ measurements from Wind are employed to track the CME from the Sun to the Earth. Using a graduated cylindrical shell model, we estimate the propagation direction and the morphology of the CME near the Sun. CME kinematics are determined from the wide-angle imaging observations of STEREO A and are used to predict the CME arrival time and speed at the Earth. We compare ENLIL MHD simulation results with in situ measurements to illustrate the background solar wind where the CME was propagating. We also apply a Grad–Shafranov technique to reconstruct the flux-rope structure from in situ measurements in order to understand the geoeffectiveness associated with the CME magnetic field structure. Key results are obtained concerning how a weak CME can generate a relatively intense geomagnetic storm: (1) there were coronal holes at low latitudes, which could produce high speed streams (HSSs) to interact with the CME in interplanetary space; (2) the CME was bracketed between a slow wind ahead and an HSS behind, which enhanced the southward magnetic field inside the CME and gave rise to the unexpected geomagnetic storm.

  19. Great geomagnetic storm of 9 November 1991: Association with a disappearing solar filament

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Balasubramaniam, K. S.; Nitta, N. V.; Li, X.

    2009-02-01

    We attribute the great geomagnetic storm on 8-10 November 1991 to a large-scale eruption that encompassed the disappearance of a ~25° solar filament in the southern solar hemisphere. The resultant soft X-ray arcade spanned ~90° of solar longitude. The rapid growth of an active region lying at one end of the X-ray arcade appears to have triggered the eruption. This is the largest geomagnetic storm yet associated with the eruption of a quiescent filament. The minimum hourly Dst value of -354 nT on 9 November 1991 compares with a minimum Dst value of -161 nT for the largest 27-day recurrent (coronal hole) storm observed from 1972 to 2005 and the minimum -559 nT value observed during the flare-associated storm of 14 March 1989, the greatest magnetic storm recorded during the space age. Overall, the November 1991 storm ranks 15th on a list of Dst storms from 1905 to 2004, surpassing in intensity such well-known storms as 14 July 1982 (-310 nT) and 15 July 2000 (-317 nT). We used the Cliver et al. and Gopalswamy et al. empirical models of coronal mass ejection propagation in the solar wind to provide consistency checks on the eruption/storm association.

  20. Update of the DTM thermosphere model in the framework of the H2020 project `SWAMI'

    NASA Astrophysics Data System (ADS)

    Bruinsma, S.; Jackson, D.; Stolle, C.; Negrin, S.

    2017-12-01

    In the framework of the H2020 project SWAMI (Space Weather Atmosphere Model and Indices), which is expected to start in January 2018, the CIRA thermosphere specification model DTM2013 will be improved through the combination of assimilating more density data to drive down remaining biases and a new high cadence kp geomagnetic index in order to improve storm-time performance. Five more years of GRACE high-resolution densities from 2012-2016, densities from the last year of the GOCE mission, Swarm mean densities, and mean densities from 2010-2017 inferred from the geodetic satellites at about 800 km are available now. The DTM2013 model will be compared with the new density data in order to detect possible systematic errors or other kinds of deficiencies and a first analysis will be presented. Also, a more detailed analysis of model performance under storm conditions will be provided, which will then be the benchmark to quantify model improvement expected with the higher cadence kp indices. In the SWAMI project, the DTM model will be coupled in the 120-160 km altitude region to the Met Office Unified Model in order to create a whole atmosphere model. It can be used for launch operations, re-entry computations, orbit prediction, and aeronomy and space weather studies. The project objectives and time line will be given.

  1. Statistical Study of Eruptive Filaments using Automated Detection and Tracking Technique

    NASA Astrophysics Data System (ADS)

    Joshi, Anand D.; Hanaoka, Yoichiro

    2017-08-01

    Solar filaments are dense and cool material suspended in the low solar corona. They are found to be on the Sun for periods up to a few weeks, and they end their lifetime either as a gradual disappearance or an eruption. We have developed an automated detection and tracking technique to study such filament eruptions using full-disc Hα images. Various processing steps are used before subjecting an image to segmentation, that would extract only the filaments. Further steps track the filaments between successive images, label them uniquely, and generate output that can be used for a comparative study. In this poster, we would use this technique to carry out a statistical study of several erupting filaments through which the common underlying properties of such eruptions can be derived. Details of the technique will also be discussed in brief. Filament eruptions are found to be closely associated with coronal mass ejections (CMEs) wherein a large mass from corona is ejected into the interplanetary space. If such a CME hits the Earth with a favourable orientation of magnetic field a geomagnetic storm can result adversely affecting electronic infrastructure in space as well as ground. The properties of filament eruptions derived can be used in future to predict an eruption in an almost real-time basis, thereby giving a warning of imminent storm.

  2. Space Science

    NASA Image and Video Library

    2002-04-01

    Using the Solar Vector Magnetograph, a solar observation facility at NASA's Marshall Space Flight Center (MSFC), scientists from the National Space Science and Technology Center (NSSTC) in Huntsville, Alabama, are monitoring the explosive potential of magnetic areas of the Sun. This effort could someday lead to better prediction of severe space weather, a phenomenon that occurs when blasts of particles and magnetic fields from the Sun impact the magnetosphere, the magnetic bubble around the Earth. When massive solar explosions, known as coronal mass ejections, blast through the Sun's outer atmosphere and plow toward Earth at speeds of thousands of miles per second, the resulting effects can be harmful to communication satellites and astronauts outside the Earth's magnetosphere. Like severe weather on Earth, severe space weather can be costly. On the ground, magnetic storms wrought by these solar particles can knock out electric power. Photographed are a group of contributing researchers in front of the Solar Vector Magnetograph at MSFC. The researchers are part of NSSTC's solar physics group, which develops instruments for measuring magnetic fields on the Sun. With these instruments, the group studies the origin, structure, and evolution of the solar magnetic fields and the impact they have on Earth's space environment.

  3. Extreme Space Weather Events: From Cradle to Grave

    NASA Astrophysics Data System (ADS)

    Riley, Pete; Baker, Dan; Liu, Ying D.; Verronen, Pekka; Singer, Howard; Güdel, Manuel

    2018-02-01

    Extreme space weather events, while rare, can have a substantial impact on our technologically-dependent society. And, although such events have only occasionally been observed, through careful analysis of a wealth of space-based and ground-based observations, historical records, and extrapolations from more moderate events, we have developed a basic picture of the components required to produce them. Several key issues, however, remain unresolved. For example, what limits are imposed on the maximum size of such events? What are the likely societal consequences of a so-called "100-year" solar storm? In this review, we summarize our current scientific understanding about extreme space weather events as we follow several examples from the Sun, through the solar corona and inner heliosphere, across the magnetospheric boundary, into the ionosphere and atmosphere, into the Earth's lithosphere, and, finally, its impact on man-made structures and activities, such as spacecraft, GPS signals, radio communication, and the electric power grid. We describe preliminary attempts to provide probabilistic forecasts of extreme space weather phenomena, and we conclude by identifying several key areas that must be addressed if we are better able to understand, and, ultimately, predict extreme space weather events.

  4. Part 2: Conserving and Planting Trees at Development Sites

    Treesearch

    Karen Cappiella; Tom Schueler; Tiffany Wright

    2006-01-01

    This manual presents specific ways to enable developers, engineers or landscape architects to incorporate more trees into a development site. The proposed approach focuses on protecting existing trees, planting trees in storm water treatment practices, and planting trees in other open spaces at the development site. This manual introduces conceptual designs for storm...

  5. Developing Empirical Lightning Cessation Forecast Guidance for the Cape Canaveral Air Force Station and Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Fuelberg, Henry E.; Roeder, William P.

    2010-01-01

    This research addresses the 45th Weather Squadron's (45WS) need for improved guidance regarding lightning cessation at Cape Canaveral Air Force Station and Kennedy Space Center (KSC). KSC's Lightning Detection and Ranging (LDAR) network was the primary observational tool to investigate both cloud-to-ground and intracloud lightning. Five statistical and empirical schemes were created from LDAR, sounding, and radar parameters derived from 116 storms. Four of the five schemes were unsuitable for operational use since lightning advisories would be canceled prematurely, leading to safety risks to personnel. These include a correlation and regression tree analysis, three variants of multiple linear regression, event time trending, and the time delay between the greatest height of the maximum dBZ value to the last flash. These schemes failed to adequately forecast the maximum interval, the greatest time between any two flashes in the storm. The majority of storms had a maximum interval less than 10 min, which biased the schemes toward small values. Success was achieved with the percentile method (PM) by separating the maximum interval into percentiles for the 100 dependent storms.

  6. Quantitative controls on submarine slope failure morphology

    USGS Publications Warehouse

    Lee, H.J.; Schwab, W.C.; Edwards, B.D.; Kayen, R.E.

    1991-01-01

    The concept of the steady-state of deformation can be applied to predicting the ultimate form a landslide will take. The steady-state condition, defined by a line in void ratio-effective stress space, exists at large levels of strain and remolding. Conceptually, if sediment initially exists with void ratio-effective stress conditions above the steady-state line, the sediment shear strength will decrease during a transient loading event, such as an earthquake or storm. If the reduced shear strength existing at the steady state is less than the downslope shear stress induced by gravity, then large-scale internal deformation, disintegration, and flow will occur. -from Authors

  7. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). Briefing participants from left are: Steven Goodman, NOAA's GOES-R program scientist; Joseph A. Pica, director of the National Weather Service Office of Observations; and Sandra Cauffman, deputy director of NASA's Earth Science Division. GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  8. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Tim Walsh, GOES-R System Program director for the National Oceanic and Atmospheric Administration, or NOAA, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the Geostationary Operational Environmental Satellite, or GOES-S, the second spacecraft in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  9. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Dan Lindsey, GOES-R senior scientific advisor for NOAA, speaks to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  10. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Jason Townsend, NASA's social media manager, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  11. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Steve Cole of NASA Communications speaks to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  12. Integrating Windblown Dust Forecasts with Public Safety and Health Systems

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2014-12-01

    Experiments in real-time prediction of desert dust emissions and downstream plume concentrations (~ 3.5 km near-surface spatial resolution) succeed to the point of challenging public safety and public health services to beta test a dust storm warning and advisory system in lowering risks of highway and airline accidents and illnesses such as asthma and valley fever. Key beta test components are: high-resolution models of dust emission, entrainment and diffusion, integrated with synoptic weather observations and forecasts; satellite-based detection and monitoring of soil properties on the ground and elevated above; high space and time resolution for health surveillance and transportation advisories.

  13. A simple stochastic rainstorm generator for simulating spatially and temporally varying rainfall

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Michaelides, K.; Nichols, M.; Nearing, M. A.

