Sample records for predicted equilibrium values

  1. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar

    PubMed Central

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487

  2. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar.

    PubMed

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm(3) at a gasification temperature of 1500 K and equivalence ratio of 0.15.

  3. Non-equilibrium thermionic electron emission for metals at high temperatures

    NASA Astrophysics Data System (ADS)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  4. Cosmic curvature from de Sitter equilibrium cosmology.

    PubMed

    Albrecht, Andreas

    2011-10-07

    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  5. PGT: A Statistical Approach to Prediction and Mechanism Design

    NASA Astrophysics Data System (ADS)

    Wolpert, David H.; Bono, James W.

    One of the biggest challenges facing behavioral economics is the lack of a single theoretical framework that is capable of directly utilizing all types of behavioral data. One of the biggest challenges of game theory is the lack of a framework for making predictions and designing markets in a manner that is consistent with the axioms of decision theory. An approach in which solution concepts are distribution-valued rather than set-valued (i.e. equilibrium theory) has both capabilities. We call this approach Predictive Game Theory (or PGT). This paper outlines a general Bayesian approach to PGT. It also presents one simple example to illustrate the way in which this approach differs from equilibrium approaches in both prediction and mechanism design settings.

  6. Equilibrium β-limits in classical stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.

    Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less

  7. Equilibrium β-limits in classical stellarators

    DOE PAGES

    Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.; ...

    2017-11-17

    Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less

  8. How the flow affects the phase behaviour and microstructure of polymer nanocomposites.

    PubMed

    Stephanou, Pavlos S

    2015-02-14

    We address the issue of flow effects on the phase behaviour of polymer nanocomposite melts by making use of a recently reported Hamiltonian set of evolution equations developed on principles of non-equilibrium thermodynamics. To this end, we calculate the spinodal curve, by computing values for the nanoparticle radius as a function of the polymer radius-of-gyration for which the second derivative of the generalized free energy of the system becomes zero. Under equilibrium conditions, we recover the phase diagram predicted by Mackay et al. [Science 311, 1740 (2006)]. Under non-equilibrium conditions, we account for the extra terms in the free energy due to changes in the conformations of polymer chains by the shear flow. Overall, our model predicts that flow enhances miscibility, since the corresponding miscibility window opens up for non-zero shear rate values.

  9. Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: A theoretical study

    NASA Astrophysics Data System (ADS)

    Li, Y.-F.; Ma, W.-L.; Yang, M.

    2015-02-01

    Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport, and their routes of entering the human body. All previous studies on this issue are hypothetically based on equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G/P partitioning behavior of polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) of PBDEs (log KPS = log KPE + logα) was developed in which an equilibrium term (log KPE = log KOA + logfOM -11.91 where fOM is organic matter content of the particles) and a non-equilibrium term (log α, caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included. It was found that the equilibrium is a special case of steady state when the non-equilibrium term equals zero. A criterion to classify the equilibrium and non-equilibrium status of PBDEs was also established using two threshold values of log KOA, log KOA1, and log KOA2, which divide the range of log KOA into three domains: equilibrium, non-equilibrium, and maximum partition domain. Accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same three domains for each PBDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G/P partition coefficients of PBDEs for our Chinese persistent organic pollutants (POPs) Soil and Air Monitoring Program, Phase 2 (China-SAMP-II) program and other monitoring programs worldwide, including in Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that the newly developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G/P partitioning behavior over decades. We suggest that the investigation on G/P partitioning behavior for PBDEs should be based onsteady-state, not equilibrium state, and equilibrium is just a special case of steady-state when non-equilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G/P partitioning of PBDEs and can be extended to predict G/P partitioning behavior for other SVOCs as well.

  10. Equilibrium 𝛽-limits in classical stellarators

    NASA Astrophysics Data System (ADS)

    Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.

    2017-12-01

    A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.

  11. Prediction of chemical speciation in stabilized/solidified wastes using a general chemical equilibrium model. Part 1: Chemical representation of cementitious binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.Y.; Batchelor, B.

    1999-03-01

    Chemical equilibrium models are useful to evaluate stabilized/solidified waste. A general equilibrium model, SOLTEQ, a modified version of MINTEQA2 for S/S, was applied to predict the chemical speciations in the stabilized/solidified waste form. A method was developed to prepare SOLTEQ input data that can chemically represent various stabilized/solidified binders. Taylor`s empirical model was used to describe partitioning of alkali ions. As a result, SOLTEQ could represent chemical speciation in pure binder systems such as ordinary Portland cement and ordinary Portland cement + fly ash. Moreover, SOLTEQ could reasonably describe the effects on the chemical speciation due to variations in water-to-cement,more » fly ash contents, and hydration times of various binder systems. However, this application of SOLTEQ was not accurate in predicting concentrations of Ca, Si, and SO{sub 4} ions, due to uncertainties in the CSH solubility model and K{sub sp} values of cement hydrates at high pH values.« less

  12. Metal biosorption equilibria in a ternary system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, K.H.; Volesky, B.

    Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data andmore » with conclusions postulated from the three possible binary subsystems.« less

  13. Ion Association versus Ion Interaction Models in Examining Electrolyte Solutions: Application to Calcium Hydroxide Solubility Equilibrium

    ERIC Educational Resources Information Center

    Menéndez, M. Isabel; Borge, Javier

    2014-01-01

    The heterogeneous equilibrium of the solubility of calcium hydroxide in water is used to predict both its solubility product from solubility and solubility values from solubility product when inert salts, in any concentration, are present. Accepting the necessity of including activity coefficients to treat the saturated solution of calcium…

  14. Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: a theoretical study

    NASA Astrophysics Data System (ADS)

    Li, Y.-F.; Ma, W.-L.; Yang, M.

    2014-09-01

    Gas/particle (G / P) partitioning for most semivolatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport potential, and their routs to enter human body. All previous studies on this issue have been hypothetically derived from equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G / P partitioning behavior for polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) for PBDE congeners (log KPS = log KPE + logα) was developed, in which an equilibrium term (log KPE = log KOA + logfOM -11.91, where fOM is organic matter content of the particles) and a nonequilibrium term (logα, mainly caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included, and the equilibrium is a special case of steady state when the nonequilibrium term equals to zero. A criterion to classify the equilibrium and nonequilibrium status for PBDEs was also established using two threshold values of log KOA, log KOA1 and log KOA2, which divide the range of log KOA into 3 domains: equilibrium, nonequilibrium, and maximum partition domains; and accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same 3 domains for each BDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G / P partition coefficients of PBDEs for the published monitoring data worldwide, including Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that, the new developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G / P partitioning behavior in decades. We suggest that, the investigation on G / P partitioning behavior for PBDEs should be based on steady state, not equilibrium state, and equilibrium is just a special case of steady state when nonequilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G / P partitioning for PBDEs and can be extended to predict G / P partitioning behavior for other SVOCs as well.

  15. Predicting paddlefish roe yields using an extension of the Beverton–Holt equilibrium yield-per-recruit model

    USGS Publications Warehouse

    Colvin, M.E.; Bettoli, Phillip William; Scholten, G.D.

    2013-01-01

    Equilibrium yield models predict the total biomass removed from an exploited stock; however, traditional yield models must be modified to simulate roe yields because a linear relationship between age (or length) and mature ovary weight does not typically exist. We extended the traditional Beverton-Holt equilibrium yield model to predict roe yields of Paddlefish Polyodon spathula in Kentucky Lake, Tennessee-Kentucky, as a function of varying conditional fishing mortality rates (10-70%), conditional natural mortality rates (cm; 9% and 18%), and four minimum size limits ranging from 864 to 1,016mm eye-to-fork length. These results were then compared to a biomass-based yield assessment. Analysis of roe yields indicated the potential for growth overfishing at lower exploitation rates and smaller minimum length limits than were suggested by the biomass-based assessment. Patterns of biomass and roe yields in relation to exploitation rates were similar regardless of the simulated value of cm, thus indicating that the results were insensitive to changes in cm. Our results also suggested that higher minimum length limits would increase roe yield and reduce the potential for growth overfishing and recruitment overfishing at the simulated cm values. Biomass-based equilibrium yield assessments are commonly used to assess the effects of harvest on other caviar-based fisheries; however, our analysis demonstrates that such assessments likely underestimate the probability and severity of growth overfishing when roe is targeted. Therefore, equilibrium roe yield-per-recruit models should also be considered to guide the management process for caviar-producing fish species.

  16. Thermodynamics of enzyme-catalyzed esterifications: II. Levulinic acid esterification with short-chain alcohols.

    PubMed

    Altuntepe, Emrah; Emel'yanenko, Vladimir N; Forster-Rotgers, Maximilian; Sadowski, Gabriele; Verevkin, Sergey P; Held, Christoph

    2017-10-01

    Levulinic acid was esterified with methanol, ethanol, and 1-butanol with the final goal to predict the maximum yield of these equilibrium-limited reactions as function of medium composition. In a first step, standard reaction data (standard Gibbs energy of reaction Δ R g 0 ) were determined from experimental formation properties. Unexpectedly, these Δ R g 0 values strongly deviated from data obtained with classical group contribution methods that are typically used if experimental standard data is not available. In a second step, reaction equilibrium concentrations obtained from esterification catalyzed by Novozym 435 at 323.15 K were measured, and the corresponding activity coefficients of the reacting agents were predicted with perturbed-chain statistical associating fluid theory (PC-SAFT). The so-obtained thermodynamic activities were used to determine Δ R g 0 at 323.15 K. These results could be used to cross-validate Δ R g 0 from experimental formation data. In a third step, reaction-equilibrium experiments showed that equilibrium position of the reactions under consideration depends strongly on the concentration of water and on the ratio of levulinic acid: alcohol in the initial reaction mixtures. The maximum yield of the esters was calculated using Δ R g 0 data from this work and activity coefficients of the reacting agents predicted with PC-SAFT for varying feed composition of the reaction mixtures. The use of the new Δ R g 0 data combined with PC-SAFT allowed good agreement to the measured yields, while predictions based on Δ R g 0 values obtained with group contribution methods showed high deviations to experimental yields.

  17. Intermittent many-body dynamics at equilibrium

    NASA Astrophysics Data System (ADS)

    Danieli, C.; Campbell, D. K.; Flach, S.

    2017-06-01

    The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q -breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.

  18. Modelling the fate of micropollutants in the marine environment using passive sampling.

    PubMed

    Claessens, Michiel; De Laender, Frederik; Monteyne, Els; Roose, Patrick; Janssen, Colin R

    2015-07-15

    Polydimethylsiloxane sheets were used to determine freely dissolved concentrations (C(diss)) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the Belgian coastal zone. Equilibrium models were used to predict the whole water concentrations (C(ww)) of these compounds as well as their concentrations in sediment, suspended particulate matter (SPM) and biota. In general, contaminant concentrations were predicted well for whole water and biota. C(ww) was increasingly underpredicted as K(oc) increased, possibly because of the presence of black carbon. Concentrations in biota were overestimated by the equilibrium approach when logK(ow) exceeded 6.5, suggesting an increasing role of transformation processes. Concentrations of PAHs and PCBs in sediment and SPM were consistently underpredicted although a good correlation between measured and predicted values was observed. This was potentially due to the use of experimental K(oc) values which have been found to underestimate partitioning of hydrophobic substances to sediment in field studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A thermal NO(x) prediction model - Scalar computation module for CFD codes with fluid and kinetic effects

    NASA Technical Reports Server (NTRS)

    Mcbeath, Giorgio; Ghorashi, Bahman; Chun, Kue

    1993-01-01

    A thermal NO(x) prediction model is developed to interface with a CFD, k-epsilon based code. A converged solution from the CFD code is the input to the postprocessing model for prediction of thermal NO(x). The model uses a decoupled analysis to estimate the equilibrium level of (NO(x))e which is the constant rate limit. This value is used to estimate the flame (NO(x)) and in turn predict the rate of formation at each node using a two-step Zeldovich mechanism. The rate is fixed on the NO(x) production rate plot by estimating the time to reach equilibrium by a differential analysis based on the reaction: O + N2 = NO + N. The rate is integrated in the nonequilibrium time space based on the residence time at each node in the computational domain. The sum of all nodal predictions yields the total NO(x) level.

  20. Contamination of estuarine water, biota, and sediment by halogenated organic compounds: A field study

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Chiou, C.T.; Brinton, T.I.; Barber, L.B.; Demcheck, D.K.; Demas, C.R.

    1988-01-01

    Studies conducted in the vicinity of an industrial outfall in the Calcasieu River estuary, Louisiana, have shown that water, bottom and suspended sediment, and four different species of biota are contaminated with halogenated organic compounds (HOC) including haloarenes. A "salting-out" effect in the estuary moderately enhanced the partitioning tendency of the contaminants into biota and sediments. Contaminant concentrations in water, suspended sediments, and biota were found to be far below the values predicted on the basis of the assumption of phase equilibria with respect to concentrations in bottom sediment. Relative concentration factors of HOC between biota (catfish) and bottom sediment increased with increasing octanol/estuarine water partition coefficients (Kow*), maximizing at log Kow* of about 5, although these ratios were considerably less than equilibrium values. In contrast, contaminant concentrations in water, biota, and suspended sediments were much closer to equilibrium values. Bioconcentration factors of HOC determined on the basis of lipid content for four different biotic species correlated reasonably well with equilibrium triolein/water partition coefficients (Ktw).

  1. Effect of a finite ionization rate on the radiative heating of outer planet atmospheric entry probes

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1981-01-01

    The influence of finite rate ionization in the inviscid gas just behind the stagnation shock wave on the radiation heating of probes entering the hydrogen helium atmospere of the major planets was investigated. At the present time, there is disagreement as to whether the radiative flux increases or decreases relative to its equilibrium value when finite rate ionization is considered. Leibowitz and Kuo content that the finite rate ionization in the hydrogen gas just behind the shock wave reduces the radiative flux to the probe, whereas Tiwari and Szema predict that it increases the radiative flux. The radiation modeling used in the calculations of both pairs of these investigators was reviewed. It is concluded that finite rate ionization in the inviscid region of the shock layer should reduce the cold wall radiative heating below the values predicted by equilibrium chemistry assumptions.

  2. Turboexpander calculations using a generalized equation of state correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, M.S.; Starling, K.E.

    1975-01-01

    A generalized method for predicting the thermodynamic properties of natural gas fluids has been developed and tested. The results of several comparisons between thermodynamic property values predicted by the method and experimental data are presented. Comparisons of predicted and experimental vapor-liquid equilibrium are presented. These comparisons indicate that the generalized correlation can be used to predict many thermodynamic properties of natural gas and LNG. Turboexpander calculations are presented to show the utility of the generalized correlation for process design calculations.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazerson, Samuel A.; Loizu, Joaquim; Hirshman, Steven

    The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces which possess magnetic transform (ι) which is resonant with spectral values of the perturbed boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered. This equilibrium possess a rational surface with safety factor q = 2 at a normalized flux value of 0.5. A small resonant boundary perturbation is introduced, excitingmore » a response at the resonant rational surface. The code is found to capture the plasma response as predicted by a newly developed analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational transform (ι=1/q). The VMEC code satisfactorily reproduces these theoretical results without the necessity of an explicit transform discontinuity (Δι) at the rational surface. It is found that the response across the rational surfaces depends upon both radial grid resolution and local shear (dι/dΦ, where ι is the rotational transform and Φ the enclosed toroidal flux). Calculations of an implicit Δι suggest that it does not arise due to numerical artifacts (attributed to radial finite differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory (minimum values of Δι). Scans of the rotational transform profile indicate that for experimentally relevant levels of transform shear the response becomes increasing localised. Furthermore, careful examination of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this shielding response is present, suggesting the phenomena is not limited to this verification exercise.« less

  4. Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code

    DOE PAGES

    Lazerson, Samuel A.; Loizu, Joaquim; Hirshman, Steven; ...

    2016-01-13

    The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces which possess magnetic transform (ι) which is resonant with spectral values of the perturbed boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered. This equilibrium possess a rational surface with safety factor q = 2 at a normalized flux value of 0.5. A small resonant boundary perturbation is introduced, excitingmore » a response at the resonant rational surface. The code is found to capture the plasma response as predicted by a newly developed analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational transform (ι=1/q). The VMEC code satisfactorily reproduces these theoretical results without the necessity of an explicit transform discontinuity (Δι) at the rational surface. It is found that the response across the rational surfaces depends upon both radial grid resolution and local shear (dι/dΦ, where ι is the rotational transform and Φ the enclosed toroidal flux). Calculations of an implicit Δι suggest that it does not arise due to numerical artifacts (attributed to radial finite differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory (minimum values of Δι). Scans of the rotational transform profile indicate that for experimentally relevant levels of transform shear the response becomes increasing localised. Furthermore, careful examination of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this shielding response is present, suggesting the phenomena is not limited to this verification exercise.« less

  5. Liquid–Liquid Equilibrium Measurements for Model Systems Related to Catalytic Fast Pyrolysis of Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir

    Here in this paper we report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement ismore » seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.« less

  6. Liquid–Liquid Equilibrium Measurements for Model Systems Related to Catalytic Fast Pyrolysis of Biomass

    DOE PAGES

    Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir; ...

    2016-11-02

    Here in this paper we report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement ismore » seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.« less

  7. Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Abid, R.; Speziale, C. G.

    1993-01-01

    Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.

  8. Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Abid, R.; Speziale, C. G.

    1992-01-01

    Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.

  9. Effects of sediment supply on surface textures of gravel‐bed rivers

    USGS Publications Warehouse

    Buffington, John M.; Montgomery, David R.

    1999-01-01

    Using previously published data from flume studies, we test a new approach for quantifying the effects of sediment supply (i.e., bed material supply) on surface grain size of equilibrium gravel channels. Textural response to sediment supply is evaluated relative to a theoretical prediction of competent median grain size (D50′). We find that surface median grain size (D50) varies inversely with sediment supply rate and systematically approaches the competent value (D50′) at low equilibrium transport rates. Furthermore, equilibrium transport rate is a power function of the difference between applied and critical shear stresses and is therefore a power function of the difference between competent and observed median grain sizes (D50′ and D50). Consequently, we propose that the difference between predicted and observed median grain sizes can be used to determine sediment supply rate in equilibrium channels. Our analysis framework collapses data from different studies toward a single relationship between sediment supply rate and surface grain size. While the approach appears promising, we caution that it has been tested only on a limited set of laboratory data and a narrow range of channel conditions.

  10. Modeling the changes in the concentration of aromatic hydrocarbons from an oil-coated gravel column

    NASA Astrophysics Data System (ADS)

    Jung, Jee-Hyun; Kang, Hyun-Joong; Kim, Moonkoo; Yim, Un Hyuk; An, Joon Geon; Shim, Won Joon; Kwon, Jung-Hwan

    2015-12-01

    The performance of a lab-scale flow-through exposure system designed for the evaluation of ecotoxicity due to oil spills was evaluated. The system simulates a spill event using an oil-coated gravel column through which filtered seawater is passed and flows into an aquarium containing fish embryos of olive flounder ( Paralichthys olivaceus) and spotted sea bass ( Lateolabrax maculates). The dissolved concentrations of individual polycyclic aromatic hydrocarbons (PAHs) in the column effluent were monitored and compared with theoretical solubilities predicted by Raoult's law. The effluent concentrations after 24 and 48 h were close to the theoretical predictions for the higher molecular weight PAHs, whereas the measured values for the lower molecular weight PAHs were lower than predicted. The ratios of the concentration of PAHs in flounder embryos to that in seawater were close to the lipid-water partition coefficients for the less hydrophobic PAHs, showing that equilibrium was attained between embryos and water. On the other hand, 48 h were insufficient to attain phase equilibrium for the more hydrophobic PAHs, indicating that the concentration in fish embryos may be lower than expected by equilibrium assumption. The results indicate that the equilibrium approach may be suitable for less hydrophobic PAHs, whereas it might overestimate the effects of more hydrophobic PAHs after oil spills because phase equilibrium in an oil-seawater-biota system is unlikely to be achieved. The ecotoxicological endpoints that were affected within a few days are likely to be influenced mainly by moderately hydrophobic components such as 3-ring PAHs.

  11. Non-equilibrium coherence dynamics in one-dimensional Bose gases.

    PubMed

    Hofferberth, S; Lesanovsky, I; Fischer, B; Schumm, T; Schmiedmayer, J

    2007-09-20

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.

  12. Polylogarithmic equilibrium treatment of molecular aggregation and critical concentrations.

    PubMed

    Michel, Denis; Ruelle, Philippe

    2017-02-15

    A full equilibrium treatment of molecular aggregation is presented for prototypes of 1D and 3D aggregates, with and without nucleation. By skipping complex kinetic parameters like aggregate size-dependent diffusion, the equilibrium treatment allows us to predict directly time-independent quantities such as critical concentrations. The relationships between the macroscopic equilibrium constants for different paths are first established by statistical corrections and so as to comply with the detailed balance constraints imposed by nucleation, and the composition of the mixture resulting from homogeneous aggregation is then analyzed using a polylogarithmic function. Several critical concentrations are distinguished: the residual monomer concentration at equilibrium (RMC) and the critical nucleation concentration (CNC), which is the threshold concentration of total subunits necessary for initiating aggregation. When increasing the concentration of total subunits, the RMC converges more strongly to its asymptotic value, the equilibrium constant of depolymerization, for 3D aggregates and in the case of nucleation. The CNC moderately depends on the number of subunits in the nucleus, but sharply increases with the difference between the equilibrium constants of polymerization and nucleation. As the RMC and CNC can be numerically but not analytically determined, ansatz equations connecting them to thermodynamic parameters are proposed.

  13. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    PubMed

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  14. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of Equilibrium Toroidal Flow on Locked Mode and Plasma Response in a Tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Huang, Wenlong; Yan, Xingting

    2016-10-01

    It is widely believed that plasma flow plays significant roles in regulating the processes of mode locking and plasma response in a tokamak in presence of external resonant magnetic perturbations (RMPs). Recently a common analytic relation for both locked mode and plasma response has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance. The analytic relation predicts the size of the magnetic island of a locked mode or a static nonlinear plasma response for a given RMP amplitude, and rigorously proves a screening effect of the equilibrium toroidal flow. To test the theory, we solve for the locked mode and the nonlinear plasma response in presence of RMP for a circular-shaped limiter tokamak equilibrium with constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. The comparison between the simulation results and the theory prediction, in terms of the quantitative screening effects of equilibrium toroidal flow, will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  16. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium. Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral-solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3-) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.

  17. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    USGS Publications Warehouse

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium.Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral–solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3−) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.

  18. Progress towards a more predictive model for hohlraum radiation drive and symmetry

    NASA Astrophysics Data System (ADS)

    Jones, O. S.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Farmer, W. A.; Hansen, S. B.; Liedahl, D. A.; Mauche, C. W.; Moore, A. S.; Rosen, M. D.; Salmonson, J. D.; Strozzi, D. J.; Thomas, C. A.; Turnbull, D. P.

    2017-05-01

    For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole.

  19. The effect of random matter density perturbations on the large mixing angle solution to the solar neutrino problem

    NASA Astrophysics Data System (ADS)

    Guzzo, M. M.; Holanda, P. C.; Reggiani, N.

    2003-08-01

    The neutrino energy spectrum observed in KamLAND is compatible with the predictions based on the Large Mixing Angle realization of the MSW (Mikheyev-Smirnov-Wolfenstein) mechanism, which provides the best solution to the solar neutrino anomaly. From the agreement between solar neutrino data and KamLAND observations, we can obtain the best fit values of the mixing angle and square difference mass. When doing the fitting of the MSW predictions to the solar neutrino data, it is assumed the solar matter do not have any kind of perturbations, that is, it is assumed the the matter density monothonically decays from the center to the surface of the Sun. There are reasons to believe, nevertheless, that the solar matter density fluctuates around the equilibrium profile. In this work, we analysed the effect on the Large Mixing Angle parameters when the density matter randomically fluctuates around the equilibrium profile, solving the evolution equation in this case. We find that, in the presence of these density perturbations, the best fit values of the mixing angle and the square difference mass assume smaller values, compared with the values obtained for the standard Large Mixing Angle Solution without noise. Considering this effect of the random perturbations, the lowest island of allowed region for KamLAND spectral data in the parameter space must be considered and we call it very-low region.

  20. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-05-08

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mgl(-1) and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D(h), are 3.6 x 10(-8); 6.1 x 10(-8) and 2.4 x 10(-8)cm(2)s(-1), respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.

  1. Approaches to the Treatment of Equilibrium Perturbations

    NASA Astrophysics Data System (ADS)

    Canagaratna, Sebastian G.

    2003-10-01

    Perturbations from equilibrium are treated in the textbooks by a combination of Le Châtelier's principle, the comparison of the equilibrium constant K with the reaction quotient Q,and the kinetic approach. Each of these methods is briefly reviewed. This is followed by derivations of the variation of the equilibrium value of the extent of reaction, ξeq, with various parameters on which it depends. Near equilibrium this relationship can be represented by a straight line. The equilibrium system can be regarded as moving on this line as the parameter is varied. The slope of the line depends on quantities like enthalpy of reaction, volume of reaction and so forth. The derivation shows that these quantities pertain to the equilibrium system, not the standard state. Also, the derivation makes clear what kind of assumptions underlie our conclusions. The derivation of these relations involves knowledge of thermodynamics that is well within the grasp of junior level physical chemistry students. The conclusions that follow from the derived relations are given as subsidiary rules in the form of the slope of ξeq, with T, p, et cetera. The rules are used to develop a visual way of predicting the direction of shift of a perturbed system. This method can be used to supplement one of the other methods even at the introductory level.

  2. Sclerochronology and geochemical variation in limpet shells (Patella vulgata): A new archive to reconstruct coastal sea surface temperature

    NASA Astrophysics Data System (ADS)

    Fenger, Tracy; Surge, Donna; SchöNe, Bernd; Milner, Nicky

    2007-07-01

    Climate archives contained in shells of the European limpet, Patella vulgata, accumulated in archaeological deposits can potentially provide much needed information about Holocene environmental change in midlatitude coastal areas. Before reconstructing climate information preserved in these zooarchaeological records, we studied the controls on oxygen and carbon isotope ratios (δ18O and δ13C, respectively) in modern specimens. We tested the hypothesis that P. vulgata precipitates its shell in isotopic equilibrium with the ambient water by comparing δ18OSHELL with predicted values. Predicted δ18OSHELL was constructed using observed sea surface temperature (SST) records and the equilibrium fractionation equation for calcite and water. We assumed a constant δ18OWATER value of +0.10‰ (VSMOW) based on published regional measurements. Comparison of δ18OSHELL with predicted values revealed that δ18OSHELL values were higher than expected by +1.01 ± 0.21‰. Consequently, estimated SST calculated from δ18OSHELL was 4.2 ± 2.3°C lower than observed SST. However, because of the relatively uniform offset between observed and expected δ18O, an adjustment can be made to account for this predictable vital effect. Thus past climate can be reliably reconstructed using this temperature proxy once the offset is taken into account. δ13C values have a similar cyclicity to the δ18O variation and therefore vary seasonally. However, δ13C is slightly out of phase relative to δ18O. An overall negative shift in δ13CSHELL over the lifetime of the individual indicates a vital effect associated with ontogeny. Further study of environmental and ecological factors that influence shell δ13C is required to evaluate fully the potential of carbon isotope ratios as a useful environmental proxy.

  3. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  4. Twin tubular pinch effect in curving confined flows

    PubMed Central

    Clime, Liviu; Morton, Keith J.; Hoa, Xuyen D.; Veres, Teodor

    2015-01-01

    Colloidal suspensions of buoyancy neutral particles flowing in circular pipes focus into narrow distributions near the wall due to lateral migration effects associated with fluid inertia. In curving flows, these distributions are altered by Dean currents and the interplay between Reynolds and Dean numbers is used to predict equilibrium positions. Here, we propose a new description of inertial lateral migration in curving flows that expands current understanding of both focusing dynamics and equilibrium distributions. We find that at low Reynolds numbers, the ratio δ between lateral inertial migration and Dean forces scales simply with the particle radius, coil curvature and pipe radius as . A critical value δc = 0.148 of this parameter is identified along with two related inertial focusing mechanisms. In the regime below δc, coined subcritical, Dean forces generate permanently circulating, twinned annuli, each with intricate equilibrium particle distributions including eyes and trailing arms. At δ > δc (supercritical regime) inertial lateral migration forces are dominant and particles focus to a single stable equilibrium position. PMID:25927878

  5. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE PAGES

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K 1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO 2 2+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K 1 values are significantly overestimated. Accurate predictions of the absolute log K 1 values (root mean square deviation from experiment < 1.0 for logmore » K 1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  6. Evaluation of Magnetic Diagnostics for MHD Equilibrium Reconstruction of LHD Discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontag, Aaron C; Hanson, James D.; Lazerson, Sam

    2011-01-01

    Equilibrium reconstruction is the process of determining the set of parameters of an MHD equilibrium that minimize the difference between expected and experimentally observed signals. This is routinely performed in axisymmetric devices, such as tokamaks, and the reconstructed equilibrium solution is then the basis for analysis of stability and transport properties. The V3FIT code [1] has been developed to perform equilibrium reconstruction in cases where axisymmetry cannot be assumed, such as in stellarators. The present work is focused on using V3FIT to analyze plasmas in the Large Helical Device (LHD) [2], a superconducting, heliotron type device with over 25 MWmore » of heating power that is capable of achieving both high-beta ({approx}5%) and high density (>1 x 10{sup 21}/m{sup 3}). This high performance as well as the ability to drive tens of kiloamperes of toroidal plasma current leads to deviations in the equilibrium state from the vacuum flux surfaces. This initial study examines the effectiveness of using magnetic diagnostics as the observed signals in reconstructing experimental plasma parameters for LHD discharges. V3FIT uses the VMEC [3] 3D equilibrium solver to calculate an initial equilibrium solution with closed, nested flux surfaces based on user specified plasma parameters. This equilibrium solution is then used to calculate the expected signals for specified diagnostics. The differences between these expected signal values and the observed values provides a starting {chi}{sup 2} value. V3FIT then varies all of the fit parameters independently, calculating a new equilibrium and corresponding {chi}{sup 2} for each variation. A quasi-Newton algorithm [1] is used to find the path in parameter space that leads to a minimum in {chi}{sup 2}. Effective diagnostic signals must vary in a predictable manner with the variations of the plasma parameters and this signal variation must be of sufficient amplitude to be resolved from the signal noise. Signal effectiveness can be defined for a specific signal and specific reconstruction parameter as the dimensionless fractional reduction in the posterior parameter variance with respect to the signal variance. Here, {sigma}{sub i}{sup sig} is the variance of the ith signal and {sigma}{sub j}{sup param} param is the posterior variance of the jth fit parameter. The sum of all signal effectiveness values for a given reconstruction parameter is normalized to one. This quantity will be used to determine signal effectiveness for various reconstruction cases. The next section will examine the variation of the expected signals with changes in plasma pressure and the following section will show results for reconstructing model plasmas using these signals.« less

  7. Raoult's law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments.

    PubMed

    Bowler, Michael G; Bowler, David R; Bowler, Matthew W

    2017-04-01

    The humidity surrounding a sample is an important variable in scientific experiments. Biological samples in particular require not just a humid atmosphere but often a relative humidity (RH) that is in equilibrium with a stabilizing solution required to maintain the sample in the same state during measurements. The controlled dehydration of macromolecular crystals can lead to significant increases in crystal order, leading to higher diffraction quality. Devices that can accurately control the humidity surrounding crystals while monitoring diffraction have led to this technique being increasingly adopted, as the experiments become easier and more reproducible. Matching the RH to the mother liquor is the first step in allowing the stable mounting of a crystal. In previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F 68 , 111-114], the equilibrium RHs were measured for a range of concentrations of the most commonly used precipitants in macromolecular crystallography and it was shown how these related to Raoult's law for the equilibrium vapour pressure of water above a solution. However, a discrepancy between the measured values and those predicted by theory could not be explained. Here, a more precise humidity control device has been used to determine equilibrium RH points. The new results are in agreement with Raoult's law. A simple argument in statistical mechanics is also presented, demonstrating that the equilibrium vapour pressure of a solvent is proportional to its mole fraction in an ideal solution: Raoult's law. The same argument can be extended to the case where the solvent and solute molecules are of different sizes, as is the case with polymers. The results provide a framework for the correct maintenance of the RH surrounding a sample.

  8. Nonlinear Reynolds stress model for turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Barton, J. Michael; Rubinstein, R.; Kirtley, K. R.

    1991-01-01

    A nonlinear algebraic Reynolds stress model, derived using the renormalization group, is applied to equilibrium homogeneous shear flow and fully developed flow in a square duct. The model, which is quadratically nonlinear in the velocity gradients, successfully captures the large-scale inhomogeneity and anisotropy of the flows studied. The ratios of normal stresses, as well as the actual magnitudes of the stresses are correctly predicted for equilibrium homogeneous shear flow. Reynolds normal stress anisotropy and attendant turbulence driven secondary flow are predicted for a square duct. Profiles of mean velocity and normal stresses are in good agreement with measurements. Very close to walls, agreement with measurements diminishes. The model has the benefit of containing no arbitrary constants; all values are determined directly from the theory. It seems that near wall behavior is influenced by more than the large scale anisotropy accommodated in the current model. More accurate near wall calculations may well require a model for anisotropic dissipation.

  9. Auxiliary principle technique and iterative algorithm for a perturbed system of generalized multi-valued mixed quasi-equilibrium-like problems.

    PubMed

    Rahaman, Mijanur; Pang, Chin-Tzong; Ishtyak, Mohd; Ahmad, Rais

    2017-01-01

    In this article, we introduce a perturbed system of generalized mixed quasi-equilibrium-like problems involving multi-valued mappings in Hilbert spaces. To calculate the approximate solutions of the perturbed system of generalized multi-valued mixed quasi-equilibrium-like problems, firstly we develop a perturbed system of auxiliary generalized multi-valued mixed quasi-equilibrium-like problems, and then by using the celebrated Fan-KKM technique, we establish the existence and uniqueness of solutions of the perturbed system of auxiliary generalized multi-valued mixed quasi-equilibrium-like problems. By deploying an auxiliary principle technique and an existence result, we formulate an iterative algorithm for solving the perturbed system of generalized multi-valued mixed quasi-equilibrium-like problems. Lastly, we study the strong convergence analysis of the proposed iterative sequences under monotonicity and some mild conditions. These results are new and generalize some known results in this field.

  10. 13C 18O clumping in speleothems: Observations from natural caves and precipitation experiments

    NASA Astrophysics Data System (ADS)

    Daëron, M.; Guo, W.; Eiler, J.; Genty, D.; Blamart, D.; Boch, R.; Drysdale, R.; Maire, R.; Wainer, K.; Zanchetta, G.

    2011-06-01

    The oxygen isotope composition of speleothems is an important proxy of continental paleoenvironments, because of its sensitivity to variations in cave temperature and drip water δ 18O. Interpreting speleothem δ 18O records in terms of absolute paleotemperatures and δ 18O values of paleo-precipitation requires quantitative separation of the effects of these two parameters, and correcting for possible kinetic isotope fractionation associated with precipitation of calcite out of thermodynamic equilibrium. Carbonate clumped-isotope thermometry, based on measurements of Δ47 (a geochemical variable reflecting the statistical overabundance of 13C 18O bonds in CO 2 evolved from phosphoric acid digestion of carbonate minerals), potentially provides a method for absolute speleothem paleotemperature reconstructions independent of drip water composition. Application of this new technique to karst records is currently limited by the scarcity of published clumped-isotope studies of modern speleothems. The only modern stalagmite reported so far in the literature yielded a lower Δ47 value than expected for equilibrium precipitation, possibly due to kinetic isotope fractionation. Here we report Δ47 values measured in natural speleothems from various cave settings, in carbonate produced by cave precipitation experiments, and in synthetic stalagmite analogs precipitated in controlled laboratory conditions designed to mimic natural cave processes. All samples yield lower Δ47 and heavier δ 18O values than predicted by experimental calibrations of thermodynamic equilibrium in inorganic calcite. The amplitudes of these isotopic disequilibria vary between samples, but there is clear correlation between the amount of Δ47 disequilibrium and that of δ 18O. Even pool carbonates believed to offer excellent conditions for equilibrium precipitation of calcite display out-of-equilibrium δ 18O and Δ47 values, probably inherited from prior degassing within the cave system. In addition to these modern observations, clumped-isotope analyses of a flowstone from Villars cave (France) offer evidence that the amount of disequilibrium affecting Δ47 in a single speleothem can experience large variations at time scales of 10 kyr. Application of clumped-isotope thermometry to speleothem records calls for an improved physical understanding of DIC fractionation processes in karst waters, and for the resolution of important issues regarding equilibrium calibration of Δ47 in inorganic carbonates.

  11. Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows

    NASA Technical Reports Server (NTRS)

    Zhao, C. Y.; So, R. M. C.; Gatski, T. B.

    2001-01-01

    The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.

  12. A Comparison of EAST Shock-Tube Radiation Measurements with a New Air Radiation Model

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.

