Single Nucleotide Polymorphisms Predict Symptom Severity of Autism Spectrum Disorder
ERIC Educational Resources Information Center
Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H.
2012-01-01
Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs)…
John W. Hanna; James T. Blodgett; Eric W. I. Pitman; Sarah M. Ashiglar; John E. Lundquist; Mee-Sook Kim; Amy L. Ross-Davis; Ned B. Klopfenstein
2014-01-01
As part of an ongoing project to predict Armillaria root disease in the Rocky Mountain zone, this project predicts suitable climate space (potential distribution) for A. solidipes in Wyoming and associated forest areas at risk to disease caused by this pathogen. Two bioclimatic models are being developed. One model is based solely on verified locations of A. solidipes...
Kristensen, Esben Astrup; Baattrup-Pedersen, Annette; Andersen, Hans Estrup
2012-03-01
Increasing human impact on stream ecosystems has resulted in a growing need for tools helping managers to develop conservations strategies, and environmental monitoring is crucial for this development. This paper describes the development of models predicting the presence of fish assemblages in lowland streams using solely cost-effective GIS-derived land use variables. Three hundred thirty-five stream sites were separated into two groups based on size. Within each group, fish abundance data and cluster analysis were used to determine the composition of fish assemblages. The occurrence of assemblages was predicted using a dataset containing land use variables at three spatial scales (50 m riparian corridor, 500 m riparian corridor and the entire catchment) supplemented by a dataset on in-stream variables. The overall classification success varied between 66.1-81.1% and was only marginally better when using in-stream variables than when applying only GIS variables. Also, the prediction power of a model combining GIS and in-stream variables was only slightly better than prediction based solely on GIS variables. The possibility of obtaining precise predictions without using costly in-stream variables offers great potential in the design of monitoring programmes as the distribution of monitoring sites along a gradient in ecological quality can be done at a low cost.
Helmersson-Karlqvist, Johanna; Ärnlöv, Johan; Larsson, Anders
2016-10-01
Decreased glomerular filtration rate (GFR) is an important cardiovascular risk factor, but estimated GFR (eGFR) may differ depending on whether it is based on creatinine or cystatin C. A combined creatinine/cystatin C equation has recently been shown to best estimate GFR; however, the benefits of using the combined equation for risk prediction in routine clinical care have been less studied. This study compares mortality risk prediction by eGFR using the combined creatinine/cystatin C equation (CKD-EPI), a sole creatinine equation (CKD-EPI) and a sole cystatin C equation (CAPA), respectively, using assays that are traceable to international calibrators. All patients analysed for both creatinine and cystatin C from the same blood sample tube (n = 13,054) during 2005-2007 in Uppsala University Hospital Laboratory were divided into eGFR risk categories>60, 30-60 and <30 mL/min/1.73 m(2) by each eGFR equation. During follow-up (median 4.6 years), 4398 participants died, of which 1396 deaths were due to cardiovascular causes. Reduced eGFR was significantly associated with death as assessed by all eGFR equations. The net reclassification improvement (NRI) for the combination equation compared with the sole creatinine equation was 0.10 (p < 0.001) for all-cause mortality and 0.08 (p < 0.001) for cardiovascular mortality, indicating improved reclassification. In contrast, NRI for the combination equation, compared with the sole cystatin C equation, was -0.06 (p < 0.001) for all-cause mortality and -0.02 (p = 0.032) for cardiovascular mortality, indicating a worsened reclassification. In routine clinical care, cystatin C-based eGFR was more closely associated with mortality compared with both creatinine-based eGFR and creatinine/cystatin C-based eGFR. © The European Society of Cardiology 2016.
John R. Brooks
2004-01-01
A stand dominant height prediction technique, based solely on diameter distribution and total height data from standard inventory procedures, was investigated. The data consist of 15 managed longleaf pine (Pinus palustris Mill.) plantations that are part of a growth and yield study located in Worth, Mitchell, and Baker counties in southwest Georgia....
De Campeneere, S; Fiems, L O; Van de Voorde, G; Vanacker, J M; Boucque, C V; Demeyer, D I
1999-01-01
Characteristics from the 8th rib cut: chemical composition, tissue composition after dissection, specific gravity (SG) and m. longissimus thoracis (LT) composition, collected on 17 Belgian Blue double-muscled fattening bulls were used to generate equations for predicting chemical carcass composition. Carcass composition was best predicted from chemical analysis of the 8th rib cut and the empty body weight (EBW) of the bull. Carcass chemical fat content (CCF, kg) was predicted from the 8th rib cut fat content (ether extract, 8RF, kg) by the following regression: CCF=1.94+27.37 8RF (R(2)=0.957, RSD =9.89%). A higher coefficient was found for carcass water (CCW, kg) predicted from 8RF and EBW: CCW=-2.26+0.28 EBW-34.28 8RF (R(2)=0.997, RSD=1.48%). No parameter was found to improve the prediction of CCP from EBW solely: CCP=-0.86+0.08 EBW (R(2) =0.992, RSD=2.61%). Prediction equations based solely on LT composition had low R(2) values of between 0.38 and 0.67, whereas no significant equations were found using SG. However, equations based on EBW had R(2) values between 0.78 and 0.99. Chemical components of the 8th rib cut in combination with EBW are most useful in predicting the chemical composition of the carcass of Belgian-Blue double-muscled bulls.
Riometer based Neural Network Prediction of Kp
NASA Astrophysics Data System (ADS)
Arnason, K. M.; Spanswick, E.; Chaddock, D.; Tabrizi, A. F.; Behjat, L.
2017-12-01
The Canadian Geospace Observatory Riometer Array is a network of 11 wide-beam riometers deployed across Central and Northern Canada. The geographic coverage of the network affords a near continent scale view of high energy (>30keV) electron precipitation at a very course spatial resolution. In this paper we present the first results from a neural network based analysis of riometer data. Trained on decades of riometer data, the neural network is tuned to predict a simple index of global geomagnetic activity (Kp) based solely on the information provided by the high energy electron precipitation over Canada. We present results from various configurations of training and discuss the applicability of this technique for short term prediction of geomagnetic activity.
Mancia, Claire; Loustaud-Ratti, Véronique; Carrier, Paul; Naudet, Florian; Bellissant, Eric; Labrousse, François; Pichon, Nicolas
2015-08-01
One of the main selection criteria of the quality of a liver graft is the degree of steatosis, which will determine the success of the transplantation. The aim of this study was to evaluate the ability of FibroScan and its related methods Controlled Attenuation Parameter and Liver Stiffness to assess objectively steatosis and fibrosis in livers from brain-dead donors to be potentially used for transplantation. Over a period of 10 months, 23 consecutive brain dead donors screened for liver procurement underwent a FibroScan and a liver biopsy. The different predictive models of liver retrievability using liver biopsy as the gold standard have led to the following area under receiver operating characteristic curve: 76.6% (95% confidence intervals [95% CIs], 48.2%-100%) when based solely on controlled attenuation parameter, 75.0% (95% CIs, 34.3%-100%) when based solely on liver stiffness, and 96.7% (95% CIs, 88.7%-100%) when based on combined indices. Our study suggests that a preoperative selection of brain-dead donors based on a combination of both Controlled Attenuation Parameter and Liver Stiffness obtained with FibroScan could result in a good preoperative prediction of the histological status and degree of steatosis of a potential liver graft.
Shoe-Floor Interactions in Human Walking With Slips: Modeling and Experiments.
Trkov, Mitja; Yi, Jingang; Liu, Tao; Li, Kang
2018-03-01
Shoe-floor interactions play a crucial role in determining the possibility of potential slip and fall during human walking. Biomechanical and tribological parameters influence the friction characteristics between the shoe sole and the floor and the existing work mainly focus on experimental studies. In this paper, we present modeling, analysis, and experiments to understand slip and force distributions between the shoe sole and floor surface during human walking. We present results for both soft and hard sole material. The computational approaches for slip and friction force distributions are presented using a spring-beam networks model. The model predictions match the experimentally observed sole deformations with large soft sole deformation at the beginning and the end stages of the stance, which indicates the increased risk for slip. The experiments confirm that both the previously reported required coefficient of friction (RCOF) and the deformation measurements in this study can be used to predict slip occurrence. Moreover, the deformation and force distribution results reported in this study provide further understanding and knowledge of slip initiation and termination under various biomechanical conditions.
Sole: Online Analysis of Southern FIA Data
Michael P. Spinney; Paul C. Van Deusen; Francis A. Roesch
2006-01-01
The Southern On Line Estimator (SOLE) is a flexible modular software program for analyzing U.S. Department of Agriculture Forest Service Forest Inventory and Analysis data. SOLE produces statistical tables, figures, maps, and portable document format reports based on user selected area and variables. SOLE?s Java-based graphical user interface is easy to use, and its R-...
ERIC Educational Resources Information Center
Buff, Alex; Reusser, Kurt; Dinkelmann, Iris
2017-01-01
Positive and negative emotions are ubiquitous in everyday school life, and can foster or impair processes of learning and achievement. However, learning- and achievement-related emotions are not based solely on experiences from respective situations in the school context. Rather, experiences outside of school, e.g. learning at home, are also…
Frisch, Simon; Dshemuchadse, Maja; Görner, Max; Goschke, Thomas; Scherbaum, Stefan
2015-11-01
Selective attention biases information processing toward stimuli that are relevant for achieving our goals. However, the nature of this bias is under debate: Does it solely rely on the amplification of goal-relevant information or is there a need for additional inhibitory processes that selectively suppress currently distracting information? Here, we explored the processes underlying selective attention with a dynamic, modeling-based approach that focuses on the continuous evolution of behavior over time. We present two dynamic neural field models incorporating the diverging theoretical assumptions. Simulations with both models showed that they make similar predictions with regard to response times but differ markedly with regard to their continuous behavior. Human data observed via mouse tracking as a continuous measure of performance revealed evidence for the model solely based on amplification but no indication of persisting selective distracter inhibition.
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
Model-Based and Model-Free Pavlovian Reward Learning: Revaluation, Revision and Revelation
Dayan, Peter; Berridge, Kent C.
2014-01-01
Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation. PMID:24647659
Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation.
Dayan, Peter; Berridge, Kent C
2014-06-01
Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations, and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response, and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation.
Improving orbit prediction accuracy through supervised machine learning
NASA Astrophysics Data System (ADS)
Peng, Hao; Bai, Xiaoli
2018-05-01
Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features.
NASA Astrophysics Data System (ADS)
Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha
2018-01-01
It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.
Blind test of physics-based prediction of protein structures.
Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A
2009-02-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.
Blind Test of Physics-Based Prediction of Protein Structures
Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.
2009-01-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130
Liang, Yunyun; Liu, Sanyang; Zhang, Shengli
2015-01-01
Prediction of protein structural classes for low-similarity sequences is useful for understanding fold patterns, regulation, functions, and interactions of proteins. It is well known that feature extraction is significant to prediction of protein structural class and it mainly uses protein primary sequence, predicted secondary structure sequence, and position-specific scoring matrix (PSSM). Currently, prediction solely based on the PSSM has played a key role in improving the prediction accuracy. In this paper, we propose a novel method called CSP-SegPseP-SegACP by fusing consensus sequence (CS), segmented PsePSSM, and segmented autocovariance transformation (ACT) based on PSSM. Three widely used low-similarity datasets (1189, 25PDB, and 640) are adopted in this paper. Then a 700-dimensional (700D) feature vector is constructed and the dimension is decreased to 224D by using principal component analysis (PCA). To verify the performance of our method, rigorous jackknife cross-validation tests are performed on 1189, 25PDB, and 640 datasets. Comparison of our results with the existing PSSM-based methods demonstrates that our method achieves the favorable and competitive performance. This will offer an important complementary to other PSSM-based methods for prediction of protein structural classes for low-similarity sequences.
Analytical Prediction of Lower Leg Injury in a Vehicular Mine Blast Event
2010-01-01
the spring constant of the tibia is nearly arbitrary; the spring constant of the boot assumes a hard ethylene propylene diene monomer ( EPDM ) rubber ...the sole of the boot. The significantly lower spring constant of the EPDM rubber in the sole compared to the bone structures greatly diminished the
Posterior Predictive Bayesian Phylogenetic Model Selection
Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn
2014-01-01
We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892
Xu, Jun; Guo, Baohua; Zhang, Zengmin; Wu, Qiong; Zhou, Quan; Chen, Jinchun; Chen, Guoqiang; Li, Guodong
2005-06-30
A mathematical model is proposed for predicting the copolymer composition of the microbially synthesized polyhydroxyalkanoate (PHA) copolymers. Based on the biochemical reactions involved in the precursor formation and polymerization pathways, the model correlates the copolymer composition with the cultivation conditions, the enzyme levels and selectivity, and the metabolic pathways. It suggests the following points: (1) in the case of a sole carbon source, the copolymer composition depends mainly on the topology of the metabolic pathways and the selectivity of both the enzymes involved in the precursor formation and the polymerization route; (2) the copolymer composition can be varied in a wide range via alteration of the flux ratio of different types of monomers channeled from two or more independent and simultaneous pathways; (3) the enzymes which should be over-expressed or inhibited to obtain the desired copolymer composition can be predicted. For example, inhibition of the beta-oxidation pathway will increase the content of the monomer units with longer chain length. To test the model, various experiments were envisaged by varying cultivation time, concentration and chain length of the sole carbon source, and molar ratio of the cosubstrates. The predictions from the model agree well with the experimental results. Therefore, the proposed model will be useful in predicting the PHA copolymer composition under different biochemical reaction conditions. In other words, it can provide a guide for the synthesis of desired PHA copolymers.
Fink, Günther; Victora, Cesar G; Harttgen, Kenneth; Vollmer, Sebastian; Vidaletti, Luís Paulo; Barros, Aluisio J D
2017-04-01
To compare the predictive power of synthetic absolute income measures with that of asset-based wealth quintiles in low- and middle-income countries (LMICs) using child stunting as an outcome. We pooled data from 239 nationally representative household surveys from LMICs and computed absolute incomes in US dollars based on households' asset rank as well as data on national consumption and inequality levels. We used multivariable regression models to compare the predictive power of the created income measure with the predictive power of existing asset indicator measures. In cross-country analysis, log absolute income predicted 54.5% of stunting variation observed, compared with 20% of variation explained by wealth quintiles. For within-survey analysis, we also found absolute income gaps to be predictive of the gaps between stunting in the wealthiest and poorest households (P < .001). Our results suggest that absolute income levels can greatly improve the prediction of stunting levels across and within countries over time, compared with models that rely solely on relative wealth quintiles.
A Turn-Projected State-Based Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Lewis, Timothy A.
2013-01-01
State-based conflict detection and resolution (CD&R) algorithms detect conflicts and resolve them on the basis on current state information without the use of additional intent information from aircraft flight plans. Therefore, the prediction of the trajectory of aircraft is based solely upon the position and velocity vectors of the traffic aircraft. Most CD&R algorithms project the traffic state using only the current state vectors. However, the past state vectors can be used to make a better prediction of the future trajectory of the traffic aircraft. This paper explores the idea of using past state vectors to detect traffic turns and resolve conflicts caused by these turns using a non-linear projection of the traffic state. A new algorithm based on this idea is presented and validated using a fast-time simulator developed for this study.
Predicting the global spread range via small subnetworks
NASA Astrophysics Data System (ADS)
Sun, Jiachen; Dong, Junyou; Ma, Xiao; Feng, Ling; Hu, Yanqing
2017-04-01
Modern online social network platforms are replacing traditional media due to their effectiveness in both spreading information and communicating opinions. One of the key problems in these online platforms is to predict the global spread range of any given information. Due to its gigantic size as well as time-varying dynamics, an online social network's global structure, however, is usually inaccessible to most researchers. Thus, it raises the very important issue of how to use solely small subnetworks to predict the global influence. In this paper, based on percolation theory, we show that the global spread range can be predicted well from only two small subnetworks. We test our methods in an artificial network and three empirical online social networks, such as the full Sina Weibo network with 99546027 nodes.
Building the Army: A Strategic Review of a Complex Problem
2013-03-01
is more than a true chameleon that slightly adapts its characteristics to the given case.”2 One cannot predict the shifting colors/characteristics...Strategy (NMS) of the United States of America calling for a flexible, agile, and adaptive Joint Force capable of full spectrum operations that...or may not be remedied, one can safely certify TAA as a robust and proven process based solely on the adaptable and tailorable Army that exists
Mixed Methodology to Predict Social Meaning for Decision Support
2013-09-01
regular usage of Standard American English (SAE) that also ranges in use of stylistic features that identify users as members of certain street gangs...membership based solely on their use of language. While aspects of gang language, such as the stylistic tendencies of the language of graffiti (Adams and... stylistics of gang language online, as a mode of code switching that reflects the infrastructure of the larger gang community, has been little studied
Widespread Nanoparticle-Assay Interference: Implications for Nanotoxicity Testing
Ong, Kimberly J.; MacCormack, Tyson J.; Clark, Rhett J.; Ede, James D.; Ortega, Van A.; Felix, Lindsey C.; Dang, Michael K. M.; Ma, Guibin; Fenniri, Hicham; Veinot, Jonathan G. C.; Goss, Greg G.
2014-01-01
The evaluation of engineered nanomaterial safety has been hindered by conflicting reports demonstrating differential degrees of toxicity with the same nanoparticles. The unique properties of these materials increase the likelihood that they will interfere with analytical techniques, which may contribute to this phenomenon. We tested the potential for: 1) nanoparticle intrinsic fluorescence/absorbance, 2) interactions between nanoparticles and assay components, and 3) the effects of adding both nanoparticles and analytes to an assay, to interfere with the accurate assessment of toxicity. Silicon, cadmium selenide, titanium dioxide, and helical rosette nanotubes each affected at least one of the six assays tested, resulting in either substantial over- or under-estimations of toxicity. Simulation of realistic assay conditions revealed that interference could not be predicted solely by interactions between nanoparticles and assay components. Moreover, the nature and degree of interference cannot be predicted solely based on our current understanding of nanomaterial behaviour. A literature survey indicated that ca. 95% of papers from 2010 using biochemical techniques to assess nanotoxicity did not account for potential interference of nanoparticles, and this number had not substantially improved in 2012. We provide guidance on avoiding and/or controlling for such interference to improve the accuracy of nanotoxicity assessments. PMID:24618833
NASA Technical Reports Server (NTRS)
Hatfield, Glen S.; Hark, Frank; Stott, James
2016-01-01
Launch vehicle reliability analysis is largely dependent upon using predicted failure rates from data sources such as MIL-HDBK-217F. Reliability prediction methodologies based on component data do not take into account system integration risks such as those attributable to manufacturing and assembly. These sources often dominate component level risk. While consequence of failure is often understood, using predicted values in a risk model to estimate the probability of occurrence may underestimate the actual risk. Managers and decision makers use the probability of occurrence to influence the determination whether to accept the risk or require a design modification. The actual risk threshold for acceptance may not be fully understood due to the absence of system level test data or operational data. This paper will establish a method and approach to identify the pitfalls and precautions of accepting risk based solely upon predicted failure data. This approach will provide a set of guidelines that may be useful to arrive at a more realistic quantification of risk prior to acceptance by a program.
Challenges of working with FIADB17 data: the SOLE experience
Michael Spinney; Paul Van Deusen
2007-01-01
The Southern On Line Estimator (SOLE) is an Internet-based Forest Inventory and Analysis (FIA) data analysis tool. SOLE is based on data downloaded from the publicly available FIA database (FIADB) and summarized by plot condition. The tasks of downloading, processing, and summarizing FIADB data require specialized expertise in inventory theory and data manipulation....
NASA Astrophysics Data System (ADS)
Wilson, Matthew T.; Mier, Kathryn L.; Cooper, Dan W.
2016-05-01
According to the nursery size hypothesis, flatfish recruitment is constrained by nursery area. Thus, if resource selection models can be shown to accurately predict the location and geographic extent of flatfish nursery areas, they will become important tools in the management and study of flatfish population dynamics. We demonstrate that some resource selection models derived previously to predict the presence and absence of juvenile flatfishes near shore were applicable to the broader continental shelf. For other age-species groups, derivation of new models for the continental shelf was necessary. Our study was conducted in the western Gulf of Alaska (GoA) during October 2011 on four groups of age-0 juvenile flatfishes: Pacific halibut (Hippoglossus stenolepis), arrowtooth flounder (Atheresthes stomias), northern rock sole (Lepidopsetta polyxystra), and flathead sole (Hippoglossoides elassodon); and three groups of age-1 juvenile flatfishes: northern rock sole, flathead sole, and yellowfin sole (Limanda aspera). Sampling occurred at 33 sites across the continental shelf. Fish were collected using a 3-m beam trawl, and a midwater trawl. Environmental data were collected on sediment composition and water temperature and depth. Many of the age-species groups co-occurred in the Shumagin and Barnabus sea valleys; however, age-0 arrowtooth flounder occurred at more locations than other juveniles, perhaps due to a relatively broad tolerance of environmental conditions and to the utilization of midwater habitat. Thus, the large nursery area of arrowtooth flounder may be one reason why they are currently the most abundant GoA flatfish. In fact, among all species, mean recruitment at age 3 increased with the percent occurrence of age-0 juveniles at the 33 sites, a proxy for relative nursery area, in accordance with the nursery size hypothesis, suggesting that mean recruitment among GoA flatfishes is structured by nursery size.
Ołdziej, S; Czaplewski, C; Liwo, A; Chinchio, M; Nanias, M; Vila, J A; Khalili, M; Arnautova, Y A; Jagielska, A; Makowski, M; Schafroth, H D; Kaźmierkiewicz, R; Ripoll, D R; Pillardy, J; Saunders, J A; Kang, Y K; Gibson, K D; Scheraga, H A
2005-05-24
Recent improvements in the protein-structure prediction method developed in our laboratory, based on the thermodynamic hypothesis, are described. The conformational space is searched extensively at the united-residue level by using our physics-based UNRES energy function and the conformational space annealing method of global optimization. The lowest-energy coarse-grained structures are then converted to an all-atom representation and energy-minimized with the ECEPP/3 force field. The procedure was assessed in two recent blind tests of protein-structure prediction. During the first blind test, we predicted large fragments of alpha and alpha+beta proteins [60-70 residues with C(alpha) rms deviation (rmsd) <6 A]. However, for alpha+beta proteins, significant topological errors occurred despite low rmsd values. In the second exercise, we predicted whole structures of five proteins (two alpha and three alpha+beta, with sizes of 53-235 residues) with remarkably good accuracy. In particular, for the genomic target TM0487 (a 102-residue alpha+beta protein from Thermotoga maritima), we predicted the complete, topologically correct structure with 7.3-A C(alpha) rmsd. So far this protein is the largest alpha+beta protein predicted based solely on the amino acid sequence and a physics-based potential-energy function and search procedure. For target T0198, a phosphate transport system regulator PhoU from T. maritima (a 235-residue mainly alpha-helical protein), we predicted the topology of the whole six-helix bundle correctly within 8 A rmsd, except the 32 C-terminal residues, most of which form a beta-hairpin. These and other examples described in this work demonstrate significant progress in physics-based protein-structure prediction.
NASA Astrophysics Data System (ADS)
Choudhury, Anustup; Farrell, Suzanne; Atkins, Robin; Daly, Scott
2017-09-01
We present an approach to predict overall HDR display quality as a function of key HDR display parameters. We first performed subjective experiments on a high quality HDR display that explored five key HDR display parameters: maximum luminance, minimum luminance, color gamut, bit-depth and local contrast. Subjects rated overall quality for different combinations of these display parameters. We explored two models | a physical model solely based on physically measured display characteristics and a perceptual model that transforms physical parameters using human vision system models. For the perceptual model, we use a family of metrics based on a recently published color volume model (ICT-CP), which consists of the PQ luminance non-linearity (ST2084) and LMS-based opponent color, as well as an estimate of the display point spread function. To predict overall visual quality, we apply linear regression and machine learning techniques such as Multilayer Perceptron, RBF and SVM networks. We use RMSE and Pearson/Spearman correlation coefficients to quantify performance. We found that the perceptual model is better at predicting subjective quality than the physical model and that SVM is better at prediction than linear regression. The significance and contribution of each display parameter was investigated. In addition, we found that combined parameters such as contrast do not improve prediction. Traditional perceptual models were also evaluated and we found that models based on the PQ non-linearity performed better.
Spatial complementarity and the coexistence of species.
Velázquez, Jorge; Garrahan, Juan P; Eichhorn, Markus P
2014-01-01
Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric - ecological pressure - we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each species rather than solely through self-limitation.
Spatial Complementarity and the Coexistence of Species
Velázquez, Jorge; Garrahan, Juan P.; Eichhorn, Markus P.
2014-01-01
Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric — ecological pressure — we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each species rather than solely through self-limitation. PMID:25532018
NASA Astrophysics Data System (ADS)
Judycka, U.; Jagiello, K.; Bober, L.; Błażejowski, J.; Puzyn, T.
2018-06-01
Chemometric tools were applied to investigate the biological behaviour of ampholytic substances in relation to their physicochemical and spectral properties. Results of the Principal Component Analysis suggest that size of molecules and their electronic and spectral characteristics are the key properties required to predict therapeutic relevance of the compounds examined. These properties were used for developing the structure-activity classification model. The classification model allows assessing the therapeutic behaviour of ampholytic substances on the basis of solely values of descriptors that can be obtained computationally. Thus, the prediction is possible without necessity of carrying out time-consuming and expensive laboratory tests, which is its main advantage.
NASA Astrophysics Data System (ADS)
Mahmood, Zakaria N.; Mahmuddin, Massudi; Mahmood, Mohammed Nooraldeen
Encoding proteins of amino acid sequence to predict classified into their respective families and subfamilies is important research area. However for a given protein, knowing the exact action whether hormonal, enzymatic, transmembranal or nuclear receptors does not depend solely on amino acid sequence but on the way the amino acid thread folds as well. This study provides a prototype system that able to predict a protein tertiary structure. Several methods are used to develop and evaluate the system to produce better accuracy in protein 3D structure prediction. The Bees Optimization algorithm which inspired from the honey bees food foraging method, is used in the searching phase. In this study, the experiment is conducted on short sequence proteins that have been used by the previous researches using well-known tools. The proposed approach shows a promising result.
Pérez-Garrido, Alfonso; Morales Helguera, Aliuska; Abellán Guillén, Adela; Cordeiro, M Natália D S; Garrido Escudero, Amalio
2009-01-15
This paper reports a QSAR study for predicting the complexation of a large and heterogeneous variety of substances (233 organic compounds) with beta-cyclodextrins (beta-CDs). Several different theoretical molecular descriptors, calculated solely from the molecular structure of the compounds under investigation, and an efficient variable selection procedure, like the Genetic Algorithm, led to models with satisfactory global accuracy and predictivity. But the best-final QSAR model is based on Topological descriptors meanwhile offering a reasonable interpretation. This QSAR model was able to explain ca. 84% of the variance in the experimental activity, and displayed very good internal cross-validation statistics and predictivity on external data. It shows that the driving forces for CD complexation are mainly hydrophobic and steric (van der Waals) interactions. Thus, the results of our study provide a valuable tool for future screening and priority testing of beta-CDs guest molecules.
Alternate Sources for Propellant Ingredients.
1976-07-07
0dJ variety of reasons; (3) sole source; (4) medical/ OSHA /EPA problems; (5) dependent on foreign Imports; and (6) specification problems. •’. .’ . . I...problems exist for a variety of reasons; (3) sole sourc:e; (4) medical/ OSHA /EPA problems; (5) dependent on foreign imports; and (6) specification problems...regulations of OSHA or EPA affect pro- duction or use of the product; 5. Plant capacity - when demand increases faster that; predictions; 6. Supply
The feeding tube of cyst nematodes: characterisation of protein exclusion.
Eves-van den Akker, Sebastian; Lilley, Catherine J; Ault, James R; Ashcroft, Alison E; Jones, John T; Urwin, Peter E
2014-01-01
Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.
The Feeding Tube of Cyst Nematodes: Characterisation of Protein Exclusion
Eves-van den Akker, Sebastian; Lilley, Catherine J.; Ault, James R.; Ashcroft, Alison E.; Jones, John T.; Urwin, Peter E.
2014-01-01
Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry – mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins. PMID:24489891
Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris
2016-10-01
Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Structure-based control of complex networks with nonlinear dynamics.
Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka
2017-07-11
What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.
Model-based monitoring of stormwater runoff quality.
Birch, Heidi; Vezzaro, Luca; Mikkelsen, Peter Steen
2013-01-01
Monitoring of micropollutants (MP) in stormwater is essential to evaluate the impacts of stormwater on the receiving aquatic environment. The aim of this study was to investigate how different strategies for monitoring of stormwater quality (combining a model with field sampling) affect the information obtained about MP discharged from the monitored system. A dynamic stormwater quality model was calibrated using MP data collected by automatic volume-proportional sampling and passive sampling in a storm drainage system on the outskirts of Copenhagen (Denmark) and a 10-year rain series was used to find annual average (AA) and maximum event mean concentrations. Use of this model reduced the uncertainty of predicted AA concentrations compared to a simple stochastic method based solely on data. The predicted AA concentration, obtained by using passive sampler measurements (1 month installation) for calibration of the model, resulted in the same predicted level but with narrower model prediction bounds than by using volume-proportional samples for calibration. This shows that passive sampling allows for a better exploitation of the resources allocated for stormwater quality monitoring.
Perceived Masculinity Predicts U.S. Supreme Court Outcomes.
Chen, Daniel; Halberstam, Yosh; Yu, Alan C L
2016-01-01
Previous studies suggest a significant role of language in the court room, yet none has identified a definitive correlation between vocal characteristics and court outcomes. This paper demonstrates that voice-based snap judgments based solely on the introductory sentence of lawyers arguing in front of the Supreme Court of the United States predict outcomes in the Court. In this study, participants rated the opening statement of male advocates arguing before the Supreme Court between 1998 and 2012 in terms of masculinity, attractiveness, confidence, intelligence, trustworthiness, and aggressiveness. We found significant correlation between vocal characteristics and court outcomes and the correlation is specific to perceived masculinity even when judgment of masculinity is based only on less than three seconds of exposure to a lawyer's speech sample. Specifically, male advocates are more likely to win when they are perceived as less masculine. No other personality dimension predicts court outcomes. While this study does not aim to establish any causal connections, our findings suggest that vocal characteristics may be relevant in even as solemn a setting as the Supreme Court of the United States.
Perceived Masculinity Predicts U.S. Supreme Court Outcomes
2016-01-01
Previous studies suggest a significant role of language in the court room, yet none has identified a definitive correlation between vocal characteristics and court outcomes. This paper demonstrates that voice-based snap judgments based solely on the introductory sentence of lawyers arguing in front of the Supreme Court of the United States predict outcomes in the Court. In this study, participants rated the opening statement of male advocates arguing before the Supreme Court between 1998 and 2012 in terms of masculinity, attractiveness, confidence, intelligence, trustworthiness, and aggressiveness. We found significant correlation between vocal characteristics and court outcomes and the correlation is specific to perceived masculinity even when judgment of masculinity is based only on less than three seconds of exposure to a lawyer’s speech sample. Specifically, male advocates are more likely to win when they are perceived as less masculine. No other personality dimension predicts court outcomes. While this study does not aim to establish any causal connections, our findings suggest that vocal characteristics may be relevant in even as solemn a setting as the Supreme Court of the United States. PMID:27737008
Infrared dermal thermography on diabetic feet soles to predict ulcerations: a case study
NASA Astrophysics Data System (ADS)
Liu, Chanjuan; van der Heijden, Ferdi; Klein, Marvin E.; van Baal, Jeff G.; Bus, Sicco A.; van Netten, Jaap J.
2013-03-01
Diabetic foot ulceration is a major complication for patients with diabetes mellitus. If not adequately treated, these ulcers may lead to foot infection, and ultimately to lower extremity amputation, which imposes a major burden to society and great loss in health-related quality of life for patients. Early identification and subsequent preventive treatment have proven useful to limit the incidence of foot ulcers and lower extremity amputation. Thus, the development of new diagnosis tools has become an attractive option. The ultimate objective of our project is to develop an intelligent telemedicine monitoring system for frequent examination on patients' feet, to timely detect pre-signs of ulceration. Inflammation in diabetic feet can be an early and predictive warning sign for ulceration, and temperature has been proven to be a vicarious marker for inflammation. Studies have indicated that infrared dermal thermography of foot soles can be one of the important parameters for assessing the risk of diabetic foot ulceration. This paper covers the feasibility study of using an infrared camera, FLIR SC305, in our setup, to acquire the spatial thermal distribution on the feet soles. With the obtained thermal images, automated detection through image analysis was performed to identify the abnormal increased/decreased temperature and assess the risk for ulceration. The thermography for feet soles of patients with diagnosed diabetic foot complications were acquired before the ordinary foot examinations. Assessment from clinicians and thermography were compared and follow-up measurements were performed to investigate the prediction. A preliminary case study will be presented, indicating that dermal thermography in our proposed setup can be a screening modality to timely detect pre-signs of ulceration.
Depmann, Martine; Broer, Simone L; van der Schouw, Yvonne T; Tehrani, Fahimeh R; Eijkemans, Marinus J; Mol, Ben W; Broekmans, Frank J
2016-02-01
This review aimed to appraise data on prediction of age at natural menopause (ANM) based on antimüllerian hormone (AMH), antral follicle count (AFC), and mother's ANM to evaluate clinical usefulness and to identify directions for further research. We conducted three systematic reviews of the literature to identify studies of menopause prediction based on AMH, AFC, or mother's ANM, corrected for baseline age. Six studies selected in the search for AMH all consistently demonstrated AMH as being capable of predicting ANM (hazard ratio, 5.6-9.2). The sole study reporting on mother's ANM indicated that AMH was capable of predicting ANM (hazard ratio, 9.1-9.3). Two studies provided analyses of AFC and yielded conflicting results, making this marker less strong. AMH is currently the most promising marker for ANM prediction. The predictive capacity of mother's ANM demonstrated in a single study makes this marker a promising contributor to AMH for menopause prediction. Models, however, do not predict the extremes of menopause age very well and have wide prediction interval. These markers clearly need improvement before they can be used for individual prediction of menopause in the clinical setting. Moreover, potential limitations for such use include variations in AMH assays used and a lack of correction for factors or diseases affecting AMH levels or ANM. Future studies should include women of a broad age range (irrespective of cycle regularity) and should base predictions on repeated AMH measurements. Furthermore, currently unknown candidate predictors need to be identified.
Assessment of thermal efficiency of heat recovery coke making
NASA Astrophysics Data System (ADS)
Tiwari, H. P.; Saxena, V. K.; Haldar, S. K.; Sriramoju, S. K.
2017-08-01
The heat recovery stamp charge coke making process is quite complicated due to the evolved volatile matter during coking, is partially combusted in oven crown and sole flue in a controlled manner to provide heat for producing metallurgical coke. Therefore, the control and efficient utilization of heat in the oven crown, and sole flue is difficult, which directly affects the operational efficiency. Considering the complexity and importance of thermal efficiency, evolution of different gases, combustion of gasses in oven crown and sole flue, and heating process of coke oven has been studied. A nonlinear regression methodology was used to predict temperature profile of different depth of coal cake during the coking. It was observed that the predicted temperature profile is in good agreement with the actual temperature profile (R2 = 0.98) and is validated with the actual temperature profile of other ovens. A complete study is being done to calculate the material balance, heat balance, and heat losses. This gives an overall understanding of heat flow which affects the heat penetration into the coal cake. The study confirms that 60% heat was utilized during coking.
CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data
O'Connor, Timothy; Bodén, Mikael
2017-01-01
Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599
A comparison of fatigue life prediction methodologies for rotorcraft
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.
1990-01-01
Because of the current U.S. Army requirement that all new rotorcraft be designed to a 'six nines' reliability on fatigue life, this study was undertaken to assess the accuracy of the current safe life philosophy using the nominal stress Palmgrem-Miner linear cumulative damage rule to predict the fatigue life of rotorcraft dynamic components. It has been shown that this methodology can predict fatigue lives that differ from test lives by more than two orders of magnitude. A further objective of this work was to compare the accuracy of this methodology to another safe life method called the local strain approach as well as to a method which predicts fatigue life based solely on crack growth data. Spectrum fatigue tests were run on notched (k(sub t) = 3.2) specimens made of 4340 steel using the Felix/28 tests fairly well, being slightly on the unconservative side of the test data. The crack growth method, which is based on 'small crack' crack growth data and a crack-closure model, also predicted the fatigue lives very well with the predicted lives being slightly longer that the mean test lives but within the experimental scatter band. The crack growth model was also able to predict the change in test lives produced by the rainflow reconstructed spectra.
NASA Astrophysics Data System (ADS)
Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.
2008-06-01
A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.
NASA Technical Reports Server (NTRS)
Hatfield, Glen S.; Hark, Frank; Stott, James
2016-01-01
Launch vehicle reliability analysis is largely dependent upon using predicted failure rates from data sources such as MIL-HDBK-217F. Reliability prediction methodologies based on component data do not take into account risks attributable to manufacturing, assembly, and process controls. These sources often dominate component level reliability or risk of failure probability. While consequences of failure is often understood in assessing risk, using predicted values in a risk model to estimate the probability of occurrence will likely underestimate the risk. Managers and decision makers often use the probability of occurrence in determining whether to accept the risk or require a design modification. Due to the absence of system level test and operational data inherent in aerospace applications, the actual risk threshold for acceptance may not be appropriately characterized for decision making purposes. This paper will establish a method and approach to identify the pitfalls and precautions of accepting risk based solely upon predicted failure data. This approach will provide a set of guidelines that may be useful to arrive at a more realistic quantification of risk prior to acceptance by a program.
Iwasaki, Yuki; Abe, Takashi; Wada, Kennosuke; Wada, Yoshiko; Ikemura, Toshimichi
2013-11-20
With the remarkable increase of genomic sequence data of microorganisms, novel tools are needed for comprehensive analyses of the big sequence data available. The self-organizing map (SOM) is an effective tool for clustering and visualizing high-dimensional data, such as oligonucleotide composition on one map. By modifying the conventional SOM, we developed batch-learning SOM (BLSOM), which allowed classification of sequence fragments (e.g., 1 kb) according to phylotypes, solely depending on oligonucleotide composition. Metagenomics studies of uncultivable microorganisms in clinical and environmental samples should allow extensive surveys of genes important in life sciences. BLSOM is most suitable for phylogenetic assignment of metagenomic sequences, because fragmental sequences can be clustered according to phylotypes, solely depending on oligonucleotide composition. We first constructed oligonucleotide BLSOMs for all available sequences from genomes of known species, and by mapping metagenomic sequences on these large-scale BLSOMs, we can predict phylotypes of individual metagenomic sequences, revealing a microbial community structure of uncultured microorganisms, including viruses. BLSOM has shown that influenza viruses isolated from humans and birds clearly differ in oligonucleotide composition. Based on this host-dependent oligonucleotide composition, we have proposed strategies for predicting directional changes of virus sequences and for surveilling potentially hazardous strains when introduced into humans from non-human sources.
G-cimp status prediction of glioblastoma samples using mRNA expression data.
Baysan, Mehmet; Bozdag, Serdar; Cam, Margaret C; Kotliarova, Svetlana; Ahn, Susie; Walling, Jennifer; Killian, Jonathan K; Stevenson, Holly; Meltzer, Paul; Fine, Howard A
2012-01-01
Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.
G-Cimp Status Prediction Of Glioblastoma Samples Using mRNA Expression Data
Baysan, Mehmet; Bozdag, Serdar; Cam, Margaret C.; Kotliarova, Svetlana; Ahn, Susie; Walling, Jennifer; Killian, Jonathan K.; Stevenson, Holly; Meltzer, Paul; Fine, Howard A.
2012-01-01
Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data. PMID:23139755
Yuki, Fuchigami; Rie, Ikeda; Miki, Kuzushima; Mitsuhiro, Wada; Naotaka, Kuroda; Kenichiro, Nakashima
2013-04-11
3,4-Methylenedioxymethamphetamine (MDMA) and methamphetamine often cause serious adverse effects (e.g., rhabdomyolysis, and cardiac disease) following hyperthermia triggered by release of brain monoamines such as dopamine and serotonin. Therefore, evaluation of brain monoamine concentrations is useful to predict these drugs' risks in human. This study aimed to evaluate risks of co-administration of MDMA and methamphetamine, both of which are abused frequently in Japan, based on drug distribution and monoamine level in the rat brain. Rats were allocated to three groups: (1) sole MDMA administration (12 or 25 mg/kg, intraperitoneally), (2) sole methamphetamine administration (10 mg/kg, intraperitoneally) and (3) co-administration of MDMA (12 mg/kg, intraperitoneally) and methamphetamine (10 mg/kg, intraperitoneally). We monitored pharmacokinetic and pharmacodynamic variables for drugs and monoamines in the rat brain. Area under the curve for concentration vs. time until 600 min from drug administration (AUC₀₋₆₀₀) increased from 348.0 to 689.8 μgmin/L for MDMA and from 29.9 to 243.4 μMmin for dopamine in response to co-administration of methamphetamine and MDMA compared to sole MDMA (12 mg/kg) administration. After sole methamphetamine or that with MDMA administration, AUC₀₋₆₀₀ of methamphetamine were 401.8 and 671.1 μgmin/L, and AUC₀₋₆₀₀ of dopamine were 159.9 and 243.4 μMmin. In conclusion, the brain had greater exposure to MDMA, methamphetamine and dopamine after co-administration of MDMA and methamphetamine than when these two drugs were given alone. This suggests co-administration of MDMA with methamphetamine confers greater risk than sole administration, and that adverse events of MDMA ingestion may increase when methamphetamine is co-administered. Copyright © 2013 Elsevier B.V. All rights reserved.
Hatanaka, N; Yamamoto, Y; Ichihara, K; Mastuo, S; Nakamura, Y; Watanabe, M; Iwatani, Y
2008-04-01
Various scales have been devised to predict development of pressure ulcers on the basis of clinical and laboratory data, such as the Braden Scale (Braden score), which is used to monitor activity and skin conditions of bedridden patients. However, none of these scales facilitates clinically reliable prediction. To develop a clinical laboratory data-based predictive equation for the development of pressure ulcers. Subjects were 149 hospitalised patients with respiratory disorders who were monitored for the development of pressure ulcers over a 3-month period. The proportional hazards model (Cox regression) was used to analyse the results of 12 basic laboratory tests on the day of hospitalisation in comparison with Braden score. Pressure ulcers developed in 38 patients within the study period. A Cox regression model consisting solely of Braden scale items showed that none of these items contributed to significantly predicting pressure ulcers. Rather, a combination of haemoglobin (Hb), C-reactive protein (CRP), albumin (Alb), age, and gender produced the best model for prediction. Using the set of explanatory variables, we created a new indicator based on a multiple logistic regression equation. The new indicator showed high sensitivity (0.73) and specificity (0.70), and its diagnostic power was higher than that of Alb, Hb, CRP, or the Braden score alone. The new indicator may become a more useful clinical tool for predicting presser ulcers than Braden score. The new indicator warrants verification studies to facilitate its clinical implementation in the future.
Harikrishnan, A R; Dhar, Purbarun; Gedupudi, Sateesh; Das, Sarit K
2018-04-12
We propose a comprehensive analysis and a quasi-analytical mathematical formalism to predict the surface tension and contact angles of complex surfactant-infused nanocolloids. The model rests on the foundations of the interaction potentials for the interfacial adsorption-desorption dynamics in complex multicomponent colloids. Surfactant-infused nanoparticle-laden interface problems are difficult to deal with because of the many-body interactions and interfaces involved at the meso-nanoscales. The model is based on the governing role of thermodynamic and chemical equilibrium parameters in modulating the interfacial energies. The influence of parameters such as the presence of surfactants, nanoparticles, and surfactant-capped nanoparticles on interfacial dynamics is revealed by the analysis. Solely based on the knowledge of interfacial properties of independent surfactant solutions and nanocolloids, the same can be deduced for complex surfactant-based nanocolloids through the proposed approach. The model accurately predicts the equilibrium surface tension and contact angle of complex nanocolloids available in the existing literature and present experimental findings.
Paveley, Ross A.; Mansour, Nuha R.; Hallyburton, Irene; Bleicher, Leo S.; Benn, Alex E.; Mikic, Ivana; Guidi, Alessandra; Gilbert, Ian H.; Hopkins, Andrew L.; Bickle, Quentin D.
2012-01-01
Sole reliance on one drug, Praziquantel, for treatment and control of schistosomiasis raises concerns about development of widespread resistance, prompting renewed interest in the discovery of new anthelmintics. To discover new leads we designed an automated label-free, high content-based, high throughput screen (HTS) to assess drug-induced effects on in vitro cultured larvae (schistosomula) using bright-field imaging. Automatic image analysis and Bayesian prediction models define morphological damage, hit/non-hit prediction and larval phenotype characterization. Motility was also assessed from time-lapse images. In screening a 10,041 compound library the HTS correctly detected 99.8% of the hits scored visually. A proportion of these larval hits were also active in an adult worm ex-vivo screen and are the subject of ongoing studies. The method allows, for the first time, screening of large compound collections against schistosomes and the methods are adaptable to other whole organism and cell-based screening by morphology and motility phenotyping. PMID:22860151
ERIC Educational Resources Information Center
O'Brien, Virginia; Martinez-Pons, Manual; Kopala, Mary
1999-01-01
Surveyed 11th graders to examine the relations among mathematics self-efficacy (SE), gender, ethnic identity, and career interests (CI) in mathematics and science. Researchers also examined socioeconomic status (SES) and academic achievement. Science CI was predicted solely by science-mathematics SE. SE was predicted by academic performance and…
Rekik, Islem; Li, Gang; Lin, Weili; Shen, Dinggang
2016-02-01
Longitudinal neuroimaging analysis methods have remarkably advanced our understanding of early postnatal brain development. However, learning predictive models to trace forth the evolution trajectories of both normal and abnormal cortical shapes remains broadly absent. To fill this critical gap, we pioneered the first prediction model for longitudinal developing cortical surfaces in infants using a spatiotemporal current-based learning framework solely from the baseline cortical surface. In this paper, we detail this prediction model and even further improve its performance by introducing two key variants. First, we use the varifold metric to overcome the limitations of the current metric for surface registration that was used in our preliminary study. We also extend the conventional varifold-based surface registration model for pairwise registration to a spatiotemporal surface regression model. Second, we propose a morphing process of the baseline surface using its topographic attributes such as normal direction and principal curvature sign. Specifically, our method learns from longitudinal data both the geometric (vertices positions) and dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a training stage and a prediction stage. In the training stage, we use the proposed varifold-based shape regression model to estimate geodesic cortical shape evolution trajectories for each training subject. We then build an empirical mean spatiotemporal surface atlas. In the prediction stage, given an infant, we select the best learnt features from training subjects to simultaneously predict the cortical surface shapes at all later timepoints, based on similarity metrics between this baseline surface and the learnt baseline population average surface atlas. We used a leave-one-out cross validation method to predict the inner cortical surface shape at 3, 6, 9 and 12 months of age from the baseline cortical surface shape at birth. Our method attained a higher prediction accuracy and better captured the spatiotemporal dynamic change of the highly folded cortical surface than the previous proposed prediction method. Copyright © 2015 Elsevier B.V. All rights reserved.
Stochastic sensitivity measure for mistuned high-performance turbines
NASA Technical Reports Server (NTRS)
Murthy, Durbha V.; Pierre, Christophe
1992-01-01
A stochastic measure of sensitivity is developed in order to predict the effects of small random blade mistuning on the dynamic aeroelastic response of turbomachinery blade assemblies. This sensitivity measure is based solely on the nominal system design (i.e., on tuned system information), which makes it extremely easy and inexpensive to calculate. The measure has the potential to become a valuable design tool that will enable designers to evaluate mistuning effects at a preliminary design stage and thus assess the need for a full mistuned rotor analysis. The predictive capability of the sensitivity measure is illustrated by examining the effects of mistuning on the aeroelastic modes of the first stage of the oxidizer turbopump in the Space Shuttle Main Engine. Results from a full analysis mistuned systems confirm that the simple stochastic sensitivity measure predicts consistently the drastic changes due to misturning and the localization of aeroelastic vibration to a few blades.
Cook, Benjamin L; Progovac, Ana M; Chen, Pei; Mullin, Brian; Hou, Sherry; Baca-Garcia, Enrique
2016-01-01
Natural language processing (NLP) and machine learning were used to predict suicidal ideation and heightened psychiatric symptoms among adults recently discharged from psychiatric inpatient or emergency room settings in Madrid, Spain. Participants responded to structured mental and physical health instruments at multiple follow-up points. Outcome variables of interest were suicidal ideation and psychiatric symptoms (GHQ-12). Predictor variables included structured items (e.g., relating to sleep and well-being) and responses to one unstructured question, "how do you feel today?" We compared NLP-based models using the unstructured question with logistic regression prediction models using structured data. The PPV, sensitivity, and specificity for NLP-based models of suicidal ideation were 0.61, 0.56, and 0.57, respectively, compared to 0.73, 0.76, and 0.62 of structured data-based models. The PPV, sensitivity, and specificity for NLP-based models of heightened psychiatric symptoms (GHQ-12 ≥ 4) were 0.56, 0.59, and 0.60, respectively, compared to 0.79, 0.79, and 0.85 in structured models. NLP-based models were able to generate relatively high predictive values based solely on responses to a simple general mood question. These models have promise for rapidly identifying persons at risk of suicide or psychological distress and could provide a low-cost screening alternative in settings where lengthy structured item surveys are not feasible.
SOLE: enhanced FIA data analysis capabilities
Michael Spinney; Paul Van Deusen
2009-01-01
The Southern On Line Estimator (SOLE), is an Internet-based annual forest inventory and analysis (FIA) data analysis tool developed cooperatively by the National Council for Air and Stream Improvement and the Forest Service, U.S. Department of Agriculture's Forest Inventory and Analysis program at the Southern Research Station. Recent development of SOLE has...
NASA Astrophysics Data System (ADS)
Sabatini, Laura; Bullo, Marianna; Cariani, Alessia; Celić, Igor; Ferrari, Alice; Guarniero, Ilaria; Leoni, Simone; Marčeta, Bojan; Marcone, Alessandro; Polidori, Piero; Raicevich, Saša; Tinti, Fausto; Vrgoč, Nedo; Scarcella, Giuseppe
2018-07-01
In the Adriatic Sea two cryptic species of sole coexist, the common and Egyptian sole. Soles are one of the most valuable demersal fishery resources in the Adriatic Sea, so a correct species identification is crucial in order to perform stock assessment and implement effective management measures based on reliable and accurate data. In this study specimens collected during fishery-independent and fishery-dependent activities in the Adriatic were analyzed and identified coupling morphological and genetic approaches. A comparison of these two methods for the sole species identification was carried out to assess the most effective, accurate and practical diagnostic morphological key-character(s). Results showed that external characters, in particular features of the posterior dorsal and anal fins, are valid and accurate morphological markers. Based on these traits, a practical identification key of the two sibling species was proposed. Moreover, it was possible to estimate the extent of the error due to species misidentification introduced in the common sole stock assessment carried out in the Northern-central Adriatic Sea (GSA17). A 5% bias in the correct identification of common sole specimens was detected. However, this bias was shown not to affect the common sole stock assessment. Moreover, the genetic profiling of the Adriatic common sole allowed estimating genetic diversity and assessing population structure. Significant divergence between common soles inhabiting the eastern part of the Southern Adriatic Sea and those collected from the other areas of the basin was confirmed. Therefore, the occurrence of genetically differentiated subpopulations supports the need to implement independent stock assessments and management measures.
Conformational Transitions upon Ligand Binding: Holo-Structure Prediction from Apo Conformations
Seeliger, Daniel; de Groot, Bert L.
2010-01-01
Biological function of proteins is frequently associated with the formation of complexes with small-molecule ligands. Experimental structure determination of such complexes at atomic resolution, however, can be time-consuming and costly. Computational methods for structure prediction of protein/ligand complexes, particularly docking, are as yet restricted by their limited consideration of receptor flexibility, rendering them not applicable for predicting protein/ligand complexes if large conformational changes of the receptor upon ligand binding are involved. Accurate receptor models in the ligand-bound state (holo structures), however, are a prerequisite for successful structure-based drug design. Hence, if only an unbound (apo) structure is available distinct from the ligand-bound conformation, structure-based drug design is severely limited. We present a method to predict the structure of protein/ligand complexes based solely on the apo structure, the ligand and the radius of gyration of the holo structure. The method is applied to ten cases in which proteins undergo structural rearrangements of up to 7.1 Å backbone RMSD upon ligand binding. In all cases, receptor models within 1.6 Å backbone RMSD to the target were predicted and close-to-native ligand binding poses were obtained for 8 of 10 cases in the top-ranked complex models. A protocol is presented that is expected to enable structure modeling of protein/ligand complexes and structure-based drug design for cases where crystal structures of ligand-bound conformations are not available. PMID:20066034
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Anthony; Maclaurin, Galen; Roberts, Billy
Long-term variability of solar resource is an important factor in planning a utility-scale photovoltaic (PV) generation plant, and annual generation for a given location can vary significantly from year to year. Based on multiple years of solar irradiance data, an exceedance probability is the amount of energy that could potentially be produced by a power plant in any given year. An exceedance probability accounts for long-term variability and climate cycles (e.g., monsoons or changes in aerosols), which ultimately impact PV energy generation. Study results indicate that a significant bias could be associated with relying solely on typical meteorological year (TMY)more » resource data to capture long-term variability. While the TMY tends to under-predict annual generation overall compared to the P50, there appear to be pockets of over-prediction as well.« less
Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga
NASA Astrophysics Data System (ADS)
Dutta, B.; ćakır, A.; Giacobbe, C.; Al-Zubi, A.; Hickel, T.; Acet, M.; Neugebauer, J.
2016-01-01
Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.
Visual attention in egocentric field-of-view using RGB-D data
NASA Astrophysics Data System (ADS)
Olesova, Veronika; Benesova, Wanda; Polatsek, Patrik
2017-03-01
Most of the existing solutions predicting visual attention focus solely on referenced 2D images and disregard any depth information. This aspect has always represented a weak point since the depth is an inseparable part of the biological vision. This paper presents a novel method of saliency map generation based on results of our experiments with egocentric visual attention and investigation of its correlation with perceived depth. We propose a model to predict the attention using superpixel representation with an assumption that contrast objects are usually salient and have a sparser spatial distribution of superpixels than their background. To incorporate depth information into this model, we propose three different depth techniques. The evaluation is done on our new RGB-D dataset created by SMI eye-tracker glasses and KinectV2 device.
Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga.
Dutta, B; Çakır, A; Giacobbe, C; Al-Zubi, A; Hickel, T; Acet, M; Neugebauer, J
2016-01-15
Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.
Hahn, Andreas; Lang, Michael; Stuckart, Claudia
2016-01-01
Abstract The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable. PMID:27828871
Hahn, Andreas; Lang, Michael; Stuckart, Claudia
2016-11-01
The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component.This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied.Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive.Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.
Whole body acid-base modeling revisited.
Ring, Troels; Nielsen, Søren
2017-04-01
The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis. Copyright © 2017 the American Physiological Society.
Macisaac, R J; Tsalamandris, C; Thomas, M C; Premaratne, E; Panagiotopoulos, S; Smith, T J; Poon, A; Jenkins, M A; Ratnaike, S I; Power, D A; Jerums, G
2006-07-01
We compared the predictive performance of a GFR based on serum cystatin C levels with commonly used creatinine-based methods in subjects with diabetes. In a cross-sectional study of 251 consecutive clinic patients, the mean reference (plasma clearance of (99m)Tc-diethylene-triamine-penta-acetic acid) GFR (iGFR) was 88+/-2 ml min(-1) 1.73 m(-2). A regression equation describing the relationship between iGFR and 1/cystatin C levels was derived from a test population (n=125) to allow for the estimation of GFR by cystatin C (eGFR-cystatin C). The predictive performance of eGFR-cystatin C, the Modification of Diet in Renal Disease 4 variable formula (MDRD-4) and Cockcroft-Gault (C-G) formulas were then compared in a validation population (n=126). There was no difference in renal function (ml min(-1) 1.73 m(-2)) as measured by iGFR (89.2+/-3.0), eGFR-cystatin C (86.8+/-2.5), MDRD-4 (87.0+/-2.8) or C-G (92.3+/-3.5). All three estimates of renal function had similar precision and accuracy. Estimates of GFR based solely on serum cystatin C levels had the same predictive potential when compared with the MDRD-4 and C-G formulas.
Measurement of the uterus and gestation sac by ultrasound in early normal and abnormal pregnancy.
Chandra, M; Evans, L J; Duff, G B
1981-01-14
Uterine volumes measured by two different ultrasonic methods, and gestation sac volumes in early normal pregnancy are reported. The results obtained for uterine volume measurements are compared. Methods using measurements obtained from only a longitudinal scan were simpler but slightly less accurate. Uterine volumes were also calculated in a series of patients with pregnancy complicated by threatened abortion. The accuracy of the prediction of the outcome of the pregnancy, based solely on uterine volume was 71 percent. Uterine volume measurement is most useful in identifying cases of missed abortion where the period of gestation is known.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, M.S.; Downing, J.V.
1982-10-01
Based on laboratory and preliminary field tests of off-the-shelf steel-toed rubber boots, a molded sole design was developed to provide increased traction over conventional calendared sole miners boots. The pattern provided sharp edges perpendicular to both lateral and fore-aft slip vectors. The sole was designed to reduce mud caking. An instep lace-up capability was added to better secure the foot inside the boot. A 5-month field evaluation compared the prototype boots to the boots the participants usually wear.
Relationship between foot sensation and standing balance in patients with multiple sclerosis.
Citaker, Seyit; Gunduz, Arzu Guclu; Guclu, Meral Bosnak; Nazliel, Bijen; Irkec, Ceyla; Kaya, Defne
2011-06-01
The aims of the present study were to investigate the relationship between the foot sensations and standing balance in patients with Multiple Sclerosis (MS) and find out the sensation, which best predicts balance. Twenty-seven patients with MS (Expanded Disability Status Scale 1-3.5) and 10 healthy volunteers were included. Threshold of light touch-pressure, duration of vibration, and distance of two-point discrimination of the foot sole were assessed. Duration of static one-leg standing balance was measured. Light touch-pressure, vibration, two-point discrimination sensations of the foot sole, and duration of one-leg standing balance were decreased in patients with MS compared with controls (p<0.05). Sensation of the foot sole was related with duration of one-leg standing balance in patients with MS. In the multiple regression analysis conducted in the 27 MS patients, 47.6% of the variance in the duration of one-leg standing balance was explained by two-point discrimination sensation of the heel (R(2)=0.359, p=0.001) and vibration sensation of the first metatarsal head (R(2)=0.118, p=0.029). As the cutaneous receptors sensitivity decreases in the foot sole the standing balance impairs in patients with MS. Two-point discrimination sensation of the heel and vibration sensation of the first metatarsal head region are the best predictors of the static standing balance in patients with MS. Other factors which could be possible to predict balance and effects of sensorial training of foot on balance should be investigated. Copyright © 2011 Elsevier B.V. All rights reserved.