    2016-12-01

    In semi-arid to arid drainage basins, rainstorms often control both water supply and flood risk to marginal communities of people. They also govern the availability of water to vegetation and other ecological communities, as well as spatial patterns of sediment, nutrient, and contaminant transport and deposition on local to basin scales. All of these landscape responses are sensitive to changes in climate that are projected to occur throughout western North America. Thus, it is important to improve characterization of rainstorms in a manner that enables statistical assessment of rainfall at spatial scales below that of existing gauging networks and the prediction of plausible manifestations of climate change. Here we present a simple, stochastic rainstorm generator that was created using data from a rich and dense network of rain gauges at the Walnut Gulch Experimental Watershed (WGEW) in SE Arizona, but which is applicable anywhere. We describe our methods for assembling pdfs of relevant rainstorm characteristics including total annual rainfall, storm area, storm center location, and storm duration. We also generate five fitted intensity-duration curves and apply a spatial rainfall gradient to generate precipitation at spatial scales below gauge spacing. The model then runs by Monte Carlo simulation in which a total annual rainfall is selected before we generate rainstorms until the annual precipitation total is reached. The procedure continues for decadal simulations. Thus, we keep track of the hydrologic impact of individual storms and the integral of precipitation over multiple decades. We first test the model using ensemble predictions until we reach statistical similarity to the input data from WGEW. We then employ the model to assess decadal precipitation under simulations of climate change in which we separately vary the distribution of total annual rainfall (trend in moisture) and the intensity-duration curves used for simulation (trends in storminess). We demonstrate the model output through spatial maps of rainfall and through statistical comparisons of relevant parameters and distributions. Finally, discuss how the model can be used to understand basin-scale hydrology in terms of soil moisture, runoff, and erosion.

  14. Association of time of occurrence of electrical heart storms with environmental physical activity.

    PubMed

    Stoupel, Eliiyahu; Kusniec, Jairo; Golovchiner, Gregory; Abramson, Evgeny; Kadmon, Udi; Strasberg, Boris

    2014-08-01

    Many publications in recent decades have reported a temporal link between medical events and environmental physical activity. The aim of this study was to analyze the time of occurrence of electrical heart storms against levels of cosmological parameters. The sample included 82 patients (71 male) with ischemic cardiomyopathy treated with an implantable cardioverter defibrillator at a tertiary medical center in 1999-2012 (5,114 days). The time of occurrence of all electrical heart storms, defined as three or more events of ventricular tachycardia or ventricular fibrillation daily, was recorded from the defibrillator devices. Findings were analyzed against data on solar, geomagnetic, and cosmic ray (neutron) activity for the same time period obtained from space institutions in the United States and Russia. Electrical storms occurred in all months of the year, with a slight decrease in July, August, and September. Most events took place on days with lower-than-average levels of solar and geomagnetic activity and higher-than-average levels of cosmic ray (neutron) activity. There was a significant difference in mean daily cosmic ray activity between the whole observation period and the days of electrical storm activity (P = 0.0001). These data extend earlier findings on the association of the timing of cardiac events and space weather parameters to the most dangerous form of cardiac arrhythmia-electric storms. Further studies are needed to delineate the pathogenetic mechanism underlying this association. ©2014 Wiley Periodicals, Inc.

  15. Hydro morphodynamic modelling in Mediterranean storms: errors and uncertainties under sharp gradients

    NASA Astrophysics Data System (ADS)

    Sánchez-Arcilla, A.; Gracia, V.; García, M.

    2014-02-01

    This paper deals with the limits in hydrodynamic and morphodynamic predictions for semi-enclosed coastal domains subject to sharp gradients (in bathymetry, topography, sediment transport and coastal damages). It starts with an overview of wave prediction limits (based on satellite images) in a restricted domain such as is the Mediterranean basin, followed by an in-depth analysis of the Catalan coast, one of the land boundaries of such a domain. The morphodynamic modeling for such gradient regions is next illustrated with the simulation of the largest recorded storm in the Catalan coast, whose morphological impact is a key element of the storm impact. The driving wave and surge conditions produce a morphodynamic response that is validated against the pre and post storm beach state, recovered from two LIDAR images. The quality of the fit is discussed in terms of the physical processes and the suitability of the employed modeling equations. Some remarks about the role of the numerical discretization and boundary conditions are also included in the analysis. From here an assessment of errors and uncertainties is presented, with the aim of establishing the prediction limits for coastal engineering flooding and erosion analyses.

  16. Fifth Space Weather Enterprise Forum Reaches New Heights

    NASA Astrophysics Data System (ADS)

    Williamson, Samuel P.; Babcock, Michael R.; Bonadonna, Michael F.

    2011-09-01

    As the world's commercial infrastructure grows more dependent on sensitive electronics and space-based technologies, the global economy is becoming increasingly vulnerable to solar storms. Experts from the federal government, academia, and the private sector met to discuss the societal effects of major solar storms and other space weather at the fifth annual Space Weather Enterprise Forum (SWEF), held on 21 June 2011 at the National Press Club in Washington, D. C. More than 200 members of the space weather community attended this year's SWEF, which focused on the consequences of severe space weather for national security, critical infrastructure, and human safety. Participants also addressed the question of how to prepare for and mitigate those consequences as the current solar cycle approaches and reaches its peak, expected in 2013. This year's forum included details of plans for a "Unified National Space Weather Capability," a new interagency initiative which will be implemented over the next two years, designed to improve forecasting, warning, and other services ahead of the coming solar maximum.

  17. Hurricane Sandy off the Carolinas

    NASA Image and Video Library

    2017-12-08

    NASA image acquired acquired October 28, 2012 For the latest info from NASA on Hurricane Sandy go to: 1.usa.gov/Ti5SgS At noon Eastern Daylight Time (16:00 Universal Time) on October 28, 2012, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this image of Hurricane Sandy off the southeastern United States. At 11 a.m. local time (one hour before the image was captured), the U.S. National Hurricane Center reported that the storm was located at 32.5° North and 72.6° West, about 250 miles (400 kilometers) southeast of Cape Hatteras, North Carolina, and 575 miles (930 kilometers) south of New York City. Maximum sustained winds were 75 miles (120 kilometers) per hour, and the central pressure was 951 millibars (28.08 inches). Forecasters predicted that the storm would continue heading north-northeast until the morning of October and then take a hard turn to the northwest into the coastaline of Delaware, New Jersey, or New York. The wind field from the storm was said to stretch 500 to 700 miles and was likely to affect an area from South Carolina to Maine, and as far inland as the Great Lakes. The storm has already caused significant damage in the Bahamas, Cuba, Jamaica, Puerto Rico, the Dominican Republic, and Haiti; at least 65 lives have been lost to the storm. NASA image courtesy LANCE MODIS Rapid Response Team at NASA GSFC. Caption by Michael Carlowicz. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Performance evaluation of GIM-TEC assimilation of the IRI-Plas model at two equatorial stations in the American sector

    NASA Astrophysics Data System (ADS)

    Adebiyi, S. J.; Adebesin, B. O.; Ikubanni, S. O.; Joshua, B. W.

    2017-05-01

    Empirical models of the ionosphere, such as the International Reference Ionosphere (IRI) model, play a vital role in evaluating the environmental effect on the operation of space-based communication and navigation technologies. The IRI extended to Plasmasphere (IRI-Plas) model can be adjusted with external data to update its electron density profile while still maintaining the overall integrity of the model representations. In this paper, the performance of the total electron content (TEC) assimilation option of the IRI-Plas at two equatorial stations, Jicamarca, Peru (geographic: 12°S, 77°W, dip angle 0.8°) and Cachoeira Paulista, Brazil (Geographic: 22.7°S, 45°W, dip angle -26°), is examined during quiet and disturbed conditions. TEC, F2 layer critical frequency (foF2), and peak height (hmF2) predicted when the model is operated without external input were used as a baseline in our model evaluation. Results indicate that TEC predicted by the assimilation option generally produced smaller estimation errors compared to the "no extra input" option during quiet and disturbed conditions. Generally, the error is smaller at the equatorial trough than near the crest for both quiet and disturbed days. With assimilation option, there is a substantial improvement of storm time estimations when compared with quiet time predictions. The improvement is, however, independent on storm's severity. Furthermore, the modeled foF2 and hmF2 are generally poor with TEC assimilation, particularly the hmF2 prediction, at the two locations during both quiet and disturbed conditions. Consequently, IRI-Plas model assimilated with TEC value only may not be sufficient where more realistic instantaneous values of peak parameters are required.

  19. Environmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction

    PubMed Central

    Tuluri, Francis; Reddy, R. Suseela; Anjaneyulu, Y.; Colonias, John; Tchounwou, Paul

    2010-01-01

    Katrina (a tropical cyclone/hurricane) began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF) simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax) using Convective Available Kinetic Energy (CAPE) obtained at the equilibrium level (EL), from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS) for land falling tropical cyclones/hurricanes. PMID:20623002

  20. Role of upper-ocean on the intensity of Bay of Bengal cyclone `Phailin' as revealed by coupled simulation using Mesoscale Coupled Modeling System (WRF-ROMS)

    NASA Astrophysics Data System (ADS)

    Mani, B.; Mandal, M.

    2016-12-01

    Numerical prediction of tropical cyclone (TC) track has improved significantly in recent years, but not the intensity. It is well accepted that TC induced sea surface temperature (SST) cooling in conjunction with pre-existing upper-ocean features have major influences on tropical cyclone intensity. Absence of two-way atmosphere-ocean feedback in the stand-alone atmosphere models has major consequences on their prediction of TC intensity. The present study investigates the role of upper-ocean on prediction of TC intensity and track based on coupled and uncoupled simulation of the Bay of Bengal (BoB) cyclone `Phailin'. The coupled simulation is conducted with the Mesoscale Coupled Modeling System (MCMS) which is a fully coupled atmosphere-ocean modeling system that includes the non-hydrostatic atmospheric model (WRF-ARW) and the three-dimensional hydrostatic ocean model (ROMS). The uncoupled simulation is performed using the atmosphere component of MCMS i.e., the customized version of WRF-ARW for BoB cyclones with prescribed (RTG) SST. The track and intensity of the storm is significantly better simulated by the MCMS and closely followed the observation. The peak intensity, landfall position and time are accurately predicted by MCMS, whereas the uncoupled simulation over predicted the storm intensity. Validation of storm induced SST cooling with the merged microwave-infrared satellite SST indicates that the MCMS simulation shows better correlation both in terms of spatial spread of cold wake and its magnitude. The analysis also suggests that the Pre-existing Cyclonic Eddy (PCE) observed adjacent to the storm enhanced the TC induced SST cooling. It is observed that the response of SST (i.e., cooling) to storm intensity is 12hr with 95% statistical significance. The air-sea enthalpy flux shows a clear asymmetry between Front Left (FL) and Rear Right (RR) regime to the storm center where TC induced cooling is more than 0.5K/24hr. The analysis of atmospheric boundary layer reveals the formation of persistent stable boundary layer (SBL) over the cold wake, which caused asymmetry in TC structure by quelling convection in the rainbands downstream to the cold wake. The present study signifies the importance of using MCMS in prediction of the BoB cyclone and encourages further investigation with more cyclone cases.

  1. Natural and Anthropogenic Aerosols in the World's Megacities and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Singh, R.; El-Askary, H.; Qu, J.