    2008-01-01

    This paper presents a comparison between the recent EAST shock tube radiation measurements (Grinstead et al., AIAA 2008-1244) and the HARA radiation model. The equilibrium and nonequilibrium radiation measurements are studied for conditions relevant to lunar-return shock-layers; specifically shock velocities ranging from 9 to 11 kilometers per second at initial pressures of 0.1 and 0.3 Torr. The simulated shock-tube flow is assumed one-dimensional and is calculated using the LAURA code, while a detailed nonequilibrium radiation prediction is obtained in an uncoupled manner from the HARA code. The measured and predicted intensities are separated into several spectral ranges to isolate significant spectral features, mainly strong atomic line multiplets. The equations and physical data required for the prediction of these strong atomic lines are reviewed and their uncertainties identified. The 700-1020 nm wavelength range, which accounts for roughly 30% of the radiative flux to a peak-heating lunar return shock-layer, is studied in detail and the measurements and predictions are shown to agree within 15% in equilibrium. The plus or minus 1.5% uncertainty on the measured shock velocity is shown to cause up to a plus or minus 30% difference in the predicted radiation. This band of predictions contains the measured values in almost all cases. For the highly nonequilibrium 0.1 Torr cases, the nonequilibrium radiation peaks are under-predicted by about half. This under-prediction is considered acceptable when compared to the order-of-magnitude over-prediction obtained using a Boltzmann population of electronic states. The reasonable comparison in the nonequilibrium regions provides validation for both the non-Boltzmann modeling in HARA and the thermochemical nonequilibrium modeling in LAURA. The N2 (+)(1-) and N2(2+) molecular band systems are studied in the 290 480 nm wavelength range for both equilibrium and nonequilibrium regimes. The non-Boltzmann rate models for these systems, which have significant uncertainties, are tuned to improve the comparison with measurements.

  13. Thermodynamic Hydricity of Transition Metal Hydrides

    DOE PAGES

    Wiedner, Eric S.; Chambers, Matthew B.; Pitman, Catherine L.; ...

    2016-08-02

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bondbreaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H -). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H 2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H 2more » in the presence of a base, and the potential-pK a method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Finally, methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO 2, and the production and oxidation of hydrogen.« less

  14. Statistical mechanics explanation for the structure of ocean eddies and currents

    NASA Astrophysics Data System (ADS)

    Venaille, A.; Bouchet, F.

    2010-12-01

    The equilibrium statistical mechanics of two dimensional and geostrophic flows predicts the outcome for the large scales of the flow, resulting from the turbulent mixing. This theory has been successfully applied to describe detailed properties of Jupiter's Great Red Spot. We discuss the range of applicability of this theory to ocean dynamics. It is able to reproduce mesoscale structures like ocean rings. It explains, from statistical mechanics, the westward drift of rings at the speed of non dispersive baroclinic waves, and the recently observed (Chelton and col.) slower northward drift of cyclonic eddies and southward drift of anticyclonic eddies. We also uncover relations between strong eastward mid-basin inertial jets, like the Kuroshio extension and the Gulf Stream, and statistical equilibria. We explain under which conditions such strong mid-basin jets can be understood as statistical equilibria. We claim that these results are complementary to the classical Sverdrup-Munk theory: they explain the inertial part basin dynamics, the jets structure and location, using very simple theoretical arguments. References: A. VENAILLE and F. BOUCHET, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. BOUCHET and A. VENAILLE, Statistical mechanics of two-dimensional and geophysical flows, arxiv ...., submitted to Physics Reports P. BERLOFF, A. M. HOGG, W. DEWAR, The Turbulent Oscillator: A Mechanism of Low- Frequency Variability of the Wind-Driven Ocean Gyres, Journal of Physical Oceanography 37 (2007) 2363-+. D. B. CHELTON, M. G. SCHLAX, R. M. SAMELSON, R. A. de SZOEKE, Global observations of large oceanic eddies, Geo. Res. Lett.34 (2007) 15606-+ b) and c) are snapshots of streamfunction and potential vorticity (red: positive values; blue: negative values) in the upper layer of a three layer quasi-geostrophic model of a mid-latitude ocean basin (from Berloff and co.). a) Streamfunction predicted by statistical mechanics. Even in an out-equilibrium situation like this one, equilibrium statistical mechanics predicts remarkably the overall qualitative flow structure. Observation of westward drift of ocean eddies and of slower northward drift of cyclones and southward drift of anticyclones by Chelton and co. We explain these observations from statistical mechanics.

  15. Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2016-02-01

    This work proposes a simple and accurate tool for predicting the main parameters of biomass gasification (syngas composition, heating value, flow rate), suitable for process study and system analysis. A multizonal model based on non-stoichiometric equilibrium models and a repartition factor, simulating the bypass of pyrolysis products through the oxidant zone, was developed. The results of tests with different feedstocks (corn cobs, wood pellets, rice husks and vine pruning) in a demonstrative downdraft gasifier (350kW) were used for validation. The average discrepancy between model and experimental results was up to 8 times less than the one with the simple equilibrium model. The repartition factor was successfully related to the operating conditions and characteristics of the biomass to simulate different conditions of the gasifier (variation in potentiality, densification and mixing of feedstock) and analyze the model sensitivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evidence for a temperature rise in the outer layers of alpha Lyrae, from Copernicus observations of Lyman-alpha

    NASA Technical Reports Server (NTRS)

    Praderie, F.; Simonneau, E.; Snow, T. P., Jr.

    1975-01-01

    Copernicus satellite observations of the Ly-alpha profiles in alpha Lyrae (Vega) are used to determine whether classical radiative-equilibrium LTE model atmospheres can fit the thermal structure in the outer layers of that star. Two plane-parallel LTE model photospheres of alpha Lyrae are considered: a line-blanketed radiative-equilibrium model with an effective temperature of 9650 K and log g of 4.05, and the same model with a temperature of 9500 K and log g of 4.0. The profiles of the Ly-alpha wings are computed, and it is found that classical LTE models are unable to predict either the observed violet wing or the red wing longwards of 1239 A, regardless of the line source function. It is concluded that the electron temperature must increase outwards over the surface value reached in radiative equilibrium.

  17. Dynamic Data-Driven Reduced-Order Models of Macroscale Quantities for the Prediction of Equilibrium System State for Multiphase Porous Medium Systems

    NASA Astrophysics Data System (ADS)

    Talbot, C.; McClure, J. E.; Armstrong, R. T.; Mostaghimi, P.; Hu, Y.; Miller, C. T.

    2017-12-01

    Microscale simulation of multiphase flow in realistic, highly-resolved porous medium systems of a sufficient size to support macroscale evaluation is computationally demanding. Such approaches can, however, reveal the dynamic, steady, and equilibrium states of a system. We evaluate methods to utilize dynamic data to reduce the cost associated with modeling a steady or equilibrium state. We construct data-driven models using extensions to dynamic mode decomposition (DMD) and its connections to Koopman Operator Theory. DMD and its variants comprise a class of equation-free methods for dimensionality reduction of time-dependent nonlinear dynamical systems. DMD furnishes an explicit reduced representation of system states in terms of spatiotemporally varying modes with time-dependent oscillation frequencies and amplitudes. We use DMD to predict the steady and equilibrium macroscale state of a realistic two-fluid porous medium system imaged using micro-computed tomography (µCT) and simulated using the lattice Boltzmann method (LBM). We apply Koopman DMD to direct numerical simulation data resulting from simulations of multiphase fluid flow through a 1440x1440x4320 section of a full 1600x1600x5280 realization of imaged sandstone. We determine a representative set of system observables via dimensionality reduction techniques including linear and kernel principal component analysis. We demonstrate how this subset of macroscale quantities furnishes a representation of the time-evolution of the system in terms of dynamic modes, and discuss the selection of a subset of DMD modes yielding the optimal reduced model, as well as the time-dependence of the error in the predicted equilibrium value of each macroscale quantity. Finally, we describe how the above procedure, modified to incorporate methods from compressed sensing and random projection techniques, may be used in an online fashion to facilitate adaptive time-stepping and parsimonious storage of system states over time.

  18. Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis.

    PubMed

    Feldman, Anatol G; Latash, Mark L

    2005-02-01

    Criticisms of the equilibrium point (EP) hypothesis have recently appeared that are based on misunderstandings of some of its central notions. Starting from such interpretations of the hypothesis, incorrect predictions are made and tested. When the incorrect predictions prove false, the hypothesis is claimed to be falsified. In particular, the hypothesis has been rejected based on the wrong assumptions that it conflicts with empirically defined joint stiffness values or that it is incompatible with violations of equifinality under certain velocity-dependent perturbations. Typically, such attempts use notions describing the control of movements of artificial systems in place of physiologically relevant ones. While appreciating constructive criticisms of the EP hypothesis, we feel that incorrect interpretations have to be clarified by reiterating what the EP hypothesis does and does not predict. We conclude that the recent claims of falsifying the EP hypothesis and the calls for its replacement by EMG-force control hypothesis are unsubstantiated. The EP hypothesis goes far beyond the EMG-force control view. In particular, the former offers a resolution for the famous posture-movement paradox while the latter fails to resolve it.

  19. New Stagnation Arc Jet Model Design for Testing ADEPT 3-D Carbon Cloth

    NASA Technical Reports Server (NTRS)

    Beck, R.; Chen, Y.-K.; Wercinski, P.; Agrawal, P.; Chavez-Garcia, J.

    2017-01-01

    The ADEPT concept has been considered as an entry, descent and landing system to enable Human Mars class missions. Ground rules for the Mars studies required aerocapture, orbit, and then entry. The design utilizes a 3-D woven carbon cloth fabric as both heatshield and primary structure and design guidelines required 6 layers remaining after all entry events. The peak heating predicted for the ADEPT carbon cloth was 35 Wcm2 and resulting temperatures were predicted to be 1400K. Predictions for carbon mass loss were performed using equilibrium thermochemistry, which is only accurate for T2000K. Carbon oxidation is kinetically controlled at T2000K, and mass loss drops off considerably from equilibrium values. Design of the cloth thickness and mass would be significantly reduced if kinetics were considered. This effort was to design a stagnation test article design that could be used in the AHF with varying levels of oxygen where the results could be used to develop an engineering model to describe the recession rate of the carbon as a function of the partial pressure of monotomic oxygen.

  20. Predicting repeat protein folding kinetics from an experimentally determined folding energy landscape

    PubMed Central

    Street, Timothy O; Barrick, Doug

    2009-01-01

    The Notch ankyrin domain is a repeat protein whose folding has been characterized through equilibrium and kinetic measurements. In previous work, equilibrium folding free energies of truncated constructs were used to generate an experimentally determined folding energy landscape (Mello and Barrick, Proc Natl Acad Sci USA 2004;101:14102–14107). Here, this folding energy landscape is used to parameterize a kinetic model in which local transition probabilities between partly folded states are based on energy values from the landscape. The landscape-based model correctly predicts highly diverse experimentally determined folding kinetics of the Notch ankyrin domain and sequence variants. These predictions include monophasic folding and biphasic unfolding, curvature in the unfolding limb of the chevron plot, population of a transient unfolding intermediate, relative folding rates of 19 variants spanning three orders of magnitude, and a change in the folding pathway that results from C-terminal stabilization. These findings indicate that the folding pathway(s) of the Notch ankyrin domain are thermodynamically selected: the primary determinants of kinetic behavior can be simply deduced from the local stability of individual repeats. PMID:19177351

  1. Pleural pressure theory revisited: a role for capillary equilibrium.

    PubMed

    Casha, Aaron R; Caruana-Gauci, Roberto; Manche, Alexander; Gauci, Marilyn; Chetcuti, Stanley; Bertolaccini, Luca; Scarci, Marco

    2017-04-01

    Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes' hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation.

  2. Study of Laminar Flame 2-D Scalar Values at Various Fuel to Air Ratios Using an Imaging Fourier-Transform Spectrometer and 2-D CFD Analysis

    DTIC Science & Technology

    2013-03-01

    NASA- Glenn’s Chemical Equilibrium with Applications (CEA) program. UNICORN CFD predictions were in excellent agreement with CEA calculations at...49 Appendix A – UNICORN CFD Inputs and Instruction .....................................................50 Appendix B – NASA-Glenn...17 Figure 7: Schematic of UNICORN CFD card setup. ........................................................ 18 Figure 8: Averaged flame

  3. A piecewise mass-spring-damper model of the human breast.

    PubMed

    Cai, Yiqing; Chen, Lihua; Yu, Winnie; Zhou, Jie; Wan, Frances; Suh, Minyoung; Chow, Daniel Hung-Kay

    2018-01-23

    Previous models to predict breast movement whilst performing physical activities have, erroneously, assumed uniform elasticity within the breast. Consequently, the predicted displacements have not yet been satisfactorily validated. In this study, real time motion capture of the natural vibrations of a breast that followed, after raising and allowing it to fall freely, revealed an obvious difference in the vibration characteristics above and below the static equilibrium position. This implied that the elastic and viscous damping properties of a breast could vary under extension or compression. Therefore, a new piecewise mass-spring-damper model of a breast was developed with theoretical equations to derive values for its spring constants and damping coefficients from free-falling breast experiments. The effective breast mass was estimated from the breast volume extracted from a 3D body scanned image. The derived spring constant (k a  = 73.5 N m -1 ) above the static equilibrium position was significantly smaller than that below it (k b  = 658 N m -1 ), whereas the respective damping coefficients were similar (c a  = 1.83 N s m -1 , c b  = 2.07 N s m -1 ). These values were used to predict the nipple displacement during bare-breasted running for validation. The predicted and experimental results had a 2.6% or less root-mean-square-error of the theoretical and experimental amplitudes, so the piecewise mass-spring-damper model and equations were considered to have been successfully validated. This provides a theoretical basis for further research into the dynamic, nonlinear viscoelastic properties of different breasts and the prediction of external forces for the necessary breast support during different sports activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Near-equilibrium desorption of helium films

    NASA Astrophysics Data System (ADS)

    Weimer, M.; Housley, R. M.; Goodstein, D. L.

    1987-10-01

    The thermal desorption of helium films in the presence of their equilibrium vapor is studied experimentally for small but rapid departures from ambient temperature. The results are analyzed within the framework of a quasithermodynamic phenomenological model based on detailed balance. Under the usual experimental conditions, isothermal desorption at the temperature of the substrate is a general prediction of the model which seems to be substantiated. For realistic adsorption isotherms the time evolution of the net desorption flux nevertheless appears to be governed by a highly nonlinear equation. In such circumstances, a number of characteristic relaxation times may be identified. These time scales are distinct from, and in general unrelated to, the coverage-dependent mean lifetime of an atom on the surface. To characterize the overall nonlinear evolution towards steady state, a global time scale, defined in terms of both initial- and steady-state properties, is introduced to summarize the experimental data. Internal evidence suggests a criterion for judging when collisions among desorbed atoms are unimportant. When this condition is satisfied, data for near-equilibrium desorption agree well with the predictions of the model. Combining our results with earlier data at higher substrate temperatures and different ambient conditions, the overall picture is consistent with scaling properties implied by the theory. We show that the values of the parameters deduced from a Frenkel-Arrhenius parametrization of the global relaxation times, as well as a variety of other aspects of desorption kinetics, are actually consequences of the shape of the equilibrium adsorption isotherm.

  5. Determination and theoretical aspects of the equilibrium between dissolved organic matter and hydrophobic organic micropollutants in water (Kdoc).

    PubMed

    Krop, H B; van Noort, P C; Govers, H A

    2001-01-01

    Literature on the equilibrium constant for distribution between dissolved organic carbon (DOC) (Kdoc) data of strongly hydrophobic organic contaminants were collected and critically analyzed. About 900 Kdoc entries for experimental values were retrieved and tabulated, including those factors that can influence them. In addition, quantitative structure-activity relationship (QSAR) prediction equations were retrieved and tabulated. Whether a partition or association process between the contaminant and DOC takes place could not be fully established, but indications toward an association process are strong in several cases. Equilibrium between a contaminant and DOC in solution was shown to be achieved within a minute. When the equilibrium shifts in time, this was caused by either a physical or chemical change of the DOC, affecting the lighter fractions most. Adsorption isotherms turned out to be linear in the contaminant concentration for the relevant DOC concentration up to 100 mg of C/L. Eighteen experimental methods have been developed for the determination of the pertinent distribution constant. Experimental Kdoc values revealed the expected high correlation with partition coefficients over n-octanol and water (Kow) for all experimental methods, except for the HPLC and apparent solubility (AS) method. Only fluorescence quenching (FQ) and solid-phase microextraction (SPME) methods could quantify fast equilibration. Only 21% of the experimental values had a 95% confidence interval, which was statistically significantly different from zero. Variation in Kdoc values was shown to be high, caused mainly by the large variation of DOC in water samples. Even DOC from one sample gave different equilibrium constants for different DOC fractions. Measured Kdoc values should, therefore, be regarded as average values. Kdoc was shown to increase on increasing molecular mass, indicating that the molecular mass distribution is a proper normalization function for the average Kdoc at the current state of knowledge. The weakly bound fraction could easily be desorbed when other adsorbing media, such as a SepPak column or living organism, are present. The amount that moves from the DOC to the other medium will depend, among other reasons, on the size of the labile DOC fraction and the equilibrium constant of the other medium. Variation of Kdoc with temperature turned out to be small, probably caused by a small enthalpy of transfer from water to DOC. Ionic strength turned out to be more important, leading to changes of a factor of 2-5. The direction of this effect depends on the type of ion. With respect to QSAR relationships between Kdoc and macroscopic or molecular descriptors, it was concluded that only a small number of equations are available in the literature, for apolar compounds only, and with poor statistics and predictive power. Therefore, a first requirement is the improvement of the availability and quality of experimental data. Along with this, theoretical (mechanistic) models for the relationship between DOC plus contaminant descriptors on the one side and Kdoc on the other should be further developed. Correlations between Kdoc and Kow and those between the soil-water partition constant (Koc) and Kow were significantly different only in the case of natural aquatic DOC, pointing at substantial differences between these two types of organic material and at a high correspondence for other types of commercial and natural DOC.

  6. Equilibrium 2H/1H fractionation in organic molecules: III. Cyclic ketones and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A.

    2013-04-01

    Quantitative interpretation of stable hydrogen isotope ratios (2H/1H) in organic compounds is greatly aided by knowledge of the relevant equilibrium fractionation factors (ɛeq). Previous efforts have combined experimental measurements and hybrid Density Functional Theory (DFT) calculations to accurately predict equilibrium fractionations in linear (acyclic) organic molecules (Wang et al., 2009a,b), but the calibration produced by that study is not applicable to cyclic compounds. Here we report experimental measurements of equilibrium 2H/1H fractionation in six cyclic ketones, and use those data to evaluate DFT calculations of fractionation in diverse monocyclic and polycyclic compounds commonly found in sedimentary organic matter and petroleum. At 25, 50, and 75 °C, the experimentally measured ɛeq values for secondary and tertiary Hα in isotopic equilibrium with water are in the ranges of -130‰ to -150‰ and +10‰ to -40‰ respectively. Measured data are similar to DFT calculations of ɛeq for axial Hα but not equatorial Hα. In tertiary Cα positions with methyl substituents, this can be understood as a result of the methyl group forcing Hα atoms into a dominantly axial position. For secondary Cα positions containing both axial and equatorial Hα atoms, we propose that axial Hα exchanges with water significantly faster than the equatorial Hα does, due to the hyperconjugation-stabilized transition state. Interconversion of axial and equatorial positions via ring flipping is much faster than isotopic exchange at either position, and as a result the steady-state isotopic composition of both H's is strongly weighted toward that of axial Hα. Based on comparison with measured ɛeq values, a total uncertainty of 10-30‰ remains for theoretical ɛeq values. Using DFT, we systematically estimated the ɛeq values for individual H positions in various cyclic structures. By summing over all individual H positions, the molecular equilibrium fractionation was estimated to be -75‰ to -95‰ for steroids, -90‰ to -105‰ for hopanoids, and -65‰ to -100‰ for typical cycloparaffins between 0 and 100 °C relative to water. These are distinct from the typical biosynthetic fractionations of -150‰ to -300‰, but are similar to equilibrium fractionations for linear hydrocarbons (Wang et al., 2009b). Thus post-burial H exchange will generally remove the ˜50-100‰ biosynthetic fractionations between cyclic isoprenoid and n-alkyl lipid molecules, which can be used to evaluate the extent of H exchange in sedimentary organic matter and oils.

  7. Chimpanzee choice rates in competitive games match equilibrium game theory predictions.

    PubMed

    Martin, Christopher Flynn; Bhui, Rahul; Bossaerts, Peter; Matsuzawa, Tetsuro; Camerer, Colin

    2014-06-05

    The capacity for strategic thinking about the payoff-relevant actions of conspecifics is not well understood across species. We use game theory to make predictions about choices and temporal dynamics in three abstract competitive situations with chimpanzee participants. Frequencies of chimpanzee choices are extremely close to equilibrium (accurate-guessing) predictions, and shift as payoffs change, just as equilibrium theory predicts. The chimpanzee choices are also closer to the equilibrium prediction, and more responsive to past history and payoff changes, than two samples of human choices from experiments in which humans were also initially uninformed about opponent payoffs and could not communicate verbally. The results are consistent with a tentative interpretation of game theory as explaining evolved behavior, with the additional hypothesis that chimpanzees may retain or practice a specialized capacity to adjust strategy choice during competition to perform at least as well as, or better than, humans have.

  8. Multiscale System for Environmentally-Driven Infectious Disease with Threshold Control Strategy

    NASA Astrophysics Data System (ADS)

    Sun, Xiaodan; Xiao, Yanni

    A multiscale system for environmentally-driven infectious disease is proposed, in which control measures at three different scales are implemented when the number of infected hosts exceeds a certain threshold. Our coupled model successfully describes the feedback mechanisms of between-host dynamics on within-host dynamics by employing one-scale variable guided enhancement of interventions on other scales. The modeling approach provides a novel idea of how to link the large-scale dynamics to small-scale dynamics. The dynamic behaviors of the multiscale system on two time-scales, i.e. fast system and slow system, are investigated. The slow system is further simplified to a two-dimensional Filippov system. For the Filippov system, we study the dynamics of its two subsystems (i.e. free-system and control-system), the sliding mode dynamics, the boundary equilibrium bifurcations, as well as the global behaviors. We prove that both subsystems may undergo backward bifurcations and the sliding domain exists. Meanwhile, it is possible that the pseudo-equilibrium exists and is globally stable, or the pseudo-equilibrium, the disease-free equilibrium and the real equilibrium are tri-stable, or the pseudo-equilibrium and the real equilibrium are bi-stable, or the pseudo-equilibrium and disease-free equilibrium are bi-stable, which depends on the threshold value and other parameter values. The global stability of the pseudo-equilibrium reveals that we may maintain the number of infected hosts at a previously given value. Moreover, the bi-stability and tri-stability indicate that whether the number of infected individuals tends to zero or a previously given value or other positive values depends on the parameter values and the initial states of the system. These results highlight the challenges in the control of environmentally-driven infectious disease.

  9. Phi-value analysis of a linear, sequential reaction mechanism: theory and application to ion channel gating.

    PubMed

    Zhou, Yu; Pearson, John E; Auerbach, Anthony

    2005-12-01

    We derive the analytical form of a rate-equilibrium free-energy relationship (with slope Phi) for a bounded, linear chain of coupled reactions having arbitrary connecting rate constants. The results confirm previous simulation studies showing that Phi-values reflect the position of the perturbed reaction within the chain, with reactions occurring earlier in the sequence producing higher Phi-values than those occurring later in the sequence. The derivation includes an expression for the transmission coefficients of the overall reaction based on the rate constants of an arbitrary, discrete, finite Markov chain. The results indicate that experimental Phi-values can be used to calculate the relative heights of the energy barriers between intermediate states of the chain but provide no information about the energies of the wells along the reaction path. Application of the equations to the case of diliganded acetylcholine receptor channel gating suggests that the transition-state ensemble for this reaction is nearly flat. Although this mechanism accounts for many of the basic features of diliganded and unliganded acetylcholine receptor channel gating, the experimental rate-equilibrium free-energy relationships appear to be more linear than those predicted by the theory.

  10. Strategies for Selecting Crosses Using Genomic Prediction in Two Wheat Breeding Programs.

    PubMed

    Lado, Bettina; Battenfield, Sarah; Guzmán, Carlos; Quincke, Martín; Singh, Ravi P; Dreisigacker, Susanne; Peña, R Javier; Fritz, Allan; Silva, Paula; Poland, Jesse; Gutiérrez, Lucía

    2017-07-01

    The single most important decision in plant breeding programs is the selection of appropriate crosses. The ideal cross would provide superior predicted progeny performance and enough diversity to maintain genetic gain. The aim of this study was to compare the best crosses predicted using combinations of mid-parent value and variance prediction accounting for linkage disequilibrium (V) or assuming linkage equilibrium (V). After predicting the mean and the variance of each cross, we selected crosses based on mid-parent value, the top 10% of the progeny, and weighted mean and variance within progenies for grain yield, grain protein content, mixing time, and loaf volume in two applied wheat ( L.) breeding programs: Instituto Nacional de Investigación Agropecuaria (INIA) Uruguay and CIMMYT Mexico. Although the variance of the progeny is important to increase the chances of finding superior individuals from transgressive segregation, we observed that the mid-parent values of the crosses drove the genetic gain but the variance of the progeny had a small impact on genetic gain for grain yield. However, the relative importance of the variance of the progeny was larger for quality traits. Overall, the genomic resources and the statistical models are now available to plant breeders to predict both the performance of breeding lines per se as well as the value of progeny from any potential crosses. Copyright © 2017 Crop Science Society of America.

  11. Orbital stability close to asteroid 624 Hektor using the polyhedral model

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Baoyin, Hexi; Li, Hengnian

    2018-03-01

    We investigate the orbital stability close to the unique L4-point Jupiter binary Trojan asteroid 624 Hektor. The gravitational potential of 624 Hektor is calculated using the polyhedron model with observational data of 2038 faces and 1021 vertexes. Previous studies have presented three different density values for 624 Hektor. The equilibrium points in the gravitational potential of 624 Hektor with different density values have been studied in detail. There are five equilibrium points in the gravitational potential of 624 Hektor no matter the density value. The positions, Jacobian, eigenvalues, topological cases, stability, as well as the Hessian matrix of the equilibrium points are investigated. For the three different density values the number, topological cases, and the stability of the equilibrium points with different density values are the same. However, the positions of the equilibrium points vary with the density value of the asteroid 624 Hektor. The outer equilibrium points move away from the asteroid's mass center when the density increases, and the inner equilibrium point moves close to the asteroid's mass center when the density increases. There exist unstable periodic orbits near the surface of 624 Hektor. We calculated an orbit near the primary's equatorial plane of this binary Trojan asteroid; the results indicate that the orbit remains stable after 28.8375 d.

  12. Non-equilibrium ionization by a periodic electron beam. II. Synthetic Si IV and O IV transition region spectra

    NASA Astrophysics Data System (ADS)

    Dzifčáková, Elena; Dudík, Jaroslav

    2018-03-01

    Context. Transition region (TR) spectra typically show the Si IV 1402.8 Å line to be enhanced by a factor of 5 or more compared to the neighboring O IV 1401.2 Å, contrary to predictions of ionization equilibrium models and the Maxwellian distribution of particle energies. Non-equilibrium effects in TR spectra are therefore expected. Aims: To investigate the combination of non-equilibrium ionization and high-energy particles, we apply the model of the periodic electron beam, represented by a κ-distribution that recurs at periods of several seconds, to plasma at chromospheric temperatures of 104 K. This simple model can approximate a burst of energy release involving accelerated particles. Methods: Instantaneous time-dependent charge states of silicon and oxygen were calculated and used to synthesize the instantaneous and period-averaged spectra of Si IV and O IV. Results: The electron beam drives the plasma out of equilibrium. At electron densities of Ne = 1010 cm-3, the plasma is out of ionization equilibrium at all times in all cases we considered, while for a higher density of Ne = 1011 cm-3, ionization equilibrium can be reached toward the end of each period, depending on the conditions. In turn, the character of the period-averaged synthetic spectra also depends on the properties of the beam. While the case of κ = 2 results in spectra with strong or even dominant O IV, higher values of κ can approximate a range of observed TR spectra. Spectra similar to typically observed spectra, with the Si IV 1402.8 Å line about a factor 5 higher than O IV 1401.2 Å, are obtained for κ = 3. An even higher value of κ = 5 results in spectra that are exclusively dominated by Si IV, with negligible O IV emission. This is a possible interpretation of the TR spectra of UV (Ellerman) bursts, although an interpretation that requires a density that is 1-3 orders of magnitude lower than for equilibrium estimates. Movies associated to Fig. A.1 are available at http://https://www.aanda.org

  13. Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susmikanti, Mike, E-mail: mike@batan.go.id; Sulistyo, Jos, E-mail: soj@batan.go.id

    2014-09-30

    Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to developmore » code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.« less

  14. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    PubMed

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to obtain different micelle sizes for the same block copolymer, by the choices we can make of the common solvent and the mode of solvent substitution. Published by Elsevier Inc.

  15. Numerical simulation of heat transfer in metal foams

    NASA Astrophysics Data System (ADS)

    Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.

    2018-02-01

    This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.

  16. Bifurcation and Stability Analysis of the Equilibrium States in Thermodynamic Systems in a Small Vicinity of the Equilibrium Values of Parameters

    NASA Astrophysics Data System (ADS)

    Barsuk, Alexandr A.; Paladi, Florentin

    2018-04-01

    The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.

  17. Molecular simulation study of cavity-generated instabilities in the superheated Lennard-Jones liquid

    NASA Astrophysics Data System (ADS)

    Torabi, Korosh; Corti, David S.

    2010-10-01

    Previous equilibrium-based density-functional theory (DFT) analyses of cavity formation in the pure component superheated Lennard-Jones (LJ) liquid [S. Punnathanam and D. S. Corti, J. Chem. Phys. 119, 10224 (2003); M. J. Uline and D. S. Corti, Phys. Rev. Lett. 99, 076102 (2007)] revealed that a thermodynamic limit of stability appears in which no liquidlike density profile can develop for cavity radii greater than some critical size (being a function of temperature and bulk density). The existence of these stability limits was also verified using isothermal-isobaric Monte Carlo (MC) simulations. To test the possible relevance of these limits of stability to a dynamically evolving system, one that may be important for homogeneous bubble nucleation, we perform isothermal-isobaric molecular dynamics (MD) simulations in which cavities of different sizes are placed within the superheated LJ liquid. When the impermeable boundary utilized to generate a cavity is removed, the MD simulations show that the cavity collapses and the overall density of the system remains liquidlike, i.e., the system is stable, when the initial cavity radius is below some certain value. On the other hand, when the initial radius is large enough, the cavity expands and the overall density of the system rapidly decreases toward vaporlike densities, i.e., the system is unstable. Unlike the DFT predictions, however, the transition between stability and instability is not infinitely sharp. The fraction of initial configurations that generate an instability (or a phase separation) increases from zero to unity as the initial cavity radius increases over a relatively narrow range of values, which spans the predicted stability limit obtained from equilibrium MC simulations. The simulation results presented here provide initial evidence that the equilibrium-based stability limits predicted in the previous DFT and MC simulation studies may play some role, yet to be fully determined, in the homogeneous nucleation and growth of embryos within metastable fluids.

  18. Dissolution of multi-component LNAPL gasolines: The effects of weathering and composition

    NASA Astrophysics Data System (ADS)

    Lekmine, Greg; Bastow, Trevor P.; Johnston, Colin D.; Davis, Greg B.

    2014-05-01

    The composition of light non-aqueous phase liquid (LNAPL) gasoline and other petroleum products changes profoundly over their life once released into aquifers. However limited attention has been given to how such changes affect key parameters such as the activity coefficients which control partitioning of components of petroleum fuel into groundwater and are used to predict long-term risk from fuel releases. Laboratory experiments were conducted on a range of fresh, weathered and synthetic gasoline mixtures designed to mimic the expected changes in composition in an aquifer. Weathered gasoline created under controlled evaporation and water washing, and naturally weathered gasoline, were investigated. Equilibrium concentrations in water and molar fractions in the gasoline mixtures were compared with equilibrium concentrations predicted by Raoult's law assuming ideal behaviour of the solutions. The experiments carried out allowed the relative sensitivity of the activity coefficients of key risk drivers such as benzene, toluene, ethylbenzene and xylene (BTEX) compounds to be quantified with respect to the presence of other types of compounds and where the source LNAPL had undergone different types of weathering. Results differed for the mixtures examined but in some cases higher than predicted dissolved equilibrium concentrations showed non-ideal behaviour for toluene, benzene and xylenes. Comparison of the activity coefficients showed that the naturally weathered gasoline and a 50% evaporated unleaded gasoline present a similar range of values varying between 1.0 and 1.2, suggesting close to ideal partitioning between the LNAPL and water. The fresh and water-washed gasoline had higher values for the activity coefficient, from 1.2 to 1.4, indicating non-ideal partitioning. Results from synthetic mixtures demonstrated that these differences could be due to the different molar fractions of the nC5 and nC6 aliphatic hydrocarbons acting on the molecular interactions, while differences in molar volumes seemed to have less of an influence on ideality.

  19. Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels.

    PubMed

    Fournel, S; Marcos, B; Godbout, S; Heitz, M

    2015-03-01

    A prediction model of gaseous emissions (CO, CO2, NOx, SO2 and HCl) from small-scale combustion of agricultural biomass fuels was developed in order to rapidly assess their potential to be burned in accordance to current environmental threshold values. The model was established based on calculation of thermodynamic equilibrium of reactive multicomponent systems using Gibbs free energy minimization. Since this method has been widely used to estimate the composition of the syngas from wood gasification, the model was first validated by comparing its prediction results with those of similar models from the literature. The model was then used to evaluate the main gas emissions from the combustion of four dedicated energy crops (short-rotation willow, reed canary grass, switchgrass and miscanthus) previously burned in a 29-kW boiler. The prediction values revealed good agreement with the experimental results. The model was particularly effective in estimating the influence of harvest season on SO2 emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Thermal non-equilibrium in porous medium adjacent to vertical plate: ANN approach

    NASA Astrophysics Data System (ADS)

    Ahmed, N. J. Salman; Ahamed, K. S. Nazim; Al-Rashed, Abdullah A. A. A.; Kamangar, Sarfaraz; Athani, Abdulgaphur

    2018-05-01

    Thermal non-equilibrium in porous medium is a condition that refers to temperature discrepancy in solid matrix and fluid of porous medium. This type of flow is complex flow requiring complex set of partial differential equations that govern the flow behavior. The current work is undertaken to predict the thermal non-equilibrium behavior of porous medium adjacent to vertical plate using artificial neural network. A set of neurons in 3 layers are trained to predict the heat transfer characteristics. It is found that the thermal non-equilibrium heat transfer behavior in terms of Nusselt number of fluid as well as solid phase can be predicted accurately by using well-trained neural network.

  1. Centromere-associated meiotic drive and female fitness variation in Mimulus.

    PubMed

    Fishman, Lila; Kelly, John K

    2015-05-01

    Female meiotic drive, in which chromosomal variants preferentially segregate to the egg pole during asymmetric female meiosis, is a theoretically pervasive but still mysterious form of selfish evolution. Like other selfish genetic elements, driving chromosomes may be maintained as balanced polymorphisms by pleiotropic or linked fitness costs. A centromere-associated driver (D) with a ∼58:42 female-specific transmission advantage occurs at intermediate frequency (32-40%) in the Iron Mountain population of the yellow monkeyflower, Mimulus guttatus. Previously determined male fertility costs are sufficient to prevent the fixation of D, but predict a higher equilibrium frequency. To better understand the dynamics and effects of D, we developed a new population genetic model and measured genotype-specific lifetime female fitness in the wild. In three of four years, and across all years, D imposed significant recessive seedset costs, most likely due to hitchhiking by deleterious mutations. With both male and female costs as measured, and 58:42 drive, our model predicts an equilibrium frequency of D (38%) very close to the observed value. Thus, D represents a rare selfish genetic element whose local population genetic dynamics have been fully parameterized, and the observation of equilibrium sets the stage for investigations of coevolution with suppressors. © 2015 The Author(s).

  2. Thermodynamic equilibrium solubility measurements in simulated fluids by 96-well plate method in early drug discovery.

    PubMed

    Bharate, Sonali S; Vishwakarma, Ram A

    2015-04-01

    An early prediction of solubility in physiological media (PBS, SGF and SIF) is useful to predict qualitatively bioavailability and absorption of lead candidates. Despite of the availability of multiple solubility estimation methods, none of the reported method involves simplified fixed protocol for diverse set of compounds. Therefore, a simple and medium-throughput solubility estimation protocol is highly desirable during lead optimization stage. The present work introduces a rapid method for assessment of thermodynamic equilibrium solubility of compounds in aqueous media using 96-well microplate. The developed protocol is straightforward to set up and takes advantage of the sensitivity of UV spectroscopy. The compound, in stock solution in methanol, is introduced in microgram quantities into microplate wells followed by drying at an ambient temperature. Microplates were shaken upon addition of test media and the supernatant was analyzed by UV method. A plot of absorbance versus concentration of a sample provides saturation point, which is thermodynamic equilibrium solubility of a sample. The established protocol was validated using a large panel of commercially available drugs and with conventional miniaturized shake flask method (r(2)>0.84). Additionally, the statistically significant QSPR models were established using experimental solubility values of 52 compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  4. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.

    PubMed

    Ballard, Christopher C; Esty, C Clark; Egolf, David A

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  5. The stochastic spectator

    NASA Astrophysics Data System (ADS)

    Hardwick, Robert J.; Vennin, Vincent; Byrnes, Christian T.; Torrado, Jesús; Wands, David

    2017-10-01

    We study the stochastic distribution of spectator fields predicted in different slow-roll inflation backgrounds. Spectator fields have a negligible energy density during inflation but may play an important dynamical role later, even giving rise to primordial density perturbations within our observational horizon today. During de-Sitter expansion there is an equilibrium solution for the spectator field which is often used to estimate the stochastic distribution during slow-roll inflation. However slow roll only requires that the Hubble rate varies slowly compared to the Hubble time, while the time taken for the stochastic distribution to evolve to the de-Sitter equilibrium solution can be much longer than a Hubble time. We study both chaotic (monomial) and plateau inflaton potentials, with quadratic, quartic and axionic spectator fields. We give an adiabaticity condition for the spectator field distribution to relax to the de-Sitter equilibrium, and find that the de-Sitter approximation is never a reliable estimate for the typical distribution at the end of inflation for a quadratic spectator during monomial inflation. The existence of an adiabatic regime at early times can erase the dependence on initial conditions of the final distribution of field values. In these cases, spectator fields acquire sub-Planckian expectation values. Otherwise spectator fields may acquire much larger field displacements than suggested by the de-Sitter equilibrium solution. We quantify the information about initial conditions that can be obtained from the final field distribution. Our results may have important consequences for the viability of spectator models for the origin of structure, such as the simplest curvaton models.