Geometry-based pressure drop prediction in mildly diseased human coronary arteries.
Schrauwen, J T C; Wentzel, J J; van der Steen, A F W; Gijsen, F J H
2014-06-03
Pressure drop (△p) estimations in human coronary arteries have several important applications, including determination of appropriate boundary conditions for CFD and estimation of fractional flow reserve (FFR). In this study a △p prediction was made based on geometrical features derived from patient-specific imaging data. Twenty-two mildly diseased human coronary arteries were imaged with computed tomography and intravascular ultrasound. Each artery was modelled in three consecutive steps: from straight to tapered, to stenosed, to curved model. CFD was performed to compute the additional △p in each model under steady flow for a wide range of Reynolds numbers. The correlations between the added geometrical complexity and additional △p were used to compute a predicted △p. This predicted △p based on geometry was compared to CFD results. The mean △p calculated with CFD was 855±666Pa. Tapering and curvature added significantly to the total △p, accounting for 31.4±19.0% and 18.0±10.9% respectively at Re=250. Using tapering angle, maximum area stenosis and angularity of the centerline, we were able to generate a good estimate for the predicted △p with a low mean but high standard deviation: average error of 41.1±287.8Pa at Re=250. Furthermore, the predicted △p was used to accurately estimate FFR (r=0.93). The effect of the geometric features was determined and the pressure drop in mildly diseased human coronary arteries was predicted quickly based solely on geometry. This pressure drop estimation could serve as a boundary condition in CFD to model the impact of distal epicardial vessels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of Physicochemical and Structural Properties Determining HIV-1 Coreceptor Usage
Bozek, Katarzyna; Lengauer, Thomas; Sierra, Saleta; Kaiser, Rolf; Domingues, Francisco S.
2013-01-01
The relationship of HIV tropism with disease progression and the recent development of CCR5-blocking drugs underscore the importance of monitoring virus coreceptor usage. As an alternative to costly phenotypic assays, computational methods aim at predicting virus tropism based on the sequence and structure of the V3 loop of the virus gp120 protein. Here we present a numerical descriptor of the V3 loop encoding its physicochemical and structural properties. The descriptor allows for structure-based prediction of HIV tropism and identification of properties of the V3 loop that are crucial for coreceptor usage. Use of the proposed descriptor for prediction results in a statistically significant improvement over the prediction based solely on V3 sequence with 3 percentage points improvement in AUC and 7 percentage points in sensitivity at the specificity of the 11/25 rule (95%). We additionally assessed the predictive power of the new method on clinically derived ‘bulk’ sequence data and obtained a statistically significant improvement in AUC of 3 percentage points over sequence-based prediction. Furthermore, we demonstrated the capacity of our method to predict therapy outcome by applying it to 53 samples from patients undergoing Maraviroc therapy. The analysis of structural features of the loop informative of tropism indicates the importance of two loop regions and their physicochemical properties. The regions are located on opposite strands of the loop stem and the respective features are predominantly charge-, hydrophobicity- and structure-related. These regions are in close proximity in the bound conformation of the loop potentially forming a site determinant for the coreceptor binding. The method is available via server under http://structure.bioinf.mpi-inf.mpg.de/. PMID:23555214
Gardina, Paul J; Clark, Tyson A; Shimada, Brian; Staples, Michelle K; Yang, Qing; Veitch, James; Schweitzer, Anthony; Awad, Tarif; Sugnet, Charles; Dee, Suzanne; Davies, Christopher; Williams, Alan; Turpaz, Yaron
2006-01-01
Background Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST) that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. Results We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported) transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic predictions of alternative splicing in cancer. Conclusion Differential expression of high confidence transcripts correlated extremely well with known cancer genes and pathways, suggesting that the more speculative transcripts, largely based solely on computational prediction and mostly with no previous annotation, might be novel targets in colon cancer. Five of the identified splicing events affect mediators of cytoskeletal organization (ACTN1, VCL, CALD1, CTTN, TPM1), two affect extracellular matrix proteins (FN1, COL6A3) and another participates in integrin signaling (SLC3A2). Altogether they form a pattern of colon-cancer specific alterations that may particularly impact cell motility. PMID:17192196
DOE Office of Scientific and Technical Information (OSTI.GOV)
Depeursinge, Adrien, E-mail: adrien.depeursinge@hevs.ch; Yanagawa, Masahiro; Leung, Ann N.
Purpose: To investigate the importance of presurgical computed tomography (CT) intensity and texture information from ground-glass opacities (GGO) and solid nodule components for the prediction of adenocarcinoma recurrence. Methods: For this study, 101 patients with surgically resected stage I adenocarcinoma were selected. During the follow-up period, 17 patients had disease recurrence with six associated cancer-related deaths. GGO and solid tumor components were delineated on presurgical CT scans by a radiologist. Computational texture models of GGO and solid regions were built using linear combinations of steerable Riesz wavelets learned with linear support vector machines (SVMs). Unlike other traditional texture attributes, themore » proposed texture models are designed to encode local image scales and directions that are specific to GGO and solid tissue. The responses of the locally steered models were used as texture attributes and compared to the responses of unaligned Riesz wavelets. The texture attributes were combined with CT intensities to predict tumor recurrence and patient hazard according to disease-free survival (DFS) time. Two families of predictive models were compared: LASSO and SVMs, and their survival counterparts: Cox-LASSO and survival SVMs. Results: The best-performing predictive model of patient hazard was associated with a concordance index (C-index) of 0.81 ± 0.02 and was based on the combination of the steered models and CT intensities with survival SVMs. The same feature group and the LASSO model yielded the highest area under the receiver operating characteristic curve (AUC) of 0.8 ± 0.01 for predicting tumor recurrence, although no statistically significant difference was found when compared to using intensity features solely. For all models, the performance was found to be significantly higher when image attributes were based on the solid components solely versus using the entire tumors (p < 3.08 × 10{sup −5}). Conclusions: This study constitutes a novel perspective on how to interpret imaging information from CT examinations by suggesting that most of the information related to adenocarcinoma aggressiveness is related to the intensity and morphological properties of solid components of the tumor. The prediction of adenocarcinoma relapse was found to have low specificity but very high sensitivity. Our results could be useful in clinical practice to identify patients for which no recurrence is expected with a very high confidence using a presurgical CT scan only. It also provided an accurate estimation of the risk of recurrence after a given duration t from surgical resection (i.e., C-index = 0.81 ± 0.02)« less
NASA Technical Reports Server (NTRS)
Holland, A. C.; Thomas, R. W. L.; Pearce, W. A.
1978-01-01
The paper presents the results of a Monte Carlo simulation study of the brightness and polarization at right angles to the solar direction both for ground-based observations (looking up) and for satellite-based systems (looking down). Calculations have been made for a solar zenith angle whose cosine was 0.6 and wavelengths ranging from 3500 A to 9500 A. A sensitivity of signatures to total aerosol loading, aerosol particle size distribution and refractive index, and the surface reflectance albedo has been demonstrated. For Lambertian-type surface reflection the albedo effects enter solely through the intensity sensitivity, and very high correlations have been found between the polarization term signatures for the ground-based and satellite-based systems. Potential applications of these results for local albedo predictions and satellite imaging systems recalibrations are discussed.
Agent-based model for the h-index - exact solution
NASA Astrophysics Data System (ADS)
Żogała-Siudem, Barbara; Siudem, Grzegorz; Cena, Anna; Gagolewski, Marek
2016-01-01
Hirsch's h-index is perhaps the most popular citation-based measure of scientific excellence. In 2013, Ionescu and Chopard proposed an agent-based model describing a process for generating publications and citations in an abstract scientific community [G. Ionescu, B. Chopard, Eur. Phys. J. B 86, 426 (2013)]. Within such a framework, one may simulate a scientist's activity, and - by extension - investigate the whole community of researchers. Even though the Ionescu and Chopard model predicts the h-index quite well, the authors provided a solution based solely on simulations. In this paper, we complete their results with exact, analytic formulas. What is more, by considering a simplified version of the Ionescu-Chopard model, we obtained a compact, easy to compute formula for the h-index. The derived approximate and exact solutions are investigated on a simulated and real-world data sets.
For Whom the Mind Wanders, and When, Varies Across Laboratory and Daily-Life Settings.
Kane, Michael J; Gross, Georgina M; Chun, Charlotte A; Smeekens, Bridget A; Meier, Matt E; Silvia, Paul J; Kwapil, Thomas R
2017-09-01
Undergraduates ( N = 274) participated in a weeklong daily-life experience-sampling study of mind wandering after being assessed in the lab for executive-control abilities (working memory capacity; attention-restraint ability; attention-constraint ability; and propensity for task-unrelated thoughts, or TUTs) and personality traits. Eight times a day, electronic devices prompted subjects to report on their current thoughts and context. Working memory capacity and attention abilities predicted subjects' TUT rates in the lab, but predicted the frequency of daily-life mind wandering only as a function of subjects' momentary attempts to concentrate. This pattern replicates prior daily-life findings but conflicts with laboratory findings. Results for personality factors also revealed different associations in the lab and daily life: Only neuroticism predicted TUT rate in the lab, but only openness predicted mind-wandering rate in daily life (both predicted the content of daily-life mind wandering). Cognitive and personality factors also predicted dimensions of everyday thought other than mind wandering, such as subjective judgments of controllability of thought. Mind wandering in people's daily environments and TUTs during controlled and artificial laboratory tasks have different correlates (and perhaps causes). Thus, mind-wandering theories based solely on lab phenomena may be incomplete.
How to test for partially predictable chaos.
Wernecke, Hendrik; Sándor, Bulcsú; Gros, Claudius
2017-04-24
For a chaotic system pairs of initially close-by trajectories become eventually fully uncorrelated on the attracting set. This process of decorrelation can split into an initial exponential decrease and a subsequent diffusive process on the chaotic attractor causing the final loss of predictability. Both processes can be either of the same or of very different time scales. In the latter case the two trajectories linger within a finite but small distance (with respect to the overall extent of the attractor) for exceedingly long times and remain partially predictable. Standard tests for chaos widely use inter-orbital correlations as an indicator. However, testing partially predictable chaos yields mostly ambiguous results, as this type of chaos is characterized by attractors of fractally broadened braids. For a resolution we introduce a novel 0-1 indicator for chaos based on the cross-distance scaling of pairs of initially close trajectories. This test robustly discriminates chaos, including partially predictable chaos, from laminar flow. Additionally using the finite time cross-correlation of pairs of initially close trajectories, we are able to identify laminar flow as well as strong and partially predictable chaos in a 0-1 manner solely from the properties of pairs of trajectories.
Usmanova, Dinara R; Bogatyreva, Natalya S; Ariño Bernad, Joan; Eremina, Aleksandra A; Gorshkova, Anastasiya A; Kanevskiy, German M; Lonishin, Lyubov R; Meister, Alexander V; Yakupova, Alisa G; Kondrashov, Fyodor A; Ivankov, Dmitry N
2018-05-02
Computational prediction of the effect of mutations on protein stability is used by researchers in many fields. The utility of the prediction methods is affected by their accuracy and bias. Bias, a systematic shift of the predicted change of stability, has been noted as an issue for several methods, but has not been investigated systematically. Presence of the bias may lead to misleading results especially when exploring the effects of combination of different mutations. Here we use a protocol to measure the bias as a function of the number of introduced mutations. It is based on a self-consistency test of the reciprocity the effect of a mutation. An advantage of the used approach is that it relies solely on crystal structures without experimentally measured stability values. We applied the protocol to four popular algorithms predicting change of protein stability upon mutation, FoldX, Eris, Rosetta, and I-Mutant, and found an inherent bias. For one program, FoldX, we manage to substantially reduce the bias using additional relaxation by Modeller. Authors using algorithms for predicting effects of mutations should be aware of the bias described here. ivankov13@gmail.com. Supplementary data are available at Bioinformatics online.
Matsuzaki, Ryosuke; Tachikawa, Takeshi; Ishizuka, Junya
2018-03-01
Accurate simulations of carbon fiber-reinforced plastic (CFRP) molding are vital for the development of high-quality products. However, such simulations are challenging and previous attempts to improve the accuracy of simulations by incorporating the data acquired from mold monitoring have not been completely successful. Therefore, in the present study, we developed a method to accurately predict various CFRP thermoset molding characteristics based on data assimilation, a process that combines theoretical and experimental values. The degree of cure as well as temperature and thermal conductivity distributions during the molding process were estimated using both temperature data and numerical simulations. An initial numerical experiment demonstrated that the internal mold state could be determined solely from the surface temperature values. A subsequent numerical experiment to validate this method showed that estimations based on surface temperatures were highly accurate in the case of degree of cure and internal temperature, although predictions of thermal conductivity were more difficult.
Structure-based control of complex networks with nonlinear dynamics
NASA Astrophysics Data System (ADS)
Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka
What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.
Using gaze patterns to predict task intent in collaboration.
Huang, Chien-Ming; Andrist, Sean; Sauppé, Allison; Mutlu, Bilge
2015-01-01
In everyday interactions, humans naturally exhibit behavioral cues, such as gaze and head movements, that signal their intentions while interpreting the behavioral cues of others to predict their intentions. Such intention prediction enables each partner to adapt their behaviors to the intent of others, serving a critical role in joint action where parties work together to achieve a common goal. Among behavioral cues, eye gaze is particularly important in understanding a person's attention and intention. In this work, we seek to quantify how gaze patterns may indicate a person's intention. Our investigation was contextualized in a dyadic sandwich-making scenario in which a "worker" prepared a sandwich by adding ingredients requested by a "customer." In this context, we investigated the extent to which the customers' gaze cues serve as predictors of which ingredients they intend to request. Predictive features were derived to represent characteristics of the customers' gaze patterns. We developed a support vector machine-based (SVM-based) model that achieved 76% accuracy in predicting the customers' intended requests based solely on gaze features. Moreover, the predictor made correct predictions approximately 1.8 s before the spoken request from the customer. We further analyzed several episodes of interactions from our data to develop a deeper understanding of the scenarios where our predictor succeeded and failed in making correct predictions. These analyses revealed additional gaze patterns that may be leveraged to improve intention prediction. This work highlights gaze cues as a significant resource for understanding human intentions and informs the design of real-time recognizers of user intention for intelligent systems, such as assistive robots and ubiquitous devices, that may enable more complex capabilities and improved user experience.
Holmes, John B; Dodds, Ken G; Lee, Michael A
2017-03-02
An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.
A deep auto-encoder model for gene expression prediction.
Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua
2017-11-17
Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.
Viscoplastic constitutive relationships with dependence on thermomechanical history
NASA Technical Reports Server (NTRS)
Robinson, D. N.; Bartolotta, P. A.
1985-01-01
Experimental evidence of thermomechanical history dependence in the cyclic hardening behavior of some common high-temperature structural alloys is presented with special emphasis on dynamic metallurgical changes. The inadequacy of formulating nonisothermal constitutive equations solely on the basis of isothermal testing is discussed. A representation of thermoviscoplasticity is proposed that qualitatively accounts for the observed hereditary behavior. This is achieved by formulating the scalar evolutionary equation in an established viscoplasticity theory to reflect thermomechanical path dependence. To assess the importance of accounting for thermomechanical history dependence in practical structural analyses, two qualitative models are specified: (1) formulated as if based entirely on isothermal information; (2) to reflect thermomechanical path dependence using the proposed thermoviscoplastic representation. Predictions of the two models are compared and the impact the calculated differences in deformation behavior may have on subsequent lifetime predictions is discussed.
When can social media lead financial markets?
Zheludev, Ilya; Smith, Robert; Aste, Tomaso
2014-02-27
Social media analytics is showing promise for the prediction of financial markets. However, the true value of such data for trading is unclear due to a lack of consensus on which instruments can be predicted and how. Current approaches are based on the evaluation of message volumes and are typically assessed via retrospective (ex-post facto) evaluation of trading strategy returns. In this paper, we present instead a sentiment analysis methodology to quantify and statistically validate which assets could qualify for trading from social media analytics in an ex-ante configuration. We use sentiment analysis techniques and Information Theory measures to demonstrate that social media message sentiment can contain statistically-significant ex-ante information on the future prices of the S&P500 index and a limited set of stocks, in excess of what is achievable using solely message volumes.
When Can Social Media Lead Financial Markets?
NASA Astrophysics Data System (ADS)
Zheludev, Ilya; Smith, Robert; Aste, Tomaso
2014-02-01
Social media analytics is showing promise for the prediction of financial markets. However, the true value of such data for trading is unclear due to a lack of consensus on which instruments can be predicted and how. Current approaches are based on the evaluation of message volumes and are typically assessed via retrospective (ex-post facto) evaluation of trading strategy returns. In this paper, we present instead a sentiment analysis methodology to quantify and statistically validate which assets could qualify for trading from social media analytics in an ex-ante configuration. We use sentiment analysis techniques and Information Theory measures to demonstrate that social media message sentiment can contain statistically-significant ex-ante information on the future prices of the S&P500 index and a limited set of stocks, in excess of what is achievable using solely message volumes.
When Can Social Media Lead Financial Markets?
Zheludev, Ilya; Smith, Robert; Aste, Tomaso
2014-01-01
Social media analytics is showing promise for the prediction of financial markets. However, the true value of such data for trading is unclear due to a lack of consensus on which instruments can be predicted and how. Current approaches are based on the evaluation of message volumes and are typically assessed via retrospective (ex-post facto) evaluation of trading strategy returns. In this paper, we present instead a sentiment analysis methodology to quantify and statistically validate which assets could qualify for trading from social media analytics in an ex-ante configuration. We use sentiment analysis techniques and Information Theory measures to demonstrate that social media message sentiment can contain statistically-significant ex-ante information on the future prices of the S&P500 index and a limited set of stocks, in excess of what is achievable using solely message volumes. PMID:24572909
Full three-dimensional morphology evolution of amorphous thin films for atomic layer deposition
NASA Astrophysics Data System (ADS)
Jin, Lingpeng; Li, Yawei; Hu, Zhigao; Chu, Junhao
2018-04-01
We introduce a Monte Carlo model based on random deposition and diffusion limited aggregation in order to study the morphological evolution of deposition of nanofilm, which is difficult to carry out by the experimental methods. The instantaneous evolution of morphology and the corresponding parameters are observed when employing a novel perspective, modeling the aggregation of nanoscale units. Despite simplifying the chemical details, the simulation results qualitatively describe experiments with bulky precursors, and the strong dependence of growth rate on steric hindrance is obtained. Moreover, the well know behavior that the delay before steady growth is accurately predicted and analyzed based solely on modeling. Through this work, the great influence of steric hindrance on the initial stage of ALD is described.
Paek, Hye-Jin; Hilyard, Karen; Freimuth, Vicki; Barge, J Kevin; Mindlin, Michele
2010-06-01
Recent natural and human-caused disasters have awakened public health officials to the importance of emergency preparedness. Guided by health behavior and media effects theories, the analysis of a statewide survey in Georgia reveals that self-efficacy, subjective norm, and emergency news exposure are positively associated with the respondents' possession of emergency items and their stages of emergency preparedness. Practical implications suggest less focus on demographics as the sole predictor of emergency preparedness and more comprehensive measures of preparedness, including both a person's cognitive stage of preparedness and checklists of emergency items on hand. We highlight the utility of theory-based approaches for understanding and predicting public emergency preparedness as a way to enable more effective health and risk communication.
Li, Jinyu; Rossetti, Giulia; Dreyer, Jens; Raugei, Simone; Ippoliti, Emiliano; Lüscher, Bernhard; Carloni, Paolo
2014-01-01
Protein electrospray ionization (ESI) mass spectrometry (MS)-based techniques are widely used to provide insight into structural proteomics under the assumption that non-covalent protein complexes being transferred into the gas phase preserve basically the same intermolecular interactions as in solution. Here we investigate the applicability of this assumption by extending our previous structural prediction protocol for single proteins in ESI-MS to protein complexes. We apply our protocol to the human insulin dimer (hIns2) as a test case. Our calculations reproduce the main charge and the collision cross section (CCS) measured in ESI-MS experiments. Molecular dynamics simulations for 0.075 ms show that the complex maximizes intermolecular non-bonded interactions relative to the structure in water, without affecting the cross section. The overall gas-phase structure of hIns2 does exhibit differences with the one in aqueous solution, not inferable from a comparison with calculated CCS. Hence, care should be exerted when interpreting ESI-MS proteomics data based solely on NMR and/or X-ray structural information. PMID:25210764
Planner-Based Control of Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott
2005-01-01
The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.
Lian, Meifei; Zhao, Kai; Feng, Yunzhi; Yao, Qian
The reliability of combining natural teeth and implants in one removable prosthesis is controversial. This systematic review was conducted to evaluate the prognosis of combined tooth/implant-supported double-crown-retained removable dental prostheses (DCR-RDPs) and to compare them with solely implant-supported prostheses with a minimum observation period of 3 years. Electronic database (PubMed, Embase, Central, and SCI) and manual searches up to August 2016 were conducted to identify human clinical studies on tooth/implant-supported DCR-RDPs. Literature selection and data extraction were accomplished by two independent reviewers. Meta-analyses of survival and complication rates were performed separately for combined tooth/implant-supported and solely implant-supported DCRRDPs. Among the initially identified 366 articles, 17 were included in a quantitative analysis. The estimated overall cumulative survival rate (CSR) for implants in combined tooth/implant-supported DCRRDPs was 98.72% (95% confidence interval [95% CI]: 96.98% to 99.82%), and that for implants in solely implant-supported DCR-RDPs was 98.83% (95% CI: 97.45% to 99.75%). The summary CSR for abutment teeth was 92.96% (95% CI: 85.38% to 98.12%). Double-crown-retained dentures with both abutment types showed high CSRs, most of which were approximately 100%. Regarding prosthetic maintenance treatment, the estimated incidence for patients treated with combined tooth/implant-supported RDPs was 0.164 (95% CI: 0.089 to 0.305) per patient per year (T/P/Y) and that for patients restored with solely implant-supported RDPs was 0.260 (95% CI: 0.149 to 0.454) T/P/Y. Based on four studies with combined tooth/implant-supported DCR-RDPs, no intrusion phenomena were encountered. Subject to the limitations of the present review, combining remaining teeth and implants in DCR-RDPs is a reliable and predictable treatment modality for partially edentulous patients. Comparable high survival rates and minor biologic or technical complications are observed for combined tooth/implant-supported and solely implant-supported DCR-RDPs. Due to the heterogeneity of the included studies, the results must be interpreted with caution.
USDA-ARS?s Scientific Manuscript database
Soil erosion models are valuable analysis tools that scientists and engineers use to examine observed data sets and predict the effects of possible future soil loss. In the area of water erosion, a variety of modeling technologies are available, ranging from solely qualitative models, to merely quan...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jun-Kai; Gong, Zi-Zhen; Zhang, Tian
Down-regulation of intestinal P-glycoprotein (P-gp) by soybean oil-based lipid emulsion (SOLE) may cause elevated intestinal permeability of lipopolysaccharide (LPS) in patients with total parenteral nutrition, but the appropriate preventative treatment is currently limited. Recently, sodium butyrate (NaBut) has been demonstrated to regulate the expression of P-gp. Therefore, this study aimed to address whether treatment with NaBut could attenuate SOLE-induced increase in intestinal permeability of LPS by modulation of P-gp in vitro. Caco-2 cells were exposed to SOLE with or without NaBut. SOLE-induced down-regulation of P-gp was significantly attenuated by co-incubation with NaBut. Nuclear recruitment of FOXO 3a in response to NaButmore » was involved in P-gp regulation. Transport studies revealed that SOLE-induced increase in permeability of LPS was significantly attenuated by co-incubation with NaBut. Collectively, our results suggested that NaBut may be a potentially useful medication to prevent SOLE-induced increase in intestinal permeability of LPS. - Highlights: • Caco-2 cells were used as models for studying parenteral nutrition in vitro. • NaBut restored SOLE-induced down-regulation of P-gp in Caco-2 cells. • Regulation of P-gp by NaBut was mediated via nuclear recruitment of FOXO 3a. • NaBut modulated the permeability of LPS by P-gp function, not barrier function.« less
Tomperi, Jani; Leiviskä, Kauko
2018-06-01
Traditionally the modelling in an activated sludge process has been based on solely the process measurements, but as the interest to optically monitor wastewater samples to characterize the floc morphology has increased, in the recent years the results of image analyses have been more frequently utilized to predict the characteristics of wastewater. This study shows that the traditional process measurements or the automated optical monitoring variables by themselves are not capable of developing the best predictive models for the treated wastewater quality in a full-scale wastewater treatment plant, but utilizing these variables together the optimal models, which show the level and changes in the treated wastewater quality, are achieved. By this early warning, process operation can be optimized to avoid environmental damages and economic losses. The study also shows that specific optical monitoring variables are important in modelling a certain quality parameter, regardless of the other input variables available.
NASA Astrophysics Data System (ADS)
Wilderbuer, Thomas; Stockhausen, William; Bond, Nicholas
2013-10-01
This study provides a retrospective analysis of the relationship between physical oceanography, biology and recruitment of three Eastern Bering Sea flatfish stocks: flathead sole (Hippoglossoides elassodon), northern rock sole (Lepidopsetta polyxystra), and arrowtooth flounder (Atheresthes stomias) during the period 1978-2005. Stock assessment model estimates of recruitment and spawning stock size indicate that temporal patterns in productivity are consistent with decadal scale (or shorter) patterns in climate variability, which may influence marine survival during the early life history phases. Density-dependence (through spawning stock size) was statistically significant in a Ricker stock-recruit model of flatfish recruitment that included environmental terms. Wind-driven advection of northern rock sole and flathead sole larvae to favorable nursery grounds was found to coincide with years of above-average recruitment. Ocean forcing of Bristol Bay surface waters during springtime was mostly on-shelf (eastward) during the 1980s and again in the early 2000s, but was off-shelf (westerly) during the 1990s, corresponding with periods of good and poor recruitment, respectively. Finally, the Arctic Oscillation was found to be an important indicator of arrowtooth flounder productivity. Model results were applied to IPCC (Intergovernmental Panel on Climate Change) future springtime wind scenarios to predict the future impact of climate on northern rock sole productivity and indicated that a moderate future increase in recruitment might be expected because the climate trends favor on-shelf transport but that density-dependence will dampen this effect such that northern rock sole abundance will not be substantially affected by climate change.
Lu, Bingxin; Leong, Hon Wai
2016-02-01
Genomic islands (GIs) are clusters of functionally related genes acquired by lateral genetic transfer (LGT), and they are present in many bacterial genomes. GIs are extremely important for bacterial research, because they not only promote genome evolution but also contain genes that enhance adaption and enable antibiotic resistance. Many methods have been proposed to predict GI. But most of them rely on either annotations or comparisons with other closely related genomes. Hence these methods cannot be easily applied to new genomes. As the number of newly sequenced bacterial genomes rapidly increases, there is a need for methods to detect GI based solely on sequences of a single genome. In this paper, we propose a novel method, GI-SVM, to predict GIs given only the unannotated genome sequence. GI-SVM is based on one-class support vector machine (SVM), utilizing composition bias in terms of k-mer content. From our evaluations on three real genomes, GI-SVM can achieve higher recall compared with current methods, without much loss of precision. Besides, GI-SVM allows flexible parameter tuning to get optimal results for each genome. In short, GI-SVM provides a more sensitive method for researchers interested in a first-pass detection of GI in newly sequenced genomes.
NASA Astrophysics Data System (ADS)
Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Hirth, Greg; Yamato, Philippe; Ildefonse, Benoît; Prigent, Cécile
2016-04-01
Metamorphic soles correspond to m to ~500 m thick highly strained metamorphic rock units found beneath mylonitic banded peridotites at the base of large-scale ophiolites, as exemplified in Oman. Metamorphic soles are mainly composed of metabasalts deriving from the downgoing oceanic lithosphere and metamorphosed up to granulite-facies conditions by heat transfer from the mantle wedge. Pressure-temperature peak conditions are usually estimated at 1.0±0.2 GPa and 800±100°C. The absence of HP-LT metamorphism overprint implies that metamorphic soles have been formed and exhumed during subduction infancy. In this view, metamorphic soles were strongly deformed during their accretion to the mantle wedge (corresponding, now, to the base of the ophiolite). Therefore, metamorphic soles and banded peridotites are direct witnesses of the dynamics of early subduction zones, in terms of thermal structure, fluid migration and rheology evolution across the nascent slab interface. Based on fieldwork and EBSD analyses, we present a detailed (micro-) structural study performed on samples coming from the Sumeini window, the better-preserved cross-section of the metamorphic sole of Oman. Large differences are found in the deformation (CPO, grain size, aspect ratio) of clinopyroxene, amphibole and plagioclase, related to mineralogical changes linked with the distance to the peridotite contact (e.g., hardening due to the appearance of garnet and clinopyroxene). To model the incipient slab interface in laboratory, we carried out 5 hydrostatic annealing and simple-shear experiments on Griggs solid-medium apparatus. Deformation experiments were conducted at axial strain rates of 10-6 s-1. Fine-grained amphibolite was synthetized by adding 1 wt.% water to a (Mid-Ocean Ridge) basalt powder as a proxy for the metamorphic sole (amphibole + plagioclase + clinopyroxene ± garnet assemblage). To synthetize garnet, 2 experiments were carried out in hydrostatic conditions and with deformation at 800°C with confining pressure of 2 GPa. Another simple-shear experiment has been carried out at 800°C and 1 GPa with fined-grained natural garnet. With the aim of mimicking the early slab interface (between the metamorphic sole and banded peridotites at the base of the ophiolite), 2 simple-shear deformation experiments with 2 layers have been carried out at 800°C and confining pressure of 1 GPa. The bottom layer was made of hydrated basalt powder and the top layer was made of olivine. Fined-grained garnet-free amphibolite is significantly weaker than dunite but the appearance of harder minerals in the amphibolite (garnet and clinopyroxene) has major implications on its rheological evolution. These results allow liking field observations of strain localization at the interface to the metamorphic sole formation.
Boulder-based wave hindcasting underestimates storm size
NASA Astrophysics Data System (ADS)
Kennedy, David; Woods, Joesphine; Rosser, Nick; Hansom, James; Naylor, Larissa
2017-04-01
Large boulder-size clasts represent an important archive of erosion and wave activity on the coast. From tropical coral reefs to eroding cliffs in the high-latitudes, boulders have been used to hindcast the frequency and magnitude of cyclones and tsunami. Such reconstructions are based on the balance between the hydrodynamic forces acting on individual clasts and the counteracting resistive forces of friction and gravity. Here we test the three principle hindcasting relationships on nearly 1000 intertidal boulders in North Yorkshire, U.K using a combination of field and airborne terrestrial LiDAR data. We quantify the predicted versus actual rates of movement and the degree to which local geomorphology can retard or accelerate transport. Actual clast movement is significantly less than predicted values, regardless of boulder volume, shape or location. In situ cementation of clasts to the substrate by marine organisms and clustering of clasts increases friction thereby preventing transport. The implication is that boulders do not always provide a reliable estimation of wave height on the coast and reliance solely on hindcasting relationships leads to an under prediction of the frequency and magnitude of past storm wave activity. The crucial need for process field studies to refine boulder transport models is thus demonstrated.
Molecular blood grouping of donors.
St-Louis, Maryse
2014-04-01
For many decades, hemagglutination has been the sole means to type blood donors. Since the first blood group gene cloning in the early 1990s, knowledge on the molecular basis of most red blood cell, platelet and neutrophil antigens brought the possibility of using nucleotide-based techniques to predict phenotype. This review will summarized methodologies available to genotype blood groups from laboratory developed assays to commercially available platforms, and how proficiency assays become more present. The author will also share her vision of the transfusion medicine future. The field is presently at the crossroads, bringing new perspectives to a century old practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hickson, Stephen; Reed, W. Robert; Sander, Nicholas
2012-01-01
This study investigates the degree to which grades based solely on constructed-response (CR) questions differ from grades based solely on multiple-choice (MC) questions. If CR questions are to justify their higher costs, they should produce different grade outcomes than MC questions. We use a data set composed of thousands of observations on…
From Pressure to Path: Barometer-based Vehicle Tracking
Ho, Bo-Jhang; Martin, Paul; Swaminathan, Prashanth; Srivastava, Mani
2017-01-01
Pervasive mobile devices have enabled countless context-and location-based applications that facilitate navigation, life-logging, and more. As we build the next generation of smart cities, it is important to leverage the rich sensing modalities that these numerous devices have to offer. This work demonstrates how mobile devices can be used to accurately track driving patterns based solely on pressure data collected from the device’s barometer. Specifically, by correlating pressure time-series data against topographic elevation data and road maps for a given region, a centralized computer can estimate the likely paths through which individual users have driven, providing an exceptionally low-power method for measuring driving patterns of a given individual or for analyzing group behavior across multiple users. This work also brings to bear a more nefarious side effect of pressure-based path estimation: a mobile application can, without consent and without notifying the user, use pressure data to accurately detect an individual’s driving behavior, compromising both user privacy and security. We further analyze the ability to predict driving trajectories in terms of the variance in barometer pressure and geographical elevation, demonstrating cases in which more than 80% of paths can be accurately predicted. PMID:29503981
From Pressure to Path: Barometer-based Vehicle Tracking.
Ho, Bo-Jhang; Martin, Paul; Swaminathan, Prashanth; Srivastava, Mani
2015-11-01
Pervasive mobile devices have enabled countless context-and location-based applications that facilitate navigation, life-logging, and more. As we build the next generation of smart cities, it is important to leverage the rich sensing modalities that these numerous devices have to offer. This work demonstrates how mobile devices can be used to accurately track driving patterns based solely on pressure data collected from the device's barometer. Specifically, by correlating pressure time-series data against topographic elevation data and road maps for a given region, a centralized computer can estimate the likely paths through which individual users have driven, providing an exceptionally low-power method for measuring driving patterns of a given individual or for analyzing group behavior across multiple users. This work also brings to bear a more nefarious side effect of pressure-based path estimation: a mobile application can, without consent and without notifying the user, use pressure data to accurately detect an individual's driving behavior, compromising both user privacy and security. We further analyze the ability to predict driving trajectories in terms of the variance in barometer pressure and geographical elevation, demonstrating cases in which more than 80% of paths can be accurately predicted.
Phylogeny predicts future habitat shifts due to climate change.
Kuntner, Matjaž; Năpăruş, Magdalena; Li, Daiqin; Coddington, Jonathan A
2014-01-01
Taxa may respond differently to climatic changes, depending on phylogenetic or ecological effects, but studies that discern among these alternatives are scarce. Here, we use two species pairs from globally distributed spider clades, each pair representing two lifestyles (generalist, specialist) to test the relative importance of phylogeny versus ecology in predicted responses to climate change. We used a recent phylogenetic hypothesis for nephilid spiders to select four species from two genera (Nephilingis and Nephilengys) that match the above criteria, are fully allopatric but combined occupy all subtropical-tropical regions. Based on their records, we modeled each species niche spaces and predicted their ecological shifts 20, 40, 60, and 80 years into the future using customized GIS tools and projected climatic changes. Phylogeny better predicts the species current ecological preferences than do lifestyles. By 2080 all species face dramatic reductions in suitable habitat (54.8-77.1%) and adapt by moving towards higher altitudes and latitudes, although at different tempos. Phylogeny and life style explain simulated habitat shifts in altitude, but phylogeny is the sole best predictor of latitudinal shifts. Models incorporating phylogenetic relatedness are an important additional tool to predict accurately biotic responses to global change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, R.D.; Srinivasan, A.
1996-10-01
The machine learning program Progol was applied to the problem of forming the structure-activity relationship (SAR) for a set of compounds tested for carcinogenicity in rodent bioassays by the U.S. National Toxicology Program (NTP). Progol is the first inductive logic programming (ILP) algorithm to use a fully relational method for describing chemical structure in SARs, based on using atoms and their bond connectivities. Progol is well suited to forming SARs for carcinogenicity as it is designed to produce easily understandable rules (structural alerts) for sets of noncongeneric compounds. The Progol SAR method was tested by prediction of a set ofmore » compounds that have been widely predicted by other SAR methods (the compounds used in the NTP`s first round of carcinogenesis predictions). For these compounds no method (human or machine) was significantly more accurate than Progol. Progol was the most accurate method that did not use data from biological tests on rodents (however, the difference in accuracy is not significant). The Progol predictions were based solely on chemical structure and the results of tests for Salmonella mutagenicity. Using the full NTP database, the prediction accuracy of Progol was estimated to be 63% ({+-}3%) using 5-fold cross validation. A set of structural alerts for carcinogenesis was automatically generated and the chemical rationale for them investigated-these structural alerts are statistically independent of the Salmonella mutagenicity. Carcinogenicity is predicted for the compounds used in the NTP`s second round of carcinogenesis predictions. The results for prediction of carcinogenesis, taken together with the previous successful applications of predicting mutagenicity in nitroaromatic compounds, and inhibition of angiogenesis by suramin analogues, show that Progol has a role to play in understanding the SARs of cancer-related compounds. 29 refs., 2 figs., 4 tabs.« less
Waldegrave, Charles; King, Peter; Maniapoto, Maria; Tamasese, Taimalieutu Kiwi; Parsons, Tafaoimalo Loudeen; Sullivan, Ginny
2016-12-01
This study reports findings and policy recommendations from a research project that applied a relational resilience framework to a study of 60 sole parent families in New Zealand, with approximately equal numbers of Māori, Pacific, and European (White) participants. The sole parent families involved were already known to be resilient and the study focused on identifying the relationships and strategies underlying the achievement and maintenance of their resilience. The study was carried out to provide an evidence base for the development and implementation of policies and interventions to both support sole parent families who have achieved resilience and assist those who struggle to do so. The three populations shared many similarities in their pathways to becoming sole parents and the challenges they faced as sole parents. The coping strategies underlying their demonstrated resilience were also broadly similar, but the ways in which they were carried out did vary in a manner that particularly reflected cultural practices in terms of their reliance upon extended family-based support or support from outside the family. The commonalities support the appropriateness of the common conceptual framework used, whereas the differences underline the importance of developing nuanced policy responses that take into account cultural differences between the various populations to which policy initiatives are directed. © 2016 Family Process Institute.
Parameterising User Uptake in Economic Evaluations: The role of discrete choice experiments.
Terris-Prestholt, Fern; Quaife, Matthew; Vickerman, Peter
2016-02-01
Model-based economic evaluations of new interventions have shown that user behaviour (uptake) is a critical driver of overall impact achieved. However, early economic evaluations, prior to introduction, often rely on assumed levels of uptake based on expert opinion or uptake of similar interventions. In addition to the likely uncertainty surrounding these uptake assumptions, they also do not allow for uptake to be a function of product, intervention, or user characteristics. This letter proposes using uptake projections from discrete choice experiments (DCE) to better parameterize uptake and substitution in cost-effectiveness models. A simple impact model is developed and illustrated using an example from the HIV prevention field in South Africa. Comparison between the conventional approach and the DCE-based approach shows that, in our example, DCE-based impact predictions varied by up to 50% from conventional estimates and provided far more nuanced projections. In the absence of observed uptake data and to model the effect of variations in intervention characteristics, DCE-based uptake predictions are likely to greatly improve models parameterizing uptake solely based on expert opinion. This is particularly important for global and national level decision making around introducing new and probably more expensive interventions, particularly where resources are most constrained. © 2016 The Authors. Health Economics published by John Wiley & Sons Ltd.
Smolinski, Tomasz G; Buchanan, Roger; Boratyn, Grzegorz M; Milanova, Mariofanna; Prinz, Astrid A
2006-01-01
Background Independent Component Analysis (ICA) proves to be useful in the analysis of neural activity, as it allows for identification of distinct sources of activity. Applied to measurements registered in a controlled setting and under exposure to an external stimulus, it can facilitate analysis of the impact of the stimulus on those sources. The link between the stimulus and a given source can be verified by a classifier that is able to "predict" the condition a given signal was registered under, solely based on the components. However, the ICA's assumption about statistical independence of sources is often unrealistic and turns out to be insufficient to build an accurate classifier. Therefore, we propose to utilize a novel method, based on hybridization of ICA, multi-objective evolutionary algorithms (MOEA), and rough sets (RS), that attempts to improve the effectiveness of signal decomposition techniques by providing them with "classification-awareness." Results The preliminary results described here are very promising and further investigation of other MOEAs and/or RS-based classification accuracy measures should be pursued. Even a quick visual analysis of those results can provide an interesting insight into the problem of neural activity analysis. Conclusion We present a methodology of classificatory decomposition of signals. One of the main advantages of our approach is the fact that rather than solely relying on often unrealistic assumptions about statistical independence of sources, components are generated in the light of a underlying classification problem itself. PMID:17118151
Coal-cleaning plant refuse characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavalet, J.R.; Torak, E.R.
1985-06-01
This report describes a study performed for the Electric Power Research Institute's Coal Cleaning Test Facility in Homer City, Pennsylvania. The purpose of the study was to design a standard methods for chemically and physically classifying refuse generated by physical coal cleaning and to construct a matrix that will accurately predict how a particular refuse will react to particular disposal methods - based solely on raw-coal characteristics and the process used to clean the coal. The value of such a classification system (which has not existed to this point) is the ability to design efficient and economical systems for disposingmore » of specific coal cleaning refuse. The report describes the project's literature search and a four-tier classification system. It also provides designs for test piles, sampling procedures, and guidelines for a series of experiments to test the classfication system and create an accurate, reliable predictive matrix. 38 refs., 39 figs., 35 tabs.« less
Agrawal, Neeraj J; Dykstra, Andrew; Yang, Jane; Yue, Hai; Nguyen, Xichdao; Kolvenbach, Carl; Angell, Nicolas
2018-05-01
Methionine oxidation in therapeutic antibodies can impact the product's stability, clinical efficacy, and safety and hence it is desirable to address the methionine oxidation liability during antibody discovery and development phase. Although the current experimental approaches can identify the oxidation-labile methionine residues, their application is limited mostly to the development phase. We demonstrate an in silico method that can be used to predict oxidation-labile residues based solely on the antibody sequence and structure information. Since antibody sequence information is available in the discovery phase, the in silico method can be applied very early on to identify the oxidation-labile methionine residues and subsequently address the oxidation liability. We believe that the in silico method for methionine oxidation liability assessment can aid in antibody discovery and development phase to address the liability in a more rational way. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 2 2011-10-01 2011-10-01 false Determination of the hospital-specific rate for inpatient operating costs for sole community hospitals based on a Federal fiscal year 1996 base period. 412.77 Section 412.77 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 2 2013-10-01 2013-10-01 false Determination of the hospital-specific rate for inpatient operating costs for sole community hospitals based on a Federal fiscal year 2006 base period. 412.78 Section 412.78 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 2 2013-10-01 2013-10-01 false Determination of the hospital-specific rate for inpatient operating costs for sole community hospitals based on a Federal fiscal year 1996 base period. 412.77 Section 412.77 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 2 2012-10-01 2012-10-01 false Determination of the hospital-specific rate for inpatient operating costs for sole community hospitals based on a Federal fiscal year 1996 base period. 412.77 Section 412.77 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 2 2014-10-01 2014-10-01 false Determination of the hospital-specific rate for inpatient operating costs for sole community hospitals based on a Federal fiscal year 1996 base period. 412.77 Section 412.77 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 2 2011-10-01 2011-10-01 false Determination of the hospital-specific rate for inpatient operating costs for sole community hospitals based on a Federal fiscal year 2006 base period. 412.78 Section 412.78 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 2 2012-10-01 2012-10-01 false Determination of the hospital-specific rate for inpatient operating costs for sole community hospitals based on a Federal fiscal year 2006 base period. 412.78 Section 412.78 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 2 2014-10-01 2014-10-01 false Determination of the hospital-specific rate for inpatient operating costs for sole community hospitals based on a Federal fiscal year 2006 base period. 412.78 Section 412.78 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE...
Asa, S L; Casar-Borota, O; Chanson, P; Delgrange, E; Earls, P; Ezzat, S; Grossman, A; Ikeda, H; Inoshita, N; Karavitaki, N; Korbonits, M; Laws, E R; Lopes, M B; Maartens, N; McCutcheon, I E; Mete, O; Nishioka, H; Raverot, G; Roncaroli, F; Saeger, W; Syro, L V; Vasiljevic, A; Villa, C; Wierinckx, A; Trouillas, J
2017-04-01
The classification of neoplasms of adenohypophysial cells is misleading because of the simplistic distinction between adenoma and carcinoma, based solely on metastatic spread and the poor reproducibility and predictive value of the definition of atypical adenomas based on the detection of mitoses or expression of Ki-67 or p53. In addition, the current classification of neoplasms of the anterior pituitary does not accurately reflect the clinical spectrum of behavior. Invasion and regrowth of proliferative lesions and persistence of hormone hypersecretion cause significant morbidity and mortality. We propose a new terminology, pituitary neuroendocrine tumor (PitNET), which is consistent with that used for other neuroendocrine neoplasms and which recognizes the highly variable impact of these tumors on patients. © 2017 Society for Endocrinology.
Modeling and predicting tumor response in radioligand therapy.
Kletting, Peter; Thieme, Anne; Eberhardt, Nina; Rinscheid, Andreas; D'Alessandria, Calogero; Allmann, Jakob; Wester, Hans-Jürgen; Tauber, Robert; Beer, Ambros J; Glatting, Gerhard; Eiber, Matthias
2018-05-10
The aim of this work was to develop a theranostic method that allows predicting PSMA-positive tumor volume after radioligand therapy (RLT) based on a pre-therapeutic PET/CT measurement and physiologically based pharmacokinetic/dynamic (PBPK/PD) modeling at the example of RLT using 177 Lu-labeled PSMA for imaging and therapy (PSMA I&T). Methods: A recently developed PBPK model for 177 Lu PSMA I&T RLT was extended to account for tumor (exponential) growth and reduction due to irradiation (linear quadratic model). Data of 13 patients with metastatic castration-resistant prostate cancer (mCRPC) were retrospectively analyzed. Pharmacokinetic/dynamic parameters were simultaneously fitted in a Bayesian framework to PET/CT activity concentrations, planar scintigraphy data and tumor volumes prior and post (6 weeks) therapy. The method was validated using the leave-one-out Jackknife method. The tumor volume post therapy was predicted based on pre-therapy PET/CT imaging and PBPK/PD modeling. Results: The relative deviation of the predicted and measured tumor volume for PSMA-positive tumor cells (6 weeks post therapy) was 1±40% excluding one patient (PSA negative) from the population. The radiosensitivity for the PSA positive patients was determined to be 0.0172±0.0084 Gy-1. Conclusion: The proposed method is the first attempt to solely use PET/CT and modeling methods to predict the PSMA-positive tumor volume after radioligand therapy. Internal validation shows that this is feasible with an acceptable accuracy. Improvement of the method and external validation of the model is ongoing. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Predicting Electron Population Characteristics in 2-D Using Multispectral Ground-Based Imaging
NASA Astrophysics Data System (ADS)
Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Jahn, Jorg-Micha
2018-01-01
Ground-based imaging and in situ sounding rocket data are compared to electron transport modeling for an active inverted-V type auroral event. The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska, on 3 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km over the aurora. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska, and aimed toward magnetic zenith. The imagers observed the intensity of different auroral emission lines (427.8, 557.7, and 844.6 nm) at the magnetic foot point of the rocket payload. Emission line intensity data are correlated with electron characteristics measured by the GREECE onboard electron spectrometer. A modified version of the GLobal airglOW (GLOW) model is used to estimate precipitating electron characteristics based on optical emissions. GLOW predicted the electron population characteristics with 20% error given the observed spectral intensities within 10° of magnetic zenith. Predictions are within 30% of the actual values within 20° of magnetic zenith for inverted-V-type aurora. Therefore, it is argued that this technique can be used, at least in certain types of aurora, such as the inverted-V type presented here, to derive 2-D maps of electron characteristics. These can then be used to further derive 2-D maps of ionospheric parameters as a function of time, based solely on multispectral optical imaging data.
Prediction of gene-phenotype associations in humans, mice, and plants using phenologs.
Woods, John O; Singh-Blom, Ulf Martin; Laurent, Jon M; McGary, Kriston L; Marcotte, Edward M
2013-06-21
Phenotypes and diseases may be related to seemingly dissimilar phenotypes in other species by means of the orthology of underlying genes. Such "orthologous phenotypes," or "phenologs," are examples of deep homology, and may be used to predict additional candidate disease genes. In this work, we develop an unsupervised algorithm for ranking phenolog-based candidate disease genes through the integration of predictions from the k nearest neighbor phenologs, comparing classifiers and weighting functions by cross-validation. We also improve upon the original method by extending the theory to paralogous phenotypes. Our algorithm makes use of additional phenotype data--from chicken, zebrafish, and E. coli, as well as new datasets for C. elegans--establishing that several types of annotations may be treated as phenotypes. We demonstrate the use of our algorithm to predict novel candidate genes for human atrial fibrillation (such as HRH2, ATP4A, ATP4B, and HOPX) and epilepsy (e.g., PAX6 and NKX2-1). We suggest gene candidates for pharmacologically-induced seizures in mouse, solely based on orthologous phenotypes from E. coli. We also explore the prediction of plant gene-phenotype associations, as for the Arabidopsis response to vernalization phenotype. We are able to rank gene predictions for a significant portion of the diseases in the Online Mendelian Inheritance in Man database. Additionally, our method suggests candidate genes for mammalian seizures based only on bacterial phenotypes and gene orthology. We demonstrate that phenotype information may come from diverse sources, including drug sensitivities, gene ontology biological processes, and in situ hybridization annotations. Finally, we offer testable candidates for a variety of human diseases, plant traits, and other classes of phenotypes across a wide array of species.
Role of adverse outcome pathways in developing computational models for regulatory toxicology
Regulatory toxicology for both human health and the environment increasingly is moving from a sole reliance on direct observation of apical toxicity outcomes in whole organism toxicity tests, to predictive approaches in which unacceptable outcomes and risk are inferred from mecha...
26 CFR 20.2208-1 - Certain residents of possessions considered citizens of the United States.
Code of Federal Regulations, 2010 CFR
2010-04-01
... solely by reason of his being a citizen of such possession or by reason of his birth or residence within... examples set forth in § 20.2209-1: Example. A, a citizen of the United States by reason of his birth in the... United States citizenship is based on birth in the United States and is not based solely on being a...
Tsuka, T; Murahata, Y; Azuma, K; Osaki, T; Ito, N; Okamoto, Y; Imagawa, T
2014-10-01
Computed tomography (CT) was performed on 800 untrimmed claws (400 inner claws and 400 outer claws) of 200 pairs of bovine hindlimbs to investigate the relationships between dorsal wall length and sole thickness, and between dorsal wall length and the relative rotation angle of distal phalanx-to-sole surface (S-D angle). Sole thickness was 3.8 and 4.0 mm at the apex of the inner claws and outer claws, respectively, with dorsal wall lengths <70 mm. These sole thickness values were less than the critical limit of 5 mm, which is associated with a softer surface following thinning of the soles. A sole thickness of 5 mm at the apex was estimated to correlate with dorsal wall lengths of 72.1 and 72.7 mm for the inner and outer claws, respectively. Sole thickness was 6.1 and 6.4 mm at the apex of the inner and outer claws, respectively, with dorsal wall lengths of 75 mm. These sole thickness values were less than the recommended sole thickness of 7 mm based on the protective function of the soles. A sole thickness >7 mm at the apex was estimated to correlate with a dorsal wall length of 79.8 and 78.4mm for the inner and outer claws, respectively. The S-D angles were recorded as anteversions of 2.9° and 4.7° for the inner and outer claws, respectively, with a dorsal wall length of 75 mm. These values indicate that the distal phalanx is likely to have rotated naturally forward toward the sole surface. The distal phalanx rotated backward to the sole surface at 3.2° and 7.6° for inner claws with dorsal wall lengths of 90-99 and ≥100 mm, respectively; and at 3.5° for outer claws with a dorsal wall length ≥100 mm. Dorsal wall lengths of 85.7 and 97.2 mm were estimated to correlate with a parallel positional relationship of the distal phalanx to the sole surface in the inner and outer claws, respectively. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins
Hussein, Hiba Abi; Borrel, Alexandre; Geneix, Colette; Petitjean, Michel; Regad, Leslie; Camproux, Anne-Claude
2015-01-01
Predicting protein pocket's ability to bind drug-like molecules with high affinity, i.e. druggability, is of major interest in the target identification phase of drug discovery. Therefore, pocket druggability investigations represent a key step of compound clinical progression projects. Currently computational druggability prediction models are attached to one unique pocket estimation method despite pocket estimation uncertainties. In this paper, we propose ‘PockDrug-Server’ to predict pocket druggability, efficient on both (i) estimated pockets guided by the ligand proximity (extracted by proximity to a ligand from a holo protein structure) and (ii) estimated pockets based solely on protein structure information (based on amino atoms that form the surface of potential binding cavities). PockDrug-Server provides consistent druggability results using different pocket estimation methods. It is robust with respect to pocket boundary and estimation uncertainties, thus efficient using apo pockets that are challenging to estimate. It clearly distinguishes druggable from less druggable pockets using different estimation methods and outperformed recent druggability models for apo pockets. It can be carried out from one or a set of apo/holo proteins using different pocket estimation methods proposed by our web server or from any pocket previously estimated by the user. PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr. PMID:25956651
Fisher information framework for time series modeling
NASA Astrophysics Data System (ADS)
Venkatesan, R. C.; Plastino, A.
2017-08-01
A robust prediction model invoking the Takens embedding theorem, whose working hypothesis is obtained via an inference procedure based on the minimum Fisher information principle, is presented. The coefficients of the ansatz, central to the working hypothesis satisfy a time independent Schrödinger-like equation in a vector setting. The inference of (i) the probability density function of the coefficients of the working hypothesis and (ii) the establishing of constraint driven pseudo-inverse condition for the modeling phase of the prediction scheme, is made, for the case of normal distributions, with the aid of the quantum mechanical virial theorem. The well-known reciprocity relations and the associated Legendre transform structure for the Fisher information measure (FIM, hereafter)-based model in a vector setting (with least square constraints) are self-consistently derived. These relations are demonstrated to yield an intriguing form of the FIM for the modeling phase, which defines the working hypothesis, solely in terms of the observed data. Cases for prediction employing time series' obtained from the: (i) the Mackey-Glass delay-differential equation, (ii) one ECG signal from the MIT-Beth Israel Deaconess Hospital (MIT-BIH) cardiac arrhythmia database, and (iii) one ECG signal from the Creighton University ventricular tachyarrhythmia database. The ECG samples were obtained from the Physionet online repository. These examples demonstrate the efficiency of the prediction model. Numerical examples for exemplary cases are provided.
PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.
Hussein, Hiba Abi; Borrel, Alexandre; Geneix, Colette; Petitjean, Michel; Regad, Leslie; Camproux, Anne-Claude
2015-07-01
Predicting protein pocket's ability to bind drug-like molecules with high affinity, i.e. druggability, is of major interest in the target identification phase of drug discovery. Therefore, pocket druggability investigations represent a key step of compound clinical progression projects. Currently computational druggability prediction models are attached to one unique pocket estimation method despite pocket estimation uncertainties. In this paper, we propose 'PockDrug-Server' to predict pocket druggability, efficient on both (i) estimated pockets guided by the ligand proximity (extracted by proximity to a ligand from a holo protein structure) and (ii) estimated pockets based solely on protein structure information (based on amino atoms that form the surface of potential binding cavities). PockDrug-Server provides consistent druggability results using different pocket estimation methods. It is robust with respect to pocket boundary and estimation uncertainties, thus efficient using apo pockets that are challenging to estimate. It clearly distinguishes druggable from less druggable pockets using different estimation methods and outperformed recent druggability models for apo pockets. It can be carried out from one or a set of apo/holo proteins using different pocket estimation methods proposed by our web server or from any pocket previously estimated by the user. PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S.; Peters, C.A.; Jaffe, P.R.
Biodegradation kinetics of naphthalene, phenanthrene and pyrene were studied in sole-substrate systems, and in binary and ternary mixtures to examine substrate interactions. The experiments were conducted in aerobic batch aqueous systems inoculated with a mixed culture that had been isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Monod kinetic parameters and yield coefficients for the individual parameters and yield coefficients for the individual compounds were estimated from substrate depletion and CO{sub 2} evolution rate data in sole-substrate experiments. In all three binary mixture experiments, biodegradation kinetics were comparable to the sole-substrate kinetics. In the ternary mixture, biodegradation of naphthalenemore » was inhibited and the biodegradation rates of phenanthrene and pyrene were enhanced. A multisubstrate form of the Monod kinetic model was found to adequately predict substrate interactions in the binary and ternary mixtures using only the parameters derived from sole-substrate experiments. Numerical simulations of biomass growth kinetics explain the observed range of behaviors in PAH mixtures. In general, the biodegradation rates of the more degradable and abundant compounds are reduced due to competitive inhibition, but enhanced biodegradation of the more recalcitrant PAHs occurs due to simultaneous biomass growth on multiple substrates. In PAH-contaminated environments, substrate interactions may be very large due to additive effects from the large number of compounds present.« less
Juvenile groundfish habitat in Kachemak Bay, Alaska, during late summer
Abookire, Alisa A.; Piatt, John F.; Norcross, Brenda L.
2001-01-01
We investigated the habitat of juvenile groundfishes in relation to depth, water temperature, and salinity in Kachemak Bay, Alaska. Stations ranging in depth from 10 to 70 m and with sand or mud-sand substrates were sampled with a small-meshed beam trawl in August-September of 1994 to 1999. A total of 8,201 fishes were captured, comprising at least 52 species. Most fishes (91%) had a total length 5% of the total catch) were flathead sole Hippoglossoides elassodon, slim sculpin Radulinus asprellus, Pacific halibut Hippoglossus stenolepis, and arrowtooth flounder Atheresthes stomias. Depth accounted for most of the spatial variability in juvenile groundfish abundance, and neither temperature nor salinity was correlated with fish abundance. Juvenile groundfishes concentrated in either shallow (less than or equal to 20 m) or deep (50-70 m) water, with co-occurrence of some species between 30-40 m. Shallow fishes were the rock soles, Pacific halibut, and great sculpin Myoxocephalus polyacanthocephalus. Deep species were flathead sole, slim sculpin, spinycheek starsnout Bathyagonus infraspinatus, rex sole Glyptocephalus zachirus, tadpole sculpin Psychrolutes paradoxus, and whitebarred prickleback Poroclinus rothrocki. This 6-year study provides baseline data on relative abundance and distribution of juvenile groundfishes in Kachemak Bay and may provide a useful tool for predicting the presence of species in similar habitats in other areas of Alaska.
Learning, remembering, and predicting how to use tools: Distributed neurocognitive mechanisms
Buxbaum, Laurel J.