    2005-12-01

    The world's megacities are the sites of production of a variety of aerosols and are themselves affected by natural and human-induced aerosols. In particular, sources of aerosols impacting cities include: industrial and automobile emission; sand and dust storms from, e.g., the Sahara and Gobi Deserts; as well as fire-induced aerosols. Improving the ability of various stakeholder organizations to respond effectively to high concentrations of aerosols, with special emphasis on mineral dust from dust storms; smoke from controlled burns, wild fires and agricultural burning; and anthropogenic aerosols, would be an important goal not just to understand climate forcings but also to be able to better respond to the increasing amounts of aerosols at global and regional levels. Cities and surrounding areas are affected without good estimates of the current and future conditions of the aerosols and their impact on regional and global climate. Remotely sensed (RS) NASA, NOAA and international platform data can be used to characterize the properties of aerosol clouds and special hazard events such as sand and dust storms (SDS). Aerosol analysis and prediction-model capabilities from which stakeholders can choose the tools that best match their needs and technological expertise are important. Scientists validating mesoscale and aerosol-transport models, aerosol retrievals from satellite measurements are indispensable for robust climate predictions. Here we give two examples of generic SDS cases and urban pollution and their possible impact on climate: The Sahara desert is a major source of dust aerosols dust transport is an important climatic process. The aerosols in the form of dust particles reflect the incoming solar radiation to space, thereby reducing the amount of radiation available to the ground, known as `direct' radiative forcing of aerosols. The aerosols also change the cloud albedo and microphysical properties of clouds, known as `indirect' radiative forcing of aerosols. The highest boundary layer heights are associated with regions where the sensible heat flux is greatest, and latent heat flux is smallest due to lack of vegetation. Boundary layer heights in the deserts may be systematically higher than the slightly wetter regions at the edges of deserts. Latent heat flux model runs and MODIS observations of dust storms affecting the Nile Delta and Cairo indicate strong influence on the local weather and climate forcings. In the Indo-Gangetic, during the pre-monsoon period, dust storms form. We have examined SDS transport using RS data acquired from NASA's MODIS MISR instruments and from sun photometer measurements. The aerosol optical depth and size of the dust particles are found to be significantly higher during such dust storm events. Moreover, our results clearly show that power plants in this region are the key point source of air pollutants. The detailed analysis of aerosol parameters show the existence of absorbing and non-absorbing aerosols emitted from these plants. The combined effects of urban aerosols with dust aerosols in India and Cairo not only affect megacities, they also have long-term climate impacts. We will also discuss how the assimilation of RS data into mesoscale models can improve these models and predictability of hazards and effects on megacities, such as SDS events, and forest fires, all sources of aerosols. Therefore RS data can improve the prediction of climate forcings by aerosols.

  2. Flow of Energy through the Inner Magnetosphere during the March 17, 2015 solar storm as observed by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

    NASA Astrophysics Data System (ADS)

    Manweiler, J. W.; Madanian, H.; Gerrard, A. J.; Patterson, J. D.; Mitchell, D. G.; Lanzerotti, L. J.

    2017-12-01

    On March 17, 2015, a large solar storm impacted the Earth's magnetosphere with a maximum negative Dst of -232 nT. We report on the temporal and spatial evolution of the proton energetic particle distributions in phase space during this storm, as measured by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board each of the Van Allen Probes. We characterize the distribution prior to onset of the storm to provide a definition of quiet time conditions. We then show how the distribution evolves during the storm noting key changes of the distribution as a function of L and MLT and showing how the pitch angle distributions change throughout the storm. These observations displayed a number of interesting features of the storm including high beta plasma conditions and multiple injections of protons into the inner magnetosphere. We present the radial changes of the distribution at storm onset and following the evolution of the distribution during storm recovery. We compare observations of the East/West asymmetry in the proton distribution before versus after onset using both Van Allen Probes A and B spacecraft observations. Finally, we note interesting changes in the distribution showing an anomalous dropout in mid-energies of the distribution and observe an outward radial propagation of this dropout during recovery.

  3. Real-time Kp predictions from ACE real time solar wind

    NASA Astrophysics Data System (ADS)

    Detman, Thomas; Joselyn, Joann

    1999-06-01

    The Advanced Composition Explorer (ACE) spacecraft provides nearly continuous monitoring of solar wind plasma, magnetic fields, and energetic particles from the Sun-Earth L1 Lagrange point upstream of Earth in the solar wind. The Space Environment Center (SEC) in Boulder receives ACE telemetry from a group of international network of tracking stations. One-minute, and 1-hour averages of solar wind speed, density, temperature, and magnetic field components are posted on SEC's World Wide Web page within 3 to 5 minutes after they are measured. The ACE Real Time Solar Wind (RTSW) can be used to provide real-time warnings and short term forecasts of geomagnetic storms based on the (traditional) Kp index. Here, we use historical data to evaluate the performance of the first real-time Kp prediction algorithm to become operational.

  4. Solar and Heliospheric Observatory (SOHO) (1995)

    NASA Technical Reports Server (NTRS)

    Fleck, Bernhard; St. Cyr, O. Chris (Editor)

    2014-01-01

    SOHO is the most comprehensive space mission ever devoted to the study of the Sun and its nearby cosmic environment known as the heliosphere. It was launched in December 1995 and is currently funded at least through the end of 2016. SOHO's twelve instruments observe and measure structures and processes occurring inside as well as outside the Sun, and which reach well beyond Earth's orbit into the heliosphere. While designed to study the "quiet" Sun, the new capabilities and combination of several SOHO instruments have revolutionized space weather research. This article gives a brief mission overview, summarizes selected highlight results, and describes SOHO's contributions to space weather research. These include cotemporaneous EUV imaging of activity in the Sun's corona and white light imaging of coronal mass ejections in the extended corona, magnetometry in the Sun's atmosphere, imaging of far side activity, measurements to predict solar proton storms, and monitoring solar wind plasma at the L1 Lagrangian point, 1.5 million kilometers upstream of Earth.

  5. Survey of current situation in radiation belt modeling

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.

    2004-01-01

    The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.

  6. Initialization, Prediction and Diagnosis of the Rapid Intensification of Tropical Cyclones using the Australian Community Climate and Earth System Simulator, ACCESS

    DTIC Science & Technology

    2012-10-12

    structure on the evolving storm behaviour. 13 7. Large scale influences on Rapid Intensification and Extratropical Transition: RI and ET...assimilation techniques to better initialize and validate TC structures (including the intense inner core and storm asymmetries) consistent with the large...Without vortex specification, initial conditions usually contain a weak and misplaced circulation. Based on estimates of central pressure and storm size

  7. Ensemble Sensitivity Analysis of a Severe Downslope Windstorm in Complex Terrain: Implications for Forecast Predictability Scales and Targeted Observing Networks

    DTIC Science & Technology

    2013-09-01

    wave breaking (NWB) and eight wave breaking (WB) storms are shown...studies, and it follows that the wind storm characteristics are likely more three dimensional as well. For the purposes of this study, a severe DSWS is...regularly using the HWAS network at USAFA since its installation in 2004. A careful examination of these events reveals downslope storms that are

  8. Relating Tropical Cyclone Track Forecast Error Distributions with Measurements of Forecast Uncertainty

    DTIC Science & Technology

    2016-03-01

    cyclone THORPEX The Observing System Research and Predictability Experiment TIGGE THORPEX Interactive Grand Global Ensemble TS tropical storm ...forecast possible, but also relay the level of uncertainty unique to a given storm . This will better inform decision makers to help protect all assets at...for any given storm . Thus, the probabilities may 4 increase or decrease (and the probability swath may widen or narrow) to provide a more

  9. The SupraThermal Ion Monitor for space weather predictions.

    PubMed

    Allegrini, F; Desai, M I; Livi, S; McComas, D J; Ho, G C

    2014-05-01

    Measurement of suprathermal energy ions in the heliosphere has always been challenging because (1) these ions are situated in the energy regime only a few times higher than the solar wind plasma, where intensities are orders of magnitude higher and (2) ion energies are below or close to the threshold of state-of-art solid-state detectors. Suprathermal ions accelerated at coronal mass ejection-driven shocks propagate out ahead of the shocks. These shocks can cause geomagnetic storms in the Earth's magnetosphere that can affect spacecraft and ground-based power and communication systems. An instrument with sufficient sensitivity to measure these ions can be used to predict the arrival of the shocks and provide an advance warning for potentially geo-effective space weather. In this paper, we present a novel energy analyzer concept, the Suprathermal Ion Monitor (STIM) that is designed to measure suprathermal ions with high sensitivity. We show results from a laboratory prototype and demonstrate the feasibility of the concept. A list of key performances is given, as well as a discussion of various possible detectors at the back end. STIM is an ideal candidate for a future space weather monitor in orbit upstream of the near-earth environment, for example, around L1. A scaled-down version is suitable for a CubeSat mission. Such a platform allows proofing the concept and demonstrating its performance in the space environment.

  10. The Dynamical Core Model Intercomparison Project (DCMIP-2016): Results of the Supercell Test Case

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Reed, K. A.; Jablonowski, C.; Ullrich, P. A.; Kent, J.; Lauritzen, P. H.; Nair, R. D.

    2016-12-01

    The 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) assesses the modeling techniques for global climate and weather models and was recently held at the National Center for Atmospheric Research (NCAR) in conjunction with a two-week summer school. Over 12 different international modeling groups participated in DCMIP-2016 and focused on the evaluation of the newest non-hydrostatic dynamical core designs for future high-resolution weather and climate models. The paper highlights the results of the third DCMIP-2016 test case, which is an idealized supercell storm on a reduced-radius Earth. The supercell storm test permits the study of a non-hydrostatic moist flow field with strong vertical velocities and associated precipitation. This test assesses the behavior of global modeling systems at extremely high spatial resolution and is used in the development of next-generation numerical weather prediction capabilities. In this regime the effective grid spacing is very similar to the horizontal scale of convective plumes, emphasizing resolved non-hydrostatic dynamics. The supercell test case sheds light on the physics-dynamics interplay and highlights the impact of diffusion on model solutions.

  11. A new short-term forecasting model for the total electron content storm time disturbances

    NASA Astrophysics Data System (ADS)

    Tsagouri, Ioanna; Koutroumbas, Konstantinos; Elias, Panagiotis

    2018-06-01

    This paper aims to introduce a new model for the short-term forecast of the vertical Total Electron Content (vTEC). The basic idea of the proposed model lies on the concept of the Solar Wind driven autoregressive model for Ionospheric short-term Forecast (SWIF). In its original version, the model is operationally implemented in the DIAS system (http://dias.space.noa.gr) and provides alerts and warnings for upcoming ionospheric disturbances, as well as single site and regional forecasts of the foF2 critical frequency over Europe up to 24 h in advance. The forecasts are driven by the real time assessment of the solar wind conditions at ACE location. The comparative analysis of the variations in foF2 and vTEC during eleven geomagnetic storm events that occurred in the present solar cycle 24 reveals similarities but also differences in the storm-time response of the two characteristics with respect to the local time and the latitude of the observation point. Since the aforementioned dependences drive the storm-time forecasts of the SWIF model, the results obtained here support the upgrade of the SWIF's modeling technique in forecasting the storm-time vTEC variation from its onset to full development and recovery. According to the proposed approach, the vTEC storm-time response can be forecasted from 1 to 12-13 h before its onset, depending on the local time of the observation point at storm onset at L1. Preliminary results on the assessment of the performance of the proposed model and further considerations on its potential implementation in operational mode are also discussed.