  6. Out-of-equilibrium relaxation of the thermal Casimir effect in a model polarizable material

    NASA Astrophysics Data System (ADS)

    Dean, David S.; Démery, Vincent; Parsegian, V. Adrian; Podgornik, Rudolf

    2012-03-01

    Relaxation of the thermal Casimir or van der Waals force (the high temperature limit of the Casimir force) for a model dielectric medium is investigated. We start with a model of interacting polarization fields with a dynamics that leads to a frequency dependent dielectric constant of the Debye form. In the static limit, the usual zero frequency Matsubara mode component of the Casimir force is recovered. We then consider the out-of-equilibrium relaxation of the van der Waals force to its equilibrium value when two initially uncorrelated dielectric bodies are brought into sudden proximity. For the interaction between dielectric slabs, it is found that the spatial dependence of the out-of-equilibrium force is the same as the equilibrium one, but it has a time dependent amplitude, or Hamaker coefficient, which increases in time to its equilibrium value. The final relaxation of the force to its equilibrium value is exponential in systems with a single or finite number of polarization field relaxation times. However, in systems, such as those described by the Havriliak-Negami dielectric constant with a broad distribution of relaxation times, we observe a much slower power law decay to the equilibrium value.

  7. Density-dependent host choice by disease vectors: epidemiological implications of the ideal free distribution.

    PubMed

    Basáñez, María-Gloria; Razali, Karina; Renz, Alfons; Kelly, David

    2007-03-01

    The proportion of vector blood meals taken on humans (the human blood index, h) appears as a squared term in classical expressions of the basic reproduction ratio (R(0)) for vector-borne infections. Consequently, R(0) varies non-linearly with h. Estimates of h, however, constitute mere snapshots of a parameter that is predicted, from evolutionary theory, to vary with vector and host abundance. We test this prediction using a population dynamics model of river blindness assuming that, before initiation of vector control or chemotherapy, recorded measures of vector density and human infection accurately represent endemic equilibrium. We obtain values of h that satisfy the condition that the effective reproduction ratio (R(e)) must equal 1 at equilibrium. Values of h thus obtained decrease with vector density, decrease with the vector:human ratio and make R(0) respond non-linearly rather than increase linearly with vector density. We conclude that if vectors are less able to obtain human blood meals as their density increases, antivectorial measures may not lead to proportional reductions in R(0) until very low vector levels are achieved. Density dependence in the contact rate of infectious diseases transmitted by insects may be an important non-linear process with implications for their epidemiology and control.

  8. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    NASA Astrophysics Data System (ADS)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water, and NaCl in permafrost conditions are presented to illustrate the predictive capabilities of the multi-scale GHC equation. In particular, we show that the GHC equation correctly predicts 1) The density of 1h ice and methane hydrate to within 1%. 2) The melting curve for hexagonal ice. 3) The hydrate-gas phase co-existence curve. 4) Various phase equilibrium involving ice and hydrate phases. We also show that the GHC equation approach can be readily incorporated into subsurface flow simulation programs like FEHM to predict the behavior of permafrost and other reservoirs where ice and/or hydrates are present. Many geometric illustrations are used to elucidate key concepts. References A. Lucia, A Multi-Scale Gibbs Helmholtz Constrained Cubic Equation of State. J. Thermodynamics: Special Issue on Advances in Gas Hydrate Thermodynamics and Transport Properties. Available on-line [doi:10.1155/2010/238365]. A. Lucia, B.M. Bonk, A. Roy and R.R. Waterman, A Multi-Scale Framework for Multi-Phase Equilibrium Flash. Comput. Chem. Engng. In press.

  9. [The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is the function of equilibrium segment structure and properties].

    PubMed

    Vrzheshch, P V

    2015-01-01

    Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.

  10. Pleural pressure theory revisited: a role for capillary equilibrium

    PubMed Central

    Caruana-Gauci, Roberto; Manche, Alexander; Gauci, Marilyn; Chetcuti, Stanley; Bertolaccini, Luca

    2017-01-01

    Background Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. Methods A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. Results The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes’ hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. Conclusions This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation. PMID:28523153

  11. A Tale of Two Limpets (Patella vulgata and Patella stellaeformis): Evaluating a New Proxy for Late Holocene Climate Change in Coastal Areas

    NASA Astrophysics Data System (ADS)

    Fenger, T. L.; Surge, D. M.; Schoene, B. R.; Carter, J. G.; Milner, N.

    2006-12-01

    Shells of the European limpet, Patella vulgata, from Late Holocene archaeological deposits potentially contain critical information about climate change in coastal areas. Before deciphering climate information preserved in these zooarchaeological records, we studied the controls on oxygen isotope ratios (δ18O) in modern specimens. We tested the hypothesis that P. vulgata precipitates its shell in isotopic equilibrium with ambient water by comparing δ18OSHELL with expected values. Expected δ18OSHELL was constructed using the calcite-water fractionation equation, observed sea surface temperature (SST), and assuming δ18OWATER is +0.10‰ (VSMOW). Comparison between expected and measured δ18OSHELL revealed a +1.51±0.21‰ (VPDB) offset from expected values. Consequently, estimated SST calculated from δ18OSHELL was 6.50±2.45°C lower than observed SST. However, because the offset was relatively uniform, an adjustment can be made to account for this predictable vital effect and past SST can be reliably reconstructed. To further investigate the source of offset in this genus, we analyzed a fully marine tropical species (Patella stellaeformis) to minimize seasonal variation in environmental factors that influence δ18OSHELL. P. stellaeformis was evaluated to determine whether it has a similar offset from equilibrium as P. vulgata. We tested the hypotheses that: (1) δ18OSHELL in tropical species also displays vital effects; and (2) the offset from equilibrium (if any) would be constant and predictable. Our results indicated: (1) aragonite comprises most of P. stellaeformis' shell; and (2) δ18OSHELL is statistically indistinguishable from expected values calculated using the aragonite-water fractionation equation (Kolmogorov-Smirnov test statistic=0.61, D0.05[56, 57]=1.36) in contrast with our observations in P. vulgata. Differences in mineralogy or growth rates at different latitudes may play a role in mechanisms that influence vital effects.

  12. Mass and Radius Constraints Using Magnetar Giant Flare Oscillations

    NASA Astrophysics Data System (ADS)

    Deibel, Alex T.; Steiner, A. W.; Brown, E. F.

    2013-04-01

    We extend the study of oscillating neutron stars to include observed magnetic field strengths. The strong magnetic field will alter the equilibrium composition of the outer neutron star crust. We construct a new neutron star crust model which predicts nuclear masses with an accuracy very close to that of the Finite Range Droplet Model. The mass model for equilibrium nuclei also includes recent developments in the nuclear physics, in particular, shell corrections and an updated neutron-drip line. We perturb our crust model to predict axial crust modes and assign them to observed giant flare quasi-periodic oscillation (QPO) frequencies from SGR 1806-20. The QPOs associated with the fundamental and harmonic crust modes can be used to constrain magnetar masses and radii. We use these modes and the phenomenological equations of state from Steiner et al. to find a magnetar crust which reproduces observations of SGR 1806-20. We find magnetar crusts which match observations for various magnetic field strengths and values of entrainment of the free neutron gas in the inner crust. For a crust without a magnetic field we obtain the approximate values of M = 1.35 Msun and R = 11.85 km. For a magnetized crust with the surface dipole field of SGR 1806-20 we obtain the approximate values of M = 1.25 Msun and R = 12.41 km. If there is less entrainment of the free neutron gas the magnetar requires a larger mass and radius to reproduce observations.

  13. On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension.

    PubMed

    Wereszczynski, Jeff; Andricioaei, Ioan

    2006-10-31

    A precise understanding of the flexibility of double stranded nucleic acids and the nature of their deformed conformations induced by external forces is important for a wide range of biological processes including transcriptional regulation, supercoil and catenane removal, and site-specific recombination. We present, at atomic resolution, a simulation of the dynamics involved in the transitions from B-DNA and A-RNA to Pauling (P) forms and to denatured states driven by application of external torque and tension. We then calculate the free energy profile along a B- to P-transition coordinate and from it, compute a reversible pathway, i.e., an isotherm of tension and torque pairs required to maintain P-DNA in equilibrium. The reversible isotherm maps correctly onto a phase diagram derived from single molecule experiments, and yields values of elongation, twist, and twist-stretch coupling in agreement with measured values. We also show that configurational entropy compensates significantly for the large electrostatic energy increase due to closer-packed P backbones. A similar set of simulations applied to RNA are used to predict a novel structure, P-RNA, with its associated free energy, equilibrium tension, torque and structural parameters, and to assign the location, on the phase-diagram, of a putative force-torque-dependent RNA "triple point."

  14. In silico prediction of medium effects on esterification equilibrium using the COSMO-RS method.

    PubMed

    Fermeglia, Maurizio; Braiuca, Paolo; Gardossi, Lucia; Pricl, Sabrina; Halling, Peter J

    2006-01-01

    This paper presents a new approach for predicting solvent effects on esterification reactions of industrial importance in the field of biocatalysis. The COSMO-RS method has been used to calculate the activity coefficients of the chemical species involved in various reactions, carried out in different solvents. For comparison we also used the traditional UNIFAC method. Three lipase-catalyzed esterifications were considered: (1) 1-dodecanoic acid with menthol in n-hexane, n-heptane, cyclohexane, 2,2,4-trimethylpentane, toluene, acetonitrile, and 2-methyl-2-butanol; (2) 1-dodecanoic acid and 1-dodecanol in n-hexane, n-heptane, cyclohexane, 2,2,4-trimethylpentane, and toluene; and (3) glycerol and n-octanoic acid in acetonitrile, benzene, and toluene and in the neat reaction mixture (without any solvent). Predicted activities were used to calculate the thermodynamic equilibrium ratio. This should be independent of medium, and the variation in COSMO-RS values is at most 9-fold (corresponding to a DeltaG degrees of about 5.5 kJ/mol, which would still be a very useful prediction) and often only 2-fold (corresponding to less than 2 kJ/mol or 0.5 kcal/mol, therefore comparable with experimental error). UNIFAC is weaker, especially when important roles are played by conformational freedom, intramolecular interactions, strong polar effects, and charge distribution of molecules in the mixture. The relative percent deviations from the mean of equilibrium constants in different solvents range between 17 and 49 for COSMO-RS versus 32 to 65 for UNIFAC. The COSMO-RS method opens up new perspectives for the development of theoretical models for solvent selection with general applicability.

  15. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.

    PubMed

    Han, Shuping; Naito, Wataru; Masunaga, Shigeki

    To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.

  16. Maintenance of equilibrium point control during an unexpectedly loaded rapid limb movement.

    PubMed

    Simmons, R W; Richardson, C

    1984-06-08

    Two experiments investigated whether the equilibrium point hypothesis or the mass-spring model of motor control subserves positioning accuracy during spring loaded, rapid, bi-articulated movement. For intact preparations, the equilibrium point hypothesis predicts response accuracy to be determined by a mixture of afferent and efferent information, whereas the mass-spring model predicts positioning to be under a direct control system. Subjects completed a series of load-resisted training trials to a spatial target. The magnitude of a sustained spring load was unexpectedly increased on selected trials. Results indicated positioning accuracy and applied force varied with increases in load, which suggests that the original efferent commands are modified by afferent information during the movement as predicted by the equilibrium point hypothesis.

  17. Physics-based statistical learning approach to mesoscopic model selection.

    PubMed

    Taverniers, Søren; Haut, Terry S; Barros, Kipton; Alexander, Francis J; Lookman, Turab

    2015-11-01

    In materials science and many other research areas, models are frequently inferred without considering their generalization to unseen data. We apply statistical learning using cross-validation to obtain an optimally predictive coarse-grained description of a two-dimensional kinetic nearest-neighbor Ising model with Glauber dynamics (GD) based on the stochastic Ginzburg-Landau equation (sGLE). The latter is learned from GD "training" data using a log-likelihood analysis, and its predictive ability for various complexities of the model is tested on GD "test" data independent of the data used to train the model on. Using two different error metrics, we perform a detailed analysis of the error between magnetization time trajectories simulated using the learned sGLE coarse-grained description and those obtained using the GD model. We show that both for equilibrium and out-of-equilibrium GD training trajectories, the standard phenomenological description using a quartic free energy does not always yield the most predictive coarse-grained model. Moreover, increasing the amount of training data can shift the optimal model complexity to higher values. Our results are promising in that they pave the way for the use of statistical learning as a general tool for materials modeling and discovery.

  18. Rocksalt or cesium chloride: Investigating the relative stability of the cesium halide structures with random phase approximation based methods

    NASA Astrophysics Data System (ADS)

    Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.

    2018-03-01

    The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.

  19. Stellar equilibrium configurations of white dwarfs in the f( R, T) gravity

    NASA Astrophysics Data System (ADS)

    Carvalho, G. A.; Lobato, R. V.; Moraes, P. H. R. S.; Arbañil, José D. V.; Otoniel, E.; Marinho, R. M.; Malheiro, M.

    2017-12-01

    In this work we investigate the equilibrium configurations of white dwarfs in a modified gravity theory, namely, f( R, T) gravity, for which R and T stand for the Ricci scalar and trace of the energy-momentum tensor, respectively. Considering the functional form f(R,T)=R+2λ T, with λ being a constant, we obtain the hydrostatic equilibrium equation for the theory. Some physical properties of white dwarfs, such as: mass, radius, pressure and energy density, as well as their dependence on the parameter λ are derived. More massive and larger white dwarfs are found for negative values of λ when it decreases. The equilibrium configurations predict a maximum mass limit for white dwarfs slightly above the Chandrasekhar limit, with larger radii and lower central densities when compared to standard gravity outcomes. The most important effect of f( R, T) theory for massive white dwarfs is the increase of the radius in comparison with GR and also f( R) results. By comparing our results with some observational data of massive white dwarfs we also find a lower limit for λ , namely, λ >- 3× 10^{-4}.

  20. Adsorption equilibrium and kinetics of monomer-dimer monoclonal antibody mixtures on a cation exchange resin.

    PubMed

    Reck, Jason M; Pabst, Timothy M; Hunter, Alan K; Wang, Xiangyang; Carta, Giorgio

    2015-07-10

    Adsorption equilibrium and kinetics are determined for a monoclonal antibody (mAb) monomer and dimer species, individually and in mixtures, on a macroporous cation exchange resin both under the dilute limit of salt gradient elution chromatography and at high protein loads and low salt based on batch adsorption equilibrium and confocal laser scanning microscopy (CLSM) experiments. In the dilute limit and weak binding conditions, the dimer/monomer selectivity in 10mM phosphate at pH 7 varies between 8.7 and 2.3 decreasing with salt concentration in the range of 170-230mM NaCl. At high protein loads and strong binding conditions (0-60mM NaCl), the selectivity in the same buffer is near unity with no NaCl added, but increases gradually with salt concentration reaching high values between 2 and 15 with 60mM added NaCl. For these conditions, the two-component adsorption kinetics is controlled by pore diffusion and is predicted approximately by a dual shrinking core model using parameters based on single component equilibrium and kinetics measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Local thermodynamic equilibrium for globally disequilibrium open systems under stress

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury

    2016-04-01

    Predictive modeling of far and near equilibrium processes is essential for understanding of patterns formation and for quantifying of natural processes that are never in global equilibrium. Methods of both equilibrium and non-equilibrium thermodynamics are needed and have to be combined. For example, predicting temperature evolution due to heat conduction requires simultaneous use of equilibrium relationship between internal energy and temperature via heat capacity (the caloric equation of state) and disequilibrium relationship between heat flux and temperature gradient. Similarly, modeling of rocks deforming under stress, reactions in system open for the porous fluid flow, or kinetic overstepping of the equilibrium reaction boundary necessarily needs both equilibrium and disequilibrium material properties measured under fundamentally different laboratory conditions. Classical irreversible thermodynamics (CIT) is the well-developed discipline providing the working recipes for the combined application of mutually exclusive experimental data such as density and chemical potential at rest under constant pressure and temperature and viscosity of the flow under stress. Several examples will be presented.

  2. Modeling the dynamic equilibrium between oligomers of (AlOCH3)n in methylaluminoxane (MAO). A theoretical study based on a combined quantum mechanical and statistical mechanical approach.

    PubMed

    Zurek, E; Woo, T K; Firman, T K; Ziegler, T

    2001-01-15

    Density functional theory (DFT) has been used to calculate the energies of 36 different methylaluminoxane (MAO) cage structures with the general formula (MeAlO)n, where n ranges from 4 to 16. A least-squares fit has been used to devise a formula which predicts the total energies of the MAO with different n's giving an rms deviation of 4.70 kcal/mol. These energies in conjunction with frequency calculations based on molecular mechanics have been used to estimate the finite temperature enthalpies, entropies, and free energies for these MAO structures. Furthermore, formulas have been devised which predict finite temperature enthalpies and entropies for MAO structures of any n for a temperature range of 198.15-598.15 K. Using these formulas, the free energies at different temperatures have been predicted for MAO structures where n ranges from 17 to 30. The free energy values were then used to predict the percentage of each n found at a given temperature. Our calculations give an average n value of 18.41, 17.23, 16.89, and 15.72 at 198.15, 298.15, 398.15, and 598.15 K, respectively. Topological arguments have also been used to show that the MAO cage structure contains a limited amount of square faces as compared to octagonal and hexagonal ones. It is also suggested that the limited number of square faces with their strained Al-O bonds explain the high molar Al:catalyst ratio required for activation. Moreover, in this study we outline a general methodology which may be used to calculate the percent abundance of an equilibrium mixture of oligomers with the general formula (X)n.

  3. AEDT: A new concept for ecological dynamics in the ever-changing world.

    PubMed

    Chesson, Peter

    2017-05-01

    The important concept of equilibrium has always been controversial in ecology, but a new, more general concept, an asymptotic environmentally determined trajectory (AEDT), overcomes many concerns with equilibrium by realistically incorporating long-term climate change while retaining much of the predictive power of a stable equilibrium. A population or ecological community is predicted to approach its AEDT, which is a function of time reflecting environmental history and biology. The AEDT invokes familiar questions and predictions but in a more realistic context in which consideration of past environments and a future changing profoundly due to human influence becomes possible. Strong applications are also predicted in population genetics, evolution, earth sciences, and economics.

  4. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Larsson, Johan

    2013-01-01

    A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.

  5. Equilibrium limit of thermal conduction and boundary scattering in nanostructures.

    PubMed

    Haskins, Justin B; Kınacı, Alper; Sevik, Cem; Çağın, Tahir

    2014-06-28

    Determining the lattice thermal conductivity (κ) of nanostructures is especially challenging in that, aside from the phonon-phonon scattering present in large systems, the scattering of phonons from the system boundary greatly influences heat transport, particularly when system length (L) is less than the average phonon mean free path (MFP). One possible route to modeling κ in these systems is through molecular dynamics (MD) simulations, inherently including both phonon-phonon and phonon-boundary scattering effects in the classical limit. Here, we compare current MD methods for computing κ in nanostructures with both L ⩽ MFP and L ≫ MFP, referred to as mean free path constrained (cMFP) and unconstrained (uMFP), respectively. Using a (10,0) CNT (carbon nanotube) as a benchmark case, we find that while the uMFP limit of κ is well-defined through the use of equilibrium MD and the time-correlation formalism, the standard equilibrium procedure for κ is not appropriate for the treatment of the cMFP limit because of the large influence of boundary scattering. To address this issue, we define an appropriate equilibrium procedure for cMFP systems that, through comparison to high-fidelity non-equilibrium methods, is shown to be the low thermal gradient limit to non-equilibrium results. Further, as a means of predicting κ in systems having L ≫ MFP from cMFP results, we employ an extrapolation procedure based on the phenomenological, boundary scattering inclusive expression of Callaway [Phys. Rev. 113, 1046 (1959)]. Using κ from systems with L ⩽ 3 μm in the extrapolation, we find that the equilibrium uMFP κ of a (10,0) CNT can be predicted within 5%. The equilibrium procedure is then applied to a variety of carbon-based nanostructures, such as graphene flakes (GF), graphene nanoribbons (GNRs), CNTs, and icosahedral fullerenes, to determine the influence of size and environment (suspended versus supported) on κ. Concerning the GF and GNR systems, we find that the supported samples yield consistently lower values of κ and that the phonon-boundary scattering remains dominant at large lengths, with L = 0.4 μm structures exhibiting a third of the periodic result. We finally characterize the effect of shape in CNTs and fullerenes on κ, showing the angular components of conductivity in CNTs and icosahedral fullerenes are similar for a given circumference.

  6. Misconceptions of Students and Teachers in Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Banerjee, Anil C.

    1991-01-01

    Written test was developed and administered to diagnose misconceptions in different areas of chemical equilibrium among 162 undergraduate chemistry students and 69 teachers of chemistry. Responses reveal widespread misconceptions among students and teachers in areas related to the prediction of equilibrium conditions, rate and equilibrium,…

  7. δ2H and δ18O of human body water: a GIS model to distinguish residents from non-residents in the contiguous USA.

    PubMed

    Podlesak, David W; Bowen, Gabriel J; O'Grady, Shannon; Cerling, Thure E; Ehleringer, James R

    2012-06-01

    An understanding of the factors influencing the isotopic composition of body water is important to determine the isotopic composition of tissues that are used to reconstruct movement patterns of humans. The δ(2)H and δ(18)O values of body water (δ(2)H(bw) and δ(18)O(bw)) are related to the δ(2)H and δ(18)O values of drinking water (δ(2)H(dw) and δ(18)O(dw)), but clearly distinct because of other factors including the composition of food. Here, we develop a mechanistic geographical information system (GIS) model to produce spatial projections of δ(2)H(bw) and δ(18)O(bw) values for the USA. We investigate the influence of gender, food, and drinking water on the predicted values by comparing them with the published values. The strongest influence on the predicted values was related to the source of δ(2)H(dw) and δ(18)O(dw) values. We combine the model with equations that describe the rate of turnover to produce estimates for the time required for a non-resident to reach an isotopic equilibrium with a resident population.

  8. An extension of ASM2d including pH calculation.

    PubMed

    Serralta, J; Ferrer, J; Borrás, L; Seco, A

    2004-11-01

    This paper presents an extension of the Activated Sludge Model No. 2d (ASM2d) including a chemical model able to calculate the pH value in biological processes. The developed chemical model incorporates the complete set of chemical species affecting the pH value to ASM2d describing non-equilibrium biochemical processes. It considers the system formed by one aqueous phase, in which biochemical processes take place, and one gaseous phase, and is based on the assumptions of instantaneous chemical equilibrium under liquid phase and kinetically governed mass transport between the liquid and gas phase. The ASM2d enlargement comprises the addition of every component affecting the pH value and an ion-balance for the calculation of the pH value and the dissociation species. The significant pH variations observed in a sequencing batch reactor operated for enhanced biological phosphorus removal were used to verify the capability of the extended model for predicting the dynamics of pH jointly with concentrations of acetic acid and phosphate. A pH inhibition function for polyphosphate accumulating bacteria has also been included in the model to simulate the behaviour observed. Experimental data obtained in four different experiments (with different sludge retention time and influent phosphorus concentrations) were accurately reproduced.

  9. Estimation of medium effects on equilibrium constants in moderate and high ionic strength solutions at elevated temperatures by using specific interaction theory (SIT): Interaction coefficients involving Cl, OH- and Ac- up to 200°C and 400 bars

    PubMed Central

    Xiong, Yongliang

    2006-01-01

    In this study, a series of interaction coefficients of the Brønsted-Guggenheim-Scatchard specific interaction theory (SIT) have been estimated up to 200°C and 400 bars. The interaction coefficients involving Cl- estimated include ε(H+, Cl-), ε(Na+, Cl-), ε(Ag+, Cl-), ε(Na+, AgCl2 -), ε(Mg2+, Cl-), ε(Ca2+, Cl-), ε(Sr2+, Cl-), ε(Ba2+, Cl-), ε(Sm3+, Cl-), ε(Eu3+, Cl-), ε(Gd3+, Cl-), and ε(GdAc2+, Cl-). The interaction coefficients involving OH- estimated include ε(Li+, OH-), ε(K+, OH-), ε(Na+, OH-), ε(Cs+, OH-), ε(Sr2+, OH-), and ε(Ba2+, OH-). In addition, the interaction coefficients of ε(Na+, Ac-) and ε(Ca2+, Ac-) have also been estimated. The bulk of interaction coefficients presented in this study has been evaluated from the mean activity coefficients. A few of them have been estimated from the potentiometric and solubility studies. The above interaction coefficients are tested against both experimental mean activity coefficients and equilibrium quotients. Predicted mean activity coefficients are in satisfactory agreement with experimental data. Predicted equilibrium quotients are in very good agreement with experimental values. Based upon its relatively rapid attainment of equilibrium and the ease of determining magnesium concentrations, this study also proposes that the solubility of brucite can be used as a pH (pcH) buffer/sensor for experimental systems in NaCl solutions up to 200°C by employing the predicted solubility quotients of brucite in conjunction with the dissociation quotients of water and the first hydrolysis quotients of Mg2+, all in NaCl solutions. PMID:16759370

  10. Kinetics and equilibrium partitioning of dissolved BTEX in PDMS and POM sheets.

    PubMed

    Nam, Go-Un; Bonifacio, Riza Gabriela; Kwon, Jung-Hwan; Hong, Yongseok

    2016-09-01

    Passive sampling of volatile organic chemicals from soil and groundwater is primarily important in assessing the status of environmental contamination. A group of low molecular weight pollutants usually found in petroleum fuels, benzene, toluene, ethylbenzene, and xylenes (BTEX) was studied for its kinetics and equilibrium partitioning with single-phase passive samplers using polydimethylsiloxane (PDMS) and polyoxymethylene (POM) as sorbing phase. PDMS (1 mm) and POM (0.076 mm) sheets were used for sorption of BTEX and concentrations were analyzed using GC-FID. The equilibrium absorption and desorption of PDMS in water was achieved after 120 min while POM sheets absorbed up to 35 days and desorbed in 7 days. The kinetic rate constants in PDMS is higher than in POM up to 3 orders of magnitude. Logarithms of partition coefficient were determined to be in the range of 1.6-2.8 for PDMS and 2.1-3.1 for POM. The results indicate that POM is a stronger sorbent for BTEX and has slower equilibration time than PDMS. The partitioning process for both polymers was found to be enthalpy-driven by measurement of K d values at varying temperatures. K d values increase at low temperature and high ionic strength conditions. Presence of other gasoline components, as well as dissolved organic matter, did not significantly affect equilibrium partitioning. A good 1:1 correlation between the measured and the predicted concentrations was established on testing the potential application of the constructed PDMS sampler on natural soils and artificial soils spiked with gasoline-contaminated water.

  11. The stochastic spectator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardwick, Robert J.; Vennin, Vincent; Wands, David

    We study the stochastic distribution of spectator fields predicted in different slow-roll inflation backgrounds. Spectator fields have a negligible energy density during inflation but may play an important dynamical role later, even giving rise to primordial density perturbations within our observational horizon today. During de-Sitter expansion there is an equilibrium solution for the spectator field which is often used to estimate the stochastic distribution during slow-roll inflation. However slow roll only requires that the Hubble rate varies slowly compared to the Hubble time, while the time taken for the stochastic distribution to evolve to the de-Sitter equilibrium solution can bemore » much longer than a Hubble time. We study both chaotic (monomial) and plateau inflaton potentials, with quadratic, quartic and axionic spectator fields. We give an adiabaticity condition for the spectator field distribution to relax to the de-Sitter equilibrium, and find that the de-Sitter approximation is never a reliable estimate for the typical distribution at the end of inflation for a quadratic spectator during monomial inflation. The existence of an adiabatic regime at early times can erase the dependence on initial conditions of the final distribution of field values. In these cases, spectator fields acquire sub-Planckian expectation values. Otherwise spectator fields may acquire much larger field displacements than suggested by the de-Sitter equilibrium solution. We quantify the information about initial conditions that can be obtained from the final field distribution. Our results may have important consequences for the viability of spectator models for the origin of structure, such as the simplest curvaton models.« less

  12. Some critical issues in the characterization of nanoscale thermal conductivity by molecular dynamics analysis

    NASA Astrophysics Data System (ADS)

    Ehsan Khaled, Mohammad; Zhang, Liangchi; Liu, Weidong

    2018-07-01

    The nanoscale thermal conductivity of a material can be significantly different from its value at the macroscale. Although a number of studies using the equilibrium molecular dynamics (EMD) with Green–Kubo (GK) formula have been conducted for nano-conductivity predictions, there are many problems in the analysis that have made the EMD results unreliable or misleading. This paper aims to clarify such critical issues through a thorough investigation on the effect and determination of the vital physical variables in the EMD-GK analysis, using the prediction of the nanoscale thermal conductivity of Si as an example. The study concluded that to have a reliable prediction, quantum correction, time step, simulation time, correlation time and system size are all crucial.

  13. Polydimethylsiloxane-air partition ratios for semi-volatile organic compounds by GC-based measurement and COSMO-RS estimation: Rapid measurements and accurate modelling.

    PubMed

    Okeme, Joseph O; Parnis, J Mark; Poole, Justen; Diamond, Miriam L; Jantunen, Liisa M

    2016-08-01

    Polydimethylsiloxane (PDMS) shows promise for use as a passive air sampler (PAS) for semi-volatile organic compounds (SVOCs). To use PDMS as a PAS, knowledge of its chemical-specific partitioning behaviour and time to equilibrium is needed. Here we report on the effectiveness of two approaches for estimating the partitioning properties of polydimethylsiloxane (PDMS), values of PDMS-to-air partition ratios or coefficients (KPDMS-Air), and time to equilibrium of a range of SVOCs. Measured values of KPDMS-Air, Exp' at 25 °C obtained using the gas chromatography retention method (GC-RT) were compared with estimates from a poly-parameter free energy relationship (pp-FLER) and a COSMO-RS oligomer-based model. Target SVOCs included novel flame retardants (NFRs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), organophosphate flame retardants (OPFRs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Significant positive relationships were found between log KPDMS-Air, Exp' and estimates made using the pp-FLER model (log KPDMS-Air, pp-LFER) and the COSMOtherm program (log KPDMS-Air, COSMOtherm). The discrepancy and bias between measured and predicted values were much higher for COSMO-RS than the pp-LFER model, indicating the anticipated better performance of the pp-LFER model than COSMO-RS. Calculations made using measured KPDMS-Air, Exp' values show that a PDMS PAS of 0.1 cm thickness will reach 25% of its equilibrium capacity in ∼1 day for alpha-hexachlorocyclohexane (α-HCH) to ∼ 500 years for tris (4-tert-butylphenyl) phosphate (TTBPP), which brackets the volatility range of all compounds tested. The results presented show the utility of GC-RT method for rapid and precise measurements of KPDMS-Air. Copyright © 2016. Published by Elsevier Ltd.

  14. Life history theory predicts fish assemblage response to hydrologic regimes.

    PubMed

    Mims, Meryl C; Olden, Julian D

    2012-01-01

    The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P < or = 0.05) according to quantile regression. Our results largely support a priori hypotheses of relationships between specific flow indices and relative prevalence of fish life history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales.

  15. Synergies in the space of control variables within the equilibrium-point hypothesis

    PubMed Central

    Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2015-01-01

    We use an approach rooted in the recent theory of synergies to analyze possible co-variation between two hypothetical control variables involved in finger force production based in the equilibrium-point hypothesis. These control variables are the referent coordinate (R) and apparent stiffness (C) of the finger. We tested a hypothesis that inter-trial co-variation in the {R; C} space during repeated, accurate force production trials stabilizes the fingertip force. This was expected to correspond to a relatively low amount of inter-trial variability affecting force and a high amount of variability keeping the force unchanged. We used the “inverse piano” apparatus to apply small and smooth positional perturbations to fingers during force production tasks. Across trials, R and C showed strong co-variation with the data points lying close to a hyperbolic curve. Hyperbolic regressions accounted for over 99% of the variance in the {R; C} space. Another analysis was conducted by randomizing the original {R; C} data sets and creating surrogate data sets that were then used to compute predicted force values. The surrogate sets always showed much higher force variance compared to the actual data, thus reinforcing the conclusion that finger force control was organized in the {R; C} space, as predicted by the equilibrium-point hypothesis, and involved co-variation in that space stabilizing total force. PMID:26701299

  16. A Study of Interactions between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method

    NASA Astrophysics Data System (ADS)

    Hadi, Fatemeh; Janbozorgi, Mohammad; Sheikhi, M. Reza H.; Metghalchi, Hameed

    2016-10-01

    The rate-controlled constrained-equilibrium (RCCE) method is employed to study the interactions between mixing and chemical reaction. Considering that mixing can influence the RCCE state, the key objective is to assess the accuracy and numerical performance of the method in simulations involving both reaction and mixing. The RCCE formulation includes rate equations for constraint potentials, density and temperature, which allows taking account of mixing alongside chemical reaction without splitting. The RCCE is a dimension reduction method for chemical kinetics based on thermodynamics laws. It describes the time evolution of reacting systems using a series of constrained-equilibrium states determined by RCCE constraints. The full chemical composition at each state is obtained by maximizing the entropy subject to the instantaneous values of the constraints. The RCCE is applied to a spatially homogeneous constant pressure partially stirred reactor (PaSR) involving methane combustion in oxygen. Simulations are carried out over a wide range of initial temperatures and equivalence ratios. The chemical kinetics, comprised of 29 species and 133 reaction steps, is represented by 12 RCCE constraints. The RCCE predictions are compared with those obtained by direct integration of the same kinetics, termed detailed kinetics model (DKM). The RCCE shows accurate prediction of combustion in PaSR with different mixing intensities. The method also demonstrates reduced numerical stiffness and overall computational cost compared to DKM.

  17. Nonlinear Plasma Response to Resonant Magnetic Perturbation in Rutherford Regime

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Yan, Xingting; Huang, Wenlong

    2017-10-01

    Recently a common analytic relation for both the locked mode and the nonlinear plasma response in the Rutherford regime has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance equations. The analytic relation predicts the threshold and the island size for the full penetration of resonant magnetic perturbation (RMP). It also rigorously proves a screening effect of the equilibrium toroidal flow. In this work, we test the theory by solving for the nonlinear plasma response to a single-helicity RMP of a circular-shaped limiter tokamak equilibrium with a constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. Time evolution of the parallel flow or ``slip frequency'' profile and its asymptotic approach to steady state obtained from the NIMROD simulations qualitatively agree with the theory predictions. Further comparisons are carried out for the saturated island size, the threshold for full mode penetration, as well as the screening effects of equilibrium toroidal flow in order to understand the physics of nonlinear plasma response in the Rutherford regime. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  18. Determination of an ensemble of structures representing the intermediate state of the bacterial immunity protein Im7.

    PubMed

    Gsponer, Joerg; Hopearuoho, Harri; Whittaker, Sara B-M; Spence, Graham R; Moore, Geoffrey R; Paci, Emanuele; Radford, Sheena E; Vendruscolo, Michele

    2006-01-03

    We present a detailed structural characterization of the intermediate state populated during the folding and unfolding of the bacterial immunity protein Im7. We achieve this result by incorporating a variety of experimental data available for this species in molecular dynamics simulations. First, we define the structure of the exchange-competent intermediate state of Im7 by using equilibrium hydrogen-exchange protection factors. Second, we use this ensemble to predict Phi-values and compare the results with the experimentally determined Phi-values of the kinetic refolding intermediate. Third, we predict chemical-shift measurements and compare them with the measured chemical shifts of a mutational variant of Im7 for which the kinetic folding intermediate is the most stable state populated at equilibrium. Remarkably, we found that the properties of the latter two species are predicted with high accuracy from the exchange-competent intermediate that we determined, suggesting that these three states are characterized by a similar architecture in which helices I, II, and IV are aligned in a native-like, but reorganized, manner. Furthermore, the structural ensemble that we obtained enabled us to rationalize the results of tryptophan fluorescence experiments in the WT protein and a series of mutational variants. The results show that the integration of diverse sets of experimental data at relatively low structural resolution is a powerful approach that can provide insights into the structural organization of this conformationally heterogeneous three-helix intermediate with unprecedented detail and highlight the importance of both native and non-native interactions in stabilizing its structure.

  19. Thermodynamic parameters of U (VI) sorption onto soils in aquatic systems.

    PubMed

    Kumar, Ajay; Rout, Sabyasachi; Ghosh, Malay; Singhal, Rakesh Kumar; Ravi, Pazhayath Mana

    2013-01-01

    The thermodynamic parameters viz. the standard free energy (∆Gº), Standard enthalpy change (∆Hº) and standard entropy change (∆Sº) were determined using the obtained values of distribution coefficient (kd) of U (VI) in two different types of soils (agricultural and undisturbed) by conducting a batch equilibrium experiment with aqueous media (groundwater and deionised water) at two different temperatures 25°C and 50°C. The obtained distribution coefficients (kd) values of U for undisturbed soil in groundwater showed about 75% higher than in agricultural soil at 25°C while in deionised water, these values were highly insignificant for both soils indicating that groundwater was observed to be more favorable for high surface sorption. At 50°C, the increased kd values in both soils revealed that solubility of U decreased with increasing temperature. Batch adsorption results indicated that U sorption onto soils was promoted at higher temperature and an endothermic and spontaneous interfacial process. The high positive values of ∆Sº for agricultural soil suggested a decrease in sorption capacity of U in that soil due to increased randomness at solid-solution interface. The low sorption onto agricultural soil may be due to presence of high amount of coarse particles in the form of sand (56%). Geochemical modeling predicted that mixed hydroxo-carbonato complexes of uranium were the most stable and abundant complexes in equilibrium solution during experimental.