2016-01-01
The reasoning-based approach championed by Francois Osiurak and Arnaud Badets (Osiurak & Badets, 2016) denies the existence of sensory-motor memories of tool use except in limited circumstances, and suggests instead that most tool use is subserved solely by online technical reasoning about tool properties. In this commentary, I highlight the strengths and limitations of the reasoning-based approach and review a number of lines of evidence that manipulation knowledge is in fact used in tool action tasks. In addition, I present a “two route” neurocognitive model of tool use called the “Two Action Systems Plus (2AS+)” framework that posits a complementary role for online and stored information and specifies the neurocognitive substrates of task-relevant action selection. This framework, unlike the reasoning based approach, has the potential to integrate the existing psychological and functional neuroanatomic data in the tool use domain. PMID:28358565
Local backbone structure prediction of proteins
De Brevern, Alexandre G.; Benros, Cristina; Gautier, Romain; Valadié, Hélène; Hazout, Serge; Etchebest, Catherine
2004-01-01
Summary A statistical analysis of the PDB structures has led us to define a new set of small 3D structural prototypes called Protein Blocks (PBs). This structural alphabet includes 16 PBs, each one is defined by the (φ, Ψ) dihedral angles of 5 consecutive residues. The amino acid distributions observed in sequence windows encompassing these PBs are used to predict by a Bayesian approach the local 3D structure of proteins from the sole knowledge of their sequences. LocPred is a software which allows the users to submit a protein sequence and performs a prediction in terms of PBs. The prediction results are given both textually and graphically. PMID:15724288
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, David C.; Trofimov, Alexei V.; Winey, Brian A.
Purpose: To predict the organ at risk (OAR) dose levels achievable with proton beam therapy (PBT), solely based on the geometric arrangement of the target volume in relation to the OARs. A comparison with an alternative therapy yields a prediction of the patient-specific benefits offered by PBT. This could enable physicians at hospitals without proton capabilities to make a better-informed referral decision or aid patient selection in model-based clinical trials. Methods and Materials: Skull-base tumors were chosen to test the method, owing to their geometric complexity and multitude of nearby OARs. By exploiting the correlations between the dose and distance-to-targetmore » in existing PBT plans, the models were independently trained for 6 types of OARs: brainstem, cochlea, optic chiasm, optic nerve, parotid gland, and spinal cord. Once trained, the models could estimate the feasible dose–volume histogram and generalized equivalent uniform dose (gEUD) for OAR structures of new patients. The models were trained using 20 patients and validated using an additional 21 patients. Validation was achieved by comparing the predicted gEUD to that of the actual PBT plan. Results: The predicted and planned gEUD were in good agreement. Considering all OARs, the prediction error was +1.4 ± 5.1 Gy (mean ± standard deviation), and Pearson's correlation coefficient was 93%. By comparing with an intensity modulated photon treatment plan, the model could classify whether an OAR structure would experience a gain, with a sensitivity of 93% (95% confidence interval: 87%-97%) and specificity of 63% (95% confidence interval: 38%-84%). Conclusions: We trained and validated models that could quickly and accurately predict the patient-specific benefits of PBT for skull-base tumors. Similar models could be developed for other tumor sites. Such models will be useful when an estimation of the feasible benefits of PBT is desired but the experience and/or resources required for treatment planning are unavailable.« less
Superchiral Light Generation on Degenerate Achiral Surfaces
NASA Astrophysics Data System (ADS)
Vázquez-Guardado, Abraham; Chanda, Debashis
2018-03-01
A novel route of superchiral near-field generation is demonstrated based on geometrically achiral systems supporting degenerate and spatially superimposed plasmonic modes. Such systems generate a single-handed chiral near field with simultaneous zero far-field circular dichroism. The phenomenon is theoretically elucidated with a rotating dipole model, which predicts a uniform single-handed chiral near field that flips handedness solely by reversing the handedness of the source. This property allows detection of pure background free molecular chirality through near-field light-matter interaction, which is experimentally demonstrated in the precise identification of both handedness of a chiral molecule on a single substrate with about four orders of magnitude enhancement in detection sensitivity compared to its conventional volumetric counterpart.
Endonomics: Looking Behind the Economic Curtain
NASA Astrophysics Data System (ADS)
Schmidt, Artur P.; Rössler, Otto E.
An interface is presented that was not visible before we had developed the new software I-Matrix, which allows us to look behind the economic curtain. Forces that no economist can predict are found to be present. We studied economic developments from 1931 to 2007 with the Livermore Indicator solely, taking only the inflation rate into account. Relative price movements are the hidden forces responsible for the up and down turns in the economy. Even in a deflation, consumer prices can fall more slowly in relation to the economic downturn, which means there is an inflation even when the prices fall in absolute terms. We therefore propose that there is an "economic relativity theory" based on relative prices changes.
Improving draft genome contiguity with reference-derived in silico mate-pair libraries.
Grau, José Horacio; Hackl, Thomas; Koepfli, Klaus-Peter; Hofreiter, Michael
2018-05-01
Contiguous genome assemblies are a highly valued biological resource because of the higher number of completely annotated genes and genomic elements that are usable compared to fragmented draft genomes. Nonetheless, contiguity is difficult to obtain if only low coverage data and/or only distantly related reference genome assemblies are available. In order to improve genome contiguity, we have developed Cross-Species Scaffolding-a new pipeline that imports long-range distance information directly into the de novo assembly process by constructing mate-pair libraries in silico. We show how genome assembly metrics and gene prediction dramatically improve with our pipeline by assembling two primate genomes solely based on ∼30x coverage of shotgun sequencing data.
Daradkeh, S S; Suwan, Z; Abu-Khalaf, M
1998-01-01
A prospective study was carried out to investigate the value of preoperative ultrasound findings for predicting difficulties encountered during laparoscopic cholecystectomy (LC). Altogether 160 consecutive patients with symptomatic gallbladder (GB) disease (130 females, 30 males) referred to the Jordan University Hospital were recruited for the purpose of this study. All patients underwent detailed ultrasound examination 24 hours prior to LC. The overall difficulty score (ODS), as a dependent variable, was based on the following operative parameters: duration of surgery, bleeding, dissection of Calot's triangle, dissection of gallbladder wall, adhesions, spillage of bile, spillage of stone, and difficulty of gallbladder extraction. Multiple regression analysis was used to assess the significance of the following preoperative ultrasound variables (independent) for predicting the variation in the ODS: size of the GB, number of GB stones, size of stones, location of GB stones, thickness of GB wall, common bile duct (CBD) diameter, and liver size. Only thickness of GB wall and CBD diameter were found to be significant predictors of the variation in the ODS (adjusted R2 = 0.25). We conclude that the preoperative ultrasound examination is of value for predicting difficulties encountered during LC, but it is not the sole predictor.
Advancing Atmospheric River Forecasts into Subseasonal-to-Seasonal Timescales
NASA Astrophysics Data System (ADS)
Barnes, E. A.; Baggett, C.; Mundhenk, B. D.; Nardi, K.; Maloney, E. D.
2017-12-01
Atmospheric rivers can cause considerable mayhem along the west coast of North America - delivering flooding rains during periods of heightened activity and desiccating droughts during periods of reduced activity. The intrinsic chaos of the atmosphere makes the prediction of atmospheric rivers at subseasonal-to-seasonal (S2S) timescales ( 2 to 6 weeks) an inherently difficult task. We demonstrate here that the potential exists to advance forecast lead times of atmospheric rivers into S2S timescales through knowledge of two of the atmosphere's most prominent oscillations; the Madden-Julian oscillation (MJO) and the Quasi-biennial oscillation (QBO). The dynamical relationship between atmospheric rivers, the MJO and the QBO is hypothesized to occur through modulation of North Pacific blocking. We present an empirical prediction scheme for anomalous atmospheric river activity based solely on the MJO and QBO and demonstrate skillful subseasonal "forecasts of opportunity" 5+ weeks ahead. We conclude with a discussion of the ability of state-of-the-art NWP models to predict atmospheric river characteristics on S2S timescales. With the wide-ranging impacts associated with landfalling atmospheric rivers, even modest gains in the subseasonal prediction of anomalous atmospheric river activity may support early action decision making and benefit numerous sectors of society.
Oman metamorphic sole formation reveals early subduction dynamics
NASA Astrophysics Data System (ADS)
Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Plunder, Alexis; Ildefonse, Benoît; Yamato, Philippe; Prigent, Cécile
2016-04-01
Metamorphic soles correspond to m to ~500m thick tectonic slices welded beneath most of the large-scale ophiolites. They typically show a steep inverted metamorphic structure where the pressure and temperature conditions of crystallization increase upward (from 500±100°C at 0.5±0.2 GPa to 800±100°C at 1.0±0.2 GPa), with isograds subparallel to the contact with the overlying ophiolitic peridotite. The proportion of mafic rocks in metamorphic soles also increases from the bottom (meta-sediments rich) to the top (approaching the ophiolite peridotites). These soles are interpreted as the result of heat transfer from the incipient mantle wedge toward the nascent slab (associated with large-scale fluid transfer and possible shear heating) during the first My of intra-oceanic subduction (as indicated by radiometric ages). Metamorphic soles provide therefore major constraints on early subduction dynamics (i.e., thermal structure, fluid migration and rheology along the nascent slab interface). We present a detailed structural and petrological study of the metamorphic sole from 4 major cross-sections along the Oman ophiolite. We show precise pressure-temperature estimates obtained by pseudosection modelling and EBSD measurements performed on both the garnet-bearing and garnet-free high-grade sole. Results allow quantification of the micro-scale deformation and highlight differences in pressure-temperature-deformation conditions between the 4 different locations, showing that the inverted metamorphic gradient through the sole is not continuous in all locations. Based on these new constraints, we suggest a new tectonic-petrological model for the formation of metamorphic soles below ophiolites. This model involves the stacking of several homogeneous slivers of oceanic crust leading to the present-day structure of the sole. In this view, these thrusts are the result of rheological contrasts between the sole and the peridotite as the plate interface progressively cools down. These slivers later underwent several stages of retrogression (partly mediated by ascending fluids from the slab) from amphibolite- to prehnite/pumpellite-facies conditions.
van der Put, Claudia E
2014-06-01
Estimating the risk for recidivism is important for many areas of the criminal justice system. In the present study, the Youth Actuarial Risk Assessment Tool (Y-ARAT) was developed for juvenile offenders based solely on police records, with the aim to estimate the risk of general recidivism among large groups of juvenile offenders by police officers without clinical expertise. On the basis of the Y-ARAT, juvenile offenders are classified into five risk groups based on (combinations of) 10 variables including different types of incidents in which the juvenile was a suspect, total number of incidents in which the juvenile was a suspect, total number of other incidents, total number of incidents in which co-occupants at the youth's address were suspects, gender, and age at first incident. The Y-ARAT was developed on a sample of 2,501 juvenile offenders and validated on another sample of 2,499 juvenile offenders, showing moderate predictive accuracy (area under the receiver-operating-characteristic curve = .73), with little variation between the construction and validation sample. The predictive accuracy of the Y-ARAT was considered sufficient to justify its use as a screening instrument for the police. © The Author(s) 2013.
Fechner, Hanna B; Pachur, Thorsten; Schooler, Lael J; Mehlhorn, Katja; Battal, Ceren; Volz, Kirsten G; Borst, Jelmer P
2016-12-01
How do people use memories to make inferences about real-world objects? We tested three strategies based on predicted patterns of response times and blood-oxygen-level-dependent (BOLD) responses: one strategy that relies solely on recognition memory, a second that retrieves additional knowledge, and a third, lexicographic (i.e., sequential) strategy, that considers knowledge conditionally on the evidence obtained from recognition memory. We implemented the strategies as computational models within the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture, which allowed us to derive behavioral and neural predictions that we then compared to the results of a functional magnetic resonance imaging (fMRI) study in which participants inferred which of two cities is larger. Overall, versions of the lexicographic strategy, according to which knowledge about many but not all alternatives is searched, provided the best account of the joint patterns of response times and BOLD responses. These results provide insights into the interplay between recognition and additional knowledge in memory, hinting at an adaptive use of these two sources of information in decision making. The results highlight the usefulness of implementing models of decision making within a cognitive architecture to derive predictions on the behavioral and neural level. Copyright © 2016 Elsevier B.V. All rights reserved.
Salehi, Mehraveh; Karbasi, Amin; Shen, Xilin; Scheinost, Dustin; Constable, R. Todd
2018-01-01
Recent work with functional connectivity data has led to significant progress in understanding the functional organization of the brain. While the majority of the literature has focused on group-level parcellation approaches, there is ample evidence that the brain varies in both structure and function across individuals. In this work, we introduce a parcellation technique that incorporates delineation of functional networks both at the individual- and group-level. The proposed technique deploys the notion of “submodularity” to jointly parcellate the cerebral cortex while establishing an inclusive correspondence between the individualized functional networks. Using this parcellation technique, we successfully established a cross-validated predictive model that predicts individuals’ sex, solely based on the parcellation schemes (i.e. the node-to-network assignment vectors). The sex prediction finding illustrates that individualized parcellation of functional networks can reveal subgroups in a population and suggests that the use of a global network parcellation may overlook fundamental differences in network organization. This is a particularly important point to consider in studies comparing patients versus controls or even patient subgroups. Network organization may differ between individuals and global configurations should not be assumed. This approach to the individualized study of functional organization in the brain has many implications for both neuroscience and clinical applications. PMID:28882628
Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs
NASA Astrophysics Data System (ADS)
Aksoy, A.; Yuzugullu, O.
2017-12-01
Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.
Alternative evaluation metrics for risk adjustment methods.
Park, Sungchul; Basu, Anirban
2018-06-01
Risk adjustment is instituted to counter risk selection by accurately equating payments with expected expenditures. Traditional risk-adjustment methods are designed to estimate accurate payments at the group level. However, this generates residual risks at the individual level, especially for high-expenditure individuals, thereby inducing health plans to avoid those with high residual risks. To identify an optimal risk-adjustment method, we perform a comprehensive comparison of prediction accuracies at the group level, at the tail distributions, and at the individual level across 19 estimators: 9 parametric regression, 7 machine learning, and 3 distributional estimators. Using the 2013-2014 MarketScan database, we find that no one estimator performs best in all prediction accuracies. Generally, machine learning and distribution-based estimators achieve higher group-level prediction accuracy than parametric regression estimators. However, parametric regression estimators show higher tail distribution prediction accuracy and individual-level prediction accuracy, especially at the tails of the distribution. This suggests that there is a trade-off in selecting an appropriate risk-adjustment method between estimating accurate payments at the group level and lower residual risks at the individual level. Our results indicate that an optimal method cannot be determined solely on the basis of statistical metrics but rather needs to account for simulating plans' risk selective behaviors. Copyright © 2018 John Wiley & Sons, Ltd.
The Change in Oceanic O2 Inventory Associated with Recent Global Warming
NASA Technical Reports Server (NTRS)
Keeling, Ralph; Garcia, Hernan
2002-01-01
Oceans general circulation models predict that global warming may cause a decrease in the oceanic O2 inventory and an associated O2 outgassing. An independent argument is presented here in support of this prediction based on observational evidence of the ocean's biogeochemical response to natural warming. On time scales from seasonal to centennial, natural O2 flux/heat flux ratios are shown to occur in a range of 2 to 10 nmol O2 per Joule of warming, with larger ratios typically occurring at higher latitudes and over longer time scales. The ratios are several times larger than would be expected solely from the effect of heating on the O2 solubility, indicating that most of the O2 exchange is biologically mediated through links between heating and stratification. The change in oceanic O2 inventory through the 1990's is estimated to be 0.3 - 0.4 x 10(exp 14) mol O2 per year based on scaling the observed anomalous long-term ocean warming by natural O2 flux/heating ratios and allowing for uncertainty due to decadal variability. Implications are discussed for carbon budgets based on observed changes in atmospheric O2/N2 ratio and based on observed changes in ocean dissolved inorganic carbon.
A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data
Li, Pengfei; Li, Yan; Guo, Xiucheng
2014-01-01
The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems. PMID:25435870
NASA Astrophysics Data System (ADS)
Limbach, P.; Müller, T.; Skoda, R.
2015-12-01
Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model.
Li, Pengfei; Li, Yan; Guo, Xiucheng
2014-01-01
The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.
NASA Astrophysics Data System (ADS)
Junker, Philipp; Hackl, Klaus
2016-09-01
Numerical simulations are a powerful tool to analyze the complex thermo-mechanically coupled material behavior of shape memory alloys during product engineering. The benefit of the simulations strongly depends on the quality of the underlying material model. In this contribution, we discuss a variational approach which is based solely on energetic considerations and demonstrate that unique calibration of such a model is sufficient to predict the material behavior at varying ambient temperature. In the beginning, we recall the necessary equations of the material model and explain the fundamental idea. Afterwards, we focus on the numerical implementation and provide all information that is needed for programing. Then, we show two different ways to calibrate the model and discuss the results. Furthermore, we show how this model is used during real-life industrial product engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paini, Alicia, E-mail: alicia.paini@rdls.nestle.co; Nestle Research Center, PO Box 44, Lausanne; Punt, Ans
2010-05-15
Estragole has been shown to be hepatocarcinogenic in rodent species at high-dose levels. Translation of these results into the likelihood of formation of DNA adducts, mutation, and ultimately cancer upon more realistic low-dose exposures remains a challenge. Recently we have developed physiologically based biokinetic (PBBK) models for rat and human predicting bioactivation of estragole. These PBBK models, however, predict only kinetic characteristics. The present study describes the extension of the PBBK model to a so-called physiologically based biodynamic (PBBD) model predicting in vivo DNA adduct formation of estragole in rat liver. This PBBD model was developed using in vitro datamore » on DNA adduct formation in rat primary hepatocytes exposed to 1'-hydroxyestragole. The model was extended by linking the area under the curve for 1'-hydroxyestragole formation predicted by the PBBK model to the area under the curve for 1'-hydroxyestragole in the in vitro experiments. The outcome of the PBBD model revealed a linear increase in DNA adduct formation with increasing estragole doses up to 100 mg/kg bw. Although DNA adduct formation of genotoxic carcinogens is generally seen as a biomarker of exposure rather than a biomarker of response, the PBBD model now developed is one step closer to the ultimate toxic effect of estragole than the PBBK model described previously. Comparison of the PBBD model outcome to available data showed that the model adequately predicts the dose-dependent level of DNA adduct formation. The PBBD model predicts DNA adduct formation at low levels of exposure up to a dose level showing to cause cancer in rodent bioassays, providing a proof of principle for modeling a toxicodynamic in vivo endpoint on the basis of solely in vitro experimental data.« less
BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS.
Hoff, Katharina J; Lange, Simone; Lomsadze, Alexandre; Borodovsky, Mark; Stanke, Mario
2016-03-01
Gene finding in eukaryotic genomes is notoriously difficult to automate. The task is to design a work flow with a minimal set of tools that would reach state-of-the-art performance across a wide range of species. GeneMark-ET is a gene prediction tool that incorporates RNA-Seq data into unsupervised training and subsequently generates ab initio gene predictions. AUGUSTUS is a gene finder that usually requires supervised training and uses information from RNA-Seq reads in the prediction step. Complementary strengths of GeneMark-ET and AUGUSTUS provided motivation for designing a new combined tool for automatic gene prediction. We present BRAKER1, a pipeline for unsupervised RNA-Seq-based genome annotation that combines the advantages of GeneMark-ET and AUGUSTUS. As input, BRAKER1 requires a genome assembly file and a file in bam-format with spliced alignments of RNA-Seq reads to the genome. First, GeneMark-ET performs iterative training and generates initial gene structures. Second, AUGUSTUS uses predicted genes for training and then integrates RNA-Seq read information into final gene predictions. In our experiments, we observed that BRAKER1 was more accurate than MAKER2 when it is using RNA-Seq as sole source for training and prediction. BRAKER1 does not require pre-trained parameters or a separate expert-prepared training step. BRAKER1 is available for download at http://bioinf.uni-greifswald.de/bioinf/braker/ and http://exon.gatech.edu/GeneMark/ katharina.hoff@uni-greifswald.de or borodovsky@gatech.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Hurtado, C.; Bailey, C.; Visokay, L.; Scharf, A.
2017-12-01
The Semail ophiolite is the world's largest and best-exposed ophiolite sequence, however the processes associated with both oceanic detachment and later emplacement onto the Arabian continental margin remain enigmatic. This study examines the upper mantle section of the ophiolite, its associated metamorphic sole, and the autochthonous strata beneath the ophiolite at two locations in northern Oman. Our purpose is to understand the structural history of ophiolite emplacement and evaluate the deformation kinematics of faulted and sheared rocks in the metamorphic sole. At Wadi Hawasina, the base of the ophiolite is defined by a 5- to 15-m thick zone of penetratively-serpentinized mylonitic peridotite. Kinematic indicators record top-to-the SW (reverse) sense-of-shear with a triclinic deformation asymmetry. An inverted metamorphic grade is preserved in the 300- to 500-m thick metamorphic sole that is thrust over deep-water sedimentary rocks of the Hawasina Group. The study site near Buwah, in the northern Jebel Nakhl culmination, contains a N-to-S progression of mantle peridotite, metamorphic sole, and underlying Jurassic carbonates. Liswanite crops out in NW-SE trending linear ridges in the peridotite. The metamorphic sole includes well-foliated quartzite, metachert, and amphibolite. Kinematic evidence indicates that the liswanite and a serpentinized mélange experienced top to-the north (normal) sense-of-shear. Two generations of E-W striking, N-dipping normal faults separate the autochthonous sequence from the metamorphic sole, and also cut out significant sections of the metamorphic sole. Fabric analysis reveals that the metamorphic sole experienced flattening strain (K<0.2) that accumulated during pure shear-dominated general shear (Wk<0.4). Normal faulting and extension at the Buwah site indicates that post-ophiolite deformation is significant in the Jebel Akhdar and Jebel Nakhl culminations.
The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation
NASA Astrophysics Data System (ADS)
Dumbović, Mateja; Čalogović, Jaša; Vršnak, Bojan; Temmer, Manuela; Mays, M. Leila; Veronig, Astrid; Piantschitsch, Isabell
2018-02-01
The drag-based model for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model that can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagation of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, the drag-based ensemble model (DBEM), that covers ensemble modeling to produce a distribution of possible ICME arrival times and speeds. Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties, and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is ME = ‑9.7 hr, mean absolute error MAE = 14.3 hr, and root mean square error RMSE = 16.7 hr, which is somewhat higher than, but comparable to ENLIL errors (ME = ‑6.1 hr, MAE = 12.8 hr and RMSE = 14.4 hr). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most likely owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.
Establishment of a cell-based wound healing assay for bio-relevant testing of wound therapeutics.
Planz, Viktoria; Wang, Jing; Windbergs, Maike
Predictive in vitro testing of novel wound therapeutics requires adequate cell-based bio-assays. Such assays represent an integral part during preclinical development as pre-step before entering in vivo studies. Simple "scratch tests" based on defected skin cell monolayers exist, however these can solely be used for testing liquids, as cell monolayer destruction and excessive hydration limit their applicability for (semi-)solid systems like wound dressings. In this context, a cell-based wound healing assay is introduced for rapid and predictive testing of wound therapeutics independent of their physical state in a bio-relevant environment. A novel wound healing assay was established for bio-relevant and predictive testing of (semi-) solid wound therapeutics. The assay allows for physiologically relevant hydration of the tested wound therapeutics at the air-liquid interface and their removal without cell monolayer disruption. In a proof-of-concept study, the applicability and discriminative power could be demonstrated by examining unloaded and drug-loaded wound dressings with two different established wound healing actives (dexpanthenol and metyrapone) and their effect on skin cell behavior. The influence of the released drug on the cells´ healing behavior could successfully be monitored over time. Wound size assessment after 96h resulted in an eight fold smaller wound area for drug treated models compared to the ones treated with unloaded fibers and non-treated wounds. This assay provides valuable first insights towards the establishment of a valid screening and evaluation tool for preclinical wound therapeutic development from liquid to (semi-)solid systems to improve predictability in a simple, yet standardized way. Copyright © 2017 Elsevier Inc. All rights reserved.
2014-01-01
Background While the neural and mechanical effects of whole nerve cutaneous stimulation on human locomotion have been previously studied, there is less information about effects evoked by activation of discrete skin regions on the sole of the foot. Electrical stimulation of discrete foot regions evokes position-modulated patterns of cutaneous reflexes in muscles acting at the ankle during standing but data during walking are lacking. Here, non-noxious electrical stimulation was delivered to five discrete locations on the sole of the foot (heel, and medial and lateral sites on the midfoot and forefoot) during treadmill walking. EMG activity from muscles acting at the hip, knee and ankle were recorded along with movement at these three joints. Additionally, 3 force sensing resistors measuring continuous force changes were placed at the heel, and the medial and lateral aspects of the right foot sole. All data were sorted based on stimulus occurrence in twelve step-cycle phases, before being averaged together within a phase for subsequent analysis. Methods Non-noxious electrical stimulation was delivered to five discrete locations on the sole of the foot (heel, and medial and lateral sites on the midfoot and forefoot) during treadmill walking. EMG activity from muscles acting at the hip, knee and ankle were recorded along with movement at these three joints. Additionally, 3 force sensing resistors measuring continuous force changes were placed at the heel, and the medial and lateral aspects of the right foot sole. All data were sorted based on stimulus occurrence in twelve step-cycle phases, before being averaged together within a phase for subsequent analysis. Results The results demonstrate statistically significant dynamic changes in reflex amplitudes, kinematics and foot sole pressures that are site-specific and phase-dependent. The general trends demonstrate responses producing decreased underfoot pressure at the site of stimulation. Conclusions The responses to stimulation of discrete locations on the foot sole evoke a kind of “sensory steering” that may promote balance and maintenance of locomotion through the modulation of limb loading and foot placement. These results have implications for using sensory stimulation as a therapeutic modality during gait retraining (e.g. after stroke) as well as for footwear design and implementation of foot sole contact surfaces during gait. PMID:25202452
Cunningham, Albert R.; Trent, John O.
2012-01-01
Structure–activity relationship (SAR) models are powerful tools to investigate the mechanisms of action of chemical carcinogens and to predict the potential carcinogenicity of untested compounds. We describe the use of a traditional fragment-based SAR approach along with a new virtual ligand-protein interaction-based approach for modeling of nonmutagenic carcinogens. The ligand-based SAR models used descriptors derived from computationally calculated ligand-binding affinities for learning set agents to 5495 proteins. Two learning sets were developed. One set was from the Carcinogenic Potency Database, where chemicals tested for rat carcinogenesis along with Salmonella mutagenicity data were provided. The second was from Malacarne et al. who developed a learning set of nonalerting compounds based on rodent cancer bioassay data and Ashby’s structural alerts. When the rat cancer models were categorized based on mutagenicity, the traditional fragment model outperformed the ligand-based model. However, when the learning sets were composed solely of nonmutagenic or nonalerting carcinogens and noncarcinogens, the fragment model demonstrated a concordance of near 50%, whereas the ligand-based models demonstrated a concordance of 71% for nonmutagenic carcinogens and 74% for nonalerting carcinogens. Overall, these findings suggest that expert system analysis of virtual chemical protein interactions may be useful for developing predictive SAR models for nonmutagenic carcinogens. Moreover, a more practical approach for developing SAR models for carcinogenesis may include fragment-based models for chemicals testing positive for mutagenicity and ligand-based models for chemicals devoid of DNA reactivity. PMID:22678118
Cunningham, Albert R; Carrasquer, C Alex; Qamar, Shahid; Maguire, Jon M; Cunningham, Suzanne L; Trent, John O
2012-10-01
Structure-activity relationship (SAR) models are powerful tools to investigate the mechanisms of action of chemical carcinogens and to predict the potential carcinogenicity of untested compounds. We describe the use of a traditional fragment-based SAR approach along with a new virtual ligand-protein interaction-based approach for modeling of nonmutagenic carcinogens. The ligand-based SAR models used descriptors derived from computationally calculated ligand-binding affinities for learning set agents to 5495 proteins. Two learning sets were developed. One set was from the Carcinogenic Potency Database, where chemicals tested for rat carcinogenesis along with Salmonella mutagenicity data were provided. The second was from Malacarne et al. who developed a learning set of nonalerting compounds based on rodent cancer bioassay data and Ashby's structural alerts. When the rat cancer models were categorized based on mutagenicity, the traditional fragment model outperformed the ligand-based model. However, when the learning sets were composed solely of nonmutagenic or nonalerting carcinogens and noncarcinogens, the fragment model demonstrated a concordance of near 50%, whereas the ligand-based models demonstrated a concordance of 71% for nonmutagenic carcinogens and 74% for nonalerting carcinogens. Overall, these findings suggest that expert system analysis of virtual chemical protein interactions may be useful for developing predictive SAR models for nonmutagenic carcinogens. Moreover, a more practical approach for developing SAR models for carcinogenesis may include fragment-based models for chemicals testing positive for mutagenicity and ligand-based models for chemicals devoid of DNA reactivity.
NASA Astrophysics Data System (ADS)
Rioux, Matthew; Garber, Joshua; Bauer, Ann; Bowring, Samuel; Searle, Michael; Kelemen, Peter; Hacker, Bradley
2016-10-01
The Semail (Oman-United Arab Emirates) and other Tethyan-type ophiolites are underlain by a sole consisting of greenschist- to granulite-facies metamorphic rocks. As preserved remnants of the underthrust plate, sole exposures can be used to better understand the formation and obduction of ophiolites. Early models envisioned that the metamorphic sole of the Semail ophiolite formed as a result of thrusting of the hot ophiolite lithosphere over adjacent oceanic crust during initial emplacement; however, calculated pressures from granulite-facies mineral assemblages in the sole suggest the metamorphic rocks formed at >35 km depth, and are too high to be explained by the currently preserved thickness of ophiolite crust and mantle (up to 15-20 km). We have used high-precision U-Pb zircon dating to study the formation and evolution of the metamorphic sole at two well-studied localities. Our previous research and new results show that the ophiolite crust formed from 96.12-95.50 Ma. Our new dates from the Sumeini and Wadi Tayin sole localities indicate peak metamorphism at 96.16 and 94.82 Ma (±0.022 to 0.035 Ma), respectively. The dates from the Sumeini sole locality show for the first time that the metamorphic rocks formed either prior to or during formation of the ophiolite crust, and were later juxtaposed with the base of the ophiolite. These data, combined with existing geochemical constraints, are best explained by formation of the ophiolite in a supra-subduction zone setting, with metamorphism of the sole rocks occurring in a subducted slab. The 1.3 Ma difference between the Wadi Tayin and Sumeini dates indicates that, in contrast to current models, the highest-grade rocks at different sole localities underwent metamorphism, and may have returned up the subduction channel, at different times.
Ectotherm thermal stress and specialization across altitude and latitude.
Buckley, Lauren B; Miller, Ethan F; Kingsolver, Joel G
2013-10-01
Gradients of air temperature, radiation, and other climatic factors change systematically but differently with altitude and latitude. We explore how these factors combine to produce altitudinal and latitudinal patterns of body temperature, thermal stress, and seasonal overlap that differ markedly from patterns based solely on air temperature. We use biophysical models to estimate body temperature as a function of an organism's phenotype and environmental conditions (air and surface temperatures and radiation). Using grasshoppers as a case study, we compare mean body temperatures and the incidence of thermal extremes along altitudinal gradients both under past and current climates. Organisms at high elevation can experience frequent thermal stress despite generally cooler air temperatures due to high levels of solar radiation. Incidences of thermal stress have increased more rapidly than have increases in mean conditions due to recent climate change. Increases in air temperature have coincided with shifts in cloudiness and solar radiation, which can exacerbate shifts in body temperature. We compare altitudinal thermal gradients and their seasonality between tropical and temperate mountains to ask whether mountain passes pose a greater physiological barrier in the tropics (Janzen's hypothesis). We find that considering body temperature rather than air temperature generally increases the amount of overlap in thermal conditions along gradients in elevation and thus decreases the physiological barrier posed by tropical mountains. Our analysis highlights the limitations of predicting thermal stress based solely on air temperatures, and the importance of considering how phenotypes influence body temperatures.
Speech Errors across the Lifespan
ERIC Educational Resources Information Center
Vousden, Janet I.; Maylor, Elizabeth A.
2006-01-01
Dell, Burger, and Svec (1997) proposed that the proportion of speech errors classified as anticipations (e.g., "moot and mouth") can be predicted solely from the overall error rate, such that the greater the error rate, the lower the anticipatory proportion (AP) of errors. We report a study examining whether this effect applies to changes in error…
Bernecker, Samantha L; Rosellini, Anthony J; Nock, Matthew K; Chiu, Wai Tat; Gutierrez, Peter M; Hwang, Irving; Joiner, Thomas E; Naifeh, James A; Sampson, Nancy A; Zaslavsky, Alan M; Stein, Murray B; Ursano, Robert J; Kessler, Ronald C
2018-04-03
High rates of mental disorders, suicidality, and interpersonal violence early in the military career have raised interest in implementing preventive interventions with high-risk new enlistees. The Army Study to Assess Risk and Resilience in Servicemembers (STARRS) developed risk-targeting systems for these outcomes based on machine learning methods using administrative data predictors. However, administrative data omit many risk factors, raising the question whether risk targeting could be improved by adding self-report survey data to prediction models. If so, the Army may gain from routinely administering surveys that assess additional risk factors. The STARRS New Soldier Survey was administered to 21,790 Regular Army soldiers who agreed to have survey data linked to administrative records. As reported previously, machine learning models using administrative data as predictors found that small proportions of high-risk soldiers accounted for high proportions of negative outcomes. Other machine learning models using self-report survey data as predictors were developed previously for three of these outcomes: major physical violence and sexual violence perpetration among men and sexual violence victimization among women. Here we examined the extent to which this survey information increases prediction accuracy, over models based solely on administrative data, for those three outcomes. We used discrete-time survival analysis to estimate a series of models predicting first occurrence, assessing how model fit improved and concentration of risk increased when adding the predicted risk score based on survey data to the predicted risk score based on administrative data. The addition of survey data improved prediction significantly for all outcomes. In the most extreme case, the percentage of reported sexual violence victimization among the 5% of female soldiers with highest predicted risk increased from 17.5% using only administrative predictors to 29.4% adding survey predictors, a 67.9% proportional increase in prediction accuracy. Other proportional increases in concentration of risk ranged from 4.8% to 49.5% (median = 26.0%). Data from an ongoing New Soldier Survey could substantially improve accuracy of risk models compared to models based exclusively on administrative predictors. Depending upon the characteristics of interventions used, the increase in targeting accuracy from survey data might offset survey administration costs.
Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana
2013-10-30
In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.
The Valec fireball and predicted meteorite fall
NASA Technical Reports Server (NTRS)
Ceplecha, Z.; Spurny, P.
1987-01-01
A fireball was photographed with a luminous trajectory below a height of 20 km. On Aug. 3, 1984, seven stations photographed this slow moving fireball, which traversed 94 km of luminous trajectory in 9.2 sec and terminated its visible flight at a height of 19.1 km. The computed dark flight trajectory intersected the surface close to Valec, a small village 40 km west of Brno. The Valec fireball was the lowest photographed fireball ever. The Valec fireball was photographed by fish eye cameras. The positional precision of all the records were within the range of 1 to 2 minutes of arc. All computations were done using the FIRBAL program, a set of almost 4000 Fortran statements run on EC 1040 computer. The average computed mass at the terminal point, i.e., the predicted mass of the biggest meteorite, was 16 kg. This number is based on the dynamical data at the terminal point solely. Visual data was also collected from occasional observers. This observed phenomenon is discussed.
Colunga, Eliana; Sims, Clare E
2017-02-01
In typical development, word learning goes from slow and laborious to fast and seemingly effortless. Typically developing 2-year-olds seem to intuit the whole range of things in a category from hearing a single instance named-they have word-learning biases. This is not the case for children with relatively small vocabularies (late talkers). We present a computational model that accounts for the emergence of word-learning biases in children at both ends of the vocabulary spectrum based solely on vocabulary structure. The results of Experiment 1 show that late-talkers' and early-talkers' noun vocabularies have different structures and that neural networks trained on the vocabularies of individual late talkers acquire different word-learning biases than those trained on early-talker vocabularies. These models make novel predictions about the word-learning biases in these two populations. Experiment 2 tests these predictions on late- and early-talking toddlers in a novel noun generalization task. Copyright © 2016 Cognitive Science Society, Inc.
Biomechanical analysis on fracture risk associated with bone deformity
NASA Astrophysics Data System (ADS)
Kamal, Nur Amalina Nadiah Mustafa; Som, Mohd Hanafi Mat; Basaruddin, Khairul Salleh; Daud, Ruslizam
2017-09-01
Osteogenesis Imperfecta (OI) is a disease related to bone deformity and is also known as `brittle bone' disease. Currently, medical personnel predict the bone fracture solely based on their experience. In this study, the prediction for risk of fracture was carried out by using finite element analysis on the simulated OI bone of femur. The main objective of this research was to analyze the fracture risk of OI-affected bone with respect to various loadings. A total of 12 models of OI bone were developed by applying four load cases and the angle of deformation for each of the models was calculated. The models were differentiated into four groups, namely standard, light, mild and severe. The results show that only a small amount of load is required to increase the fracture risk of the bone when the model is tested with hopping conditions. The analysis also shows that the torsional load gives a small effect to the increase of the fracture risk of the bone.
NASA Astrophysics Data System (ADS)
Blum, David Arthur
Algae biodiesel is the sole sustainable and abundant transportation fuel source that can replace petrol diesel use; however, high competition and economic uncertainties exist, influencing independent venture capital decision making. Technology, market, management, and government action uncertainties influence competition and economic uncertainties in the venture capital industry. The purpose of this qualitative case study was to identify the best practice skills at IVC firms to predict uncertainty between early and late funding stages. The basis of the study was real options theory, a framework used to evaluate and understand the economic and competition uncertainties inherent in natural resource investment and energy derived from plant-based oils. Data were collected from interviews of 24 venture capital partners based in the United States who invest in algae and other renewable energy solutions. Data were analyzed by coding and theme development interwoven with the conceptual framework. Eight themes emerged: (a) expected returns model, (b) due diligence, (c) invest in specific sectors, (d) reduced uncertainty-late stage, (e) coopetition, (f) portfolio firm relationships, (g) differentiation strategy, and (h) modeling uncertainty and best practice. The most noteworthy finding was that predicting uncertainty at the early stage was impractical; at the expansion and late funding stages, however, predicting uncertainty was possible. The implications of these findings will affect social change by providing independent venture capitalists with best practice skills to increase successful exits, lessen uncertainty, and encourage increased funding of renewable energy firms, contributing to cleaner and healthier communities throughout the United States..
Debris flow runup on vertical barriers and adverse slopes
Iverson, Richard M.; George, David L.; Logan, Matthew
2016-01-01
Runup of debris flows against obstacles in their paths is a complex process that involves profound flow deceleration and redirection. We investigate the dynamics and predictability of runup by comparing results from large-scale laboratory experiments, four simple analytical models, and a depth-integrated numerical model (D-Claw). The experiments and numerical simulations reveal the important influence of unsteady, multidimensional flow on runup, and the analytical models highlight key aspects of the underlying physics. Runup against a vertical barrier normal to the flow path is dominated by rapid development of a shock, or jump in flow height, associated with abrupt deceleration of the flow front. By contrast, runup on sloping obstacles is initially dominated by a smooth flux of mass and momentum from the flow body to the flow front, which precedes shock development and commonly increases the runup height. D-Claw simulations that account for the emergence of shocks show that predicted runup heights vary systematically with the adverse slope angle and also with the Froude number and degree of liquefaction (or effective basal friction) of incoming flows. They additionally clarify the strengths and limitations of simplified analytical models. Numerical simulations based on a priori knowledge of the evolving dynamics of incoming flows yield quite accurate runup predictions. Less predictive accuracy is attained in ab initio simulations that compute runup based solely on knowledge of static debris properties in a distant debris flow source area. Nevertheless, the paucity of inputs required in ab initio simulations enhances their prospective value in runup forecasting.
The implications of the COBE diffuse microwave radiation results for cosmic strings
NASA Technical Reports Server (NTRS)
Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.
1992-01-01
We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.
Reecht, Y; Rochet, M-J; Trenkel, V M; Jennings, S; Pinnegar, J K
2013-08-01
An ecomorphological method was developed, with a focus on predation functions, to define functional groups in the Celtic Sea fish community. Eleven functional traits, measured for 930 individuals from 33 species, led to 11 functional groups. Membership of functional groups was linked to body size and taxonomy. For seven species, there were ontogenetic changes in group membership. When diet composition, expressed as the proportions of different prey types recorded in stomachs, was compared among functional groups, morphology-based predictions accounted for 28-56% of the interindividual variance in prey type. This was larger than the 12-24% of variance that could be explained solely on the basis of body size. © 2013 The Fisheries Society of the British Isles.
Towards surface analysis on diabetic feet soles to predict ulcerations using photometric stereo
NASA Astrophysics Data System (ADS)
Liu, Chanjuan; van der Heijden, Ferdi; van Netten, Jaap J.
2012-03-01
Diabetic foot ulceration is a major complication for patients with diabetes mellitus. Approximately 15% to 25% of patients with Type I and Type II diabetes eventually develop feet ulcers. If not adequately treated, these ulcers may lead to foot infection, and ultimately to total (or partial) lower extremity amputation, which means a great loss in health-related quality of life. The incidence of foot ulcers may be prevented by early identification and subsequent treatment of pre-signs of ulceration, such as callus formation, redness, fissures, and blisters. Therefore, frequent examination of the feet is necessary, preferably on a daily basis. However, self-examination is difficult or impossible due to consequences of the diabetes. Moreover, frequent examination by health care professionals is costly and not feasible. The objective of our project is to develop an intelligent telemedicine monitoring system that can be deployed at the patients' home environment for frequent examination of patients feet, to timely detect pre-signs of ulceration. The current paper reports the preliminary results of an implementation of a photometric stereo imaging system to detect 3D geometric abnormalities of the skin surfaces of foot soles. Using a flexible experimental setup, the system parameters such as number and positions of the illuminators have been selected so as to optimize the performance with respect to reconstructed surface. The system has been applied to a dummy foot sole. Finally, the curvature on the resulting 3D topography of the foot sole is implemented to show the feasibility of detecting the pre-signs of ulceration using photometric stereo imaging. The obtained results indicate clinical potential of this technology for detecting the pre-signs of ulceration on diabetic feet soles.
Lee, Ciaran M; Davis, Timothy H; Bao, Gang
2018-04-01
What is the topic of this review? In this review, we analyse the performance of recently described tools for CRISPR/Cas9 guide RNA design, in particular, design tools that predict CRISPR/Cas9 activity. What advances does it highlight? Recently, many tools designed to predict CRISPR/Cas9 activity have been reported. However, the majority of these tools lack experimental validation. Our analyses indicate that these tools have poor predictive power. Our preliminary results suggest that target site accessibility should be considered in order to develop better guide RNA design tools with improved predictive power. The recent adaptation of the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system for targeted genome engineering has led to its widespread application in many fields worldwide. In order to gain a better understanding of the design rules of CRISPR/Cas9 systems, several groups have carried out large library-based screens leading to some insight into sequence preferences among highly active target sites. To facilitate CRISPR/Cas9 design, these studies have spawned a plethora of guide RNA (gRNA) design tools with algorithms based solely on direct or indirect sequence features. Here, we demonstrate that the predictive power of these tools is poor, suggesting that sequence features alone cannot accurately inform the cutting efficiency of a particular CRISPR/Cas9 gRNA design. Furthermore, we demonstrate that DNA target site accessibility influences the activity of CRISPR/Cas9. With further optimization, we hypothesize that it will be possible to increase the predictive power of gRNA design tools by including both sequence and target site accessibility metrics. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Austin, Peter C; Walraven, Carl van
2011-10-01
Logistic regression models that incorporated age, sex, and indicator variables for the Johns Hopkins' Aggregated Diagnosis Groups (ADGs) categories have been shown to accurately predict all-cause mortality in adults. To develop 2 different point-scoring systems using the ADGs. The Mortality Risk Score (MRS) collapses age, sex, and the ADGs to a single summary score that predicts the annual risk of all-cause death in adults. The ADG Score derives weights for the individual ADG diagnosis groups. : Retrospective cohort constructed using population-based administrative data. All 10,498,413 residents of Ontario, Canada, between the age of 20 and 100 years who were alive on their birthday in 2007, participated in this study. Participants were randomly divided into derivation and validation samples. : Death within 1 year. In the derivation cohort, the MRS ranged from -21 to 139 (median value 29, IQR 17 to 44). In the validation group, a logistic regression model with the MRS as the sole predictor significantly predicted the risk of 1-year mortality with a c-statistic of 0.917. A regression model with age, sex, and the ADG Score has similar performance. Both methods accurately predicted the risk of 1-year mortality across the 20 vigintiles of risk. The MRS combined values for a person's age, sex, and the John Hopkins ADGs to accurately predict 1-year mortality in adults. The ADG Score is a weighted score representing the presence or absence of the 32 ADG diagnosis groups. These scores will facilitate health services researchers conducting risk adjustment using administrative health care databases.
The effects of changing climate on faunal depth distributions determine winners and losers.
Brown, Alastair; Thatje, Sven
2015-01-01
Changing climate is predicted to impact all depths of the global oceans, yet projections of range shifts in marine faunal distributions in response to changing climate seldom evaluate potential shifts in depth distribution. Marine ectotherms' thermal tolerance is limited by their ability to maintain aerobic metabolism (oxygen- and capacity-limited tolerance), and is functionally associated with their hypoxia tolerance. Shallow-water (<200 m depth) marine invertebrates and fishes demonstrate limited tolerance of increasing hydrostatic pressure (pressure exerted by the overlying mass of water), and hyperbaric (increased pressure) tolerance is proposed to depend on the ability to maintain aerobic metabolism, too. Here, we report significant correlation between the hypoxia thresholds and the hyperbaric thresholds of taxonomic groups of shallow-water fauna, suggesting that pressure tolerance is indeed oxygen limited. Consequently, it appears that the combined effects of temperature, pressure and oxygen concentration constrain the fundamental ecological niches (FENs) of marine invertebrates and fishes. Including depth in a conceptual model of oxygen- and capacity-limited FENs' responses to ocean warming and deoxygenation confirms previous predictions made based solely on consideration of the latitudinal effects of ocean warming (e.g. Cheung et al., 2009), that polar taxa are most vulnerable to the effects of climate change, with Arctic fauna experiencing the greatest FEN contraction. In contrast, the inclusion of depth in the conceptual model reveals for the first time that temperate fauna as well as tropical fauna may experience substantial FEN expansion with ocean warming and deoxygenation, rather than FEN maintenance or contraction suggested by solely considering latitudinal range shifts. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
McGeorge, Christi R; Stone Carlson, Thomas; Farrell, Molly
2016-07-01
This study explored how negative beliefs toward lesbian, gay, and bisexual (LGB) individuals and LGB clinical competence influenced family therapists' beliefs and practices regarding referring based on the sexual orientation of the client. The sample consisted of 741 experienced clinicians. The results of this study indicated that the majority of the participants believe it is ethical to refer LGB clients; however, most had never made such a referral. Furthermore, participants who had referred based solely on the client's sexual orientation reported higher levels of negative beliefs toward LGB individuals and lower levels of LGB clinical competence. Finally, negative beliefs toward LGB persons not only predicted the practice of referring, but also the belief that it is ethical to refer an LGB client. © 2015 American Association for Marriage and Family Therapy.
NASA Technical Reports Server (NTRS)
Carpenter, J. R.; Markley, F. L.; Alfriend, K. T.; Wright, C.; Arcido, J.
2011-01-01
Sequential probability ratio tests explicitly allow decision makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models 1he null hypothesis 1ha1 the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming highly-elliptical orbit formation flying mission.
Perco, Paul; Heinzel, Andreas; Leierer, Johannes; Schneeberger, Stefan; Bösmüller, Claudia; Oberhuber, Rupert; Wagner, Silvia; Engler, Franziska; Mayer, Gert
2018-05-03
Donor organ quality affects long term outcome after renal transplantation. A variety of prognostic molecular markers is available, yet their validity often remains undetermined. A network-based molecular model reflecting donor kidney status based on transcriptomics data and molecular features reported in scientific literature to be associated with chronic allograft nephropathy was created. Significantly enriched biological processes were identified and representative markers were selected. An independent kidney pre-implantation transcriptomics dataset of 76 organs was used to predict estimated glomerular filtration rate (eGFR) values twelve months after transplantation using available clinical data and marker expression values. The best-performing regression model solely based on the clinical parameters donor age, donor gender, and recipient gender explained 17% of variance in post-transplant eGFR values. The five molecular markers EGF, CD2BP2, RALBP1, SF3B1, and DDX19B representing key molecular processes of the constructed renal donor organ status molecular model in addition to the clinical parameters significantly improved model performance (p-value = 0.0007) explaining around 33% of the variability of eGFR values twelve months after transplantation. Collectively, molecular markers reflecting donor organ status significantly add to prediction of post-transplant renal function when added to the clinical parameters donor age and gender.
Mid-term fire danger index based on satellite imagery and ancillary geographic data
NASA Astrophysics Data System (ADS)
Stefanidou, A.; Dragozi, E.; Tompoulidou, M.; Stepanidou, L.; Grigoriadis, D.; Katagis, T.; Stavrakoudis, D.; Gitas, I.
2017-09-01
Fire danger forecast constitutes one of the most important components of integrated fire management since it provides crucial information for efficient pre-fire planning, alertness and timely response to a possible fire event. The aim of this work is to develop an index that has the capability of predicting accurately fire danger on a mid-term basis. The methodology that is currently under development is based on an innovative approach that employs dry fuel spatial connectivity as well as biophysical and topological variables for the reliable prediction of fire danger. More specifically, the estimation of the dry fuel connectivity is based on a previously proposed automated procedure implemented in R software that uses Moderate Resolution Imaging Spectrometer (MODIS) time series data. Dry fuel connectivity estimates are then combined with other ancillary data such as fuel type and proximity to roads in order to result in the generation of the proposed mid-term fire danger index. The innovation of the proposed index—which will be evaluated by comparison to historical fire data—lies in the fact that its calculation is almost solely affected by the availability of satellite data. Finally, it should be noted that the index is developed within the framework of the National Observatory of Forest Fires (NOFFi) project.
Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror
Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong
2015-01-01
In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432
Yield estimation of corn with multispectral data and the potential of using imaging spectrometers
NASA Astrophysics Data System (ADS)
Bach, Heike
1997-05-01
In the frame of the special yield estimation, a regular procedure conducted for the European Union to more accurately estimate agricultural yield, a project was conducted for the state minister for Rural Environment, Food and Forestry of Baden-Wuerttemberg, Germany) to test remote sensing data with advanced yield formation models for accuracy and timelines of yield estimation of corn. The methodology employed uses field-based plant parameter estimation from atmospherically corrected multitemporal/multispectral LANDSAT-TM data. An agrometeorological plant-production-model is used for yield prediction. Based solely on 4 LANDSAT-derived estimates and daily meteorological data the grain yield of corn stands was determined for 1995. The modeled yield was compared with results independently gathered within the special yield estimation for 23 test fields in the Upper Rhine Valley. The agrement between LANDSAT-based estimates and Special Yield Estimation shows a relative error of 2.3 percent. The comparison of the results for single fields shows, that six weeks before harvest the grain yield of single corn fields was estimated with a mean relative accuracy of 13 percent using satellite information. The presented methodology can be transferred to other crops and geographical regions. For future applications hyperspectral sensors show great potential to further enhance the results or yield prediction with remote sensing.
Hoogendoorn, Mark; Szolovits, Peter; Moons, Leon M G; Numans, Mattijs E
2016-05-01
Machine learning techniques can be used to extract predictive models for diseases from electronic medical records (EMRs). However, the nature of EMRs makes it difficult to apply off-the-shelf machine learning techniques while still exploiting the rich content of the EMRs. In this paper, we explore the usage of a range of natural language processing (NLP) techniques to extract valuable predictors from uncoded consultation notes and study whether they can help to improve predictive performance. We study a number of existing techniques for the extraction of predictors from the consultation notes, namely a bag of words based approach and topic modeling. In addition, we develop a dedicated technique to match the uncoded consultation notes with a medical ontology. We apply these techniques as an extension to an existing pipeline to extract predictors from EMRs. We evaluate them in the context of predictive modeling for colorectal cancer (CRC), a disease known to be difficult to diagnose before performing an endoscopy. Our results show that we are able to extract useful information from the consultation notes. The predictive performance of the ontology-based extraction method moves significantly beyond the benchmark of age and gender alone (area under the receiver operating characteristic curve (AUC) of 0.870 versus 0.831). We also observe more accurate predictive models by adding features derived from processing the consultation notes compared to solely using coded data (AUC of 0.896 versus 0.882) although the difference is not significant. The extracted features from the notes are shown be equally predictive (i.e. there is no significant difference in performance) compared to the coded data of the consultations. It is possible to extract useful predictors from uncoded consultation notes that improve predictive performance. Techniques linking text to concepts in medical ontologies to derive these predictors are shown to perform best for predicting CRC in our EMR dataset. Copyright © 2016 Elsevier B.V. All rights reserved.
Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Mengjie; Xiao, Feng; Johnson-Paben, Rebecca
2012-01-01
The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by amore » highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.« less
Chen, Guangchao; Peijnenburg, Willie; Xiao, Yinlong; Vijver, Martina G
2017-07-12
As listed by the European Chemicals Agency, the three elements in evaluating the hazards of engineered nanomaterials (ENMs) include the integration and evaluation of toxicity data, categorization and labeling of ENMs, and derivation of hazard threshold levels for human health and the environment. Assessing the hazards of ENMs solely based on laboratory tests is time-consuming, resource intensive, and constrained by ethical considerations. The adoption of computational toxicology into this task has recently become a priority. Alternative approaches such as (quantitative) structure-activity relationships ((Q)SAR) and read-across are of significant help in predicting nanotoxicity and filling data gaps, and in classifying the hazards of ENMs to individual species. Thereupon, the species sensitivity distribution (SSD) approach is able to serve the establishment of ENM hazard thresholds sufficiently protecting the ecosystem. This article critically reviews the current knowledge on the development of in silico models in predicting and classifying the hazard of metallic ENMs, and the development of SSDs for metallic ENMs. Further discussion includes the significance of well-curated experimental datasets and the interpretation of toxicity mechanisms of metallic ENMs based on reported models. An outlook is also given on future directions of research in this frontier.
NASA Astrophysics Data System (ADS)
Colomo-Palacios, Ricardo; Jiménez-López, Diego; García-Crespo, Ángel; Blanco-Iglesias, Borja
eLearning educative processes are a challenge for educative institutions and education professionals. In an environment in which learning resources are being produced, catalogued and stored using innovative ways, SOLE provides a platform in which exam questions can be produced supported by Web 2.0 tools, catalogued and labeled via semantic web and stored and distributed using eLearning standards. This paper presents, SOLE, a social network of exam questions sharing particularized for Software Engineering domain, based on semantics and built using semantic web and eLearning standards, such as IMS Question and Test Interoperability specification 2.1.
Kassemi, Mohammad; Thompson, David
2016-09-01
An analytical Population Balance Equation model is developed and used to assess the risk of critical renal stone formation for astronauts during future space missions. The model uses the renal biochemical profile of the subject as input and predicts the steady-state size distribution of the nucleating, growing, and agglomerating calcium oxalate crystals during their transit through the kidney. The model is verified through comparison with published results of several crystallization experiments. Numerical results indicate that the model is successful in clearly distinguishing between 1-G normal and 1-G recurrent stone-former subjects based solely on their published 24-h urine biochemical profiles. Numerical case studies further show that the predicted renal calculi size distribution for a microgravity astronaut is closer to that of a recurrent stone former on Earth rather than to a normal subject in 1 G. This interestingly implies that the increase in renal stone risk level in microgravity is relatively more significant for a normal person than a stone former. However, numerical predictions still underscore that the stone-former subject carries by far the highest absolute risk of critical stone formation during space travel. Copyright © 2016 the American Physiological Society.
Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion
Choi, Hannah; Pasupathy, Anitha; Shea-Brown, Eric
2018-01-01
The primate visual system has an exquisite ability to discriminate partially occluded shapes. Recent electrophysiological recordings suggest that response dynamics in intermediate visual cortical area V4, shaped by feedback from prefrontal cortex (PFC), may play a key role. To probe the algorithms that may underlie these findings, we build and test a model of V4 and PFC interactions based on a hierarchical predictive coding framework. We propose that probabilistic inference occurs in two steps. Initially, V4 responses are driven solely by bottom-up sensory input and are thus strongly influenced by the level of occlusion. After a delay, V4 responses combine both feedforward input and feedback signals from the PFC; the latter reflect predictions made by PFC about the visual stimulus underlying V4 activity. We find that this model captures key features of V4 and PFC dynamics observed in experiments. Specifically, PFC responses are strongest for occluded stimuli and delayed responses in V4 are less sensitive to occlusion, supporting our hypothesis that the feedback signals from PFC underlie robust discrimination of occluded shapes. Thus, our study proposes that area V4 and PFC participate in hierarchical inference, with feedback signals encoding top-down predictions about occluded shapes. PMID:29566355
Reyes, Jeanette M; Hubbard, Heidi F; Stiegel, Matthew A; Pleil, Joachim D; Serre, Marc L
2018-01-09
Currently in the United States there are no regulatory standards for ambient concentrations of polycyclic aromatic hydrocarbons (PAHs), a class of organic compounds with known carcinogenic species. As such, monitoring data are not routinely collected resulting in limited exposure mapping and epidemiologic studies. This work develops the log-mass fraction (LMF) Bayesian maximum entropy (BME) geostatistical prediction method used to predict the concentration of nine particle-bound PAHs across the US state of North Carolina. The LMF method develops a relationship between a relatively small number of collocated PAH and fine Particulate Matter (PM2.5) samples collected in 2005 and applies that relationship to a larger number of locations where PM2.5 is routinely monitored to more broadly estimate PAH concentrations across the state. Cross validation and mapping results indicate that by incorporating both PAH and PM2.5 data, the LMF BME method reduces mean squared error by 28.4% and produces more realistic spatial gradients compared to the traditional kriging approach based solely on observed PAH data. The LMF BME method efficiently creates PAH predictions in a PAH data sparse and PM2.5 data rich setting, opening the door for more expansive epidemiologic exposure assessments of ambient PAH.
Imagine All the People: How the Brain Creates and Uses Personality Models to Predict Behavior
Hassabis, Demis; Spreng, R. Nathan; Rusu, Andrei A.; Robbins, Clifford A.; Mar, Raymond A.; Schacter, Daniel L.