  12. Jupiter Polar Winds Movie Blowup

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Persistent polar storms and zonal winds on Jupiter can be seen in this magnified quadrant from a movie projecting images from NASA's Cassini spacecraft as if the viewer were looking down at Jupiter's north pole and the planet were flattened.

    The sequence covers 70 days, from October 1 to December 9, 2000. Cassini's narrow-angle camera captured the images of Jupiter's atmosphere in the near-infrared region of the spectrum.

    Like the accompanying full-circle movie of polar winds, this zoomed-inversion shows that the polar region has coherent flows, despite its chaotic, mottled appearance. There are thousands of spots, each an active storm similar in size to the largest storms on Earth. The spots occasionally change latitude or merge with each other, but usually they last for the entire 70 days. Until now, the lifetime of those storms was unknown.

    The mystery of Jupiter's weather is why the storms last so long. Storms on Earth last for a week before they break up and are replaced by other storms. This movie heightens the mystery because it shows long-lived storms at the highest latitudes, where the weather patterns are more disorganized than at low latitudes.

    Cassini collected images of Jupiter for months before and after it passed the planet on December 30, 2000. Six images or more of the planet in each of several spectral filters were taken at evenly spaced intervals over the course of Jupiter's 10-hour rotation period. The entire sequence was repeated generally every other Jupiter rotation, yielding views of every sector of the planet at least once every 20 hours.

    The images used for the movie shown here were taken every 20 hours through a filter centered at a wavelength of 756 nanometers, where there are almost no absorptions in the planet's atmosphere. Images from each rotation were assembled first into a cylindrical map. The 84 resulting cylindrical maps, spanning 70 Earth days or 168 Jupiter rotations, were transformed to polar stereographic projections, making a map centered on the north pole. This clip shows detail by zooming in on one quadrant of the full-circle polar projection. Jupiter's alternating eastward and westward jet streams flow in concentric rings around the pole.

    For more information, see the Cassini Project home page, http://www.jpl.nasa.gov/cassini/ and the Cassini Imaging Team home page, http://ciclops.lpl.arizona.edu/ciclops/ .

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  13. Temporal and Spatial Development of dB/dt During Substorms

    NASA Astrophysics Data System (ADS)

    Weygand, J. M.; Chu, X.

    2017-12-01

    Ground induced currents (GICs) due to space weather are a threat to high voltage power transmission systems. However, knowledge of ground conductivity is the largest source of errors in the determination of GICs. A good proxy for GICs is dB/dt obtained from the Bx and By components of the magnetic field fluctuations. It is known that dB/dt values associated with magnetic storms can reach dangerous levels for power transmission systems. On the other hand, it is not uncommon for dB/dt values associated with substorms to exceed critical thresholds of 1.5 nT/s [Pulkkinen et al., 2011; 2013] and 5 nT/s [Molinski et al., 2000] and the temporal and spatial changes of the dB/dt associated with substorms, unlike storms, are not well understood. Using two dimensional maps of dB/dt over North America and Greenland derived from the spherical elementary currents [Weygand et al., 2011], we investigate the temporal and spatial change of dB/dt for both a single substorm event and a two dimensional superposed epoch analysis of many substorms. Both the single event and the statistical analysis show a sudden increase of dB/dt at substorm onset followed by an expansion poleward, westward, and eastward after the onset during the expansion phase. This temporal and spatial development of the dB/dt resembles the temporal and spatial change of the auroral emissions. Substorm values of dB/dt peak shortly after the auroral onset time and in at least one event exceeded 6.5 nT/s for a non-storm time substorm. In many of our 24 cases the area that exceeds the Pulkkinen et al. [2011; 2013] threshold of 1.5 nT/s over several million square kilometers and after about 30 minutes the dB/dt values fall below the threshold level. These results address one of goals of the Space Weather Action Plan, which are to establish benchmarks for space weather events and improve modeling and prediction of their impacts on infrastructure.

  14. Trading Space for Time in Design Storm Estimation Using Radar Data

    NASA Astrophysics Data System (ADS)

    Haberlandt, U.; Berndt, C.

    2017-12-01

    Intensity-duration-frequency (IDF) curves are frequently used for the derivation of design storms. These curves are usually estimated from rain gauges and are valid for extreme rainfall at local observed points. Two common problems are involved. Regionalization of rainfall statistics for unobserved locations and the use of areal reduction factors (ARF) for the adjustment to larger catchments are required. Weather radar data are available with large spatial coverage and high resolution in space and could be used for a direct derivation of areal design storms for any location and catchment size. However, one problem with radar data is the relatively short observation period for the estimation of extreme events. This study deals with the estimation of area-intensity-duration-frequency (AIDF) curves and areal-reduction-factors (ARF) directly from weather radar data. The main objective is to answer the question if it is possible to trade space for time in the estimation of both characteristics to compensate for the short radar observation periods. In addition, a stratification of the temporal sample according to annual temperature indices is tried to distinguish "colder" and "warmer" climate years. This might eventually show a way for predicting future changes in AIDF curves and ARFs. First, radar data are adjusted with rainfall observations from the daily station network. Thereafter, AIDF curves and ARFs are calculated for different spatial and temporal sample sizes. The AIDF and ARFs are compared regarding their temporal and spatial variability considering also the temperature conditions. In order to reduce spatial variability a grouping of locations according to their climatological and physiographical characteristics is carried out. The data used for this study cover about 20 years of observations from the radar device located near Hanover in Northern Germany and 500 non-recording rain gauges as well as a set of 8 recording rain gauges for validation. AIDF curves and ARFS are analyzed for rainfall durations from 5 minutes to 24 hours and return periods from 1 year to 30 years. It is hypothesized, that the spatial variability of AIDF and ARF characteristics decreases with increasing sample size, grouping and normalization and is finally comparable to temporal variability.

  15. Development of a Near-Real Time Hail Damage Swath Identification Algorithm for Vegetation

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Molthan, Andrew L.; Schultz, Lori A.; McGrath, Kevin M.; Burks, Jason E.

    2015-01-01

    The Midwest is home to one of the world's largest agricultural growing regions. Between the time period of late May through early September, and with irrigation and seasonal rainfall these crops are able to reach their full maturity. Using moderate to high resolution remote sensors, the monitoring of the vegetation can be achieved using the red and near-infrared wavelengths. These wavelengths allow for the calculation of vegetation indices, such as Normalized Difference Vegetation Index (NDVI). The vegetation growth and greenness, in this region, grows and evolves uniformly as the growing season progresses. However one of the biggest threats to Midwest vegetation during the time period is thunderstorms that bring large hail and damaging winds. Hail and wind damage to crops can be very expensive to crop growers and, damage can be spread over long swaths associated with the tracks of the damaging storms. Damage to the vegetation can be apparent in remotely sensed imagery and is visible from space after storms slightly damage the crops, allowing for changes to occur slowly over time as the crops wilt or more readily apparent if the storms strip material from the crops or destroy them completely. Previous work on identifying these hail damage swaths used manual interpretation by the way of moderate and higher resolution satellite imagery. With the development of an automated and near-real time hail swath damage identification algorithm, detection can be improved, and more damage indicators be created in a faster and more efficient way. The automated detection of hail damage swaths will examine short-term, large changes in the vegetation by differencing near-real time eight day NDVI composites and comparing them to post storm imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua and Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi NPP. In addition land surface temperatures from these instruments will be examined as for hail damage swath identification. Initial validation of the automated algorithm is based upon Storm Prediction Center storm reports but also the National Severe Storm Laboratory (NSSL) Maximum Estimated Size Hail (MESH) product. Opportunities for future work are also shown, with focus on expansion of this algorithm with pixel-based image classification techniques for tracking surface changes as a result of severe weather.

  16. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, M.; Bowman, B.; Branson, J.

    The dominant error source in the force models used to predict low perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying high-resolution density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal, semidiurnal and terdiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index a p to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low perigee satellites.

  17. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  18. A Bayesian Network to Predict Barrier Island Geomorphologic Characteristics

    NASA Astrophysics Data System (ADS)

    Gutierrez, B.; Plant, N. G.; Thieler, E. R.; Turecek, A.; Stippa, S.

    2014-12-01

    Understanding how barrier islands along the Atlantic and Gulf coasts of the United States respond to storms and sea-level rise is an important management concern. Although these threats are well recognized, quantifying the integrated vulnerability is challenging due to the range of time and space scalesover which these processes act. Developing datasets and methods to identify the physical vulnerabilities of coastal environments due to storms and sea-level rise thus is an important scientific focus that supports land management decision making. Here we employ a Bayesian Network (BN) to model the interactions between geomorphic variables sampled from existing datasets that capture both storm-and sea-level rise related coastal evolution. The BN provides a means of estimating probabilities of changes in specific geomorphic characteristics such as foredune crest height, beach width, beach height, given knowledge of barrier island width, maximum barrier island elevation, distance from an inlet, the presence of anthropogenic modifications, and long-term shoreline change rates, which we assume to be directly related to sea-level rise. We evaluate BN skill and explore how different constraints, such as shoreline change characteristics (eroding, stable, accreting), distance to nearby inlets and island width, affect the probability distributions of future morphological characteristics. Our work demonstrates that a skillful BN can be constructed and that factors such as distance to inlet, shoreline change rate, and the presence of human alterations have the strongest influences on network performance. For Assateague Island, Maryland/Virginia, USA, we find that different shoreline change behaviors affect the probabilities of specific geomorphic characteristics, such as dune height, which allows us to identify vulnerable locations on the barrier island where habitat or infrastructure may be vulnerable to storms and sea-level rise.

  19. Understanding and Forecasting Upper Atmosphere Nitric Oxide Through Data Mining Analysis of TIMED/SABER Data

    NASA Astrophysics Data System (ADS)

    Flynn, S.; Knipp, D. J.; Matsuo, T.; Mlynczak, M. G.; Hunt, L. A.

    2017-12-01

    Storm time energy input to the upper atmosphere is countered by infrared radiative emissions from nitric oxide (NO). The temporal profile of these energy sources and losses strongly control thermospheric density profiles, which in turn affect the drag experienced by low Earth orbiting satellites. Storm time processes create NO. In some extreme cases an overabundance of NO emissions unexpectedly decreases atmospheric temperature and density to lower than pre-storm values. Quantifying the spatial and temporal variability of the NO emissions using eigenmodes will increase the understanding of how upper atmospheric NO behaves, and could be used to increase the accuracy of future space weather and climate models. Thirteen years of NO flux data, observed at 100-250 km altitude by the SABER instrument onboard the TIMED satellite, is decomposed into five empirical orthogonal functions (EOFs) and their amplitudes to: 1) determine the strongest modes of variability in the data set, and 2) develop a compact model of NO flux. The first five EOFs account for 85% of the variability in the data, and their uncertainty is verified using cross-validation analysis. Although these linearly independent EOFs are not necessarily independent in a geophysical sense, the first three EOFs correlate strongly with different geophysical processes. The first EOF correlates strongly with Kp and F10.7, suggesting that geomagnetic storms and solar weather account for a large portion of NO flux variability. EOF 2 shows annual variations, and EOF 3 correlates with solar wind parameters. Using these relations, an empirical model of the EOF amplitudes can be derived, which could be used as a predictive tool for future NO emissions. We illustrate the NO model, highlight some of the hemispheric asymmetries, and discuss the geophysical associations of the EOFs.