  20. Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes

    NASA Technical Reports Server (NTRS)

    Lambeth, Melissa J.; Kushmerick, Martin J.; Marcinek, David J.; Conley, Kevin E.

    2002-01-01

    A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in vitro parameters could reproduce in vivo dynamics was the ability of the model to fit phosphocreatine (PCr) and inorganic phosphate (Pi) dynamic NMR data from ischemic basal mouse hindlimbs and predict biochemically-assayed lactate concentrations. Fitting was accomplished by optimizing four parameters--the ATPase rate coefficient, fraction of activated glycogen phosphorylase, and the equilibrium constants of creatine kinase and adenylate kinase (due to the absence of pH in the model). The optimized parameter values were physiologically reasonable, the resultant model fit the [PCr] and [Pi] timecourses well, and the model predicted the final measured lactate concentration. This result demonstrates that additional features of in vivo enzyme binding are not necessary for quantitative description of glycogenolytic dynamics.

  1. Stable carbon and hydrogen isotope fractionation of dissolved organic groundwater pollutants by equilibrium sorption.

    PubMed

    Höhener, Patrick; Yu, Xianjing

    2012-03-15

    Linear free energy relationships (LFERs) were established which relate equilibrium vapor-liquid isotope effects to stable carbon and hydrogen isotope enrichment factors for equilibrium sorption to geosorbents. The LFERs were established for normal, cyclic or branched alkanes, monoaromatic hydrocarbons, and chloroethenes. These LFERs predict that isotopic light compounds sorb more strongly than their heavy counterparts. Defining fractionation as in classical literature by "heavy divided by light", carbon enrichment factors for equilibrium sorption were derived which ranged from -0.13±0.04‰ (benzene) to -0.52±0.19‰ (trichloroethene at 5-15 °C). Hydrogen enrichment factors for sorption of 14 different compounds were between -2.4 and -9.2‰. For perdeuterated hydrocarbons the predicted enrichment factors ranged from -19±5.4‰ (benzene) to -64±30‰ (cyclohexane). Equilibrium sorption experiments with a soil and activated carbon as sorbents were performed in the laboratory for perdeuterocyclohexane and perdeuterotoluene. The measured D/H enrichments agreed with the LFER prediction for both compounds and both sorbents within the uncertainty estimate of the prediction. The results of this work suggest that equilibrium sorption does create only very small isotope shifts for (13)C in groundwater pollutants in aquifers. It is also suggested that deuterium shifts are expected to be higher, especially for strongly sorbing pollutants. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Biosorption of trivalent chromium on the brown seaweed biomass.

    PubMed

    Yun, Y S; Park, D; Park, J M; Volesky, B

    2001-11-01

    Biosorption has attracted attention as a cost-effective means for the treatment of metal-bearing wastewater. However, the mechanism of metal binding is not clearly understood, and consequently, modeling of the biosorption performance is still raising debates. In this study, the biosorption of trivalent chromium was investigated with protonated brown alga Ecklonia biomass as a model system. Titration of the biomass revealed that it contains at least three types of functional groups. The Fourier transform infrared spectrometry showed that the carboxyl group was the chromium-binding site within the pH range (pH 1-5) used in this study, where chromium does not precipitate. The pK value and the number of carboxyl groups were estimated to be 4.6 +/- 0.1 and 2.2 +/- 0.1 mmol/g, respectively. The equilibrium sorption isotherms determined at different solution pH indicated that the uptake of chromium increased significantly with increasing pH. A model for the description of chromium biosorption was developed incorporating the hydrolysis reactions that chromium undergoes in the aquatic phase. The model was able to predict the equilibrium sorption experimental data at different pH values and chromium concentrations. In addition, the speciation of the binding site as a function of the solution pH was predicted using the model in order to visualize the distribution of chromium ionic species on the binding site.

  3. Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent.

    PubMed

    Marinho, Marcelo Manzi; Souza, Maria Betânia Gonçalves; Lürling, Miquel

    2013-10-01

    The hypothesis that outcomes of phosphorus and light competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa are strain dependent was tested experimentally. Critical requirements of phosphorus (P*) and of light (I*) of two strains of each species were determined through monoculture experiments, which indicated a trade-off between species and also between Microcystis strains. Competition experiments between species were performed using the weakest predicted competitors (with the highest values of P* and of I*) and with the strongest predicted competitors (with the lowest values of P* and of I*). Under light limitation, competition between the weakest competitors led C. raciborskii to dominate. Between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but both strains co-existed in equilibrium. Under phosphate limitation, competition between the weakest competitors led C. raciborskii to exclude M. aeruginosa, and between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but the system did not reach an equilibrium and both strains were washed out. Hence, outcomes of the competition depended on the pair of competing strains and not only on species or on type of limitation. We concluded that existence of different trade-offs among strains and between species underlie our results showing that C. raciborskii can either dominate or be displaced by M. aeruginosa when exposed to different conditions of light or phosphate limitation.

  4. Processes affecting the stable isotope composition of calcite during precipitation on the surface of stalagmites: Laboratory experiments investigating the isotope exchange between DIC in the solution layer on top of a speleothem and the CO2 of the cave atmosphere

    NASA Astrophysics Data System (ADS)

    Dreybrodt, Wolfgang; Hansen, Maximilian; Scholz, Denis

    2016-02-01

    We present a theoretical derivation of the exchange time, τex, needed to establish isotopic equilibrium between atmospheric CO2 in a cave and HCO3- dissolved in a thin water film covering the surface of a speleothem. The result is τex = τredex · [HCO3-]/ (KH · pCO2cave) , where τredex depends on the depth, a, of the water film and on temperature. [HCO3-] is the concentration of bicarbonate, pCO2cave the partial pressure of CO2, and KH is Henry's constant. To test the theory we prepared stagnant or flowing thin films of a NaHCO3 solution and exposed them at 20 °C to an CO2 containing atmosphere of pCO2 500, 12,500, or 25,000 ppmV and defined isotope composition. The δ13C and δ18O values of the DIC in the solution were measured as a function of the exposure time. For stagnant films with depths between 0.06 and 0.2 cm the δ13C values exhibit an exponential approach towards isotope equilibrium with the atmospheric CO2 with exchange time, τex. The δ18O values first evolve towards isotopic equilibrium with atmospheric CO2, reach a minimum value and then drift away from the isotopic equilibrium with atmospheric CO2 approaching a steady state caused by isotopic exchange of oxygen with water. The experimental findings are in satisfactory agreement with the theoretical predictions. To further investigate isotope evolution in cave analogue conditions, a water film containing 5 mmol/L of NaHCO3 with a depth of 0.013 cm flowing down an inclined borosilicate glass plate was exposed to an atmosphere with pCO2 = 500 ppmV at a temperature of 20 °C. The δ13C and δ18O values were measured as a function of flow (exposure) time, t. The isotope compositions in the DIC of the water film decrease linear in time by δDIC (t) =δDIC (0) - (δDIC (0) -δDIC (∞)) · t /τex where δDIC (0) is the initial isotope composition of dissolved inorganic carbon (DIC) in the water film and δDIC (∞) its final value. From these data an exchange time τex of ca. 7000 s was obtained, in satisfactory agreement with the theoretical predictions. The exchange times can be calculated by τex = τredex · [HCO3-]/ (KH · pCO2cave), where τredex is given by the theory as function of temperature and the depth, a, of the water film. This way it is possible to obtain exchange times for various conditions of stalagmite growth as they occur in caves.

  5. Coupled phase and aqueous species equilibrium of the H 2O-CO 2-NaCl-CaCO 3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite

    NASA Astrophysics Data System (ADS)

    Duan, Zhenhao; Li, Dedong

    2008-10-01

    A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H 2O-CO 2-NaCl-CaCO 3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H +, Na +, Ca 2+, CaHCO3+, Ca(OH) +, OH -, Cl -, HCO3-, CO32-, CO 2(aq) and CaCO 3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO 2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T- P- m range, hence calcite solubility, CO 2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data. One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO 2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility. The functionality of pH value, alkalinity, CO 2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl (aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.

  6. Social cycling and conditional responses in the Rock-Paper-Scissors game

    PubMed Central

    Wang, Zhijian; Xu, Bin; Zhou, Hai-Jun

    2014-01-01

    How humans make decisions in non-cooperative strategic interactions is a big question. For the fundamental Rock-Paper-Scissors (RPS) model game system, classic Nash equilibrium (NE) theory predicts that players randomize completely their action choices to avoid being exploited, while evolutionary game theory of bounded rationality in general predicts persistent cyclic motions, especially in finite populations. However as empirical studies have been relatively sparse, it is still a controversial issue as to which theoretical framework is more appropriate to describe decision-making of human subjects. Here we observe population-level persistent cyclic motions in a laboratory experiment of the discrete-time iterated RPS game under the traditional random pairwise-matching protocol. This collective behavior contradicts with the NE theory but is quantitatively explained, without any adjustable parameter, by a microscopic model of win-lose-tie conditional response. Theoretical calculations suggest that if all players adopt the same optimized conditional response strategy, their accumulated payoff will be much higher than the reference value of the NE mixed strategy. Our work demonstrates the feasibility of understanding human competition behaviors from the angle of non-equilibrium statistical physics. PMID:25060115

  7. Radiotoxicity of Gadolinium-148 and Radium-223 in Mouse Testes: Relative Biological Effectiveness of Alpha-Particle Emitters In Vivo

    PubMed Central

    Howell, Roger W.; Goddu, S. Murty; Narra, Venkat R.; Fisher, Darrell R.; Schenter, Robert E.; Rao, Dandamudi V.

    2012-01-01

    The biological effects of radionuclides that emit α particles are of considerable interest in view of their potential for therapy and their presence in the environment. The present work is a continuation of our ongoing effort to study the radiotoxicity of α-particle emitters in vivo using the survival of murine testicular sperm heads as the biological end point. Specifically, the relative biological effectiveness (RBE) of very low-energy α particles (3.2 MeV) emitted by 148Gd is investigated and determined to be 7.4 ± 2.4 when compared to the effects of acute external 120 kVp X rays. This datum, in conjunction with our earlier results for 210Po and 212Pb in equilibrium with its daughters, is used to revise and extend the range of validity of our previous RBE–energy relationship for α particles emitted by tissue-incorporated radionuclides. The new empirical relationship is given by RBEα = 9.14 − 0.510 Eα, where 3 < Eα < 9 MeV. The validity of this empirical relationship is tested by determining the RBE of the prolific α-particle emitter 223Ra (in equilibrium with its daughters) experimentally in the same biological model and comparing the value obtained experimentally with the predicted value. The resulting RBE values are 5.4 ± 0.9 and 5.6, respectively. This close agreement strongly supports the adequacy of the empirical RBE-Eα relationship to predict the biological effects of α-particle emitters in Vivo. PMID:9052681

  8. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    NASA Astrophysics Data System (ADS)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models. However, the NSE values were lower than those of the hydroclimatological model, indicating that more model verification needs to be done. The equilibrium temperature model uses existing SWAT meteorological data as input, can be calibrated using fewer parameters and less effort and has an overall better performance in stream temperature simulation. Thus, it can be used as an effective tool for predicting the changes in stream temperature regimes under varying hydrological and meteorological conditions. In addition, the impact of the stream temperature simulations on chemical reaction rates and concentrations was tested. The results indicate that the improved performance of the stream temperature simulation could significantly affect chemical reaction rates and the simulated concentrations, and the equilibrium temperature model could be a potential tool to model stream temperature in water quality simulations.

  9. Effect of stirring on the safety of flammable liquid mixtures.

    PubMed

    Liaw, Horng-Jang; Gerbaud, Vincent; Chen, Chan-Cheng; Shu, Chi-Min

    2010-05-15

    Flash point is the most important variable employed to characterize fire and explosion hazard of liquids. The models developed for predicting the flash point of partially miscible mixtures in the literature to date are all based on the assumption of liquid-liquid equilibrium. In real-world environments, however, the liquid-liquid equilibrium assumption does not always hold, such as the collection or accumulation of waste solvents without stirring, where complete stirring for a period of time is usually used to ensure the liquid phases being in equilibrium. This study investigated the effect of stirring on the flash-point behavior of binary partially miscible mixtures. Two series of partially miscible binary mixtures were employed to elucidate the effect of stirring. The first series was aqueous-organic mixtures, including water+1-butanol, water+2-butanol, water+isobutanol, water+1-pentanol, and water+octane; the second series was the mixtures of two flammable solvents, which included methanol+decane, methanol+2,2,4-trimethylpentane, and methanol+octane. Results reveal that for binary aqueous-organic solutions the flash-point values of unstirred mixtures were located between those of the completely stirred mixtures and those of the flammable component. Therefore, risk assessment could be done based on the flammable component flash-point value. However, for the assurance of safety, it is suggested to completely stir those mixtures before handling to reduce the risk. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis.

    PubMed

    Wangler, A; Canales, R; Held, C; Luong, T Q; Winter, R; Zaitsau, D H; Verevkin, S P; Sadowski, G

    2018-04-25

    This work presents an approach that expresses the Michaelis constant KaM and the equilibrium constant Kth of an enzymatic peptide hydrolysis based on thermodynamic activities instead of concentrations. This provides KaM and Kth values that are independent of any co-solvent. To this end, the hydrolysis reaction of N-succinyl-l-phenylalanine-p-nitroanilide catalysed by the enzyme α-chymotrypsin was studied in pure buffer and in the presence of the co-solvents dimethyl sulfoxide, trimethylamine-N-oxide, urea, and two salts. A strong influence of the co-solvents on the measured Michaelis constant (KM) and equilibrium constant (Kx) was observed, which was found to be caused by molecular interactions expressed as activity coefficients. Substrate and product activity coefficients were used to calculate the activity-based values KaM and Kth for the co-solvent free reaction. Based on these constants, the co-solvent effect on KM and Kx was predicted in almost quantitative agreement with the experimental data. The approach presented here does not only reveal the importance of understanding the thermodynamic non-ideality of reactions taking place in biological solutions and in many technological applications, it also provides a framework for interpreting and quantifying the multifaceted co-solvent effects on enzyme-catalysed reactions that are known and have been observed experimentally for a long time.

  11. Run-Reversal Equilibrium for Clinical Trial Randomization

    PubMed Central

    Grant, William C.

    2015-01-01

    In this paper, we describe a new restricted randomization method called run-reversal equilibrium (RRE), which is a Nash equilibrium of a game where (1) the clinical trial statistician chooses a sequence of medical treatments, and (2) clinical investigators make treatment predictions. RRE randomization counteracts how each investigator could observe treatment histories in order to forecast upcoming treatments. Computation of a run-reversal equilibrium reflects how the treatment history at a particular site is imperfectly correlated with the treatment imbalance for the overall trial. An attractive feature of RRE randomization is that treatment imbalance follows a random walk at each site, while treatment balance is tightly constrained and regularly restored for the overall trial. Less predictable and therefore more scientifically valid experiments can be facilitated by run-reversal equilibrium for multi-site clinical trials. PMID:26079608

  12. Using Triple Oxygen Isotope Analyses of Biogenic Carbonate to Reconstruct Early Triassic Ocean Oxygen Isotopic Values and Temperatures

    NASA Astrophysics Data System (ADS)

    Gibbons, J. A.; Sharp, Z. D.; Atudorei, V.

    2017-12-01

    The calcite-water triple oxygen isotope fractionation is used to determine isotopic equilibrium and ancient ocean oxygen isotopic values and temperatures. Unlike conventional δ18O analysis where the formation water's isotopic value is assumed, paired δ17O-δ18O measurements allow for the water's isotopic composition to be calculated because there is only one unique solution for equilibrium fractionation using Δ17O-δ18O values (where Δ17O=δ17O-0.528δ18O). To a first approximation, the calcite-water equilibrium fractionation factor, θ (where θ=ln17α/ln18α), varies with temperature by 0.00001/°. The calcite-water equilibrium fractionation line was determined at two temperatures, 30° and 0°, by using modern carbonate samples that formed in ocean water with a δ18O value of 0‰. The θ values for the 30° and 0° samples are 0.52515 and 0.52486, respectively. Oxygen values were measured using complete fluorination in nickel tubes with BrF5 as the reaction reagent. We calibrated all oxygen values to the SMOW-SLAP scale by measuring SMOW, SLAP, San Carlos olivine, NBS-18, NBS-19, and PDB. The triple oxygen isotope calcite-water equilibrium fractionation line was applied to well preserved Early Triassic ammonite shells from the Western United States. Based on paired δ17O-δ18O measurements, the samples did not form in equilibrium with an ice-free ocean with an oxygen isotopic value of -1‰ or the modern ocean value of 0‰. Assuming the calcite is still primary and formed in equilibrium with the ocean water, our data indicate that the δ18O value of the ocean in the early Triassic was 3-5‰ lower than modern. Samples from the Smithian thermal maximum formed in water 10° warmer than samples from after the thermal maximum. Paired δ17O-δ18O measurements of pristine ancient carbonates may provide a better understanding of past ocean conditions during climate change events.

  13. Radiation Fog in the US Mid-Atlantic Region: Chemical Composition, Trends, and Gas-Liquid Partitioning

    NASA Astrophysics Data System (ADS)

    Straub, D.

    2016-12-01

    The chemical composition of radiation fog has been studied at a rural site in central Pennsylvania over an eight year period extending through 2015. Bulk fog samples were collected with an automated Caltech Heated Rod Cloud Collector (CHRCC) and analyzed for pH, inorganic ions, organic acids, total organic carbon (TOC), and total nitrogen (TN). Over the duration of the project, 146 samples were collected and used to document chemical composition, evaluate changes over time, and to investigate partitioning between the gas and aqueous phases. Ammonium, sulfate, calcium, and nitrate were the most abundant inorganic ions while acetate and formate were the dominant organic acids. Organic acids contributed about 15% to TOC. Inorganic nitrogen accounted for the majority of TN, with only 18% of TN attributed to organic nitrogen. Overall, organic matter contributed 52% to the total mass loading of the fog samples, a value that is higher than reported for other radiation fog studies. Statistically significant decreasing trends were observed for sulfate, ammonium, chloride, nitrate, and pH. These trends coincide with reductions in emissions from fossil fuel combustion that have been documented over this time period. Seasonal trends were also detected for nitrate, ammonium, potassium, phosphate, acetate and formate which appear to be related to the agricultural growing season. Based on simultaneous measurements of gas phase ammonia and ammonium in the fog samples, significant deviations from equilibrium were found. In low pH samples, ammonium concentrations were much lower than equilibrium predicts, while the opposite occurred in high pH samples. Modeling suggested that mass transfer limitations contributed to the departure from equilibrium. Similarly, predictions of bicarbonate concentrations based on equilibrium with gas phase carbon dioxide appears to underestimate the actual amount of bicarbonate present in samples collected during this study.

  14. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling.

    PubMed

    Fu, Hao; Li, Xuebing; Wang, Jun; Lin, Pengfei; Chen, Chao; Zhang, Xiaojian; Suffet, I H Mel

    2017-06-01

    The extensive use of antibiotics has led to their presence in the aquatic environment, and introduces potential impacts on human and ecological health. The capability of powdered activated carbon (PAC) to remove six frequently used quinolone (QN) antibiotics during water treatment was evaluated to improve drinking water safety. The kinetics of QN adsorption by PAC was best described by a pseudo second-order equation, and the adsorption capacity was well described by the Freundlich isotherm equation. Isotherms measured at different pH showed that hydrophobic interaction, electrostatic interaction, and π-π dispersion force were the main mechanisms for adsorption of QNs by PAC. A pH-dependent isotherm model based on the Freundlich equation was developed to predict the adsorption capacity of QNs by PAC at different pH values. This model had excellent prediction capabilities under different laboratory scenarios. Small relative standard derivations (RSDs), i.e., 0.59%-0.92% for ciprofloxacin and 0.09%-3.89% for enrofloxacin, were observed for equilibrium concentrations above the 0.3mg/L level. The RSDs increased to 11.9% for ciprofloxacin and 32.1% for enrofloxacin at μg/L equilibrium levels, which is still acceptable. This model could be applied to predict the adsorption of other chemicals having different ionized forms. Copyright © 2016. Published by Elsevier B.V.

  15. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means

    PubMed Central

    2014-01-01

    In adsorption study, to describe sorption process and evaluation of best-fitting isotherm model is a key analysis to investigate the theoretical hypothesis. Hence, numerous statistically analysis have been extensively used to estimate validity of the experimental equilibrium adsorption values with the predicted equilibrium values. Several statistical error analysis were carried out. In the present study, the following statistical analysis were carried out to evaluate the adsorption isotherm model fitness, like the Pearson correlation, the coefficient of determination and the Chi-square test, have been used. The ANOVA test was carried out for evaluating significance of various error functions and also coefficient of dispersion were evaluated for linearised and non-linearised models. The adsorption of phenol onto natural soil (Local name Kalathur soil) was carried out, in batch mode at 30 ± 20 C. For estimating the isotherm parameters, to get a holistic view of the analysis the models were compared between linear and non-linear isotherm models. The result reveled that, among above mentioned error functions and statistical functions were designed to determine the best fitting isotherm. PMID:25018878

  16. Theoretical study of the acid-base properties of the montmorillonite/electrolyte interface: influence of the surface heterogeneity and ionic strength on the potentiometric titration curves.

    PubMed

    Zarzycki, Piotr; Thomas, Fabien

    2006-10-15

    The parallel shape of the potentiometric titration curves for montmorillonite suspension is explained using the surface complexation model and taking into account the surface heterogeneity. The homogeneous models give accurate predictions only if they assume unphysically large values of the equilibrium constants for the exchange process occurring on the basal plane. However, the assumption that the basal plane is energetically heterogeneous allows to fit the experimental data (reported by Avena and De Pauli [M. Avena, C.P. De Pauli, J. Colloid Interface Sci. 202 (1998) 195-204]) for reasonable values of exchange equilibrium constant equal to 1.26 (suggested by Fletcher and Sposito [P. Fletcher, G. Sposito, Clay Miner. 24 (1989) 375-391]). Moreover, we observed the typical behavior of point of zero net proton charge (pznpc) as a function of logarithm of the electrolyte concentration (log[C]). We showed that the slope of the linear dependence, pznpc=f(log[C]), is proportional to the number of isomorphic substitutions in the crystal phase, which was also observed in the experimental studies.

  17. Theoretical model of the plasma edge. II. Transport along the open field lines of a magnetic island belt associated with the ionization instability

    NASA Astrophysics Data System (ADS)

    Rogister, A. L. M.; Hasselberg, G.

    1993-12-01

    For pt.I, see ibid, p.1799-1816 (1993). To the ionization instability described in Part I correspond odd phi, even br eigenfunctions leading, as for the tearing mode, to a magnetic island belt centred about the rational magnetic surface q = m < qa (q is the safety factor; m is the mode number). Plasma dumping on the target plates, along the island magnetic field lines, releases the neutrals, the ionization of which drives the instability. This self-consistent model of the plasma edge yields the electron temperature on the last closed equilibrium magnetic surface and the particle confinement time, which are compared with the values measured in TEXTOR and other tokamaks; interestingly, the value obtained for τp is very reminiscent of the heuristic energy confinement time expression proposed by Kaye and Goldston(1985). Theory also predicts an equilibrium bifurcation at high power, corresponding to a reduction, and then a collapse, of the island width. The hypothesis that the (L mode) island belt be hooked up to the machine's structure is briefly discussed

  18. Calculating and Visualizing Thermodynamic Equilibrium: A Tutorial on the Isolated System with an Internal Adiabatic Piston

    ERIC Educational Resources Information Center

    Ferreira, Joao Paulo M.

    2007-01-01

    The problem of the equilibrium state of an isolated composite system with a movable internal adiabatic wall is a recurrent one in the literature. Classical equilibrium thermodynamics is unable to predict the equilibrium state, unless supplemented with information about the process taking place. This conclusion is clearly demonstrated in this…

  19. The Study of Equilibrium factor between Radon-222 and its Daughters in Bangkok Atmosphere by Gamma-ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Rujiwarodom, Rachanee

    2010-05-01

    To study the Equilibrium between radon-222 and its daughters in Bangkok atmosphere by Gamma-ray spectrometry, air sample were collected on 48 activated charcoal canister and 360 glass fiber filters by using a high volume jet-air sampler during December 2007 to November 2008.The Spectra of gamma-ray were measured by using a HPGe (Hyper Pure Germanium Detector). In the condition of secular equilibrium obtaining between Radon-222 and its decay products, radon-222 on activated charcoal canister and its daughters on glass fiber filters collected in the same time interval were calculated. The equilibrium factor (F) in the open air had a value of 0.38 at the minimum ,and 0.75 at the maximum. The average value of equilibrium factor (F) was 0.56±0.12. Based on the results, F had variations with a maximum value in the night to the early morning and decreased in the afternoon. In addition, F was higher in the winter than in the summer. This finding corresponds with the properties of the Earth atmosphere. The equilibrium factor (F) also depended on the concentration of dust in the atmosphere. People living in Bangkok were exposed to average value of 30 Bq/m3 of Radon-222 in the atmosphere. The equilibrium factor (0.56±0.12) and the average value of Radon-222 showed that people were exposed to alpha energy from radon-222 and its daughters decay at 0.005 WL(Working Level) which is lower than the safety standard at 0.02 WL. Keywords: Radon, Radon daughters , equilibrium factor, Gamma -ray spectrum analysis ,Bangkok ,Thailand

  20. Effect of temperature oscillation on thermal characteristics of an aluminum thin film

    NASA Astrophysics Data System (ADS)

    Ali, H.; Yilbas, B. S.

    2014-12-01

    Energy transport in aluminum thin film is examined due to temperature disturbance at the film edge. Thermal separation of electron and lattice systems is considered in the analysis, and temperature variation in each sub-system is formulated. The transient analysis of frequency-dependent and frequency-independent phonon radiative transport incorporating electron-phonon coupling is carried out in the thin film. The dispersion relations of aluminum are used in the frequency-dependent analysis. Temperature at one edge of the film is oscillated at various frequencies, and temporal response of phonon intensity distribution in the film is predicted numerically using the discrete ordinate method. To assess the phonon transport characteristics, equivalent equilibrium temperature is introduced. It is found that equivalent equilibrium temperature in the electron and lattice sub-systems oscillates due to temperature oscillation at the film edge. The amplitude of temperature oscillation reduces as the distance along the film thickness increases toward the low-temperature edge of the film. Equivalent equilibrium temperature attains lower values for the frequency-dependent solution of the phonon transport equation than that corresponding to frequency-independent solution.

  1. Exponential 6 parameterization for the JCZ3-EOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, B.C.; Hobbs, M.L.; Baer, M.R.

    1998-07-01

    A database has been created for use with the Jacobs-Cowperthwaite-Zwisler-3 equation-of-state (JCZ3-EOS) to determine thermochemical equilibrium for detonation and expansion states of energetic materials. The JCZ3-EOS uses the exponential 6 intermolecular potential function to describe interactions between molecules. All product species are characterized by r*, the radius of the minimum pair potential energy, and {var_epsilon}/k, the well depth energy normalized by Boltzmann`s constant. These parameters constitute the JCZS (S for Sandia) EOS database describing 750 gases (including all the gases in the JANNAF tables), and have been obtained by using Lennard-Jones potential parameters, a corresponding states theory, pure liquid shockmore » Hugoniot data, and fit values using an empirical EOS. This database can be used with the CHEETAH 1.40 or CHEETAH 2.0 interface to the TIGER computer program that predicts the equilibrium state of gas- and condensed-phase product species. The large JCZS-EOS database permits intermolecular potential based equilibrium calculations of energetic materials with complex elemental composition.« less

  2. On violations of Le Chatelier's principle for a temperature change in small systems observed for short times

    NASA Astrophysics Data System (ADS)

    Dasmeh, Pouria; Searles, Debra J.; Ajloo, Davood; Evans, Denis J.; Williams, Stephen R.

    2009-12-01

    Le Chatelier's principle states that when a system is disturbed, it will shift its equilibrium to counteract the disturbance. However for a chemical reaction in a small, confined system, the probability of observing it proceed in the opposite direction to that predicted by Le Chatelier's principle, can be significant. This work gives a molecular level proof of Le Chatelier's principle for the case of a temperature change. Moreover, a new, exact mathematical expression is derived that is valid for arbitrary system sizes and gives the relative probability that a single experiment will proceed in the endothermic or exothermic direction, in terms of a microscopic phase function. We show that the average of the time integral of this function is the maximum possible value of the purely irreversible entropy production for the thermal relaxation process. Our result is tested against computer simulations of the unfolding of a polypeptide. We prove that any equilibrium reaction mixture on average responds to a temperature increase by shifting its point of equilibrium in the endothermic direction.

  3. Adaptive Multi-Agent Systems for Constrained Optimization

    NASA Technical Reports Server (NTRS)

    Macready, William; Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is a new framework for analyzing and controlling distributed systems. Here we demonstrate its use for distributed stochastic optimization. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. The updating of the Lagrange parameters in the Lagrangian can be viewed as a form of automated annealing, that focuses the MAS more and more on the optimal pure strategy. This provides a simple way to map the solution of any constrained optimization problem onto the equilibrium of a Multi-Agent System (MAS). We present computer experiments involving both the Queen s problem and K-SAT validating the predictions of PD theory and its use for off-the-shelf distributed adaptive optimization.

  4. Perspectives: Black Holes

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    When asked to discuss Cyg XR-1, E. E. Salpeter once concluded, 'A black hole in Cyg X(R)-1 is the most conservative hypothesis.' Recent observations now make it likely that a black hole in Cyg XR-1 is the only hypothesis tenable. Chandrasekhar first showed that compact stars - those with the inward force of gravity on their outer layers balanced by the pressure generated by the Pauli exclusion principle acting on its electrons (in white dwarfs) or nucleons (in neutron stars) - have a maximum mass. Equilibrium is achieved at a minimum of the total energy of the star, which is the sum of the positive Fermi energy and the negative gravitational energy. The maximum mass attainable in equilibrium is found by setting E = 0: M(max) = 1.5 M(Sun). If the mass of the star is larger than this, then E can be decreased without bound by decreasing the star's radius and increasing its (negative) gravitational energy. No equilibrium value of the radius exist, and general relativity predicts that gravitational collapse to a point occurs. This point singularity is a black hole.

  5. A study of reacting free and ducted hydrogen/air jets

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.

    1975-01-01

    The mixing and reaction of a supersonic jet of hydrogen in coaxial free and ducted high temperature test gases were investigated. The importance of chemical kinetics on computed results, and the utilization of free-jet theoretical approaches to compute enclosed flow fields were studied. Measured pitot pressure profiles were correlated by use of a parabolic mixing analysis employing an eddy viscosity model. All computations, including free, ducted, reacting, and nonreacting cases, use the same value of the empirical constant in the viscosity model. Equilibrium and finite rate chemistry models were utilized. The finite rate assumption allowed prediction of observed ignition delay, but the equilibrium model gave the best correlations downstream from the ignition location. Ducted calculations were made with finite rate chemistry; correlations were, in general, as good as the free-jet results until problems with the boundary conditions were encountered.

  6. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites

    PubMed Central

    Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315

  7. A non-LTE model for the Jovian methane infrared emissions at high spectral resolution

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Allen, J. E., Jr.; Decola, Philip L.

    1994-01-01

    High resolution spectra of Jupiter in the 3.3 micrometer region have so far failed to reveal either the continuum or the line emissions that can be unambiguously attributed to the nu(sub 3) band of methane (Drossart et al. 1993; Kim et al. 1991). Nu(sub 3) line intensities predicted with the help of two simple non-Local Thermodynamic Equilibrium (LTE) models -- a two-level model and a three-level model, using experimentally determined relaxation coefficients, are shown to be one to three orders of magnitude respectively below the 3-sigma noise level of these observations. Predicted nu(sub 4) emission intensities are consistent with observed values. If the methane mixing ratio below the homopause is assumed as 2 x 10(exp -3), a value of about 300 K is derived as an upper limit to the temperature of the high stratosphere at microbar levels.

  8. Surface tension profiles in vertical soap films

    NASA Astrophysics Data System (ADS)

    Adami, N.; Caps, H.

    2015-01-01

    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  9. Competitive Abilities in Experimental Microcosms Are Accurately Predicted by a Demographic Index for R*

    PubMed Central

    Murrell, Ebony G.; Juliano, Steven A.

    2012-01-01

    Resource competition theory predicts that R*, the equilibrium resource amount yielding zero growth of a consumer population, should predict species' competitive abilities for that resource. This concept has been supported for unicellular organisms, but has not been well-tested for metazoans, probably due to the difficulty of raising experimental populations to equilibrium and measuring population growth rates for species with long or complex life cycles. We developed an index (Rindex) of R* based on demography of one insect cohort, growing from egg to adult in a non-equilibrium setting, and tested whether Rindex yielded accurate predictions of competitive abilities using mosquitoes as a model system. We estimated finite rate of increase (λ′) from demographic data for cohorts of three mosquito species raised with different detritus amounts, and estimated each species' Rindex using nonlinear regressions of λ′ vs. initial detritus amount. All three species' Rindex differed significantly, and accurately predicted competitive hierarchy of the species determined in simultaneous pairwise competition experiments. Our Rindex could provide estimates and rigorous statistical comparisons of competitive ability for organisms for which typical chemostat methods and equilibrium population conditions are impractical. PMID:22970128

  10. Effects of physical aging on long-term behavior of composites

    NASA Technical Reports Server (NTRS)

    Brinson, L. Catherine

    1993-01-01

    The HSCT plane, envisioned to have a lifetime of over 60,000 flight hours and to travel at speeds in excess of Mach 2, is the source of intensive study at NASA. In particular, polymer matrix composites are being strongly considered for use in primary and secondary structures due to their high strength to weight ratio and the options of property tailoring. However, an added difficulty in the use of polymer based materials is that their properties change significantly over time, especially at the elevated temperatures that will be experienced during flight, and prediction of properties based on irregular thermal and mechanical loading is extremely difficult. This study focused on one aspect of long-term polymer composite behavior: physical aging. When a polymer is cooled to below its glass transition temperature, the material is not in thermodynamic equilibrium and the free volume and enthalpy evolve over time to approach their equilibrium values. During this time, the mechanical properties change significantly and this change is termed physical aging. This work begins with a review of the concepts of physical aging on a pure polymer system. The effective time theory, which can be used to predict long term behavior based on short term data, is mathematically formalized. The effects of aging to equilibrium are proven and discussed. The theory developed for polymers is then applied first to a unidirectional composite, then to a general laminate. Comparison to experimental data is excellent. It is shown that the effects of aging on the long-term properties of composites can be counter-intuitive, stressing the importance of the development and use of a predictive theory to analyze structures.

  11. Uncertain Henry's law constants compromise equilibrium partitioning calculations of atmospheric oxidation products

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Yuan, Tiange; Wood, Stephen A.; Goss, Kai-Uwe; Li, Jingyi; Ying, Qi; Wania, Frank

    2017-06-01

    Gas-particle partitioning governs the distribution, removal, and transport of organic compounds in the atmosphere and the formation of secondary organic aerosol (SOA). The large variety of atmospheric species and their wide range of properties make predicting this partitioning equilibrium challenging. Here we expand on earlier work and predict gas-organic and gas-aqueous phase partitioning coefficients for 3414 atmospherically relevant molecules using COSMOtherm, SPARC Performs Automated Reasoning in Chemistry (SPARC), and poly-parameter linear free-energy relationships. The Master Chemical Mechanism generated the structures by oxidizing primary emitted volatile organic compounds. Predictions for gas-organic phase partitioning coefficients (KWIOM/G) by different methods are on average within 1 order of magnitude of each other, irrespective of the numbers of functional groups, except for predictions by COSMOtherm and SPARC for compounds with more than three functional groups, which have a slightly higher discrepancy. Discrepancies between predictions of gas-aqueous partitioning (KW/G) are much larger and increase with the number of functional groups in the molecule. In particular, COSMOtherm often predicts much lower KW/G for highly functionalized compounds than the other methods. While the quantum-chemistry-based COSMOtherm accounts for the influence of intra-molecular interactions on conformation, highly functionalized molecules likely fall outside of the applicability domain of the other techniques, which at least in part rely on empirical data for calibration. Further analysis suggests that atmospheric phase distribution calculations are sensitive to the partitioning coefficient estimation method, in particular to the estimated value of KW/G. The large uncertainty in KW/G predictions for highly functionalized organic compounds needs to be resolved to improve the quantitative treatment of SOA formation.

  12. Pre-equilibrium dynamics and heavy-ion observables

    NASA Astrophysics Data System (ADS)

    Heinz, Ulrich; Liu, Jia

    2016-12-01

    To bracket the importance of the pre-equilibrium stage on relativistic heavy-ion collision observables, we compare simulations where it is modeled by either free-streaming partons or fluid dynamics. These cases implement the assumptions of extremely weak vs. extremely strong coupling in the initial collision stage. Accounting for flow generated in the pre-equilibrium stage, we study the sensitivity of radial, elliptic and triangular flow on the switching time when the hydrodynamic description becomes valid. Using the hybrid code iEBE-VISHNU [C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, Comput. Phys. Commun. 199 (2016) 61] we perform a multi-parameter search, constrained by particle ratios, integrated elliptic and triangular charged hadron flow, the mean transverse momenta of pions, kaons and protons, and the second moment < pT2 > of the proton transverse momentum spectrum, to identify optimized values for the switching time τs from pre-equilibrium to hydrodynamics, the specific shear viscosity η / s, the normalization factor of the temperature-dependent specific bulk viscosity (ζ / s) (T), and the switching temperature Tsw from viscous hydrodynamics to the hadron cascade UrQMD. With the optimized parameters, we predict and compare with experiment the pT-distributions of π, K, p, Λ, Ξ and Ω yields and their elliptic flow coefficients, focusing specifically on the mass-ordering of the elliptic flow for protons and Lambda hyperons which is incorrectly described by VISHNU without pre-equilibrium flow.