2014-01-01
The behaviors of other people are often central to envisioning the future. The ability to accurately predict the thoughts and actions of others is essential for successful social interactions, with far-reaching consequences. Despite its importance, little is known about how the brain represents people in order to predict behavior. In this functional magnetic resonance imaging study, participants learned the unique personality of 4 protagonists and imagined how each would behave in different scenarios. The protagonists' personalities were composed of 2 traits: Agreeableness and Extraversion. Which protagonist was being imagined was accurately inferred based solely on activity patterns in the medial prefrontal cortex using multivariate pattern classification, providing novel evidence that brain activity can reveal whom someone is thinking about. Lateral temporal and posterior cingulate cortex discriminated between different degrees of agreeableness and extraversion, respectively. Functional connectivity analysis confirmed that regions associated with trait-processing and individual identities were functionally coupled. Activity during the imagination task, and revealed by functional connectivity, was consistent with the default network. Our results suggest that distinct regions code for personality traits, and that the brain combines these traits to represent individuals. The brain then uses this “personality model” to predict the behavior of others in novel situations. PMID:23463340
Carrasquer, C. Alex; Batey, Kaylind; Qamar, Shahid; Cunningham, Albert R.; Cunningham, Suzanne L.
2016-01-01
We previously demonstrated that fragment based cat-SAR carcinogenesis models consisting solely of mutagenic or non-mutagenic carcinogens varied greatly in terms of their predictive accuracy. This led us to investigate how well the rat cancer cat-SAR model predicted mutagens and non-mutagens in their learning set. Four rat cancer cat-SAR models were developed: Complete Rat, Transgender Rat, Male Rat, and Female Rat, with leave-one-out (LOO) validation concordance values of 69%, 74%, 67%, and 73%, respectively. The mutagenic carcinogens produced concordance values in the range of 69–76% as compared to only 47–53% for non-mutagenic carcinogens. As a surrogate for mutagenicity comparisons between single site and multiple site carcinogen SAR models was analyzed. The LOO concordance values for models consisting of 1-site, 2-site, and 4+-site carcinogens were 66%, 71%, and 79%, respectively. As expected, the proportion of mutagens to non-mutagens also increased, rising from 54% for 1-site to 80% for 4+-site carcinogens. This study demonstrates that mutagenic chemicals, in both SAR learning sets and test sets, are influential in assessing model accuracy. This suggests that SAR models for carcinogens may require a two-step process in which mutagenicity is first determined before carcinogenicity can be accurately predicted. PMID:24697549
Sado, Tetsuya; Hahn, Christoph; Byrkjedal, Ingvar; Miya, Masaki
2016-01-01
The family Opisthoproctidae (barreleyes) constitutes one of the most peculiar looking and unknown deep-sea fish groups in terms of taxonomy and specialized adaptations. All the species in the family are united by the possession of tubular eyes, with one distinct lineage exhibiting also drastic shortening of the body. Two new species of the mesopelagic opisthoproctid mirrorbelly genus Monacoa are described based on pigmentation patterns of the “sole”—a unique vertebrate structure used in the reflection and control of bioluminescence in most short-bodied forms. Different pigmentation patterns of the soles, previously noted as intraspecific variations based on preserved specimens, are here shown species-specific and likely used for communication in addition to counter-illumination of down-welling sunlight. The genus Monacoa is resurrected from Opisthoproctus based on extensive morphological synaphomorphies pertaining to the anal fin and snout. Doubling the species diversity within sole-bearing opisthoproctids, including recognition of two genera, is unambiguously supported by mitogenomic DNA sequence data. Regular fixation with formalin and alcohol preservation is shown problematic concerning the retention of species-specific pigmentation patterns. Examination or photos of fresh material before formalin fixation is shown paramount for correct species recognition of sole-bearing opisthoproctids—a relatively unknown issue concerning species diversity in the deep-sea pelagic realm. PMID:27508419
Optimizing footwear for older people at risk of falls.
Menant, Jasmine C; Steele, Julie R; Menz, Hylton B; Munro, Bridget J; Lord, Stephen R
2008-01-01
Footwear influences balance and the subsequent risk of slips, trips, and falls by altering somatosensory feedback to the foot and ankle and modifying frictional conditions at the shoe/floor interface. Walking indoors barefoot or in socks and walking indoors or outdoors in high-heel shoes have been shown to increase the risk of falls in older people. Other footwear characteristics such as heel collar height, sole hardness, and tread and heel geometry also influence measures of balance and gait. Because many older people wear suboptimal shoes, maximizing safe shoe use may offer an effective fall prevention strategy. Based on findings of a systematic literature review, older people should wear shoes with low heels and firm slip-resistant soles both inside and outside the home. Future research should investigate the potential benefits of tread sole shoes for preventing slips and whether shoes with high collars or flared soles can enhance balance when challenging tasks are undertaken.
Improving comfort of shoe sole through experiments based on CAD-FEM modeling.
Franciosa, Pasquale; Gerbino, Salvatore; Lanzotti, Antonio; Silvestri, Luca
2013-01-01
It was reported that next to style, comfort is the second key aspect in purchasing footwear. One of the most important components of footwear is the shoe sole, whose design is based on many factors such as foot shape/size, perceived comfort and materials. The present paper focuses on the parametric analysis of a shoe sole to improve the perceived comfort. The sensitivity of geometric and material design factors on comfort degree was investigated by combining real experimental tests and CAD-FEM simulations. The correlation between perceived comfort and physical responses, such as plantar pressures, was estimated by conducting real tests. Four different conditions were analyzed: subjects wearing three commercially available shoes and in a barefoot condition. For each condition, subjects expressed their perceived comfort score. By adopting plantar sensors, the plantar pressures were also monitored. Once given such a correlation, a parametric FEM model of the footwear was developed. In order to better simulate contact at the plantar surface, a detailed FEM model of the foot was also generated from CT scan images. Lastly, a fractional factorial design array was applied to study the sensitivity of different sets of design factors on comfort degree. The findings of this research showed that the sole thickness and its material highly influence perceived comfort. In particular, softer materials and thicker soles contribute to increasing the degree of comfort. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Religiousness and Infidelity: Attendance, but not Faith and Prayer, Predict Marital Fidelity
ERIC Educational Resources Information Center
Atkins, David C.; Kessel, Deborah E.
2008-01-01
High religiousness has been consistently linked with a decreased likelihood of past infidelity but has been solely defined by religious service attendance, a limited assessment of a complex facet of life. The current study developed nine religiousness subscales using items from the 1998 General Social Survey to more fully explore the association…
Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso
2016-01-01
Protein–protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein–protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein–protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein–protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach. PMID:27965389
Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso
2016-12-27
Protein-protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein-protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein-protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein-protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.
Salehi, Mehraveh; Karbasi, Amin; Shen, Xilin; Scheinost, Dustin; Constable, R Todd
2018-04-15
Recent work with functional connectivity data has led to significant progress in understanding the functional organization of the brain. While the majority of the literature has focused on group-level parcellation approaches, there is ample evidence that the brain varies in both structure and function across individuals. In this work, we introduce a parcellation technique that incorporates delineation of functional networks both at the individual- and group-level. The proposed technique deploys the notion of "submodularity" to jointly parcellate the cerebral cortex while establishing an inclusive correspondence between the individualized functional networks. Using this parcellation technique, we successfully established a cross-validated predictive model that predicts individuals' sex, solely based on the parcellation schemes (i.e. the node-to-network assignment vectors). The sex prediction finding illustrates that individualized parcellation of functional networks can reveal subgroups in a population and suggests that the use of a global network parcellation may overlook fundamental differences in network organization. This is a particularly important point to consider in studies comparing patients versus controls or even patient subgroups. Network organization may differ between individuals and global configurations should not be assumed. This approach to the individualized study of functional organization in the brain has many implications for both neuroscience and clinical applications. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Model Effects on GLAS-Based Regional Estimates of Forest Biomass and Carbon
NASA Technical Reports Server (NTRS)
Nelson, Ross
2008-01-01
ICESat/GLAS waveform data are used to estimate biomass and carbon on a 1.27 million sq km study area. the Province of Quebec, Canada, below treeline. The same input data sets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include nonstratified and stratified versions of a multiple linear model where either biomass or (square root of) biomass serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial biomass estimates of up to 0.35 Gt (range 4.942+/-0.28 Gt to 5.29+/-0.36 Gt). The results suggest that if different predictive models are used to estimate regional carbon stocks in different epochs, e.g., y2005, y2015, one might mistakenly infer an apparent aboveground carbon "change" of, in this case, 0.18 Gt, or approximately 7% of the aboveground carbon in Quebec, due solely to the use of different predictive models. These findings argue for model consistency in future, LiDAR-based carbon monitoring programs. Regional biomass estimates from the four GLAS models are compared to ground estimates derived from an extensive network of 16,814 ground plots located in southern Quebec. Stratified models proved to be more accurate and precise than either of the two nonstratified models tested.
Rand, Tim A.; Ginalski, Krzysztof; Grishin, Nick V.; Wang, Xiaodong
2004-01-01
RNA interference is carried out by the small double-stranded RNA-induced silencing complex (RISC). The RISC-bound small RNA guides the RISC complex to identify and cleave mRNAs with complementary sequences. The proteins that make up the RISC complex and cleave mRNA have not been unequivocally defined. Here, we report the biochemical purification of RISC activity to homogeneity from Drosophila Schnieder 2 cell extracts. Argonaute 2 (Ago-2) is the sole protein component present in the purified, functional RISC. By using a bioinformatics method that combines sequence-profile analysis with predicted protein secondary structure, we found homology between the PIWI domain of Ago-2 and endonuclease V and identified potential active-site amino acid residues within the PIWI domain of Ago-2. PMID:15452342
Rand, Tim A; Ginalski, Krzysztof; Grishin, Nick V; Wang, Xiaodong
2004-10-05
RNA interference is carried out by the small double-stranded RNA-induced silencing complex (RISC). The RISC-bound small RNA guides the RISC complex to identify and cleave mRNAs with complementary sequences. The proteins that make up the RISC complex and cleave mRNA have not been unequivocally defined. Here, we report the biochemical purification of RISC activity to homogeneity from Drosophila Schnieder 2 cell extracts. Argonaute 2 (Ago-2) is the sole protein component present in the purified, functional RISC. By using a bioinformatics method that combines sequence-profile analysis with predicted protein secondary structure, we found homology between the PIWI domain of Ago-2 and endonuclease V and identified potential active-site amino acid residues within the PIWI domain of Ago-2.
Diallo, Aboubacar; Zhao, Yu-Long; Wang, He; Li, Sha-Sha; Ren, Chuan-Qing; Liu, Qun
2012-11-16
An efficient synthesis of substituted benzenes via a base-catalyzed [3 + 3] aerobic oxidative aromatization of α,β-unsaturated carbonyl compounds with dimethyl glutaconate was reported. All the reactions were carried out under mild, metal-free conditions to afford the products in high to excellent yields with molecular oxygen as the sole oxidant and water as the sole byproduct. Furthermore, a more convenient tandem [3 + 2 + 1] aerobic oxidative aromatization reaction was developed through the in situ generation of the α,β-unsaturated carbonyl compounds from aldehydes and ketones.
NASA Astrophysics Data System (ADS)
Bogachev, Mikhail I.; Kireenkov, Igor S.; Nifontov, Eugene M.; Bunde, Armin
2009-06-01
We study the statistics of return intervals between large heartbeat intervals (above a certain threshold Q) in 24 h records obtained from healthy subjects. We find that both the linear and the nonlinear long-term memory inherent in the heartbeat intervals lead to power-laws in the probability density function PQ(r) of the return intervals. As a consequence, the probability WQ(t; Δt) that at least one large heartbeat interval will occur within the next Δt heartbeat intervals, with an increasing elapsed number of intervals t after the last large heartbeat interval, follows a power-law. Based on these results, we suggest a method of obtaining a priori information about the occurrence of the next large heartbeat interval, and thus to predict it. We show explicitly that the proposed method, which exploits long-term memory, is superior to the conventional precursory pattern recognition technique, which focuses solely on short-term memory. We believe that our results can be straightforwardly extended to obtain more reliable predictions in other physiological signals like blood pressure, as well as in other complex records exhibiting multifractal behaviour, e.g. turbulent flow, precipitation, river flows and network traffic.
NASA Astrophysics Data System (ADS)
Arshad, Muhammad Azeem; Maaroufi, AbdelKrim
2018-07-01
A beginning has been made in the present study regarding the accurate lifetime predictions of polymer solar cells. Certain reservations about the conventionally employed temperature accelerated lifetime measurements test for its unworthiness of predicting reliable lifetimes of polymer solar cells are brought into light. Critical issues concerning the accelerated lifetime testing include, assuming reaction mechanism instead of determining it, and relying solely on the temperature acceleration of a single property of material. An advanced approach comprising a set of theoretical models to estimate the accurate lifetimes of polymer solar cells is therefore suggested in order to suitably alternate the accelerated lifetime testing. This approach takes into account systematic kinetic modeling of various possible polymer degradation mechanisms under natural weathering conditions. The proposed kinetic approach is substantiated by its applications on experimental aging data-sets of polymer solar materials/solar cells including, P3HT polymer film, bulk heterojunction (MDMO-PPV:PCBM) and dye-sensitized solar cells. Based on the suggested approach, an efficacious lifetime determination formula for polymer solar cells is derived and tested on dye-sensitized solar cells. Some important merits of the proposed method are also pointed out and its prospective applications are discussed.
NASA Astrophysics Data System (ADS)
Bach, Heike
1998-07-01
In order to test remote sensing data with advanced yield formation models for accuracy and timeliness of yield estimation of corn, a project was conducted for the State Ministry for Rural Environment, Food, and Forestry of Baden-Württemberg (Germany). This project was carried out during the course of the `Special Yield Estimation', a regular procedure conducted for the European Union, to more accurately estimate agricultural yield. The methodology employed uses field-based plant parameter estimation from atmospherically corrected multitemporal/multispectral LANDSAT-TM data. An agrometeorological plant-production-model is used for yield prediction. Based solely on four LANDSAT-derived estimates (between May and August) and daily meteorological data, the grain yield of corn fields was determined for 1995. The modelled yields were compared with results gathered independently within the Special Yield Estimation for 23 test fields in the upper Rhine valley. The agreement between LANDSAT-based estimates (six weeks before harvest) and Special Yield Estimation (at harvest) shows a relative error of 2.3%. The comparison of the results for single fields shows that six weeks before harvest, the grain yield of corn was estimated with a mean relative accuracy of 13% using satellite information. The presented methodology can be transferred to other crops and geographical regions. For future applications hyperspectral sensors show great potential to further enhance the results for yield prediction with remote sensing.
NASA Astrophysics Data System (ADS)
Stigter, T. Y.; Ribeiro, L.; Dill, A. M. M. Carvalho
2008-07-01
SummaryFactorial regression models, based on correspondence analysis, are built to explain the high nitrate concentrations in groundwater beneath an agricultural area in the south of Portugal, exceeding 300 mg/l, as a function of chemical variables, electrical conductivity (EC), land use and hydrogeological setting. Two important advantages of the proposed methodology are that qualitative parameters can be involved in the regression analysis and that multicollinearity is avoided. Regression is performed on eigenvectors extracted from the data similarity matrix, the first of which clearly reveals the impact of agricultural practices and hydrogeological setting on the groundwater chemistry of the study area. Significant correlation exists between response variable NO3- and explanatory variables Ca 2+, Cl -, SO42-, depth to water, aquifer media and land use. Substituting Cl - by the EC results in the most accurate regression model for nitrate, when disregarding the four largest outliers (model A). When built solely on land use and hydrogeological setting, the regression model (model B) is less accurate but more interesting from a practical viewpoint, as it is based on easily obtainable data and can be used to predict nitrate concentrations in groundwater in other areas with similar conditions. This is particularly useful for conservative contaminants, where risk and vulnerability assessment methods, based on assumed rather than established correlations, generally produce erroneous results. Another purpose of the models can be to predict the future evolution of nitrate concentrations under influence of changes in land use or fertilization practices, which occur in compliance with policies such as the Nitrates Directive. Model B predicts a 40% decrease in nitrate concentrations in groundwater of the study area, when horticulture is replaced by other land use with much lower fertilization and irrigation rates.
Discriminating bot accounts based solely on temporal features of microblog behavior
NASA Astrophysics Data System (ADS)
Pan, Junshan; Liu, Ying; Liu, Xiang; Hu, Hanping
2016-05-01
As the largest microblog service in China, Sina Weibo has attracted numerous automated applications (known as bots) due to its popularity and open architecture. We classify the active users from Sina Weibo into human, bot-based and hybrid groups based solely on the study of temporal features of their posting behavior. The anomalous burstiness parameter and time-interval entropy value are exploited to characterize automation. We also reveal different behavior patterns among the three types of users regarding their reposting ratio, daily rhythm and active days. Our findings may help Sina Weibo manage a better community and should be considered for dynamic models of microblog behaviors.
Analysis of a novel class of predictive microbial growth models and application to coculture growth.
Poschet, F; Vereecken, K M; Geeraerd, A H; Nicolaï, B M; Van Impe, J F
2005-04-15
In this paper, a novel class of microbial growth models is analysed. In contrast with the currently used logistic type models (e.g., the model of Baranyi and Roberts [Baranyi, J., Roberts, T.A., 1994. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology 23, 277-294]), the novel model class, presented in Van Impe et al. (Van Impe, J.F., Poschet, F., Geeraerd, A.H., Vereecken, K.M., 2004. Towards a novel class of predictive microbial growth models. International Journal of Food Microbiology, this issue), explicitly incorporates nutrient exhaustion and/or metabolic waste product effects inducing stationary phase behaviour. As such, these novel model types can be extended in a natural way towards microbial interactions in cocultures and microbial growth in structured foods. Two illustrative case studies of the novel model types are thoroughly analysed and compared to the widely used model of Baranyi and Roberts. In a first case study, the stationary phase is assumed to be solely resulting from toxic product inhibition and is described as a function of the pH-evolution. In the second case study, substrate exhaustion is the sole cause of the stationary phase. Finally, a more complex case study of a so-called P-model is presented, dealing with a coculture inhibition of Listeria innocua mediated by lactic acid production of Lactococcus lactis.
A Biopsychological Model of Anti-drug PSA Processing: Developing Effective Persuasive Messages.
Hohman, Zachary P; Keene, Justin Robert; Harris, Breanna N; Niedbala, Elizabeth M; Berke, Collin K
2017-11-01
For the current study, we developed and tested a biopsychological model to combine research on psychological tension, the Limited Capacity Model of Motivated Mediated Message Processing, and the endocrine system to predict and understand how people process anti-drug PSAs. We predicted that co-presentation of pleasant and unpleasant information, vs. solely pleasant or unpleasant, will trigger evaluative tension about the target behavior in persuasive messages and result in a biological response (increase in cortisol, alpha amylase, and heart rate). In experiment 1, we assessed the impact of co-presentation of pleasant and unpleasant information in persuasive messages on evaluative tension (conceptualized as attitude ambivalence), in experiment 2, we explored the impact of co-presentation on endocrine system responses (salivary cortisol and alpha amylase), and in experiment 3, we assessed the impact of co-presentation on heart rate. Across all experiments, we demonstrated that co-presentation of pleasant and unpleasant information, vs. solely pleasant or unpleasant, in persuasive communications leads to increases in attitude ambivalence, salivary cortisol, salivary alpha amylase, and heart rate. Taken together, the results support the initial paths of our biopsychological model of persuasive message processing and indicate that including both pleasant and unpleasant information in a message impacts the viewer. We predict that increases in evaluative tension and biological responses will aid in memory and cognitive processing of the message. However, future research is needed to test that hypothesis.
Genomic Prediction of Testcross Performance in Canola (Brassica napus)
Jan, Habib U.; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A.; Snowdon, Rod J.
2016-01-01
Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable potential for pre-selection of promising hybrid combinations prior to resource-intensive field testing over multiple locations and years. PMID:26824924
Simultaneous sinus lift and implantation using platelet-rich fibrin as sole grafting material.
Jeong, Seung-Mi; Lee, Chun-Ui; Son, Jeong-Seog; Oh, Ji-Hyeon; Fang, Yiqin; Choi, Byung-Ho
2014-09-01
Recently, several authors have shown that simultaneous sinus lift and implantation using autologous platelet-rich fibrin as the sole filling material is a reliable procedure promoting bone augmentation in the maxillary sinus. The aim of this study was to examine the effect of simultaneous sinus lift and implantation using platelet-rich fibrin as the sole grafting material on bone formation in a canine sinus model. An implant was placed after sinus membrane elevation in the maxillary sinus of six adult female mongrel dogs. The resulting space between the membrane and sinus floor was filled with autologous platelet-rich fibrin retrieved from each dog. The implants were left in place for six months. Bone tissue was seen at the lower part of the implants introduced into the sinus cavity. The height of the newly formed bone around the implants ranged from 0 mm to 4.9 mm (mean; 2.6 ± 2.0 mm) on the buccal side and from 0 mm to 4.2 mm (mean; 1.3 ± 1.8 mm) on the palatal side. The findings from this study suggest that simultaneous sinus lift and implantation using platelet-rich fibrin as sole grafting material is not a predictable and reproducible procedure, especially with respect to the bone formation around the implants in the sinus cavity. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. All rights reserved.
Mayhew, C; Quinlan, M
1999-01-01
Outsourcing has become increasingly widespread throughout industrialized societies over the past 20 years. Accompanying this has been a renewed growth in home-based work, sometimes using new technologies (telework) but also entailing a re-emergence of old forms, such as clothing outwork, used extensively 100 years ago. A growing body of research indicates that changes to work organization associated with outsourcing adversely affect occupational health and safety (OHS), both for outsourced workers and for those working alongside them. This study assessed the OHS implications of the shift to home-based workers in the Australian clothing industry by systematically comparing the OHS experiences of 100 factory-based workers and 100 outworkers. The level of self-reported injury was over three times higher among outworkers than factory-based workers undertaking similar tasks. The most significant factor explaining this difference was the payment system. All outworkers were paid solely by the piece, whereas factory workers were paid either under a time plus production bonus system or solely on a time basis. While the incidence of injury was far higher among outworkers, factory-based workers paid under an incentive system reported more injuries than those paid solely on a time basis. Increasing injury was correlated with piecework payment systems.
Sons as sole caregivers for their elderly parents. How do they cope?
Thompson, B.; Tudiver, F.; Manson, J.
2000-01-01
OBJECTIVE: To examine the experiences of men who are sole caregivers for their elderly parents. DESIGN: Semistructured in-depth interviews. SETTING: Family practice clinic attached to a large tertiary care centre in north central Toronto. PARTICIPANTS: A convenience sample of 10 men who identified themselves as sole caregivers in that they had no particular women assisting them with caregiving. METHOD: Interviews were analyzed by standard qualitative methods. MAIN FINDINGS: Emerging themes were the spectrum of caregiving, the experience of caregiving, and the use of formal support systems. Scope of care varied from very little to total care, including personal care. Participants described positive and negative aspects of and the nature of their relationships with those for whom they cared. Avoiding institutionalization was seen as positive; effects on work and social life were negative. Use of more than homemaking services was associated with previous hospitalization; participants complained about difficulties accessing services. CONCLUSIONS: The nature of sons' relationships with their parents and the amount of time they have available can predict how much caregiving they can undertake. Information about community support services is not readily accessible to these men. PMID:10690492
Hot limpets: predicting body temperature in a conductance-mediated thermal system.
Denny, Mark W; Harley, Christopher D G
2006-07-01
Living at the interface between the marine and terrestrial environments, intertidal organisms may serve as a bellwether for environmental change and a test of our ability to predict its biological consequences. However, current models do not allow us to predict the body temperature of intertidal organisms whose heat budgets are strongly affected by conduction to and from the substratum. Here, we propose a simple heat-budget model of one such animal, the limpet Lottia gigantea, and test the model against measurements made in the field. Working solely from easily measured physical and meteorological inputs, the model predicts the daily maximal body temperatures of live limpets within a fraction of a degree, suggesting that it may be a useful tool for exploring the thermal biology of limpets and for predicting effects of climate change. The model can easily be adapted to predict the temperatures of chitons, acorn barnacles, keyhole limpets, and encrusting animals and plants.
Automatic machine learning based prediction of cardiovascular events in lung cancer screening data
NASA Astrophysics Data System (ADS)
de Vos, Bob D.; de Jong, Pim A.; Wolterink, Jelmer M.; Vliegenthart, Rozemarijn; Wielingen, Geoffrey V. F.; Viergever, Max A.; Išgum, Ivana
2015-03-01
Calcium burden determined in CT images acquired in lung cancer screening is a strong predictor of cardiovascular events (CVEs). This study investigated whether subjects undergoing such screening who are at risk of a CVE can be identified using automatic image analysis and subject characteristics. Moreover, the study examined whether these individuals can be identified using solely image information, or if a combination of image and subject data is needed. A set of 3559 male subjects undergoing Dutch-Belgian lung cancer screening trial was included. Low-dose non-ECG synchronized chest CT images acquired at baseline were analyzed (1834 scanned in the University Medical Center Groningen, 1725 in the University Medical Center Utrecht). Aortic and coronary calcifications were identified using previously developed automatic algorithms. A set of features describing number, volume and size distribution of the detected calcifications was computed. Age of the participants was extracted from image headers. Features describing participants' smoking status, smoking history and past CVEs were obtained. CVEs that occurred within three years after the imaging were used as outcome. Support vector machine classification was performed employing different feature sets using sets of only image features, or a combination of image and subject related characteristics. Classification based solely on the image features resulted in the area under the ROC curve (Az) of 0.69. A combination of image and subject features resulted in an Az of 0.71. The results demonstrate that subjects undergoing lung cancer screening who are at risk of CVE can be identified using automatic image analysis. Adding subject information slightly improved the performance.
Contaminant dispersal in bounded turbulent shear flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J.M.; Bernard, P.S.; Chiang, K.F.
The dispersion of smoke downstream of a line source at the wall and at y{sup +} = 30 in a turbulent boundary layer has been predicted with a non-local model of the scalar fluxes {bar u}c and {bar v}c. The predicted plume from the wall source has been compared to high Schmidt number experimental measurements using a combination of hot-wire anemometry to obtain velocity component data synchronously with concentration data obtained optically. The predicted plumes from the source at y{sup +} = 30 and at the wall also have been compared to a low Schmidt number direct numerical simulation. Nearmore » the source, the non-local flux models give considerably better predictions than models which account solely for mean gradient transport. At a sufficient distance downstream the gradient models gives reasonably good predictions.« less
Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin; ...
2015-05-05
We present for the first time the full automation of collider predictions matched with parton showers at the next-to-leading accuracy in QCD within nontrivial extensions of the standard model. The sole inputs required from the user are the model Lagrangian and the process of interest. As an application of the above, we explore scenarios beyond the standard model where new colored scalar particles can be pair produced in hadron collisions. Using simplified models to describe the new field interactions with the standard model, we present precision predictions for the LHC within the MadGraph5_aMC@NLO framework.
Chen, Gao; Murdoch, Robert W.; Mack, E. Erin; ...
2017-09-14
Dehalobacterium formicoaceticum utilizes dichloromethane as the sole energy source in defined anoxic bicarbonate-buffered mineral salt medium. The products are formate, acetate, inorganic chloride, and biomass. The bacterium’s genome was sequenced using PacBio, assembled, and annotated. The complete genome consists of one 3.77-Mb circular chromosome harboring 3,935 predicted protein-encoding genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gao; Murdoch, Robert W.; Mack, E. Erin
Dehalobacterium formicoaceticum utilizes dichloromethane as the sole energy source in defined anoxic bicarbonate-buffered mineral salt medium. The products are formate, acetate, inorganic chloride, and biomass. The bacterium’s genome was sequenced using PacBio, assembled, and annotated. The complete genome consists of one 3.77-Mb circular chromosome harboring 3,935 predicted protein-encoding genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, S.; Gross, R.; Goble, W
The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accountedmore » for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.« less
LDR structural technology activities at JPL
NASA Technical Reports Server (NTRS)
Wada, Ben
1988-01-01
The status of the Large Deployable Reflector (LDR) technology requirements and the availability of that technology in the next few years are summarized. The research efforts at JPL related to these technology needs are also discussed. LDR requires that a large and relatively stiff truss-type backup structure have a surface accurate to 100 microns in space (initial position with thermal distortions) and the dynamic characteristics predictable and/or measurable by on-orbit system identification for micron level motion. This motion may result from the excitation of the lower modes or from wave-type motions. It is also assumed that the LDR structure can be ground tested to validate its ability to meet mission requirements. No program manager will commit a structural design based solely on analysis, unless the analysis is backed by a validation test program.
Li, Guang-Qing; Liu, Zi; Shen, Hong-Bin; Yu, Dong-Jun
2016-10-01
As one of the most ubiquitous post-transcriptional modifications of RNA, N 6 -methyladenosine ( [Formula: see text]) plays an essential role in many vital biological processes. The identification of [Formula: see text] sites in RNAs is significantly important for both basic biomedical research and practical drug development. In this study, we designed a computational-based method, called TargetM6A, to rapidly and accurately target [Formula: see text] sites solely from the primary RNA sequences. Two new features, i.e., position-specific nucleotide/dinucleotide propensities (PSNP/PSDP), are introduced and combined with the traditional nucleotide composition (NC) feature to formulate RNA sequences. The extracted features are further optimized to obtain a much more compact and discriminative feature subset by applying an incremental feature selection (IFS) procedure. Based on the optimized feature subset, we trained TargetM6A on the training dataset with a support vector machine (SVM) as the prediction engine. We compared the proposed TargetM6A method with existing methods for predicting [Formula: see text] sites by performing stringent jackknife tests and independent validation tests on benchmark datasets. The experimental results show that the proposed TargetM6A method outperformed the existing methods for predicting [Formula: see text] sites and remarkably improved the prediction performances, with MCC = 0.526 and AUC = 0.818. We also provided a user-friendly web server for TargetM6A, which is publicly accessible for academic use at http://csbio.njust.edu.cn/bioinf/TargetM6A.
Improving Quality of Shoe Soles Product using Six Sigma
NASA Astrophysics Data System (ADS)
Jesslyn Wijaya, Athalia; Trusaji, Wildan; Akbar, Muhammad; Ma’ruf, Anas; Irianto, Dradjad
2018-03-01
A manufacture in Bandung produce kind of rubber-based product i.e. trim, rice rollers, shoe soles, etc. After penetrating the shoe soles market, the manufacture has met customer with tight quality control. Based on the past data, defect level of this product was 18.08% that caused the manufacture’s loss of time and money. Quality improvement effort was done using six sigma method that included phases of define, measure, analyse, improve, and control (DMAIC). In the design phase, the object’s problem and definition were defined. Delphi method was also used in this phase to identify critical factors. In the measure phase, the existing process stability and sigma quality level were measured. Fishbone diagram and failure mode and effect analysis (FMEA) were used in the next phase to analyse the root cause and determine the priority issues. Improve phase was done by designing alternative improvement strategy using 5W1H method. Some improvement efforts were identified, i.e. (i) modifying design of the hanging rack, (ii) create pantone colour book and check sheet, (iii) provide pedestrian line at compound department, (iv) buying stop watch, and (v) modifying shoe soles dies. Some control strategies for continuous improvement were proposed such as SOP or reward and punishment system.
PreTIS: A Tool to Predict Non-canonical 5’ UTR Translational Initiation Sites in Human and Mouse
Reuter, Kerstin; Helms, Volkhard
2016-01-01
Translation of mRNA sequences into proteins typically starts at an AUG triplet. In rare cases, translation may also start at alternative non–AUG codons located in the annotated 5’ UTR which leads to an increased regulatory complexity. Since ribosome profiling detects translational start sites at the nucleotide level, the properties of these start sites can then be used for the statistical evaluation of functional open reading frames. We developed a linear regression approach to predict in–frame and out–of–frame translational start sites within the 5’ UTR from mRNA sequence information together with their translation initiation confidence. Predicted start codons comprise AUG as well as near–cognate codons. The underlying datasets are based on published translational start sites for human HEK293 and mouse embryonic stem cells that were derived by the original authors from ribosome profiling data. The average prediction accuracy of true vs. false start sites for HEK293 cells was 80%. When applied to mouse mRNA sequences, the same model predicted translation initiation sites observed in mouse ES cells with an accuracy of 76%. Moreover, we illustrate the effect of in silico mutations in the flanking sequence context of a start site on the predicted initiation confidence. Our new webservice PreTIS visualizes alternative start sites and their respective ORFs and predicts their ability to initiate translation. Solely, the mRNA sequence is required as input. PreTIS is accessible at http://service.bioinformatik.uni-saarland.de/pretis. PMID:27768687
Features of the incorporation of single and double based powders within emulsion explosives
NASA Astrophysics Data System (ADS)
Ribeiro, J. B.; Mendes, R.; Tavares, B.; Louro, C.
2014-05-01
In this work, features of the thermal and detonation behaviour of compositions resulting from the mixture of single and double based powders within ammonium nitrate based emulsion explosives are shown. Those features are portrayed through results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential thermal analysis [DTA] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the "gap-test". DTA/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical species and so of the compatibility of the components of the compositions. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with powder than for the one with sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have been shown to be higher for the powdered compositions than for the sole emulsion explosive. Shock sensitivity assessments have ended-up with a slightly bigger sensitivity for the compositions with double based powder when compared to the single based compositions or to the sole emulsion.
Metamorphic sole genesis at the base of ophiolite nappes: Insights from numerical models
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Agard, Philippe; Duretz, Thibault
2015-04-01
Obduction emplaces oceanic lithosphere on top of continental lithosphere. Although a number of studies have focused on this enigmatic process, the initial stages of obduction remain poorly understood. Field, petrological, and geochronological data reveal that during the first stages of the obduction (i.e., during the first 1-2 Myrs) a HT-LP metamorphic sole (~700-800 ° C and ~1 GPa) is systematically welded at the base of ophiolite nappes. However, the reason why such welding of the ophiolite soles occurs at these particular P-T conditions, and only at the onset of obduction, is still an open issue. The aim of this study is to explore the conditions required to explain the genesis of metamorphic soles. For this, we employ two-dimensional numerical modelling, constrained by the wealth of available data from the Oman ophiolite. We first present a thermo-kinematic model in which the velocity field is prescribed in order to simulate obduction initiation. The heat advection-diffusion equation is solved at each time step. The model is intentionally kept simple in order to control each parameter (e.g., convergence rate, dip angle, thermal age) and to test its influence on the resulting P-T conditions obtained through time along the obduction interface. Results show that the key factor allowing the formation of metamorphic soles is the age of the oceanic lithosphere involved. Moreover, we speculate that the reason why metamorphic soles are always welded at the same P-T conditions is due to the fact that, at these particular conditions, strength jumps occur within the oceanic lithosphere. These jumps lead to changes in strain localisation and allow the spalling of oceanic crust and its juxtaposition to the ophiolite nappe. This hypothesis is further tested using thermo-mechanical models in which the obduction initiates dynamically (only initial and boundary conditions are prescribed). The interplay between the temperature evolution and the mechanical behaviour is then discussed.
Di Paolo, Carolina; Groh, Ksenia J; Zennegg, Markus; Vermeirssen, Etiënne L M; Murk, Albertinka J; Eggen, Rik I L; Hollert, Henner; Werner, Inge; Schirmer, Kristin
2015-12-01
The occurrence of chronic or delayed toxicity resulting from the exposure to sublethal chemical concentrations is an increasing concern in environmental risk assessment. The Fish Embryo Toxicity (FET) test with zebrafish provides a reliable prediction of acute toxicity in adult fish, but it cannot yet be applied to predict the occurrence of chronic or delayed toxicity. Identification of sublethal FET endpoints that can assist in predicting the occurrence of chronic or delayed toxicity would be advantageous. The present study characterized the occurrence of delayed toxicity in zebrafish larvae following early exposure to PCB126, previously described to cause delayed effects in the common sole. The first aim was to investigate the occurrence and temporal profiles of delayed toxicity during zebrafish larval development and compare them to those previously described for sole to evaluate the suitability of zebrafish as a model fish species for delayed toxicity assessment. The second aim was to examine the correlation between the sublethal endpoints assessed during embryonal and early larval development and the delayed effects observed during later larval development. After exposure to PCB126 (3-3000ng/L) until 5 days post fertilization (dpf), larvae were reared in clean water until 14 or 28 dpf. Mortality and sublethal morphological and behavioural endpoints were recorded daily, and growth was assessed at 28 dpf. Early life exposure to PCB126 caused delayed mortality (300 ng/L and 3000 ng/L) as well as growth impairment and delayed development (100 ng/L) during the clean water period. Effects on swim bladder inflation and cartilaginous tissues within 5 dpf were the most promising for predicting delayed mortality and sublethal effects, such as decreased standard length, delayed metamorphosis, reduced inflation of swim bladder and column malformations. The EC50 value for swim bladder inflation at 5 dpf (169 ng/L) was similar to the LC50 value at 8 dpf (188 and 202 ng/L in two experiments). Interestingly, the patterns of delayed mortality and delayed effects on growth and development were similar between sole and zebrafish. This indicates the comparability of critical developmental stages across divergent fish species such as a cold water marine flatfish and a tropical freshwater cyprinid. Additionally, sublethal effects in early embryo-larval stages were found promising for predicting delayed lethal and sublethal effects of PCB126. Therefore, the proposed method with zebrafish is expected to provide valuable information on delayed mortality and delayed sublethal effects of chemicals and environmental samples that may be extrapolated to other species. Copyright © 2015 Elsevier B.V. All rights reserved.
Classification of Chinese herbs based on the cluster analysis of delayed luminescence.
Pang, Jingxiang; Yang, Meina; Fu, Jialei; Zhao, Xiaolei; van Wijk, Eduard; Wang, Mei; Liu, Yanli; Zhou, Xiaoyan; Fan, Hua; Han, Jinxiang
2016-03-01
Traditional Chinese material medica are an important component of the Chinese pharmacopeia. According to the traditional Chinese medicinal concept, Chinese herbal medicines are classified into different categories based on their therapeutic effects, however, the bioactive principles cannot be solely explained by chemical analysis. The aim of this study is to classify different Chinese herbs based on their therapeutic effects by using delayed luminescence (DL). The DL of 56 Chinese herbs was measured using an ultra-sensitive luminescence detection system. The different DL parameters were used to classify Chinese herbs according to a hierarchical cluster analysis. The samples were divided into two groups based on their DL kinetic parameters. Interestingly, the DL classification results were quite consistent with classification according to the Chinese medicinal concepts of 'cold' and 'heat' properties. In this paper, we show for the first time that by using DL technology, it is possible to classify Chinese herbs according to the Chinese medicinal concept and it may even be possible to predict their therapeutic properties. Copyright © 2015 John Wiley & Sons, Ltd.
Avsec, Žiga; Cheng, Jun; Gagneur, Julien
2018-01-01
Abstract Motivation Regulatory sequences are not solely defined by their nucleic acid sequence but also by their relative distances to genomic landmarks such as transcription start site, exon boundaries or polyadenylation site. Deep learning has become the approach of choice for modeling regulatory sequences because of its strength to learn complex sequence features. However, modeling relative distances to genomic landmarks in deep neural networks has not been addressed. Results Here we developed spline transformation, a neural network module based on splines to flexibly and robustly model distances. Modeling distances to various genomic landmarks with spline transformations significantly increased state-of-the-art prediction accuracy of in vivo RNA-binding protein binding sites for 120 out of 123 proteins. We also developed a deep neural network for human splice branchpoint based on spline transformations that outperformed the current best, already distance-based, machine learning model. Compared to piecewise linear transformation, as obtained by composition of rectified linear units, spline transformation yields higher prediction accuracy as well as faster and more robust training. As spline transformation can be applied to further quantities beyond distances, such as methylation or conservation, we foresee it as a versatile component in the genomics deep learning toolbox. Availability and implementation Spline transformation is implemented as a Keras layer in the CONCISE python package: https://github.com/gagneurlab/concise. Analysis code is available at https://github.com/gagneurlab/Manuscript_Avsec_Bioinformatics_2017. Contact avsec@in.tum.de or gagneur@in.tum.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:29155928
Behavioral correlates of heart rates of free-living Greater White-fronted Geese
Ely, Craig R.; Ward, D.H.; Bollinger, K.S.
1999-01-01
We simultaneously monitored the heart rate and behavior of nine free-living Greater White-fronted Geese (Anser albifrons) on their wintering grounds in northern California. Heart rates of wild geese were monitored via abdominally-implanted radio transmitters with electrodes that received electrical impulses of the heart and emitted a radio signal with each ventricular contraction. Post-operative birds appeared to behave normally, readily rejoining flocks and flying up to 15 km daily from night-time roost sites to feed in surrounding agricultural fields. Heart rates varied significantly among individuals and among behaviors, and ranged from less than 100 beats per minute (BPM) during resting, to over 400 BPM during flight. Heart rates varied from 80 to 140 BPM during non-strenuous activities such as walking, feeding, and maintenance activities, to about 180 BPM when birds became alert, and over 400 BPM when birds were startled, even if they did not take flight. Postflight heart rate recovery time averaged < 10 sec. During agonistic encounters, heart rate exceeded 400 BPM; heart rates during social interactions were not predictable solely from postures, as heart rates were context-dependent, and were highest in initial encounters among individuals. Instantaneous measures of physiological parameters, such as heart rate, are often better indicators of the degree of response to external stimuli than visual observations and can be used to improve estimates of energy expenditure based solely on activity data.
Dynamics of A + B --> C reaction fronts in the presence of buoyancy-driven convection.
Rongy, L; Trevelyan, P M J; De Wit, A
2008-08-22
The dynamics of A+B-->C fronts in horizontal solution layers can be influenced by buoyancy-driven convection as soon as the densities of A, B, and C are not all identical. Such convective motions can lead to front propagation even in the case of equal diffusion coefficients and initial concentration of reactants for which reaction-diffusion (RD) scalings predict a nonmoving front. We show theoretically that the dynamics in the presence of convection can in that case be predicted solely on the basis of the knowledge of the one-dimensional RD density profile across the front.
Subduction starts by stripping slabs
NASA Astrophysics Data System (ADS)
Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Prigent, Cécile; Plunder, Alexis; Yamato, Philippe; Guillot, Stéphane
2017-04-01
Metamorphic soles correspond to tectonic slices welded beneath most large-scale ophiolites. These slivers of oceanic crust metamorphosed up to granulite facies conditions are interpreted as having formed during the first My of intra-oceanic subduction from heat transfer from the incipient mantle wedge towards the top of the subducting plate. Our study reappraises the formation of metamorphic sole through detailed field and petrological work on three classical key sections across the Semail ophiolite (Oman and United Arab Emirates). Geothermobarometry and thermodynamic modelling show that metamorphic soles do not record a continuous temperature gradient, as expected from simple heating by the upper plate or by shear heating and proposed by previous studies. The upper, high-temperature metamorphic sole is subdivided in at least two units, testifying to the stepwise formation, detachment and accretion of successive slices from the downgoing slab to the mylonitic base of the ophiolite. Estimated peak pressure-temperature conditions through the metamorphic sole are, from top to bottom, 850˚C - 1GPa, 725°C - 0.8 GPa and 530°C - 0.5 GPa. These estimates appear constant within each unit but separated by a gap of 100 to 200˚C and 0.2 GPa. Despite being separated by hundreds of kilometres below the Semail ophiolite and having contrasting locations with respect to the ophiolite ridge axis, metamorphic soles show no evidence for significant petrological variations along strike. These constraints allow to refine the tectonic-petrological model for the genesis of metamorphic soles, formed through the stepwise stacking of several homogeneous slivers of oceanic crust and its sedimentary cover. Metamorphic soles do not so much result from downward heat transfer (ironing effect) but rather from progressive metamorphism during strain localization and cooling of the plate interface. The successive thrusts are the result of rheological contrasts between the sole (initially at the subducting slab) and the peridotite above as the plate interface progressively cools down. These findings have implications for the thickness, the scale and the coupling state at the plate interface during the early history of subduction/obduction systems.
Health Care Utilization and Expenditures Attributable to Cigar Smoking Among US Adults, 2000-2015.
Wang, Yingning; Sung, Hai-Yen; Yao, Tingting; Lightwood, James; Max, Wendy
Cigar use in the United States is a growing public health concern because of its increasing popularity. We estimated health care utilization and expenditures attributable to cigar smoking among US adults aged ≥35. We analyzed data on 84 178 adults using the 2000, 2005, 2010, and 2015 National Health Interview Surveys. We estimated zero-inflated Poisson (ZIP) regression models on hospital nights, emergency department (ED) visits, physician visits, and home-care visits as a function of tobacco use status-current sole cigar smokers (ie, smoke cigars only), current poly cigar smokers (smoke cigars and smoke cigarettes or use smokeless tobacco), former sole cigar smokers (used to smoke cigars only), former poly cigar smokers (used to smoke cigars and smoke cigarettes or use smokeless tobacco), other tobacco users (ever smoked cigarettes and used smokeless tobacco but not cigars), and never tobacco users (never smoked cigars, smoked cigarettes, or used smokeless tobacco)-and other covariates. We calculated health care utilization attributable to current and former sole cigar smoking based on the estimated ZIP models, and then we calculated total health care expenditures attributable to cigar smoking. Current and former sole cigar smoking was associated with excess annual utilization of 72 137 hospital nights, 32 748 ED visits, and 420 118 home-care visits. Annual health care expenditures attributable to sole cigar smoking were $284 million ($625 per sole cigar smoker), and total annual health care expenditures attributable to sole and poly cigar smoking were $1.75 billion. Comprehensive tobacco control policies and interventions are needed to reduce cigar smoking and the associated health care burden.
Honeybul, Stephen; Ho, Kwok M; Lind, Christopher R P; Gillett, Grant R
2014-05-01
The goal in this study was to assess the validity of the corticosteroid randomization after significant head injury (CRASH) collaborators prediction model in predicting mortality and unfavorable outcome at 18 months in patients with severe traumatic brain injury (TBI) requiring decompressive craniectomy. In addition, the authors aimed to assess whether this model was well calibrated in predicting outcome across a wide spectrum of severity of TBI requiring decompressive craniectomy. This prospective observational cohort study included all patients who underwent a decompressive craniectomy following severe TBI at the two major trauma hospitals in Western Australia between 2004 and 2012 and for whom 18-month follow-up data were available. Clinical and radiological data on initial presentation were entered into the Web-based model and the predicted outcome was compared with the observed outcome. In validating the CRASH model, the authors used area under the receiver operating characteristic curve to assess the ability of the CRASH model to differentiate between favorable and unfavorable outcomes. The ability of the CRASH 6-month unfavorable prediction model to differentiate between unfavorable and favorable outcomes at 18 months after decompressive craniectomy was good (area under the receiver operating characteristic curve 0.85, 95% CI 0.80-0.90). However, the model's calibration was not perfect. The slope and the intercept of the calibration curve were 1.66 (SE 0.21) and -1.11 (SE 0.14), respectively, suggesting that the predicted risks of unfavorable outcomes were not sufficiently extreme or different across different risk strata and were systematically too high (or overly pessimistic), respectively. The CRASH collaborators prediction model can be used as a surrogate index of injury severity to stratify patients according to injury severity. However, clinical decisions should not be based solely on the predicted risks derived from the model, because the number of patients in each predicted risk stratum was still relatively small and hence the results were relatively imprecise. Notwithstanding these limitations, the model may add to a clinician's ability to have better-informed conversations with colleagues and patients' relatives about prognosis.
The Mathematical Bases for Qualitative Reasoning
1990-01-01
but solely in terms of ordinary language. A good deal of such qualitative reasoning makes implicit use of the properties of ordinal variables and...without use of mathematical formalisms, but solely in terms of ordinary language. A good deal of such qualitative reasoning makes implicit use of the...irenheit 2 QualItalive ReaonIng 27 Janury 1990 or Celsius temperature on either day. If we ar. considering an equation connecting two variables, wfAx), we
Modifying Bagnold's Sediment Transport Equation for Use in Watershed-Scale Channel Incision Models
NASA Astrophysics Data System (ADS)
Lammers, R. W.; Bledsoe, B. P.
2016-12-01
Destabilized stream channels may evolve through a sequence of stages, initiated by bed incision and followed by bank erosion and widening. Channel incision can be modeled using Exner-type mass balance equations, but model accuracy is limited by the accuracy and applicability of the selected sediment transport equation. Additionally, many sediment transport relationships require significant data inputs, limiting their usefulness in data-poor environments. Bagnold's empirical relationship for bedload transport is attractive because it is based on stream power, a relatively straightforward parameter to estimate using remote sensing data. However, the equation is also dependent on flow depth, which is more difficult to measure or estimate for entire drainage networks. We recast Bagnold's original sediment transport equation using specific discharge in place of flow depth. Using a large dataset of sediment transport rates from the literature, we show that this approach yields similar predictive accuracy as other stream power based relationships. We also explore the applicability of various critical stream power equations, including Bagnold's original, and support previous conclusions that these critical values can be predicted well based solely on sediment grain size. In addition, we propagate error in these sediment transport equations through channel incision modeling to compare the errors associated with our equation to alternative formulations. This new version of Bagnold's bedload transport equation has utility for channel incision modeling at larger spatial scales using widely available and remote sensing data.
NASA Astrophysics Data System (ADS)
Gong, L.
2013-12-01
Large-scale hydrological models and land surface models are by far the only tools for accessing future water resources in climate change impact studies. Those models estimate discharge with large uncertainties, due to the complex interaction between climate and hydrology, the limited quality and availability of data, as well as model uncertainties. A new purely data-based scale-extrapolation method is proposed, to estimate water resources for a large basin solely from selected small sub-basins, which are typically two-orders-of-magnitude smaller than the large basin. Those small sub-basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics for the large basin In the Baltic Sea drainage basin, best discharge estimation for the gauged area was achieved with sub-basins that cover 2-4% of the gauged area. There exist multiple sets of sub-basins that resemble the climate and hydrology of the basin equally well. Those multiple sets estimate annual discharge for gauged area consistently well with 5% average error. The scale-extrapolation method is completely data-based; therefore it does not force any modelling error into the prediction. The multiple predictions are expected to bracket the inherent variations and uncertainties of the climate and hydrology of the basin. The method can be applied in both un-gauged basins and un-gauged periods with uncertainty estimation.
Characteristics of Rural Communities with a Sole, Independently Owned Pharmacy.
Nattinger, Matthew; Ullrich, Fred; Mueller, Keith J
2015-04-01
Prior RUPRI Center policy briefs have described the role of rural pharmacies in providing many essential clinical services (in addition to prescription and nonprescription medications), such as blood pressure monitoring, immunizations, and diabetes counseling, and the adverse effects of Medicare Part D negotiated networks on the financial viability of rural pharmacies.1 Because rural pharmacies play such a broad role in health care delivery, pharmacy closures can sharply reduce access to essential health care services in rural and underserved communities. These closures are of particular concern in rural areas served by a sole, independently owned pharmacy (i.e., a pharmacy unaffiliated with a chain or franchise). This policy brief characterizes the population of rural areas served by a sole, independently owned pharmacy. Dependent on a sole pharmacy, these areas are at highest risk to lose access to many essential clinical services. Key Findings. (1) In 2014 over 2.7 million people lived in 663 rural communities served by a sole, independently owned pharmacy. (2) More than one-quarter of these residents (27.9 percent) were living below 150 percent of the federal poverty level. (3) Based on estimates from 2012, a substantial portion of the residents of these areas were dependent on public insurance (i.e., Medicare and/or Medicaid, 20.5 percent) or were uninsured (15.0 percent). (4) If the sole, independent retail pharmacy in these communities were to close, the next closest retail pharmacy would be over 10 miles away for a majority of rural communities (69.7 percent).
Measurement of erosion in helicon plasma thrusters using the VASIMR® VX-CR device
NASA Astrophysics Data System (ADS)
Del Valle Gamboa, Juan Ignacio; Castro-Nieto, Jose; Squire, Jared; Carter, Mark; Chang-Diaz, Franklin
2015-09-01
The helicon plasma source is one of the principal stages of the high-power VASIMR® electric propulsion system. The VASIMR® VX-CR experiment focuses solely on this stage, exploring the erosion and long-term operation effects of the VASIMR helicon source. We report on the design and operational parameters of the VX-CR experiment, and the development of modeling tools and characterization techniques allowing the study of erosion phenomena in helicon plasma sources in general, and stand-alone helicon plasma thrusters (HPTs) in particular. A thorough understanding of the erosion phenomena within HPTs will enable better predictions of their behavior as well as more accurate estimations of their expected lifetime. We present a simplified model of the plasma-wall interactions within HPTs based on current models of the plasma density distributions in helicon discharges. Results from this modeling tool are used to predict the erosion within the plasma-facing components of the VX-CR device. Experimental techniques to measure actual erosion, including the use of coordinate-measuring machines and microscopy, will be discussed.
Structure induction in diagnostic causal reasoning.
Meder, Björn; Mayrhofer, Ralf; Waldmann, Michael R
2014-07-01
Our research examines the normative and descriptive adequacy of alternative computational models of diagnostic reasoning from single effects to single causes. Many theories of diagnostic reasoning are based on the normative assumption that inferences from an effect to its cause should reflect solely the empirically observed conditional probability of cause given effect. We argue against this assumption, as it neglects alternative causal structures that may have generated the sample data. Our structure induction model of diagnostic reasoning takes into account the uncertainty regarding the underlying causal structure. A key prediction of the model is that diagnostic judgments should not only reflect the empirical probability of cause given effect but should also depend on the reasoner's beliefs about the existence and strength of the link between cause and effect. We confirmed this prediction in 2 studies and showed that our theory better accounts for human judgments than alternative theories of diagnostic reasoning. Overall, our findings support the view that in diagnostic reasoning people go "beyond the information given" and use the available data to make inferences on the (unobserved) causal rather than on the (observed) data level. (c) 2014 APA, all rights reserved.
Density functional theory and chromium: Insights from the dimers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Würdemann, Rolf; Kristoffersen, Henrik H.; Moseler, Michael
2015-03-28
The binding in small Cr clusters is re-investigated, where the correct description of the dimer in three charge states is used as criterion to assign the most suitable density functional theory approximation. The difficulty in chromium arises from the subtle interplay between energy gain from hybridization and energetic cost due to exchange between s and d based molecular orbitals. Variations in published bond lengths and binding energies are shown to arise from insufficient numerical representation of electron density and Kohn-Sham wave-functions. The best functional performance is found for gradient corrected (GGA) functionals and meta-GGAs, where we find severe differences betweenmore » functionals from the same family due to the importance of exchange. Only the “best fit” from Bayesian error estimation is able to predict the correct energetics for all three charge states unambiguously. With this knowledge, we predict small bond-lengths to be exclusively present in Cr{sub 2} and Cr{sub 2}{sup −}. Already for the dimer cation, solely long bond-lengths appear, similar to what is found in the trimer and in chromium bulk.« less
Wang, Zhiwei; Zeljic, Kristina; Jiang, Qinying; Gu, Yong; Wang, Wei; Wang, Zheng
2018-01-01
Ubiquitous variability between individuals in visual perception is difficult to standardize and has thus essentially been ignored. Here we construct a quantitative psychophysical measure of illusory rotary motion based on the Pinna-Brelstaff figure (PBF) in 73 healthy volunteers and investigate the neural circuit mechanisms underlying perceptual variation using functional magnetic resonance imaging (fMRI). We acquired fMRI data from a subset of 42 subjects during spontaneous and 3 stimulus conditions: expanding PBF, expanding modified-PBF (illusion-free) and expanding modified-PBF with physical rotation. Brain-wide graph analysis of stimulus-evoked functional connectivity patterns yielded a functionally segregated architecture containing 3 discrete hierarchical networks, commonly shared between rest and stimulation conditions. Strikingly, communication efficiency and strength between 2 networks predominantly located in visual areas robustly predicted individual perceptual differences solely in the illusory stimulus condition. These unprecedented findings demonstrate that stimulus-dependent, not spontaneous, dynamic functional integration between distributed brain networks contributes to perceptual variability in humans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Limdi, Nita A; Wadelius, Mia; Cavallari, Larisa; Eriksson, Niclas; Crawford, Dana C; Lee, Ming-Ta M; Chen, Chien-Hsiun; Motsinger-Reif, Alison; Sagreiya, Hersh; Liu, Nianjun; Wu, Alan H B; Gage, Brian F; Jorgensen, Andrea; Pirmohamed, Munir; Shin, Jae-Gook; Suarez-Kurtz, Guilherme; Kimmel, Stephen E; Johnson, Julie A; Klein, Teri E; Wagner, Michael J
2010-05-06
Warfarin-dosing algorithms incorporating CYP2C9 and VKORC1 -1639G>A improve dose prediction compared with algorithms based solely on clinical and demographic factors. However, these algorithms better capture dose variability among whites than Asians or blacks. Herein, we evaluate whether other VKORC1 polymorphisms and haplotypes explain additional variation in warfarin dose beyond that explained by VKORC1 -1639G>A among Asians (n = 1103), blacks (n = 670), and whites (n = 3113). Participants were recruited from 11 countries as part of the International Warfarin Pharmacogenetics Consortium effort. Evaluation of the effects of individual VKORC1 single nucleotide polymorphisms (SNPs) and haplotypes on warfarin dose used both univariate and multi variable linear regression. VKORC1 -1639G>A and 1173C>T individually explained the greatest variance in dose in all 3 racial groups. Incorporation of additional VKORC1 SNPs or haplotypes did not further improve dose prediction. VKORC1 explained greater variability in dose among whites than blacks and Asians. Differences in the percentage of variance in dose explained by VKORC1 across race were largely accounted for by the frequency of the -1639A (or 1173T) allele. Thus, clinicians should recognize that, although at a population level, the contribution of VKORC1 toward dose requirements is higher in whites than in nonwhites; genotype predicts similar dose requirements across racial groups.
Nagai, Takashi; De Schamphelaere, Karel A C
2016-11-01
The authors investigated the effect of binary mixtures of zinc (Zn), copper (Cu), cadmium (Cd), and nickel (Ni) on the growth of a freshwater diatom, Navicula pelliculosa. A 7 × 7 full factorial experimental design (49 combinations in total) was used to test each binary metal mixture. A 3-d fluorescence microplate toxicity assay was used to test each combination. Mixture effects were predicted by concentration addition and independent action models based on a single-metal concentration-response relationship between the relative growth rate and the calculated free metal ion activity. Although the concentration addition model predicted the observed mixture toxicity significantly better than the independent action model for the Zn-Cu mixture, the independent action model predicted the observed mixture toxicity significantly better than the concentration addition model for the Cd-Zn, Cd-Ni, and Cd-Cu mixtures. For the Zn-Ni and Cu-Ni mixtures, it was unclear which of the 2 models was better. Statistical analysis concerning antagonistic/synergistic interactions showed that the concentration addition model is generally conservative (with the Zn-Ni mixture being the sole exception), indicating that the concentration addition model would be useful as a method for a conservative first-tier screening-level risk analysis of metal mixtures. Environ Toxicol Chem 2016;35:2765-2773. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Wang, Zengwei; Zhu, Ping; Zhao, Jianxuan
2017-02-01
In this paper, the prediction capabilities of the Global Transmissibility Direct Transmissibility (GTDT) method are further developed. Two path blocking techniques solely using the easily measured variables of the original system to predict the response of a path blocking system are generalized to finite element models of continuous systems. The proposed techniques are derived theoretically in a general form for the scenarios of setting the response of a subsystem to zero and of removing the link between two directly connected subsystems. The objective of this paper is to verify the reliability of the proposed techniques by finite element simulations. Two typical cases, the structural vibration transmission case and the structure-borne sound case, in two different configurations are employed to illustrate the validity of proposed techniques. The points of attention for each case have been discussed, and conclusions are given. It is shown that for the two cases of blocking a subsystem the proposed techniques are able to predict the new response using measured variables of the original system, even though operational forces are unknown. For the structural vibration transmission case of removing a connector between two components, the proposed techniques are available only when the rotational component responses of the connector are very small. The proposed techniques offer relative path measures and provide an alternative way to deal with NVH problems. The work in this paper provides guidance and reference for the engineering application of the GTDT prediction techniques.