  20. Satellite Shows Major Winter Storm Hitting the U.S. South

    NASA Image and Video Library

    2014-02-11

    Clouds associated with the major winter storm that is bringing wintry precipitation and chilly temperatures to the U.S. south is the focus in an image from NOAA's GOES-East satellite today, February 12 at 1310 UTC/ 8:10 EST. Rain, freezing rain, sleet and snow are part of the large front that stretches from eastern Texas to the Carolinas in the Geostationary Operational Environmental satellite or GOES image. NOAA's weather maps show several areas of low pressure along the frontal boundary. One low pressure is in the northern Gulf of Mexico, while the other is in the Atlantic Ocean, just south of South Carolina. (Insert link: www.hpc.ncep.noaa.gov/noaa/noaad1.gif). NOAA's National Weather Service has been issuing watches and warnings throughout the south that extend along Mid-Atlantic east coast. The visible cloud and ground snow data in this image was taken from NOAA's GOES-East satellite. The image was created by the NASA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. The clouds and fallen snow were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites. NOAA's Weather Prediction Center, or WPC noted on Feb. 11 at 3:59 a.m. EST, "Once the intensifying surface low moves off the Southeast coast and begins its track up the Eastern Seaboard Wednesday night...winter weather will start lifting northward into the northern Mid-Atlantic states." GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's WPC website; www.hpc.ncep.noaa.gov/ For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. High resolution modelling of wind fields for optimization of empirical storm flood predictions

    NASA Astrophysics Data System (ADS)

    Brecht, B.; Frank, H.

    2014-05-01

    High resolution wind fields are necessary to predict the occurrence of storm flood events and their magnitude. Deutscher Wetterdienst (DWD) created a catalogue of detailed wind fields of 39 historical storms at the German North Sea coast from the years 1962 to 2011. The catalogue is used by the Niedersächsisches Landesamt für Wasser-, Küsten- und Naturschutz (NLWKN) coastal research center to improve their flood alert service. The computation of wind fields and other meteorological parameters is based on the model chain of the DWD going from the global model GME via the limited-area model COSMO with 7 km mesh size down to a COSMO model with 2.2 km. To obtain an improved analysis COSMO runs are nudged against observations for the historical storms. The global model GME is initialised from the ERA reanalysis data of the European Centre for Medium-Range Weather Forecasts (ECMWF). As expected, we got better congruency with observations of the model for the nudging runs than the normal forecast runs for most storms. We also found during the verification process that different land use data sets could influence the results considerably.

  2. A correlative comparison of the ring current and auroral electrojects usig geomagnetic indices

    NASA Technical Reports Server (NTRS)

    Cade, W. B., III; Sojka, J. J.; Zhu, L.

    1995-01-01

    From a study of the 21 largest geomagnetic storms during solar cycle 21, a strong correlation is established between the ring current index Dst and the time-weighted accumulation of the 1-hour auroral electrojets indices, AE and AL. The time-weighted accumulation corresponds to convolution of the auroral electrojet indices with an exponential weighting function with an e-folding time of 9.4 hours. The weighted indices AE(sub w) and AL(sub w) have correltation coefficients against Dst ranging between 0.8 and 0.95 for 20 of the 21 storms. Correlation over the entire solar cycle 21 database is also strong but not as strong as for an individual storm. A set of simple Dst prediction functions provide a first approximation of the inferred dependence, but the specific functional relationship of Dst (AL(sub w)) or Dst (AL(sub w)) varies from one storm to the next in a systematic way. This variation reveals a missing parametric dependence in the transfer function. However, our results indicate that auroral electroject indices are potentially useful for predicting storm time enhancements of ring current intensity with a few hours lead time.

  3. Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers

    USGS Publications Warehouse

    Hong, Y.-S.; Rosen, Michael R.; Reeves, R.R.

    2002-01-01

    In an urban fractured-rock aquifer in the Mt. Eden area of Auckland, New Zealand, disposal of storm water is via "soakholes" drilled directly into the top of the fractured basalt rock. The dynamic response of the groundwater level due to the storm water infiltration shows characteristics of a strongly time-varying system. A dynamic fuzzy modeling approach, which is based on multiple local models that are weighted using fuzzy membership functions, has been developed to identify and predict groundwater level fluctuations caused by storm water infiltration. The dynamic fuzzy model is initialized by the fuzzy clustering algorithm and optimized by the gradient-descent algorithm in order to effectively derive the multiple local models-each of which is associated with a locally valid model that represents the groundwater level state as a response to different intensities of rainfall events. The results have shown that even if the number of fuzzy local models derived is small, the fuzzy modeling approach developed provides good prediction results despite the highly time-varying nature of this urban fractured-rock aquifer system. Further, it allows interpretable representations of the dynamic behavior of the groundwater system due to storm water infiltration.

  4. Earth Science

    NASA Image and Video Library

    2004-09-11

    This image hosts a look at the eye of Hurricane Ivan, one of the strongest hurricanes on record, as the storm topped the western Caribbean Sea on Saturday, September 11, 2004. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the International Space Station (ISS) at an altitude of approximately 230 miles. At the time, the category 5 storm sustained winds in the eye of the wall that were reported at about 160 mph. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  5. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    The Operations Support Building I (OSB I) is seen during an aerial survey of NASA's Kennedy Space Center in Florida on September 12, 2017. The roof of the building is currently undergoing repair from Hurricane Matthew. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm's onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  6. Lack of data for predicting storm water pollutant removal by post-construction best management practices.

    DOT National Transportation Integrated Search

    2016-03-01

    The project objective was to conduct a detailed literature review of storm water pollutants and mitigation technologies and synthesize : the information so that INDOT can implement project results into standards. Because it is a municipal separate st...

  7. Lightning Scaling Laws Revisited

    NASA Technical Reports Server (NTRS)

    Boccippio, D. J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Scaling laws relating storm electrical generator power (and hence lightning flash rate) to charge transport velocity and storm geometry were originally posed by Vonnegut (1963). These laws were later simplified to yield simple parameterizations for lightning based upon cloud top height, with separate parameterizations derived over land and ocean. It is demonstrated that the most recent ocean parameterization: (1) yields predictions of storm updraft velocity which appear inconsistent with observation, and (2) is formally inconsistent with the theory from which it purports to derive. Revised formulations consistent with Vonnegut's original framework are presented. These demonstrate that Vonnegut's theory is, to first order, consistent with observation. The implications of assuming that flash rate is set by the electrical generator power, rather than the electrical generator current, are examined. The two approaches yield significantly different predictions about the dependence of charge transfer per flash on storm dimensions, which should be empirically testable. The two approaches also differ significantly in their explanation of regional variability in lightning observations.

  8. Influence of Convective Effect of Solar Winds on the CME Transit Time

    NASA Astrophysics Data System (ADS)

    Sun, Lu-yuan

    2017-10-01

    Based on an empirical model for predicting the transit time of coronal mass ejections (CMEs) proposed by Gopalswamy, 52 CME events which are related to the geomagnetic storms of Dst < -50 nT, and 10 CME events which caused extremely strong geomagnetic storms (Dst < -200 nT) in 1996- 2007 are selected, and combined with the observational data of the interplanetary solar winds that collected by the ACE satellite at 1AU, to analyze the influence of convective effect of ambient solar winds on the prediction of the CME transit time when it arrives at a place of 1 AU. After taking the convective effect of ambient solar winds into account, the standard deviation of predictions is reduced from 16.5 to 11.4 hours for the 52 CME events, and the prediction error is less than 15 hours for 68% of these events; while the standard deviation of predictions is reduced from 10.6 to 6.5 hours for the 10 CME events that caused extremely strong geomagnetic storms, and the prediction error is less than 5 hours for 6 of the 10 events. These results show that taking the convective effect of ambient solar winds into account can reduce the standard deviation of the predicted CME transit time, hence the convective effect of solar winds plays an important role for predicting the transit times of CME events.

  9. Developing empirical lightning cessation forecast guidance for the Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Stano, Geoffrey T.

    The Kennedy Space Center in east Central Florida is one of the few locations in the country that issues lightning advisories. These forecasts are vital to the daily operations of the Space Center and take on even greater significance during launch operations. The U.S. Air Force's 45th Weather Squadron (45WS), who provides forecasts for the Space Center, has a good record of forecasting the initiation of lightning near their locations of special concern. However, the remaining problem is knowing when to cancel a lightning advisory. Without specific scientific guidelines detailing cessation activity, the Weather Squadron must keep advisories in place longer than necessary to ensure the safety of personnel and equipment. This unnecessary advisory time costs the Space Center millions of dollars in lost manpower each year. This research presents storm and environmental characteristics associated with lightning cessation that then are utilized to create lightning cessation guidelines for isolated thunderstorms for use by the 45WS during the warm season months of May through September. The research uses data from the Lightning Detection and Ranging (LDAR) network at the Kennedy Space Center, which can observe intra-cloud and portions of cloud-to-ground lightning strikes. Supporting data from the Cloud-to-Ground Lightning Surveillance System (CGLSS), radar observations from the Melbourne WSR-88D, and Cape Canaveral morning radiosonde launches also are included. Characteristics of 116 thunderstorms comprising our dataset are presented. Most of these characteristics are based on LDAR-derived spark and flash data and have not been described previously. In particular, the first lightning activity is quantified as either cloud-to-ground (CG) or intra-cloud (IC). Only 10% of the storms in this research are found to initiate with a CG strike. Conversely, only 16% of the storms end with a CG strike. Another characteristic is the average horizontal extent of all the flashes comprising a storm. Our average is 12-14 km, while the greatest flash extends 26 km. Comparisons between the starting altitude of the median and last flashes of a storm are analyzed, with only 37% of the storms having a higher last flash initiating altitude. Additional observations are made of the total lightning flash rate, percentage of CG to IC lightning, trends of individual flash initiation altitudes versus the average initiation altitude, the average inter-flash time distribution, and time series of inter-flash times. Five schemes to forecast lightning cessation are developed and evaluated. 100 of the 116 storms were randomly selected as the dependent sample, while the remaining 16 storms were used for verification. The schemes included a correlation and regression tree analysis, multiple linear regression, trends of storm duration, trend of the altitude of the greatest reflectivity to the time of the final flash, and a percentile scheme. Surprisingly, the percentile method was found to be the most effective technique and the simplest. The inclusion of real time storm parameters is found to have little effect on the results, suggesting that different forecast predictors, such as microphysical data from polarimetric radar, will be necessary to produce improved skill. When the percentile method used a confidence level of 99.5%, it successfully maintained lightning advisories for all 16 independent storms on which the schemes were tested. Since the computed wait time was 25 min, compared to the 45WS' most conservative and accurate wait time of 30 min, the percentile method saves 5 min for each advisory. This 5 min of savings safely shortens the Weather Squadron's advisories and saves money. Additionally, these results are the first to evaluate the 30/30 rule that is used commonly. The success of the percentile method is surprising since it out performs more complex procedures involving correlation and regression tree analysis and regression schemes. These more sophisticated statistical analyses were expected to perform better since they include more predictors in the forecasts. However, with the predictors available to us, this was not the case. While not the expected result, the percentile method succeeds in creating a safe and expedited forecast.