  13. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.

    PubMed

    García, S; Pis, J J; Rubiera, F; Pevida, C

    2013-05-21

    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  14. Equilibrium sampling informs tissue residue and sediment remediation for pyrethroid insecticides in mariculture: A laboratory demonstration.

    PubMed

    Li, Juan-Ying; Shi, Wenxuan; Li, Zhenhua; Chen, Yiqin; Shao, Liu; Jin, Ling

    2018-03-01

    Mariculture product safety in relation to sediment quality has attracted increasing attention because of the accumulation of potentially hazardous chemicals, including pyrethroid insecticides, in sediment. Passive sampling has been widely used to assess the bioavailability of sediment-associated hydrophobic organic contaminants and predict their body residue in benthic organisms. Therefore, in this study, we introduced polydimethylsiloxane (PDMS) polymer as a biomimetic "chemometer" for freely-dissolved concentrations (C free ) to assess the efficacy of different carbon sorbents in reducing the bioavailability of pyrethroids in the process of sediment remediation. Black carbon (BC)-based materials (e.g., charcoal, biochar, and activated carbon) showed the advantageous sorption capacity over humic substance-based peat soil based on both C free and tissue residue in exposed clams. Of the tested BC-type materials, biochar appeared to be an ideal one in the remediation of pyrethroid-contaminated sediment. The predictive value of the PDMS chemometer approach to informing tissue residue was confirmed by a good agreement between the measured lipid-normalized concentrations of pyrethroids in clams and the lipid-based equilibrium concentrations calculated from C free via lipid-water partition coefficients. The quantitative inter-compartmental relationship underlying the laboratory system of sediment-pore water-PDMS-biota was also cross-validated by a mechanistically-based bioaccumulation model, thus confirming the validity of C free as a predictive intermediate to alert for tissue residue and guide sediment remediation. The present study revealed a great promise of sensing C free by polymer-based equilibrium sampling in predicting tissue residue of chemicals applied in mariculture against regulatory guidelines, and, in turn, informing remediation measures when needs arise. In situ demonstration is warranted in the future to ascertain the field applicability of this approach in real mariculture systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    PubMed

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  16. Adsorptive Removal of Cadmium (II) from Aqueous Solution by Multi-Carboxylic-Functionalized Silica Gel: Equilibrium, Kinetics and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Li, Min; Meng, Xiaojing; Yuan, Jinhai; Deng, Wenwen; Liang, Xiuke

    2018-01-01

    In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of various experimental parameters such as pH value, contact time and initial concentration on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. Equilibrium isotherms for the adsorption of cadmium (II) ion were analyzed by Freundlich and Langmuir isotherm models, the results indicate that Langmuir isotherm model was found to be credible to express the data for cadmium (II) ion from aqueous solution onto the SG-MCF. Various thermodynamics parameters of the adsorption process, including free energy of adsorption (ΔG0 ), the enthalpy of adsorption (ΔH0 ) and standard entropy changes (ΔS0 ), were calculated to predict the nature of adsorption. The positive value of the enthalpy change and the negative value of free energy change indicate that the process is endothermic and spontaneous process.

  17. Computer simulations of equilibrium magnetization and microstructure in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Rosa, A. P.; Abade, G. C.; Cunha, F. R.

    2017-09-01

    In this work, Monte Carlo and Brownian Dynamics simulations are developed to compute the equilibrium magnetization of a magnetic fluid under action of a homogeneous applied magnetic field. The particles are free of inertia and modeled as hard spheres with the same diameters. Two different periodic boundary conditions are implemented: the minimum image method and Ewald summation technique by replicating a finite number of particles throughout the suspension volume. A comparison of the equilibrium magnetization resulting from the minimum image approach and Ewald sums is performed by using Monte Carlo simulations. The Monte Carlo simulations with minimum image and lattice sums are used to investigate suspension microstructure by computing the important radial pair-distribution function go(r), which measures the probability density of finding a second particle at a distance r from a reference particle. This function provides relevant information on structure formation and its anisotropy through the suspension. The numerical results of go(r) are compared with theoretical predictions based on quite a different approach in the absence of the field and dipole-dipole interactions. A very good quantitative agreement is found for a particle volume fraction of 0.15, providing a validation of the present simulations. In general, the investigated suspensions are dominated by structures like dimmer and trimmer chains with trimmers having probability to form an order of magnitude lower than dimmers. Using Monte Carlo with lattice sums, the density distribution function g2(r) is also examined. Whenever this function is different from zero, it indicates structure-anisotropy in the suspension. The dependence of the equilibrium magnetization on the applied field, the magnetic particle volume fraction, and the magnitude of the dipole-dipole magnetic interactions for both boundary conditions are explored in this work. Results show that at dilute regimes and with moderate dipole-dipole interactions, the standard method of minimum image is both accurate and computationally efficient. Otherwise, lattice sums of magnetic particle interactions are required to accelerate convergence of the equilibrium magnetization. The accuracy of the numerical code is also quantitatively verified by comparing the magnetization obtained from numerical results with asymptotic predictions of high order in the particle volume fraction, in the presence of dipole-dipole interactions. In addition, Brownian Dynamics simulations are used in order to examine magnetization relaxation of a ferrofluid and to calculate the magnetic relaxation time as a function of the magnetic particle interaction strength for a given particle volume fraction and a non-dimensional applied field. The simulations of magnetization relaxation have shown the existence of a critical value of the dipole-dipole interaction parameter. For strength of the interactions below the critical value at a given particle volume fraction, the magnetic relaxation time is close to the Brownian relaxation time and the suspension has no appreciable memory. On the other hand, for strength of dipole interactions beyond its critical value, the relaxation time increases exponentially with the strength of dipole-dipole interaction. Although we have considered equilibrium conditions, the obtained results have far-reaching implications for the analysis of magnetic suspensions under external flow.

  18. IS THE SIZE DISTRIBUTION OF URBAN AEROSOLS DETERMINED BY THERMODYNAMIC EQUILIBRIUM? (R826371C005)

    EPA Science Inventory

    A size-resolved equilibrium model, SELIQUID, is presented and used to simulate the size–composition distribution of semi-volatile inorganic aerosol in an urban environment. The model uses the efflorescence branch of aerosol behavior to predict the equilibrium partitioni...

  19. Comparison of two gas chromatograph models and analysis of binary data

    NASA Technical Reports Server (NTRS)

    Keba, P. S.; Woodrow, P. T.

    1972-01-01

    The overall objective of the gas chromatograph system studies is to generate fundamental design criteria and techniques to be used in the optimum design of the system. The particular tasks currently being undertaken are the comparison of two mathematical models of the chromatograph and the analysis of binary system data. The predictions of two mathematical models, an equilibrium absorption model and a non-equilibrium absorption model exhibit the same weaknesses in their inability to predict chromatogram spreading for certain systems. The analysis of binary data using the equilibrium absorption model confirms that, for the systems considered, superposition of predicted single component behaviors is a first order representation of actual binary data. Composition effects produce non-idealities which limit the rigorous validity of superposition.

  20. The Hardy-Weinberg Equilibrium--Some Helpful Suggestions.

    ERIC Educational Resources Information Center

    Ortiz, Mary T.; Taras, Loretta; Stavroulakis, Anthea M.

    2000-01-01

    Describes an approach that provides mathematical tips and helpful suggestions for presenting the Hardy-Weinberg equilibrium to predict allele frequencies, phenotypes, and genotypes in populations. (ASK)

  1. Experimental and Theoretical Studies of Interstellar Grains. Ph.D. Thesis - Maryland Univ., College Park, 1982

    NASA Technical Reports Server (NTRS)

    Nuth, J. A., III

    1981-01-01

    Steady state vibrational populations of SiO and CO in dilute black body radiation fields were calculated as a function of total pressure, kinetic temperature and chemical composition of the gas. Approximate calculations for polyatomic molecules are presented. Vibrational disequilibrium becomes increasingly significant as total pressure and radiation density decrease. Many regions of postulated grain formation are found to be far from thermal equilibrium before the onset of nucleation. Calculations based upon classical nucleation theory or equilibrium thermodynamics are expected to be of dubious value in such regions. Laboratory measurements of the extinction of small iron and magnetite grains were made from 195 nm to 830 nm and found to be consistent with predictions based upon published optical constants. This implies that small iron particles are not responsible for the 220 nm interstellar extinction features. Additional measurements are discussed.

  2. Hydrodynamics of a cold one-dimensional fluid: the problem of strong shock waves

    NASA Astrophysics Data System (ADS)

    Hurtado, Pablo I.

    2005-03-01

    We study a shock wave induced by an infinitely massive piston propagating into a one-dimensional cold gas. The cold gas is modelled as a collection of hard rods which are initially at rest, so the temperature is zero. Most of our results are based on simulations of a gas of rods with binary mass distribution, and we partcularly focus on the case of spatially alternating masses. We find that the properties of the resulting shock wave are in striking contrast with those predicted by hydrodynamic and kinetic approaches, e.g., the flow-field profiles relax algebraically toward their equilibrium values. In addition, most relevant observables characterizing local thermodynamic equilibrium and equipartition decay as a power law of the distance to the shock layer. The exponents of these power laws depend non-monotonously on the mass ratio. Similar interesting dependences on the mass ratio also characterize the shock width, density and temperature overshoots, etc.

  3. Impact of mutations on the allosteric conformational equilibrium

    PubMed Central

    Weinkam, Patrick; Chen, Yao Chi; Pons, Jaume; Sali, Andrej

    2012-01-01

    Allostery in a protein involves effector binding at an allosteric site that changes the structure and/or dynamics at a distant, functional site. In addition to the chemical equilibrium of ligand binding, allostery involves a conformational equilibrium between one protein substate that binds the effector and a second substate that less strongly binds the effector. We run molecular dynamics simulations using simple, smooth energy landscapes to sample specific ligand-induced conformational transitions, as defined by the effector-bound and unbound protein structures. These simulations can be performed using our web server: http://salilab.org/allosmod/. We then develop a set of features to analyze the simulations and capture the relevant thermodynamic properties of the allosteric conformational equilibrium. These features are based on molecular mechanics energy functions, stereochemical effects, and structural/dynamic coupling between sites. Using a machine-learning algorithm on a dataset of 10 proteins and 179 mutations, we predict both the magnitude and sign of the allosteric conformational equilibrium shift by the mutation; the impact of a large identifiable fraction of the mutations can be predicted with an average unsigned error of 1 kBT. With similar accuracy, we predict the mutation effects for an 11th protein that was omitted from the initial training and testing of the machine-learning algorithm. We also assess which calculated thermodynamic properties contribute most to the accuracy of the prediction. PMID:23228330

  4. Equilibration and aging of dense soft-sphere glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Sánchez-Díaz, Luis Enrique; Ramírez-González, Pedro; Medina-Noyola, Magdaleno

    2013-05-01

    The recently developed nonequilibrium extension of the self-consistent generalized Langevin equation theory of irreversible relaxation [Ramírez-González and Medina-Noyola, Phys. Rev. E10.1103/PhysRevE.82.061503 82, 061503 (2010); Ramírez-González and Medina-Noyola, Phys. Rev. E10.1103/PhysRevE.82.061504 82, 061504 (2010)] is applied to the description of the irreversible process of equilibration and aging of a glass-forming soft-sphere liquid that follows a sudden temperature quench, within the constraint that the local mean particle density remains uniform and constant. For these particular conditions, this theory describes the nonequilibrium evolution of the static structure factor S(k;t) and of the dynamic properties, such as the self-intermediate scattering function FS(k,τ;t), where τ is the correlation delay time and t is the evolution or waiting time after the quench. Specific predictions are presented for the deepest quench (to zero temperature). The predicted evolution of the α-relaxation time τα(t) as a function of t allows us to define the equilibration time teq(ϕ), as the time after which τα(t) has attained its equilibrium value ταeq(ϕ). It is predicted that both, teq(ϕ) and ταeq(ϕ), diverge as ϕ→ϕ(a), where ϕ(a) is the hard-sphere dynamic-arrest volume fraction ϕ(a)(≈0.582), thus suggesting that the measurement of equilibrium properties at and above ϕ(a) is experimentally impossible. The theory also predicts that for fixed finite waiting times t, the plot of τα(t;ϕ) as a function of ϕ exhibits two regimes, corresponding to samples that have fully equilibrated within this waiting time (ϕ≤ϕ(c)(t)), and to samples for which equilibration is not yet complete (ϕ≥ϕ(c)(t)). The crossover volume fraction ϕ(c)(t) increases with t but saturates to the value ϕ(a).

  5. Oxygen transport properties estimation by DSMC-CT simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy ofmore » the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.« less

  6. Effect of Sediment Availability in Bedload-Dominated Rivers on Fluvial Geomorphic Equilibrium

    NASA Astrophysics Data System (ADS)

    Marti, M.

    2016-12-01

    Channels are known to compensate for changes in sediment supply via covariate changes in channel properties, yet the timescale for adjustment remains poorly constrained. We propose that reductions in sediment flux inhibit equilibrium re-establishment and thus impact the timescale of system adjustment. Using run-of-river dams as natural experiments, this study quantifies the geomorphic response of channels to sediment supply reduction. Channel traits that facilitate increased sediment trapping behind the dam, such as large reservoir storage capacity relative to annual inflow and low slope, were expected to inhibit a channel's ability to re-establish equilibrium following impoundment, lengthening the equilibrium establishment timescale to tens or hundreds of years. Reaches associated with increased trapping were therefore anticipated to exhibit non-equilibrium forms. Channel equilibrium was evaluated downstream of 8 ROR dams in New England with varying degrees of sediment trapping. Sites cover a range of watershed sizes (3-155 km2), channel slopes (.05-5%), 2-year discharges (1.5-60 m3/s) and storage capacity volumes. Because equilibrium channel form is just sufficient to mobilize grains under bankfull conditions in bedload-dominated rivers, the Shields parameter was used to assess equilibrium form. Unregulated, upstream Shields values and regulated, downstream values were calculated at 14 total cross-sections extending 300-450 m upstream and downstream of each dam. Sediment trapping was estimated using Brune's curve (1953). On the Charles Brown Brook (VT), a marginally significant (p=0.08) increase in Shields values from a mean of 0.14 upstream to 0.41 downstream of a 100+ year old dam was observed. In contrast, reaches downstream of the 100+ year old Pelham dam (MA) exhibit significantly lower Shields values. This suggests that trapping behind the dam inhibits the downstream channel from reaching an equilibrium state, but not always in the same way. Better understanding of geomorphic response to reduced sediment flux as a control on equilibrium establishment will broaden the knowledge of geomorphic equilibrium and aid in management of regulated, bedload-dominated rivers.

  7. Para hydrogen equilibration in the atmospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Conrath, Barney J.

    1986-01-01

    The thermodynamic behavior of the atmospheres of the Jovian planets is strongly dependent on the extent to which local thermal equilibration of the ortho and para states of molecular hydrogen is achieved. Voyager IRIS data from Jupiter imply substantial departures of the para hydrogen fraction from equilibrium in the upper troposphere at low latitudes, but with values approaching equilibrium at higher latitudes. Data from Saturn are less sensitive to the orth-para ratio, but suggest para hydrogen fractions near the equilibrium value. Above approximately the 200 K temperature level, para hydrogen conversion can enhance the efficiency of convection, resulting in a substantial increase in overturning times on all of the outer planets. Currently available data cannot definitively establish the ortho-para ratios in the atmospheres of Uranus and Neptune, but suggest values closer to local equilibrium than to the 3.1 normal ratio. Modeling of sub-millimeter wavelength measurements of these planets suggest thermal structures with frozen equilibrium lapse rates in their convective regions.

  8. Developing QSPR model of gas/particle partition coefficients of neutral poly-/perfluoroalkyl substances

    NASA Astrophysics Data System (ADS)

    Yuan, Quan; Ma, Guangcai; Xu, Ting; Serge, Bakire; Yu, Haiying; Chen, Jianrong; Lin, Hongjun

    2016-10-01

    Poly-/perfluoroalkyl substances (PFASs) are a class of synthetic fluorinated organic substances that raise increasing concern because of their environmental persistence, bioaccumulation and widespread presence in various environment media and organisms. PFASs can be released into the atmosphere through both direct and indirect sources, and the gas/particle partition coefficient (KP) is an important parameter that helps us to understand their atmospheric behavior. In this study, we developed a temperature-dependent predictive model for log KP of PFASs and analyzed the molecular mechanism that governs their partitioning equilibrium between gas phase and particle phase. All theoretical computation was carried out at B3LYP/6-31G (d, p) level based on neutral molecular structures by Gaussian 09 program package. The regression model has a good statistical performance and robustness. The application domain has also been defined according to OECD guidance. The mechanism analysis shows that electrostatic interaction and dispersion interaction play the most important role in the partitioning equilibrium. The developed model can be used to predict log KP values of neutral fluorotelomer alcohols and perfluor sulfonamides/sulfonamidoethanols with different substitutions at nitrogen atoms, providing basic data for their ecological risk assessment.

  9. Energy and momentum relaxation of electrons in bulk and 2D GaN

    NASA Astrophysics Data System (ADS)

    Zanato, D.; Balkan, N.; Hill, G.; Schaff, W. J.

    2004-10-01

    We present our experimental and theoretical studies regarding the energy and momentum relaxation of hot electrons in n-type bulk GaN and AlGaN/GaN HEMT structures. We determine the non-equilibrium temperatures and the energy relaxation rates in the steady state using the mobility mapping technique together with the power balance conditions as described by us elsewhere [N. Balkan, M.C. Arikan, S. Gokden, V. Tilak, B. Schaff, R.J. Shealy, J. Phys.: Condens. Matter 14 (2002) 3457]. We obtain the e-LO phonon scattering time of 8 fs and show that the power loss of electrons due to optical phonon emission agrees with the theoretical prediction. The drift velocity-field curves at high electric fields indicate that the drift velocity saturates at approximately 3×10 6 cm/s for the two-dimensional structure and 4×10 6 cm/s for the bulk material at 77 K. These values are much lower than those predicted by the existing theories. A critical analysis of the observations is given with a model taking into account of the non-drifting non-equilibrium phonon production.

  10. Some comments on thermodynamic consistency for equilibrium mixture equations of state

    DOE PAGES

    Grove, John W.

    2018-03-28

    We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.

  11. Ablation Predictions for Carbonaceous Materials Using Two Databases for Species Thermodynamics

    NASA Technical Reports Server (NTRS)

    Milos, F. S.; Chen, Y.-K.

    2013-01-01

    During previous work at NASA Ames Research Center, most ablation predictions were obtained using a species thermodynamics database derived primarily from the JANAF thermochemical tables. However, the chemical equilibrium with applications thermodynamics database, also used by NASA, is considered more up to date. In this work, ablation analyses were performed for carbon and carbon phenolic materials using both sets of species thermodynamics. The ablation predictions are comparable at low and moderate heat fluxes, where the dominant mechanism is carbon oxidation. For high heat fluxes where sublimation is important, the predictions differ, with the chemical equilibrium with applications model predicting a lower ablation rate. The disagreement is greater for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate. Sample calculations for representative Orion and Stardust environments show significant differences only in the sublimation regime. For Stardust, if the calculations include a nominal environmental uncertainty for aeroheating, then the chemical equilibrium with applications model predicts a range of recession that is consistent with measurements for both heatshield cores.

  12. The Thermodynamics of Drunk Driving

    NASA Astrophysics Data System (ADS)

    Thompson, Robert Q.

    1997-05-01

    Chemical and instrumental tests for driving under the influence of alcohol (DUI) measure the concentration of ethanol in the breath (BrAC), while state DUI laws are described in terms of blood alcohol concentration (BAC). Consequently, accurate and fair conversion from BrAC to BAC is crucial to the judicial process. Theoretical treatment of the water-air-ethanol equilibrium system and the related blood-breath-ethanol system, based on principles from general chemistry and biology, yields an equation relating the ratio of BAC to BrAC to the absolute temperature of the breath, the fraction of water in the blood, and the enthalpy and entropy of vaporization of ethanol from aqueous solution. The model equation predicts an average value for the ratio of 2350+100, not significantly different from reported experimental values. An exponential temperature dependence is predicted and has been confirmed experimentally as well. Biological, chemical, and instrumental variables are described along with their contributions to the overall uncertainty in the value of BrAC/BAC. While the forensic science community uses, and debates, a fixed ratio of 2100, the theoretical model suggests that a value of 1880 should be used to reduce the fraction of false positives to <1%.

  13. Using a Spreadsheet Scroll Bar to Solve Equilibrium Concentrations

    ERIC Educational Resources Information Center

    Raviolo, Andres

    2012-01-01

    A simple, conceptual method is described for using the spreadsheet scroll bar to find the composition of a system at chemical equilibrium. Simulation of any kind of chemical equilibrium can be carried out using this method, and the effects of different disturbances can be predicted. This simulation, which can be used in general chemistry…

  14. Relativistic distribution function for particles with spin at local thermodynamical equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becattini, F., E-mail: becattini@fi.infn.it; INFN Sezione di Firenze, Florence; Universität Frankfurt, Frankfurt am Main

    2013-11-15

    We present an extension of relativistic single-particle distribution function for weakly interacting particles at local thermodynamical equilibrium including spin degrees of freedom, for massive spin 1/2 particles. We infer, on the basis of the global equilibrium case, that at local thermodynamical equilibrium particles acquire a net polarization proportional to the vorticity of the inverse temperature four-vector field. The obtained formula for polarization also implies that a steady gradient of temperature entails a polarization orthogonal to particle momentum. The single-particle distribution function in momentum space extends the so-called Cooper–Frye formula to particles with spin 1/2 and allows us to predict theirmore » polarization in relativistic heavy ion collisions at the freeze-out. -- Highlights: •Single-particle distribution function in local thermodynamical equilibrium with spin. •Polarization of spin 1/2 particles in a fluid at local thermodynamical equilibrium. •Prediction of a new effect: a steady gradient of temperature induces a polarization. •Application to the calculation of polarization in relativistic heavy ion collisions.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grove, John W.

    We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.

  16. Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis.

    PubMed

    Meurer, Florian; Do, Hoang Tam; Sadowski, Gabriele; Held, Christoph

    2017-04-01

    ATP (adenosine triphosphate) is a key reaction for metabolism. Tools from systems biology require standard reaction data in order to predict metabolic pathways accurately. However, literature values for standard Gibbs energy of ATP hydrolysis are highly uncertain and differ strongly from each other. Further, such data usually neglect the activity coefficients of reacting agents, and published data like this is apparent (condition-dependent) data instead of activity-based standard data. In this work a consistent value for the standard Gibbs energy of ATP hydrolysis was determined. The activity coefficients of reacting agents were modeled with electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT). The Gibbs energy of ATP hydrolysis was calculated by combining the standard Gibbs energies of hexokinase reaction and of glucose-6-phosphate hydrolysis. While the standard Gibbs energy of hexokinase reaction was taken from previous work, standard Gibbs energy of glucose-6-phosphate hydrolysis reaction was determined in this work. For this purpose, reaction equilibrium molalities of reacting agents were measured at pH7 and pH8 at 298.15K at varying initial reacting agent molalities. The corresponding activity coefficients at experimental equilibrium molalities were predicted with ePC-SAFT yielding the Gibbs energy of glucose-6-phosphate hydrolysis of -13.72±0.75kJ·mol -1 . Combined with the value for hexokinase, the standard Gibbs energy of ATP hydrolysis was finally found to be -31.55±1.27kJ·mol -1 . For both, ATP hydrolysis and glucose-6-phosphate hydrolysis, a good agreement with own and literature values were obtained when influences of pH, temperature, and activity coefficients were explicitly taken into account in order to calculate standard Gibbs energy at pH7, 298.15K and standard state. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Conjugate Acid-Base Pairs, Free Energy, and the Equilibrium Constant

    ERIC Educational Resources Information Center

    Beach, Darrell H.

    1969-01-01

    Describes a method of calculating the equilibrium constant from free energy data. Values of the equilibrium constants of six Bronsted-Lowry reactions calculated by the author's method and by a conventional textbook method are compared. (LC)

  18. On the time needed to reach an equilibrium structure of the radiation belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ripoll, J. -F.; Loran, V.; Cunningham, Gregory Scott

    In this paper, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as themore » radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τ Diffusion/τ loss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (≤3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp ≥ 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E ~ [200, 300] keV for L = [3.7, 4] at Kp = 1, E ~ [0.6, 1] MeV for L = [3, 4] at Kp = 3, and E ~ 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.« less

  19. On the time needed to reach an equilibrium structure of the radiation belts

    DOE PAGES

    Ripoll, J. -F.; Loran, V.; Cunningham, Gregory Scott; ...

    2016-08-01

    In this paper, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as themore » radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τ Diffusion/τ loss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (≤3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp ≥ 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E ~ [200, 300] keV for L = [3.7, 4] at Kp = 1, E ~ [0.6, 1] MeV for L = [3, 4] at Kp = 3, and E ~ 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.« less

  20. Rarefaction and Non-equilibrium Effects in Hypersonic Flows about Leading Edges of Small Bluntness

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail; Khotyanovsky, Dmitry; Kudryavtsev, Alexey; Shershnev, Anton; Bondar, Yevgeniy; Yonemura, Shigeru

    2011-05-01

    A hypersonic flow about a cylindrically blunted thick plate at a zero angle of attack is numerically studied with the kinetic (DSMC) and continuum (Navier-Stokes equations) approaches. The Navier-Stokes equations with velocity slip and temperature jump boundary conditions correctly predict the flow fields and surface parameters for values of the Knudsen number (based on the radius of leading edge curvature) smaller than 0.1. The results of computations demonstrate significant effects of the entropy layer on the boundary layer characteristics.

  1. Determining equilibrium osmolarity in poly(ethylene glycol)/chondrotin sulfate gels mimicking articular cartilage.

    PubMed

    Sircar, S; Aisenbrey, E; Bryant, S J; Bortz, D M

    2015-01-07

    We present an experimentally guided, multi-phase, multi-species polyelectrolyte gel model to make qualitative predictions on the equilibrium electro-chemical properties of articular cartilage. The mixture theory consists of two different types of polymers: poly(ethylene gylcol) (PEG), chondrotin sulfate (ChS), water (acting as solvent) and several different ions: H(+), Na(+), Cl(-). The polymer chains have covalent cross-links whose effect on the swelling kinetics is modeled via Doi rubber elasticity theory. Numerical studies on equilibrium polymer volume fraction and net osmolarity (difference in the solute concentration across the gel) show a complex interplay between ionic bath concentrations, pH, cross-link fraction and the average charge per monomer. Generally speaking, swelling is aided due to a higher average charge per monomer (or a higher particle fraction of ChS, the charged component of the polymer), low solute concentration in the bath, a high pH or a low cross-link fraction. A peculiar case arises at higher values of cross-link fraction, where it is observed that increasing the average charge per monomer leads to gel deswelling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Ergodic Theory, Interpretations of Probability and the Foundations of Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    van Lith, Janneke

    The traditional use of ergodic theory in the foundations of equilibrium statistical mechanics is that it provides a link between thermodynamic observables and microcanonical probabilities. First of all, the ergodic theorem demonstrates the equality of microcanonical phase averages and infinite time averages (albeit for a special class of systems, and up to a measure zero set of exceptions). Secondly, one argues that actual measurements of thermodynamic quantities yield time averaged quantities, since measurements take a long time. The combination of these two points is held to be an explanation why calculating microcanonical phase averages is a successful algorithm for predicting the values of thermodynamic observables. It is also well known that this account is problematic. This survey intends to show that ergodic theory nevertheless may have important roles to play, and it explores three other uses of ergodic theory. Particular attention is paid, firstly, to the relevance of specific interpretations of probability, and secondly, to the way in which the concern with systems in thermal equilibrium is translated into probabilistic language. With respect to the latter point, it is argued that equilibrium should not be represented as a stationary probability distribution as is standardly done; instead, a weaker definition is presented.

  3. Tropical forests are non-equilibrium ecosystems governed by interspecific competition based on universal 1/6 niche width.

    PubMed

    Fort, Hugo; Inchausti, Pablo

    2013-01-01

    Tropical forests are mega-diverse ecosystems that display complex and non-equilibrium dynamics. However, theoretical approaches have largely focused on explaining steady-state behaviour and fitting snapshots of data. Here we show that local and niche interspecific competition can realistically and parsimoniously explain the observed non-equilibrium regime of permanent plots of nine tropical forests, in eight different countries. Our spatially-explicit model, besides predicting with accuracy the main biodiversity metrics for these plots, can also reproduce their dynamics. A central finding is that tropical tree species have a universal niche width of approximately 1/6 of the niche axis that echoes the observed widespread convergence in their functional traits enabling them to exploit similar resources and to coexist despite of having large niche overlap. This niche width yields an average ratio of 0.25 between interspecific and intraspecific competition that corresponds to an intermediate value between the extreme claims of the neutral model and the classical niche-based model of community assembly (where interspecific competition is dominant). In addition, our model can explain and yield observed spatial patterns that classical niche-based and neutral theories cannot.

  4. Callus remodelling model

    NASA Astrophysics Data System (ADS)

    Miodowska, Justyna; Bielski, Jan; Kromka-Szydek, Magdalena

    2018-01-01

    The objective of this paper is to investigate the healing process of the callus using bone remodelling approach. A new mathematical model of bone remodelling is proposed including both underload and overload resorption, as well as equilibrium and bone growth states. The created model is used to predict the stress-stimulated change in the callus density. The permanent and intermittent loading programs are considered. The analyses indicate that obtaining a sufficiently high values of the callus density (and hence the elasticity) modulus is only possible using time-varying load parameters. The model predictions also show that intermittent loading program causes delayed callus healing. Understanding how mechanical conditions influence callus remodelling process may be relevant in the bone fracture treatment and initial bone loading during rehabilitation.

  5. Protein carbamylation predicts mortality in ESRD.

    PubMed

    Koeth, Robert A; Kalantar-Zadeh, Kamyar; Wang, Zeneng; Fu, Xiaoming; Tang, W H Wilson; Hazen, Stanley L

    2013-04-01

    Traditional risk factors fail to explain the increased risk for cardiovascular morbidity and mortality in ESRD. Cyanate, a reactive electrophilic species in equilibrium with urea, posttranslationally modifies proteins through a process called carbamylation, which promotes atherosclerosis. The plasma level of protein-bound homocitrulline (PBHCit), which results from carbamylation, predicts major adverse cardiac events in patients with normal renal function, but whether this relationship is similar in ESRD is unknown. We quantified serum PBHCit in a cohort of 347 patients undergoing maintenance hemodialysis with 5 years of follow-up. Kaplan-Meier analyses revealed a significant association between elevated PBHCit and death (log-rank P<0.01). After adjustment for patient characteristics, laboratory values, and comorbid conditions, the risk for death among patients with PBHCit values in the highest tertile was more than double the risk among patients with values in the middle tertile (adjusted hazard ratio [HR], 2.4; 95% confidence interval [CI], 1.5-3.9) or the lowest tertile (adjusted HR, 2.3; 95% CI, 1.5-3.7). Including PBHCit significantly improved the multivariable model, with a net reclassification index of 14% (P<0.01). In summary, serum PBHCit, a footprint of protein carbamylation, predicts increased cardiovascular risk in patients with ESRD, supporting a mechanistic link among uremia, inflammation, and atherosclerosis.

  6. Ratios of transfer coefficients for radiocesium transport in ruminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assimakopoulos, P.A.; Ioannides, K.G.; Karamanis, D.

    1995-09-01

    A corollary of the multiple-compartment model for the transport of trace elements through animals was tested for cows, goats, and sheep. According to this corollary, for a given body {open_quotes}compartment{close_quotes} k of the animal (soft tissue, lung, liver, etc.), the ratio a(k)=f(k)/f(blood) of the transfer coefficients f, should exhibit similar values for physiologically similar animals. In order to verify this prediction, two experiments were performed at the Agricultural Research Station of Ioannina and at the facilities of Ria Pripyat in Pripyat, Ukranine. Eight animals in the first experiment and eighteen in the second were housed in individual pens and weremore » artificially contaminated with a constant daily dose of radiocesium until equilibrium was reached. the animals were then sacrificed and transfer coefficients f(k) to twelve body {open_quotes}compartments{close_quotes} k were measured. These data were used to calculate the ratios a(k). The results were in accordance with predictions of the model and average values of a(k) were extracted for ruminants. It is concluded that these values may be employed for the prediction of animal contamination in any body compartment through the measurement of blood samples. 7 refs., 8 tabs.« less

  7. Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya.

    PubMed

    Prasad, Mukesh; Rawat, Mukesh; Dangwal, Anoop; Kandari, Tushar; Gusain, G S; Mishra, Rosaline; Ramola, R C

    2016-01-01

    The measurements of radon, thoron and their progeny concentrations have been carried out in the dwellings of Uttarkashi and Tehri districts of Garhwal Himalaya, India using LR-115 detector based pin-hole dosimeter and DRPS/DTPS techniques. The equilibrium factors for radon, thoron and their progeny were calculated by using the values measured with these techniques. The average values of equilibrium factor between radon and its progeny have been found to be 0.44, 0.39, 0.39 and 0.28 for rainy, autumn, winter and summer seasons, respectively. For thoron and its progeny, the average values of equilibrium factor have been found to be 0.04, 0.04, 0.04 and 0.03 for rainy, autumn, winter and summer seasons, respectively. The equilibrium factor between radon and its progeny has been found to be dependent on the seasonal changes. However, the equilibrium factor for thoron and progeny has been found to be same for rainy, autumn and winter seasons but slightly different for summer season. The annual average equilibrium factors for radon and thoron have been found to vary from 0.23 to 0.80 with an average of 0.42 and from 0.01 to 0.29 with an average of 0.07, respectively. The detailed discussion of the measurement techniques and the explanation for the results obtained is given in the paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of a Perturbation on the Chemical Equilibrium: Comparison with Le Chatelier's Principle

    ERIC Educational Resources Information Center

    Torres, Emilio Martinez

    2007-01-01

    This article develops a general thermodynamic treatment to predict the direction of shift in a chemical equilibrium when it is subjected to a stress. This treatment gives an inequality that relates the change in the perturbed variable and the change that the equilibrium shift produces in the conjugated variable. To illustrate the generality of…

  9. Renormalization group analysis of anisotropic diffusion in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1991-01-01

    The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.

  10. Numerical simulation of waste tyres gasification.

    PubMed

    Janajreh, Isam; Raza, Syed Shabbar

    2015-05-01

    Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000 °C-1600 °C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350 °C-550 °C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20 kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable. © The Author(s) 2015.

  11. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations.

    PubMed

    Yuhara, Daisuke; Brumby, Paul E; Wu, David T; Sum, Amadeu K; Yasuoka, Kenji

    2018-05-14

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  12. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuhara, Daisuke; Brumby, Paul E.; Wu, David T.; Sum, Amadeu K.; Yasuoka, Kenji

    2018-05-01

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  13. Steps toward identifying a biogeochemical signal in non-equilibrium methane clumped isotope measurements

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Eiler, J. M.; Sessions, A. L.; Dawson, K.; Walter Anthony, K. M.; Smith, D. A.; Lloyd, M. K.; Yanay, E.

    2016-12-01

    Microbially produced methane is a globally important greenhouse gas, energy source, and biological substrate. Methane clumped isotope measurements have recently been developed as a new analytical tool for understanding the source of methane in different environments. When methane forms in isotopic equilibrium clumped isotope values are determined by formation temperature, but in many cases microbial methane clumped isotope values deviate strongly from expected equilibrium values. Indeed, we observe a very wide range of clumped isotope values in microbial methane, which are likely strongly influenced by kinetic isotope effects, but thus far the biological and environmental parameters controlling this variability are not understood. We will present data from both culture experiments and natural environments to explore patterns of variability in non-equilibrium clumped isotope values on temporal and spatial scales. In methanogen batch cultures sampled at different time points along a growth curve we observe significant variability in clumped isotope values, with values decreasing from early to late exponential growth. Clumped isotope values then increase during stationary growth. This result is consistent with previous work suggesting that differences in the reversibility of methanogenesis related to metabolic rates control non-equilibrium clumped isotope values. Within single lakes in Alaska and Sweden we observe substantial variability in clumped isotope values on the order of 5‰. Lower clumped isotope values are associated with larger 2H isotopic fractionation between water and methane, which is also consistent with a kinetic isotope effect determined by the reversibility of methanogenesis. Finally, we analyzed a time-series clumped isotope compositions of methane emitted from two seeps in an Alaskan lake over several months. Temporal variability in these seeps is on the order of 2‰, which is much less than the observed spatial variability within the lake. Comparing carbon isotope fractionation between CO2 and CH4 with clumped isotope data suggests the temporal variability may result from changes in methane oxidation.