The misbehaviour of a metacognitive monkey
Sayers, Ken; Evans, Theodore A.; Menzel, Emilie; Smith, J. David; Beran, Michael J.
2015-01-01
Summary Metacognition, the monitoring of one’s own mental states, is a fundamental aspect of human intellect. Despite tests in nonhuman animals suggestive of uncertainty monitoring, some authors interpret these results solely in terms of primitive psychological mechanisms and reinforcement regimes, where “reinforcement” is invariably considered to be the delivery and consumption of earned food rewards. Surprisingly, few studies have detailed the trial-by-trial behaviour of animals engaged in such tasks. Here we report ethology-based observations on a rhesus monkey completing sparse-dense discrimination problems, and given the option of escaping trials (i.e., responding “uncertain”) at its own choosing. Uncertainty responses were generally made on trials of high objective difficulty, and were characterized by long latencies before beginning visible trials, long times taken for response, and, even after controlling for difficulty, high degrees of wavering during response. Incorrect responses were also common in trials of high objective difficulty, but were characterized by low degrees of wavering. This speaks to the likely adaptive nature of “hesitation,” and is inconsistent with models which argue or predict implicit, inflexible information-seeking or “alternative option” behaviours whenever challenging problems present themselves, Confounding models which suggest that nonhuman behaviour in metacognition tasks is driven solely by food delivery/consumption, the monkey was also observed allowing pellets to accumulate and consuming them during and after trials of all response/outcome categories (i.e., whether correct, incorrect, or escaped). This study thus bolsters previous findings that rhesus monkey behaviour in metacognition tasks is in some respects disassociated from mere food delivery/consumption, or even the avoidance of punishment. These and other observations fit well with the evolutionary status and natural proclivities of rhesus monkeys, but weaken arguments that responses in such tests are solely associated with associative mechanisms, and instead suggest more derived and controlled cognitive processing. The latter interpretation appears particularly parsimonious given the neurological adaptations of primates, as well as their highly flexible social and ecological behaviour. PMID:26900166
NASA Astrophysics Data System (ADS)
Kim, R.-S.; Cho, K.-S.; Moon, Y.-J.; Dryer, M.; Lee, J.; Yi, Y.; Kim, K.-H.; Wang, H.; Park, Y.-D.; Kim, Yong Ha
2010-12-01
In this study, we discuss the general behaviors of geomagnetic storm strength associated with observed parameters of coronal mass ejection (CME) such as speed (V) and earthward direction (D) of CMEs as well as the longitude (L) and magnetic field orientation (M) of overlaying potential fields of the CME source region, and we develop an empirical model to predict geomagnetic storm occurrence with its strength (gauged by the Dst index) in terms of these CME parameters. For this we select 66 halo or partial halo CMEs associated with M-class and X-class solar flares, which have clearly identifiable source regions, from 1997 to 2003. After examining how each of these CME parameters correlates with the geoeffectiveness of the CMEs, we find several properties as follows: (1) Parameter D best correlates with storm strength Dst; (2) the majority of geoeffective CMEs have been originated from solar longitude 15°W, and CMEs originated away from this longitude tend to produce weaker storms; (3) correlations between Dst and the CME parameters improve if CMEs are separated into two groups depending on whether their magnetic fields are oriented southward or northward in their source regions. Based on these observations, we present two empirical expressions for Dst in terms of L, V, and D for two groups of CMEs, respectively. This is a new attempt to predict not only the occurrence of geomagnetic storms, but also the storm strength (Dst) solely based on the CME parameters.
Negative urgency and reward/punishment sensitivity in intermittent explosive disorder.
Puhalla, Alexander A; Ammerman, Brooke A; Uyeji, Lauren L; Berman, Mitchell E; McCloskey, Michael S
2016-09-01
Intermittent explosive disorder (IED) is the sole psychiatric diagnosis in which affective aggression is the cardinal symptom. Previous research has been equivocal with regard to the relationship between IED and impulsivity. This inconsistency may reflect the varied facets of impulsivity, with some aspects of impulsivity (e.g. negative urgency) as well as some overlapping, albeit distinct constructs (e.g. reward and punishment sensitivity) yet to be studied. The present study compared individuals diagnosed with IED (n=81) with psychiatric controls (PCs; n=52) and healthy volunteers (HVs; n=58) on the impulsivity domains of negative and positive urgency, perseverance, sensation seeking, and premeditation, as well as on reward and punishment sensitivity. We hypothesized that individuals with IED would show greater negative and positive urgency, reward sensitivity, punishment sensitivity, with negative urgency independently predicting IED status. We also hypothesized that negative urgency would predict levels of anger, aggression, and aggression control among those with IED. The IED participants reported greater negative urgency than both comparison groups, and greater levels of positive urgency, reward sensitivity, and punishment sensitivity compared to HVs. Further, heightened negative urgency was the sole predictor an IED diagnosis. Within the IED group negative urgency uniquely predicted decreased aggression control and increased trait anger. Limitations included reliance on self-report measures to assess RS/PS, impulsivity, and aggression. These findings suggest that negative urgency is a key factor associated with IED and is associated with dampened control of aggression within those with IED. Copyright © 2016 Elsevier B.V. All rights reserved.
Ridderinkhof, K Richard; Brass, Marcel
2015-01-01
Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the posterior parietal cortex, the cerebellum, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of cephalometer misalignment on calculations of facial asymmetry.
Lee, Ki-Heon; Hwang, Hyeon-Shik; Curry, Sean; Boyd, Robert L; Norris, Kevin; Baumrind, Sheldon
2007-07-01
In this study, we evaluated errors introduced into the interpretation of facial asymmetry on posteroanterior (PA) cephalograms due to malpositioning of the x-ray emitter focal spot. We tested the hypothesis that horizontal displacements of the emitter from its ideal position would produce systematic displacements of skull landmarks that could be fully accounted for by the rules of projective geometry alone. A representative dry skull with 22 metal markers was used to generate a series of PA images from different emitter positions by using a fully calibrated stereo cephalometer. Empirical measurements of the resulting cephalograms were compared with mathematical predictions based solely on geometric rules. The empirical measurements matched the mathematical predictions within the limits of measurement error (x= 0.23 mm), thus supporting the hypothesis. Based upon this finding, we generated a completely symmetrical mathematical skull and calculated the expected errors for focal spots of several different magnitudes. Quantitative data were computed for focal spot displacements of different magnitudes. Misalignment of the x-ray emitter focal spot introduces systematic errors into the interpretation of facial asymmetry on PA cephalograms. For misalignments of less than 20 mm, the effect is small in individual cases. However, misalignments as small as 10 mm can introduce spurious statistical findings of significant asymmetry when mean values for large groups of PA images are evaluated.
The AOP framework and causality: Meeting chemical risk ...
Chemical safety assessments are expanding from a focus on a few chemicals (or chemical mixtures) to the broader “universe” of thousands, if not hundreds of thousands of substances that potentially could impact humans or the environment. This is exemplified in regulatory activities such as the REACH program in Europe, or the recent reauthorization of TSCA in the US, which require consideration of the potential impacts of a much greater number of chemicals than in the past. The data needed to address these types of legislated mandates cannot realistically be obtained solely through using the whole animal testing approaches historically employed for chemical risk assessment. Rather, there needs to be an increased emphasis on cost-effective tools that enable robust prediction of potential chemical impacts when empirical data are lacking. Concurrent with the realization that predictive methods will need to play an increasingly prominent role in regulatory toxicology has been the recent explosion in technology in the biological sciences enabling collection of large amounts of pathway-based molecular and biochemical data. For example, genomic techniques and high-throughput (robotic-based) in vitro testing enable the generation of knowledge concerning the effects of chemical perturbation on biological systems in an increasingly efficient and rapid manner. However, a pressing need stemming from these technological advances is the ability to actually apply th
Hsu, Jia-Lien; Hung, Ping-Cheng; Lin, Hung-Yen; Hsieh, Chung-Ho
2015-04-01
Breast cancer is one of the most common cause of cancer mortality. Early detection through mammography screening could significantly reduce mortality from breast cancer. However, most of screening methods may consume large amount of resources. We propose a computational model, which is solely based on personal health information, for breast cancer risk assessment. Our model can be served as a pre-screening program in the low-cost setting. In our study, the data set, consisting of 3976 records, is collected from Taipei City Hospital starting from 2008.1.1 to 2008.12.31. Based on the dataset, we first apply the sampling techniques and dimension reduction method to preprocess the testing data. Then, we construct various kinds of classifiers (including basic classifiers, ensemble methods, and cost-sensitive methods) to predict the risk. The cost-sensitive method with random forest classifier is able to achieve recall (or sensitivity) as 100 %. At the recall of 100 %, the precision (positive predictive value, PPV), and specificity of cost-sensitive method with random forest classifier was 2.9 % and 14.87 %, respectively. In our study, we build a breast cancer risk assessment model by using the data mining techniques. Our model has the potential to be served as an assisting tool in the breast cancer screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, G.C.; Morrissey, D.J.
Coal in the Ferron Sandstone Member of the Mancos Shale of Cretaceous age has traditionally been mined by underground techniques in the Emery Coal Field in the southern end of Castle Valley in east-central Utah. However, approximately 99 million tons are recoverable by surface mining. Ground water in the Ferron is the sole source of supply for the town of Emery, but the aquifer is essentially untapped outside the Emery area. A three-dimensional digital-computer model was used to simulate ground-water flow in the Ferron sandstone aquifer in the Emery area. The model also was used to predict the effects ofmore » dewatering of a proposed surface mine on aquifer potentiometric surfaces and the base flow of streams. Discharge from the proposed surface mine is predicted to average about 0.3 cubic foot per second during the 15 years of mine operation. Dewatering of the mine would affect the potentiometric surface of all sections of the Ferron sanstone aquifer, but the greatest effects would be in the upper section. Modeling results indicate that, except for Christiansen Wash, the dewatering of the proposed surface mine would not affect the base flow of streams.« less
Haredasht, S Amirpour; Taylor, C J; Maes, P; Verstraeten, W W; Clement, J; Barrios, M; Lagrou, K; Van Ranst, M; Coppin, P; Berckmans, D; Aerts, J-M
2013-11-01
Wildlife-originated zoonotic diseases in general are a major contributor to emerging infectious diseases. Hantaviruses more specifically cause thousands of human disease cases annually worldwide, while understanding and predicting human hantavirus epidemics pose numerous unsolved challenges. Nephropathia epidemica (NE) is a human infection caused by Puumala virus, which is naturally carried and shed by bank voles (Myodes glareolus). The objective of this study was to develop a method that allows model-based predicting 3 months ahead of the occurrence of NE epidemics. Two data sets were utilized to develop and test the models. These data sets were concerned with NE cases in Finland and Belgium. In this study, we selected the most relevant inputs from all the available data for use in a dynamic linear regression (DLR) model. The number of NE cases in Finland were modelled using data from 1996 to 2008. The NE cases were predicted based on the time series data of average monthly air temperature (°C) and bank voles' trapping index using a DLR model. The bank voles' trapping index data were interpolated using a related dynamic harmonic regression model (DHR). Here, the DLR and DHR models used time-varying parameters. Both the DHR and DLR models were based on a unified state-space estimation framework. For the Belgium case, no time series of the bank voles' population dynamics were available. Several studies, however, have suggested that the population of bank voles is related to the variation in seed production of beech and oak trees in Northern Europe. Therefore, the NE occurrence pattern in Belgium was predicted based on a DLR model by using remotely sensed phenology parameters of broad-leaved forests, together with the oak and beech seed categories and average monthly air temperature (°C) using data from 2001 to 2009. Our results suggest that even without any knowledge about hantavirus dynamics in the host population, the time variation in NE outbreaks in Finland could be predicted 3 months ahead with a 34% mean relative prediction error (MRPE). This took into account solely the population dynamics of the carrier species (bank voles). The time series analysis also revealed that climate change, as represented by the vegetation index, changes in forest phenology derived from satellite images and directly measured air temperature, may affect the mechanics of NE transmission. NE outbreaks in Belgium were predicted 3 months ahead with a 40% MRPE, based only on the climatological and vegetation data, in this case, without any knowledge of the bank vole's population dynamics. In this research, we demonstrated that NE outbreaks can be predicted using climate and vegetation data or the bank vole's population dynamics, by using dynamic data-based models with time-varying parameters. Such a predictive modelling approach might be used as a step towards the development of new tools for the prevention of future NE outbreaks. © 2012 Blackwell Verlag GmbH.
Water hammer prediction and control: the Green's function method
NASA Astrophysics Data System (ADS)
Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi
2012-04-01
By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.
Hardiman, Nigel; Dietz, Kristina Charlotte; Bride, Ian; Passfield, Louis
2017-01-01
Land managers of natural areas are under pressure to balance demands for increased recreation access with protection of the natural resource. Unintended dispersal of seeds by visitors to natural areas has high potential for weedy plant invasions, with initial seed attachment an important step in the dispersal process. Although walking and mountain biking are popular nature-based recreation activities, there are few studies quantifying propensity for seed attachment and transport rate on boot soles and none for bike tires. Attachment and transport rate can potentially be affected by a wide range of factors for which field testing can be time-consuming and expensive. We pilot tested a sampling methodology for measuring seed attachment and transport rate in a soil matrix carried on boot soles and bike tires traversing a known quantity and density of a seed analog (beads) over different distances and soil conditions. We found % attachment rate on boot soles was much lower overall than previously reported, but that boot soles had a higher propensity for seed attachment than bike tires in almost all conditions. We believe our methodology offers a cost-effective option for researchers seeking to manipulate and test effects of different influencing factors on these two dispersal vectors.
NASA Astrophysics Data System (ADS)
Hardiman, Nigel; Dietz, Kristina Charlotte; Bride, Ian; Passfield, Louis
2017-01-01
Land managers of natural areas are under pressure to balance demands for increased recreation access with protection of the natural resource. Unintended dispersal of seeds by visitors to natural areas has high potential for weedy plant invasions, with initial seed attachment an important step in the dispersal process. Although walking and mountain biking are popular nature-based recreation activities, there are few studies quantifying propensity for seed attachment and transport rate on boot soles and none for bike tires. Attachment and transport rate can potentially be affected by a wide range of factors for which field testing can be time-consuming and expensive. We pilot tested a sampling methodology for measuring seed attachment and transport rate in a soil matrix carried on boot soles and bike tires traversing a known quantity and density of a seed analog (beads) over different distances and soil conditions. We found % attachment rate on boot soles was much lower overall than previously reported, but that boot soles had a higher propensity for seed attachment than bike tires in almost all conditions. We believe our methodology offers a cost-effective option for researchers seeking to manipulate and test effects of different influencing factors on these two dispersal vectors.
Jiang, Xiaoying; Wei, Rong; Zhang, Tongliang; Gu, Quan
2008-01-01
The function of protein is closely correlated with it subcellular location. Prediction of subcellular location of apoptosis proteins is an important research area in post-genetic era because the knowledge of apoptosis proteins is useful to understand the mechanism of programmed cell death. Compared with the conventional amino acid composition (AAC), the Pseudo Amino Acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence so as to remarkably enhance the power of using a discrete model to predict various attributes of a protein. In this study, a novel approach is presented to predict apoptosis protein solely from sequence based on the concept of Chou's PseAA composition. The concept of approximate entropy (ApEn), which is a parameter denoting complexity of time series, is used to construct PseAA composition as additional features. Fuzzy K-nearest neighbor (FKNN) classifier is selected as prediction engine. Particle swarm optimization (PSO) algorithm is adopted for optimizing the weight factors which are important in PseAA composition. Two datasets are used to validate the performance of the proposed approach, which incorporate six subcellular location and four subcellular locations, respectively. The results obtained by jackknife test are quite encouraging. It indicates that the ApEn of protein sequence could represent effectively the information of apoptosis proteins subcellular locations. It can at least play a complimentary role to many of the existing methods, and might become potentially useful tool for protein function prediction. The software in Matlab is available freely by contacting the corresponding author.
The U.S. Earthquake Prediction Program
Wesson, R.L.; Filson, J.R.
1981-01-01
There are two distinct motivations for earthquake prediction. The mechanistic approach aims to understand the processes leading to a large earthquake. The empirical approach is governed by the immediate need to protect lives and property. With our current lack of knowledge about the earthquake process, future progress cannot be made without gathering a large body of measurements. These are required not only for the empirical prediction of earthquakes, but also for the testing and development of hypotheses that further our understanding of the processes at work. The earthquake prediction program is basically a program of scientific inquiry, but one which is motivated by social, political, economic, and scientific reasons. It is a pursuit that cannot rely on empirical observations alone nor can it carried out solely on a blackboard or in a laboratory. Experiments must be carried out in the real Earth.
[Intensive care medicine-survival and prospect of life].
Valentin, A
2017-10-01
Intensive care medicine has achieved a significant increase in survival rates from critical illness. In addition to short-term outcomes like intensive care unit or hospital mortality, long-term prognosis and prospect of life of intensive care patients have recently become increasingly important. Pure survival is no longer a sole goal of intensive care medicine. The prediction of an intensive care patient's individual course should include the period after intensive care. A relevant proportion of all intensive care patients is affected by physical, psychological, cognitive, and social limitations after discharge from the intensive care unit. The prognosis of the status of the patient after discharge from the intensive care unit is an important part of the decision-making process with respect to the implementation or discontinuation of intensive care measures. The heavy burden of intensive care treatment should not solely be argued by pure survival but an anticipated sound prospect of life.
Wurmb, Thomas Erik; Frühwald, Peter; Hopfner, Wittiko; Roewer, Norbert; Brederlau, Jörg
2007-11-01
In our hospital, whole-body multislice computed tomography is used as the primary diagnostic tool in patients with suspected multiple trauma. A triage rule is used for its indication. We have retrospectively analyzed data of sedated, intubated and ventilated patients consecutively admitted to our trauma center to assess whether the triage rule can help identify patients with severe trauma (injury severity score > or = 16). We have found that overtriage (injury severity score < 16) occurs in 30%, and undertriage occurs in 6% of patients. Although we have found the triage rule to be highly sensitive, this results in a high rate of overtriage. Until we know more about the most relevant and independent predictive factors, sole reliance upon multislice computed tomography in triaging suspected polytrauma victims will imply the risk to overscan many patients.
Development of thermal models of footwear using finite element analysis.
Covill, D; Guan, Z W; Bailey, M; Raval, H
2011-03-01
Thermal comfort is increasingly becoming a crucial factor to be considered in footwear design. The climate inside a shoe is controlled by thermal and moisture conditions and is crucial to attain comfort. Research undertaken has shown that thermal conditions play a dominant role in shoe climate. Development of thermal models that are capable of predicting in-shoe temperature distributions is an effective way forward to undertake extensive parametric studies to assist optimized design. In this paper, two-dimensional and three-dimensional thermal models of in-shoe climate were developed using finite element analysis through commercial code Abaqus. The thermal material properties of the upper shoe, sole, and air were considered. Dry heat flux from the foot was calculated on the basis of typical blood flow in the arteries on the foot. Using the thermal models developed, in-shoe temperatures were predicted to cover various locations for controlled ambient temperatures of 15, 25, and 35 degrees C respectively. The predicted temperatures were compared with multipoint measured temperatures through microsensor technology. Reasonably good correlation was obtained, with averaged errors of 6, 2, and 1.5 per cent, based on the averaged in-shoe temperature for the above three ambient temperatures. The models can be further used to help design shoes with optimized thermal comfort.
Buckley, Thomas N; Vice, Heather; Adams, Mark A
2017-12-01
The Kok effect - an abrupt decline in quantum yield (QY) of net CO 2 assimilation at low photosynthetic photon flux density (PPFD) - is widely used to estimate respiration in the light (R), which assumes the effect is caused by light suppression of R. A recent report suggested much of the Kok effect can be explained by declining chloroplastic CO 2 concentration (c c ) at low PPFD. Several predictions arise from the hypothesis that the Kok effect is caused by declining c c , and we tested these predictions in Vicia faba. We measured CO 2 exchange at low PPFD, in 2% and 21% oxygen, in developing and mature leaves, which differed greatly in R in darkness. Our results contradicted each of the predictions based on the c c effect: QY exceeded the theoretical maximum value for photosynthetic CO 2 uptake; QY was larger in 21% than 2% oxygen; and the change in QY at the Kok effect breakpoint was unaffected by oxygen. Our results strongly suggest the Kok effect arises largely from a progressive decline in R with PPFD that includes both oxygen-sensitive and -insensitive components. We suggest an improved Kok method that accounts for high c c at low PPFD. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Park, Munhum
2013-07-01
In contrast to common expectations, the noise levels measured in hospital wards are known to be high with little day-night variation, potentially having negative effects on the patient outcomes and the work performance of the staff members, and considerable research attention has been drawn to such adverse acoustic conditions in healthcare environments. Recently, Young et al. [J. Acoust. Soc. Am. 132(5), 3234-3239 (2012)] proposed to use an artificial neural network (ANN) to predict the hourly energy-equivalent sound pressure level (Leq, 1h), particularly targeting neonatal intensive care units. Despite the timeliness of the study and the potential benefits of an "acoustic forecasting" model, the proposed scheme appears to be underdeveloped in a few important aspects, which this letter attempts to address. In particular, the prediction of a simpler time-series smoothing technique was equally or more accurate compared to that of the ANN. In addition, the percentage error used to indicate the prediction accuracy was not only perceptually irrelevant but also misleading given the narrow distribution of test data. Furthermore, this letter raises the more general question whether the sound pressure level may meaningfully be modeled solely based on the past time-series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reedlunn, Benjamin
Room D was an in-situ, isothermal, underground experiment conducted at the Waste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under-predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recentlymore » by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under-predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reedlunn, Benjamin
Room D was an in-situ, isothermal, underground experiment conducted at theWaste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recentlymore » by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.« less
Kennedy, Andrew J.; Mathews, Thomas P.; Kharel, Yugesh; Field, Saundra D.; Moyer, Morgan L.; East, James E.; Houck, Joseph D.; Lynch, Kevin R.; Macdonald, Timothy L.
2011-01-01
Sphingosine 1-phosphate (S1P) is a bioactive lipid that has been identified as an accelerant of cancer progression. The sphingosine kinases (SphKs) are the sole producers of S1P and thus SphK inhibitors may prove effective in cancer mitigation and chemosensitization. Of the two SphKs, SphK1 overexpression has been observed in a myriad of cancer cell lines and tissues, and has been recognized as the presumptive target over that of the poorly characterized SphK2. Herein, we present the design and synthesis of amidine-based nanomolar SphK1 subtype-selective inhibitors. A homology model of SphK1, trained with this library of amidine inhibitors, was then used to predict the activity of additional, more potent, inhibitors. Lastly, select amidine inhibitors were validated in human leukemia U937 cells, where they significantly reduced endogenous S1P levels at nanomolar concentrations. PMID:21495716
Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron
Roemschied, Frederic A; Eberhard, Monika JB; Schleimer, Jan-Hendrik; Ronacher, Bernhard; Schreiber, Susanne
2014-01-01
Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel. DOI: http://dx.doi.org/10.7554/eLife.02078.001 PMID:24843016
Ethics of the allocation of highly advanced medical technologies.
Sass, H M
1998-03-01
The disproportionate distribution of financial, educational, social, and medical resources between some rich countries of the northern hemisphere and less fortunate societies creates a moral challenge of global dimension. The development of new forms of highly advanced medical technologies, including neoorgans and xenografts, as well as the promotion of health literacy and predictive and preventive medical services might reduce some problems in allocational justice. Most governments and the World Health Organization (WHO) reject financial and other rewards for living organ donors thus indirectly contributing to the development of black markets. A societal gratuity model supporting and safeguarding a highly regulated market between providers and recipients of organs might provide for better protection of those who provide organs not solely based on altruistic reasons. The moral assessment of global issues in allocation and justice in the distribution of medical technologies must be increased and will have to be based on the principles of self determination and responsibility, solidarity and subsidiarity, and respect for individual values and cultural traditions.
Geometric invariance of compressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle
2015-11-01
A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.
Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier
NASA Astrophysics Data System (ADS)
Erickson, R. P.; Pappas, D. P.
2017-03-01
We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).
A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses
Köberlin, Marielle S.; Snijder, Berend; Heinz, Leonhard X.; Baumann, Christoph L.; Fauster, Astrid; Vladimer, Gregory I.; Gavin, Anne-Claude; Superti-Furga, Giulio
2015-01-01
Summary Lipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid composition was broadly affected by these perturbations, revealing a circular network of coregulated sphingolipids and glycerophospholipids. This evolutionarily conserved network architecture simultaneously reflected membrane lipid metabolism, subcellular localization, and adaptation mechanisms. Integration of the diverse TLR-induced inflammatory phenotypes with changes in lipid abundance assigned distinct functional roles to individual lipid species organized across the network. This functional annotation accurately predicted the inflammatory response of cells derived from patients suffering from lipid storage disorders, based solely on their altered membrane lipid composition. The analytical strategy described here empowers the understanding of higher-level organization of membrane lipid function in diverse biological systems. PMID:26095250
Neutron die-away experiment for remote analysis of the surface of the moon and the planets, phase 3
NASA Technical Reports Server (NTRS)
Mills, W. R.; Allen, L. S.
1972-01-01
Continuing work on the two die-away measurements proposed to be made in the combined pulsed neutron experiment (CPNE) for analysis of lunar and planetary surfaces is described. This report documents research done during Phase 3. A general exposition of data analysis by the least-squares method and the related problem of the prediction of variance is given. A data analysis procedure for epithermal die-away data has been formulated. In order to facilitate the analysis, the number of independent material variables has been reduced to two: the hydrogen density and an effective oxygen density, the latter being determined uniquely from the nonhydrogeneous elemental composition. Justification for this reduction in the number of variables is based on a set of 27 new theoretical calculations. Work is described related to experimental calibration of the epithermal die-away measurement. An interim data analysis technique based solely on theoretical calculations seems to be adequate and will be used for future CPNE field tests.
Perceived health from biological motion predicts voting behaviour.
Kramer, Robin S S; Arend, Isabel; Ward, Robert
2010-04-01
Body motion signals socially relevant traits like the sex, age, and even the genetic quality of actors and may therefore facilitate various social judgements. By examining ratings and voting decisions based solely on body motion of political candidates, we considered how the candidates' motion affected people's judgements and voting behaviour. In two experiments, participants viewed stick figure motion displays made from videos of politicians in public debate. Participants rated the motion displays for a variety of social traits and then indicated their vote preference. In both experiments, perceived physical health was the single best predictor of vote choice, and no two-factor model produced significant improvement. Notably, although attractiveness and leadership correlated with voting behaviour, neither provided additional explanatory power to a single-factor model of health alone. Our results demonstrate for the first time that motion can produce systematic vote preferences.
THE EFFECTS OF MAINTENANCE ACTIONS ON THE PFDavg OF SPRING OPERATED PRESSURE RELIEF VALVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, S.; Gross, R.
2014-04-01
The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accountedmore » for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.« less
Interfacial spin-filter assisted spin transfer torque effect in Co/BeO/Co magnetic tunnel junction
NASA Astrophysics Data System (ADS)
Tang, Y.-H.; Chu, F.-C.
2015-03-01
The first-principles calculation is employed to demonstrate the spin-selective transport properties and the non-collinear spin-transfer torque (STT) effect in the newly proposed Co/BeO/Co magnetic tunnel junction. The subtle spin-polarized charge transfer solely at O/Co interface gives rise to the interfacial spin-filter (ISF) effect, which can be simulated within the tight binding model to verify the general expression of STT. This allows us to predict the asymmetric bias behavior of non-collinear STT directly via the interplay between the first-principles calculated spin current densities in collinear magnetic configurations. We believe that the ISF effect, introduced by the combination between wurtzite-BeO barrier and the fcc-Co electrode, may open a new and promising route in semiconductor-based spintronics applications.
The Effects of Maintenance Actions on the PFDavg of Spring Operated Pressure Relief Valves
Harris, S.; Gross, R.; Goble, W; ...
2015-12-01
The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accountedmore » for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.« less
Indrehus, Oddny; Aralt, Tor Tybring
2005-04-01
Aerosol, NO and CO concentration, temperature, air humidity, air flow and number of running ventilation fans were measured by continuous analysers every minute for a whole week for six different one-week periods spread over ten months in 2001 and 2002 at measuring stations in the 7860 m long tunnel. The ventilation control system was mainly based on aerosol measurements taken by optical scatter sensors. The ventilation turned out to be satisfactory according to Norwegian air quality standards for road tunnels; however, there was some uncertainty concerning the NO2 levels. The air humidity and temperature inside the tunnel were highly influenced by the outside metrological conditions. Statistical models for NO concentration were developed and tested; correlations between predicted and measured NO were 0.81 for a partial least squares regression (PLS1) model based on CO and aerosol, and 0.77 for a linear regression model based only on aerosol. Hence, the ventilation control system should not solely be based on aerosol measurements. Since NO2 is the hazardous polluter, modelling NO2 concentration rather than NO should be preferred in any further optimising of the ventilation control.
Davis, Tyler; Goldwater, Micah; Giron, Josue
2017-04-01
The ability to form relational categories for objects that share few features in common is a hallmark of human cognition. For example, anything that can play a preventative role, from a boulder to poverty, can be a "barrier." However, neurobiological research has focused solely on how people acquire categories defined by features. The present functional magnetic resonance imaging study examines how relational and feature-based category learning compare in well-matched learning tasks. Using a computational model-based approach, we observed a cluster in left rostrolateral prefrontal cortex (rlPFC) that tracked quantitative predictions for the representational distance between test and training examples during relational categorization. Contrastingly, medial and dorsal PFC exhibited graded activation that tracked decision evidence during both feature-based and relational categorization. The results suggest that rlPFC computes an alignment signal that is critical for integrating novel examples during relational categorization whereas other PFC regions support more general decision functions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Complex behaviour and predictability of the European dry spell regimes
NASA Astrophysics Data System (ADS)
Lana, X.; Martínez, M. D.; Serra, C.; Burgueño, A.
2010-09-01
The complex spatial and temporal characteristics of European dry spell lengths, DSL, (sequences of consecutive days with rainfall amount below a certain threshold) and their randomness and predictive instability are analysed from daily pluviometric series recorded at 267 rain gauges along the second half of the 20th century. DSL are obtained by considering four thresholds, R0, of 0.1, 1.0, 5.0 and 10.0 mm/day. A proper quantification of the complexity, randomness and predictive instability of the different DSL regimes in Europe is achieved on the basis of fractal analyses and dynamic system theory, including the reconstruction theorem. First, the concept of lacunarity is applied to the series of daily rainfall, and the lacunarity curves are well fitted to Cantor and random Cantor sets. Second, the rescaled analysis reveals that randomness, persistence and anti-persistence are present on the European DSL series. Third, the complexity of the physical process governing the DSL series is quantified by the minimum number of nonlinear equations determined by the correlation dimension. And fourth, the loss of memory of the physical process, which is one of the reasons for the complex predictability, is characterized by the values of the Kolmogorov entropy, and the predictive instability is directly associated with positive Lyapunov exponents. In this way, new bases for a better prediction of DSLs in Europe, sometimes leading to drought episodes, are established. Concretely, three predictive strategies are proposed in Sect. 5. It is worth mentioning that the spatial distribution of all fractal parameters does not solely depend on latitude and longitude but also reflects the effects of orography, continental climate or vicinity to the Atlantic and Arctic Oceans and Mediterranean Sea.
Interspecies interactions are an integral determinant of microbial community dynamics
Aziz, Fatma A. A.; Suzuki, Kenshi; Ohtaki, Akihiro; Sagegami, Keita; Hirai, Hidetaka; Seno, Jun; Mizuno, Naoko; Inuzuka, Yuma; Saito, Yasuhisa; Tashiro, Yosuke; Hiraishi, Akira; Futamata, Hiroyuki
2015-01-01
This study investigated the factors that determine the dynamics of bacterial communities in a complex system using multidisciplinary methods. Since natural and engineered microbial ecosystems are too complex to study, six types of synthetic microbial ecosystems (SMEs) were constructed under chemostat conditions with phenol as the sole carbon and energy source. Two to four phenol-degrading, phylogenetically and physiologically different bacterial strains were used in each SME. Phylogeny was based on the nucleotide sequence of 16S rRNA genes, while physiologic traits were based on kinetic and growth parameters on phenol. Two indices, J parameter and “interspecies interaction,” were compared to predict which strain would become dominant in an SME. The J parameter was calculated from kinetic and growth parameters. On the other hand, “interspecies interaction,” a new index proposed in this study, was evaluated by measuring the specific growth activity, which was determined on the basis of relative growth of a strain with or without the supernatant prepared from other bacterial cultures. Population densities of strains used in SMEs were enumerated by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase and were compared to predictions made from J parameter and interspecies interaction calculations. In 4 of 6 SEMs tested the final dominant strain shown by real-time qPCR analyses coincided with the strain predicted by both the J parameter and the interspecies interaction. However, in SMEII-2 and SMEII-3 the final dominant Variovorax strains coincided with prediction of the interspecies interaction but not the J parameter. These results demonstrate that the effects of interspecies interactions within microbial communities contribute to determining the dynamics of the microbial ecosystem. PMID:26539177
Incorporation of Mobile Application (App) Measures Into the Diagnosis of Smartphone Addiction.
Lin, Yu-Hsuan; Lin, Po-Hsien; Chiang, Chih-Lin; Lee, Yang-Han; Yang, Cheryl C H; Kuo, Terry B J; Lin, Sheng-Hsuan
2017-07-01
Global smartphone expansion has brought about unprecedented addictive behaviors. The current diagnosis of smartphone addiction is based solely on information from clinical interview. This study aimed to incorporate application (app)-recorded data into psychiatric criteria for the diagnosis of smartphone addiction and to examine the predictive ability of the app-recorded data for the diagnosis of smartphone addiction. Smartphone use data of 79 college students were recorded by a newly developed app for 1 month between December 1, 2013, and May 31, 2014. For each participant, psychiatrists made a diagnosis for smartphone addiction based on 2 approaches: (1) only diagnostic interview (standard diagnosis) and (2) both diagnostic interview and app-recorded data (app-incorporated diagnosis). The app-incorporated diagnosis was further used to build app-incorporated diagnostic criteria. In addition, the app-recorded data were pooled as a score to predict smartphone addiction diagnosis. When app-incorporated diagnosis was used as a gold standard for 12 candidate criteria, 7 criteria showed significant accuracy (area under receiver operating characteristic curve [AUC] > 0.7) and were constructed as app-incorporated diagnostic criteria, which demonstrated remarkable accuracy (92.4%) for app-incorporated diagnosis. In addition, both frequency and duration of daily smartphone use significantly predicted app-incorporated diagnosis (AUC = 0.70 for frequency; AUC = 0.72 for duration). The combination of duration, frequency, and frequency trend for 1 month can accurately predict smartphone addiction diagnosis (AUC = 0.79 for app-incorporated diagnosis; AUC = 0.71 for standard diagnosis). The app-incorporated diagnosis, combining both psychiatric interview and app-recorded data, demonstrated substantial accuracy for smartphone addiction diagnosis. In addition, the app-recorded data performed as an accurate screening tool for app-incorporated diagnosis. © Copyright 2017 Physicians Postgraduate Press, Inc.
Modelling larval dispersal dynamics of common sole (Solea solea) along the western Iberian coast
NASA Astrophysics Data System (ADS)
Tanner, Susanne E.; Teles-Machado, Ana; Martinho, Filipe; Peliz, Álvaro; Cabral, Henrique N.
2017-08-01
Individual-based coupled physical-biological models have become the standard tool for studying ichthyoplankton dynamics and assessing fish recruitment. Here, common sole (Solea solea L.), a flatfish of high commercial importance in Europe was used to evaluate transport of eggs and larvae and investigate the connectivity between spawning and nursery areas along the western Iberian coast as spatio-temporal variability in dispersal and recruitment patterns can result in very strong or weak year-classes causing large fluctuations in stock size. A three-dimensional particle tracking model coupled to Regional Ocean Modelling System model was used to investigate variability of sole larvae dispersal along the western Iberian coast over a five-year period (2004-2009). A sensitivity analysis evaluating: (1) the importance of diel vertical migrations of larvae and (2) the size of designated recruitment areas was performed. Results suggested that connectivity patterns of sole larvae dispersal and their spatio-temporal variability are influenced by the configuration of the coast with its topographical structures and thus the suitable recruitment area available as well as the wind-driven mesoscale circulation along the Iberian coast.
Predicting community composition from pairwise interactions
NASA Astrophysics Data System (ADS)
Friedman, Jonathan; Higgins, Logan; Gore, Jeff
The ability to predict the structure of complex, multispecies communities is crucial for understanding the impact of species extinction and invasion on natural communities, as well as for engineering novel, synthetic communities. Communities are often modeled using phenomenological models, such as the classical generalized Lotka-Volterra (gLV) model. While a lot of our intuition comes from such models, their predictive power has rarely been tested experimentally. To directly assess the predictive power of this approach, we constructed synthetic communities comprised of up to 8 soil bacteria. We measured the outcome of competition between all species pairs, and used these measurements to predict the composition of communities composed of more than 2 species. The pairwise competitions resulted in a diverse set of outcomes, including coexistence, exclusion, and bistability, and displayed evidence for both interference and facilitation. Most pair outcomes could be captured by the gLV framework, and the composition of multispecies communities could be predicted for communities composed solely of such pairs. Our results demonstrate the predictive ability and utility of simple phenomenology, which enables accurate predictions in the absence of mechanistic details.
Lin, Yi-Jia; Lee, Shih-Chi; Chang, Chao-Chin; Liu, Tsung-Han
2018-01-01
This study is aimed at determining the effects of midsole thickness on movement characteristic during side cutting movement. Fifteen athletes performed side-step cutting while wearing shoes with varying midsole thicknesses. Temporal-spatial and ground reaction force variables as well as foot and ankle frontal kinematics were used to describe breaking and propulsive movement characteristics and modulation strategies. Regardless of midsole thickness, temporal-spatial variables and breaking and propulsive force during side cutting were statistically unchanged. Significantly greater peaks of ankle inversion and plantarflexion with a thicker sole and greater midtarsal pronation with a thinner sole were observed. Current results demonstrated that hypotheses formed solely based on material testing were insufficient to understand the adaptations in human movement because of the redundancy of the neuromusculoskeletal system. Participants were able to maintain temporal-spatial performance during side cutting while wearing shoes with midsoles of varying thicknesses. Increased pronation for a thinner sole might help reduce the force of impact but might be associated with an increased risk of excessive stress on soft tissue. Increased peak of ankle inversion and plantarflexion for a thicker sole may be unfavorable for the stability of ankle joint. Information provided in human movement testing is crucial for understanding factors associated with movement characteristics and injury and should be considered in the future development of shoe design. PMID:29854000
NASA Astrophysics Data System (ADS)
Ilie, Iulia; Dittrich, Peter; Carvalhais, Nuno; Jung, Martin; Heinemeyer, Andreas; Migliavacca, Mirco; Morison, James I. L.; Sippel, Sebastian; Subke, Jens-Arne; Wilkinson, Matthew; Mahecha, Miguel D.
2017-09-01
Accurate model representation of land-atmosphere carbon fluxes is essential for climate projections. However, the exact responses of carbon cycle processes to climatic drivers often remain uncertain. Presently, knowledge derived from experiments, complemented by a steadily evolving body of mechanistic theory, provides the main basis for developing such models. The strongly increasing availability of measurements may facilitate new ways of identifying suitable model structures using machine learning. Here, we explore the potential of gene expression programming (GEP) to derive relevant model formulations based solely on the signals present in data by automatically applying various mathematical transformations to potential predictors and repeatedly evolving the resulting model structures. In contrast to most other machine learning regression techniques, the GEP approach generates readable
models that allow for prediction and possibly for interpretation. Our study is based on two cases: artificially generated data and real observations. Simulations based on artificial data show that GEP is successful in identifying prescribed functions, with the prediction capacity of the models comparable to four state-of-the-art machine learning methods (random forests, support vector machines, artificial neural networks, and kernel ridge regressions). Based on real observations we explore the responses of the different components of terrestrial respiration at an oak forest in south-eastern England. We find that the GEP-retrieved models are often better in prediction than some established respiration models. Based on their structures, we find previously unconsidered exponential dependencies of respiration on seasonal ecosystem carbon assimilation and water dynamics. We noticed that the GEP models are only partly portable across respiration components, the identification of a general
terrestrial respiration model possibly prevented by equifinality issues. Overall, GEP is a promising tool for uncovering new model structures for terrestrial ecology in the data-rich era, complementing more traditional modelling approaches.
Hogan, R E; Wang, L; Bertrand, M E; Willmore, L J; Bucholz, R D; Nassif, A S; Csernansky, J G
2006-01-01
We objectively assessed surface structural changes of the hippocampus in mesial temporal sclerosis (MTS) and assessed the ability of large-deformation high-dimensional mapping (HDM-LD) to demonstrate hippocampal surface symmetry and predict group classification of MTS in right and left MTS groups compared with control subjects. Using eigenvector field analysis of HDM-LD segmentations of the hippocampus, we compared the symmetry of changes in the right and left MTS groups with a group of 15 matched controls. To assess the ability of HDM-LD to predict group classification, eigenvectors were selected by a logistic regression procedure when comparing the MTS group with control subjects. Multivariate analysis of variance on the coefficients from the first 9 eigenvectors accounted for 75% of the total variance between groups. The first 3 eigenvectors showed the largest differences between the control group and each of the MTS groups, but with eigenvector 2 showing the greatest difference in the MTS groups. Reconstruction of the hippocampal deformation vector fields due solely to eigenvector 2 shows symmetrical patterns in the right and left MTS groups. A "leave-one-out" (jackknife) procedure correctly predicted group classification in 14 of 15 (93.3%) left MTS subjects and all 15 right MTS subjects. Analysis of principal dimensions of hippocampal shape change suggests that MTS, after accounting for normal right-left asymmetries, affects the right and left hippocampal surface structure very symmetrically. Preliminary analysis using HDM-LD shows it can predict group classification of MTS and control hippocampi in this well-defined population of patients with MTS and mesial temporal lobe epilepsy (MTLE).
A COMBINED SPECTROSCOPIC AND PHOTOMETRIC STELLAR ACTIVITY STUDY OF EPSILON ERIDANI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giguere, Matthew J.; Fischer, Debra A.; Zhang, Cyril X. Y.
2016-06-20
We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF′ method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and H α analysis. We show that our H α measurements are strongly correlated with the Microvariabilitymore » and Oscillations of STars telescope ( MOST ) photometry, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH′ method, uses H α measurements as input into the FF′ model. While the Dalmatian spot modeling analysis and the FF′ method with MOST space-based photometry are currently more robust, the HH′ method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH′ method may prove quite useful in disentangling stellar signals.« less
Predictive hypotheses are ineffectual in resolving complex biochemical systems.
Fry, Michael
2018-03-20
Scientific hypotheses may either predict particular unknown facts or accommodate previously-known data. Although affirmed predictions are intuitively more rewarding than accommodations of established facts, opinions divide whether predictive hypotheses are also epistemically superior to accommodation hypotheses. This paper examines the contribution of predictive hypotheses to discoveries of several bio-molecular systems. Having all the necessary elements of the system known beforehand, an abstract predictive hypothesis of semiconservative mode of DNA replication was successfully affirmed. However, in defining the genetic code whose biochemical basis was unclear, hypotheses were only partially effective and supplementary experimentation was required for its conclusive definition. Markedly, hypotheses were entirely inept in predicting workings of complex systems that included unknown elements. Thus, hypotheses did not predict the existence and function of mRNA, the multiple unidentified components of the protein biosynthesis machinery, or the manifold unknown constituents of the ubiquitin-proteasome system of protein breakdown. Consequently, because of their inability to envision unknown entities, predictive hypotheses did not contribute to the elucidation of cation theories remained the sole instrument to explain complex bio-molecular systems, the philosophical question of alleged advantage of predictive over accommodative hypotheses became inconsequential.
Singh, Gyanendra; Sachdeva, S N; Pal, Mahesh
2016-11-01
This work examines the application of M5 model tree and conventionally used fixed/random effect negative binomial (FENB/RENB) regression models for accident prediction on non-urban sections of highway in Haryana (India). Road accident data for a period of 2-6 years on different sections of 8 National and State Highways in Haryana was collected from police records. Data related to road geometry, traffic and road environment related variables was collected through field studies. Total two hundred and twenty two data points were gathered by dividing highways into sections with certain uniform geometric characteristics. For prediction of accident frequencies using fifteen input parameters, two modeling approaches: FENB/RENB regression and M5 model tree were used. Results suggest that both models perform comparably well in terms of correlation coefficient and root mean square error values. M5 model tree provides simple linear equations that are easy to interpret and provide better insight, indicating that this approach can effectively be used as an alternative to RENB approach if the sole purpose is to predict motor vehicle crashes. Sensitivity analysis using M5 model tree also suggests that its results reflect the physical conditions. Both models clearly indicate that to improve safety on Indian highways minor accesses to the highways need to be properly designed and controlled, the service roads to be made functional and dispersion of speeds is to be brought down. Copyright © 2016 Elsevier Ltd. All rights reserved.
Skrdla, Peter J; Floyd, Philip D; Dell'Orco, Philip C
2017-08-09
Predicting the glass transition temperature (T g ) of mixtures has applications that span across industries and scientific disciplines. By plotting experimentally determined T g values as a function of the glass composition, one can usually apply the Gordon-Taylor (G-T) equation to determine the slope, k, which subsequently can be used in T g predictions. Traditionally viewed as a phenomenological/empirical model, this work proposes a physical basis for the G-T equation. The proposed equations allow for the calculation of k directly and, hence, they determine/predict the T g values of mixtures algebraically. Two derivations for k are provided, one for strong glass-formers and the other for fragile mixtures, with the modeled trehalose-water and naproxen-indomethacin systems serving as examples of each. Separately, a new equation is described for the first time that allows for the direct determination of the crossover temperature, T x , for fragile glass-formers. Lastly, the so-called "Rule of 2/3", which is commonly used to estimate the T g of a pure amorphous phase based solely on the fusion/melting temperature, T f , of the corresponding crystalline phase, is shown to be underpinned by the heat capacity ratio of the two phases referenced to a common temperature, as evidenced by the calculations put forth for indomethacin and felodipine.
A time-varying subjective quality model for mobile streaming videos with stalling events
NASA Astrophysics Data System (ADS)
Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.
2015-09-01
Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.
Changes in quantitative 3D shape features of the optic nerve head associated with age
NASA Astrophysics Data System (ADS)
Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.
2013-02-01
Optic nerve head (ONH) structure is an important biological feature of the eye used by clinicians to diagnose and monitor progression of diseases such as glaucoma. ONH structure is commonly examined using stereo fundus imaging or optical coherence tomography. Stereo fundus imaging provides stereo views of the ONH that retain 3D information useful for characterizing structure. In order to quantify 3D ONH structure, we applied a stereo correspondence algorithm to a set of stereo fundus images. Using these quantitative 3D ONH structure measurements, eigen structures were derived using principal component analysis from stereo images of 565 subjects from the Ocular Hypertension Treatment Study (OHTS). To evaluate the usefulness of the eigen structures, we explored associations with the demographic variables age, gender, and race. Using regression analysis, the eigen structures were found to have significant (p < 0.05) associations with both age and race after Bonferroni correction. In addition, classifiers were constructed to predict the demographic variables based solely on the eigen structures. These classifiers achieved an area under receiver operating characteristic curve of 0.62 in predicting a binary age variable, 0.52 in predicting gender, and 0.67 in predicting race. The use of objective, quantitative features or eigen structures can reveal hidden relationships between ONH structure and demographics. The use of these features could similarly allow specific aspects of ONH structure to be isolated and associated with the diagnosis of glaucoma, disease progression and outcomes, and genetic factors.
Saunders, Leslie J; Mazumder, Asit; Lowe, Christopher J
2016-04-01
Pharmaceuticals and personal care products (PPCPs) are emerging chemicals of concern detected in surface waters globally. Recent reviews advocate that PPCP occurrence, fate, and exposure need to be better predicted and characterized. The use of pharmaceutical prescription rates to estimate PPCP concentrations in the environment has been suggested. Concentrations of 7 pharmaceuticals (acetylsalicylic acid, diclofenac, fenoprofen, gemfibrozil, ibuprofen, ketoprofen, and naproxen) were measured in municipal wastewater using gas chromatography/ion trap-tandem mass spectroscopy (GC/IT-MS/MS). Subregional pharmaceutical prescription data were investigated to determine whether they could predict measured effluent concentrations (MECs) in wastewaters. Predicted effluent concentrations (PECs) for 5 of the 7 pharmaceuticals were within 2-fold agreement of the MECs when the fraction of parent pharmaceutical excreted was not considered. When the fraction of parent pharmaceutical excreted was considered, the respective PECs decreased, and most were within an order of magnitude of the MECs. Regression relationships of monthly PECs versus MECs were statistically significant (p < 0.05) but weak (R(2) = 0.18-0.56) for all pharmaceuticals except ketoprofen. This suggests high variability in the data and may be the result of factors influencing MECs such as the analytical methods used, wastewater sampling frequency, and methodology. The PECs were based solely on prescription rates and did not account for inputs of pharmaceuticals that had a significant over-the-counter component or were from other sources (e.g., hospitals). © 2015 SETAC.
Criminal Behavior and Repeat Violent Trauma: A Case-Control Study.
Nanney, John T; Conrad, Erich J; McCloskey, Michael; Constans, Joseph I
2015-09-01
Repeat violent injury is common among young urban men and is increasingly a focus of trauma center-based injury prevention efforts. Though understanding risk factors for repeat violent injury may be critical in designing such interventions, this knowledge is limited. This study aims to determine which criminal behaviors, both before and after the initial trauma, predict repeat violent trauma. Gun, violent, and drug crimes are expected to increase risk of subsequent violent injury among victims of violence. A case-control design examined trauma registry and publicly available criminal data for all male patients aged <40 years presenting for violent trauma between April 2006 and December 2011 (N=1,142) to the sole Level 1 trauma center in a city with high rates of violence. Logistic regression was used to determine criminal behaviors predictive of repeat violent injury. Data were obtained and analyzed between January 2013 and June 2014. Regarding crimes committed before the first injury, only drug crime (OR=5.32) predicted repeat violent trauma. With respect to crimes committed after the initial injury, illegal gun possession (OR=2.70) predicted repeat victimization. Initiating gun (OR=3.53) or drug crime (OR=5.12) was associated with increased risk. Prior drug involvement may identify young male victims of violence as at high risk of repeat violent injury. Gun carrying and initiating drug involvement after the initial injury may increase risk of repeat injury and may be important targets for interventions aimed at preventing repeat violent trauma. Published by Elsevier Inc.
The globular cluster-dark matter halo connection
NASA Astrophysics Data System (ADS)
Boylan-Kolchin, Michael
2017-12-01
I present a simple phenomenological model for the observed linear scaling of the stellar mass in old globular clusters (GCs) with z = 0 halo mass in which the stellar mass in GCs scales linearly with progenitor halo mass at z = 6 above a minimum halo mass for GC formation. This model reproduces the observed MGCs-Mhalo relation at z = 0 and results in a prediction for the minimum halo mass at z = 6 required for hosting one GC: Mmin(z = 6) = 1.07 × 109 M⊙. Translated to z = 0, the mean threshold mass is Mhalo(z = 0) ≈ 2 × 1010 M⊙. I explore the observability of GCs in the reionization era and their contribution to cosmic reionization, both of which depend sensitively on the (unknown) ratio of GC birth mass to present-day stellar mass, ξ. Based on current detections of z ≳ 6 objects with M1500<-17, values of ξ > 10 are strongly disfavoured; this, in turn, has potentially important implications for GC formation scenarios. Even for low values of ξ, some observed high-z galaxies may actually be GCs, complicating estimates of reionization-era galaxy ultraviolet luminosity functions and constraints on dark matter models. GCs are likely important reionization sources if 5 ≲ ξ ≲ 10. I also explore predictions for the fraction of accreted versus in situ GCs in the local Universe and for descendants of systems at the halo mass threshold of GC formation (dwarf galaxies). An appealing feature of the model presented here is the ability to make predictions for GC properties based solely on dark matter halo merger trees.
ERIC Educational Resources Information Center
Jones, Tiffany
2014-01-01
States are increasingly funding higher education institutions based on their performance or outcomes instead of relying solely on student enrollment to determine funding formulas. Performance Funding (also called Performance-Based and Outcomes-Based Funding) policies provide state support to public colleges and universities based on outcome…
van der Put, Claudia E; Stams, Geert Jan J M
2013-12-01
In the juvenile justice system, much attention is paid to estimating the risk for recidivism among juvenile offenders. However, it is also important to estimate the risk for problematic child-rearing situations (care needs) in juvenile offenders, because these problems are not always related to recidivism. In the present study, an actuarial care needs assessment tool for juvenile offenders, the Youth Offender Care Needs Assessment Tool (YO-CNAT), was developed to predict the probability of (a) a future supervision order imposed by the child welfare agency, (b) a future entitlement to care indicated by the youth care agency, and (c) future incidents involving child abuse, domestic violence, and/or sexual norm trespassing behavior at the juvenile's address. The YO-CNAT has been developed for use by the police and is based solely on information available in police registration systems. It is designed to assist a police officer without clinical expertise in making a quick assessment of the risk for problematic child-rearing situations. The YO-CNAT was developed on a sample of 1,955 juvenile offenders and was validated on another sample of 2,045 juvenile offenders. The predictive validity (area under the receiver-operating-characteristic curve) scores ranged between .70 (for predicting future entitlement to care) and .75 (for predicting future worrisome incidents at the juvenile's address); therefore, the predictive accuracy of the test scores of the YO-CNAT was sufficient to justify its use as a screening instrument for the police in deciding to refer a juvenile offender to the youth care agency for further assessment into care needs.
NASA Astrophysics Data System (ADS)
Larsen, Poul S.; Filgueira, Ramón; Riisgård, Hans Ulrik
2014-04-01
Prediction of somatic growth of blue mussels, Mytilus edulis, based on the data from 2 field-growth studies of mussels in suspended net-bags in Danish waters was made by 3 models: the bioenergetic growth (BEG), the dynamic energy budget (DEB), and the scope for growth (SFG). Here, the standard BEG model has been expanded to include the temperature dependence of filtration rate and respiration and an ad hoc modification to ensure a smooth transition to zero ingestion as chlorophyll a (chl a) concentration approaches zero, both guided by published data. The first 21-day field study was conducted at nearly constant environmental conditions with a mean chl a concentration of C = 2.7 μg L- 1, and the observed monotonous growth in the dry weight of soft parts was best predicted by DEB while BEG and SFG models produced lower growth. The second 165-day field study was affected by large variations in chl a and temperature, and the observed growth varied accordingly, but nevertheless, DEB and SFG predicted monotonous growth in good agreement with the mean pattern while BEG mimicked the field data in response to observed changes in chl a concentration and temperature. The general features of the models were that DEB produced the best average predictions, SFG mostly underestimated growth, whereas only BEG was sensitive to variations in chl a concentration and temperature. DEB and SFG models rely on the calibration of the half-saturation coefficient to optimize the food ingestion function term to that of observed growth, and BEG is independent of observed actual growth as its predictions solely rely on the time history of the local chl a concentration and temperature.
Brickman, Adam M.; Provenzano, Frank A.; Muraskin, Jordan; Manly, Jennifer J.; Blum, Sonja; Apa, Zoltan; Stern, Yaakov; Brown, Truman R.; Luchsinger, José A.; Mayeux, Richard
2013-01-01
Background New onset Alzheimer’s disease (AD) is often attributed to degenerative changes in the hippocampus. However, the contribution of regionally distributed small vessel cerebrovascular disease, visualized as white matter hyperintensities (WMH) on MRI, remains unclear. Objective To determine whether regional WMH and hippocampal volume predict incident AD in an epidemiological study. Design A longitudinal community-based epidemiological study of older adults from northern Manhattan. Setting The Washington Heights/Inwood Columbia Aging Project Participants Between 2005 and 2007, 717 non-demented participants received MRI scans. An average of 40.28 (SD=9.77) months later, 503 returned for follow-up clinical examination and 46 met criteria for incident dementia (45 with AD). Regional WMH and relative hippocampal volumes were derived. Three Cox proportional hazards models were run to predict incident dementia, controlling for relevant variables. The first included all WMH measurements; the second included relative hippocampal volume; and the third combined the two measurements. Main outcome measures Incident Alzheimer’s disease. Results White matter hyperintensity volume in the parietal lobe predicted time to incident dementia (HR=1.194, p=0.031). Relative hippocampal volume did not predict incident dementia when considered alone (HR=0.419, p=0.768) or with the WMH measures included in the model (HR=0.302, p=0.701). Including hippocampal volume in the model did not notably alter the predictive utility of parietal lobe WMH (HR=1.197, p=0.049). Conclusion The findings highlight the regional specificity of the association of WMH with AD. It is not clear whether parietal WMH solely represent a marker for cerebrovascular burden or point to distinct injury compared to other regions. Future work should elucidate pathogenic mechanisms linking WMH and AD pathology. PMID:22945686
Newgard, Craig D; Kampp, Michael; Nelson, Maria; Holmes, James F; Zive, Dana; Rea, Thomas; Bulger, Eileen M; Liao, Michael; Sherck, John; Hsia, Renee Y; Wang, N Ewen; Fleischman, Ross J; Barton, Erik D; Daya, Mohamud; Heineman, John; Kuppermann, Nathan
2012-05-01
"Emergency medical services (EMS) provider judgment" was recently added as a field triage criterion to the national guidelines, yet its predictive value and real world application remain unclear. We examine the use and independent predictive value of EMS provider judgment in identifying seriously injured persons. We analyzed a population-based retrospective cohort, supplemented by qualitative analysis, of injured children and adults evaluated and transported by 47 EMS agencies to 94 hospitals in five regions across the Western United States from 2006 to 2008. We used logistic regression models to evaluate the independent predictive value of EMS provider judgment for Injury Severity Score ≥ 16. EMS narratives were analyzed using qualitative methods to assess and compare common themes for each step in the triage algorithm, plus EMS provider judgment. 213,869 injured patients were evaluated and transported by EMS over the 3-year period, of whom 41,191 (19.3%) met at least one of the field triage criteria. EMS provider judgment was the most commonly used triage criterion (40.0% of all triage-positive patients; sole criterion in 21.4%). After accounting for other triage criteria and confounders, the adjusted odds ratio of Injury Severity Score ≥ 16 for EMS provider judgment was 1.23 (95% confidence interval, 1.03-1.47), although there was variability in predictive value across sites. Patients meeting EMS provider judgment had concerning clinical presentations qualitatively similar to those meeting mechanistic and other special considerations criteria. Among this multisite cohort of trauma patients, EMS provider judgment was the most commonly used field trauma triage criterion, independently associated with serious injury, and useful in identifying high-risk patients missed by other criteria. However, there was variability in predictive value between sites.