  10. Long-lasting Extreme Magnetic Storm Activities in 1770 Found in Historical Documents

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Ebihara, Yusuke; Tamazawa, Harufumi; Shibata, Kazunari; Knipp, Delores J.; Kawamura, Akito D.; Hattori, Kentaro; Mase, Kumiko; Nakanishi, Ichiro; Isobe, Hiroaki

    2017-12-01

    Dim red aurora at low magnetic latitudes is a visual and recognized manifestation of magnetic storms. The great low-latitude auroral displays seen throughout East Asia on 1770 September 16-18 are considered to manifest one of the greatest storms. Recently found, 111 historical documents in East Asia attest that these low-latitude auroral displays appeared in succession for almost nine nights during 1770 September 10-19 in low magnetic latitude areas (<30°). This suggests that the duration of the great magnetic storm is much longer than usual. Sunspot drawings from 1770 reveal that the sunspot areas were twice as large as those observed in another great storm of 1859, which substantiates these unusual storm activities in 1770. These spots likely ejected several huge, sequential magnetic structures in short duration into interplanetary space, resulting in spectacular worldwide aurorae in mid-September of 1770. These findings provide new insight into the history, duration, and effects of extreme magnetic storms that may be valuable for those who need to mitigate against extreme events.

  11. Cyclone Hudah As Seen By MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Tropical Cyclone Hudah was one of most powerful storms ever seen in the Indian Ocean. This image from the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra was taken on March 29, 2000. The structure of the eye of the storm is brought out by MODIS' 250-meter resolution. Image by Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  12. Earth Observations taken by Expedition 41 crewmember

    NASA Image and Video Library

    2014-10-16

    ISS041-E-078247 (16 Oct. 2014) --- One of the crew members aboard the International Space Station took this picture of Hurricane Gonzalo on Oct. 16, 2014. The storm's eye appears in the center of the frame. Gonzalo hit Bermuda on the following day, as a powerful Category 2 storm, with winds estimated at 110 miles per hour.

  13. Earth Observations taken by Expedition 41 crewmember

    NASA Image and Video Library

    2014-10-16

    ISS041-E-078255 (16 Oct. 2014) --- One of the crew members aboard the International Space Station took this picture of Hurricane Gonzalo on Oct. 16, 2014. The storm's eye appears in the center of the frame. Gonzalo hit Bermuda on the following day, as a powerful Category 2 storm, with winds estimated at 110 miles per hour.

  14. Global differences between moderate and large storms

    NASA Astrophysics Data System (ADS)

    Valek, P. W.; Buzulukova, N.; Fok, M. C. H.; Goldstein, J.; Keesee, A. M.; McComas, D. J.; Perez, J. D.

    2015-12-01

    The current solar maximum has been relatively quiet compared to previous solar cycles. Whereas numerous moderate storms (Dst < -50 nT) have occurred, there have been only a small number of large (Dst < - 100 nT) and extreme (Dst < -200 nT) storms. Throughout this sequence of storms, the Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission has since 2008 observed the inner magnetosphere. TWINS consists of two ENA cameras flown aboard two separate spacecraft in Molniya orbits. TWINS images the ENA emissions from the inner magnetosphere across a broad range of energies (1 to 100 keV for H, 16 to 256 keV for O). This allows TWINS to observe the evolution in space and time of the trapped and precipitating particles most relevant for storm time dynamics on very high time scales (i.e., minutes). Here we will present the differences seen between moderate storms and the two large storms of 17 March 2015 (Dst < -223, St. Patrick's day storm) and 22 June 2015 (Dst < -195 nT). We will present composition-separated ENA observations of the inner magnetosphere covering the both the medium (1 to 30 keV) and high (30 to > 100 keV) energy ranges, and describe how the inner magnetosphere evolves during storm time.

  15. Natural variations in the geomagnetically trapped electron population

    NASA Technical Reports Server (NTRS)

    Vampola, A. L.

    1972-01-01

    Temporal variations in the trapped natural electron flux intensities and energy spectra are discussed and demonstrated using recent satellite data. These data are intended to acquaint the space systems engineer with the types of natural variations that may be encountered during a mission and to augment the models of the electron environment currently being used in space system design and orbit selection. An understanding of the temporal variations which may be encountered should prove helpful. Some of the variations demonstrated here which are not widely known include: (1) addition of very energetic electrons to the outer zone during moderate magnetic storms: (2) addition of energetic electrons to the inner zone during major magnetic storms; (3) inversions in the outer zone electron energy spectrum during the decay phase of a storm injection event and (4) occasional formation of multiple maxima in the flux vs altitude profile of moderately energetic electrons.

  16. Potential impact of remote sensing data on sea-state analysis and prediction

    NASA Technical Reports Server (NTRS)

    Cardone, V. J.

    1983-01-01

    The severe North Atlantic storm which damaged the ocean liner Queen Elizabeth 2 (QE2) was studied to assess the impact of remotely sensed marine surface wind data obtained by SEASAT-A, on sea state specifications and forecasts. Alternate representations of the surface wind field in the QE2 storm were produced from the SEASAT enhanced data base, and from operational analyses based upon conventional data. The wind fields were used to drive a high resolution spectral ocean surface wave prediction model. Results show that sea state analyses would have been vastly improved during the period of storm formation and explosive development had remote sensing wind data been available in real time. A modest improvement in operational 12 to 24 hour wave forecasts would have followed automatically from the improved initial state specification made possible by the remote sensing data in both numerical and sea state prediction models. Significantly improved 24 to 48 hour wave forecasts require in addition to remote sensing data, refinement in the numerical and physical aspects of weather prediction models.

  17. The eSurge-Venice project: altimeter and scatterometer satellite data to improve the storm surge forecasting in the city of Venice

    NASA Astrophysics Data System (ADS)

    Zecchetto, Stefano; De Biasio, Francesco; Umgiesser, Georg; Bajo, Marco; Vignudelli, Stefano; Papa, Alvise; Donlon, Craig; Bellafiore, Debora

    2013-04-01

    On the framework of the Data User Element (DUE) program, the European Space Agency is funding a project to use altimeter Total Water Level Envelope (TWLE) and scatterometer wind data to improve the storm surge forecasting in the Adriatic Sea and in the city of Venice. The project will: a) Select a number of Storm Surge Events occurred in the Venice lagoon in the period 1999-present day b) Provide the available satellite Earth Observation (EO) data related to the Storm Surge Events, mainly satellite winds and altimeter data, as well as all the available in-situ data and model forecasts c) Provide a demonstration Near Real Time service of EO data products and services in support of operational and experimental forecasting and warning services d) Run a number of re-analysis cases, both for historical and contemporary storm surge events, to demonstrate the usefulness of EO data The re-analysis experiments, based on hindcasts performed by the finite element 2-D oceanographic model SHYFEM (https://sites.google.com/site/shyfem/), will 1. use different forcing wind fields (calibrated and not calibrated with satellite wind data) 2. use Storm Surge Model initial conditions determined from altimeter TWLE data. The experience gained working with scatterometer and Numerical Weather Prediction (NWP) winds in the Adriatic Sea tells us that the bias NWP-Scatt wind is negative and spatially and temporally not uniform. In particular, a well established point is that the bias is higher close to coasts then offshore. Therefore, NWP wind speed calibration will be carried out on each single grid point in the Adriatic Sea domain over the period of a Storm Surge Event, taking into account of existing published methods. Point #2 considers two different methodologies to be used in re-analysis tests. One is based on the use of the TWLE values from altimeter data in the Storm Surge Model (SSM), applying data assimilation methodologies and trying to optimize the initial conditions of the simulation.The second possibility is an indirect exploitation of the TWLE data from altimeter in an ensemble-like framework, obtained by slight variations of the external forcing. In this case the wind data from NWP models will be weakly altered (shifted in phase), the drag coefficient will be modified, and the initial condition of the model slightly shifted in time to account for the uncertainty of these factors. This contribution will illustrate the geophysical context of work and outline the results.

  18. Validation Test Report for the Coupled Ocean/Atmosphere MesoscalePrediction System (COAMPS) Version 5.0: Ocean/Wave Component Validation

    DTIC Science & Technology

    2012-12-31

    RED) TC TRACKS ARE SHOWN. CIRCLES ON BOTH TRACKS REPRESENT HOURLY LOCATIONS OF THE STORM CENTERS. ..................................... 18  FIGURE...conditions such as wave boundary conditions, tides, wind, and storm surge. A quasi-stationary approach is used with stationary SWAN computations in a...Tropical Storm Ivan and continued westward south of 10oN becoming a hurricane on 5 September. After entering the southern Gulf of Mexico (GOM

  19. High-Amplitude Atlantic Hurricanes Produce Disparate Mortality in Small, Low-Income Countries.

    PubMed

    Dresser, Caleb; Allison, Jeroan; Broach, John; Smith, Mary-Elise; Milsten, Andrew

    2016-12-01

    Hurricanes cause substantial mortality, especially in developing nations, and climate science predicts that powerful hurricanes will increase in frequency during the coming decades. This study examined the association of wind speed and national economic conditions with mortality in a large sample of hurricane events in small countries. Economic, meteorological, and fatality data for 149 hurricane events in 16 nations between 1958 and 2011 were analyzed. Mortality rate was modeled with negative binomial regression implemented by generalized estimating equations to account for variable population exposure, sequence of storm events, exposure of multiple islands to the same storm, and nonlinear associations. Low-amplitude storms caused little mortality regardless of economic status. Among high-amplitude storms (Saffir-Simpson category 4 or 5), expected mortality rate was 0.72 deaths per 100,000 people (95% confidence interval [CI]: 0.16-1.28) for nations in the highest tertile of per capita gross domestic product (GDP) compared with 25.93 deaths per 100,000 people (95% CI: 13.30-38.55) for nations with low per capita GDP. Lower per capita GDP and higher wind speeds were associated with greater mortality rates in small countries. Excessive fatalities occurred when powerful storms struck resource-poor nations. Predictions of increasing storm amplitude over time suggest increasing disparity between death rates unless steps are taken to modify the risk profiles of poor nations. (Disaster Med Public Health Preparedness. 2016;10:832-837).

  20. Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study

    NASA Astrophysics Data System (ADS)

    Mel, Riccardo; Viero, Daniele Pietro; Carniello, Luca; Defina, Andrea; D'Alpaos, Luigi

    2014-09-01

    Providing reliable and accurate storm surge forecasts is important for a wide range of problems related to coastal environments. In order to adequately support decision-making processes, it also become increasingly important to be able to estimate the uncertainty associated with the storm surge forecast. The procedure commonly adopted to do this uses the results of a hydrodynamic model forced by a set of different meteorological forecasts; however, this approach requires a considerable, if not prohibitive, computational cost for real-time application. In the present paper we present two simplified methods for estimating the uncertainty affecting storm surge prediction with moderate computational effort. In the first approach we use a computationally fast, statistical tidal model instead of a hydrodynamic numerical model to estimate storm surge uncertainty. The second approach is based on the observation that the uncertainty in the sea level forecast mainly stems from the uncertainty affecting the meteorological fields; this has led to the idea to estimate forecast uncertainty via a linear combination of suitable meteorological variances, directly extracted from the meteorological fields. The proposed methods were applied to estimate the uncertainty in the storm surge forecast in the Venice Lagoon. The results clearly show that the uncertainty estimated through a linear combination of suitable meteorological variances nicely matches the one obtained using the deterministic approach and overcomes some intrinsic limitations in the use of a statistical tidal model.