  14. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  15. Effect of a Perturbation on the Chemical Equilibrium: Comparison with Le Châtelier's Principle

    NASA Astrophysics Data System (ADS)

    Martínez Torres, Emilio

    2007-03-01

    This article develops a general thermodynamic treatment to predict the direction of shift in a chemical equilibrium when it is subjected to a stress. This treatment gives an inequality that relates the change in the perturbed variable and the change that the equilibrium shift produces in the conjugated variable. To illustrate the generality of this approach, it has been applied to predict the direction of shift caused by changes of pressure, volume, and amount of substance. In this last case, the well-known unexpected shift in the ammonia synthesis equilibrium upon addition of nitrogen is easily explained. From the above referred inequality and the stability criteria of thermodynamics some conclusions have been obtained about the direction of shift in terms of extensive and extensive variables. This article is suitable for physical chemistry courses.

  16. Discrete stochastic charging of aggregate grains

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin S.; Shotorban, Babak; Hyde, Truell W.

    2018-05-01

    Dust particles immersed in a plasma environment become charged through the collection of electrons and ions at random times, causing the dust charge to fluctuate about an equilibrium value. Small grains (with radii less than 1 μm) or grains in a tenuous plasma environment are sensitive to single additions of electrons or ions. Here we present a numerical model that allows examination of discrete stochastic charge fluctuations on the surface of aggregate grains and determines the effect of these fluctuations on the dynamics of grain aggregation. We show that the mean and standard deviation of charge on aggregate grains follow the same trends as those predicted for spheres having an equivalent radius, though aggregates exhibit larger variations from the predicted values. In some plasma environments, these charge fluctuations occur on timescales which are relevant for dynamics of aggregate growth. Coupled dynamics and charging models show that charge fluctuations tend to produce aggregates which are much more linear or filamentary than aggregates formed in an environment where the charge is stationary.

  17. Paths to equilibrium in non-conformal collisions

    NASA Astrophysics Data System (ADS)

    Attems, Maximilian; Bea, Yago; Casalderrey-Solana, Jorge; Mateos, David; Santos-Oliván, Daniel; Sopuerta, Carlos F.; Triana, Miquel; Zilhão, Miguel

    2018-03-01

    Ever since fast hydrodynamization has been observed in heavy ion collisions the understanding of the hot early out-of-equilibrium stage of such collisions has been a topic of intense research. We use the gauge/gravity duality to model the creation of a strongly coupled Quark-Gluon plasma in a non-conformal gauge theory. This numerical relativity study is the first non-conformal holographic simulation of a heavy ion collision and reveals the existence of new relaxation channels due to the presence of non-vanishing bulk viscosity. We study shock wave collisions at different energies in gauge theories with different degrees of non-conformality and compare three relaxation times which can occur in different orderings: the hydrodynamization time (when hydrodynamics becomes applicable), the EoSization time (when the average pressure approaches its equilibrium value) and the condensate relaxation time (when the expectation value of a scalar operator approaches its equilibrium value). We find that these processes can occur in several different orderings. In particular, the condensate can remain far from equilibrium even long after the plasma has hydrodynamized and EoSized.

  18. Improving high-altitude emp modeling capabilities by using a non-equilibrium electron swarm model to monitor conduction electron evolution

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise Noel

    An Electromagnetic Pulse (EMP) can severely disrupt the use of electronic devices in its path causing a significant amount of infrastructural damage. EMP can also cause breakdown of the surrounding atmosphere during lightning discharges. This makes modeling EMP phenomenon an important research effort in many military and atmospheric physics applications. EMP events include high-energy Compton electrons or photoelectrons that ionize air and produce low energy conduction electrons. A sufficient number of conduction electrons will damp or alter the EMP through conduction current. Therefore, it is important to understand how conduction electrons interact with air in order to accurately predict the EMP evolution and propagation in the air. It is common for EMP simulation codes to use an equilibrium ohmic model for computing the conduction current. Equilibrium ohmic models assume the conduction electrons are always in equilibrium with the local instantaneous electric field, i.e. for a specific EMP electric field, the conduction electrons instantaneously reach steady state without a transient process. An equilibrium model will work well if the electrons have time to reach their equilibrium distribution with respect to the rise time or duration of the EMP. If the time to reach equilibrium is comparable or longer than the rise time or duration of the EMP then the equilibrium model would not accurately predict the conduction current necessary for the EMP simulation. This is because transport coefficients used in the conduction current calculation will be found based on equilibrium reactions rates which may differ significantly from their non-equilibrium values. We see this deficiency in Los Alamos National Laboratory's EMP code, CHAP-LA (Compton High Altitude Pulse-Los Alamos), when modeling certain EMP scenarios at high altitudes, such as upward EMP, where the ionization rate by secondary electrons is over predicted by the equilibrium model, causing the EMP to short abruptly. The objective of the PhD research is to mitigate this effect by integrating a conduction electron model into CHAP-LA which can calculate the conduction current based on a non-equilibrium electron distribution. We propose to use an electron swarm model to monitor the time evolution of conduction electrons in the EMP environment which is characterized by electric field and pressure. Swarm theory uses various collision frequencies and reaction rates to study how the electron distribution and the resultant transport coefficients change with time, ultimately reaching an equilibrium distribution. Validation of the swarm model we develop is a necessary step for completion of the thesis work. After validation, the swarm model is integrated in the air chemistry model CHAP-LA employs for conduction electron simulations. We test high altitude EMP simulations with the swarm model option in the air chemistry model to show improvements in the computational capability of CHAP-LA. A swarm model has been developed that is based on a previous swarm model developed by Higgins, Longmire and O'Dell 1973, hereinafter HLO. The code used for the swarm model calculation solves a system of coupled differential equations for electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, including the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are recalculated and compared to the previously reported empirical results given by HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford 2005. BOLSIG+ utilizes updated electron scattering cross sections that are defined over an expanded energy range found in the atomic and molecular cross section database published by Phelps in the Phelps Database 2014 on the LXcat website created by Pancheshnyi et al. 2012. The swarm model is also updated from the original HLO model by including additional physical parameters such as the O2 electron attachment rate, recombination rate, and mutual neutralization rate. This necessitates tracking the positive and negative ion densities in the swarm model. Adding these parameters, especially electron attachment, is important at lower EMP altitudes where atmospheric density is high. We compare swarm model equilibrium temperatures and times using the HLO and BOLSIG+ coefficients for a uniform electric field of 1 StatV/cm for a range of atmospheric heights. This is done in order to test sensitivity to the swarm parameters used in the swarm model. It is shown that the equilibrium temperature and time are sensitive to the modifications in the collision frequency and ionization rate based on the updated electron interaction cross sections. We validate the swarm model by comparing ionization coefficients and equilibrium drift velocities to experimental results over a wide range of reduced electric field values. The final part of the PhD thesis work includes integrating the swarm model into CHAP-LA. We discuss the physics included in the CHAP-LA EMP model and demonstrate EMP damping behavior caused by the ohmic model at high altitudes. We report on numerical techniques for incorporation of the swarm model into CHAP-LA's Maxwell solver. This includes a discussion of integration techniques for Maxwell's equations in CHAP-LA using the swarm model calculated conduction current. We show improvements on EMP parameter calculations when modeling a high altitude, upward EMP scenario. This provides a novel computational capability that will have an important impact on the atmospheric and EMP research community.

  19. On the equilibrium charge density at tilt grain boundaries

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Clarke, D. R.

    1998-05-01

    The equilibrium charge density and free energy of tilt grain boundaries as a function of their misorientation is computed using a Monte Carlo simulation that takes into account both the electrostatic and configurational energies associated with charges at the grain boundary. The computed equilibrium charge density increases with the grain-boundary angle and approaches a saturation value. The equilibrium charge density at large-angle grain boundaries compares well with experimental values for large-angle tilt boundaries in GaAs. The computed grain-boundary electrostatic energy is in agreement with the analytical solution to a one-dimensional Poisson equation at high donor densities but indicates that the analytical solution overestimates the electrostatic energy at lower donor densities.

  20. The reversibility of virus attachment to mineral surfaces

    USGS Publications Warehouse

    Loveland, J.P.; Ryan, J.N.; Amy, G.L.; Harvey, R.W.

    1996-01-01

    Virus transport through groundwater is limited by attachment to mineral surfaces and inactivation. Current virus transport models do not consider the implications of the reversibility of virus attachment to minerals. To explore the reversibility of virus attachment to mineral surfaces, we attached PRD1, a bacteriophage considered to be a good model of enteric viruses, to quartz and ferric oxyhydroxide-coated quartz surfaces over a range of pH values in equilibrium 'static columns'. Following attachment, we detached the viruses by replacing the pore solution with solutions of equal and higher pH. The extent of virus attachment followed an attachment 'edge' that occurred at a pH value about 2.5-3.5 pH units above the pH(IEP) of the mineral surfaces. Viruses attached below this edge were irreversibly attached until the pH of the detachment solution exceeded the pH value of the attachment edge. Viruses attached above this edge were reversibly attached. Derjaguin-Landau-Verwey-Overbeek (DEVO) potential energy calculations showed that the attachment edge occurred at the pH at which the potential energy of the primary minimum was near zero, implying that the position of the primary minimum (attractive or repulsive) controlled the equilibrium distribution of the viruses. The results suggest that the reversibility of virus attachment must be considered in virus transport models for accurate predictions of virus travel time.

  1. Metastable equilibria among dicarboxylic acids and the oxidation state during aqueous alteration on the CM2 chondrite parent body

    NASA Astrophysics Data System (ADS)

    McAlister, Jason A.; Kettler, Richard M.

    2008-01-01

    Linear saturated dicarboxylic acids are present in carbonaceous chondrite samples at concentrations that suggest aqueous alteration under conditions of metastable equilibrium. In this study, previously published values of dicarboxylic acid concentrations measured in Murchison, Yamato-791198, and Tagish Lake carbonaceous chondrites are converted to aqueous activities during aqueous alteration assuming water:rock ratios that range from 1:10 to 10:1. Logarithmic plots of the aqueous activities of any two dicarboxylic acids are proximal to lines whose slope is fixed by the stoichiometry of reactions describing the oxidation-reduction equilibrium between the two species. The precise position of any line is controlled by the equilibrium constant of the reaction relating the species and the hydrogen fugacity for the reaction of interest. Reactions among succinic (C4), glutaric (C5), and adipic (C6) acids obtained from CM2 chondrites show evidence of metastable equilibrium and yield logf values that agree to within 0.3 log units at 298.15 K and 0.6 log units at 473.15 K. At a water:rock ratio of 1:1, metastable equilibrium among succinic, glutaric, and adipic acids results in calculated logf values during aqueous alteration that range from -6.2 at 298.15 K to -3.3 at 373.15 K. These values are consistent with those obtained in previous work on carbonaceous chondrites and with metastable equilibrium at temperatures ranging from 300 to 355 K in contact with cronstedtite + magnetite.

  2. Prediction of HR/BP response to the spontaneous breathing trial by fluctuation dissipation theory

    NASA Astrophysics Data System (ADS)

    Chen, Man

    2014-03-01

    We applied the non-equilibrium fluctuation dissipation theorem to predict how critically-ill patients respond to treatment, based on both heart rate data and blood pressure data collected by standard hospital monitoring devices. The non-equilibrium fluctuation dissipation theorem relates the response of a system to a perturbation to the fluctuations in the stationary state of the system. It is shown that the response of patients to a standard procedure performed on patients, the spontaneous breathing trial (SBT), can be predicted by the non-equilibrium fluctuation dissipation approach. We classify patients into different groups according to the patients' characteristics. For each patient group, we extend the fluctuation dissipation theorem to predict interactions between blood pressure and beat-to-beat dynamics of heart rate in response to a perturbation (SBT), We also extract the form of the perturbation function directly from the physiological data, which may help to reduce the prediction error. We note this method is not limited to the analysis of the heart rate dynamics, but also can be applied to analyze the response of other physiological signals to other clinical interventions.

  3. Spatial glass transition temperature variations in polymer glass: application to a maltodextrin-water system.

    PubMed

    van Sleeuwen, Rutger M T; Zhang, Suying; Normand, Valéry

    2012-03-12

    A model was developed to predict spatial glass transition temperature (T(g)) distributions in glassy maltodextrin particles during transient moisture sorption. The simulation employed a numerical mass transfer model with a concentration dependent apparent diffusion coefficient (D(app)) measured using Dynamic Vapor Sorption. The mass average moisture content increase and the associated decrease in T(g) were successfully modeled over time. Large spatial T(g) variations were predicted in the particle, resulting in a temporary broadening of the T(g) region. Temperature modulated differential scanning calorimetry confirmed that the variation in T(g) in nonequilibrated samples was larger than in equilibrated samples. This experimental broadening was characterized by an almost doubling of the T(g) breadth compared to the start of the experiment. Upon reaching equilibrium, both the experimental and predicted T(g) breadth contracted back to their initial value.

  4. Application of Molecular Interaction Volume Model for Phase Equilibrium of Sn-Based Binary System in Vacuum Distillation

    NASA Astrophysics Data System (ADS)

    Kong, Lingxin; Yang, Bin; Xu, Baoqiang; Li, Yifu

    2014-09-01

    Based on the molecular interaction volume model (MIVM), the activities of components of Sn-Sb, Sb-Bi, Sn-Zn, Sn-Cu, and Sn-Ag alloys were predicted. The predicted values are in good agreement with the experimental data, which indicate that the MIVM is of better stability and reliability due to its good physical basis. A significant advantage of the MIVM lies in its ability to predict the thermodynamic properties of liquid alloys using only two parameters. The phase equilibria of Sn-Sb and Sn-Bi alloys were calculated based on the properties of pure components and the activity coefficients, which indicates that Sn-Sb and Sn-Bi alloys can be separated thoroughly by vacuum distillation. This study extends previous investigations and provides an effective and convenient model on which to base refining simulations for Sn-based alloys.

  5. Droplet size in flow: Theoretical model and application to polymer blends

    NASA Astrophysics Data System (ADS)

    Fortelný, Ivan; Jůza, Josef

    2017-05-01

    The paper is focused on prediction of the average droplet radius, R, in flowing polymer blends where the droplet size is determined by dynamic equilibrium between the droplet breakup and coalescence. Expressions for the droplet breakup frequency in systems with low and high contents of the dispersed phase are derived using available theoretical and experimental results for model blends. Dependences of the coalescence probability, Pc, on system parameters, following from recent theories, is considered and approximate equation for Pc in a system with a low polydispersity in the droplet size is proposed. Equations for R in systems with low and high contents of the dispersed phase are derived. Combination of these equations predicts realistic dependence of R on the volume fraction of dispersed droplets, φ. Theoretical prediction of the ratio of R to the critical droplet radius at breakup agrees fairly well with experimental values for steadily mixed polymer blends.

  6. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Phifer, Jeremy R.; Cox, Courtney E.; da Silva, Larissa Ferreira; Nogueira, Gabriel Gonçalves; Barbosa, Ana Karolyne Pereira; Ley, Ryan T.; Bozada, Samantha M.; O'Loughlin, Elizabeth J.; Paluch, Andrew S.

    2017-06-01

    Methods to predict the equilibrium solubility of non-electrolyte solids are important for the design of novel separation processes. Here we demonstrate how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here SMD or SM8, can be used to predict parameters for the MOdified Separation of Cohesive Energy Density (MOSCED) method. The method is applied to the solutes naphthalene, anthracene, phenanthrene, pyrene and dibenzothiophene, compounds of interested to the petroleum industry and for environmental remediation. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. Comparing to a total of 422 non-aqueous and 193 aqueous experimental solubilities, we find the proposed method is able to well correlate the data. The use of MOSCED is additionally advantageous as it is a solubility parameter-based method useful for intuitive solvent selection and formulation.

  7. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Astrophysics Data System (ADS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-05-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  8. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  9. Diverse origins of Arctic and Subarctic methane point source emissions identified with multiply-substituted isotopologues

    NASA Astrophysics Data System (ADS)

    Douglas, P. M. J.; Stolper, D. A.; Smith, D. A.; Walter Anthony, K. M.; Paull, C. K.; Dallimore, S.; Wik, M.; Crill, P. M.; Winterdahl, M.; Eiler, J. M.; Sessions, A. L.

    2016-09-01

    Methane is a potent greenhouse gas, and there are concerns that its natural emissions from the Arctic could act as a substantial positive feedback to anthropogenic global warming. Determining the sources of methane emissions and the biogeochemical processes controlling them is important for understanding present and future Arctic contributions to atmospheric methane budgets. Here we apply measurements of multiply-substituted isotopologues, or clumped isotopes, of methane as a new tool to identify the origins of ebullitive fluxes in Alaska, Sweden and the Arctic Ocean. When methane forms in isotopic equilibrium, clumped isotope measurements indicate the formation temperature. In some microbial methane, however, non-equilibrium isotope effects, probably related to the kinetics of methanogenesis, lead to low clumped isotope values. We identify four categories of emissions in the studied samples: thermogenic methane, deep subsurface or marine microbial methane formed in isotopic equilibrium, freshwater microbial methane with non-equilibrium clumped isotope values, and mixtures of deep and shallow methane (i.e., combinations of the first three end members). Mixing between deep and shallow methane sources produces a non-linear variation in clumped isotope values with mixing proportion that provides new constraints for the formation environment of the mixing end-members. Analyses of microbial methane emitted from lakes, as well as a methanol-consuming methanogen pure culture, support the hypothesis that non-equilibrium clumped isotope values are controlled, in part, by kinetic isotope effects induced during enzymatic reactions involved in methanogenesis. Our results indicate that these kinetic isotope effects vary widely in microbial methane produced in Arctic lake sediments, with non-equilibrium Δ18 values spanning a range of more than 5‰.

  10. Thermochemistry of the gaseous fluorides of samarium, europium, and thulium

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, P. D.; Lau, K. H.; Hildenbrand, D. L.

    1981-01-01

    The gaseous mono-, di-, and trifluorides of the lanthanide metals samarium, europium, and thulium were characterized thermochemically from high temperature equilibrium studies carried out by mass spectrometry. Reaction enthalpies and entropies were derived using second-law analysis throughout, and the results were used to evaluate the enthalpies of formation and bond dissociation energies (BDE) of the gaseous fluorides, and to obtain approximate values for the electronic entropies of the MF and MF2 species. The dissociation energies of the monofluorides D°0(SmF)=134 kcal/mole, D°0(EuF)=129 kcal/mole, and D°0(TmF)=121 kcal/mole, all ±2 kcal/mole, are in good agreement with values predicted by the Rittner electrostatic model, whereas values in the polyatomic fluorides show considerable variation and do not seem to follow any clear trends. Although the BDE values in some instances differ from previous estimates, their sums yield trifluoride heats of atomization that are in close accord with values derived from the vaporization thermodynamics of the solid trifluorides.

  11. Chemical properties of ground water and their corrosion and encrustation effects on wells

    USGS Publications Warehouse

    Barnes, Ivan; Clarke, Frank Eldridge

    1969-01-01

    Well waters in Egypt, Nigeria, and West Pakistan were studied for their chemical properties and corrosive or encrusting behavior. From the chemical composition of the waters, reaction states with reference to equilibrium were tested for 29 possible coexisting oxides, carbonates, sulfides, and elements. Of the 29 solids considered, only calcite, CaCO3, and ferric hydroxide, Fe(OH)3, showed any correlation with the corrosiveness of the waters to mild steel (iron metal). All 39 of the waters tested were out of equilibrium with iron metal, but those waters in equilibrium or supersaturated with both calcite and ferric hydroxide were the least corrosive. Supersaturation with other solid phases apparently was unrelated to corrosion. A number of solids may form surface deposits in wells and lead to decreased yields by fouling well intakes (screens and gravel packs) or increasing friction losses in casings. Calcite, CaCO3; ferric hydroxide, Fe(OH)3; magnetite, Fe3O4; siderite, FeCO3; hausmannite, Mn304 (tetragonal); manganese spinel, Mn3O4 (isometric); three iron sulfides mackinawite, FeS (tetragonal); greigite, Fe3S4 (isometric); and smythite, Fe3S4 (rhombohedral)-copper hydroxide, Co(OH)2; and manganese hydroxide, Mn(OH)2, were all at least tentatively identified in the deposits sampled. Of geochemical interest is the demonstration that simple stable equilibrium models fail in nearly every case to predict compositions of water yielded by the wells studied. Only one stable phase (calcite) was found to exhibit behavior approximately predictable from stable equilibrium considerations. No other stable phase was found to behave as would be predicted from equilibrium considerations. All the solids found to precipitate (except calcite) are metastable in that they are not the least soluble phases possible in the systems studied. In terms of metastable equilibrium, siderite and ferric hydroxide behave approximately as would be predicted from equilibrium considerations, but both are metastable and the presence of neither would be anticipated if only the most stable phases were considered. The behaviors of none of the other solids would be predictable from either stable or metastable equilibrium considerations. An unanswered problem raised by the study reported here is how, or by what paths, truly stable phases form if first precipitates are generally metastable.The utility of the findings in well design and operation is in no way impaired by the general lack of equilibrium. Conditions leading to either corrosion (which is related to lack of supersaturation with protective phases), or encrustation (supersaturation with phases that were found to precipitate), or both, apparently can be identified. The application of the methods described can be of great importance in developing unexploited ground-water resources in that certain practical problems can be identified before extensive well construction and unnecessary well failure.

  12. Integration of experimental and computational methods for identifying geometric, thermal and diffusive properties of biomaterials

    NASA Astrophysics Data System (ADS)

    Weres, Jerzy; Kujawa, Sebastian; Olek, Wiesław; Czajkowski, Łukasz

    2016-04-01

    Knowledge of physical properties of biomaterials is important in understanding and designing agri-food and wood processing industries. In the study presented in this paper computational methods were developed and combined with experiments to enhance identification of agri-food and forest product properties, and to predict heat and water transport in such products. They were based on the finite element model of heat and water transport and supplemented with experimental data. Algorithms were proposed for image processing, geometry meshing, and inverse/direct finite element modelling. The resulting software system was composed of integrated subsystems for 3D geometry data acquisition and mesh generation, for 3D geometry modelling and visualization, and for inverse/direct problem computations for the heat and water transport processes. Auxiliary packages were developed to assess performance, accuracy and unification of data access. The software was validated by identifying selected properties and using the estimated values to predict the examined processes, and then comparing predictions to experimental data. The geometry, thermal conductivity, specific heat, coefficient of water diffusion, equilibrium water content and convective heat and water transfer coefficients in the boundary layer were analysed. The estimated values, used as an input for simulation of the examined processes, enabled reduction in the uncertainty associated with predictions.

  13. Simulation of electron-proton coupling with a Monte Carlo method: application to cytochrome c3 using continuum electrostatics.

    PubMed Central

    Baptista, A M; Martel, P J; Soares, C M

    1999-01-01

    A new method is presented for simulating the simultaneous binding equilibrium of electrons and protons on protein molecules, which makes it possible to study the full equilibrium thermodynamics of redox and protonation processes, including electron-proton coupling. The simulations using this method reflect directly the pH and electrostatic potential of the environment, thus providing a much closer and realistic connection with experimental parameters than do usual methods. By ignoring the full binding equilibrium, calculations usually overlook the twofold effect that binding fluctuations have on the behavior of redox proteins: first, they affect the energy of the system by creating partially occupied sites; second, they affect its entropy by introducing an additional empty/occupied site disorder (here named occupational entropy). The proposed method is applied to cytochrome c3 of Desulfovibrio vulgaris Hildenborough to study its redox properties and electron-proton coupling (redox-Bohr effect), using a continuum electrostatic method based on the linear Poisson-Boltzmann equation. Unlike previous studies using other methods, the full reduction order of the four hemes at physiological pH is successfully predicted. The sites more strongly involved in the redox-Bohr effect are identified by analysis of their titration curves/surfaces and the shifts of their midpoint redox potentials and pKa values. Site-site couplings are analyzed using statistical correlations, a method much more realistic than the usual analysis based on direct interactions. The site found to be more strongly involved in the redox-Bohr effect is propionate D of heme I, in agreement with previous studies; other likely candidates are His67, the N-terminus, and propionate D of heme IV. Even though the present study is limited to equilibrium conditions, the possible role of binding fluctuations in the concerted transfer of protons and electrons under nonequilibrium conditions is also discussed. The occupational entropy contributions to midpoint redox potentials and pKa values are computed and shown to be significant. PMID:10354425

  14. Phylogenies support out-of-equilibrium models of biodiversity.

    PubMed

    Manceau, Marc; Lambert, Amaury; Morlon, Hélène

    2015-04-01

    There is a long tradition in ecology of studying models of biodiversity at equilibrium. These models, including the influential Neutral Theory of Biodiversity, have been successful at predicting major macroecological patterns, such as species abundance distributions. But they have failed to predict macroevolutionary patterns, such as those captured in phylogenetic trees. Here, we develop a model of biodiversity in which all individuals have identical demographic rates, metacommunity size is allowed to vary stochastically according to population dynamics, and speciation arises naturally from the accumulation of point mutations. We show that this model generates phylogenies matching those observed in nature if the metacommunity is out of equilibrium. We develop a likelihood inference framework that allows fitting our model to empirical phylogenies, and apply this framework to various mammalian families. Our results corroborate the hypothesis that biodiversity dynamics are out of equilibrium. © 2015 John Wiley & Sons Ltd/CNRS.

  15. Study of Aerothermodynamic Modeling Issues Relevant to High-Speed Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.

    2014-01-01

    This paper examines the application of state-of-the-art coupled ablation and radiation simulations to highspeed sample return vehicles, such as those returning from Mars or an asteroid. A defining characteristic of these entries is that the surface recession rates and temperatures are driven by nonequilibrium convective and radiative heating through a boundary layer with significant surface blowing and ablation products. Measurements relevant to validating the simulation of these phenomena are reviewed and the Stardust entry is identified as providing the best relevant measurements. A coupled ablation and radiation flowfield analysis is presented that implements a finite-rate surface chemistry model. Comparisons between this finite-rate model and a equilibrium ablation model show that, while good agreement is seen for diffusion-limited oxidation cases, the finite-rate model predicts up to 50% lower char rates than the equilibrium model at sublimation conditions. Both the equilibrium and finite rate models predict significant negative mass flux at the surface due to sublimation of atomic carbon. A sensitivity analysis to flowfield and surface chemistry rates show that, for a sample return capsule at 10, 12, and 14 km/s, the sublimation rates for C and C3 provide the largest changes to the convective flux, radiative flux, and char rate. A parametric uncertainty analysis of the radiative heating due to radiation modeling parameters indicates uncertainties ranging from 27% at 10 km/s to 36% at 14 km/s. Applying the developed coupled analysis to the Stardust entry results in temperatures within 10% of those inferred from observations, and final recession values within 20% of measurements, which improves upon the 60% over-prediction at the stagnation point obtained through an uncoupled analysis. Emission from CN Violet is shown to be over-predicted by nearly and order-of-magnitude, which is consistent with the results of previous independent analyses. Finally, the coupled analysis is applied to a 14 km/s Earth entry representative of a Mars sample return. Although the radiative heating provides a larger fraction of the total heating, the influence of ablation and radiation on the flowfield are shown to be similar to Stardust.

  16. Solid-phase Microextraction (SPME) with Stable Isotope Calibration for Measuring Bioavailability of Hydrophobic Organic Contaminants

    PubMed Central

    Cui, Xinyi; Bao, Lianjun; Gan, Jay

    2014-01-01

    Solid-phase microextraction (SPME) is a biomimetic tool ideally suited for measuring bioavailability of hydrophobic organic compounds (HOCs) in sediment and soil matrices. However, conventional SPME sampling requires the attainment of equilibrium between the fiber and sample matrix, which may take weeks or months, greatly limiting its applicability. In this study, we explored the preloading of polydimethylsiloxane fiber with stable isotope labeled analogs (SI-SPME) to circumvent the need for long sampling time, and evaluated the performance of SI-SPME against the conventional equilibrium SPME (Eq-SPME) using a range of sediments and conditions. Desorption of stable isotope-labeled analogs and absorption of PCB-52, PCB-153, bifenthrin and cis-permethrin were isotropic, validating the assumption for SI-SPME. Highly reproducible preloading was achieved using acetone-water (1:4, v/v) as the carrier. Compared to Eq-SPME that required weeks or even months, the fiber concentrations (Cf) under equilibrium could be reliably estimated by SI-SPME in 1 d under agitated conditions or 20 d under static conditions in spiked sediments. The Cf values predicted by SI-SPME were statistically identical to those determined by Eq-SPME. The SI-SPME method was further applied successfully to field sediments contaminated with PCB 52, PCB 153, and bifenthrin. The increasing availability of stable isotope labeled standards and mass spectrometry nowadays makes SI-SPME highly feasible, allowing the use of SPME under non-equilibrium conditions with much shorter or flexible sampling time. PMID:23930601

  17. Laminar or turbulent boundary-layer flows of perfect gases or reacting gas mixtures in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Lewis, C. H.

    1971-01-01

    Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.

  18. LONG-TERM STABLE EQUILIBRIA FOR SYNCHRONOUS BINARY ASTEROIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Seth A.; Scheeres, Daniel J.

    Synchronous binary asteroids may exist in a long-term stable equilibrium, where the opposing torques from mutual body tides and the binary YORP (BYORP) effect cancel. Interior of this equilibrium, mutual body tides are stronger than the BYORP effect and the mutual orbit semimajor axis expands to the equilibrium; outside of the equilibrium, the BYORP effect dominates the evolution and the system semimajor axis will contract to the equilibrium. If the observed population of small (0.1-10 km diameter) synchronous binaries are in static configurations that are no longer evolving, then this would be confirmed by a null result in the observationalmore » tests for the BYORP effect. The confirmed existence of this equilibrium combined with a shape model of the secondary of the system enables the direct study of asteroid geophysics through the tidal theory. The observed synchronous asteroid population cannot exist in this equilibrium if described by the canonical 'monolithic' geophysical model. The 'rubble pile' geophysical model proposed by Goldreich and Sari is sufficient, however it predicts a tidal Love number directly proportional to the radius of the asteroid, while the best fit to the data predicts a tidal Love number inversely proportional to the radius. This deviation from the canonical and Goldreich and Sari models motivates future study of asteroid geophysics. Ongoing BYORP detection campaigns will determine whether these systems are in an equilibrium, and future determination of secondary shapes will allow direct determination of asteroid geophysical parameters.« less

  19. Prediction of Temperatures of Austenite Equilibrium Transformations in Steels During Thermomechanical Processing

    NASA Astrophysics Data System (ADS)

    Samadian, Pedram; Parsa, Mohammad Habibi; Ahmadabadi, M. Nili; Mirzadeh, Hamed

    2014-10-01

    Knowledge about the transformation temperatures is crucial in processing of steels especially in thermomechanical processes because microstructures and mechanical properties after processing are closely related to the extent and type of transformations. The experimental determination of critical temperatures is costly, and therefore, it is preferred to predict them by mathematical methods. In the current work, new thermodynamically based models were developed for computing the Ae3 and Acm temperatures in the equilibrium cooling conditions when austenite is deformed at elevated temperatures. The main advantage of the proposed models is their capability to predict the temperatures of austenite equilibrium transformations in steels with total alloying elements (Mn + Si + Ni + Cr + Mo + Cu) less than 5 wt.% and Si less than 1 wt.% under the deformation conditions just by using the chemical potential of constituents, without the need for determining the total Gibbs free energy of steel which requires many experiments and computations.

  20. Thermodynamic model effects on the design and optimization of natural gas plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, S.; Zabaloy, M.; Brignole, E.A.

    1999-07-01

    The design and optimization of natural gas plants is carried out on the basis of process simulators. The physical property package is generally based on cubic equations of state. By rigorous thermodynamics phase equilibrium conditions, thermodynamic functions, equilibrium phase separations, work and heat are computed. The aim of this work is to analyze the NGL turboexpansion process and identify possible process computations that are more sensitive to model predictions accuracy. Three equations of state, PR, SRK and Peneloux modification, are used to study the effect of property predictions on process calculations and plant optimization. It is shown that turboexpander plantsmore » have moderate sensitivity with respect to phase equilibrium computations, but higher accuracy is required for the prediction of enthalpy and turboexpansion work. The effect of modeling CO{sub 2} solubility is also critical in mixtures with high CO{sub 2} content in the feed.« less

  1. Expected Shannon Entropy and Shannon Differentiation between Subpopulations for Neutral Genes under the Finite Island Model.

    PubMed

    Chao, Anne; Jost, Lou; Hsieh, T C; Ma, K H; Sherwin, William B; Rollins, Lee Ann

    2015-01-01

    Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information ("Shannon differentiation") between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (Sturnus vulgaris) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.

  2. The Abundance of Molecular Hydrogen and Its Correlation with Midplane Pressure in Galaxies: Non-equilibrium, Turbulent, Chemical Models

    NASA Astrophysics Data System (ADS)

    Mac Low, Mordecai-Mark; Glover, Simon C. O.

    2012-02-01

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R mol and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H2 from cold atomic gas. The formation timescale for H2 is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H2 formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H2 formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H2. The observed correlation of R mol with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R mol with density. If we examine the value of R mol in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  3. Equilibrium sorption and diffusion rate studies with halogenated organic chemical and sandy aquifer material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, W.P.

    1990-01-01

    Concepts for rate limitation of sorptive uptake of hydrophobic organic solutes by aquifer solids are reviewed, emphasizing physical diffusion models and in the context of effects on contaminant transport. Data for the sorption of tetrachloroethene (PCE) and 1,2,4,5-tetrachlorobenzene (TeCB) on Borden sand are presented, showing that equilibrium is attained very slowly, requiring equilibration times on the order of tens of days for PCE and hundreds of days for TeCB. The rate of approach to equilibrium decreased with increasing particle size and sorption distribution coefficient, in accordance with retarded intragranular diffusion models. Pulverization of the samples significantly decreased the required timemore » to equilibrium without changing the sorption capacity of the solids. Batch sorption methodology was refined to allow accurate measurement of long-term distribution coefficients, using purified {sup 14}C-labelled solute spikes and sealed glass ampules. Sorption isotherms for PCE and TeCB were conducted with size fractions of Borden sand over four to five orders of magnitude in aqueous concentration, and were found to be slightly nonlinear (Freundlich exponent = 0.8). A concentrated set of data in the low concentration range (<50 ug/L) revealed that sorption in this range could be equally well described by a linear isotherm. Distribution coefficients of the two solutes with seven size fractions of Borden sand, measured at low concentration and at full equilibrium, were between seven and sixty times the value predicted on the basis of recent correlations with organic carbon content. Rate results for coarse size fractions support a simple pore diffusion model, with pore diffusion coefficients estimated to be approximately 3 {times} 10{sup {minus}8} cm{sup 2}/sec, more than 200{times} lower than the aqueous diffusivities.« less

  4. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  5. Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation

    PubMed Central

    Morita, Kenji

    2016-01-01

    It has been suggested that dopamine (DA) represents reward-prediction-error (RPE) defined in reinforcement learning and therefore DA responds to unpredicted but not predicted reward. However, recent studies have found DA response sustained towards predictable reward in tasks involving self-paced behavior, and suggested that this response represents a motivational signal. We have previously shown that RPE can sustain if there is decay/forgetting of learned-values, which can be implemented as decay of synaptic strengths storing learned-values. This account, however, did not explain the suggested link between tonic/sustained DA and motivation. In the present work, we explored the motivational effects of the value-decay in self-paced approach behavior, modeled as a series of ‘Go’ or ‘No-Go’ selections towards a goal. Through simulations, we found that the value-decay can enhance motivation, specifically, facilitate fast goal-reaching, albeit counterintuitively. Mathematical analyses revealed that underlying potential mechanisms are twofold: (1) decay-induced sustained RPE creates a gradient of ‘Go’ values towards a goal, and (2) value-contrasts between ‘Go’ and ‘No-Go’ are generated because while chosen values are continually updated, unchosen values simply decay. Our model provides potential explanations for the key experimental findings that suggest DA's roles in motivation: (i) slowdown of behavior by post-training blockade of DA signaling, (ii) observations that DA blockade severely impairs effortful actions to obtain rewards while largely sparing seeking of easily obtainable rewards, and (iii) relationships between the reward amount, the level of motivation reflected in the speed of behavior, and the average level of DA. These results indicate that reinforcement learning with value-decay, or forgetting, provides a parsimonious mechanistic account for the DA's roles in value-learning and motivation. Our results also suggest that when biological systems for value-learning are active even though learning has apparently converged, the systems might be in a state of dynamic equilibrium, where learning and forgetting are balanced. PMID:27736881

  6. Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation.

    PubMed

    Kato, Ayaka; Morita, Kenji

    2016-10-01

    It has been suggested that dopamine (DA) represents reward-prediction-error (RPE) defined in reinforcement learning and therefore DA responds to unpredicted but not predicted reward. However, recent studies have found DA response sustained towards predictable reward in tasks involving self-paced behavior, and suggested that this response represents a motivational signal. We have previously shown that RPE can sustain if there is decay/forgetting of learned-values, which can be implemented as decay of synaptic strengths storing learned-values. This account, however, did not explain the suggested link between tonic/sustained DA and motivation. In the present work, we explored the motivational effects of the value-decay in self-paced approach behavior, modeled as a series of 'Go' or 'No-Go' selections towards a goal. Through simulations, we found that the value-decay can enhance motivation, specifically, facilitate fast goal-reaching, albeit counterintuitively. Mathematical analyses revealed that underlying potential mechanisms are twofold: (1) decay-induced sustained RPE creates a gradient of 'Go' values towards a goal, and (2) value-contrasts between 'Go' and 'No-Go' are generated because while chosen values are continually updated, unchosen values simply decay. Our model provides potential explanations for the key experimental findings that suggest DA's roles in motivation: (i) slowdown of behavior by post-training blockade of DA signaling, (ii) observations that DA blockade severely impairs effortful actions to obtain rewards while largely sparing seeking of easily obtainable rewards, and (iii) relationships between the reward amount, the level of motivation reflected in the speed of behavior, and the average level of DA. These results indicate that reinforcement learning with value-decay, or forgetting, provides a parsimonious mechanistic account for the DA's roles in value-learning and motivation. Our results also suggest that when biological systems for value-learning are active even though learning has apparently converged, the systems might be in a state of dynamic equilibrium, where learning and forgetting are balanced.