NASA Technical Reports Server (NTRS)
Gloria, H. R.; Pitts, J. N., Jr.; Behar, J. V.; Bradburn, G. A.; Reinisch, R. F.; Zafonte, L.
1972-01-01
An instrumented aircraft has been used to study photochemical air pollution in the State of California. Simultaneous measurements of the most important chemical constituents (ozone, total oxidant, hydrocarbons, and nitrogen oxides, as well as several meteorological variables) were made. State-of-the-art measurement techniques and sampling procedures are discussed. Data from flights over the South Coast Air Basin, the San Francisco Bay Area, the San Joaquin Valley, the Santa Clara and Salinas Valleys, and the Pacific Ocean within 200 miles of the California coast are presented. Pollutants were found to be concentrated in distant layers up to at least 18,000 feet. In many of these layers, the pollutant concentrations were much higher than at ground level. These findings bring into serious question the validity of the present practice of depending solely on data from ground-based monitoring stations for predictive models.
Abrisqueta Zarrabe, J A
1999-01-01
The Human Genome Project (HGP) is the greatest scientific adventure in modern human biology, and the genetic map that is going to be revealed through this Project is going to be an important basis of the medicine of the future. Human beings do not however depend solely on their genes. In order to comprehend human pathology, it is essential to focus on the genetic factors and on the environmental factors. Genetic diagnoses, being fostered by the HGP, make it possible to know genetic predisposition and the risks of the onset of a given disorder. Predictive medicine offers great hopes, but is giving rise to major concerns and is causing ethics-related dilemmas. Confidentiality, the moral imperative of medicine, is necessary to prevent discriminatory deviations. As is stated in the UNESCO's Universal Declaration on the Human Genome and Human Rights, no one shall be subjected to discrimination based on genetic characteristics.
De novo assembly of a haplotype-resolved human genome.
Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun
2015-06-01
The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.
Epithelioid hemangioendothelioma of the spine. Report of two cases.
Aquilina, Kristian; Lim, Christopher; Kamel, Mahmoud Hamdy; Marks, Charles J; O'Sullivan, Michael G; Keohane, Catherine
2005-11-01
Epithelioid hemangioendothelioma (EH) is a rare tumor of vascular origin. The authors describe two cases of spinal EH, one involving the T-10 vertebra and the second involving the upper cervical spine. In the first case the patient underwent resection of the tumor; this case represents the longest reported follow-up period for spinal EH. In the second case, extensive involvement of C-2, C-3, and C-4 as well as encasement of both vertebral arteries precluded safe tumor resection, and posterior occipitocervical stabilization was performed. The patient subsequently died of metastatic disease. The findings in these two cases underscore the difficulty in predicting the clinical behavior of spinal EH based solely on histological and clinical features as well as the uncertainty of the roles of surgery, chemotherapy, and radiotherapy in the oncological management of a spinal tumor for which clinical data are very limited.
Lee, K K; Paranchych, W; Hodges, R S
1990-01-01
Antipeptide antibodies were raised against synthetic peptides corresponding to the amino acid sequences of eight surface predicted regions of the pilin proteins from Pseudomonas aeruginosa PAK and PAO. Four of the anti-PAK peptide antisera cross-reacted with strain PAO pili, while five anti-PAO peptide antisera cross-reacted with strain PAK pili. Only one region of the two pilin proteins (region 88-97) provided strain-specific antibodies when either strain PAK or strain PAO region 88-97 peptides were used to generate antipeptide antibodies. Our results clearly showed that cross-reactive and strain-specific antibodies cannot be based solely on the degree of homology in the aligned protein sequences. The majority of synthetic peptides bound to their homologous antipilus antiserum, suggesting that linear sequences play a significant role in the immunogenic response of native pili. PMID:1974884
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Guangde; Rinkevicius, Zilvinas; Vahtras, Olav
We outline an approach within time-dependent density functional theory that predicts x-ray spectra on an absolute scale. The approach rests on a recent formulation of the resonant-convergent first-order polarization propagator [P. Norman et al., J. Chem. Phys. 123, 194103 (2005)] and corrects for the self-interaction energy of the core orbital. This polarization propagator approach makes it possible to directly calculate the x-ray absorption cross section at a particular frequency without explicitly addressing the excited-state spectrum. The self-interaction correction for the employed density functional accounts for an energy shift of the spectrum, and fully correlated absolute-scale x-ray spectra are thereby obtainedmore » based solely on optimization of the electronic ground state. The procedure is benchmarked against experimental spectra of a set of small organic molecules at the carbon, nitrogen, and oxygen K edges.« less
Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Markley, F. Landis
2013-01-01
A document discusses sequential probability ratio tests that explicitly allow decision-makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models the null hypotheses that the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming, highly elliptical orbit formation flying mission.
Fundamental mass transfer modeling of emission of volatile organic compounds from building materials
NASA Astrophysics Data System (ADS)
Bodalal, Awad Saad
In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from material system (namely, substrate//glue//vinyl tile).
Influence of climate on malaria transmission depends on daily temperature variation.
Paaijmans, Krijn P; Blanford, Simon; Bell, Andrew S; Blanford, Justine I; Read, Andrew F; Thomas, Matthew B
2010-08-24
Malaria transmission is strongly influenced by environmental temperature, but the biological drivers remain poorly quantified. Most studies analyzing malaria-temperature relations, including those investigating malaria risk and the possible impacts of climate change, are based solely on mean temperatures and extrapolate from functions determined under unrealistic laboratory conditions. Here, we present empirical evidence to show that, in addition to mean temperatures, daily fluctuations in temperature affect parasite infection, the rate of parasite development, and the essential elements of mosquito biology that combine to determine malaria transmission intensity. In general, we find that, compared with rates at equivalent constant mean temperatures, temperature fluctuation around low mean temperatures acts to speed up rate processes, whereas fluctuation around high mean temperatures acts to slow processes down. At the extremes (conditions representative of the fringes of malaria transmission, where range expansions or contractions will occur), fluctuation makes transmission possible at lower mean temperatures than currently predicted and can potentially block transmission at higher mean temperatures. If we are to optimize control efforts and develop appropriate adaptation or mitigation strategies for future climates, we need to incorporate into predictive models the effects of daily temperature variation and how that variation is altered by climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.
2016-01-01
CO2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO2 binding organic liquids (CO2BOLs) based solely on molecular structure and the amount of bound CO2. The functional form of the model correlates the viscosity with the CO2 loading and an electrostatic term describing the charge distribution between the CO2-bearingmore » functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity non-aqueous solvent systems for post-combustion CO2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification.« less
2016-01-01
Many excellent methods exist that incorporate cryo-electron microscopy (cryoEM) data to constrain computational protein structure prediction and refinement. Previously, it was shown that iteration of two such orthogonal sampling and scoring methods – Rosetta and molecular dynamics (MD) simulations – facilitated exploration of conformational space in principle. Here, we go beyond a proof-of-concept study and address significant remaining limitations of the iterative MD–Rosetta protein structure refinement protocol. Specifically, all parts of the iterative refinement protocol are now guided by medium-resolution cryoEM density maps, and previous knowledge about the native structure of the protein is no longer necessary. Models are identified solely based on score or simulation time. All four benchmark proteins showed substantial improvement through three rounds of the iterative refinement protocol. The best-scoring final models of two proteins had sub-Ångstrom RMSD to the native structure over residues in secondary structure elements. Molecular dynamics was most efficient in refining secondary structure elements and was thus highly complementary to the Rosetta refinement which is most powerful in refining side chains and loop regions. PMID:25883538
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
...NMFS is prohibiting directed fishing for arrowtooth flounder, flathead sole, rex sole, deep-water flatfish, and shallow-water flatfish in the Western Regulatory Area of the Gulf of Alaska (GOA). This action is necessary to limit incidental catch of Pacific ocean perch by vessels fishing for arrowtooth flounder, flathead sole, rex sole, deep-water flatfish, and shallow-water flatfish in the Western Regulatory Area of the GOA.
Palmoplantar Dermatoses- A Clinical Study of 300 Cases
Rajashekhar, Nadiga; Gejje, Somashekar
2016-01-01
Introduction Dermatoses affecting palms and soles are among the most difficult of all dermatological therapeutic problems. Many previous studies have focused on the specific diseases of palmoplantar dermatoses. However, none of them have included a comprehensive study of palmoplantar dermatoses. Aims: To study the epidemiological aspects like age distribution, sex distribution, the dermatoses affecting the palms & soles and the frequency of involvement of palms, soles or both palms & soles, in patient with palmoplantar dermatoses. Materials and Methods This cross sectional study was conducted in the Department of Dermatology between October 2011 to September 2013. First 300 cases attending the department of dermatology primarily with complaints pertaining to palms and soles were enrolled in the study. After taking consent a detailed history and clinical examination pertaining to the aim of the study was recorded and analysed, which included inspection of morphology and distribution of lesions and palpation of any swelling. Direct microscopic examination of scrapings, wet mounted with 10% potassium hydroxide was done for cases with scaly lesions. Those who had a pustule, gram staining was done. Patch testing using Indian Standard Battery Series was done for those cases of eczema. A sample for biopsy was taken when diagnosis could not be arrived clinically, and subjected to histopathological examination. Results In our study of 300 patients with palmoplantar dermatoses, 164 were females and 136 were males, the ratio observed being 1.2:1. The peak incidence was found in the age group 21-30 years, with 41 females (25%) and 35 males (25.7%). Most frequently affected individuals in this study were housewives (30%). The most common five diseases of palmoplantar dermatoses were palmoplantar psoriasis (20.7%), moniliasis (19%), palmoplantar hyperhidrosis (7%), keratolysis exfoliativa (6%) and pitted keratolysis (6%). Majority of patients had involvement of both palms and soles (44.3%) as compared to patients with involvement of only palm (28%) and only sole (27.3%). The commonest palmoplantar dermatoses with only palm involvement was keratolysis exfoliativa (16.7%), with only sole involvement was moniliasis (41%) and with both palms and soles involvement was palmoplantar psoriasis (41.4%). Associated nail changes were seen in 80 cases (26.6%), with maximum incidence in palmoplantar psoriasis (62.5%). Associated dermatological conditions were observed in 43 patients (14.3%). Conclusion Palmoplantar dermatoses are frequently encount-ered in the dermatologic field. Further investigation with a wider and larger population is necessary to understand the epidemiology, based on which accurate diagnosis and proper treatment could be achieved. PMID:27656539
Dispersive analysis of ω→3 π and ϕ→3 π decays
NASA Astrophysics Data System (ADS)
Niecknig, Franz; Kubis, Bastian; Schneider, Sebastian P.
2012-05-01
We study the three-pion decays of the lightest isoscalar vector mesons, ω and ϕ, in a dispersive framework that allows for a consistent description of final-state interactions between all three pions. Our results are solely dependent on the phenomenological input for the pion-pion P-wave scattering phase shift. We predict the Dalitz plot distributions for both decays and compare our findings to recent measurements of the ϕ→3 π Dalitz plot by the KLOE and CMD-2 collaborations. Dalitz plot parameters for future precision measurements of ω→3 π are predicted. We also calculate the ππ P-wave inelasticity contribution from ωπ intermediate states.
On INM's Use of Corrected Net Thrust for the Prediction of Jet Aircraft Noise
NASA Technical Reports Server (NTRS)
McAninch, Gerry L.; Shepherd, Kevin P.
2011-01-01
The Federal Aviation Administration s (FAA) Integrated Noise Model (INM) employs a prediction methodology that relies on corrected net thrust as the sole correlating parameter between aircraft and engine operating states and aircraft noise. Thus aircraft noise measured for one set of atmospheric and aircraft operating conditions is assumed to be applicable to all other conditions as long as the corrected net thrust remains constant. This hypothesis is investigated under two primary assumptions: (1) the sound field generated by the aircraft is dominated by jet noise, and (2) the sound field generated by the jet flow is adequately described by Lighthill s theory of noise generated by turbulence.
Rapid gait termination: effects of age, walking surfaces and footwear characteristics.
Menant, Jasmine C; Steele, Julie R; Menz, Hylton B; Munro, Bridget J; Lord, Stephen R
2009-07-01
The aim of this study was to systematically investigate the influence of various walking surfaces and footwear characteristics on the ability to terminate gait rapidly in 10 young and 26 older people. Subjects walked at a self-selected speed in eight randomized shoe conditions (standard versus elevated heel, soft sole, hard sole, high-collar, flared sole, bevelled heel and tread sole) on three surfaces: control, irregular and wet. In response to an audible cue, subjects were required to stop as quickly as possible in three out of eight walking trials in each condition. Time to last foot contact, total stopping time, stopping distance, number of steps to stop, step length and step width post-cue and base of support length at total stop were calculated from kinematic data collected using two CODA scanner units. The older subjects took more time and a longer distance to last foot contact and were more frequently classified as using a three or more-steps stopping strategy compared to the young subjects. The wet surface impeded gait termination, as indicated by greater total stopping time and stopping distance. Subjects required more time to terminate gait in the soft sole shoes compared to the standard shoes. In contrast, the high-collar shoes reduced total stopping time on the wet surface. These findings suggest that older adults have more difficulty terminating gait rapidly than their younger counterparts and that footwear is likely to influence whole-body stability during challenging postural tasks on wet surfaces.
Power counting to better jet observables
NASA Astrophysics Data System (ADS)
Larkoski, Andrew J.; Moult, Ian; Neill, Duff
2014-12-01
Optimized jet substructure observables for identifying boosted topologies will play an essential role in maximizing the physics reach of the Large Hadron Collider. Ideally, the design of discriminating variables would be informed by analytic calculations in perturbative QCD. Unfortunately, explicit calculations are often not feasible due to the complexity of the observables used for discrimination, and so many validation studies rely heavily, and solely, on Monte Carlo. In this paper we show how methods based on the parametric power counting of the dynamics of QCD, familiar from effective theory analyses, can be used to design, understand, and make robust predictions for the behavior of jet substructure variables. As a concrete example, we apply power counting for discriminating boosted Z bosons from massive QCD jets using observables formed from the n-point energy correlation functions. We show that power counting alone gives a definite prediction for the observable that optimally separates the background-rich from the signal-rich regions of phase space. Power counting can also be used to understand effects of phase space cuts and the effect of contamination from pile-up, which we discuss. As these arguments rely only on the parametric scaling of QCD, the predictions from power counting must be reproduced by any Monte Carlo, which we verify using Pythia 8 and Herwig++. We also use the example of quark versus gluon discrimination to demonstrate the limits of the power counting technique.
Robust tumor morphometry in multispectral fluorescence microscopy
NASA Astrophysics Data System (ADS)
Tabesh, Ali; Vengrenyuk, Yevgen; Teverovskiy, Mikhail; Khan, Faisal M.; Sapir, Marina; Powell, Douglas; Mesa-Tejada, Ricardo; Donovan, Michael J.; Fernandez, Gerardo
2009-02-01
Morphological and architectural characteristics of primary tissue compartments, such as epithelial nuclei (EN) and cytoplasm, provide important cues for cancer diagnosis, prognosis, and therapeutic response prediction. We propose two feature sets for the robust quantification of these characteristics in multiplex immunofluorescence (IF) microscopy images of prostate biopsy specimens. To enable feature extraction, EN and cytoplasm regions were first segmented from the IF images. Then, feature sets consisting of the characteristics of the minimum spanning tree (MST) connecting the EN and the fractal dimension (FD) of gland boundaries were obtained from the segmented compartments. We demonstrated the utility of the proposed features in prostate cancer recurrence prediction on a multi-institution cohort of 1027 patients. Univariate analysis revealed that both FD and one of the MST features were highly effective for predicting cancer recurrence (p <= 0.0001). In multivariate analysis, an MST feature was selected for a model incorporating clinical and image features. The model achieved a concordance index (CI) of 0.73 on the validation set, which was significantly higher than the CI of 0.69 for the standard multivariate model based solely on clinical features currently used in clinical practice (p < 0.0001). The contributions of this work are twofold. First, it is the first demonstration of the utility of the proposed features in morphometric analysis of IF images. Second, this is the largest scale study of the efficacy and robustness of the proposed features in prostate cancer prognosis.
Diaz, Constantino; Corentin, Herbert; Thierry, Vermat; Chantal, Alcouffe; Tanguy, Bozec; David, Sibrac; Jean-Marc, Herbert; Pascual, Ferrara; Françoise, Bono; Edgardo, Ferran
2014-11-01
The secondary structure of some protein segments may vary between α-helix and β-strand. To predict these switchable segments, we have developed an algorithm, Switch-P, based solely on the protein sequence. This algorithm was used on the extracellular parts of FGF receptors. For FGFR2, it predicted that β4 and β5 strands of the third Ig-like domain were highly switchable. These two strands possess a high number of somatic mutations associated with cancer. Analysis of PDB structures of FGF receptors confirmed the switchability prediction for β5. We thus evaluated if compound-driven α-helix/β-strand switching of β5 could modulate FGFR2 signaling. We performed the virtual screening of a library containing 1.4 million of chemical compounds with two models of the third Ig-like domain of FGFR2 showing different secondary structures for β5, and we selected 32 compounds. Experimental testing using proliferation assays with FGF7-stimulated SNU-16 cells and a FGFR2-dependent Erk1/2 phosphorylation assay with FGFR2-transfected L6 cells, revealed activators and inhibitors of FGFR2. Our method for the identification of switchable proteinic regions, associated with our virtual screening approach, provides an opportunity to discover new generation of drugs with under-explored mechanism of action. © 2014 Wiley Periodicals, Inc.
Coach/player relationships in tennis.
Prapavessis, H; Gordon, S
1991-09-01
The present study examined the variables that predict coach/athlete compatibility. Compatibility among a sample of 52 elite tennis coach/player dyads was assessed using a sport adapted version of Schutz's (1966) Fundamental Interpersonal Relations Orientation-Behaviour (FIRO-B), a sport adapted version of Fiedler's (1967) Least Preferred Co-worker scale (LPC), and Chelladurai and Saleh's (1980) Leadership Scale for Sport (LSS). Self-ratings of the quality of the interaction were obtained from both coach and athlete. Multiple-regression analyses using self-rating scores as the dependent measure were carried out to determine which variables best predicted the degree of compatibility. The sole inventory that significantly predicted compatibility was the LSS. More specifically, the discrepancy between the athlete's preferences and perceptions on the autocratic dimension was the best predictor. Implications for tennis coaches and recommendations for future research in this area are discussed.
White, Katherine M; Thomas, Ian; Johnston, Kim L; Hyde, Melissa K
2008-08-01
Using a prospective study of 77 1st-year psychology students' voluntary attendance at peer-assisted study sessions for statistics, the authors tested the addition of role identity to the theory of planned behavior. The authors used a revised set of role-identity items to capture the personal and social aspects of role identity within a specific behavioral context. At the commencement of the semester, the authors assessed the students' attitudes, subjective norm, perceived behavioral control, role identity, and intention. The authors examined the students' class attendance records 3 months later. Attitudes and perceived behavioral control predicted intention, with intention as the sole predictor of attendance. Role identity also predicted intention, reflecting the importance of the student role identity in influencing decision making related to supplementary academic activities.
Li, Kai Way; Chen, Chin Jung
2004-11-01
Tread groove design is very common in footwear. However, coefficient of friction (COF) measurements between the footwear material and floor using a slipmeter were commonly performed using flat footwear pads. Such measurements might underestimate the actual slip resistance of the footwear pad. This research investigates the effects of the tread groove width on the measured COF using four footwear materials, three floors, and four liquid-contamination conditions using a Brungraber Mark II slipmeter. The analysis of variance results indicated that the footwear material, floor, contamination conditions, and groove width were all significant (p < 0.0001) factors affecting the measured COF. The hypothesis that wider tread grooves result in higher COF values was true with some exceptions especially on oil contaminated floors. A regression model, with an R2 of 0.91, was established to describe and predict the relationship between the COF and the tread groove width under footwear material/floor/contamination conditions.
Cosmological solutions and finite time singularities in Finslerian geometry
NASA Astrophysics Data System (ADS)
Paul, Nupur; de, S. S.; Rahaman, Farook
2018-03-01
We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.
Fluorine Abundances in AGB Carbon Stars: New Results?
NASA Astrophysics Data System (ADS)
Abia, C.; de Laverny, P.; Recio-Blanco, A.; Domínguez, I.; Cristallo, S.; Straniero, O.
2009-09-01
A recent reanalysis of the fluorine abundance in three Galactic Asymptotic Giant Branch (AGB) carbon stars (TX Psc, AQ Sgr and R Scl) by Abia et al. (2009) results in estimates of fluorine abundances systematically lower by ~0.8 dex on average, with respect to the sole previous estimates by Jorissen, Smith & Lambert (1992). The new F abundances are in better agreement with the predictions of full-network stellar models of low-mass (<3 Msolar) AGB stars.
1973-06-01
one in laboratory tests. All components of the hydraulic power supply system, with the exceptions of the pumps and the heat exchanger, are located...servoactuator operated by a hydraulic power supply and a control electronics package mounted inside the cabin. For the seat isolation system, the...compensate for the static load b>ing supported. The actuators are the sole supportl.g link in the vertical direction. Hydraulic Power Supply The
2013-01-01
predicted amino acid sequences of the three encoded BmAChEs were no more closely related to one another than AChEs from different organisms and their...solely on nucleotide and amino acid sequence similarity; however, the cholinesterase gene family contains a number of related enzymes and structural...acetylcholinesterase of P. papatasi was cloned, sequenced , and expressed in the baculo- virus system to generate a recombinant enzyme for biochemical
ERIC Educational Resources Information Center
Parrish, Erin
2013-01-01
Each year, millions of high school seniors in China take the National College Entrance Examination (or gaokao). The score the students receive on the gaokao is the sole determinant of whether they will be admitted to college and which college they may attend. Because the demand for college exceeds the availability of admission seats, the…
Gathmann, Bettina; Pawlikowski, Mirko; Schöler, Tobias; Brand, Matthias
2014-05-01
Previous studies demonstrated that executive functions are crucial for advantageous decision making under risk and that therefore decision making is disrupted when working memory capacity is demanded while working on a decision task. While some studies also showed that emotions can affect decision making under risk, it is unclear how affective processing and executive functions predict decision-making performance in interaction. The current experimental study used a between-subjects design to examine whether affective pictures (positive and negative pictures compared to neutral pictures), included in a parallel executive task (working memory 2-back task), have an impact on decision making under risk as assessed by the Game of Dice Task (GDT). Moreover, the performance GDT plus 2-back task was compared to the performance in the GDT without any additional task (GDT solely). The results show that the performance in the GDT differed between groups (positive, negative, neutral, and GDT solely). The groups with affective pictures, especially those with positive pictures in the 2-back task, showed more disadvantageous decisions in the GDT than the groups with neutral pictures and the group performing the GDT without any additional task. However, executive functions moderated the effect of the affective pictures. Regardless of affective influence, subjects with good executive functions performed advantageously in the GDT. These findings support the assumption that executive functions and emotional processing interact in predicting decision making under risk.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
.... 0910131363-0087-02] RIN 0648-XW74 Fisheries of the Exclusive Economic Zone Off Alaska; Rock Sole, Flathead... participating in the Amendment 80 limited access fishery in the Bering Sea and Aleutian Islands management area... the trawl rock sole, flathead sole, and ``other flatfish'' fishery category by vessels participating...
Illeghems, Koen; De Vuyst, Luc; Papalexandratou, Zoi; Weckx, Stefan
2012-01-01
This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria) and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques.
NASA Astrophysics Data System (ADS)
Dierking, Jan; Morat, Fabien; Letourneur, Yves; Harmelin-Vivien, Mireille
2012-06-01
The commercially important marine flatfish common sole (Solea solea) facultatively uses NW Mediterranean lagoons as nurseries. To assess the imprint left by the lagoonal passage, muscle carbon (C) and nitrogen (N) isotope values of S. solea juveniles caught in Mauguio lagoon in spring (shortly after arrival from the sea) and in autumn (before the return to the sea) were compared with values of juveniles from adjacent coastal marine nurseries. In addition, in the lagoon, sole otolith stable isotope (C and oxygen (O)) and elemental (11 elements) composition in spring and autumn, and the stable isotope composition (C and N) of organic matter sources in autumn, were determined. Overall, our data indicate that a distinct lagoonal signature existed. Specifically, lagoon soles showed a strong enrichment in muscle tissue 15N (>6‰) compared to their coastal relatives, likely linked to sewage inputs (see below), and a depletion in 13C (1-2‰), indicative of higher importance of 13C depleted terrestrial POM in the lagoon compared to coastal nurseries. In addition, over the time spent in the lagoon, sole otolith δ13C and δ18O values and otolith elemental composition changed significantly. Analysis of the lagoon sole foodweb based on C and N isotopes placed sediment particulate organic matter (POM) at the base. Seagrasses, formerly common but in decline in Mauguio lagoon, played a minor role in the detritus cycle. The very strong 15N enrichment of the entire foodweb (+7 to +11‰) compared to little impacted lagoons and coastal areas testified of important human sewage inputs. Regarding the S. solea migration, the analysis of higher turnover and fast growth muscle tissue and metabolically inert and slower growth otoliths indicated that soles arrived at least several weeks prior to capture in spring, and that no migrations took place in summer. In the autumn, the high muscle δ15N value acquired in Mauguio lagoon would be a good marker of recent return to the sea, whereas altered otolith δ18O values and elemental ratios hold promise as long-term markers. The combination of several complementary tracers from muscle and otoliths may present the chance to distinguish between fish from specific lagoons and coastal nurseries in the future.
Ernst, Corinna; Hahnen, Eric; Engel, Christoph; Nothnagel, Michael; Weber, Jonas; Schmutzler, Rita K; Hauke, Jan
2018-03-27
The use of next-generation sequencing approaches in clinical diagnostics has led to a tremendous increase in data and a vast number of variants of uncertain significance that require interpretation. Therefore, prediction of the effects of missense mutations using in silico tools has become a frequently used approach. Aim of this study was to assess the reliability of in silico prediction as a basis for clinical decision making in the context of hereditary breast and/or ovarian cancer. We tested the performance of four prediction tools (Align-GVGD, SIFT, PolyPhen-2, MutationTaster2) using a set of 236 BRCA1/2 missense variants that had previously been classified by expert committees. However, a major pitfall in the creation of a reliable evaluation set for our purpose is the generally accepted classification of BRCA1/2 missense variants using the multifactorial likelihood model, which is partially based on Align-GVGD results. To overcome this drawback we identified 161 variants whose classification is independent of any previous in silico prediction. In addition to the performance as stand-alone tools we examined the sensitivity, specificity, accuracy and Matthews correlation coefficient (MCC) of combined approaches. PolyPhen-2 achieved the lowest sensitivity (0.67), specificity (0.67), accuracy (0.67) and MCC (0.39). Align-GVGD achieved the highest values of specificity (0.92), accuracy (0.92) and MCC (0.73), but was outperformed regarding its sensitivity (0.90) by SIFT (1.00) and MutationTaster2 (1.00). All tools suffered from poor specificities, resulting in an unacceptable proportion of false positive results in a clinical setting. This shortcoming could not be bypassed by combination of these tools. In the best case scenario, 138 families would be affected by the misclassification of neutral variants within the cohort of patients of the German Consortium for Hereditary Breast and Ovarian Cancer. We show that due to low specificities state-of-the-art in silico prediction tools are not suitable to predict pathogenicity of variants of uncertain significance in BRCA1/2. Thus, clinical consequences should never be based solely on in silico forecasts. However, our data suggests that SIFT and MutationTaster2 could be suitable to predict benignity, as both tools did not result in false negative predictions in our analysis.
Simple, empirical approach to predict neutron capture cross sections from nuclear masses
NASA Astrophysics Data System (ADS)
Couture, A.; Casten, R. F.; Cakirli, R. B.
2017-12-01
Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of neutron capture cross sections, extending far from stability, including for nuclei of the highest sensitivity to r -process nucleosynthesis.
Monthly streamflow forecasting in the Rhine basin
NASA Astrophysics Data System (ADS)
Schick, Simon; Rössler, Ole; Weingartner, Rolf
2017-04-01
Forecasting seasonal streamflow of the Rhine river is of societal relevance as the Rhine is an important water way and water resource in Western Europe. The present study investigates the predictability of monthly mean streamflow at lead times of zero, one, and two months with the focus on potential benefits by the integration of seasonal climate predictions. Specifically, we use seasonal predictions of precipitation and surface air temperature released by the European Centre for Medium-Range Weather Forecasts (ECMWF) for a regression analysis. In order to disentangle forecast uncertainty, the 'Reverse Ensemble Streamflow Prediction' framework is adapted here to the context of regression: By using appropriate subsets of predictors the regression model is constrained to either the initial conditions, the meteorological forcing, or both. An operational application is mimicked by equipping the model with the seasonal climate predictions provided by ECMWF. Finally, to mitigate the spatial aggregation of the meteorological fields the model is also applied at the subcatchment scale, and the resulting predictions are combined afterwards. The hindcast experiment is carried out for the period 1982-2011 in cross validation mode at two gauging stations, namely the Rhine at Lobith and Basel. The results show that monthly forecasts are skillful with respect to climatology only at zero lead time. In addition, at zero lead time the integration of seasonal climate predictions decreases the mean absolute error by 5 to 10 percentage compared to forecasts which are solely based on initial conditions. This reduction most likely is induced by the seasonal prediction of precipitation and not air temperature. The study is completed by bench marking the regression model with runoff simulations from ECMWFs seasonal forecast system. By simply using basin averages followed by a linear bias correction, these runoff simulations translate well to monthly streamflow. Though the regression model is only slightly outperformed, we argue that runoff out of the land surface component of seasonal climate forecasting systems is an interesting option when it comes to seasonal streamflow forecasting in large river basins.
Effect of rocker-soled shoes on parameters of knee joint load in knee osteoarthritis.
Madden, Elizabeth G; Kean, Crystal O; Wrigley, Tim V; Bennell, Kim L; Hinman, Rana S
2015-01-01
This study evaluated the immediate effects of rocker-soled shoes on parameters of the knee adduction moment (KAM) and pain in individuals with knee osteoarthritis (OA). Three-dimensional gait analysis was performed on 30 individuals (mean (SD): age, 61 (7) yr; 15 (50%) male) with radiographic and symptomatic knee OA under three walking conditions in a randomized order: i) wearing rocker-soled shoes (Skechers Shape-ups), ii) wearing non-rocker-soled shoes (ASICS walking shoes), and iii) barefoot. Peak KAM and KAM angular impulse were measured as primary indicators of knee load distribution. Secondary measures included the knee flexion moment (KFM) and knee pain during walking. Peak KAM was significantly lower when wearing the rocker-soled shoes compared with that when wearing the non-rocker-soled shoes (mean difference (95% confidence interval), -0.27 (-0.42 to -0.12) N·m/BW × Ht%; P < 0.001). Post hoc tests revealed no significant difference in KAM impulse between rocker-soled and non-rocker-soled shoe conditions (P = 0.13). Both peak KAM and KAM impulse were significantly higher during both shoe conditions compared with those during the barefoot condition (P < 0.001). There were no significant differences in KFM (P = 0.36) or knee pain (P = 0.89) between conditions. Rocker-soled shoes significantly reduced peak KAM when compared with non-rocker-soled shoes, without a concomitant change in KFM, and thus may potentially reduce medial knee joint loading. However, KAM parameters in the rocker-soled shoes remained significantly higher than those during barefoot walking. Wearing rocker-soled shoes did not have a significant immediate effect on walking pain. Further research is required to evaluate whether rocker-soled shoes can influence symptoms and progression of knee OA with prolonged wear.
Kammoun, Radhouane; Naili, Belgacem; Bejar, Samir
2008-09-01
The production optimization of alpha-amylase (E.C.3.2.1.1) from Aspergillus oryzae CBS 819.72 fungus, using a by-product of wheat grinding (gruel) as sole carbon source, was performed with statistical methodology based on three experimental designs. The optimisation of temperature, agitation and inoculum size was attempted using a Box-Behnken design under the response surface methodology. The screening of nineteen nutrients for their influence on alpha-amylase production was achieved using a Plackett-Burman design. KH(2)PO(4), urea, glycerol, (NH(4))(2)SO(4), CoCl(2), casein hydrolysate, soybean meal hydrolysate, MgSO(4) were selected based on their positive influence on enzyme formation. The optimized nutrients concentration was obtained using a Taguchi experimental design and the analysis of the data predicts a theoretical increase in the alpha-amylase expression of 73.2% (from 40.1 to 151.1 U/ml). These conditions were validated experimentally and revealed an enhanced alpha-amylase yield of 72.7%.
Mandonnet, Emmanuel; Duffau, Hugues
2018-02-01
In the era of evidence-based medicine, clinicians aim to establish standards of care from randomized studies. Following, personalized medicine has emerged, as new individualized biomarkers could help to predict sensitivity to specific treatment. In this paper, we show that, for diffuse low-grade glioma, some specificities - dual goal of both survival and functional gain, long duration of the disease with multistep treatments, multiparametric evaluation of the onco-functional balance of each treatment modality - call for a change of paradigm. After summarizing how to weight the benefits and risks of surgery, chemotherapy and radiotherapy, we show that the overall efficacy of a treatment modality cannot be assessed per se, as it depends on its integration in the whole sequence. Then, we revisit the notion of personalized medicine: instead of decision-making based solely on molecular profile, we plead for a recursive algorithm, allowing a dynamic evaluation of the onco-functional balance, integrating many individual characteristics of the patient's tumor and brain function. Copyright © 2017 Elsevier B.V. All rights reserved.
Shen, Wei-Chih; Chen, Shang-Wen; Liang, Ji-An; Hsieh, Te-Chun; Yen, Kuo-Yang; Kao, Chia-Hung
2017-09-01
In this study, we investigated the correlation between the lymph node (LN) status or histological types and textural features of cervical cancers on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. We retrospectively reviewed the imaging records of 170 patients with International Federation of Gynecology and Obstetrics stage IB-IVA cervical cancer. Four groups of textural features were studied in addition to the maximum standardized uptake value (SUV max ), metabolic tumor volume, and total lesion glycolysis (TLG). Moreover, we studied the associations between the indices and clinical parameters, including the LN status, clinical stage, and histology. Receiver operating characteristic curves were constructed to evaluate the optimal predictive performance among the various textural indices. Quantitative differences were determined using the Mann-Whitney U test. Multivariate logistic regression analysis was performed to determine the independent factors, among all the variables, for predicting LN metastasis. Among all the significant indices related to pelvic LN metastasis, homogeneity derived from the gray-level co-occurrence matrix (GLCM) was the sole independent predictor. By combining SUV max , the risk of pelvic LN metastasis can be scored accordingly. The TLG mean was the independent feature of positive para-aortic LNs. Quantitative differences between squamous and nonsquamous histology can be determined using short-zone emphasis (SZE) from the gray-level size zone matrix (GLSZM). This study revealed that in patients with cervical cancer, pelvic or para-aortic LN metastases can be predicted by using textural feature of homogeneity from the GLCM and TLG mean, respectively. SZE from the GLSZM is the sole feature associated with quantitative differences between squamous and nonsquamous histology.
Patient-completed or symptom-based screening tools for endometriosis: a scoping review.
Surrey, Eric; Carter, Cathryn M; Soliman, Ahmed M; Khan, Shahnaz; DiBenedetti, Dana B; Snabes, Michael C
2017-08-01
The objective of this review was to evaluate existing patient-completed screening questionnaires and/or symptom-based predictive models with respect to their potential for use as screening tools for endometriosis in adult women. Validated instruments were of particular interest. We conducted structured searches of PubMed and targeted searches of the gray literature to identify studies reporting on screening instruments used in endometriosis. Studies were screened according to inclusion and exclusion criteria that followed the PICOS (population, intervention, comparison, outcomes, study design) framework. A total of 16 studies were identified, of which 10 described measures for endometriosis in general, 2 described measures for endometriosis at specific sites, and 4 described measures for deep-infiltrating endometriosis. Only 1 study evaluated a questionnaire that was solely patient-completed. Most measures required physician, imaging, or laboratory assessments in addition to patient-completed questionnaires, and several measures relied on complex scoring. Validation for use as a screening tool in adult women with potential endometriosis was lacking in all studies, as most studies focused on diagnosis versus screening. This literature review did not identify any fully validated, symptom-based, patient-reported questionnaires for endometriosis screening in adult women.
49 CFR 172.400a - Exceptions from labeling.
Code of Federal Regulations, 2011 CFR
2011-10-01
... TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE INFORMATION, TRAINING....1 (poisonous) if the toxicity of the material is based solely on the corrosive destruction of tissue...
49 CFR 172.400a - Exceptions from labeling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE INFORMATION, TRAINING....1 (poisonous) if the toxicity of the material is based solely on the corrosive destruction of tissue...
Code of Federal Regulations, 2013 CFR
2013-07-01
... accreditation, based solely on the newness of the institution. (g) Medical college admission test. A nationally standardized examination, administered by the American Medical College Testing Program, which is designed to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... accreditation, based solely on the newness of the institution. (g) Medical college admission test. A nationally standardized examination, administered by the American Medical College Testing Program, which is designed to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... accreditation, based solely on the newness of the institution. (g) Medical college admission test. A nationally standardized examination, administered by the American Medical College Testing Program, which is designed to...
The individual tolerance concept is not the sole explanation for the probit dose-effect model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, M.C.; McCloskey, J.T.
2000-02-01
Predominant methods for analyzing dose- or concentration-effect data (i.e., probit analysis) are based on the concept of individual tolerance or individual effective dose (IED, the smallest characteristic dose needed to kill an individual). An alternative explanation (stochasticity hypothesis) is that individuals do not have unique tolerances: death results from stochastic processes occurring similarly in all individuals. These opposing hypotheses were tested with two types of experiments. First, time to stupefaction (TTS) was measured for zebra fish (Brachydanio rerio) exposed to benzocaine. The same 40 fish were exposed during five trials to test if the same order for TTS was maintainedmore » among trials. The IED hypothesis was supported with a minor stochastic component being present. Second, eastern mosquitofish (Gambusia holbrooki) were exposed to sublethal or lethal NaCl concentrations until a large portion of the lethally exposed fish died. After sufficient time for recovery, fish sublethally exposed and fish surviving lethal exposure were exposed simultaneously to lethal NaCl concentrations. No statistically significant effect was found of previous exposure on survival time but a large stochastic component to the survival dynamics was obvious. Repetition of this second type of test with pentachlorophenol also provided no support for the IED hypothesis. The authors conclude that neither hypothesis alone was the sole or dominant explanation for the lognormal (probit) model. Determination of the correct explanation (IED or stochastic) or the relative contributions of each is crucial to predicting consequences to populations after repeated or chronic exposures to any particular toxicant.« less
Impact of Vaccination on 14 High-Risk HPV Type Infections: A Mathematical Modelling Approach
Vänskä, Simopekka; Auranen, Kari; Leino, Tuija; Salo, Heini; Nieminen, Pekka; Kilpi, Terhi; Tiihonen, Petri; Apter, Dan; Lehtinen, Matti
2013-01-01
The development of high-risk human papillomavirus (hrHPV) infection to cervical cancer is a complicated process. We considered solely hrHPV infections, thus avoiding the confounding effects of disease progression, screening, and treatments. To analyse hrHPV epidemiology and to estimate the overall impact of vaccination against infections with hrHPVs, we developed a dynamic compartmental transmission model for single and multiple infections with 14 hrHPV types. The infection-related parameters were estimated using population-based sexual behaviour and hrHPV prevalence data from Finland. The analysis disclosed the important role of persistent infections in hrHPV epidemiology, provided further evidence for a significant natural immunity, and demonstrated the dependence of transmission probability estimates on the model structure. The model predicted that vaccinating girls at 80% coverage will result in a 55% reduction in the overall hrHPV prevalence and a higher 65% reduction in the prevalence of persistent hrHPV infections in females. In males, the reduction will be 42% in the hrHPV prevalence solely by the herd effect from the 80% coverage in girls. If such high coverage among girls is not reached, it is still possible to reduce the female hrHPV prevalence indirectly by the herd effect if also boys are included in the vaccination program. On the other hand, any herd effects in older unvaccinated cohorts were minor. Limiting the epidemiological model to infection yielded improved understanding of the hrHPV epidemiology and of mechanisms with which vaccination impacts on hrHPV infections. PMID:24009669
Roles of Two Shewanella oneidensis MR-1 Extracellular Endonucleases ▿ †
Gödeke, Julia; Heun, Magnus; Bubendorfer, Sebastian; Paul, Kristina; Thormann, Kai M.
2011-01-01
The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment. PMID:21705528
Dekker, Andre; Vinod, Shalini; Holloway, Lois; Oberije, Cary; George, Armia; Goozee, Gary; Delaney, Geoff P.; Lambin, Philippe; Thwaites, David
2016-01-01
Background and purpose A rapid learning approach has been proposed to extract and apply knowledge from routine care data rather than solely relying on clinical trial evidence. To validate this in practice we deployed a previously developed decision support system (DSS) in a typical, busy clinic for non-small cell lung cancer (NSCLC) patients. Material and methods Gender, age, performance status, lung function, lymph node status, tumor volume and survival were extracted without review from clinical data sources for lung cancer patients. With these data the DSS was tested to predict overall survival. Results 3919 lung cancer patients were identified with 159 eligible for inclusion, due to ineligible histology or stage, non-radical dose, missing tumor volume or survival. The DSS successfully identified a good prognosis group and a medium/poor prognosis group (2 year OS 69% vs. 27/30%, p < 0.001). Stage was less discriminatory (2 year OS 47% for stage I–II vs. 36% for stage IIIA–IIIB, p = 0.12) with most good prognosis patients having higher stage disease. The DSS predicted a large absolute overall survival benefit (~40%) for a radical dose compared to a non-radical dose in patients with a good prognosis, while no survival benefit of radical radiotherapy was predicted for patients with a poor prognosis. Conclusions A rapid learning environment is possible with the quality of clinical data sufficient to validate a DSS. It uses patient and tumor features to identify prognostic groups in whom therapy can be individualized based on predicted outcomes. Especially the survival benefit of a radical versus non-radical dose predicted by the DSS for various prognostic groups has clinical relevance, but needs to be prospectively validated. PMID:25241994
Eloqayli, Haytham; Al-Yousef, Ali; Jaradat, Raid
2018-02-15
Despite the high prevalence of chronic neck pain, there is limited consensus about the primary etiology, risk factors, diagnostic criteria and therapeutic outcome. Here, we aimed to determine if Ferritin and Vitamin D are modifiable risk factors with chronic neck pain using slandered statistics and artificial intelligence neural network (ANN). Fifty-four patients with chronic neck pain treated between February 2016 and August 2016 in King Abdullah University Hospital and 54 patients age matched controls undergoing outpatient or minor procedures were enrolled. Patients and control demographic parameters, height, weight and single measurement of serum vitamin D, Vitamin B12, ferritin, calcium, phosphorus, zinc were obtained. An ANN prediction model was developed. The statistical analysis reveals that patients with chronic neck pain have significantly lower serum Vitamin D and Ferritin (p-value <.05). 90% of patients with chronic neck pain were females. Multilayer Feed Forward Neural Network with Back Propagation(MFFNN) prediction model were developed and designed based on vitamin D and ferritin as input variables and CNP as output. The ANN model output results show that, 92 out of 108 samples were correctly classified with 85% classification accuracy. Although Iron and vitamin D deficiency cannot be isolated as the sole risk factors of chronic neck pain, they should be considered as two modifiable risk. The high prevalence of chronic neck pain, hypovitaminosis D and low ferritin amongst women is of concern. Bioinformatics predictions with artificial neural network can be of future benefit in classification and prediction models for chronic neck pain. We hope this initial work will encourage a future larger cohort study addressing vitamin D and iron correction as modifiable factors and the application of artificial intelligence models in clinical practice.
Muller, David C; Johansson, Mattias; Brennan, Paul
2017-03-10
Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 -13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.
2012-01-01
Background In Iran, admission to medical school is based solely on the results of the highly competitive, nationwide Konkoor examination. This paper examines the predictive validity of Konkoor scores, alone and in combination with high school grade point averages (hsGPAs), for the academic performance of public medical school students in Iran. Methods This study followed the cohort of 2003 matriculants at public medical schools in Iran from entrance through internship. The predictor variables were Konkoor total and subsection scores and hsGPAs. The outcome variables were (1) Comprehensive Basic Sciences Exam (CBSE) scores; (2) Comprehensive Pre-Internship Exam (CPIE) scores; and (3) medical school grade point averages (msGPAs) for the courses taken before internship. Pearson correlation and regression analyses were used to assess the relationships between the selection criteria and academic performance. Results There were 2126 matriculants (1374 women and 752 men) in 2003. Among the outcome variables, the CBSE had the strongest association with the Konkoor total score (r = 0.473), followed by msGPA (r = 0.339) and the CPIE (r = 0.326). While adding hsGPAs to the Konkoor total score almost doubled the power to predict msGPAs (R2 = 0.225), it did not have a substantial effect on CBSE or CPIE prediction. Conclusions The Konkoor alone, and even in combination with hsGPA, is a relatively poor predictor of medical students’ academic performance, and its predictive validity declines over the academic years of medical school. Care should be taken to develop comprehensive admissions criteria, covering both cognitive and non-cognitive factors, to identify the best applicants to become "good doctors" in the future. The findings of this study can be helpful for policy makers in the medical education field. PMID:22840211
Hydrograph Predictions of Glacial Lake Outburst Floods From an Ice-Dammed Lake
NASA Astrophysics Data System (ADS)
McCoy, S. W.; Jacquet, J.; McGrath, D.; Koschitzki, R.; Okuinghttons, J.
2017-12-01
Understanding the time evolution of glacial lake outburst floods (GLOFs), and ultimately predicting peak discharge, is crucial to mitigating the impacts of GLOFs on downstream communities and understanding concomitant surface change. The dearth of in situ measurements taken during GLOFs has left many GLOF models currently in use untested. Here we present a dataset of 13 GLOFs from Lago Cachet Dos, Aysen Region, Chile in which we detail measurements of key environmental variables (total volume drained, lake temperature, and lake inflow rate) and high temporal resolution discharge measurements at the source lake, in addition to well-constrained ice thickness and bedrock topography. Using this dataset we test two common empirical equations as well as the physically-based model of Spring-Hutter-Clarke. We find that the commonly used empirical relationships based solely on a dataset of lake volume drained fail to predict the large variability in observed peak discharges from Lago Cachet Dos. This disagreement is likely because these equations do not consider additional environmental variables that we show also control peak discharge, primarily, lake water temperature and the rate of meltwater inflow to the source lake. We find that the Spring-Hutter-Clarke model can accurately simulate the exponentially rising hydrographs that are characteristic of ice-dammed GLOFs, as well as the order of magnitude variation in peak discharge between events if the hydraulic roughness parameter is allowed to be a free fitting parameter. However, the Spring-Hutter-Clarke model over predicts peak discharge in all cases by 10 to 35%. The systematic over prediction of peak discharge by the model is related to its abrupt flood termination that misses the observed steep falling limb of the flood hydrograph. Although satisfactory model fits are produced, the range in hydraulic roughness required to obtain these fits across all events was large, which suggests that current models do not completely capture the physics of these systems, thus limiting their ability to truly predict peak discharges using only independently constrained parameters. We suggest what some of these missing physics might be.
Abookire, Alisa A.; Norcross, Brenda L.
1998-01-01
Three transects in Kachemak Bay, Alaska, were sampled in September 1994, May and August 1995, and February, May, and August 1996. Juvenile flathead sole, Hippoglossoides elassodon, and rock sole, Pleuronectes bilineatus, were the most abundant flatfishes, comprising 65-85% of all fiatfishes captured at any period. Collections of fish and sediments were made at regular depth contour intervals of l0 m. Habitat distribution was described by depth at 10 m increments and sediment percent weights of gravel, sand, and mud. Year-round habitat of flathead sole age-0 was primarily from 40 to 60 m, and age-1 habitat was primarily from 40 to 80 m. Summer habitat of rock sole age-0 and -1 was from 10 to 30 m, and in winter they moved offshore to depths of up to 150 m. Both age classes of flathead sole were most abundant on mixed mud sediments, while age-1 were also in high abundance on muddy sand sediments. Rock sole age-0 and -1 were most abundant on sand, though age-1 were also found on a variety of sediments both finer and coarser grained than sand. Flathead sole and rock sole had distinctive depth and sediment habitats. When habitat overlap occurred between the species, it was most often due to rock sole moving offshore in the winter. Abundances were not significantly different among seasons for age-1 flatfishes.
Derivation and experimental verification of clock synchronization theory
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.
1994-01-01
The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Mid-Point Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the clock system's behavior. It is found that a 100% penalty is paid to tolerate worst case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as 3 clock ticks. Clock skew grows to 6 clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst case conditions. conditions.
Experimental validation of clock synchronization algorithms
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Graham, R. Lynn
1992-01-01
The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Midpoint Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the behavior of the clock system. It is found that a 100 percent penalty is paid to tolerate worst-case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as three clock ticks. Clock skew grows to six clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst-case conditions.
Spectral Classes for FAA's Integrated Noise Model Version 6.0.
DOT National Transportation Integrated Search
1999-12-07
The starting point in any empirical model such as the Federal Aviation Administrations (FAA) : Integrated Noise Model (INM) is a reference data base. In Version 5.2 and in previous versions : the reference data base consisted solely of a set of no...
Detection and Composition of Bacterial Communities in Waters using RNA-based Methods
In recent years, microbial water quality assessments have shifted from solely relying on pure culture-based methods to monitoring bacterial groups of interest using molecular assays such as PCR and qPCR. Furthermore, coupling next generation sequencing technologies with ribosomal...
Avondino, Emilie; Antoine, Pascal
2016-01-01
Currently, the lack of awareness of deficits, i.e., anosognosia, is a major obstacle in the healthcare circuit that delays the diagnosis of Alzheimer's disease (AD). However, a clear framework is lacking in the literature related to this phenomenon in terms of its definition, mechanisms, and objects. The aim of this study is to assess the different levels of cognitive anosognosia using a prediction-performance procedure and to identify the potential correlates of these levels. A sample of patients with probable AD was divided into three groups according to the severity of dementia (mild (MiD), moderate (MoD), and moderately severe (MSD) dementia), ranked according to the results of the Mini-Mental State Examination. We observed the following three scores: the real score, the prediction score, and the anosognosia score. These scores were calculated based on the prediction-performance task MISAwareness from the Dementia Rating Scale for cognitive processes (i.e., Attention, Initiation, Conceptualization, Construction, and Memory). We obtained a strong plateau effect between the MiD and MoD groups for anosognosia scores for actual performance or prediction for both the level of overall functioning and for specific processes. The sole exception was the result for memory processes. Moreover, the profiles of the patients' responses on the Memory subscale were substantially different and, indeed, opposite from those for the other processes. The main results confirm the multidimensionality of anosognosia and its variability with the stage of dementia and specifically implicate memory processes that indicate a cleavage between memory and other cognitive functions.
Optimizing physical energy functions for protein folding.
Fujitsuka, Yoshimi; Takada, Shoji; Luthey-Schulten, Zaida A; Wolynes, Peter G
2004-01-01
We optimize a physical energy function for proteins with the use of the available structural database and perform three benchmark tests of the performance: (1) recognition of native structures in the background of predefined decoy sets of Levitt, (2) de novo structure prediction using fragment assembly sampling, and (3) molecular dynamics simulations. The energy parameter optimization is based on the energy landscape theory and uses a Monte Carlo search to find a set of parameters that seeks the largest ratio deltaE(s)/DeltaE for all proteins in a training set simultaneously. Here, deltaE(s) is the stability gap between the native and the average in the denatured states and DeltaE is the energy fluctuation among these states. Some of the energy parameters optimized are found to show significant correlation with experimentally observed quantities: (1) In the recognition test, the optimized function assigns the lowest energy to either the native or a near-native structure among many decoy structures for all the proteins studied. (2) Structure prediction with the fragment assembly sampling gives structure models with root mean square deviation less than 6 A in one of the top five cluster centers for five of six proteins studied. (3) Structure prediction using molecular dynamics simulation gives poorer performance, implying the importance of having a more precise description of local structures. The physical energy function solely inferred from a structural database neither utilizes sequence information from the family of the target nor the outcome of the secondary structure prediction but can produce the correct native fold for many small proteins. Copyright 2003 Wiley-Liss, Inc.
Prediction of Balance Compensation After Vestibular Schwannoma Surgery.
Parietti-Winkler, Cécile; Lion, Alexis; Frère, Julien; Perrin, Philippe P; Beurton, Renaud; Gauchard, Gérome C
2016-06-01
Background Balance compensation after vestibular schwannoma (VS) surgery is under the influence of specific preoperative patient and tumor characteristics. Objective To prospectively identify potential prognostic factors for balance recovery, we compared the respective influence of these preoperative characteristics on balance compensation after VS surgery. Methods In 50 patients scheduled for VS surgical ablation, we measured postural control before surgery (BS), 8 (AS8) days after, and 90 (AS90) days after surgery. Based on factors found previously in the literature, we evaluated age, body mass index and preoperative physical activity (PA), tumor grade, vestibular status, and preference for visual cues to control balance as potential prognostic factors using stepwise multiple regression models. Results An asymmetric vestibular function was the sole significant explanatory factor for impaired balance performance BS, whereas the preoperative PA alone significantly contributed to higher performance at AS8. An evaluation of patients' balance recovery over time showed that PA and vestibular status were the 2 significant predictive factors for short-term postural compensation (BS to AS8), whereas none of these preoperative factors was significantly predictive for medium-term postoperative postural recovery (AS8 to AS90). Conclusions We identified specific preoperative patient and vestibular function characteristics that may predict postoperative balance recovery after VS surgery. Better preoperative characterization of these factors in each patient could inform more personalized presurgical and postsurgical management, leading to a better, more rapid balance recovery, earlier return to normal daily activities and work, improved quality of life, and reduced medical and societal costs. © The Author(s) 2015.
Moderator's view: Predictive models: a prelude to precision nephrology.
Zoccali, Carmine
2017-05-01
Appropriate diagnosis is fundamental in medicine because it sets the basis for the prediction of disease outcome at the single patient level (prognosis) and decisions regarding the most appropriate therapy. However, given the large series of social, clinical and biological factors that determine the likelihood of an individual's future outcome, prognosis only partly depends on diagnosis and aetiology and treatment is not decided solely on the basis of the underlying diagnosis. This issue is crucial in multifactorial diseases like atherosclerosis, where the use of statins has now shifted from 'treating hypercholesterolaemia' to 'treating the risk of adverse cardiovascular events'. Approaches that take due account of prognosis limit the lingering risk of over-diagnosis and maximize the value of prognostic information in the clinical decision process. In the nephrology realm, the application of a well-validated risk equation for kidney failure in Canada led to a 35% reduction in new referrals. Prognostic models based on simple clinical data extractable from clinical files have recently been developed to predict all-cause and cardiovascular mortality in end-stage kidney disease patients. However, research on predictive models in renal diseases remains suboptimal and non-accounting for competing events and measurement errors, and a lack of calibration analyses and external validation are common fallacies in currently available studies. More focus on this blossoming research area is desirable. The nephrology community may now start to apply the best validated risk scores and further test their potential usefulness in chronic kidney disease patients in diverse clinical situations and geographical areas. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
NASA Astrophysics Data System (ADS)
Agard, P.; Yamato, P.; Soret, M.; Prigent, C.; Guillot, S.; Plunder, A.; Dubacq, B.; Chauvet, A.; Monié, P.
2016-10-01
Subduction infancy corresponds to the first few million years following subduction initiation, when slabs start their descent into the mantle. It coincides with the transient (yet systematic) transfer of material from the top of the slab to the upper plate, as witnessed by metamorphic soles welded beneath obducted ophiolites. Combining structure-lithology-pressure-temperature-time data from metamorphic soles with flow laws derived from experimental rock mechanics, this study highlights two main successive rheological switches across the subduction interface (mantle wedge vs. basalts, then mantle wedge vs. sediments; at ∼800 °C and ∼600 °C, respectively), during which interplate mechanical coupling is maximized by the existence of transiently similar rheologies across the plate contact. We propose that these rheological switches hinder slab penetration and are responsible for slicing the top of the slab and welding crustal pieces (high- then low-temperature metamorphic soles) to the base of the mantle wedge during subduction infancy. This mechanism has implications for the rheological properties of the crust and mantle (and for transient episodes of accretion/exhumation of HP-LT rocks in mature subduction systems) and highlights the role of fluids in enabling subduction to overcome the early resistance to slab penetration.
Kepler, Horrocks and the Transit of Venus in 1639
NASA Astrophysics Data System (ADS)
Posch, Thomas; Kerschbaum, Franz
2004-08-01
Kepler was the first astronomer to predict a transit of Venus in his 'Admonitio' from 1629. This prediction was based on his 'Rudolphine Tables', published three years before. Even though both works - making use of his ground-breaking new theory of the planetary motions - and the message of his 'Admonitio' are a great achievement, it turned out some years later that the latter contained some views that needed to be corrected. First of all, there was a small but -- for European observers -- fatal error concerning the exact time of the Venus transit of 1631, leading to its non-observation in Paris. Second, Kepler failed to predict the 1639 Venus transit. It was the English astronomer Horrocks who first recognized this and who did indeed observe the latter. Third, Kepler's ideas about the size of the solar system (and, hence, the apparent diameters of the planets) were substantially wrong. In our contribution, we analyze the historical background to these errors of a genius, based on his original texts, as well as Horrocks' and Hevelius' views and discoveries on the subject. It seems that Hevelius' annotated edition of Horrocks' account 'Venus in sole visa' has scarcely been studied in the way it would deserve -- which is maybe due to the fact that only a few libraries are still in possession of this book. There is little doubt that Kepler, had he lived until 1639, would have had to change his views on the proportions of our solar system dramatically. At the same time, it should be stressed that his predition and Horrocks' observations demonstrate that knowing the mechanism of the planetary motions is by far more important than knowing the actual size of the planetary orbits and planetary bodies.