  1. Continental-Scale Estimates of Runoff Using Future Climate ...

    EPA Pesticide Factsheets

    Recent runoff events have had serious repercussions to both natural ecosystems and human infrastructure. Understanding how shifts in storm event intensities are expected to change runoff responses are valuable for local, regional, and landscape planning. To address this challenge, relative changes in runoff using predicted future climate conditions were estimated over different biophysical areas for the CONterminous U.S. (CONUS). Runoff was estimated using the Curve Number (CN) developed by the USDA Soil Conservation Service (USDA, 1986). A seamless gridded dataset representing a CN for existing land use/land cover (LULC) across the CONUS was used along with two different storm event grids created specifically for this effort. The two storm event grids represent a 2- and a 100-year, 24-hour storm event under current climate conditions. The storm event grids were generated using a compilation of county-scale Texas USGS Intensity-Duration-Frequency (IDF) data (provided by William Asquith, USGS, Lubbock, Texas), and NOAA Atlas-2 and NOAA Atlas-14 gridded data sets. Future CN runoff was predicted using extreme storm events grids created using a method based on Kao and Ganguly (2011) where precipitation extremes reflect changes in saturated water vapor pressure of the atmosphere in response to temperature changes. The Clausius-Clapeyron relationship establishes that the total water vapor mass of fully saturated air increases with increasing temperature, leading to

  2. Dust Storm, Sahara Desert, Algeria/Niger Border, Africa

    NASA Image and Video Library

    1992-05-16

    STS049-92-071 (13 May 1992) --- The STS-49 crew aboard the Earth-orbiting Space Shuttle Endeavour captured this Saharan dust storm on the Algeria-Niger border. The south-looking, late-afternoon view shows one of the best examples in the Shuttle photo data base of a dust storm. A series of gust fronts, caused by dissipating thunderstorms have picked up dust along the outflow boundaries. Small cumulus clouds have formed over the most vigorously ascending parts of the dust front, enhancing the visual effect of the front. The storm is moving roughly north-northwest, at right angles to the most typical path for dust storms in this part of the Sahara (shown by lines of sand on the desert surface in the foreground). Storms such as this can move out into the Atlantic, bringing dust even as far as the Americas on some occasions. A crewmember used a 70mm handheld Hasselblad camera with a 100mm lens to record the frame.

  3. Geospace system responses to the St. Patrick's Day storms in 2013 and 2015

    NASA Astrophysics Data System (ADS)

    Zhang, Shun-Rong; Zhang, Yongliang; Wang, Wenbin; Verkhoglyadova, Olga P.

    2017-06-01

    This special collection includes 31 research papers investigating geospace system responses to the geomagnetic storms during the St. Patrick's Days of 17 March 2013 and 2015. It covers observation, data assimilation, and modeling aspects of the storm time phenomena and their associated physical processes. The ionosphere and thermosphere as well as their coupling to the magnetosphere are clearly the main subject areas addressed. This collection provides a comprehensive picture of the geospace response to these two major storms. We provide some highlights of these studies in six specific areas: (1) global and magnetosphere/plasmasphere perspectives, (2) high-latitude responses, (3) subauroral and midlatitude processes, (4) effects of prompt penetration electric fields and disturbance dynamo electric fields, (5) effects of neutral dynamics and perturbation, and (6) storm effects on plasma bubbles and irregularities. We also discuss areas of future challenges and the ways to move forward in advancing our understanding of the geospace storm time behavior and space weather effects.

  4. East Asian observations of low-latitude aurora during the Carrington magnetic storm

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Isobe, Hiroaki; Kataoka, Ryuho; Ebihara, Yusuke; Miyahara, Hiroko; Kawamura, Akito Davis; Shibata, Kazunari

    2016-12-01

    A magnetic storm around 1859 September 2, caused by a so-called Carrington flare, was the most intense in the history of modern scientific observations, and hence is considered to be a benchmark event concerning space weather. The magnetic storm caused worldwide observations of auroras, even at very low latitudes, such as Hawaii, Panama, or Santiago. Available magnetic-field measurements at Bombay, India, showed two peaks: the main was the Carrington event, which occurred in day time in East Asia; a second storm after the Carrington event occurred at night in East Asia. In this paper, we present results from surveys of aurora records in East Asia, which provide new information concerning the aurora activity of this important event. We found some new East Asian records of low-latitude aurora observations caused by a storm which occurred after the Carrington event. The size of the aurora belt of the second peak of the Carrington magnetic storm was even wider than that of usual low-latitude aurora events.

  5. Studies of humid continental haze during SPACE

    NASA Technical Reports Server (NTRS)

    Bowdle, D. A.; Greene, W. A.

    1985-01-01

    A concept for a solar radiometer network to provide supporting data during the Satellite Preciptiation and Cloud Experiment (SPACE) was developed. Each of the 9 prime and 10 supplementary SPACE ground sites will be equipped with an upward pointing global solar pyranometer. About half of the sites will also be equipped with upward pointing diffuse (shade ring) solar pyranometers, and a downward pointing global albedo pyranometer. These radiometers will be used to monitor the spatial and temporal variability of solar insolation and haze optical depth. The insolation data will ultimately be input to numerical models of the pre-storm and near-storm boundary layer. The optical depth data will be compared with simultaneous measurements from airborne and satellite-based passive visible radiometers and airborne lidars.

  6. KSC-2012-3131

    NASA Image and Video Library

    2012-05-30

    CAPE CANAVERAL, Fla. – A technician performs a black light inspection on one of NASA's Radiation Belt Storm Probes inside the clean room high bay at Astrotech payload processing facility. Black light inspection uses UVA fluorescence to detect possible microcontamination, small cracks or fluid leaks. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett

  7. KSC-2012-3132

    NASA Image and Video Library

    2012-05-30

    CAPE CANAVERAL, Fla. – Barely visible behind equipment, a technician uses a black light to inspect one of NASA's twin Radiation Belt Storm Probes inside the clean room high bay at Astrotech payload processing facility. Black light inspection uses UVA fluorescence to detect possible microcontamination, small cracks or fluid leaks. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett

  8. KSC-2012-3135

    NASA Image and Video Library

    2012-05-30

    CAPE CANAVERAL, Fla. – Using a black light, a technician closely inspects one of NASA's twin Radiation Belt Storm Probes inside the clean room high bay at Astrotech payload processing facility. Black light inspection uses UVA fluorescence to detect possible microcontamination, small cracks or fluid leaks. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett

  9. KSC-2012-3134

    NASA Image and Video Library

    2012-05-30

    CAPE CANAVERAL, Fla. – Working in near-darkness inside the high bay clean room at the Astrotech payload processing facility, two technicians use black lights to inspect of one of NASA's twin Radiation Belt Storm Probes. Black light inspection uses UVA fluorescence to detect possible microcontamination, small cracks or fluid leaks. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett

  10. Analysis of ionosphere variability over low-latitude GNSS stations during 24th solar maximum period

    NASA Astrophysics Data System (ADS)

    Venkata Ratnam, D.; Sivavaraprasad, G.; Latha Devi, N. S. M. P.

    2017-07-01

    Global Positioning System (GPS) is a remote sensing tool of space weather and ionospheric variations. However, the interplanetary space-dependent drifts in the ionospheric irregularities cause predominant ranging errors in the GPS signals. The dynamic variability of the low-latitude ionosphere is an imperative threat to the satellite-based radio communication and navigation ranging systems. The study of temporal and spatial variations in the ionosphere has triggered new investigations in modelling, nowcasting and forecasting the ionospheric variations. Hence, in this paper, the dynamism in the day-to-day, month-to-month and seasonal variability of the ionospheric Total Electron Content (TEC) has been explored during the solar maximum period, January-December 2013, of the 24th solar cycle. The spatial and temporal variations of the ionosphere are analysed using the TEC values derived from three Indian low-latitude GPS stations, namely, Bengaluru, Guntur and Hyderabad, separated by 13-18° in latitude and 77-81° in longitude. The observed regional GPS-TEC variations are compared with the predicted TEC values of the International Reference Ionosphere (IRI-2012 and 2007) models. Ionospheric parameters such as Vertical TEC (VTEC), relative TEC deviation index and monthly variations in the grand-mean of ionosphere TEC and TEC intensity, along with the upper and lower quartiles, are adopted to investigate the ionosphere TEC variability during quiet and disturbed days. The maximum ionospheric TEC variability is found during March and September equinoxes, followed by December solstice while the minimum variability is observed during June solstice. IRI models are in reasonable agreement with GPS TEC but are overestimating during dawn hours (01:00-06:00 LT) as compared to the dusk hours. Higher percentage deviations are observed during equinoctial months than summer over EIA stations, Guntur and Hyderabad. GPS TEC variations are overestimated during dawn hours for all the seasons over Bengaluru. It has also been observed that positive storm effect (enhancement of TEC) is observed during the main phase of the March storm, 2013 (March 16-18, 2013) while both positive and negative storm effects (depletion of TEC) are registered during the main phase of the June storm, 2013 (June 28-30, 2013) at Bengaluru and Guntur, respectively. IRI-2012 model has slightly large discrepancies with the GPS-VTEC compared with the IRI-2007 model during the June storm, 2013 over Guntur station. This analysis highlights the importance of upgrading the IRI models due to their discrepancies during quiet and disturbed states of the ionosphere and developing an early warning forecast system to alert about ionosphere variability.

  11. Lognormal Kalman filter for assimilating phase space density data in the radiation belts

    NASA Astrophysics Data System (ADS)

    Kondrashov, D.; Ghil, M.; Shprits, Y.

    2011-11-01

    Data assimilation combines a physical model with sparse observations and has become an increasingly important tool for scientists and engineers in the design, operation, and use of satellites and other high-technology systems in the near-Earth space environment. Of particular importance is predicting fluxes of high-energy particles in the Van Allen radiation belts, since these fluxes can damage spaceborne platforms and instruments during strong geomagnetic storms. In transiting from a research setting to operational prediction of these fluxes, improved data assimilation is of the essence. The present study is motivated by the fact that phase space densities (PSDs) of high-energy electrons in the outer radiation belt—both simulated and observed—are subject to spatiotemporal variations that span several orders of magnitude. Standard data assimilation methods that are based on least squares minimization of normally distributed errors may not be adequate for handling the range of these variations. We propose herein a modification of Kalman filtering that uses a log-transformed, one-dimensional radial diffusion model for the PSDs and includes parameterized losses. The proposed methodology is first verified on model-simulated, synthetic data and then applied to actual satellite measurements. When the model errors are sufficiently smaller then observational errors, our methodology can significantly improve analysis and prediction skill for the PSDs compared to those of the standard Kalman filter formulation. This improvement is documented by monitoring the variance of the innovation sequence.