  7. Implementation of Premixed Equilibrium Chemistry Capability in OVERFLOW

    NASA Technical Reports Server (NTRS)

    Olsen, M. E.; Liu, Y.; Vinokur, M.; Olsen, T.

    2003-01-01

    An implementation of premixed equilibrium chemistry has been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flowfields. The implementation builds on the computational efficiency and geometric generality of the solver.

  8. Implementation of Premixed Equilibrium Chemistry Capability in OVERFLOW

    NASA Technical Reports Server (NTRS)

    Olsen, Mike E.; Liu, Yen; Vinokur, M.; Olsen, Tom

    2004-01-01

    An implementation of premixed equilibrium chemistry has been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flowfields. The implementation builds on the computational efficiency and geometric generality of the solver.

  9. Hysteresis of the Contact Angle of a Meniscus Inside a Capillary with Smooth, Homogeneous Solid Walls.

    PubMed

    Kuchin, Igor V; Starov, Victor M

    2016-05-31

    A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick β-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.

  10. Random walk to a nonergodic equilibrium concept

    NASA Astrophysics Data System (ADS)

    Bel, G.; Barkai, E.

    2006-01-01

    Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a δ function centered on the value predicted based on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly discussed.

  11. Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: Biological effects limiting the precision of the paleotemperature proxy

    USGS Publications Warehouse

    Meibom, A.; Stage, M.; Wooden, J.; Constantz, B.R.; Dunbar, R.B.; Owen, A.; Grumet, N.; Bacon, C.R.; Chamberlain, C.P.

    2003-01-01

    In thermodynamic equilibrium with sea water the Sr/Ca ratio of aragonite varies predictably with temperature and the Sr/Ca ratio in coral have thus become a frequently used proxy for past Sea Surface Temperature (SST). However, biological effects can offset the Sr/Ca ratio from its equilibrium value. We report high spatial resolution ion microprobe analyses of well defined skeletal elements in the reef-building coral Porites lutea that reveal distinct monthly oscillations in the Sr/Ca ratio, with an amplitude in excess of ten percent. The extreme Sr/Ca variations, which we propose result from metabolic changes synchronous with the lunar cycle, introduce variability in Sr/Ca measurements based on conventional sampling techniques well beyond the analytical precision. These variations can limit the accuracy of Sr/Ca paleothermometry by conventional sampling techniques to about 2??C. Our results may help explain the notorious difficulties involved in obtaining an accurate and consistent calibration of the Sr/Ca vs. SST relationship.

  12. Linear free-energy relationships between a single gas-phase ab initio equilibrium bond length and experimental pKa values in aqueous solution.

    PubMed

    Alkorta, Ibon; Popelier, Paul L A

    2015-02-02

    Remarkably simple yet effective linear free energy relationships were discovered between a single ab initio computed bond length in the gas phase and experimental pKa values in aqueous solution. The formation of these relationships is driven by chemical features such as functional groups, meta/para substitution and tautomerism. The high structural content of the ab initio bond length makes a given data set essentially divide itself into high correlation subsets (HCSs). Surprisingly, all molecules in a given high correlation subset share the same conformation in the gas phase. Here we show that accurate pKa values can be predicted from such HCSs. This is achieved within an accuracy of 0.2 pKa units for 5 drug molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Analysis of the 3d(sup 6)4s((sup 6)D)4f-5g supermultiplet of Fe I in laboratory and solar infrared spectra

    NASA Technical Reports Server (NTRS)

    Johansson, S.; Nave, G.; Geller, M.; Sauval, A. J.; Grevesse, N.; Schoenfeld, W. G.; Change, E. S.; Farmer, C. B.

    1994-01-01

    The combined laboratory and solar analysis of the highly excited subconfigurations 3d(sup 6)4s((sup 6)D)4f and 3d(sup 6)4s((sup 6)D)5g of Fe I has allowed us to classify 87 lines of the 4f-5g supermultiplet in the spectral region 2545-2585 per cm. The level structure of these JK-coupled configurations is predicted by semiempirical calculations and the quardrupolic approximation. Semiempirical gf-values have been calculated and are compared to gf-values derived from the solar spectrum. The solar analysis has shown that these lines, which should be much less sensitive than lower excitation lines to departures from Local Thermal Equilibrium (LTE) and to temperature uncertanties, lead to a solar abundance of iron which is consistent with the meteoritic value (A(sub Fe) = 7.51).

  14. Equivalences between refractive index and equilibrium water content of conventional and silicone hydrogel soft contact lenses from automated and manual refractometry.

    PubMed

    González-Méijome, José M; López-Alemany, Antonio; Lira, Madalena; Almeida, José B; Oliveira, M Elisabete C D Real; Parafita, Manuel A

    2007-01-01

    The purpose of the present study was to develop mathematical relationships that allow obtaining equilibrium water content and refractive index of conventional and silicone hydrogel soft contact lenses from refractive index measures obtained with automated refractometry or equilibrium water content measures derived from manual refractometry, respectively. Twelve HEMA-based hydrogels of different hydration and four siloxane-based polymers were assayed. A manual refractometer and a digital refractometer were used. Polynomial models obtained from the sucrose curves of equilibrium water content against refractive index and vice-versa were used either considering the whole range of sucrose concentrations (16-100% equilibrium water content) or a range confined to the equilibrium water content of current soft contact lenses (approximately 20-80% equilibrium water content). Values of equilibrium water content measured with the Atago N-2E and those derived from the refractive index measurement with CLR 12-70 by the applications of sucrose-based models displayed a strong linear correlation (r2 = 0.978). The same correlations were obtained when the models are applied to obtain refractive index values from the Atago N-2E and compared with those (values) given by the CLR 12-70 (r2 = 0.978). No significantly different results are obtained between models derived from the whole range of the sucrose solution or the model limited to the normal range of soft contact lens hydration. Present results will have implications for future experimental and clinical research regarding normal hydration and dehydration experiments with hydrogel polymers, and particularly in the field of contact lenses. 2006 Wiley Periodicals, Inc.

  15. Lead sorption by waste biomass of hazelnut and almond shell.

    PubMed

    Pehlivan, Erol; Altun, Türkan; Cetin, Serpil; Iqbal Bhanger, M

    2009-08-15

    The potential to remove Pb(2+) ion from aqueous solutions using the shells of hazelnut (HNS) (Corylus avellana) and almond (AS) (Prunus dulcis) through biosorption was investigated in batch experiments. The main parameters influencing Pb(2+) ion sorption on HNS and AS were: initial metal ion concentration, amount of adsorbent, contact time and pH value of solution. The influences of initial Pb(2+) ion concentration (0.1-1.0mM), pH (2-9), contact time (10-240 min) and adsorbent amount (0.1-1.0 g) have been investigated. Equilibrium isotherms have been measured and modelled. Adsorption of Pb(2+) ions was in all cases pH-dependent showing a maximum at equilibrium pH values between 6.0 and 7.0, depending on the biomaterial, that corresponded to equilibrium pH values of 6.0 for HNS and 7.0 for AS. The equilibrium sorption capacities of HNS and AS were 28.18 and 8.08 mg/g for lead, respectively after equilibrium time of 2h. The adsorption data fit well with the Langmuir isotherm model and the experimental result inferred that adsorption, chelation and ion exchange are major adsorption mechanisms for binding Pb(2+) ion to the sorbents.

  16. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    NASA Astrophysics Data System (ADS)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  17. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.

  18. Analytical model of multi-planetary resonant chains and constraints on migration scenarios

    NASA Astrophysics Data System (ADS)

    Delisle, J.-B.

    2017-09-01

    Resonant chains are groups of planets for which each pair is in resonance, with an orbital period ratio locked at a rational value (2/1, 3/2, etc.). Such chains naturally form as a result of convergent migration of the planets in the proto-planetary disk. In this article, I present an analytical model of resonant chains of any number of planets. Using this model, I show that a system captured in a resonant chain can librate around several possible equilibrium configurations. The probability of capture around each equilibrium depends on how the chain formed, and especially on the order in which the planets have been captured in the chain. Therefore, for an observed resonant chain, knowing around which equilibrium the chain is librating allows for constraints to be put on the formation and migration scenario of the system. I apply this reasoning to the four planets orbiting Kepler-223 in a 3:4:6:8 resonant chain. I show that the system is observed around one of the six equilibria predicted by the analytical model. Using N-body integrations, I show that the most favorable scenario to reproduce the observed configuration is to first capture the two intermediate planets, then the outermost, and finally the innermost.

  19. Description of the General Equilibrium Model of Ecosystem Services (GEMES)

    Treesearch

    Travis Warziniack; David Finnoff; Jenny Apriesnig

    2017-01-01

    This paper serves as documentation for the General Equilibrium Model of Ecosystem Services (GEMES). GEMES is a regional computable general equilibrium model that is composed of values derived from natural capital and ecosystem services. It models households, producing sectors, and governments, linked to one another through commodity and factor markets. GEMES was...

  20. The Equilibrium Constant for Bromothymol Blue: A General Chemistry Laboratory Experiment Using Spectroscopy

    ERIC Educational Resources Information Center

    Klotz, Elsbeth; Doyle, Robert; Gross, Erin; Mattson, Bruce

    2011-01-01

    A simple, inexpensive, and environmentally friendly undergraduate laboratory experiment is described in which students use visible spectroscopy to determine a numerical value for an equilibrium constant, K[subscript c]. The experiment correlates well with the lecture topic of equilibrium even though the subject of the study is an acid-base…

  1. PROCEDURES FOR THE DERIVATION OF EQUILIBRIUM PARTITIONING SEDIMENT BENCHMARKS (ESBS) FOR THE PROTECTION OF BENTHIC ORGANISMS: COMPENDIUM OF TIER 2 VALUES FOR NONIONIC ORGANICS

    EPA Science Inventory

    This equilibrium partitioning sediment benchmark (ESB) document describes procedures to derive concentrations for 32 nonionic organic chemicals in sediment which are protective of the presence of freshwater and marine benthic organisms. The equilibrium partitioning (EqP) approach...

  2. Mathematical analysis of tuberculosis transmission model with delay

    NASA Astrophysics Data System (ADS)

    Lapaan, R. D.; Collera, J. A.; Addawe, J. M.

    2016-11-01

    In this paper, a delayed Tuberculosis infection model is formulated and investigated. We showed the existence of disease free equilibrium and endemic equilibrium points. We used La Salle-Lyapunov Invariance Principle to show that if the reproductive number R0 < 1, the disease-free equilibrium of the model is globally asymptotically stable. Numerical simulations are then performed to illustrate the existence of the disease free equilibrium and the endemic equilibrium point for a given value of R0. Thus, when R0 < 1, the disease dies out in the population.

  3. Andriy Zakutayev | NREL

    Science.gov Websites

    technologies using materials-by-design methods. The basic direction involves research on non-equilibrium doping in semiconductors Materials by Design and Materials Genome Non-equilibrium and metastable . 5, 1117 (2014) "Theoretical Prediction and Experimental Realization of New Stable Inorganic

  4. Sensitivity of alpha-particle-driven Alfvén eigenmodes to q-profile variation in ITER scenarios

    NASA Astrophysics Data System (ADS)

    Rodrigues, P.; Figueiredo, A. C. A.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.

    2016-11-01

    A perturbative hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfvén eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the {{I}\\text{p}}=15 MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight variations (of the order of 1% ) of the safety-factor value on axis are seen to cause large changes in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core, raising issues about reliable predictions of alpha-particle transport in burning plasmas.

  5. Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line

    NASA Astrophysics Data System (ADS)

    Spies, Günther O.; Faghihi, Mustafa

    1987-06-01

    To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter.

  6. Development and evaluation of consensus-based sediment effect concentrations for polychlorinated biphenyls

    USGS Publications Warehouse

    MacDonald, Donald D.; Dipinto, Lisa M.; Field, Jay; Ingersoll, Christopher G.; Long, Edward R.; Swartz, Richard C.

    2000-01-01

    Sediment-quality guidelines (SQGs) have been published for polychlorinated biphenyls (PCBs) using both empirical and theoretical approaches. Empirically based guidelines have been developed using the screening-level concentration, effects range, effects level, and apparent effects threshold approaches. Theoretically based guidelines have been developed using the equilibrium-partitioning approach. Empirically-based guidelines were classified into three general categories, in accordance with their original narrative intents, and used to develop three consensus-based sediment effect concentrations (SECs) for total PCBs (tPCBs), including a threshold effect concentration, a midrange effect concentration, and an extreme effect concentration. Consensus-based SECs were derived because they estimate the central tendency of the published SQGs and, thus, reconcile the guidance values that have been derived using various approaches. Initially, consensus-based SECs for tPCBs were developed separately for freshwater sediments and for marine and estuarine sediments. Because the respective SECs were statistically similar, the underlying SQGs were subsequently merged and used to formulate more generally applicable SECs. The three consensus-based SECs were then evaluated for reliability using matching sediment chemistry and toxicity data from field studies, dose-response data from spiked-sediment toxicity tests, and SQGs derived from the equilibrium-partitioning approach. The results of this evaluation demonstrated that the consensus-based SECs can accurately predict both the presence and absence of toxicity in field-collected sediments. Importantly, the incidence of toxicity increases incrementally with increasing concentrations of tPCBs. Moreover, the consensus-based SECs are comparable to the chronic toxicity thresholds that have been estimated from dose-response data and equilibrium-partitioning models. Therefore, consensus-based SECs provide a unifying synthesis of existing SQGs, reflect causal rather than correlative effects, and accurately predict sediment toxicity in PCB-contaminated sediments.

  7. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    PubMed

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Broadening of Analyte Streams due to a Transverse Pressure Gradient in Free-Flow Isoelectric Focusing

    PubMed Central

    Dutta, Debashis

    2017-01-01

    Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system. PMID:28081900

  9. Isotopic biosignatures in carbonate-rich, cyanobacteria-dominated microbial mats of the Cariboo Plateau, B.C.

    PubMed

    Brady, A L; Druschel, G; Leoni, L; Lim, D S S; Slater, G F

    2013-09-01

    Photosynthetic activity in carbonate-rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ(13) CDIC values up to +6.0‰ above predicted carbon dioxide (CO2 ) equilibrium values, representing a biosignature of photosynthesis. Mat-associated δ(13) Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ(13) C values reflected the balance between photosynthetic (13) C-enrichment and heterotrophic inputs of (13) C-depleted DIC. Mat microelectrode profiles identified oxic zones where δ(13) Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ(13) Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of (13) C-depleted DIC. δ(13) C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ(13) Corg values ranged from -18.7 ± 0.1 to -25.3 ± 1.0‰ with mean Δ(13) Cinorg-org values ranging from 21.1 to 24.2‰, consistent with non-CO2 -limited photosynthesis, suggesting that Precambrian δ(13) Corg values of ~-26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non-limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic-rich and hot spring microbial mats. © 2013 John Wiley & Sons Ltd.

  10. Effect of adsorption on the surface tensions of solid-fluid interfaces.

    PubMed

    Ward, C A; Wu, Jiyu

    2007-04-12

    A method is proposed for determining the surface tensions of a solid in contact with either a liquid or a vapor. Only an equilibrium adsorption isotherm at the solid-vapor interface needs to be added to Gibbsian thermodynamics to obtain the expressions for the solid-vapor and the solid-liquid surface tensions, gamma[1](SV) and gamma[1](SL), respectively. An equilibrium adsorption isotherm relation is formulated that has the essential property of not predicting an infinite amount adsorbed when the pressure is equal to the saturation-vapor pressure. Five different solid-vapor systems from the literature are examined, and found to be well described by the new isotherm relation. The surface-tension expressions obtained from the isotherm relation are examined by determining the surface tension of the solid in the absence of adsorption, gamma[1](S0), a material property of a solid surface. The value of gamma[1](S0) can be determined by adsorbing different vapors on the same solid, determining the isotherm parameters in each case, and then from the expression for gamma[1](SV) taking the limit of the pressure vanishing to determine gamma[1](S0). From previously reported measurements of benzene and of n-hexane adsorbing on graphitized carbon, the same value of gamma[1](S0) is obtained.

  11. Calculation of the vibrational spectra of betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Szafran, Miroslaw; Koput, Jacek

    1997-02-01

    The molecular geometries of betaine hydrochloride, BET·HCl, and free protonated betaine, BET·H +, were calculated with the 6-31G(d,p) basis set at the SCF, MP2 and DFT levels of theory. At the SCF level, the minimum energy corresponds to the ionic pair, B +Htctdot;A -, however, the equilibrium Otctdot;Cl distance is 0.14 Å shorter than the X-ray value. Inclusion of the correlation effects, both at the MP2 and DFT levels, predicts a minimum energy for the molecular complex, Btctdot;H-A, with the equilibrium Otctdot;Cl distance close to the experimental value. The frequencies and intensities of the vibrational bands of BET·HCl, BET·DCl and BET·H + were calculated at the SCF and DFT levels and compared with the solid IR spectra. All measured IR bands were interpreted in term of the calculated vibrational modes. The rms deviations between the experimental and calculated SCF frequencies were 21 and 29 cm -1 for BET·HCl and BET·DCl, respectively. The computed band intensities agree qualitatively with the experimental data. The coupling of the CO stretching and OH bending modes are discussed. The summation bands are probably enhanced in intensity by Fermi resonance with the fundamentals responsible for the main ν(OH) (ν(OD) absorption region.

  12. Influence of Fuel Moisture Content and Reactor Temperature on the Calorific Value of Syngas Resulted from Gasification of Oil Palm Fronds

    PubMed Central

    Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana

    2014-01-01

    Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs), shells, fibers, trunks, and oil palm fronds (OPF). EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF) biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on downdraft gasification of OPF was experimentally investigated using a lab scale gasifier of capacity 50 kW. In addition, results obtained from equilibrium model of gasification that was developed for facilitating the prediction of syngas composition are compared with experimental data. Comparison of simulation results for predicting calorific value of syngas with the experimental results showed a satisfactory agreement with a mean error of 0.1 MJ/Nm3. For a biomass moisture content of 29%, the resulting calorific value for the syngas was found to be only 2.63 MJ/Nm3, as compared to nearly double (4.95 MJ/Nm3) for biomass moisture content of 22%. A calorific value as high as 5.57 MJ/Nm3 was recorded for higher oxidation zone temperature values. PMID:24578617

  13. Influence of fuel moisture content and reactor temperature on the calorific value of syngas resulted from gasification of oil palm fronds.

    PubMed

    Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana

    2014-01-01

    Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs), shells, fibers, trunks, and oil palm fronds (OPF). EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF) biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on downdraft gasification of OPF was experimentally investigated using a lab scale gasifier of capacity 50 kW. In addition, results obtained from equilibrium model of gasification that was developed for facilitating the prediction of syngas composition are compared with experimental data. Comparison of simulation results for predicting calorific value of syngas with the experimental results showed a satisfactory agreement with a mean error of 0.1 MJ/Nm³. For a biomass moisture content of 29%, the resulting calorific value for the syngas was found to be only 2.63 MJ/Nm³, as compared to nearly double (4.95 MJ/Nm³) for biomass moisture content of 22%. A calorific value as high as 5.57 MJ/Nm³ was recorded for higher oxidation zone temperature values.

  14. Understanding how biodiversity unfolds through time under neutral theory.

    PubMed

    Missa, Olivier; Dytham, Calvin; Morlon, Hélène

    2016-04-05

    Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. © 2016 The Author(s).

  15. Understanding how biodiversity unfolds through time under neutral theory

    PubMed Central

    2016-01-01

    Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. PMID:26977066

  16. Effects of sorption kinetics on the fate and transport of pharmaceuticals in estuaries.

    PubMed

    Liu, Dong; Lung, Wu-Seng; Colosi, Lisa M

    2013-08-01

    Many current fate and transport models based on the assumption of instantaneous sorption equilibrium of contaminants in the water column may not be valid for certain pharmaceuticals with long times to reach sorption equilibrium. In this study, a sorption kinetics model was developed and incorporated into a water quality model for the Patuxent River Estuary to evaluate the effect of sorption kinetics. Model results indicate that the assumption of instantaneous sorption equilibrium results in significant under-prediction of water column concentrations for some pharmaceuticals. The relative difference between predicted concentrations for the instantaneous versus kinetic approach is as large as 150% at upstream locations in the Patuxent Estuary. At downstream locations, where sorption processes have had sufficient time to reach equilibrium, the relative difference decreases to roughly 25%. This indicates that sorption kinetics affect a model's ability to capture accumulation of pharmaceuticals into riverbeds and the transport of pharmaceuticals in estuaries. These results offer strong evidence that chemicals are not removed from the water column as rapidly as has been assumed on the basis of equilibrium-based analyses. The findings are applicable not only for pharmaceutical compounds, but also for diverse contaminants that reach sorption equilibrium slowly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Improved partition equilibrium model for predicting analyte response in electrospray ionization mass spectrometry.

    PubMed

    Du, Lihong; White, Robert L

    2009-02-01

    A previously proposed partition equilibrium model for quantitative prediction of analyte response in electrospray ionization mass spectrometry is modified to yield an improved linear relationship. Analyte mass spectrometer response is modeled by a competition mechanism between analyte and background electrolytes that is based on partition equilibrium considerations. The correlation between analyte response and solution composition is described by the linear model over a wide concentration range and the improved model is shown to be valid for a wide range of experimental conditions. The behavior of an analyte in a salt solution, which could not be explained by the original model, is correctly predicted. The ion suppression effects of 16:0 lysophosphatidylcholine (LPC) on analyte signals are attributed to a combination of competition for excess charge and reduction of total charge due to surface tension effects. In contrast to the complicated mathematical forms that comprise the original model, the simplified model described here can more easily be employed to predict analyte mass spectrometer responses for solutions containing multiple components. Copyright (c) 2008 John Wiley & Sons, Ltd.

  18. Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation

    PubMed Central

    Scellier, Benjamin; Bengio, Yoshua

    2017-01-01

    We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made) and the second phase of training (after the target or prediction error is revealed). Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well-defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point or stationary distribution) toward a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged toward their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal “back-propagated” during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST task. PMID:28522969

  19. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0 30 kbar

    NASA Astrophysics Data System (ADS)

    Putirka, K.; Johnson, Marie; Kinzler, Rosamond; Longhi, John; Walker, David

    1996-02-01

    Models for estimating the pressure and temperature of igneous rocks from co-existing clino-pyroxene and liquid compositions are calibrated from existing data and from new data obtained from experiments performed on several mafic bulk compositions (from 8 30 kbar and 1100 1475° C). The resulting geothermobarometers involve thermodynamic expressions that relate temperature and pressure to equilibrium constants. Specifically, the jadeite (Jd; NaAlSi2O6) diopside/hedenbergite (DiHd; Ca(Mg, Fe) Si2O6) exchange equilibrium between clinopyroxene and liquid is temperature sensitive. When compositional corrections are made to the calibrated equilibrium constant the resulting geothermometer is (i) 104 T=6.73-0.26* ln [Jdpx*Caliq*FmliqDiHdpx*Naliq*Alliq] -0.86* ln [MgliqMgliq+Feliq]+0.52*ln [Caliq] an expression which estimates temperature to ±27 K. Compared to (i), the equilibrium constant for jadeite formation is more sensitive to pressure resulting in a thermobarometer (ii) P=-54.3+299* T104+36.4* T104 ln [Jdpx[Siliq]2*Naliq*Alliq] +367*[Naliq*Alliq] which estimates pressure to ± 1.4 kbar. Pressure is in kbar, T is in Kelvin. Quantities such as Naliq represent the cation fraction of the given oxide (NaO0.5) in the liquid and Fm=MgO+FeO. The mole fractions of Jd and diopside+hedenbergite (DiHd) components are calculated from a normative scheme which assigns the lesser of Na or octahedral Al to form Jd; any excess AlVI forms Calcium Tschermak’s component (CaTs; CaAlAlSiO6); Ca remaining after forming CaTs and CaTiAl2O6 is taken as DiHd. Experimental data not included in the regressions were used to test models (i) and (ii). Error on predictions of T using model (i) is ±40 K. A pressure-dependent form of (i) reduces this error to ±30 K. Using model (ii) to predict pressures, the error on mean values of 10 isobaric data sets (0 25 kbar, 118 data) is ±0.3 kbar. Calculating thermodynamic properties from regression coefficients in (ii) gives VJd f of 23.4 ±1.3 cm3/mol, close to the value anticipated from bar molar volume data (23.5 cm3/mol). Applied to clinopyroxene phenocrysts from Mauna Kea, Hawaii lavas, the expressions estimate equilibration depths as great as 40 km. This result indicates that transport was sufficiently rapid that at least some phenocrysts had insufficient time to re-equilibrate at lower pressures.

  20. CFD analysis of laboratory scale phase equilibrium cell operation

    NASA Astrophysics Data System (ADS)

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  1. CFD analysis of laboratory scale phase equilibrium cell operation.

    PubMed

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  2. Evaluation of the attenuating properties of selected Greek clays for toxic inorganic elements in landfill sites.

    PubMed

    Mimides, T; Perraki, T

    2000-05-15

    Heavy metal attenuation properties of selected clay material collected from miscellaneous Greek sites is investigated and tested in the laboratory for their suitability, either as liners in hydrologically unsafe sites or as earth covers for sanitary landfill sites. Eleven potentially hazardous elements (As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Se, V, and Zn) generated by a co-disposal landfill leachate have been considered. Experimental column and static equilibrium methods for the determination of dispersion and adsorption are described. Molecular diffusion dominates the migration phenomena with a velocity range between 1.3 x 10(-5) and 3.5 x 10(-4) cm/s throughout the experiments. A simple way to evaluate dispersion coefficients from breakthrough curves gave values of between 3.90 x 10(-6) and 3.5 x 10(-4) cm2/s, with a mean value of 1.5 x 10(-5). Static adsorption equilibrium studies supported by column runs showed that Freundlich (F = kCn) isotherms express in a better way the assimilative capacities of the tested clays, with k and n values ranging from 0.06 to 1.99 and 0.55 to 1.48 correspondingly. Mathematical models involving non-linear parabolic equations are involved. The experimental data, together with finite difference techniques and some physical clay characteristics, produced trilinear textural diagrams and predictive flow transport convection-dispersion breakthrough curves for a quick estimation of the attenuating properties of clays for heavy metals.

  3. A THERMODYNAMIC ANALYSIS OF MITOTIC SPINDLE EQUILIBRIUM AT ACTIVE METAPHASE

    PubMed Central

    Stephens, R. E.

    1973-01-01

    The mitotic apparatus of first-division metaphase eggs of the sea urchin Strongylocentrotus drobachiensis was observed by means of polarization microscopy under controlled temperature conditions. Eggs were fertilized and grown at two temperature extremes in order to produce two different sizes of available spindle pool. Slow division time allowed successive samples of such cells to be observed at the same point in metaphase but at different equilibrium temperatures, yielding curves of metaphase equilibrium birefringence vs. observational temperature. Using the plateau value of birefringence at higher temperatures as a measure of total available spindle pool and the observed birefringence at lower temperatures as a measure of polymerized material at equilibrium, the spindle protein association was evaluated according to the method of Inoué. Both pool conditions produced linear van't Hoff functions. Analysis of these functions yielded enthalpy and entropy changes of +55–65 kcal/mol and +197–233 entropy units (eu), respectively. These values for active mitotic metaphase are quite comparable to those obtained by Inoué and co-workers for arrested meiotic metaphase cells. When other equilibrium treatments were considered, the best fit to the experimental data was still that of Inoué, a treatment which theoretically involves first-order polymerization and dissociation kinetics. Treatment of metaphase cells with D2O by direct immersion drove the equilibrium to completion regardless of temperature, attaining or exceeding a birefringence value equal to the cell's characteristic pool size; perfusion with D2O appeared to erase the original temperature-determined pool size differences for the two growth conditions, attaining a maximum value characteristic of the larger pool condition. These data confirm Inoué's earlier contention that D2O treatment can modify the available spindle pool. PMID:4734864

  4. Carbon and oxygen isotopic disequilibrium during calcification of Globigerina bulloides in the Southern ocean

    NASA Astrophysics Data System (ADS)

    K, P.; Ghosh, P.; N, A.

    2015-12-01

    Oxygen and carbon isotopes in planktonic foraminifera Globigerina bulloides recovered from the water column of 0-1000 m depth across the meridional transect i.e. 10°N to 53°S of Indian ocean were compared with the available data from the core-top samples across the same transect. We also recorded in situ temperatures of the water column based on probe (CTD) profiles. The δ18O and δ13C values measured in the core top samples matches with the tow results. The equilibrium δ18O of calcite calculated from known temperature and δ18O of water column allowed us to compare the observed δ18O of formaminieral shell with the expected equilibrium values. Our comparison of carbonate composition in the samples between 10°N till 40°S showed excellent match with the expected equilibrium δ18O values established from the water collected at depth range of ~75-200m, however beyond 40°S the disequilibrium was pronounced with heavier δ18O (enriched by ~1.5‰) recorded in the carbonate as compared with the expected equilibrium δ18O values established from water. This observation was further verified with δ13C measurement of shell carbonates comparing with the equilibrium δ13C of calcite calculated with known temperature and δ13C of dissolved inorganic carbon in the water column. The δ13C of the shell carbonate was found heavier as compared to the expected equilibrium δ13C. Both δ18O and δ13C showed simultaneous enrichment signature in the region beyond 40°S suggesting role of processes such as leaching along with dissolution of shell carbonate in a relatively acidic condition.

  5. Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.

    PubMed

    Tian, Huanhuan; Zhang, Li; Wang, Moran

    2015-08-15

    Understanding ionic transport in nanochannels has attracted broad attention from various areas in energy and environmental fields. In most pervious research, Donnan equilibrium has been applied widely to nanofluidic systems to obtain ionic concentration and electrical potential at channel-reservoir interfaces; however, as well known that Donnan equilibrium is derived from classical thermodynamic theories with equilibrium assumptions. Therefore the applicability of the Donnan equilibrium may be questionable when the transport at nanochannel-reservoir interface is strongly non-equilibrium. In this work, the Poisson-Nernst-Planck model for ion transport is numerically solved to obtain the exact distributions of ionic concentration and electrical potential. The numerical results are quantitatively compared with the Donnan equilibrium predictions. The applicability of Donnan equilibrium is therefore justified by changing channel length, reservoir ionic concentration, surface charge density and channel height. The results indicate that the Donnan equilibrium is not applicable for short nanochannels, large concentration difference and wide openings. A non-dimensional parameter, Q factor, is proposed to measure the non-equilibrium extent and the relation between Q and the working conditions is studied in detail. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Direct Determination of the Equilibrium Unbinding Potential Profile for a Short DNA Duplex from Force Spectroscopy Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noy, A

    2004-05-04

    Modern force microscopy techniques allow researchers to use mechanical forces to probe interactions between biomolecules. However, such measurements often happen in non-equilibrium regime, which precludes straightforward extraction of the equilibrium energy information. Here we use the work averaging method based on Jarzynski equality to reconstruct the equilibrium interaction potential from the unbinding of a complementary 14-mer DNA duplex from the results of non-equilibrium single-molecule measurements. The reconstructed potential reproduces most of the features of the DNA stretching transition, previously observed only in equilibrium stretching of long DNA sequences. We also compare the reconstructed potential with the thermodynamic parameters of DNAmore » duplex unbinding and show that the reconstruction accurately predicts duplex melting enthalpy.« less

  7. Free energy landscape from path-sampling: application to the structural transition in LJ38

    NASA Astrophysics Data System (ADS)

    Adjanor, G.; Athènes, M.; Calvo, F.

    2006-09-01

    We introduce a path-sampling scheme that allows equilibrium state-ensemble averages to be computed by means of a biased distribution of non-equilibrium paths. This non-equilibrium method is applied to the case of the 38-atom Lennard-Jones atomic cluster, which has a double-funnel energy landscape. We calculate the free energy profile along the Q4 bond orientational order parameter. At high or moderate temperature the results obtained using the non-equilibrium approach are consistent with those obtained using conventional equilibrium methods, including parallel tempering and Wang-Landau Monte Carlo simulations. At lower temperatures, the non-equilibrium approach becomes more efficient in exploring the relevant inherent structures. In particular, the free energy agrees with the predictions of the harmonic superposition approximation.

  8. Kinetic studies on strand displacement in de novo designed parallel heterodimeric coiled coils.

    PubMed

    Groth, Mike C; Rink, W Mathis; Meyer, Nils F; Thomas, Franziska

    2018-05-14

    Among the protein folding motifs, which are accessible by de novo design, the parallel heterodimeric coiled coil is most frequently used in bioinspired applications and chemical biology in general. This is due to the straightforward sequence-to-structure relationships, which it has in common with all coiled-coil motifs, and the heterospecificity, which allows control of association. Whereas much focus was laid on designing orthogonal coiled coils, systematic studies on controlling association, for instance by strand displacement, are rare. As a contribution to the design of dynamic coiled-coil-based systems, we studied the strand-displacement mechanism in obligate heterodimeric coiled coils to investigate the suitability of the dissociation constants ( K D ) as parameters for the prediction of the outcome of strand-displacement reactions. We use two sets of heterodimeric coiled coils, the previously reported N-A x B y and the newly characterized C-A x B y . Both comprise K D values in the μM to sub-nM regime. Strand displacement is explored by CD titration and a FRET-based kinetic assay and is proved to be an equilibrium reaction with half-lifes from a few seconds up to minutes. We could fit the displacement data by a competitive binding model, giving rate constants and overall affinities of the underlying association and dissociation reactions. The overall affinities correlate well with the ratios of K D values determined by CD-thermal denaturation experiments and, hence, support the dissociative mechanism of strand displacement in heterodimeric coiled coils. From the results of more than 100 different displacement reactions we are able to classify three categories of overall affinities, which allow for easy prediction of the equilibrium of strand displacement in two competing heterodimeric coiled coils.

  9. Kinetic studies on strand displacement in de novo designed parallel heterodimeric coiled coils† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc05342h

    PubMed Central

    Groth, Mike C.; Rink, W. Mathis; Meyer, Nils F.

    2018-01-01

    Among the protein folding motifs, which are accessible by de novo design, the parallel heterodimeric coiled coil is most frequently used in bioinspired applications and chemical biology in general. This is due to the straightforward sequence-to-structure relationships, which it has in common with all coiled-coil motifs, and the heterospecificity, which allows control of association. Whereas much focus was laid on designing orthogonal coiled coils, systematic studies on controlling association, for instance by strand displacement, are rare. As a contribution to the design of dynamic coiled-coil-based systems, we studied the strand-displacement mechanism in obligate heterodimeric coiled coils to investigate the suitability of the dissociation constants (KD) as parameters for the prediction of the outcome of strand-displacement reactions. We use two sets of heterodimeric coiled coils, the previously reported N-AxBy and the newly characterized C-AxBy. Both comprise KD values in the μM to sub-nM regime. Strand displacement is explored by CD titration and a FRET-based kinetic assay and is proved to be an equilibrium reaction with half-lifes from a few seconds up to minutes. We could fit the displacement data by a competitive binding model, giving rate constants and overall affinities of the underlying association and dissociation reactions. The overall affinities correlate well with the ratios of KD values determined by CD-thermal denaturation experiments and, hence, support the dissociative mechanism of strand displacement in heterodimeric coiled coils. From the results of more than 100 different displacement reactions we are able to classify three categories of overall affinities, which allow for easy prediction of the equilibrium of strand displacement in two competing heterodimeric coiled coils. PMID:29780562

  10. The 3d Rydberg (3A2) electronic state observed by Herzberg and Shoosmith for methylene

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yukio; Schaefer, Henry F., III

    1997-06-01

    In 1959 and 1961 Herzberg and Shoosmith reported the vacuum ultraviolet spectrum of the triplet state of CH2. The present study focuses on a characterization of the upper state, the 3d Rydberg (3A2) state, observed at 1415 Å. The theoretical interpretation of these experiments is greatly complicated by the presence of a lower-lying 3A2 valence state with a very small equilibrium bond angle. Ab initio electronic structure methods involving self-consistent-field (SCF), configuration interaction with single and double excitations (CISD), complete active space (CAS) SCF, state-averaged (SA) CASSCF, coupled cluster with single and double excitations (CCSD), CCSD with perturbative triple excitations [CCSD(T)], CASSCF second-order (SO) CI, and SACASSCF-SOCI have been employed with six distinct basis sets. With the largest basis set, triple zeta plus triple polarization with two sets of higher angular momentum functions and three sets of diffuse functions TZ3P(2 f,2d)+3diff, the CISD level of theory predicts the equilibrium geometry of the 3d Rydberg (3A2) state to be re=1.093 Å and θe=141.3 deg. With the same basis set the energy (Te value) of the 3d Rydberg state relative to the ground (X˜ 3B1) state has been determined to be 201.6 kcal mol-1 (70 500 cm-1) at the CCSD (T) level, 200.92kcal mol-1 (70 270 cm-1) at the CASSCF-SOCI level, and 200.89kcal mol-1 (70 260 cm-1) at the SACASSCF-SOCI level of theory. These predictions are in excellent agreement with the experimental T0 value of 201.95 kcalmol-1 (70 634 cm-1) reported by Herzberg.

  11. Statistical equilibrium in cometary C2. II - Swan/Phillips band ratios

    NASA Technical Reports Server (NTRS)

    Swamy, K. S. K.; Odell, C. R.

    1979-01-01

    Statistical equilibrium calculations have been made for both the triplet and ground state singlets for C2 in comets, using the exchange rate as a free parameter. The predictions of the results are consistent with optical observations and may be tested definitively by accurate observations of the Phillips and Swan band ratios. Comparison with the one reported observation indicates compatibility with a low exchange rate and resonance fluorescence statistical equilibrium.