NASA Astrophysics Data System (ADS)
Sarni, W.
2017-12-01
Water scarcity and poor quality impacts economic development, business growth, and social well-being. Water has become, in our generation, the foremost critical local, regional, and global issue of our time. Despite these needs, there is no water hub or water technology accelerator solely dedicated to water data and tools. There is a need by the public and private sectors for vastly improved data management and visualization tools. This is the WetDATA opportunity - to develop a water data tech hub dedicated to water data acquisition, analytics, and visualization tools for informed policy and business decisions. WetDATA's tools will help incubate disruptive water data technologies and accelerate adoption of current water data solutions. WetDATA is a Colorado-based (501c3), global hub for water data analytics and technology innovation. WetDATA's vision is to be a global leader in water information, data technology innovation and collaborate with other US and global water technology hubs. ROADMAP * Portal (www.wetdata.org) to provide stakeholders with tools/resources to understand related water risks. * The initial activities will provide education, awareness and tools to stakeholders to support the implementation of the Colorado State Water Plan. * Leverage the Western States Water Council Water Data Exchange database. * Development of visualization, predictive analytics and AI tools to engage with stakeholders and provide actionable data and information. TOOLS Education: Provide information on water issues and risks at the local, state, national and global scale. Visualizations: Development of data analytics and visualization tools based upon the 2030 Water Resources Group methodology to support the implementation of the Colorado State Water Plan. Predictive Analytics: Accessing publically available water databases and using machine learning to develop water availability forecasting tools, and time lapse images to support city / urban planning.
Code of Federal Regulations, 2012 CFR
2012-10-01
... contract action results from acceptance of a proposal under the Small Business Innovation Development Act... proposal and acceptance is based solely upon the unique capability of the source to perform the particular...
Code of Federal Regulations, 2013 CFR
2013-10-01
... contract action results from acceptance of a proposal under the Small Business Innovation Development Act... proposal and acceptance is based solely upon the unique capability of the source to perform the particular...
NASA Astrophysics Data System (ADS)
Gil Gómez, Gaspar L.; Nybacka, Mikael; Drugge, Lars; Bakker, Egbert
2018-01-01
Objective measurements and computer-aided engineering simulations cannot be exploited to their full potential because of the high importance of driver feel in vehicle development. Furthermore, despite many studies, it is not easy to identify the relationship between objective metrics (OM) and subjective assessments (SA), a task further complicated by the fact that SA change between drivers and geographical locations or with time. This paper presents a method which uses two artificial neural networks built on top of each other that helps to close this gap. The first network, based solely on OM, generates a map that groups together similar vehicles, thus allowing a classification of measured vehicles to be visualised. This map objectively demonstrates that there exist brand and vehicle class identities. It also foresees the subjective characteristics of a new vehicle, based on its requirements, simulations and measurements. These characteristics are described by the neighbourhood of the new vehicle in the map, which is made up of known vehicles that are accompanied by word-clouds that enhance this description. This forecast is also extended to perform a sensitivity analysis of the tolerances in the requirements, as well as to validate previously published preferred range of steering feel metrics. The results suggest a few new modifications. Finally, the qualitative information given by this measurement-based classification is complemented with a second superimposed network. This network describes a regression surface that enables quantitative predictions, for example the SA of the steering feel of a new vehicle from its OM.
RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS
Purcell, Braden A.; Palmeri, Thomas J.
2016-01-01
Accumulator models explain decision-making as an accumulation of evidence to a response threshold. Specific model parameters are associated with specific model mechanisms, such as the time when accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms determine both the within-trial dynamics of evidence accumulation and the predicted behavior. Cognitive modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary when a model is fitted to observed behavior. The recent identification of neural activity with evidence accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics. To understand what kinds of inferences can be made about decision-making mechanisms based on measures of neural dynamics, we measured simulated accumulator model dynamics while systematically varying model parameters. In some cases, decision- making mechanisms can be directly inferred from dynamics, allowing us to distinguish between models that make identical behavioral predictions. In other cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural dynamics provides the most powerful approach to understand decision-making and likely other aspects of cognition and perception. PMID:28392584
A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area
Clarke, K.C.; Hoppen, S.; Gaydos, L.
1997-01-01
In this paper we describe a cellular automaton (CA) simulation model developed to predict urban growth as part of a project for estimating the regional and broader impact of urbanization on the San Francisco Bay area's climate. The rules of the model are more complex than those of a typical CA and involve the use of multiple data sources, including topography, road networks, and existing settlement distributions, and their modification over time. In addition, the control parameters of the model are allowed to self-modify: that is, the CA adapts itself to the circumstances it generates, in particular, during periods of rapid growth or stagnation. In addition, the model was written to allow the accumulation of probabilistic estimates based on Monte Carlo methods. Calibration of the model has been accomplished by the use of historical maps to compare model predictions of urbanization, based solely upon the distribution in year 1900, with observed data for years 1940, 1954, 1962, 1974, and 1990. The complexity of this model has made calibration a particularly demanding step. Lessons learned about the methods, measures, and strategies developed to calibrate the model may be of use in other environmental modeling contexts. With the calibration complete, the model is being used to generate a set of future scenarios for the San Francisco Bay area along with their probabilities based on the Monte Carlo version of the model. Animated dynamic mapping of the simulations will be used to allow visualization of the impact of future urban growth.
Boldness predicts social status in zebrafish (Danio rerio).
Dahlbom, S Josefin; Lagman, David; Lundstedt-Enkel, Katrin; Sundström, L Fredrik; Winberg, Svante
2011-01-01
This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance.
Boldness Predicts Social Status in Zebrafish (Danio rerio)
Dahlbom, S. Josefin; Lagman, David; Lundstedt-Enkel, Katrin; Sundström, L. Fredrik; Winberg, Svante
2011-01-01
This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance. PMID:21858168
Emotional processing during experiential treatment of depression.
Pos, Alberta E; Greenberg, Leslie S; Goldman, Rhonda N; Korman, Lorne M
2003-12-01
This study explored the importance of early and late emotional processing to change in depressive and general symptomology, self-esteem, and interpersonal problems for 34 clients who received 16-20 sessions of experiential treatment for depression. The independent contribution to outcome of the early working alliance was also explored. Early and late emotional processing predicted reductions in reported symptoms and gains in self-esteem. More important, emotional-processing skill significantly improved during treatment. Hierarchical regression models demonstrated that late emotional processing both mediated the relationship between clients' early emotional processing capacity and outcome and was the sole emotional-processing variable that independently predicted improvement. After controlling for emotional processing, the working alliance added an independent contribution to explaining improvement in reported symptomology only. (c) 2003 APA
Jeter, Whitney K; Brannon, Laura A
2014-01-01
To date, trauma research has focused on the impact of physical trauma on posttraumatic stress (PTS) symptoms. Sometimes psychological trauma is measured with instances of physical trauma; however, less is known about solely psychological trauma. The current study addresses this by examining psychological trauma and PTS symptoms using the chronic relational trauma (CRT) model. The CRT model examines physical and possible concurrent psychological childhood, peer, and intimate partner trauma; however, psychological trauma alone has yet to be tested. A total of 232 female undergraduates (M age = 18.32, SD = 1.60) completed a series of questionnaires. Structural equation modeling indicated that childhood, peer, and intimate partner psychological trauma predict current PTS symptoms. Contributions of these findings are discussed.
Metamorphic sole formation reveals plate interface rheology during early subduction
NASA Astrophysics Data System (ADS)
Mathieu, S.; Agard, P.; Dubacq, B.; Plunder, A.; Prigent, C.
2015-12-01
Metamorphic soles are m to ~500m thick tectonic slices welded beneath most large ophiolites. They correspond to highly to mildly deformed portions of oceanic lithosphere metamorphosed at amphibolite to granulite facies peak conditions. Metamorphic soles are interpreted as formed ≤1-2Ma after intraoceanic subduction initiation by heat transfer from the hot, incipient mantle wegde to the underthrusting lower plate. Their early accretion and exhumation together with the future ophiolite implies at least one jump of the subduction plate interface from above to below the metamorphic sole. Metamorphic soles thus represent one of the few remnants of the very early evolution of the subduction plate interface and provide major constraints on the thermal structure and the effective rheology of the crust and mantle along the nascent slab interface.We herein present a structural and petrological detailed description of the Oman and Turkey metamorphic soles. Both soles present a steep inverted metamorphic structure, with isograds subparallel to the peridotite contact, in which the proportion of mafic rocks, pressure and temperature conditions increase upward. They comprise, as most metamorphic soles worldwide, two main units: (1) a high-grade unit adjacent to the overlying peridotite composed of granulitized to amphibolized metabasalts, with rare metasedimentary interlayers (~800±100ºC at 10±2kbar) and (2) a low-grade greenschist facies unit composed of metasedimentary rocks with rare metatuffs (~500±100ºC at 5±2kbar). We provide for the first time refined P-T peak condition estimations by means of pseudosection modelling and maximum temperature constraints for the Oman low-grade sole by RAMAN thermometry. In order to quantify micro-scale deformations trough the sole, we also present EBSD data on the Oman garnet-bearing and garnet-free high-grade sole.With these new constraints, we finally propose a new conceptual mechanical model for metamorphic sole formation. This model excludes the presence of a continuous inverted metamorphic gradient through the sole but implies the stacking of several homogeneous slivers to constitute the present structure of the sole. These successive thrusts are the result of rheological changes as the plate interface progressively cools.
Application of Response Surface Methods To Determine Conditions for Optimal Genomic Prediction
Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.
2017-01-01
An epistatic genetic architecture can have a significant impact on prediction accuracies of genomic prediction (GP) methods. Machine learning methods predict traits comprised of epistatic genetic architectures more accurately than statistical methods based on additive mixed linear models. The differences between these types of GP methods suggest a diagnostic for revealing genetic architectures underlying traits of interest. In addition to genetic architecture, the performance of GP methods may be influenced by the sample size of the training population, the number of QTL, and the proportion of phenotypic variability due to genotypic variability (heritability). Possible values for these factors and the number of combinations of the factor levels that influence the performance of GP methods can be large. Thus, efficient methods for identifying combinations of factor levels that produce most accurate GPs is needed. Herein, we employ response surface methods (RSMs) to find the experimental conditions that produce the most accurate GPs. We illustrate RSM with an example of simulated doubled haploid populations and identify the combination of factors that maximize the difference between prediction accuracies of best linear unbiased prediction (BLUP) and support vector machine (SVM) GP methods. The greatest impact on the response is due to the genetic architecture of the population, heritability of the trait, and the sample size. When epistasis is responsible for all of the genotypic variance and heritability is equal to one and the sample size of the training population is large, the advantage of using the SVM method vs. the BLUP method is greatest. However, except for values close to the maximum, most of the response surface shows little difference between the methods. We also determined that the conditions resulting in the greatest prediction accuracy for BLUP occurred when genetic architecture consists solely of additive effects, and heritability is equal to one. PMID:28720710
Parlato, Elizabeth H; Armstrong, Doug P
2018-02-17
Predicting reintroduction outcomes before populations are released is inherently challenging. It becomes even more difficult when the species being considered for reintroduction no longer co-exists with the key threats limiting its distribution. However, data from other species facing the same threats can be used to make predictions under these circumstances. We present an integrated Bayesian modelling approach for predicting growth of a reintroduced population at a range of predator densities when no data are available for the species in the presence of that predator. North Island saddlebacks (Philesturnus rufusater) were extirpated from mainland New Zealand by exotic mammalian predators, particularly ship rats (black rats, Rattus rattus), but are now being considered for reintroduction to sites with intensive predator control, creating an opportunity to develop this approach. We initially modeled data from previous saddleback reintroductions to predator-free sites to predict population growth at a new predator-free site while accounting for random variation in vital rates among sites. We then predict population growth at different rat tracking rates (an index of rat density) by incorporating a previously modelled relationship between rat tracking and vital rates of another predator-sensitive species, the North Island robin (Petroica longipes), and account for the greater vulnerability of saddlebacks to rat predation using information on historical declines of both species. The results allow population growth to be predicted as a function of management effort while accounting for uncertainty, allowing formal decision analysis to be used to decide whether to proceed with a reintroduction. Similar approaches could potentially be applied to other situations where data on the species of interest are limited, providing an alternative to decision making based solely on expert judgment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, X.; Anagnostou, E. N.; Schwartz, C. S.
2017-12-01
Satellite precipitation products tend to have significant biases over complex terrain. Our research investigates a statistical approach for satellite precipitation adjustment based solely on numerical weather simulations. This approach has been evaluated in two mid-latitude (Zhang et al. 2013*1, Zhang et al. 2016*2) and three topical mountainous regions by using the WRF model to adjust two high-resolution satellite products i) National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center morphing technique (CMORPH) and ii) Global Satellite Mapping of Precipitation (GSMaP). Results show the adjustment effectively reduces the satellite underestimation of high rain rates, which provides a solid proof-of-concept for continuing research of NWP-based satellite correction. In this study we investigate the feasibility of using NCAR Real-time Ensemble Forecasts*3 for adjusting near-real-time satellite precipitation datasets over complex terrain areas in the Continental United States (CONUS) such as Olympic Peninsula, California coastal mountain ranges, Rocky Mountains and South Appalachians. The research will focus on flood-inducing storms occurred from May 2015 to December 2016 and four satellite precipitation products (CMORPH, GSMaP, PERSIANN-CCS and IMERG). The error correction performance evaluation will be based on comparisons against the gauge-adjusted Stage IV precipitation data. *1 Zhang, Xinxuan, et al. "Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas." Journal of Hydrometeorology 14.6 (2013): 1844-1858. *2 Zhang, Xinxuan, et al. "Hydrologic Evaluation of NWP-Adjusted CMORPH Estimates of Hurricane-Induced Precipitation in the Southern Appalachians." Journal of Hydrometeorology 17.4 (2016): 1087-1099. *3 Schwartz, Craig S., et al. "NCAR's experimental real-time convection-allowing ensemble prediction system." Weather and Forecasting 30.6 (2015): 1645-1654.
Liu, Yuanyue; Wang, Y. Morris; Yakobson, Boris I.; ...
2014-07-11
Many key performance characteristics of carbon-based lithium-ion battery anodes are largely determined by the strength of binding between lithium (Li) and sp 2 carbon (C), which can vary significantly with subtle changes in substrate structure, chemistry, and morphology. We use density functional theory calculations to investigate the interactions of Li with a wide variety of sp 2 C substrates, including pristine, defective, and strained graphene, planar C clusters, nanotubes, C edges, and multilayer stacks. In almost all cases, we find a universal linear relation between the Li-C binding energy and the work required to fill previously unoccupied electronic states withinmore » the substrate. This suggests that Li capacity is predominantly determined by two key factors—namely, intrinsic quantum capacitance limitations and the absolute placement of the Fermi level. This simple descriptor allows for straightforward prediction of the Li-C binding energy and related battery characteristics in candidate C materials based solely on the substrate electronic structure. It further suggests specific guidelines for designing more effective C-based anodes. Furthermore, this method should be broadly applicable to charge-transfer adsorption on planar substrates, and provides a phenomenological connection to established principles in supercapacitor and catalyst design.« less
77 FR 12930 - Federal Acquisition Regulation: Socioeconomic Program Parity
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... on May 6, 2011, reinstating the Rule of Two. C. Sole Source Dollar Thresholds Vary Among the... all socioeconomic programs had the same sole source dollar threshold. Response: The sole source dollar... business socioeconomic contracting program to utilize. D. Sole Source Authority Under the SDVOSB Program...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Innovation Development Act of 1982 (Pub. L. 97-219); (8) The proposed contract action results from the... unsolicited research proposal and acceptance is based solely upon the unique capability of the source to...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Innovation Development Act of 1982 (Pub. L. 97-219); (8) The proposed contract action results from the... unsolicited research proposal and acceptance is based solely upon the unique capability of the source to...
Clark, Michael D; Jespersen, Michael L; Patel, Romesh J; Leever, Benjamin J
2013-06-12
Blends of poly(3-hexylthiophene) (P3HT) and C61-butyric acid methyl ester (PCBM) are widely used as a model system for bulk heterojunction active layers developed for solution-processable, flexible solar cells. In this work, vertical concentration profiles within the P3HT:PCBM active layer are predicted based on a thermodynamic analysis of the constituent materials and typical solvents. Surface energies of the active layer components and a common transport interlayer blend, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), are first extracted using contact angle measurements coupled with the acid-base model. From this data, intra- and interspecies interaction free energies are calculated, which reveal that the thermodynamically favored arrangement consists of a uniformly blended "bulk" structure capped with a P3HT-rich air interface and a slightly PCBM-rich buried interface. Although the "bulk" composition is solely determined by P3HT:PCBM ratio, composition near the buried interface is dependent on both the blend ratio and interaction free energy difference between solvated P3HT and PCBM deposition onto PEDOT:PSS. In contrast, the P3HT-rich overlayer is independent of processing conditions, allowing kinetic formation of a PCBM-rich sublayer during film casting due to limitations in long-range species diffusion. These thermodynamic calculations are experimentally validated by angle-resolved X-ray photoelectron spectroscopy (XPS) and low energy XPS depth profiling, which show that the actual composition profiles of the cast and annealed films closely match the predicted behavior. These experimentally derived profiles provide clear evidence that typical bulk heterojunction active layers are predominantly characterized by thermodynamically stable composition profiles. Furthermore, the predictive capabilities of the comprehensive free energy approach are demonstrated, which will enable investigation of structurally integrated devices and novel active layer systems including low band gap polymers, ternary systems, and small molecule blends.
NASA Astrophysics Data System (ADS)
Lobuglio, Joseph N.; Characklis, Gregory W.; Serre, Marc L.
2007-03-01
Sparse monitoring data and error inherent in water quality models make the identification of waters not meeting regulatory standards uncertain. Additional monitoring can be implemented to reduce this uncertainty, but it is often expensive. These costs are currently a major concern, since developing total maximum daily loads, as mandated by the Clean Water Act, will require assessing tens of thousands of water bodies across the United States. This work uses the Bayesian maximum entropy (BME) method of modern geostatistics to integrate water quality monitoring data together with model predictions to provide improved estimates of water quality in a cost-effective manner. This information includes estimates of uncertainty and can be used to aid probabilistic-based decisions concerning the status of a water (i.e., impaired or not impaired) and the level of monitoring needed to characterize the water for regulatory purposes. This approach is applied to the Catawba River reservoir system in western North Carolina as a means of estimating seasonal chlorophyll a concentration. Mean concentration and confidence intervals for chlorophyll a are estimated for 66 reservoir segments over an 11-year period (726 values) based on 219 measured seasonal averages and 54 model predictions. Although the model predictions had a high degree of uncertainty, integration of modeling results via BME methods reduced the uncertainty associated with chlorophyll estimates compared with estimates made solely with information from monitoring efforts. Probabilistic predictions of future chlorophyll levels on one reservoir are used to illustrate the cost savings that can be achieved by less extensive and rigorous monitoring methods within the BME framework. While BME methods have been applied in several environmental contexts, employing these methods as a means of integrating monitoring and modeling results, as well as application of this approach to the assessment of surface water monitoring networks, represent unexplored areas of research.
On-Line Analysis of Southern FIA Data
Michael P. Spinney; Paul C. Van Deusen; Francis A. Roesch
2006-01-01
The Southern On-Line Estimator (SOLE) is a web-based FIA database analysis tool designed with an emphasis on modularity. The Java-based user interface is simple and intuitive to use and the R-based analysis engine is fast and stable. Each component of the program (data retrieval, statistical analysis and output) can be individually modified to accommodate major...
31 CFR 800.223 - Solely for the purpose of passive investment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Solely for the purpose of passive..., ACQUISITIONS, AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.223 Solely for the purpose of passive investment. Ownership interests are held or acquired solely for the purpose of passive investment if the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Administrative Enforcement Proceedings § 7.32 Appeal. (a) Right of appeal. Within ten days after receipt by... shall be based solely on the hearing record or those portions thereof cited by the parties to limit the...
19 CFR 354.14 - Initial decision.
Code of Federal Regulations, 2010 CFR
2010-04-01
... submissions. The initial decision will be based solely on evidence received into the record, and the pleadings... sanctions to impose, the presiding official or the Deputy Under Secretary will consider the nature of the...
Using a Mindfulness-Based Procedure in the Community: Translating Research to Practice
ERIC Educational Resources Information Center
Adkins, Angela D.; Singh, Ashvind N.; Winton, Alan S. W.; McKeegan, Gerald F.; Singh, Judy
2010-01-01
Maladaptive behaviors, such as aggressive and disruptive behaviors, are a significant risk factor for maintaining community placement by individuals with intellectual disabilities. When experienced researchers provide training to individuals with intellectual disabilities on a mindfulness-based strategy, "Meditation on the Soles of the Feet," the…
48 CFR 515.209-70 - Examination of records by GSA clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... payments based on cost, or guaranteed loan. (3) Contain a price warranty or price reduction clause. (4.... (5) Include an economic price adjustment clause where the adjustment is not based solely on an... property, compliance with the price reduction clause). Counsel and the Assistant Inspector General—Auditing...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-25
... directly in investments comprising or otherwise based on any combination of futures contracts, options on futures contracts, forward contracts, swap contracts, commodities and/or securities rather than solely in... investments comprising or otherwise based on any combination of futures contracts, options on futures...
10 CFR 503.34 - Inability to comply with applicable environmental requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... environmental compliance of the facility, including an analysis of its ability to meet applicable standards and... will be based solely on an analysis of the petitioner's capacity to physically achieve applicable... exemption. All such analysis must be based on accepted analytical techniques, such as air quality modeling...
10 CFR 503.34 - Inability to comply with applicable environmental requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... environmental compliance of the facility, including an analysis of its ability to meet applicable standards and... will be based solely on an analysis of the petitioner's capacity to physically achieve applicable... exemption. All such analysis must be based on accepted analytical techniques, such as air quality modeling...
Schram, Edward; Bierman, Stijn; Teal, Lorna R.; Haenen, Olga; van de Vis, Hans; Rijnsdorp, Adriaan D.
2013-01-01
Dover sole (Solea solea) is an obligate ectotherm with a natural thermal habitat ranging from approximately 5 to 27°C. Thermal optima for growth lie in the range of 20 to 25°C. More precise information on thermal optima for growth is needed for cost-effective Dover sole aquaculture. The main objective of this study was to determine the optimal growth temperature of juvenile Dover sole (Solea solea) and in addition to test the hypothesis that the final preferendum equals the optimal growth temperature. Temperature preference was measured in a circular preference chamber for Dover sole acclimated to 18, 22 and 28°C. Optimal growth temperature was measured by rearing Dover sole at 19, 22, 25 and 28°C. The optimal growth temperature resulting from this growth experiment was 22.7°C for Dover sole with a size between 30 to 50 g. The temperature preferred by juvenile Dover sole increases with acclimation temperature and exceeds the optimal temperature for growth. A final preferendum could not be detected. Although a confounding effect of behavioural fever on temperature preference could not be entirely excluded, thermal preference and thermal optima for physiological processes seem to be unrelated in Dover sole. PMID:23613837
Schram, Edward; Bierman, Stijn; Teal, Lorna R; Haenen, Olga; van de Vis, Hans; Rijnsdorp, Adriaan D
2013-01-01
Dover sole (Solea solea) is an obligate ectotherm with a natural thermal habitat ranging from approximately 5 to 27°C. Thermal optima for growth lie in the range of 20 to 25°C. More precise information on thermal optima for growth is needed for cost-effective Dover sole aquaculture. The main objective of this study was to determine the optimal growth temperature of juvenile Dover sole (Solea solea) and in addition to test the hypothesis that the final preferendum equals the optimal growth temperature. Temperature preference was measured in a circular preference chamber for Dover sole acclimated to 18, 22 and 28°C. Optimal growth temperature was measured by rearing Dover sole at 19, 22, 25 and 28°C. The optimal growth temperature resulting from this growth experiment was 22.7°C for Dover sole with a size between 30 to 50 g. The temperature preferred by juvenile Dover sole increases with acclimation temperature and exceeds the optimal temperature for growth. A final preferendum could not be detected. Although a confounding effect of behavioural fever on temperature preference could not be entirely excluded, thermal preference and thermal optima for physiological processes seem to be unrelated in Dover sole.
Data-driven prognosis: a multi-physics approach verified via balloon burst experiment.
Chandra, Abhijit; Kar, Oliva
2015-04-08
A multi-physics formulation for data-driven prognosis (DDP) is developed. Unlike traditional predictive strategies that require controlled offline measurements or 'training' for determination of constitutive parameters to derive the transitional statistics, the proposed DDP algorithm relies solely on in situ measurements. It uses a deterministic mechanics framework, but the stochastic nature of the solution arises naturally from the underlying assumptions regarding the order of the conservation potential as well as the number of dimensions involved. The proposed DDP scheme is capable of predicting onset of instabilities. Because the need for offline testing (or training) is obviated, it can be easily implemented for systems where such a priori testing is difficult or even impossible to conduct. The prognosis capability is demonstrated here via a balloon burst experiment where the instability is predicted using only online visual observations. The DDP scheme never failed to predict the incipient failure, and no false-positives were issued. The DDP algorithm is applicable to other types of datasets. Time horizons of DDP predictions can be adjusted by using memory over different time windows. Thus, a big dataset can be parsed in time to make a range of predictions over varying time horizons.
Impact of solvent granularity and layering on tracer hydrodynamics in confinement.
Bollinger, Jonathan A; Carmer, James; Jain, Avni; Truskett, Thomas M
2016-11-28
Classic hydrodynamic arguments establish that when a spherical tracer particle is suspended between parallel walls, tracer-wall coupling mediated by the solvent will cause the tracer to exhibit position-dependent diffusivity. We investigate how the diffusivity profiles of confined tracers are impacted by the diameter size-ratio of the tracer to solvent: starting from the classic limit of infinite size-ratio (i.e., continuum solvent), we consider size-ratios of four or less to examine how hydrodynamic predictions are disrupted for systems where the tracer and solvent are of similar scale. We use computer simulations and techniques based on the Fokker-Planck formalism to calculate the diffusivity profiles of hard-sphere tracer particles in hard-sphere solvents, focusing on the dynamics perpendicular to the walls. Given wall separations of several tracer diameters, we first consider confinement between hard walls, where anisotropic structuring at the solvent lengthscale generates inhomogeneity in the tracer free-energy landscape and undermines hydrodynamic predictions locally. We then introduce confining planes that we term transparent walls, which restrict tracer and solvent center-accessibilities while completely eliminating static anisotropy, and reveal position-dependent signatures in tracer diffusivity solely attributable to confinement. With or without suppressing static heterogeneity, we find that tracer diffusivity increasingly deviates on a local basis from hydrodynamic predictions at smaller size-ratios. However, hydrodynamic theory still approximately captures spatially-averaged dynamics across the pores even for very small tracer-solvent size-ratios over a wide range of solvent densities and wall separations.
NASA Astrophysics Data System (ADS)
Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul
2018-01-01
Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.
2014-01-01
Density functional theory with optimally tuned range-separated hybrid (OT-RSH) functionals has been recently suggested [Refaely-Abramson et al. Phys. Rev. Lett.2012, 109, 226405] as a nonempirical approach to predict the outer-valence electronic structure of molecules with the same accuracy as many-body perturbation theory. Here, we provide a quantitative evaluation of the OT-RSH approach by examining its performance in predicting the outer-valence electron spectra of several prototypical gas-phase molecules, from aromatic rings (benzene, pyridine, and pyrimidine) to more complex organic systems (terpyrimidinethiol and copper phthalocyanine). For a range up to several electronvolts away from the frontier orbital energies, we find that the outer-valence electronic structure obtained from the OT-RSH method agrees very well (typically within ∼0.1–0.2 eV) with both experimental photoemission and theoretical many-body perturbation theory data in the GW approximation. In particular, we find that with new strategies for an optimal choice of the short-range fraction of Fock exchange, the OT-RSH approach offers a balanced description of localized and delocalized states. We discuss in detail the sole exception found—a high-symmetry orbital, particular to small aromatic rings, which is relatively deep inside the valence state manifold. Overall, the OT-RSH method is an accurate DFT-based method for outer-valence electronic structure prediction for such systems and is of essentially the same level of accuracy as contemporary GW approaches, at a reduced computational cost. PMID:24839410
Afari-Dwamena, Nana Ama; Li, Ji; Chen, Rusan; Feinleib, Manning; Lamm, Steven H.
2016-01-01
Background. To examine whether the US EPA (2010) lung cancer risk estimate derived from the high arsenic exposures (10–934 µg/L) in southwest Taiwan accurately predicts the US experience from low arsenic exposures (3–59 µg/L). Methods. Analyses have been limited to US counties solely dependent on underground sources for their drinking water supply with median arsenic levels of ≥3 µg/L. Results. Cancer risks (slopes) were found to be indistinguishable from zero for males and females. The addition of arsenic level did not significantly increase the explanatory power of the models. Stratified, or categorical, analysis yielded relative risks that hover about 1.00. The unit risk estimates were nonpositive and not significantly different from zero, and the maximum (95% UCL) unit risk estimates for lung cancer were lower than those in US EPA (2010). Conclusions. These data do not demonstrate an increased risk of lung cancer associated with median drinking water arsenic levels in the range of 3–59 µg/L. The upper-bound estimates of the risks are lower than the risks predicted from the SW Taiwan data and do not support those predictions. These results are consistent with a recent metaregression that indicated no increased lung cancer risk for arsenic exposures below 100–150 µg/L. PMID:27382373
Predatory beetles facilitate plant growth by driving earthworms to lower soil layers.
Zhao, Chuan; Griffin, John N; Wu, Xinwei; Sun, Shucun
2013-07-01
Theory suggests that predators of soil-improving, plant-facilitating detritivores (e.g. earthworms) should suppress plant growth via a negative tri-trophic cascade, but the empirical evidence is still largely lacking. We tested this prediction in an alpine meadow on the Tibetan Plateau by manipulating predatory beetles (presence/absence) and quantifying (i) direct effects on the density and behaviour of earthworms; and (ii) indirect effects on soil properties and above-ground plant biomass. In the absence of predators, earthworms improved soil properties, but did not significantly affect plant biomass. Surprisingly, the presence of predators strengthened the positive effect of earthworms on soil properties leading to the emergence of a positive indirect effect of predators on plant biomass. We attribute this counterintuitive result to: (i) the inability of predators to suppress overall earthworm density; and (ii) the predator-induced earthworm habitat shift from the upper to lower soil layer that enhanced their soil-modifying, plant-facilitating, effects. Our results reveal that plant-level consequences of predators as transmitted through detritivores can hinge on behaviour-mediated indirect interactions that have the potential to overturn predictions based solely on trophic interactions. This work calls for a closer examination of the effects of predators in detritus food webs and the development of spatially explicit theory capable of predicting the occurrence and consequences of predator-induced detritivore behavioural shifts. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Corresponding-states laws for protein solutions.
Katsonis, Panagiotis; Brandon, Simon; Vekilov, Peter G
2006-09-07
The solvent around protein molecules in solutions is structured and this structuring introduces a repulsion in the intermolecular interaction potential at intermediate separations. We use Monte Carlo simulations with isotropic, pair-additive systems interacting with such potentials. We test if the liquid-liquid and liquid-solid phase lines in model protein solutions can be predicted from universal curves and a pair of experimentally determined parameters, as done for atomic and colloid materials using several laws of corresponding states. As predictors, we test three properties at the critical point for liquid-liquid separation: temperature, as in the original van der Waals law, the second virial coefficient, and a modified second virial coefficient, all paired with the critical volume fraction. We find that the van der Waals law is best obeyed and appears more general than its original formulation: A single universal curve describes all tested nonconformal isotropic pair-additive systems. Published experimental data for the liquid-liquid equilibrium for several proteins at various conditions follow a single van der Waals curve. For the solid-liquid equilibrium, we find that no single system property serves as its predictor. We go beyond corresponding-states correlations and put forth semiempirical laws, which allow prediction of the critical temperature and volume fraction solely based on the range of attraction of the intermolecular interaction potential.
TAL effectors and the executor R genes
Zhang, Junli; Yin, Zhongchao; White, Frank
2015-01-01
Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized—recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance. PMID:26347759
TAL effectors and the executor R genes.
Zhang, Junli; Yin, Zhongchao; White, Frank
2015-01-01
Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized-recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.
Topography and geology site effects from the intensity prediction model (ShakeMap) for Austria
NASA Astrophysics Data System (ADS)
del Puy Papí Isaba, María; Jia, Yan; Weginger, Stefan
2017-04-01
The seismicity in Austria can be categorized as moderated. Despite the fact that the hazard seems to be rather low, earthquakes can cause great damage and losses, specially in densely populated and industrialized areas. It is well known, that equations which predict intensity as a function of magnitude and distance, among other parameters, are useful tool for hazard and risk assessment. Therefore, this study aims to determine an empirical model of the ground shaking intensities (ShakeMap) of a series of earthquakes occurred in Austria between 1000 and 2014. Furthermore, the obtained empirical model will lead to further interpretation of both, contemporary and historical earthquakes. A total of 285 events, which epicenters were located in Austria, and a sum of 22.739 reported macreoseismic data points from Austria and adjoining countries, were used. These events are enclosed in the period 1000-2014 and characterized by having a local magnitude greater than 3. In the first state of the model development, the data was careful selected, e.g. solely intensities equal or greater than III were used. In a second state the data was adjusted to the selected empirical model. Finally, geology and topography corrections were obtained by means of the model residuals in order to derive intensity-based site amplification effects.
Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence.
Pitzer, Virginia E; Viboud, Cécile; Lopman, Ben A; Patel, Manish M; Parashar, Umesh D; Grenfell, Bryan T
2011-11-07
Rotavirus is a major cause of mortality in developing countries, and yet the dynamics of rotavirus in such settings are poorly understood. Rotavirus is typically less seasonal in the tropics, although recent observational studies have challenged the universality of this pattern. While numerous studies have examined the association between environmental factors and rotavirus incidence, here we explore the role of intrinsic factors. By fitting a mathematical model of rotavirus transmission dynamics to published age distributions of cases from 15 countries, we obtain estimates of local transmission rates. Model-predicted patterns of seasonal incidence based solely on differences in birth rates and transmission rates are significantly correlated with those observed (Spearman's ρ = 0.65, p < 0.05). We then examine seasonal patterns of rotavirus predicted across a range of different birth rates and transmission rates and explore how vaccination may impact these patterns. Our results suggest that the relative lack of rotavirus seasonality observed in many tropical countries may be due to the high birth rates and transmission rates typical of developing countries rather than being driven primarily by environmental conditions. While vaccination is expected to decrease the overall burden of disease, it may increase the degree of seasonal variation in the incidence of rotavirus in some settings.
NASA Astrophysics Data System (ADS)
Veiga Rodrigues, C.; Palma, J. M. L. M.
2014-06-01
Mesoscale results using the WRF model were downscaled from 3 km to 250 m resolution in a one-way coupling with VENTOS®/M. The results were compared against field measurements at one site comprising 4 meteorological masts, each with two sets of cup anemometers and wind vanes. The results showed that the addition of VENTOS®/M to the model chain improved the wind speed RMSE. Regarding the prediction of wind direction ambivalent results were obtained. Special attention was given to the prediction of turbulence intensity, particularly in reproducing its inverse proportionality with increasing wind speed (cf. IEC 61400-1 standard). The typical use of computational models in wind resource assessment, i.e., relying on decoupled methodologies and neutrally-stratified regimes, does not allow the representation of turbulence intensity for all wind speeds. The results obtained with VENTOS®/M were in agreement with the measured turbulence characteristics at both high and low wind speeds. Such was achieved without the coupling of any turbulence related field, relying solely on the turbulence model embedded in VENTOS®/M and its respective wall boundary conditions, based on Monin-Obukhov similarity theory. The behaviour under different stratification regimes was verified by analysing diurnal and nocturnal events separately.
Effect of crowd size on patient volume at a large, multipurpose, indoor stadium.
De Lorenzo, R A; Gray, B C; Bennett, P C; Lamparella, V J
1989-01-01
A prediction of patient volume expected at "mass gatherings" is desirable in order to provide optimal on-site emergency medical care. While several methods of predicting patient loads have been suggested, a reliable technique has not been established. This study examines the frequency of medical emergencies at the Syracuse University Carrier Dome, a 50,500-seat indoor stadium. Patient volume and level of care at collegiate basketball and football games as well as rock concerts, over a 7-year period were examined and tabulated. This information was analyzed using simple regression and nonparametric statistical methods to determine level of correlation between crowd size and patient volume. These analyses demonstrated no statistically significant increase in patient volume for increasing crowd size for basketball and football events. There was a small but statistically significant increase in patient volume for increasing crowd size for concerts. A comparison of similar crowd size for each of the three events showed that patient frequency is greatest for concerts and smallest for basketball. The study suggests that crowd size alone has only a minor influence on patient volume at any given event. Structuring medical services based solely on expected crowd size and not considering other influences such as event type and duration may give poor results.
COMMUNICATION: Stochastic resonance and the evolution of Daphnia foraging strategy
NASA Astrophysics Data System (ADS)
Dees, Nathan D.; Bahar, Sonya; Moss, Frank
2008-12-01
Search strategies are currently of great interest, with reports on foraging ranging from albatrosses and spider monkeys to microzooplankton. Here, we investigate the role of noise in optimizing search strategies. We focus on the zooplankton Daphnia, which move in successive sequences consisting of a hop, a pause and a turn through an angle. Recent experiments have shown that their turning angle distributions (TADs) and underlying noise intensities are similar across species and age groups, suggesting an evolutionary origin of this internal noise. We explore this hypothesis further with a digital simulation (EVO) based solely on the three central Darwinian themes: inheritability, variability and survivability. Separate simulations utilizing stochastic resonance (SR) indicate that foraging success, and hence fitness, is maximized at an optimum TAD noise intensity, which is represented by the distribution's characteristic width, σ. In both the EVO and SR simulations, foraging success is the criterion, and the results are the predicted characteristic widths of the TADs that maximize success. Our results are twofold: (1) the evolving characteristic widths achieve stasis after many generations; (2) as a hop length parameter is changed, variations in the evolved widths generated by EVO parallel those predicted by SR. These findings provide support for the hypotheses that (1) σ is an evolved quantity and that (2) SR plays a role in evolution.
Shobeiri, Fatemeh; Manoucheri, Behnaz; Parsa, Parisa; Roshanaei, Ghodratolah
2017-06-01
Increase of fatigue may lead to problems during pregnancy, delivery and post delivery. Sole reflexology is the application of pressure to areas on the feet. Reflexology is generally relaxing and may be an effective way to alleviate fatigue and stress. To investigate the effect of counselling and sole reflexology on fatigue in pregnant women, referred to the medical centers of Hamadan city, Iran. This study was a randomized clinical trial with three groups - Group A (counselling and reflexology), Group B (reflexology) and Group C (control) with pre and post intervention. A total of forty two pregnant women were selected for each group. Measurement tool was a 30 question standard checklist for fatigue assessment. For all three groups, an explanatory session was held to get their written consents and conduct a pretest. The intervention included five education sessions, twice a week about reflexology in the form of counselling and sole reflexology. The groups were assessed immediately after intervention. Data were analysed using IBM SPSS Statistics 20.0. To analyse the data, descriptive statistics, t test and ANOVA with repeated measures were used. In group A and group B, the mean score of fatigue severity after the intervention demonstrated a significant decrease (p<0.05); furthermore, after intervention, a significant difference was observed between the control and experimental groups in terms of fatigue severity (p<0.01). Based on the results of this study, counselling and sole reflexology significantly decreased fatigue in pregnant women. It is hoped that the results of this study can be used by all treatment groups and midwives for controlling and providing midwifery cares for pregnant women.
Shobeiri, Fatemeh; Parsa, Parisa; Roshanaei, Ghodratolah
2017-01-01
Introduction Increase of fatigue may lead to problems during pregnancy, delivery and post delivery. Sole reflexology is the application of pressure to areas on the feet. Reflexology is generally relaxing and may be an effective way to alleviate fatigue and stress. Aim To investigate the effect of counselling and sole reflexology on fatigue in pregnant women, referred to the medical centers of Hamadan city, Iran. Materials and Methods This study was a randomized clinical trial with three groups - Group A (counselling and reflexology), Group B (reflexology) and Group C (control) with pre and post intervention. A total of forty two pregnant women were selected for each group. Measurement tool was a 30 question standard checklist for fatigue assessment. For all three groups, an explanatory session was held to get their written consents and conduct a pretest. The intervention included five education sessions, twice a week about reflexology in the form of counselling and sole reflexology. The groups were assessed immediately after intervention. Data were analysed using IBM SPSS Statistics 20.0. To analyse the data, descriptive statistics, t test and ANOVA with repeated measures were used. Results In group A and group B, the mean score of fatigue severity after the intervention demonstrated a significant decrease (p<0.05); furthermore, after intervention, a significant difference was observed between the control and experimental groups in terms of fatigue severity (p<0.01). Conclusion Based on the results of this study, counselling and sole reflexology significantly decreased fatigue in pregnant women. It is hoped that the results of this study can be used by all treatment groups and midwives for controlling and providing midwifery cares for pregnant women. PMID:28764252
Wilke, M; Rathmayer, M; Schenker, M; Schepp, W
2016-05-01
Neoplastic changes (mild or high grade intraepithelial neoplasia (L- or HGIEN) or early cancer) in Barrett esophagus are treated with various methods. This study compares clinical-economical aspects of sole stepwise radical endoscopic resection (SRER) against combination treatment with EMR (Endoscopic mucosal resection) and RFA (radiofrequency ablation). Based on clinical data from a randomized controlled trial 1 we developed an economic model for costs of treatment according to the German Hospital Remuneration System (G-DRG). Our calculating incorporated initial treatment costs and the cost of treating complications (both paid via G-DRG). Medical and economically, the treatment with EMR + RFA advantages over sole SRER treatment 1. The successful complete resection or destruction of neoplastic intestinal metaplastic tissue is similar in both procedures. Acute complications (24 vs. 13 % in SRER EMR + RFA) and late complications (88 vs. 13 % in SRER EMR + RFA) are significantly more likely in sole SRER than in the EMR + RFA. While SRER initially appears more cost-effective as a sole therapy, cost levels move significantly above EMR+RFA due to higher complication rates and following procedures costs. Overall, the costs of treatment was € 13 272.11 in the SRER group and € 11 389.33 in the EMR + RFA group. The EMR + RFA group thus achieved a cost advantage of € 1882.78. The study shows that the treatment of neoplastic Barrett esophagus with EMR + RFA is also appropriate in economic terms. © Georg Thieme Verlag KG Stuttgart · New York.
On the dynamic singularities in the control of free-floating space manipulators
NASA Technical Reports Server (NTRS)
Papadopoulos, E.; Dubowsky, S.
1989-01-01
It is shown that free-floating space manipulator systems have configurations which are dynamically singular. At a dynamically singular position, the manipulator is unable to move its end effector in some direction. This problem appears in any free-floating space manipulator system that permits the vehicle to move in response to manipulator motion without correction from the vehicle's attitude control system. Dynamic singularities are functions of the dynamic properties of the system; their existence and locations cannot be predicted solely from the kinematic structure of the manipulator, unlike the singularities for fixed base manipulators. It is also shown that the location of these dynamic singularities in the workplace is dependent upon the path taken by the manipulator in reaching them. Dynamic singularities must be considered in the control, planning and design of free-floating space manipulator systems. A method for calculating these dynamic singularities is presented, and it is shown that the system parameters can be selected to reduce the effect of dynamic singularities on a system's performance.
How to Be Proactive About Interference: Lessons From Animal Memory
Wright, Anthony A.; Katz, Jeffrey S.; Ma, Wei Ji
2015-01-01
Processes of proactive interference were explored using the pigeon as a model system of memory. This study shows that proactive interference extends back in time at least 16 trials (and as many minutes), revealing a continuum of interference and providing a framework for studying memory. Pigeons were tested in a delayed same/different task containing trial-unique pictures. On interference trials, sample pictures from previous trials reappeared as test pictures on different trials. Proactive-interference functions showed greatest interference from the most recent trial and with the longer of two delays (10 s vs. 1 s). These interference functions are accounted for by a time-estimation model based on signal detection theory. The model predicts that accuracy at test is determined solely by the ratio of the elapsed time since the offset of the current-trial sample to the elapsed time since the offset of the interfering sample. Implications for comparing memory of different species and different types of memory (e.g., familiarity vs. recollection) are discussed. PMID:22491142
How to be proactive about interference: lessons from animal memory.
Wright, Anthony A; Katz, Jeffrey S; Ma, Wei Ji
2012-05-01
Processes of proactive interference were explored using the pigeon as a model system of memory. This study shows that proactive interference extends back in time at least 16 trials (and as many minutes), revealing a continuum of interference and providing a framework for studying memory. Pigeons were tested in a delayed same/different task containing trial-unique pictures. On interference trials, sample pictures from previous trials reappeared as test pictures on different trials. Proactive-interference functions showed greatest interference from the most recent trial and with the longer of two delays (10 s vs. 1 s). These interference functions are accounted for by a time-estimation model based on signal detection theory. The model predicts that accuracy at test is determined solely by the ratio of the elapsed time since the offset of the current-trial sample to the elapsed time since the offset of the interfering sample. Implications for comparing memory of different species and different types of memory (e.g., familiarity vs. recollection) are discussed.
Kothe, Christian; Hissbach, Johanna; Hampe, Wolfgang
2013-01-01
Introduction: The present study examines the question whether the selection of dental students should be based solely on average school-leaving grades (GPA) or whether it could be improved by using a subject-specific aptitude test. Methods: The HAM-Nat Natural Sciences Test was piloted with freshmen during their first study week in 2006 and 2007. In 2009 and 2010 it was used in the dental student selection process. The sample size in the regression models varies between 32 and 55 students. Results: Used as a supplement to the German GPA, the HAM-Nat test explained up to 12% of the variance in preclinical examination performance. We confirmed the prognostic validity of GPA reported in earlier studies in some, but not all of the individual preclinical examination results. Conclusion: The HAM-Nat test is a reliable selection tool for dental students. Use of the HAM-Nat yielded a significant improvement in prediction of preclinical academic success in dentistry. PMID:24282449
Family-wide analysis of poly(ADP-ribose) polymerase activity
Uchima, Lilen; Rood, Jenny; Zaja, Roko; Hay, Ronald T.; Ahel, Ivan; Chang, Paul
2014-01-01
The poly(ADP-ribose) polymerase (PARP) protein family generates ADP-ribose (ADPr) modifications onto target proteins using NAD+ as substrate. Based on the composition of three NAD+ coordinating amino acids, the H-Y-E motif, each PARP is predicted to generate either poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR). However, the reaction product of each PARP has not been clearly defined, and is an important priority since PAR and MAR function via distinct mechanisms. Here we show that the majority of PARPs generate MAR, not PAR, and demonstrate that the H-Y-E motif is not the sole indicator of PARP activity. We identify automodification sites on seven PARPs, and demonstrate that MAR and PAR generating PARPs modify similar amino acids, suggesting that the sequence and structural constraints limiting PARPs to MAR synthesis do not limit their ability to modify canonical amino acid targets. In addition, we identify cysteine as a novel amino acid target for ADP-ribosylation on PARPs. PMID:25043379
From "Where" to "What": Distributed Representations of Brand Associations in the Human Brain.
Chen, Yu-Ping; Nelson, Leif D; Hsu, Ming
2015-08-01
Considerable attention has been given to the notion that there exists a set of human-like characteristics associated with brands, referred to as brand personality. Here we combine newly available machine learning techniques with functional neuroimaging data to characterize the set of processes that give rise to these associations. We show that brand personality traits can be captured by the weighted activity across a widely distributed set of brain regions previously implicated in reasoning, imagery, and affective processing. That is, as opposed to being constructed via reflective processes, brand personality traits appear to exist a priori inside the minds of consumers, such that we were able to predict what brand a person is thinking about based solely on the relationship between brand personality associations and brain activity. These findings represent an important advance in the application of neuroscientific methods to consumer research, moving from work focused on cataloguing brain regions associated with marketing stimuli to testing and refining mental constructs central to theories of consumer behavior.
Heat transfer to two-phase air/water mixtures flowing in small tubes with inlet disequilibrium
NASA Technical Reports Server (NTRS)
Janssen, J. M.; Florschuetz, L. W.; Fiszdon, J. P.
1986-01-01
The cooling of gas turbine components was the subject of considerable research. The problem is difficult because the available coolant, compressor bleed air, is itself quite hot and has relatively poor thermophysical properties for a coolant. Injecting liquid water to evaporatively cool the air prior to its contact with the hot components was proposed and studied, particularly as a method of cooling for contingency power applications. Injection of a small quantity of cold liquid water into a relatively hot coolant air stream such that evaporation of the liquid is still in process when the coolant contacts the hot component was studied. No approach was found whereby heat transfer characteristics could be confidently predicted for such a case based solely on prior studies. It was not clear whether disequilibrium between phases at the inlet to the hot component section would improve cooling relative to that obtained where equilibrium was established prior to contact with the hot surface.
Perspectives About Personalization for mHealth Solutions Against Noise Pollution.
Kepplinger, Sara; Liebetrau, Judith; Clauss, Tobias; Pharow, Peter
2017-01-01
Noise harms the environmental quality and can have negative effect on health and wellbeing. Providing silent areas and periods of rest is one way to improve the perceived environmental quality. However, realization is not easy in the day to day life. The usage of mHealth solutions which can provide information about the sound of a certain area and the respective effect on humans could be supportive. As the perception of sound is highly subjective, the prediction of the perceived acoustic environments is very difficult. This paper describes a course of action to develop an automatic estimation of an acoustic environment, based on the measurement of sound properties solely. The challenges of this endeavor are explained in detail. Possible application areas in mHealth are identified and presented. This future vision paper wants to draw the attention to different possibilities to cope with noise pollution either by personal behavior change or by using personalized data to reach out for a more general applicability for example through soundscape.
Siegrist, Michael; Gutscher, Heinz
2008-06-01
Past research indicates that personal flood experience is an important factor in motivating mitigation behavior. It is not fully clear, however, why such experience is so important. This study tested the hypothesis that people without flooding experience underestimate the negative affect evoked by such an event. People who were affected by a severe recent flood disaster were compared with people who were not affected, but who also lived in flood-prone areas. Face-to-face interviews with open and closed questions were conducted (n= 201). Results suggest that people without flood experience envisaged the consequences of a flood differently from people who had actually experienced severe losses due to a flood. People who were not affected strongly underestimated the negative affect associated with a flood. Based on the results, it can be concluded that risk communication must not focus solely on technical aspects; in order to trigger motivation for mitigation behavior, successful communication must also help people to envisage the negative emotional consequences of natural disasters.
Event-related potential evidence of accessing gender stereotypes to aid source monitoring.
Leynes, P Andrew; Crawford, Jarret T; Radebaugh, Anne M; Taranto, Elizabeth
2013-01-23
Source memory for the speaker's voice (male or female) was investigated when semantic knowledge (gender stereotypes) could and could not inform the episodic source judgment while event-related potentials (ERPs) were recorded. Source accuracy was greater and response times were faster when stereotypes could predict the speaker's voice at test. Recollection supported source judgments in both conditions as indicated by significant parietal "old/new" ERP effects (500-800ms). Prototypical late ERP effects (the right frontal "old/new" effect and the late posterior negativity, LPN) were evident when source judgment was based solely on episodic memory. However, these two late ERP effects were diminished and a novel, frontal-negative ERP with left-central topography was observed when stereotypes aided source judgments. This pattern of ERP activity likely reflects activation of left frontal or left temporal lobes when semantic knowledge, in the form of a gender stereotype, is accessed to inform the episodic source judgment. Copyright © 2012 Elsevier B.V. All rights reserved.
Mastering the game of Go without human knowledge.
Silver, David; Schrittwieser, Julian; Simonyan, Karen; Antonoglou, Ioannis; Huang, Aja; Guez, Arthur; Hubert, Thomas; Baker, Lucas; Lai, Matthew; Bolton, Adrian; Chen, Yutian; Lillicrap, Timothy; Hui, Fan; Sifre, Laurent; van den Driessche, George; Graepel, Thore; Hassabis, Demis
2017-10-18
A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo's own move selections and also the winner of AlphaGo's games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.
Mastering the game of Go without human knowledge
NASA Astrophysics Data System (ADS)
Silver, David; Schrittwieser, Julian; Simonyan, Karen; Antonoglou, Ioannis; Huang, Aja; Guez, Arthur; Hubert, Thomas; Baker, Lucas; Lai, Matthew; Bolton, Adrian; Chen, Yutian; Lillicrap, Timothy; Hui, Fan; Sifre, Laurent; van den Driessche, George; Graepel, Thore; Hassabis, Demis
2017-10-01
A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.
From “Where” to “What”: Distributed Representations of Brand Associations in the Human Brain
Chen, Yu-Ping; Nelson, Leif D.; Hsu, Ming
2015-01-01
Considerable attention has been given to the notion that there exists a set of human-like characteristics associated with brands, referred to as brand personality. Here we combine newly available machine learning techniques with functional neuroimaging data to characterize the set of processes that give rise to these associations. We show that brand personality traits can be captured by the weighted activity across a widely distributed set of brain regions previously implicated in reasoning, imagery, and affective processing. That is, as opposed to being constructed via reflective processes, brand personality traits appear to exist a priori inside the minds of consumers, such that we were able to predict what brand a person is thinking about based solely on the relationship between brand personality associations and brain activity. These findings represent an important advance in the application of neuroscientific methods to consumer research, moving from work focused on cataloguing brain regions associated with marketing stimuli to testing and refining mental constructs central to theories of consumer behavior. PMID:27065490
NASA Astrophysics Data System (ADS)
Wang, Li; Luo, Yu; Liu, ZengZeng; Feng, Xueming; Lu, Bingheng
2018-06-01
This work presents an economic and controllable fabricating method of high numerical aperture (NA) polymer microlens array (MLA) based on ink-jetting technology. The MLAs are ink-jetted to align on micro platforms patterned flexible PDMS substrate. The shape of a sole lens is constructed by the ink-jetted pre-cured polymer volume confined on a micro platform. In this way, MLAs with targeted geometries-as well as tailored optical characteristics-can be printed, leading to freely designed optical properties. High NA from 0.446 to 0.885 and focal lengths between 99.26 μm and 39.45 μm are demonstrated, confirming theoretical predictions. Particularly, both the simulations and experimental measurements in optical properties are carried out, demonstrating that microlenses with shapes beyond a hemisphere (CA > 90°) exhibits higher light utilization efficiency and wider viewing angle. Meanwhile, the MLAs are fabricated on flexible PDMS substrates and can be attached to other curved surfaces for wider field of view imaging and higher sensitivity.
Relationship between current load and temperature for quasi-steady state and transient conditions
NASA Astrophysics Data System (ADS)
Lyon, Bernard R., Jr.; Orlove, Gary L.; Peters, Donna L.
2000-03-01
Infrared thermographers involved in predictive maintenance programs often use temperature measurement as a means of quantifying the severity of a problem. Temperature is certainly an important factor in evaluating equipment. However, if you follow guidelines that are based solely on absolute temperature measurement--or on a temperature rise (Delta T)--you run the risk of incorrectly diagnosing your problems. The consequences of such actions can lead to a false sense of security, equipment failure, fire, and even the possibility of personal injury. Understanding the additional factors involved in diagnosis is essential for obtaining productive results. One of these factors is the load or current flowing through conductors. The load can have a drastic effect on the temperature of a component. Changing loads can cause additional concerns because temperature changes lag behind load changes. The purpose of this paper is to illustrate the relationship between load and temperature of a faulty connection. The thermal response of a changing load is also investigated.
13 CFR 134.102 - Jurisdiction of OHA.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Denial of program admission based solely on a negative finding as to social disadvantage, economic....html or through OHA's Web site http://www.sba.gov/oha) and subpart H of this part; (s) Appeals from...
Rollinson, Njal; Holt, Sarah M; Massey, Melanie D; Holt, Richard C; Nancekivell, E Graham; Brooks, Ronald J
2018-05-01
Temperature has a strong effect on ectotherm development rate. It is therefore possible to construct predictive models of development that rely solely on temperature, which have applications in a range of biological fields. Here, we leverage a reference series of development stages for embryos of the turtle Chelydra serpentina, which was described at a constant temperature of 20 °C. The reference series acts to map each distinct developmental stage onto embryonic age (in days) at 20 °C. By extension, an embryo taken from any given incubation environment, once staged, can be assigned an equivalent age at 20 °C. We call this concept "Equivalent Development", as it maps the development stage of an embryo incubated at a given temperature to its equivalent age at a reference temperature. In the laboratory, we used the concept of Equivalent Development to estimate development rate of embryos of C. serpentina across a series of constant temperatures. Using these estimates of development rate, we created a thermal performance curve measured in units of Equivalent Development (TPC ED ). We then used the TPC ED to predict developmental stage of embryos in several natural turtle nests across six years. We found that 85% of the variation of development stage in natural nests could be explained. Further, we compared the predictive accuracy of the model based on the TPC ED to the predictive accuracy of a degree-day model, where development is assumed to be linearly related to temperature and the amount of accumulated heat is summed over time. Information theory suggested that the model based on the TPC ED better describes variation in developmental stage in wild nests than the degree-day model. We suggest the concept of Equivalent Development has several strengths and can be broadly applied. In particular, studies on temperature-dependent sex determination may be facilitated by the concept of Equivalent Development, as development age maps directly onto the developmental series of the organism, allowing critical periods of sex determination to be delineated without invasive sampling, even under fluctuating temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modelling Nitrogen Oxides in Los Angeles Using a Hybrid Dispersion/Land Use Regression Model
NASA Astrophysics Data System (ADS)
Wilton, Darren C.