  12. Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf.

    PubMed

    Mori, Nobuhito; Kato, Masaya; Kim, Sooyoul; Mase, Hajime; Shibutani, Yoko; Takemi, Tetsuya; Tsuboki, Kazuhisa; Yasuda, Tomohiro

    2014-07-28

    Typhoon Haiyan, which struck the Philippines in November 2013, was an extremely intense tropical cyclone that had a catastrophic impact. The minimum central pressure of Typhoon Haiyan was 895 hPa, making it the strongest typhoon to make landfall on a major island in the western North Pacific Ocean. The characteristics of Typhoon Haiyan and its related storm surge are estimated by numerical experiments using numerical weather prediction models and a storm surge model. Based on the analysis of best hindcast results, the storm surge level was 5-6 m and local amplification of water surface elevation due to seiche was found to be significant inside Leyte Gulf. The numerical experiments show the coherent structure of the storm surge profile due to the specific bathymetry of Leyte Gulf and the Philippines Trench as a major contributor to the disaster in Tacloban. The numerical results also indicated the sensitivity of storm surge forecast.

  13. Explicit prediction of hail using multimoment microphysics schemes for a hailstorm of 19 March 2014 in eastern China

    NASA Astrophysics Data System (ADS)

    Luo, Liping; Xue, Ming; Zhu, Kefeng; Zhou, Bowen

    2017-07-01

    In the late afternoon of 19 March 2014, a severe hailstorm swept through eastern central Zhejiang province, China. The storm produced golf ball-sized hail, strong winds, and lighting, lasting approximately 1 h over the coastal city of Taizhou. The Advanced Regional Prediction System is used to simulate the hailstorm using different configurations of the Milbrandt-Yau microphysics scheme that predict one, two, or three moments of the hydrometeor particle size distribution. Simulated fields, including accumulated precipitation and maximum estimated hail size (MESH), are verified against rain gauge observations and radar-derived MESH, respectively. For the case of the 19 March 2014 storms, the general evolution is better predicted with multimoment microphysics schemes than with the one-moment scheme; the three-moment scheme produces the best forecast. Predictions from the three-moment scheme qualitatively agree with observations in terms of size and amount of hail reaching the surface. The life cycle of the hailstorm is analyzed, using the most skillful, three-moment forecast. Based upon the tendency of surface hail mass flux, the hailstorm life cycle can be divided into three stages: developing, mature, and dissipating. Microphysical budget analyses are used to examine microphysical processes and characteristics during these three stages. The vertical structures within the storm and their link to environmental shear conditions are discussed; together with the rapid fall of hailstones, these structures and conditions appear to dictate this pulse storm's short life span. Finally, a conceptual model for the life cycle of pulse hailstorms is proposed.

  14. The features of radiation dose variations onboard ISS and Mir space station: comparative study.

    PubMed

    Tverskaya, L V; Panasyuk, M I; Reizman, S Ya; Sosnovets, E N; Teltsov, M V; Tsetlin, V V

    2004-01-01

    The dynamics of the ISS-measured radiation dose variations since August 2000 is studied. Use is made of the data obtained with the R-16 instrument, which consists of two ionization chambers behind different shielding thicknesses. The doses recorded during solar energetic particle (SEP) events are compared with the data obtained also by R-16 on Mir space station. The SEP events in the solar maximum of the current cycle make a much smaller contribution to the radiation dose compared with the October 1989 event recorded on Mir space station. In the latter event, the proton intensity was peaking during a strong magnetic storm. The storm-time effect of solar proton geomagnetic cutoff decreases on dose variations is estimated. The dose variations on Mir space stations due to formation of a new radiation belt of high-energy protons and electrons during a sudden commencement of March 24, 1991 storm are also studied. It was for the first time throughout the ISS and Mir dose measurement period that the counting rates recorded by both R-16 channels on ISS in 2001-2002 were nearly the same during some time intervals. This effect may arise from the decreases of relativistic electron fluxes in the outer radiation belt. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  15. COMESEP: bridging the gap between the SEP, CME, and terrestrial effects scientific communities

    NASA Astrophysics Data System (ADS)

    Crosby, Norma; Veronig, Astrid; Rodriguez, Luciano; Vrsnak, Bojan; Vennerstrøm, Susanne; Malandraki, Olga; Dalla, Silvia; Srivastava, Nandita

    2016-04-01

    In the past there has been a tendency for the geomagnetic storm and solar energetic particle (SEP) communities to work in parallel rather than to apply a cross-disciplinary work approach specifically in regard to space weather forecasting. To provide more awareness on the existing links between these communities, as well as further bridge this gap, the three-year EU FP7 COMESEP (COronal Mass Ejections and Solar Energetic Particles: forecasting the space weather impact) project emphasized cross-collaboration between the SEP, coronal mass ejection, and terrestrial effects scientific communities. COMESEP went from basic solar-terrestrial physics research to space weather operations by developing, validating and implementing multi-purpose tools into an operational 24/7 alert service. Launched in November 2013, the COMESEP alert system provides space weather stakeholders geomagnetic storm alerts ("Event based" and "Next 24 hours") and SEP (proton) storm alerts (E > 10 MeV and E > 60 MeV) without human intervention based on the COMESEP definition of risk. COMESEP alerts and forecasts are freely available on the COMESEP alert website (http://www.comesep.eu/alert), as well as disseminated by e-mail to registered users. Acknowledgement: This work has received funding from the European Commission FP7 Project COMESEP (263252).

  16. The Geopause

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Delcourt, D. C.

    1995-01-01

    Coupled to the Earth and protected by the geomagnetic field, terrestrial matter in the plasma state dominates a larger region of space than was suspected when the 'space age' began, a region we refer to as the geosphere. Accelerated and heated by solar wind energy, this matter expands in size and increases in mass density in response to the Sun's ultraviolet spectrum, heliospheric conditions, and the occurrence of severe space storms. Such storms regularly damage spacecraft, interfere with communications, and trigger power grid interruptions or failures. They occur within the geopause region, that is, the volume defined by the limits of the instantaneous boundary between plasmas that are primarily heliospheric and geospheric. The geopause is analogous in some ways to the heliopause but also resembles the terrestrial air-sea interface. It is the boundary layer across which the supersonically expanding solar plasma delivers momentum and energy to the terrestrial plasma and gas, exciting them into motion, 'evaporating' them into space, and dissipating considerable amounts of power in thermal forms, while generating energetic particles through repeated storage and explosive release of electromagnetic energy. The intensity of the solar wind and the orientation of its magnetic field jointly control the strength of the coupling between solar and terrestrial plasmas and hence the occurrence of severe storms in the geopause region.

  17. Impact on Space-Based Navigation Systems of Large Magnetic Storm-Driven Nighttime Flows in the Mid-latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Basu, S.; Makela, J.; Doherty, P.; Wright, J.; Coster, A.

    2008-05-01

    Multi-technique ground and space-based studies conducted during the intense magnetic storm of 7-8 November 2004 yielded a hitherto little-recognized means of impacting space-based navigation systems such as the Federal Aviation Administration's Wide Area Augmentation System (WAAS) that operates in the North American sector. During this superstorm, no appreciable storm-enhanced density gradients were observed. Rather the mid-latitude region was enveloped by the auroral oval and the ionospheric trough within which the sub auroral polarization stream (SAPS) was confined during the local dusk to nighttime hours. This shows that such processes can partially disable GPS-based navigation systems for many hours even in the absence of appreciable TEC gradients, provided an intense flow channel is present in the ionosphere during nighttime hours, as revealed by DMSP and Dynasonde drift results. The competing effects of irregularity amplitude ΔN/N, the background F-region density and the magnitude of SAPS or auroral convection are discussed in establishing the extent of the region of impact on the WAAS system. In order to provide inputs to operational space weather models, the current GPS network used for measuring the total electron content in North America and elsewhere should be augmented by instruments that can measure ionospheric drifts.

  18. Geomagnetically Induced Currents: Principles

    NASA Astrophysics Data System (ADS)

    Oliveira, Denny M.; Ngwira, Chigomezyo M.

    2017-10-01

    The geospace, or the space environment near Earth, is constantly subjected to changes in the solar wind flow generated at the Sun. The study of this environment variability is called Space Weather. Examples of effects resulting from this variability are the occurrence of powerful solar disturbances, such as coronal mass ejections (CMEs). The impact of CMEs on the Earth's magnetosphere very often greatly perturbs the geomagnetic field causing the occurrence of geomagnetic storms. Such extremely variable geomagnetic fields trigger geomagnetic effects measurable not only in the geospace but also in the ionosphere, upper atmosphere, and on and in the ground. For example, during extreme cases, rapidly changing geomagnetic fields generate intense geomagnetically induced currents (GICs). Intense GICs can cause dramatic effects on man-made technological systems, such as damage to high-voltage power transmission transformers leading to interruption of power supply, and/or corrosion of oil and gas pipelines. These space weather effects can in turn lead to severe economic losses. In this paper, we supply the reader with theoretical concepts related to GICs as well as their general consequences. As an example, we discuss the GIC effects on a North American power grid located in mid-latitude regions during the 13-14 March 1989 extreme geomagnetic storm. That was the most extreme storm that occurred in the space era age.

  19. A regressive storm model for extreme space weather

    NASA Astrophysics Data System (ADS)

    Terkildsen, Michael; Steward, Graham; Neudegg, Dave; Marshall, Richard

    2012-07-01

    Extreme space weather events, while rare, pose significant risk to society in the form of impacts on critical infrastructure such as power grids, and the disruption of high end technological systems such as satellites and precision navigation and timing systems. There has been an increased focus on modelling the effects of extreme space weather, as well as improving the ability of space weather forecast centres to identify, with sufficient lead time, solar activity with the potential to produce extreme events. This paper describes the development of a data-based model for predicting the occurrence of extreme space weather events from solar observation. The motivation for this work was to develop a tool to assist space weather forecasters in early identification of solar activity conditions with the potential to produce extreme space weather, and with sufficient lead time to notify relevant customer groups. Data-based modelling techniques were used to construct the model, and an extensive archive of solar observation data used to train, optimise and test the model. The optimisation of the base model aimed to eliminate false negatives (missed events) at the expense of a tolerable increase in false positives, under the assumption of an iterative improvement in forecast accuracy during progression of the solar disturbance, as subsequent data becomes available.

  20. Stride search: A general algorithm for storm detection in high-resolution climate data

    DOE PAGES

    Bosler, Peter A.; Roesler, Erika L.; Taylor, Mark A.; ...

    2016-04-13

    This study discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared: the commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search algorithm is defined independently of the spatial discretization associated with a particular data set. Results from the two algorithms are compared for the application of tropical cyclonemore » detection, and shown to produce similar results for the same set of storm identification criteria. Differences between the two algorithms arise for some storms due to their different definition of search regions in physical space. The physical space associated with each Stride Search region is constant, regardless of data resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe in the same manner. Stride Search's ability to search high latitudes is demonstrated for the case of polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid point search of the same data, and the relative speed up associated with Stride Search increases as resolution increases.« less

Top