The goal of this dissertation is to develop models capable of predicting long term annual average NOx concentrations in urban areas. Predictions from simple meteorological dispersion models and seasonal proxies for NO2 oxidation were included as covariates in a land use regression (LUR) model for NOx in Los Angeles, CA. The NO x measurements were obtained from a comprehensive measurement campaign that is part of the Multi-Ethnic Study of Atherosclerosis Air Pollution Study (MESA Air). Simple land use regression models were initially developed using a suite of GIS-derived land use variables developed from various buffer sizes (R²=0.15). Caline3, a simple steady-state Gaussian line source model, was initially incorporated into the land-use regression framework. The addition of this spatio-temporally varying Caline3 covariate improved the simple LUR model predictions. The extent of improvement was much more pronounced for models based solely on the summer measurements (simple LUR: R²=0.45; Caline3/LUR: R²=0.70), than it was for models based on all seasons (R²=0.20). We then used a Lagrangian dispersion model to convert static land use covariates for population density, commercial/industrial area into spatially and temporally varying covariates. The inclusion of these covariates resulted in significant improvement in model prediction (R²=0.57). In addition to the dispersion model covariates described above, a two-week average value of daily peak-hour ozone was included as a surrogate of the oxidation of NO2 during the different sampling periods. This additional covariate further improved overall model performance for all models. The best model by 10-fold cross validation (R²=0.73) contained the Caline3 prediction, a static covariate for length of A3 roads within 50 meters, the Calpuff-adjusted covariates derived from both population density and industrial/commercial land area, and the ozone covariate. This model was tested against annual average NOx concentrations from an independent data set from the EPA's Air Quality System (AQS) and MESA Air fixed site monitors, and performed very well (R²=0.82).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, J; Pollom, E; Durkee, B
2015-06-15
Purpose: To predict response to radiation treatment using computational FDG-PET and CT images in locally advanced head and neck cancer (HNC). Methods: 68 patients with State III-IVB HNC treated with chemoradiation were included in this retrospective study. For each patient, we analyzed primary tumor and lymph nodes on PET and CT scans acquired both prior to and during radiation treatment, which led to 8 combinations of image datasets. From each image set, we extracted high-throughput, radiomic features of the following types: statistical, morphological, textural, histogram, and wavelet, resulting in a total of 437 features. We then performed unsupervised redundancy removalmore » and stability test on these features. To avoid over-fitting, we trained a logistic regression model with simultaneous feature selection based on least absolute shrinkage and selection operator (LASSO). To objectively evaluate the prediction ability, we performed 5-fold cross validation (CV) with 50 random repeats of stratified bootstrapping. Feature selection and model training was solely conducted on the training set and independently validated on the holdout test set. Receiver operating characteristic (ROC) curve of the pooled Result and the area under the ROC curve (AUC) was calculated as figure of merit. Results: For predicting local-regional recurrence, our model built on pre-treatment PET of lymph nodes achieved the best performance (AUC=0.762) on 5-fold CV, which compared favorably with node volume and SUVmax (AUC=0.704 and 0.449, p<0.001). Wavelet coefficients turned out to be the most predictive features. Prediction of distant recurrence showed a similar trend, in which pre-treatment PET features of lymph nodes had the highest AUC of 0.705. Conclusion: The radiomics approach identified novel imaging features that are predictive to radiation treatment response. If prospectively validated in larger cohorts, they could aid in risk-adaptive treatment of HNC.« less
Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry
2016-10-01
The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future. © 2016 John Wiley & Sons Ltd.
Grain-boundary physics in polycrystalline CuInSe2 revisited: experiment and theory.
Yan, Yanfa; Noufi, R; Al-Jassim, M M
2006-05-26
Current studies have attributed the remarkable performance of polycrystalline CuInSe2 (CIS) to anomalous grain-boundary (GB) physics in CIS. The recent theory predicts that GBs in CIS are hole barriers, which prevent GB electrons from recombining. We examine the atomic structure and chemical composition of (112) GBs in Cu(In,Ga)Se2 (CIGS) using high-resolution Z-contrast imaging and nanoprobe x-ray energy-dispersive spectroscopy. We show that the theoretically predicted Cu-vacancy rows are not observed in (112) GBs in CIGS. Our first-principles modeling further reveals that the (112) GBs in CIS do not act as hole barriers. Our results suggest that the superior performance of polycrystalline CIS should not be explained solely by the GB behaviors.
The Impact of Adolescent Deviance on Marital Trajectories.
Doherty, Elaine Eggleston; Green, Kerry M; Ensminger, Margaret E
2012-01-01
Marriage is a key life event that has numerous benefits. Recent research extends these benefits to include desistance from crime and drug use yet there has been little investigation regarding whether deviant behavior in adolescence impacts long-term marital patterns. Since rates of marriage are low among African Americans and rates of adolescent deviance and crime are high, we investigate the long-term relationship between the two drawing on longitudinal data from the Woodlawn cohort of urban African Americans. This article investigates whether serious adolescent delinquency and marijuana use predict marital trajectories, controlling for known correlates. Multivariate findings indicate that within this African-American population, deviance predicts the probability of marriage, stability of marriage, and timing of marriage for men yet deviance relates solely to the probability of marriage for women.
The Impact of Adolescent Deviance on Marital Trajectories
Doherty, Elaine Eggleston; Green, Kerry M.; Ensminger, Margaret E.
2014-01-01
Marriage is a key life event that has numerous benefits. Recent research extends these benefits to include desistance from crime and drug use yet there has been little investigation regarding whether deviant behavior in adolescence impacts long-term marital patterns. Since rates of marriage are low among African Americans and rates of adolescent deviance and crime are high, we investigate the long-term relationship between the two drawing on longitudinal data from the Woodlawn cohort of urban African Americans. This article investigates whether serious adolescent delinquency and marijuana use predict marital trajectories, controlling for known correlates. Multivariate findings indicate that within this African-American population, deviance predicts the probability of marriage, stability of marriage, and timing of marriage for men yet deviance relates solely to the probability of marriage for women. PMID:25284919
Bilateral asymmetry prediction.
Kostoff, Ronald Neil
2003-08-01
This study predicts asymmetries in lateral organ cancer incidence from text mining of the Medline database. Lung, kidney, teste, and ovary cancers were examined. For each cancer, Medline case report articles focused solely on (1) cancer of the right organ and (2) cancer of the left organ were retrieved. The ratio of right organ to left organ articles was compared to actual patient incidence data obtained from the National Cancer Institute's (NCI) SEER database for the period 1979-1998. The agreement between the Medline record ratios and the NCI's patient incidence data ratios ranged from within 3% for lung cancer to within 1% for teste and ovary cancer. This is the first known study to generate cancer lateral incidence asymmetries from the Medline database. The technique should be applicable to other diseases and other types of system asymmetries.
5 CFR 550.143 - Bases for determining positions for which premium pay under § 550.141 is authorized.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Bases for determining positions for which... Standby Duty Pay § 550.143 Bases for determining positions for which premium pay under § 550.141 is... isolation, or solely because the employee lives on the grounds. (2) The hours during which the requirement...
5 CFR 550.143 - Bases for determining positions for which premium pay under § 550.141 is authorized.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Bases for determining positions for which... Standby Duty Pay § 550.143 Bases for determining positions for which premium pay under § 550.141 is... isolation, or solely because the employee lives on the grounds. (2) The hours during which the requirement...
Low-energy elastic differential scattering of He/++/ by He.
NASA Technical Reports Server (NTRS)
Lam, S. K.; Doverspike, L. D.; Champion, R. L.
1973-01-01
Experimental results are developed for the relative elastic differential scattering of He(++) by He for collision energies in the range 4 equal to or less than E equal to or less than 75 eV. In the analysis of the data, semiclassical considerations are utilized, assuming that the dynamics of the scattering is governed solely by the B and E states of He2(++). It is shown that existing ab initio calculations for the intermolecular potentials predict differential cross sections which are not in particularly good agreement with the experimental data.
48 CFR 9905.506-60 - Illustrations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... base. In a proposal for a covered contract, it estimates the allocable expenses based solely on the..., it has a 5-month transitional “fiscal year.” The same 5-month period must be used as the transitional cost accounting period; it may not be combined as provided in 9905.506-50(f), because the transitional...
48 CFR 9905.506-60 - Illustrations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... base. In a proposal for a covered contract, it estimates the allocable expenses based solely on the..., it has a 5-month transitional “fiscal year.” The same 5-month period must be used as the transitional cost accounting period; it may not be combined as provided in 9905.506-50(f), because the transitional...
Neural Issues in the Control of Muscular Strength
ERIC Educational Resources Information Center
Kamen, Gary
2004-01-01
During the earliest stages of resistance exercise training, initial muscular strength gains occur too rapidly to be explained solely by muscle-based mechanisms. However, increases in surface-based EMG amplitude as well as motor unit discharge rate provide some insight to the existence of neural mechanisms in the earliest phases of resistance…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasparotto, Piero; Ceriotti, Michele, E-mail: michele.ceriotti@epfl.ch
The concept of chemical bonding can ultimately be seen as a rationalization of the recurring structural patterns observed in molecules and solids. Chemical intuition is nothing but the ability to recognize and predict such patterns, and how they transform into one another. Here, we discuss how to use a computer to identify atomic patterns automatically, so as to provide an algorithmic definition of a bond based solely on structural information. We concentrate in particular on hydrogen bonding – a central concept to our understanding of the physical chemistry of water, biological systems, and many technologically important materials. Since the hydrogenmore » bond is a somewhat fuzzy entity that covers a broad range of energies and distances, many different criteria have been proposed and used over the years, based either on sophisticate electronic structure calculations followed by an energy decomposition analysis, or on somewhat arbitrary choices of a range of structural parameters that is deemed to correspond to a hydrogen-bonded configuration. We introduce here a definition that is univocal, unbiased, and adaptive, based on our machine-learning analysis of an atomistic simulation. The strategy we propose could be easily adapted to similar scenarios, where one has to recognize or classify structural patterns in a material or chemical compound.« less
A Hybrid Probabilistic Model for Unified Collaborative and Content-Based Image Tagging.
Zhou, Ning; Cheung, William K; Qiu, Guoping; Xue, Xiangyang
2011-07-01
The increasing availability of large quantities of user contributed images with labels has provided opportunities to develop automatic tools to tag images to facilitate image search and retrieval. In this paper, we present a novel hybrid probabilistic model (HPM) which integrates low-level image features and high-level user provided tags to automatically tag images. For images without any tags, HPM predicts new tags based solely on the low-level image features. For images with user provided tags, HPM jointly exploits both the image features and the tags in a unified probabilistic framework to recommend additional tags to label the images. The HPM framework makes use of the tag-image association matrix (TIAM). However, since the number of images is usually very large and user-provided tags are diverse, TIAM is very sparse, thus making it difficult to reliably estimate tag-to-tag co-occurrence probabilities. We developed a collaborative filtering method based on nonnegative matrix factorization (NMF) for tackling this data sparsity issue. Also, an L1 norm kernel method is used to estimate the correlations between image features and semantic concepts. The effectiveness of the proposed approach has been evaluated using three databases containing 5,000 images with 371 tags, 31,695 images with 5,587 tags, and 269,648 images with 5,018 tags, respectively.
Gasparotto, Piero; Ceriotti, Michele
2014-11-07
The concept of chemical bonding can ultimately be seen as a rationalization of the recurring structural patterns observed in molecules and solids. Chemical intuition is nothing but the ability to recognize and predict such patterns, and how they transform into one another. Here, we discuss how to use a computer to identify atomic patterns automatically, so as to provide an algorithmic definition of a bond based solely on structural information. We concentrate in particular on hydrogen bonding--a central concept to our understanding of the physical chemistry of water, biological systems, and many technologically important materials. Since the hydrogen bond is a somewhat fuzzy entity that covers a broad range of energies and distances, many different criteria have been proposed and used over the years, based either on sophisticate electronic structure calculations followed by an energy decomposition analysis, or on somewhat arbitrary choices of a range of structural parameters that is deemed to correspond to a hydrogen-bonded configuration. We introduce here a definition that is univocal, unbiased, and adaptive, based on our machine-learning analysis of an atomistic simulation. The strategy we propose could be easily adapted to similar scenarios, where one has to recognize or classify structural patterns in a material or chemical compound.
Estimating Missing Unit Process Data in Life Cycle Assessment Using a Similarity-Based Approach.
Hou, Ping; Cai, Jiarui; Qu, Shen; Xu, Ming
2018-05-01
In life cycle assessment (LCA), collecting unit process data from the empirical sources (i.e., meter readings, operation logs/journals) is often costly and time-consuming. We propose a new computational approach to estimate missing unit process data solely relying on limited known data based on a similarity-based link prediction method. The intuition is that similar processes in a unit process network tend to have similar material/energy inputs and waste/emission outputs. We use the ecoinvent 3.1 unit process data sets to test our method in four steps: (1) dividing the data sets into a training set and a test set; (2) randomly removing certain numbers of data in the test set indicated as missing; (3) using similarity-weighted means of various numbers of most similar processes in the training set to estimate the missing data in the test set; and (4) comparing estimated data with the original values to determine the performance of the estimation. The results show that missing data can be accurately estimated when less than 5% data are missing in one process. The estimation performance decreases as the percentage of missing data increases. This study provides a new approach to compile unit process data and demonstrates a promising potential of using computational approaches for LCA data compilation.
A similarity learning approach to content-based image retrieval: application to digital mammography.
El-Naqa, Issam; Yang, Yongyi; Galatsanos, Nikolas P; Nishikawa, Robert M; Wernick, Miles N
2004-10-01
In this paper, we describe an approach to content-based retrieval of medical images from a database, and provide a preliminary demonstration of our approach as applied to retrieval of digital mammograms. Content-based image retrieval (CBIR) refers to the retrieval of images from a database using information derived from the images themselves, rather than solely from accompanying text indices. In the medical-imaging context, the ultimate aim of CBIR is to provide radiologists with a diagnostic aid in the form of a display of relevant past cases, along with proven pathology and other suitable information. CBIR may also be useful as a training tool for medical students and residents. The goal of information retrieval is to recall from a database information that is relevant to the user's query. The most challenging aspect of CBIR is the definition of relevance (similarity), which is used to guide the retrieval machine. In this paper, we pursue a new approach, in which similarity is learned from training examples provided by human observers. Specifically, we explore the use of neural networks and support vector machines to predict the user's notion of similarity. Within this framework we propose using a hierarchal learning approach, which consists of a cascade of a binary classifier and a regression module to optimize retrieval effectiveness and efficiency. We also explore how to incorporate online human interaction to achieve relevance feedback in this learning framework. Our experiments are based on a database consisting of 76 mammograms, all of which contain clustered microcalcifications (MCs). Our goal is to retrieve mammogram images containing similar MC clusters to that in a query. The performance of the retrieval system is evaluated using precision-recall curves computed using a cross-validation procedure. Our experimental results demonstrate that: 1) the learning framework can accurately predict the perceptual similarity reported by human observers, thereby serving as a basis for CBIR; 2) the learning-based framework can significantly outperform a simple distance-based similarity metric; 3) the use of the hierarchical two-stage network can improve retrieval performance; and 4) relevance feedback can be effectively incorporated into this learning framework to achieve improvement in retrieval precision based on online interaction with users; and 5) the retrieved images by the network can have predicting value for the disease condition of the query.
Prediction of Mortality Based on Facial Characteristics
Delorme, Arnaud; Pierce, Alan; Michel, Leena; Radin, Dean
2016-01-01
Recent studies have shown that characteristics of the face contain a wealth of information about health, age and chronic clinical conditions. Such studies involve objective measurement of facial features correlated with historical health information. But some individuals also claim to be adept at gauging mortality based on a glance at a person’s photograph. To test this claim, we invited 12 such individuals to see if they could determine if a person was alive or dead based solely on a brief examination of facial photographs. All photos used in the experiment were transformed into a uniform gray scale and then counterbalanced across eight categories: gender, age, gaze direction, glasses, head position, smile, hair color, and image resolution. Participants examined 404 photographs displayed on a computer monitor, one photo at a time, each shown for a maximum of 8 s. Half of the individuals in the photos were deceased, and half were alive at the time the experiment was conducted. Participants were asked to press a button if they thought the person in a photo was living or deceased. Overall mean accuracy on this task was 53.8%, where 50% was expected by chance (p < 0.004, two-tail). Statistically significant accuracy was independently obtained in 5 of the 12 participants. We also collected 32-channel electrophysiological recordings and observed a robust difference between images of deceased individuals correctly vs. incorrectly classified in the early event related potential (ERP) at 100 ms post-stimulus onset. Our results support claims of individuals who report that some as-yet unknown features of the face predict mortality. The results are also compatible with claims about clairvoyance warrants further investigation. PMID:27242466
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otwell, Annie E.; Sherwood, Roberts; Zhang, Sheng
Metal reduction capability has been found in numerous species of environmentally abundant Gram-positive bacteria. However, understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. D. reducens has been shown to reduce not only Fe(III), but also the environmentally important contaminants U(VI) and Cr(VI). By extracting, separating, and analyzing the functional proteome of D. reducens, using a ferrozine-based assay in order to screen for chelated Fe(III)-NTA reduction with NADH as electron donor,more » we have identified proteins not previously characterized as iron reductases. Their function was confirmed by heterologous expression in E. coli. These are the protein NADH:flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase FAD/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble (presumably membrane) protein fraction, suggesting a type of membrane-association, although PSORTb predicts both proteins are cytoplasmic. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. This study is the first functional proteomic analysis of D. reducens, and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.« less
Koutsoftas, Anthony D
2016-12-01
Difficulties with written expression are an important consideration in the assessment and treatment of school-age children. This study evaluated how intermediate-grade children with and without written language difficulties fared on a writing task housed within the Hayes and Berninger (2014) writing process framework. Sixty-four children completed a writing task whereby they planned, wrote, and revised a narrative story across 3 days. Children had extended time to produce an outline, first draft, and final copy of their story. Language transcription approaches were used to obtain measures reflecting writing productivity, complexity, accuracy, and mechanics, in addition to measures of planning and revision. Results indicated that children with writing difficulties produced poorer quality stories compared with their peers yet were not significantly different across all measures. Children with typical development produced longer stories with better spelling accuracy. Writing process measures predicted significant amounts of variance in writing quality across the sample. Writing should be considered as part of language assessment and intervention, whether as the sole language difficulty or alongside difficulties with speaking, listening, or reading in children with language-based learning difficulties. Implications for translation of research to practice and service delivery are provided.
[Disease numbers in pneumology - a projection to 2060].
Pritzkuleit, R; Beske, F; Katalinic, A
2010-09-01
The demographic change leads to a change in the age-composition of the population. We have calculated a status quo projection of the absolute numbers for five diagnoses of the lung (COPD, CAP, lung cancer, bronchial asthma and tuberculosis) for Germany up to 2060. Based on the 12 (th) coordinated population prediction of the Federal Statistics Office, we transferred age- and sex-specific incidence and prevalence rates, respectively, to the expected population. All described developments are based solely on demographic changes. The absolute numbers of bronchial asthma and tuberculosis will experience a minor decrease. We expect at first increasing and later decreasing case numbers for COPD and lung cancer. A major increase of the case numbers for CAP will be probable. By reason of a decreasing population, the rates (burden of disease for the population) will increase considerably. The demographic change is mainly caused by increasing life expectancy, constantly low birth rates, and the entry of the baby-boom generation into the age of higher disease risks. A discussion about prioritisation of health care is needed because of the rising burdens for the health system, including diseases of the lung. Copyright Georg Thieme Verlag KG Stuttgart . New York.
Kook, Seungho; Swetha, Chivukula D; Lee, Jangho; Lee, Chulmin; Fane, Tony; Kim, In S
2018-03-20
Forward osmosis (FO) membranes fall into the category of nonporous membranes, based on the assumption that water and solute transport occur solely based on diffusion. The solution-diffusion (S-D) model has been widely used in predicting their performances in the coexistence of hydraulic and osmotic driving forces, a model that postulates the hydraulic and osmotic driving forces have identical nature. It was suggested, however, such membranes may have pores and mass transport could occur both by convection (i.e., volumetric flow) as well as by diffusion assuming that the dense active layer of the membranes is composed of a nonporous structure with defects which induce volumetric flow through the membranes. In addition, the positron annihilation technique has revealed that the active layers can involve relatively uniform porous structures. As such, the assumption of a nonporous active layer in association with hydraulic pressure is questionable. To validate this assumption, we have tested FO membranes under the conditions where hydraulic and osmotic pressures are equivalent yet in opposite directions for water transport, namely the null-pressure condition. We have also established a practically valid characterization method which quantifies the vulnerability of the FO membranes to hydraulic pressure.
Toxicokinetic and Dosimetry Modeling Tools for Exposure ...
New technologies and in vitro testing approaches have been valuable additions to risk assessments that have historically relied solely on in vivo test results. Compared to in vivo methods, in vitro high throughput screening (HTS) assays are less expensive, faster and can provide mechanistic insights on chemical action. However, extrapolating from in vitro chemical concentrations to target tissue or blood concentrations in vivo is fraught with uncertainties, and modeling is dependent upon pharmacokinetic variables not measured in in vitro assays. To address this need, new tools have been created for characterizing, simulating, and evaluating chemical toxicokinetics. Physiologically-based pharmacokinetic (PBPK) models provide estimates of chemical exposures that produce potentially hazardous tissue concentrations, while tissue microdosimetry PK models relate whole-body chemical exposures to cell-scale concentrations. These tools rely on high-throughput in vitro measurements, and successful methods exist for pharmaceutical compounds that determine PK from limited in vitro measurements and chemical structure-derived property predictions. These high throughput (HT) methods provide a more rapid and less resource–intensive alternative to traditional PK model development. We have augmented these in vitro data with chemical structure-based descriptors and mechanistic tissue partitioning models to construct HTPBPK models for over three hundred environmental and pharmace
Predicting Length of Stay for Obstetric Patients via Electronic Medical Records.
Gao, Cheng; Kho, Abel N; Ivory, Catherine; Osmundson, Sarah; Malin, Bradley A; Chen, You
2017-01-01
Obstetric care refers to the care provided to patients during ante-, intra-, and postpartum periods. Predicting length of stay (LOS) for these patients during their hospitalizations can assist healthcare organizations in allocating hospital resources more effectively and efficiently, ultimately improving maternal care quality and reducing costs to patients. In this paper, we investigate the extent to which LOS can be forecast from a patient's medical history. We introduce a machine learning framework to incorporate a patient's prior conditions (e.g., diagnostic codes) as features in a predictive model for LOS. We evaluate the framework with three years of historical billing data from the electronic medical records of 9188 obstetric patients in a large academic medical center. The results indicate that our framework achieved an average accuracy of 49.3%, which is higher than the baseline accuracy 37.7% (that relies solely on a patient's age). The most predictive features were found to have statistically significant discriminative ability. These features included billing codes for normal delivery (indicative of shorter stay) and antepartum hypertension (indicative of longer stay).
Wang, Chi-Yu; Chang, Chun-Kai; Chou, Chang-Yi; Wu, Chien-Ju; Chu, Tzi-Shiang; Chiao, Hao-Yu; Chen, Chun-Yu; Chen, Tim-Mo; Tzeng, Yuan-Sheng
2018-02-01
Plantar hyperkeratosis, such as corns and calluses, is common in older people and associated with pain, mobility impairment, and functional limitations. It usually develops on the palms, knees, or soles of feet, especially under the heels or balls. There are several treatment methods for plantar hyperkeratosis, such as salicylic acid plaster and scalpel debridement, and conservative modalities, such as using a shoe insert and properly fitting shoes. We present an effective method of reconstructing the wound after corn excision using a split-thickness sole skin graft (STSSG). We harvested the skin graft from the arch of the sole using the dermatome with a skin thickness of 14/1000th inches. Because the split-thickness skin graft, harvested from the sole arch near the distal sole, is much thicker than the split-thickness skin graft from the thigh, it is more resistant to weight and friction. The healed wound with STSSG coverage over the distal sole was intact, and the donor site over the sole arch had healed without complication during the outpatient follow-up, 3 months after surgery. The recovery time of STSSG for corn excision is shorter than that with traditional treatment. Therefore, STSSG can be a reliable alternative treatment for recurrent palmoplantar hyperkeratosis.
Müller, Elisabeth; Schüssler, Walter; Horn, Harald; Lemmer, Hilde
2013-08-01
Potential aerobic biodegradation mechanisms of the widely used polar, low-adsorptive sulfonamide antibiotic sulfamethoxazole (SMX) were investigated in activated sludge at bench scale. The study focused on (i) SMX co-metabolism with acetate and ammonium nitrate and (ii) SMX utilization when present as the sole carbon and nitrogen source. With SMX adsorption being negligible, elimination was primarily based on biodegradation. Activated sludge was able to utilize SMX both as a carbon and/or nitrogen source. SMX biodegradation was enhanced when a readily degradable energy supply (acetate) was provided which fostered metabolic activity. Moreover, it was raised under nitrogen deficiency conditions. The mass balance for dissolved organic carbon showed an incomplete SMX mineralization with two scenarios: (i) with SMX as a co-substrate, 3-amino-5-methyl-isoxazole represented the main stable metabolite and (ii) SMX as sole carbon and nitrogen source possibly yielded hydroxyl-N-(5-methyl-1,2-oxazole-3-yl)benzene-1-sulfonamide as a further metabolite. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Papagiannis, P.; Azariadis, P.; Papanikos, P.
2017-10-01
Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.
Transmyocardial revascularization by a 1000-watt CO2 laser: sole therapy (Abstract Only)
NASA Astrophysics Data System (ADS)
Crew, John R.; Dean, Marilyn; Jones, Reinold; Fisher, John C.
1993-05-01
The concept of transmyocardial revascularization (TMR) providing blood flow to the left heart muscle based on the reptilian heart model has now been extended from an adjunctive procedure with coronary artery bypass to sole therapy. At Seton Hospital and Medical Center TMR is now being performed for the first time in clinical trials with patients who have no other mechanism of perfusion and a history of either failed PTCA or coronary artery bypass, with angina already under maximum medical therapy with a demonstrable ischemic muscle target. Longevity and reperfusion by tomographic thallium of these laser-drilled holes has been previously demonstrated but effectiveness of these channels for primary perfusion (sole therapy) apart from normal coronary bypass collateral supply is under investigation. Phase I of the FDA study has been completed with 15 cases and now Phase II includes three other beta test sites along with alternative therapy in marginal cases as the investigational format for the next 50 cases. More than 2 year followup in the first 15 cases is presented.
Liu, Feng; Tian, Yu; Ding, Yi; Li, Zhipeng
2016-11-01
Wastewater primary sedimentation sludge was prepared into fermentation liquid as denitrification carbon source, and the main components of fermentation liquid was short-chain volatile fatty acids. Meanwhile, the acetic acid and propionic acid respectively accounted for about 29.36% and 26.56% in short-chain volatile fatty acids. The performance of fermentation liquid, methanol, acetic acid, propionic acid and glucose used as sole carbon source were compared. It was found that the denitrification rate with fermentation liquid as carbon source was 0.17mgNO3(-)-N/mg mixed liquor suspended solid d, faster than that with methanol, acetic acid, and propionic acid as sole carbon source, and lower than that with glucose as sole carbon source. For the fermentation liquid as carbon source, the transient accumulation of nitrite was insignificantly under different initial total nitrogen concentration. Therefore, the use of fermentation liquid for nitrogen removal could improve denitrification rate, and reduce nitrite accumulation in denitrification process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shao, Xu; Milner, Ben
2005-08-01
This work proposes a method to reconstruct an acoustic speech signal solely from a stream of mel-frequency cepstral coefficients (MFCCs) as may be encountered in a distributed speech recognition (DSR) system. Previous methods for speech reconstruction have required, in addition to the MFCC vectors, fundamental frequency and voicing components. In this work the voicing classification and fundamental frequency are predicted from the MFCC vectors themselves using two maximum a posteriori (MAP) methods. The first method enables fundamental frequency prediction by modeling the joint density of MFCCs and fundamental frequency using a single Gaussian mixture model (GMM). The second scheme uses a set of hidden Markov models (HMMs) to link together a set of state-dependent GMMs, which enables a more localized modeling of the joint density of MFCCs and fundamental frequency. Experimental results on speaker-independent male and female speech show that accurate voicing classification and fundamental frequency prediction is attained when compared to hand-corrected reference fundamental frequency measurements. The use of the predicted fundamental frequency and voicing for speech reconstruction is shown to give very similar speech quality to that obtained using the reference fundamental frequency and voicing.
NASA Astrophysics Data System (ADS)
Bogachev, Mikhail I.; Bunde, Armin
2011-06-01
We study the predictability of extreme events in records with linear and nonlinear long-range memory in the presence of additive white noise using two different approaches: (i) the precursory pattern recognition technique (PRT) that exploits solely the information about short-term precursors, and (ii) the return interval approach (RIA) that exploits long-range memory incorporated in the elapsed time after the last extreme event. We find that the PRT always performs better when only linear memory is present. In the presence of nonlinear memory, both methods demonstrate comparable efficiency in the absence of white noise. When additional white noise is present in the record (which is the case in most observational records), the efficiency of the PRT decreases monotonously with increasing noise level. In contrast, the RIA shows an abrupt transition between a phase of low level noise where the prediction is as good as in the absence of noise, and a phase of high level noise where the prediction becomes poor. In the phase of low and intermediate noise the RIA predicts considerably better than the PRT, which explains our recent findings in physiological and financial records.
Topology of membrane proteins-predictions, limitations and variations.
Tsirigos, Konstantinos D; Govindarajan, Sudha; Bassot, Claudio; Västermark, Åke; Lamb, John; Shu, Nanjiang; Elofsson, Arne
2017-10-26
Transmembrane proteins perform a variety of important biological functions necessary for the survival and growth of the cells. Membrane proteins are built up by transmembrane segments that span the lipid bilayer. The segments can either be in the form of hydrophobic alpha-helices or beta-sheets which create a barrel. A fundamental aspect of the structure of transmembrane proteins is the membrane topology, that is, the number of transmembrane segments, their position in the protein sequence and their orientation in the membrane. Along these lines, many predictive algorithms for the prediction of the topology of alpha-helical and beta-barrel transmembrane proteins exist. The newest algorithms obtain an accuracy close to 80% both for alpha-helical and beta-barrel transmembrane proteins. However, lately it has been shown that the simplified picture presented when describing a protein family by its topology is limited. To demonstrate this, we highlight examples where the topology is either not conserved in a protein superfamily or where the structure cannot be described solely by the topology of a protein. The prediction of these non-standard features from sequence alone was not successful until the recent revolutionary progress in 3D-structure prediction of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sean P. Healey; Paul L. Patterson; Sassan Saatchi; Michael A. Lefsky; Andrew J. Lister; Elizabeth A. Freeman; Gretchen G. Moisen
2012-01-01
Light Detection and Ranging (LiDAR) returns from the spaceborne Geoscience Laser Altimeter (GLAS) sensor may offer an alternative to solely field-based forest biomass sampling. Such an approach would rely upon model-based inference, which can account for the uncertainty associated with using modeled, instead of field-collected, measurements. Model-based methods have...
James S. Meadows; Daniel A. Skojac
2012-01-01
Stand quality management is a new management strategy in which thinning prescriptions are based solely on tree quality rather than a quantitative level of residual stand density. As long as residual density falls within fairly broad limits, prescriptions are based on tree quality alone. We applied four thinning prescriptions based on stand quality management, along...
Terasawa, Naohiro; Asaka, Kinji
2014-12-02
The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable not only to EDLC-based actuator systems but also to the fabricated EDLC/FC system.
2015-01-01
Background Modern methods for mining biomolecular interactions from literature typically make predictions based solely on the immediate textual context, in effect a single sentence. No prior work has been published on extending this context to the information automatically gathered from the whole biomedical literature. Thus, our motivation for this study is to explore whether mutually supporting evidence, aggregated across several documents can be utilized to improve the performance of the state-of-the-art event extraction systems. In this paper, we describe our participation in the latest BioNLP Shared Task using the large-scale text mining resource EVEX. We participated in the Genia Event Extraction (GE) and Gene Regulation Network (GRN) tasks with two separate systems. In the GE task, we implemented a re-ranking approach to improve the precision of an existing event extraction system, incorporating features from the EVEX resource. In the GRN task, our system relied solely on the EVEX resource and utilized a rule-based conversion algorithm between the EVEX and GRN formats. Results In the GE task, our re-ranking approach led to a modest performance increase and resulted in the first rank of the official Shared Task results with 50.97% F-score. Additionally, in this paper we explore and evaluate the usage of distributed vector representations for this challenge. In the GRN task, we ranked fifth in the official results with a strict/relaxed SER score of 0.92/0.81 respectively. To try and improve upon these results, we have implemented a novel machine learning based conversion system and benchmarked its performance against the original rule-based system. Conclusions For the GRN task, we were able to produce a gene regulatory network from the EVEX data, warranting the use of such generic large-scale text mining data in network biology settings. A detailed performance and error analysis provides more insight into the relatively low recall rates. In the GE task we demonstrate that both the re-ranking approach and the word vectors can provide slight performance improvement. A manual evaluation of the re-ranking results pinpoints some of the challenges faced in applying large-scale text mining knowledge to event extraction. PMID:26551766
Kunst, Jonas R; Thomsen, Lotte; Sam, David L; Berry, John W
2015-10-01
Although integration involves a process of mutual accommodation, the role of majority groups is often downplayed to passive tolerance, leaving immigrants with the sole responsibility for active integration. However, we show that common group identity can actively involve majority members in this process across five studies. Study 1 showed that common identity positively predicted support of integration efforts; Studies 2 and 3 extended these findings, showing that it also predicted real behavior such as monetary donations and volunteering. A decrease in modern racism mediated the relations across these studies, and Studies 4 and 5 further demonstrated that it indeed mediated these effects over and above acculturation expectations and color-blindness, which somewhat compromised integration efforts. Moreover, the last two studies also demonstrated that common, but not dual, groups motivated integration efforts. Common identity appears crucial for securing majorities' altruistic efforts to integrate immigrants and, thus, for achieving functional multiculturalism. © 2015 by the Society for Personality and Social Psychology, Inc.
Impacts of Interannual Climate Variability on Agricultural and Marine Ecosystems
NASA Technical Reports Server (NTRS)
Cane, M. A.; Zebiak, S.; Kaplan, A.; Chen, D.
2001-01-01
The El Nino - Southern Oscillation (ENSO) is the dominant mode of global interannual climate variability, and seems to be the only mode for which current prediction methods are more skillful than climatology or persistence. The Zebiak and Cane intermediate coupled ocean-atmosphere model has been in use for ENSO prediction for more than a decade, with notable success. However, the sole dependence of its original initialization scheme and the improved initialization on wind fields derived from merchant ship observations proved to be a liability during 1997/1998 El Nino event: the deficiencies of wind observations prevented the oceanic component of the model from reaching the realistic state during the year prior to the event, and the forecast failed. Our work on the project was concentrated on the use of satellite data for improving various stages of ENSO prediction technology: model initialization, bias correction, and data assimilation. Close collaboration with other teams of the IDS project was maintained throughout.
Do Modern Spectacles Endanger Surgeons?
Chong, Simon J.; Smith, Charlotte; Bialostocki, Adam; McEwan, Christopher N.
2007-01-01
Background: Despite documented cases of infectious disease transmission to medical staff via conjunctival contamination and widespread recommendation of protective eyewear use during surgical procedures, a large number of surgeons rely on their prescription spectacles as sole eye protection. Modern fashion spectacles, being of increasingly slim design, may no longer be adequate in this role. Methods: A survey was conducted among the surgeons at Waikato Hospital from December 7, 2004 to February 1, 2005, to assess current operating theater eyewear practices and attitudes. Those who wore prescription spectacles were asked to assume a standardized “operating position” from which anatomic measurements were obtained. These data were mathematically analyzed to determine the degree of palebral fissure protection conferred by their spectacles. Results: Of 71 surgical practitioners surveyed, 45.1% required prescription lenses for operating, the mean spectacle age being 2.45 years; 84.5% had experienced prior periorbital blood splashes; 2.8% had previously contracted an illness attributed to such an event; 78.8% participants routinely used eye protection, but of the 27 requiring spectacles, 68.0% used these as their sole eye protection. Chief complaints about safety glasses and facial shields were of fogging, poor comfort, inability to wear spectacles underneath, and unavailability. Our model predicted that 100%, 92.6%, 77.8%, and 0% of our population were protected by their spectacles laterally, medially, inferiorly, and superiorly, respectively. Conclusions: Prescription spectacles of contemporary styling do not provide adequate protection against conjunctival blood splash injuries. Our model predicts the design adequacy of currently available purpose-designed protective eyewear, which should be used routinely. PMID:17435558
Do modern spectacles endanger surgeons? The Waikato Eye Protection Study.
Chong, Simon J; Smith, Charlotte; Bialostocki, Adam; McEwan, Christopher N
2007-03-01
Despite documented cases of infectious disease transmission to medical staff via conjunctival contamination and widespread recommendation of protective eyewear use during surgical procedures, a large number of surgeons rely on their prescription spectacles as sole eye protection. Modern fashion spectacles, being of increasingly slim design, may no longer be adequate in this role. A survey was conducted among the surgeons at Waikato Hospital from December 7, 2004 to February 1, 2005, to assess current operating theater eyewear practices and attitudes. Those who wore prescription spectacles were asked to assume a standardized "operating position" from which anatomic measurements were obtained. These data were mathematically analyzed to determine the degree of palebral fissure protection conferred by their spectacles. Of 71 surgical practitioners surveyed, 45.1% required prescription lenses for operating, the mean spectacle age being 2.45 years; 84.5% had experienced prior periorbital blood splashes; 2.8% had previously contracted an illness attributed to such an event; 78.8% participants routinely used eye protection, but of the 27 requiring spectacles, 68.0% used these as their sole eye protection. Chief complaints about safety glasses and facial shields were of fogging, poor comfort, inability to wear spectacles underneath, and unavailability. Our model predicted that 100%, 92.6%, 77.8%, and 0% of our population were protected by their spectacles laterally, medially, inferiorly, and superiorly, respectively. Prescription spectacles of contemporary styling do not provide adequate protection against conjunctival blood splash injuries. Our model predicts the design adequacy of currently available purpose-designed protective eyewear, which should be used routinely.
NASA Astrophysics Data System (ADS)
Zhang, X.; Anagnostou, E. N.
2016-12-01
This research contributes to the improvement of high resolution satellite applications in tropical regions with mountainous topography. Such mountainous regions are usually covered by sparse networks of in-situ observations while quantitative precipitation estimation from satellite sensors exhibits strong underestimation of heavy orographically enhanced storm events. To address this issue, our research applies a satellite error correction technique based solely on high-resolution numerical weather predictions (NWP). Our previous work has demonstrated the accuracy of this method in two mid-latitude mountainous regions (Zhang et al. 2013*1, Zhang et al. 2016*2), while the current research focuses on a comprehensive evaluation in three topical mountainous regions: Colombia, Peru and Taiwan. In addition, two different satellite precipitation products, NOAA Climate Prediction Center morphing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), are considered. The study includes a large number of heavy precipitation events (68 events over the three regions) in the period 2004 to 2012. The NWP-based adjustments of the two satellite products are contrasted to their corresponding gauge-adjusted post-processing products. Preliminary results show that the NWP-based adjusted CMORPH product is consistently improved relative to both original and gauge-adjusted precipitation products for all regions and storms examined. The improvement of PERSIANN-CCS product is less significant and less consistent relative to the CMORPH performance improvements from the NWP-based adjustment. *1Zhang, Xinxuan, Emmanouil N. Anagnostou, Maria Frediani, Stavros Solomos, and George Kallos. "Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas." Journal of Hydrometeorology 14, no. 6 (2013): 1844-1858.*2 Zhang, Xinxuan, Emmanouil N. Anagnostou, and Humberto Vergara. "Hydrologic Evaluation of NWP-Adjusted CMORPH Estimates of Hurricane-Induced Precipitation in the Southern Appalachians." Journal of Hydrometeorology 17.4 (2016): 1087-1099.
Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates.
Hou, X; Tanguay, J; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A
2016-01-21
In response to the recognized fragility of reactor-produced (99)Mo supply, direct production of (99m)Tc via (100)Mo(p,2n)(99m)Tc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with (99m)Tc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical (99m)Tc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.
Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates
NASA Astrophysics Data System (ADS)
Hou, X.; Tanguay, J.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.
2016-01-01
In response to the recognized fragility of reactor-produced 99Mo supply, direct production of 99mTc via 100Mo(p,2n)99mTc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with 99mTc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical 99mTc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.
13 CFR 124.513 - Under what circumstances can a joint venture be awarded an 8(a) contract?
Code of Federal Regulations, 2010 CFR
2010-01-01
...; and (ii)(A) For a procurement having a revenue-based size standard, the procurement exceeds half the... an employee-based size standard, the procurement exceeds $10 million; (2) For sole source and... the purpose of performing one or more specific 8(a) contracts. (2) A joint venture agreement is...
Code of Federal Regulations, 2010 CFR
2010-07-01
... current employee or prospective employee based solely on the analysis of a polygraph test chart or the refusal to take a polygraph test. (b) Analysis of a polygraph test chart or refusal to take a polygraph..., job performance, etc. may be used as a basis for employment decisions. Employment decisions based on...
Literature-Based Reading Series for Grades K-3: Are They Truly Literature?
ERIC Educational Resources Information Center
Donoghue, Mildred R.
In its current adoptions of reading series for the elementary grades, California has chosen literature-based programs rather than the more traditional basal readers. A study investigated whether the contents of such readers for grades K-3 truly consist solely of literary selections, since it is well-recognized that quality books carry heavy…
ERIC Educational Resources Information Center
Zunz, Sharyn J.; Ferguson, Nancy L.; Senter, Meredith
2005-01-01
School based efforts need to embrace a continuum of care model that moves beyond solely primary prevention to address the needs of students who are identified as substance dependent. The extent of this problem and barriers to program implementation are presented. Efforts to offer services through Student/Assistance Programs, School-based…
ERIC Educational Resources Information Center
Singh, Nirbhay N.; Lancioni, Giulio E.; Singh, Angela D. A.; Winton, Alan S. W.; Singh, Ashvind N. A.; Singh, Judy
2011-01-01
Children and adolescents with Asperger syndrome occasionally exhibit aggressive behavior against peers and parents. In a multiple baseline design across subjects, three adolescents with Asperger syndrome were taught to use a mindfulness-based procedure called "Meditation on the Soles of the Feet" to control their physical aggression in the family…
ERIC Educational Resources Information Center
Green, Terrance L.
2017-01-01
Purpose: To equitably transform urban schools of color and the neighborhoods where they are nested requires approaches that promote community equity and foster solidarity among a range of stakeholders. However, most school-community approaches solely focus on improving school-based outcomes and leave educational leaders with little guidance for…
Filling the Gap: The Use of Intentional and Incidental Need-Meeting Financial Aid
ERIC Educational Resources Information Center
Cheslock, John J.; Hughes, Rodney P.; Cardelle, Rachel Frick; Heller, Donald E.
2018-01-01
When measuring institutional aid awards that address financial need, some researchers count all awards distributed based upon need-based criteria while other researchers count any awards that meet need. The sole use of either measure will omit key information, so we present two new measures--intentional and incidental need-meeting aid--that can be…
Omura, Y
1994-01-01
Accuracy of the widely used organ representation areas, currently used in different schools of foot and hand reflexology was evaluated using Bi-Digital O-Ring test resonance phenomenon. Our previous study indicated that mapping organ representation areas of the tongue using Bi-Digital O-Ring Test resonance phenomenon between 2 identical substances often provided more reliable clinical information for both diagnosis and treatment than the 2 widely used, but crude, traditional schools of Chinese tongue diagnosis. This same method was applied for the mapping of the organ representation areas on the feet and hands. We succeeded in mapping the following areas on human feet: 1) Middle (3rd) toe on the sole side represents the following starting from the tip: A) Head, B) Face with eye, ear, nose, and mouth (1st Digit) C) Neck and organs within the neck (narrow band of space between 1st crease after the 1st digit and crease at the junction of the beginning of the sole); 2) 2nd and 4th toe represent upper extremities, the beginning tip being fingers and hands. The crease at the base of these toes represents the shoulder. The 2nd toe represents right upper extremity, and the 4th toe represents left upper extremity; 3) 1st and 5th toes in both the right and left feet represent lower extremities with the tip being the toes and soles of feet. The crease at the base of these toes represents the inguinal area. The 1st toe of each foot represents right lower extremity, and 5th toe represents left lower extremity. The sole of the foot is divided into the following 3 distinctive sections. 1) Upper (1st) section represents organs in the chest cavity including 2 thymus glands, trachea, 2 lungs, with the heart between them, and with the esophagus appearing as a narrow band outside of the lung near and below the 1st and 2nd toe depending upon the individual. Chest section occupies the first 1/3 to 1/5 (on a relatively long foot) of the entire sole. The boundary between the chest and G.I. system can be approximately estimated by extending the length of the entire toe or up to 25% longer to the sole, but it can be accurately determined using a diaphragm tissue microscope slide as a reference control substance. 2) Middle (2nd) section represents Gastro-Intestinal system, including lower end of the esophagus, liver, stomach, spleen, gall bladder, pancreas, duodenum, jejunum, ileum, appendix, colon, and anus.(ABSTRACT TRUNCATED AT 400 WORDS)
Oppliger, Joel; da Palma, Joel Ramos; Burri, Dominique J; Bergeron, Eric; Khatib, Abdel-Majid; Spiropoulou, Christina F; Pasquato, Antonella; Kunz, Stefan
2016-01-15
Arenaviruses are emerging viruses including several causative agents of severe hemorrhagic fevers in humans. The advent of next-generation sequencing technology has greatly accelerated the discovery of novel arenavirus species. However, for many of these viruses, only genetic information is available, and their zoonotic disease potential remains unknown. During the arenavirus life cycle, processing of the viral envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) is crucial for productive infection. The ability of newly emerging arenaviruses to hijack human SKI-1/S1P appears, therefore, to be a requirement for efficient zoonotic transmission and human disease potential. Here we implement a newly developed cell-based molecular sensor for SKI-1/S1P to characterize the processing of arenavirus GPC-derived target sequences by human SKI-1/S1P in a quantitative manner. We show that only nine amino acids flanking the putative cleavage site are necessary and sufficient to accurately recapitulate the efficiency and subcellular location of arenavirus GPC processing. In a proof of concept, our sensor correctly predicts efficient processing of the GPC of the newly emergent pathogenic Lujo virus by human SKI-1/S1P and defines the exact cleavage site. Lastly, we employed our sensor to show efficient GPC processing of a panel of pathogenic and nonpathogenic New World arenaviruses, suggesting that GPC cleavage represents no barrier for zoonotic transmission of these pathogens. Our SKI-1/S1P sensor thus represents a rapid and robust test system for assessment of the processing of putative cleavage sites derived from the GPCs of newly discovered arenavirus by the SKI-1/S1P of humans or any other species, based solely on sequence information. Arenaviruses are important emerging human pathogens that can cause severe hemorrhagic fevers with high mortality in humans. A crucial step in productive arenavirus infection of human cells is the processing of the viral envelope glycoprotein by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). In order to break the species barrier during zoonotic transmission and cause severe disease in humans, newly emerging arenaviruses must be able to hijack human SKI-1/S1P efficiently. Here we implement a newly developed cell-based molecular sensor for human SKI-1/S1P to characterize the processing of arenavirus glycoproteins in a quantitative manner. We further use our sensor to correctly predict efficient processing of the glycoprotein of the newly emergent pathogenic Lujo virus by human SKI-1/S1P. Our sensor thus represents a rapid and robust test system with which to assess whether the glycoprotein of any newly emerging arenavirus can be efficiently processed by human SKI-1/S1P, based solely on sequence information. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Exercise-induced oxygen desaturation in COPD patients without resting hypoxemia.
Andrianopoulos, Vasileios; Franssen, Frits M E; Peeters, Jos P I; Ubachs, Tim J A; Bukari, Halah; Groenen, Miriam; Burtin, Chris; Vogiatzis, Ioannis; Wouters, Emiel F M; Spruit, Martijn A
2014-01-01
Exercise-induced oxygen desaturation (EID) is associated with increased risk of mortality in chronic obstructive pulmonary disease (COPD). Several screening tests have been proposed to predict EID, including FEV1, DLCO and baseline-SpO2. We aimed to validate a proposed cut-off of baseline-SpO2 ≤95% as simple screening procedure to predict EID during six-minute walk test (6MWT). In addition, we studied the prevalence and characteristics of patients exhibited EID to SpO2nadir ≤88%. 402 non-hypoxemic COPD patients performed 6MWT. Sensitivity and specificity of baseline SpO2 ≤95% as a cut-off to predict EID and determinants of EID were investigated. 158 patients (39%) exhibited EID. The sensitivity of baseline-SpO2 ≤95% to predict EID was 81.0%, specificity 49.2%, positive and negative predictive values were 50.8% and 80.0%, respectively. In a multivariate model, DLCO <50%, FEV1 <45%, PaO2 <10kPa, baseline-SpO2 <95%, and female sex were the strongest determinants of EID. Baseline oxygen saturation solely is inaccurate to predict EID. A combination of clinical characteristics (DLCO, FEV1, PaO2, baseline-SpO2, sex) increases the odds for EID in COPD. Copyright © 2013 Elsevier B.V. All rights reserved.
Manning, D P; Jones, C
2001-04-01
Research over a period of about 18 years has shown that a microcellular polyurethane known as AP66033 is the most slip-resistant safety footwear soling material on oily and wet surfaces. In recent years it has been replaced in commercially available footwear by a dual density polyurethane (DDP) which has a dense outer layer and a soft microcellular backing. This research programme has compared the slip resistance of AP66033 with DDP and some rubber solings. In addition, data were obtained on the effects of soling and floor roughness, and floor polish on slip resistance. Some data were also obtained for walking on ice. The coefficient of friction (CoF) of the solings was measured on 19 water wet surfaces in three conditions: (I) when the solings were new, (II) following abrasion to create maximum roughness and (III) after polishing. The CoF was measured on four oily surfaces after each of 11 abrasion or polishing treatments. The profound effects of the roughening of all soles and of floor roughness on the CoF were demonstrated for both wet and oily surfaces. The superior slip resistance of AP66033 was confirmed for oily and wet conditions; however, some rubbers not suitable for safety footwear achieved higher CoF values on wet floors. All of the floor polishes reduced the CoF of all floors when contaminated with water. The mean CoF of DDP solings was lower than the mean for AP66033 on wet and oily surfaces. No safety footwear soling provided adequate grip on dry ice and the CoF was reduced by water on the ice. A rubber used for rock climbing footwear was one of the most slip-resistant solings on wet surfaces in the laboratory but recorded the lowest CoF on ice. It is concluded that the incidence of occupational injuries caused by slipping could be reduced by the following: (A) returning to safety footwear soled with the microcellular polyurethane AP66033; (B) abrading all new and smooth footwear solings with a belt sanding machine coated with P100 grit; (C) avoiding the use of floor polish; (D) informing the general public about the poor slip resistance of ordinary footwear on ice and the lowering of slip resistance in cold weather.
NASA Astrophysics Data System (ADS)
Leakey, Chris D. B.; Attrill, Martin J.; Fitzsimons, Mark F.
2009-04-01
Estuaries are regarded as valuable nursery habitats for many commercially important marine fishes, potentially providing a thermal resource, refuge from predators and a source of abundant prey. To assess the extent of estuarine use by juvenile (0+) common sole ( Solea solea), whiting ( Merlangius merlangus) and European seabass ( Dicentrarchus labrax) we: (1) developed techniques to distinguish between estuarine and coastally-caught juveniles using otolith chemistry; and (2) examined the accuracy with which multi-elemental signatures could re-classify juveniles to their region of collection. High-resolution solution-based inductively coupled plasma mass spectrometry (HB-SB-ICPMS) was used to quantify 32 elements within the juvenile otoliths; 14 elements occurred above detection limits for all samples. Some elemental distributions demonstrated clear differences between estuarine and coastally-caught fish. Multivariate analysis of the otolith chemistry data resulted in 95-100% re-classification accuracy to the region of collection. Estuarine and coastal signatures were most clearly defined for sole which, compared to bass and whiting, have low mobility and are less likely to move from estuarine to coastal habitats between larval settlement and later migration to adult stocks. Sole were the only species to reveal an energetic benefit associated with an estuarine juvenile phase. The physiological ability of bass to access upper estuarine regions was consistent with some elemental data, while the high mobility and restricted range of whiting resulted in less distinct otolith chemistries.
Ibarra-Zatarain, Z; Fatsini, E; Rey, S; Chereguini, O; Martin, I; Rasines, I; Alcaraz, C; Duncan, N
2016-11-01
The aim of this work was to characterize stress coping styles of Senegalese sole ( Solea senegalensis ) juveniles and breeders and to select an operational behavioural screening test (OBST) that can be used by the aquaculture industry to classify and select between behavioural phenotypes in order to improve production indicators. A total of 61 juveniles and 59 breeders were subjected to five individual behavioural tests and two grouping tests. At the end of the individual tests, all animals were blood sampled in order to measure cortisol, glucose and lactate. Three tests (restraining, new environment and confinement) characterized the stress coping style behaviour of Senegalese sole juveniles and breeders and demonstrated inter-individual consistency. Further, the tests when incorporated into a principal components analysis (PCA) (i) identified two principal axes of personality traits: 'fearfulness-reactivity' and 'activity-exploration', (ii) were representative of the physiological axis of stress coping style, and (iii) were validated by established group tests. This study proposed for the first time three individual coping style tests that reliably represented proactive and reactive personalities of Senegalese sole juveniles and breeders. In addition, the three proposed tests met some basic operational criteria (rapid testing, no special equipment and easy to apply and interpret) that could prove attractive for fish farmers to identify fish with a specific behaviour that gives advantages in the culture system and that could be used to establish selection-based breeding programmes to improve domestication and production.
Fatsini, E.; Rey, S.; Chereguini, O.; Martin, I.; Rasines, I.; Duncan, N.
2016-01-01
The aim of this work was to characterize stress coping styles of Senegalese sole (Solea senegalensis) juveniles and breeders and to select an operational behavioural screening test (OBST) that can be used by the aquaculture industry to classify and select between behavioural phenotypes in order to improve production indicators. A total of 61 juveniles and 59 breeders were subjected to five individual behavioural tests and two grouping tests. At the end of the individual tests, all animals were blood sampled in order to measure cortisol, glucose and lactate. Three tests (restraining, new environment and confinement) characterized the stress coping style behaviour of Senegalese sole juveniles and breeders and demonstrated inter-individual consistency. Further, the tests when incorporated into a principal components analysis (PCA) (i) identified two principal axes of personality traits: ‘fearfulness-reactivity’ and ‘activity-exploration’, (ii) were representative of the physiological axis of stress coping style, and (iii) were validated by established group tests. This study proposed for the first time three individual coping style tests that reliably represented proactive and reactive personalities of Senegalese sole juveniles and breeders. In addition, the three proposed tests met some basic operational criteria (rapid testing, no special equipment and easy to apply and interpret) that could prove attractive for fish farmers to identify fish with a specific behaviour that gives advantages in the culture system and that could be used to establish selection-based breeding programmes to improve domestication and production. PMID:28018634
Quantitative assessment of the equine hoof using digital radiography and magnetic resonance imaging.
Grundmann, I N M; Drost, W T; Zekas, L J; Belknap, J K; Garabed, R B; Weisbrode, S E; Parks, A H; Knopp, M V; Maierl, J
2015-09-01
Evaluation of laminitis cases relies on radiographic measurements of the equine foot. Reference values have not been established for all layers of the foot. To establish normal hoof wall and sole measurements using digital radiography (DR) and magnetic resonance imaging (MRI) and to document tissue components present in the dorsal hoof wall and solar layers seen on DR. Prospective observational case-control study. Digital radiography and MRI were performed on 50 cadaver front feet from 25 horses subjected to euthanasia for nonlameness-related reasons. Four observers measured hoof wall (dorsal, lateral and medial) and sole thickness (sagittal, lateral and medial) using DR and magnetic resonance images. One observer repeated the measurements 3 times. Inter- and intraobserver correlation was assessed. Digital radiography and MRI measurements for the normal hoof wall and sole were established. Inter- and intraobserver pairwise Pearson's correlation for DR (r>0.98) and MRI measurements (r>0.99) was excellent. Based on MRI, the less radiopaque layer on DR is comprised of the stratum lamellatum and stratum reticulare. Normal DR and MRI measurements for the hoof wall and sole were established. On DR images, the less radiopaque layer of the foot observed corresponds to the critical tissues injured in laminitis, the strata lamellatum and reticulare. These reference measurements may be used by the clinician to detect soft-tissue changes in the laminitic equine foot and provide a foundation for future research determining changes in these measurements in horses with laminitis. © 2014 EVJ Ltd.
EPA Region 1 Sole Source Aquifers
This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, S.; Suffield, S. R.; Recknagle, K. P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathingmore » conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditionsmore » using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.« less
Isomaa, B; Forsén, B; Lahti, K; Holmström, N; Wadén, J; Matintupa, O; Almgren, P; Eriksson, J G; Lyssenko, V; Taskinen, M-R; Tuomi, T; Groop, L C
2010-08-01
We studied the impact of a family history of type 2 diabetes on physical fitness, lifestyle factors and diabetes-related metabolic factors. The Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study is a population-based study in Western Finland, which includes a random sample of 5,208 individuals aged 18 to 75 years identified through the national Finnish Population Registry. Physical activity, dietary habits and family history of type 2 diabetes were assessed by questionnaires and physical fitness by a validated 2 km walking test. Insulin secretion and action were assessed based upon OGTT measurements of insulin and glucose. A family history of type 2 diabetes was associated with a 2.4-fold risk of diabetes and lower physical fitness (maximal aerobic capacity 29.2 +/- 7.2 vs 32.1 +/- 7.0, p = 0.01) despite having similar reported physical activity to that of individuals with no family history. The same individuals also had reduced insulin secretion adjusted for insulin resistance, i.e. disposition index (p < 0.001) despite having higher BMI (27.4 +/- 4.6 vs 26.0 +/- 4.3 kg/m(2), p < 0.001). Individuals with a family history of type 2 diabetes are characterised by lower physical fitness, which cannot solely be explained by lower physical activity. They also have an impaired capacity of beta cells to compensate for an increase in insulin resistance imposed by an increase in BMI. These defects should be important targets for interventions aiming at preventing type 2 diabetes in individuals with inherited susceptibility to the disease.
Psychopathic predators? Getting specific about the relation between psychopathy and violence
Camp, Jacqueline P.; Skeem, Jennifer L.; Barchard, Kimberly; Lilienfeld, Scott O.; Poythress, Norman G.
2014-01-01
Objective The Psychopathy Checklist-Revised (PCL-R; Hare, 1991, 2003) is often used to assess risk of violence, perhaps based on the assumption that it captures emotionally detached individuals who are driven to prey upon others. This study is designed to assess the relation between (a) core interpersonal and affective traits of psychopathy and impulsive antisociality on the one hand, and (b) the risk of future violence, and patterns of motivation for past violence, on the other. Method A research team reliably assessed a sample of 158 male offenders for psychopathy, using both the interview-based PCL-R and the self-report Psychopathic Personality Inventory (PPI: Lilienfeld & Andrews, 1996). Then, a second, independent research team assessed offenders' lifetime patterns of violence and its motivation. After these baseline assessments, offenders were followed in prison and/or the community for up to one year to assess their involvement in three different forms of violence. Baseline and follow-up assessments included both interviews and reviews of official records. Results First, the PPI manifested incremental validity in predicting future violence over the PCL-R (but not vice versa) – and most of its predictive power derived solely from impulsive antisociality. Second, impulsive antisociality – not interpersonal and affective traits specific to psychopathy – were uniquely associated with instrumental lifetime patterns of past violence. The latter psychopathic traits are narrowly associated with deficits in motivation for violence (e.g., lack of fear; lack of provocation). Conclusion These findings and their consistency with some past research advise against broad generalizations about the relation between psychopathy and violence. PMID:23316742