  12. Critique and sensitivity analysis of the compensation function used in the LMS Hudson River striped bass models. Environmental Sciences Division publication No. 944

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Winkle, W.; Christensen, S.W.; Kauffman, G.

    1976-12-01

    The description and justification for the compensation function developed and used by Lawler, Matusky and Skelly Engineers (LMS) (under contract to Consolidated Edison Company of New York) in their Hudson River striped bass models are presented. A sensitivity analysis of this compensation function is reported, based on computer runs with a modified version of the LMS completely mixed (spatially homogeneous) model. Two types of sensitivity analysis were performed: a parametric study involving at least five levels for each of the three parameters in the compensation function, and a study of the form of the compensation function itself, involving comparison ofmore » the LMS function with functions having no compensation at standing crops either less than or greater than the equilibrium standing crops. For the range of parameter values used in this study, estimates of percent reduction are least sensitive to changes in YS, the equilibrium standing crop, and most sensitive to changes in KXO, the minimum mortality rate coefficient. Eliminating compensation at standing crops either less than or greater than the equilibrium standing crops results in higher estimates of percent reduction. For all values of KXO and for values of YS and KX at and above the baseline values, eliminating compensation at standing crops less than the equilibrium standing crops results in a greater increase in percent reduction than eliminating compensation at standing crops greater than the equilibrium standing crops.« less

  13. Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model

    NASA Astrophysics Data System (ADS)

    Toaha, S.; Azis, M. I.

    2018-03-01

    This paper studies a modified of dynamics of Leslie-Gower predator-prey population model. The model is stated as a system of first order differential equations. The model consists of one predator and one prey. The Holling type II as a predation function is considered in this model. The predator and prey populations are assumed to be beneficial and then the two populations are harvested with constant efforts. Existence and stability of the interior equilibrium point are analysed. Linearization method is used to get the linearized model and the eigenvalue is used to justify the stability of the interior equilibrium point. From the analyses, we show that under a certain condition the interior equilibrium point exists and is locally asymptotically stable. For the model with constant efforts of harvesting, cost function, revenue function, and profit function are considered. The stable interior equilibrium point is then related to the maximum profit problem as well as net present value of revenues problem. We show that there exists a certain value of the efforts that maximizes the profit function and net present value of revenues while the interior equilibrium point remains stable. This means that the populations can live in coexistence for a long time and also maximize the benefit even though the populations are harvested with constant efforts.

  14. Catalytic supercritical water gasification of primary paper sludge using a homogeneous and heterogeneous catalyst: Experimental vs thermodynamic equilibrium results.

    PubMed

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-02-01

    H2, CH4, CO and CO2 yields were measured during supercritical water gasification (SCWG) of primary paper waste sludge (PWS) at 450°C. Comparing these yields with calculated thermodynamic equilibrium values offer an improved understanding of conditions required to produce near-equilibrium yields. Experiments were conducted at different catalyst loads (0-1g/gPWS) and different reaction times (15-120min) in a batch reactor, using either K2CO3 or Ni/Al2O3-SiO2 as catalyst. K2CO3 up to 1g/gPWS increased the H2 yield significantly to 7.5mol/kgPWS. However, these yields and composition were far from equilibrium values, with carbon efficiency (CE) and energy recovery (ER) of only 29% and 20%, respectively. Addition of 0.5-1g/gPWS Ni/Al2O3-SiO2 resulted in high H2 and CH4 yields (6.8 and 14.8mol/kgPWS), CE of 84-90%, ER of 83% and a gas composition relatively close to the equilibrium values (at hold times of 60-120min). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 40 CFR 63.1574 - What notifications must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analytical methods you will use to determine the equilibrium catalyst Ni concentration, the equilibrium catalyst Ni concentration monthly rolling average, and the hourly or hourly average Ni operating value. (v...

  16. Solid/liquid extraction equilibria of phenolic compounds with trioctylphosphine oxide impregnated in polymeric membranes.

    PubMed

    Praveen, Prashant; Loh, Kai-Chee

    2016-06-01

    Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations (<800 mg/L). At higher phenols loadings though, Langmuir isotherm was better suited for equilibrium prediction (R(2) > 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The effect of capturing the correct turbulence dissipation rate in BHR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, John Dennis; Ristorcelli, Raymond

    In this manuscript, we discuss the shortcoming of a quasi-equilibrium assumption made in the BHR closure model. Turbulence closure models generally assume fully developed turbulence, which is not applicable to 1) non-equilibrium turbulence (e.g. change in mean pressure gradient) or 2) laminar-turbulence transition flows. Based on DNS data, we show that the current BHR dissipation equation [modeled based on the fully developed turbulence phenomenology] does not capture important features of nonequilibrium flows. To demonstrate our thesis, we use the BHR equations to predict a non-equilibrium flow both with the BHR dissipation and the dissipation from DNS. We find that themore » prediction can be substantially improved, both qualitatively and quantitatively, with the correct dissipation rate. We conclude that a new set of nonequilibrium phenomenological assumptions must be used to develop a new model equation for the dissipation to accurately predict the turbulence time scale used by other models.« less

  18. Equilibrium shoreline response of a high wave energy beach

    USGS Publications Warehouse

    Yates, M.L.; Guza, R.T.; O'Reilly, W. C.; Hansen, J.E.; Barnard, P.L.

    2011-01-01

    Four years of beach elevation surveys at Ocean Beach, San Francisco, California, are used to extend an existing equilibrium shoreline change model, previously calibrated with fine sand and moderate energy waves, to medium sand and higher-energy waves. The shoreline, characterized as the cross-shore location of the mean high water contour, varied seasonally by between 30 and 60 m, depending on the alongshore location. The equilibrium shoreline change model relates the rate of horizontal shoreline displacement to the hourly wave energy E and the wave energy disequilibrium, the difference between E and the equilibrium wave energy that would cause no change in the present shoreline location. Values for the model shoreline response coefficients are tuned to fit the observations in 500 m alongshore segments and averaged over segments where the model has good skill and the estimated effects of neglected alongshore sediment transport are relatively small. Using these representative response coefficients for 0.3 mm sand from Ocean Beach and driving the model with much lower-energy winter waves observed at San Onofre Beach (also 0.3 mm sand) in southern California, qualitatively reproduces the small seasonal shoreline fluctuations at San Onofre. This consistency suggests that the shoreline model response coefficients depend on grain size and may be constant, and thus transportable, between sites with similar grain size and different wave climates. The calibrated model response coefficients predict that for equal fluctuations in wave energy, changes in shoreline location on a medium-grained (0.3 mm) beach are much smaller than on a previously studied fine-grained (0.2 mm) beach. Copyright ?? 2011 by the American Geophysical Union.

  19. Retention modeling under organic modifier gradient conditions in ion-pair reversed-phase chromatography. Application to the separation of a set of underivatized amino acids.

    PubMed

    Pappa-Louisi, A; Agrafiotou, P; Papachristos, K

    2010-07-01

    The combined effect of the ion-pairing reagent concentration, C(ipr), and organic modifier content, phi, on the retention under phi-gradient conditions at different constant C(ipr) was treated in this study by using two approaches. In the first approach, the prediction of the retention time of a sample solute is based on a direct fitting procedure of a proper retention model to 3-D phi-gradient retention data obtained under the same phi-linear variation but with different slope and time duration of the initial isocratic part and in the presence of various constant C(ipr) values in the eluent. The second approach is based on a retention model describing the combined effect of C(ipr) and phi on the retention of solutes in isocratic mode and consequently analyzes isocratic data obtained in mobile phases containing different C(ipr) values. The effectiveness of the above approaches was tested in the retention prediction of a mixture of 16 underivatized amino acids using mobile phases containing acetonitrile as organic modifier and sodium dodecyl sulfate as ion-pairing reagent. From these approaches, only the first one gives satisfactory predictions and can be successfully used in optimization of ion-pair chromatographic separations under gradient conditions. The failure of the second approach to predict the retention of solutes in the gradient elution mode in the presence of different C(ipr) values was attributed to slow changes in the distribution equilibrium of ion-pairing reagents caused by phi-variation.

  20. Application of a single model to study the adsorption equilibrium of prednisolone on six carbonaceous materials.

    PubMed

    Valenzuela-Calahorro, C; Cuerda-Correa, E; Navarrete-Guijosa, A; Gonzalez-Pradas, E

    2002-06-01

    The knowledge of sorption processes of nonelectrolytes in solution by solid adsorbents implies the study of kinetics, equilibrium, and thermodynamic functions. However, quite frequently the equilibrium isotherms are studied by comparing them with those corresponding to the Giles et al. classification (1); these isotherms are also analyzed by fitting them to equations based on thermodynamic or kinetic criteria, and even to empirical equations. Nevertheless, information obtained is more coherent and satisfactory if the adsorption isotherms are fitted by using an equation describing the equilibrium isotherms according to the kinetic laws. These mentioned laws would determine each one of the unitary processes (one or more) which condition the global process. In this paper, an adsorption process of prednisolone in solution by six carbonaceous materials is explained according to a previously proposed single model, which allows to establish a kinetic law which fits satisfactorily most of C vs t isotherms (2). According to the above-mentioned kinetic law, equations describing sorption equilibrium processes have been deducted, and experimental data points have been fitted to these equations; such a fitting yields to different values of adsorption capacity and kinetic equilibrium constants for the different processes at several temperatures. However, in spite of their practical interest, these constants have no thermodynamic signification. Thus, the thermodynamic equilibrium constant (K) has been calculated by using a modified expression of the Gaines et al. equation (3). Global average values of the thermodynamic functions have also been calculated from the K values. Information related to variations of DeltaH and DeltaS with the surface coverage fraction was obtained by using the corresponding Clausius-Clapeyron equations.

  1. Application of Equilibrium Partitioning Theory to Soil PAH Contamination (External Review Draft)

    EPA Science Inventory

    In March 2004, ORD's Ecological Risk Assessment Support Center (ERASC) received a request from the Ecological Risk Assessment Forum (ERAF) to provide insight into the issue of whether equilibrium partitioning (EqP) techniques can be used to predict the toxicity of polycyclic arom...

  2. A numerical tool for the calculation of non-equilibrium ionisation states in the solar corona and other astrophysical plasma environments

    NASA Astrophysics Data System (ADS)

    Bradshaw, S. J.

    2009-07-01

    Context: The effects of non-equilibrium processes on the ionisation state of strongly emitting elements in the solar corona can be extremely difficult to assess and yet they are critically important. For example, there is much interest in dynamic heating events localised in the solar corona because they are believed to be responsible for its high temperature and yet recent work has shown that the hottest (≥107 K) emission predicted to be associated with these events can be observationally elusive due to the difficulty of creating the highly ionised states from which the expected emission arises. This leads to the possibility of observing instruments missing such heating events entirely. Aims: The equations describing the evolution of the ionisaton state are a very stiff system of coupled, partial differential equations whose solution can be numerically challenging and time-consuming. Without access to specialised codes and significant computational resources it is extremely difficult to avoid the assumption of an equilibrium ionisation state even when it clearly cannot be justified. The aim of the current work is to develop a computational tool to allow straightforward calculation of the time-dependent ionisation state for a wide variety of physical circumstances. Methods: A numerical model comprising the system of time-dependent ionisation equations for a particular element and tabulated values of plasma temperature as a function of time is developed. The tabulated values can be the solutions of an analytical model, the output from a numerical code or a set of observational measurements. An efficient numerical method to solve the ionisation equations is implemented. Results: A suite of tests is designed and run to demonstrate that the code provides reliable and accurate solutions for a number of scenarios including equilibration of the ion population and rapid heating followed by thermal conductive cooling. It is found that the solver can evolve the ionisation state to recover exactly the equilibrium state found by an independent, steady-state solver for all temperatures, resolve the extremely small ionisation/recombination timescales associated with rapid temperature changes at high densities, and provide stable and accurate solutions for both dominant and minor ion population fractions. Rapid heating and cooling of low to moderate density plasma is characterised by significant non-equilibrium ionisation conditions. The effective ionisation temperatures are significantly lower than the electron temperature and the values found are in close agreement with the previous work of others. At the very highest densities included in the present study an assumption of equilibrium ionisation is found to be robust. Conclusions: The computational tool presented here provides a straightforward and reliable way to calculate ionisation states for a wide variety of physical circumstances. The numerical code gives results that are accurate and consistent with previous studies, has relatively undemanding computational requirements and is freely available from the author.

  3. Investigation of Non-Equilibrium Radiation for Earth Entry

    NASA Technical Reports Server (NTRS)

    Brandis, A. M.; Johnston, C. O.; Cruden, B. A.

    2016-01-01

    For Earth re-entry at velocities between 8 and 11.5 km/s, the accuracy of NASA's computational uid dynamic and radiative simulations of non-equilibrium shock layer radiation is assessed through comparisons with measurements. These measurements were obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility. The experiments were aimed at measuring the spatially and spectrally resolved radiance at relevant entry conditions for both an approximate Earth atmosphere (79% N2 : 21% O2 by mole) as well as a more accurate composition featuring the trace species Ar and CO2 (78.08% N2 : 20.95% O2 : 0.04% CO2 : 0.93% Ar by mole). The experiments were configured to target a wide range of conditions, of which shots from 8 to 11.5 km/s at 0.2 Torr (26.7 Pa) are examined in this paper. The non-equilibrium component was chosen to be the focus of this study as it can account for a significant percentage of the emitted radiation for Earth re-entry, and more importantly, non-equilibrium has traditionally been assigned a large uncertainty for vehicle design. The main goals of this study are to present the shock tube data in the form of a non-equilibrium metric, evaluate the level of agreement between the experiment and simulations, identify key discrepancies and to examine critical aspects of modeling non-equilibrium radiating flows. Radiance pro les integrated over discreet wavelength regions, ranging from the Vacuum Ultra Violet (VUV) through to the Near Infra-Red (NIR), were compared in order to maximize both the spectral coverage and the number of experiments that could be used in the analysis. A previously defined non-equilibrium metric has been used to allow comparisons with several shots and reveal trends in the data. Overall, LAURA/HARA is shown to under-predict EAST by as much as 40% and over-predict by as much as 12% depending on the shock speed. DPLR/NEQAIR is shown to under-predict EAST by as much as 50% and over-predict by as much as 20% depending on the shock speed. The one standard deviation scatter in the EAST results was calculated to be 31%. An estimate for the upper bound of the absolute error in wall-directed heat flux was calculated. Below 9 km/s, where the relative difference is large, the absolute error in radiative heat flux due to non-equilibrium models is estimated to be less then 1 W/sq cm. At the highest shock speed of 11 km/s, the error in non-equilibrium is estimated to be less than 20 W/sq cm.

  4. Einstein's osmotic equilibrium of colloidal suspensions in conservative force fields

    NASA Astrophysics Data System (ADS)

    Fu, Jinxin; Ou-Yang, H. Daniel

    2014-09-01

    Predicted by Einstein in his 1905 paper on Brownian motion, colloidal particles in suspension reach osmotic equilibrium under gravity. The idea was demonstrated by J.B. Perrin to win Nobel Prize in Physics in 1926. We show Einstein's equation for osmotic equilibrium can be applied to colloids in a conservative force field generated by optical gradient forces. We measure the osmotic equation of state of 100nm Polystyrene latex particles in the presence of KCl salt and PEG polymer. We also obtain the osmotic compressibility, which is important for determining colloidal stability and the internal chemical potential, which is useful for predicting the phase transition of colloidal systems. This generalization allows for the use of any conservative force fields for systems ranging from colloidal systems to macromolecular solutions.

  5. Seasonal variability of equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab, India.

    PubMed

    Saini, Komal; Singh, Parminder; Singh, Prabhjot; Bajwa, B S; Sahoo, B K

    2017-02-01

    A survey was conducted to estimate equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab state, India. Pin hole based twin cup dosimeters and direct progeny sensor techniques have been utilized for estimation of concentration level of radon, thoron and their progenies. Equilibrium factor calculated from radon, thoron and their progenies concentration has been found to vary from 0.15 to 0.80 and 0.008 to 0.101 with an average value of 0.44 and 0.036 for radon and thoron respectively. Equilibrium factor for radon has found to be highest in winter season and lowest in summer season whereas for thoron highest value is observed in winter and rainy season and lowest in summer. Unattached fractions of radon and thoron have been found to vary from 0.022 to 0.205 and 0.013 to 0.212 with an average value of 0.099 and 0.071 respectively. Unattached fractions have found to be highest in winter season and lowest in rainy and summer season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Method for analyzing the chemical composition of liquid effluent from a direct contact condenser

    DOEpatents

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    2001-01-01

    A computational modeling method for predicting the chemical, physical, and thermodynamic performance of a condenser using calculations based on equations of physics for heat, momentum and mass transfer and equations of equilibrium thermodynamics to determine steady state profiles of parameters throughout the condenser. The method includes providing a set of input values relating to a condenser including liquid loading, vapor loading, and geometric characteristics of the contact medium in the condenser. The geometric and packing characteristics of the contact medium include the dimensions and orientation of a channel in the contact medium. The method further includes simulating performance of the condenser using the set of input values to determine a related set of output values such as outlet liquid temperature, outlet flow rates, pressures, and the concentration(s) of one or more dissolved noncondensable gas species in the outlet liquid. The method may also include iteratively performing the above computation steps using a plurality of sets of input values and then determining whether each of the resulting output values and performance profiles satisfies acceptance criteria.

  7. Fundamental Study of Three-dimensional Fast Spin-echo Imaging with Spoiled Equilibrium Pulse.

    PubMed

    Ogawa, Masashi; Kaji, Naoto; Tsuchihashi, Toshio

    2017-01-01

    Three-dimensional fast spin-echo (3D FSE) imaging with variable refocusing flip angle has been recently applied to pre- or post-enhanced T 1 -weighted imaging. To reduce the acquisition time, this sequence requires higher echo train length (ETL), which potentially causes decreased T 1 contrast. Spoiled equilibrium (SpE) pulse consists of a resonant +90° radiofrequency (RF) pulse and is applied at the end of the echo train. This +90° RF pulse brings residual transverse magnetization to the negative longitudinal axis, which makes it possible to increase T 1 contrast. The purpose of our present study was to examine factors that influence the effect of spoiled equilibrium pulse and the relationship between T 1 contrast improvement and imaging parameters and to understand the characteristics of spoiled equilibrium pulse. Phantom studies were conducted using an magnetic resonance imaging (MRI) phantom made of polyvinyl alcohol gel. To evaluate the effect of spoiled equilibrium pulse with changes in repetition time (TR), ETL, and refocusing flip angle, we measured the signal-to-noise ratio and contrast-to-noise ratio (CNR). The effect of spoiled equilibrium pulse was evaluated by calculating the enhancement rate of CNR. The factors that influence the effect of spoiled equilibrium pulse are TR, ETL, and relaxation time of tissues. Spoiled equilibrium pulse is effective with increasing TR and decreasing ETL. The shorter the T 1 value, the better the spoiled equilibrium pulse functions. However, for tissues in which the T 1 value is long (>600 ms), at a TR of 600 ms, improvement in T 1 contrast by applying spoiled equilibrium pulse cannot be expected.

  8. Stepped Acid Extractions of CO2 from Ancient Carbonates in Martian Nakhlites (MIL 03346, 090030, 090032, 090036) Show Distinct δ18O and δ13C Isotopic Values Compared to Secondary Terrestrial Carbonates Formed on Ordinary Chondrites (OC) Collected from Antarctica

    NASA Astrophysics Data System (ADS)

    Evans, M. E.; Niles, P. B.

    2016-12-01

    This study finds that 1) Martian Nakhlite meteorites contain insitu carbonates with distinctive δ13C from terrestrial carbonates formed on Antarctic Ordinary Chondrites (OCs), and 2) Martian carbonate formation δ18O values for atmospheric CO2 and meteoric water can be predicted with a mixing model created from Antarctic OC carbonate data. Nakhlite and OC meteorites collected in Antarctica contain both calcites and non-calcite carbonates. Rock samples were crushed, dissolved in pure phosphoric acid, and allowed to react at the following conditions: 1 hr@30°C (Rx0, fine calcite), 18 hr@30°C (Rx1, course calcite), and 3 hr@150°C (Rx2, siderite and/or magnesite). The collected CO2 was purified with a Thermo Trace GC and analyzed on a Thermo MAT 253 IRMS in dual inlet mode. Ten OC meteorite samples collected from three different Antarctic regions (RBT, ALH, MIL) were analyzed. These samples had no pre-terrestrial aqueous alterations, yet evaporite minerals were visible on the fusion crust. It is deduced these OC carbonates were completely terrestrial. These calcites have δ13C=+6‰ and are consistent with equilibrium formation to Earth atmospheric CO2 δ13C=-7‰ at 0°C to 10°C. Siderite or magnesite fractionation may create slightly heavier δ13C as seen in the Rx2 results. The range of δ18O from +3‰ to +30‰ is heavier than expected if carbonate forms in equilibrium with only meteoric water. A δ18O mixing model is created with Earth atmospheric CO2 and meteoric water as end members. This model predicts the OC calcites form with 60%-90% contribution from atmospheric CO2 at 0°C, and the non-calcites form with 40-60% contribution from atmospheric CO2. Four martian Nakhlites collected from the Antarctic Miller Range were analyzed. These samples contain low carbonate concentrations (avg. 0.007% by weight) with distinctly heavier δ13C = +7‰ to +59‰. In general, these carbonates are lighter than expected if formed in equilibrium with the modern martian atmosphere (δ13Ccalcite ≈+60); however they may reflect formation values with an ancient (<1.3 Ga) martian atmosphere. If the martian carbonates formed with oxygen contribution ratios similar to the OC terrestrial carbonates, then the mixing model parametrically provides Mars δ18O for atmospheric CO2 and meteoric water that creates the measured values.

  9. Computational prediction of kink properties of helices in membrane proteins

    NASA Astrophysics Data System (ADS)

    Mai, T.-L.; Chen, C.-M.

    2014-02-01

    We have combined molecular dynamics simulations and fold identification procedures to investigate the structure of 696 kinked and 120 unkinked transmembrane (TM) helices in the PDBTM database. Our main aim of this study is to understand the formation of helical kinks by simulating their quasi-equilibrium heating processes, which might be relevant to the prediction of their structural features. The simulated structural features of these TM helices, including the position and the angle of helical kinks, were analyzed and compared with statistical data from PDBTM. From quasi-equilibrium heating processes of TM helices with four very different relaxation time constants, we found that these processes gave comparable predictions of the structural features of TM helices. Overall, 95 % of our best kink position predictions have an error of no more than two residues and 75 % of our best angle predictions have an error of less than 15°. Various structure assessments have been carried out to assess our predicted models of TM helices in PDBTM. Our results show that, in 696 predicted kinked helices, 70 % have a RMSD less than 2 Å, 71 % have a TM-score greater than 0.5, 69 % have a MaxSub score greater than 0.8, 60 % have a GDT-TS score greater than 85, and 58 % have a GDT-HA score greater than 70. For unkinked helices, our predicted models are also highly consistent with their crystal structure. These results provide strong supports for our assumption that kink formation of TM helices in quasi-equilibrium heating processes is relevant to predicting the structure of TM helices.

  10. Possible dynamical explanations for Paltridge's principle of maximum entropy production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virgo, Nathaniel, E-mail: nathanielvirgo@gmail.com; Ikegami, Takashi, E-mail: nathanielvirgo@gmail.com

    2014-12-05

    Throughout the history of non-equilibrium thermodynamics a number of theories have been proposed in which complex, far from equilibrium flow systems are hypothesised to reach a steady state that maximises some quantity. Perhaps the most celebrated is Paltridge's principle of maximum entropy production for the horizontal heat flux in Earth's atmosphere, for which there is some empirical support. There have been a number of attempts to derive such a principle from maximum entropy considerations. However, we currently lack a more mechanistic explanation of how any particular system might self-organise into a state that maximises some quantity. This is in contrastmore » to equilibrium thermodynamics, in which models such as the Ising model have been a great help in understanding the relationship between the predictions of MaxEnt and the dynamics of physical systems. In this paper we show that, unlike in the equilibrium case, Paltridge-type maximisation in non-equilibrium systems cannot be achieved by a simple dynamical feedback mechanism. Nevertheless, we propose several possible mechanisms by which maximisation could occur. Showing that these occur in any real system is a task for future work. The possibilities presented here may not be the only ones. We hope that by presenting them we can provoke further discussion about the possible dynamical mechanisms behind extremum principles for non-equilibrium systems, and their relationship to predictions obtained through MaxEnt.« less

  11. Investigation of Non-Equilibrium Radiation for Earth Entry

    NASA Technical Reports Server (NTRS)

    Brandis, Aaron; Johnston, Chris; Cruden, Brett

    2016-01-01

    This paper presents measurements and simulations of non-equilibrium shock layer radiation relevant to high-speed Earth entry data obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility. The experiments were aimed at measuring the spatially and spectrally resolved radiance at relevant entry conditions for both an approximate Earth atmosphere (79 N2 : 21 O2) as well as a more accurate composition featuring the trace species Ar and CO2 (78.08 N2 : 20.95 O2 : 0.04 CO2 : 0.93 Ar). The experiments were configured to target a wide range of conditions, of which shots from 8 to 11.5 km/s at 0.2 Torr (26.7 Pa) are examined in this paper. The non-equilibrium component was chosen to be the focus of this study as it can account for a significant percentage of the emitted radiation for Earth entry, and more importantly, non-equilibrium has traditionally been assigned a large uncertainty for vehicle design. The main goals of this study are to present the shock tube data in the form of a non-equilibrium metric, evaluate the level of agreement between the experiment and simulations, identify key discrepancies and to promote discussion about various aspects of modeling non-equilibrium radiating flows. Radiance profiles integrated over discreet wavelength regions, ranging from the VUV through to the NIR, were compared in order to maximize both the spectral coverage and the number of experiments that could be used in the analysis. A previously defined non-equilibrium metric has been used to allow comparisons with several shots and reveal trends in the data. Overall, LAURAHARA is shown to under-predict EAST by as much as 50 and over-predict by as much as 20 depending on the shock speed. DPLRNEQAIR is shown to under-predict EAST by as much as 40 and over-predict by as much as 12 depending on the shock speed. In terms of an upper bound estimate for the absolute error in wall-directed heat flux, at the lower speeds investigated in this paper, 8 to 9 km/s, even though there are some large relative differences, the absolute error in radiance will be less then 1 Wcm2. At the highest shock speed of 11 km/s, the error will be less than 20 W/ sq cm.

  12. Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography.

    PubMed

    Jia, Lijuan; Ma, Jiakai; Shi, Qiuyi; Long, Chao

    2017-01-03

    Hyper-cross-linked polymeric resin (HPR) represents a class of predominantly microporous adsorbents and has good adsorption performance toward VOCs. However, adsorption equilibrium of VOCs onto HPR are limited. In this research, a novel method for predicting adsorption capacities of VOCs on HPR at environmentally relevant temperatures and concentrations using inverse gas chromatography data was proposed. Adsorption equilibrium of six VOCs (n-pentane, n-hexane, dichloromethane, acetone, benzene, 1, 2-dichloroethane) onto HPR in the temperature range of 403-443 K were measured by inverse gas chromatography (IGC). Adsorption capacities at environmentally relevant temperatures (293-328 K) and concentrations (P/P s = 0.1-0.7) were predicted using Dubinin-Radushkevich (DR) equation based on Polany's theory. Taking consideration of the swelling properties of HPR, the volume swelling ratio (r) was introduced and r·V micro was used instead of V micro determined by N 2 adsorption data at 77 K as the parameter q 0 (limiting micropore volume) of the DR equation. The results showed that the adsorption capacities of VOCs at environmentally relevant temperatures and concentrations can be predicted effectively using IGC data, the root-mean-square errors between the predicted and experimental data was below 9.63%. The results are meaningful because they allow accurate prediction of adsorption capacities of adsorbents more quickly and conveniently using IGC data.

  13. [Somatic constitution and the ability to maintain dynamic body equilibrium in girls practicing rhythmic gymnastics].

    PubMed

    Poliszczuk, Tatiana; Broda, Daria

    2010-01-01

    The greatest similarities in body constitution were noted in competitors practising the same discipline. The similarities increase with the training level. A typical body constitution for a given discipline not only favourably affects athletic performance, but is also the factor preventing sportsrelated contusions. The ability to maintain body equilibrium, together with somatic constitution, are the basic selective criteria in rhythmic gymnastics. The objective of this paper was to determine somatotypes, to evaluate the ability to maintain dynamic body equilibrium in girls practicing rhythmic gymnastics and to develop model characteristics enabling early diagnosis of the disorders equilibrium system function. The sample comprised 19 girls aged 8-11 years, practising rhythmic gymnastics. For the evaluation of the competitors' somatotypes, the Heath-Carter method was used, based on the classic concept of Sheldon's body constitution components. Body equilibrium level was evaluated by means of posturography. The mean values of the endomorphic component I, mesomorphic component II and ectomorphic component III in the gymnasts were 2.65+/-1.29, 2.45+/-0.37 and 3.95+/-0.64 respectively. The mean body mass index (BMI) value for this cohort was 15.32, which means advanced slimness. The level of dynamic equilibrium is determined by the following mean values: the time of reaching the equilibrium, the way of reaching it and the duration of stay at the defined point. The model of above mentioned indicates was developed based on the analysis of it's best results. Body constitution type in the qualified gymnasts is characterised by the prevalence of the ectomorphic component. The study results indicate that female gymnasts are generally slim and lean. It is necessary to monitor BMI in order to exclude weight-related disorders and to observe the changes with age. The poorest result was found when the gymnasts bent in the backward direction as this body position is most difficult to assume and to maintain body equilibrium as compared to all other directions.

  14. Jet-cooled laser-induced dispersed fluorescence spectroscopy of TaN: Observation of a3Δ and A1Δ states

    NASA Astrophysics Data System (ADS)

    Mukund, Sheo; Bhattacharyya, Soumen; Nakhate, S. G.

    2016-07-01

    Laser-induced dispersed fluorescence spectra of TaN molecules, produced in a free-jet apparatus, have been studied. Two spin components of the lowest-lying a3Δ state along with their vibrational structure have been observed. The A1Δ state, which was predicted earlier by ab initio calculation has also been observed. The X1Σ+ ground state vibrational progression up to v = 9 has been recorded. The experimentally determined term energies and vibrational constants at equilibrium for the ground and a3Δ states are in fairly good agreement with the ab initio values reported earlier.

  15. Afterbody Heating Predictions for a Mars Science Laboratory Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.

    2005-01-01

    The Mars Science Laboratory mission intends to deliver a large rover to the Martian surface within 10 km of its target site. One candidate entry vehicle aeroshell consists of a 3.75-m diameter, 70-deg sphere-cone forebody and a biconic afterbody similar to that of Viking. This paper presents computational fluid dynamics predictions of laminar afterbody heating rates for this configuration and a 2010 arrival at Mars. Computational solutions at flight conditions used an 8-species Mars gas model in chemical and thermal non-equilibrium. A grid resolution study examined the effects of mesh spacing on afterbody heating rates and resulted in grids used for heating predictions on a reference entry trajectory. Afterbody heating rate reaches its maximum value near 0.6 W/sq cm on the first windward afterbody cone at the time of peak freestream dynamic pressure. Predicted afterbody heating rates generally are below 3% of the forebody laminar nose cap heating rate throughout the design trajectory. The heating rates integrated over time provide total heat load during entry, which drives thermal protection material thickness.

  16. Liquid-liquid equilibria for water + ethanol + 2-methylpropyl ethanoate and water + ethanol + 1,2-dibromoethane at 298. 15 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solimo, H.N.; Barnes de Arreguez, N.G.

    1994-01-01

    Liquid-liquid equilibrium, distribution coefficients, and selectivities of the systems water + ethanol + 2-methylpropyl ethanoate or + 1,2-dibromoethane have been determined at 298.15 K in order to evaluate their suitability in preferentially extracting ethanol from aqueous solution. Tie-line data were satisfactorily correlated by the Othmer and Tobias method, and the plait point coordinates for the two systems were estimated. The experimental data was compared with the values calculated by the NRTL and UNIQUAC models. The water + ethanol + 2-methylpropyl ethanoate system was also compared with the values predicted by the UNIFAC model. Poor qualitative agreement was obtained with thesemore » models. From the experimental results, they can conclude that both solvents are inappropriate for ethanol extraction processes from aqueous solutions.« less

  17. Synergies in the space of control variables within the equilibrium-point hypothesis.

    PubMed

    Ambike, S; Mattos, D; Zatsiorsky, V M; Latash, M L

    2016-02-19

    We use an approach rooted in the recent theory of synergies to analyze possible co-variation between two hypothetical control variables involved in finger force production based on the equilibrium-point (EP) hypothesis. These control variables are the referent coordinate (R) and apparent stiffness (C) of the finger. We tested a hypothesis that inter-trial co-variation in the {R; C} space during repeated, accurate force production trials stabilizes the fingertip force. This was expected to correspond to a relatively low amount of inter-trial variability affecting force and a high amount of variability keeping the force unchanged. We used the "inverse piano" apparatus to apply small and smooth positional perturbations to fingers during force production tasks. Across trials, R and C showed strong co-variation with the data points lying close to a hyperbolic curve. Hyperbolic regressions accounted for over 99% of the variance in the {R; C} space. Another analysis was conducted by randomizing the original {R; C} data sets and creating surrogate data sets that were then used to compute predicted force values. The surrogate sets always showed much higher force variance compared to the actual data, thus reinforcing the conclusion that finger force control was organized in the {R; C} space, as predicted by the EP hypothesis, and involved co-variation in that space stabilizing total force. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-SO 4-H 2O system, to high temperature and concentration

    NASA Astrophysics Data System (ADS)

    Møller, Nancy

    1988-04-01

    This paper describes a chemical equilibrium model for the Na-Ca-Cl-SO 4-H 2O system which calculates solubilities from 25°C to 250°C and from zero to high concentration ( I ~ 18. m) within experimental uncertainty. The concentration and temperature dependence of the model were established by fitting available activity (solubility, osmotic and emf) data. A single ion complex, CaSO 04, which increases in strength with temperature, is included explicitly in the model. The validation of model accuracy by comparison to laboratory and field solubility data is included. Applications of the model are also given. Phase diagrams constructed for the Na-Ca-Cl-SO 4-H 2O system and predicted solubilities of anhydrite and hemihydrate in concentrated seawater at high temperature are in very good agreement with the data. Calculations of the temperature of gypsum-anhydrite coexistence as a function of water activity are compared to reported values, and are used to estimate the composition-temperature relation for gypsum-anhydrite transition in a natural brine evaporation. A preliminary model for barite solubility in sodium chloride solutions at high temperature (100°C to 250°C), based on this parameterization of the CaSO 4-NaCl-H 2O system, gives good agreement with the data.

  19. Stochastic entangled chain dynamics of dense polymer solutions.

    PubMed

    Kivotides, Demosthenes; Wilkin, S Louise; Theofanous, Theo G

    2010-10-14

    We propose an adjustable-parameter-free, entangled chain dynamics model of dense polymer solutions. The model includes the self-consistent dynamics of molecular chains and solvent by describing the former via coarse-grained polymer dynamics that incorporate hydrodynamic interaction effects, and the latter via the forced Stokes equation. Real chain elasticity is modeled via the inclusion of a Pincus regime in the polymer's force-extension curve. Excluded volume effects are taken into account via the combined action of coarse-grained intermolecular potentials and explicit geometric tracking of chain entanglements. We demonstrate that entanglements are responsible for a new (compared to phantom chain dynamics), slow relaxation mode whose characteristic time scale agrees very well with experiment. Similarly good agreement between theory and experiment is also obtained for the equilibrium chain size. We develop methods for the solution of the model in periodic flow domains and apply them to the computation of entangled polymer solutions in equilibrium. We show that the number of entanglements Π agrees well with the number of entanglements expected on the basis of tube theory, satisfactorily reproducing the latter's scaling of Π with the polymer volume fraction φ. Our model predicts diminishing chain size with concentration, thus vindicating Flory's suggestion of excluded volume effects screening in dense solutions. The predicted scaling of chain size with φ is consistent with the heuristic, Flory theory based value.

  20. Experimental and Model Studies on Continuous Separation of 2-Phenylpropionic Acid Enantiomers by Enantioselective Liquid-Liquid Extraction in Centrifugal Contactor Separators.

    PubMed

    Feng, Xiaofeng; Tang, Kewen; Zhang, Pangliang; Yin, Shuangfeng

    2016-03-01

    Multistage enantioselective liquid-liquid extraction (ELLE) of 2-phenylpropionic acid (2-PPA) enantiomers using hydroxypropyl-β-cyclodextrin (HP-β-CD) as extractant was studied experimentally in a counter-current cascade of centrifugal contactor separators (CCSs). Performance of the process was evaluated by purity (enantiomeric excess, ee) and yield (Y). A multistage equilibrium model was established on the basis of single-stage model for chiral extraction of 2-PPA enantiomers and the law of mass conservation. A series of experiments on the extract phase/washing phase ratio (W/O ratio), extractant concentration, the pH value of aqueous phase, and the number of stages was conducted to verify the multistage equilibrium model. It was found that model predictions were in good agreement with the experimental results. The model was applied to predict and optimize the symmetrical separation of 2-PPA enantiomers. The optimal conditions for symmetric separation involves a W/O ratio of 0.6, pH of 2.5, and HP-β-CD concentration of 0.1 mol L(-1) at a temperature of 278 K, where eeeq (equal enantiomeric excess) can reach up to 37% and Yeq (equal yield) to 69%. By simulation and optimization, the minimum number of stages was evaluated at 98 and 106 for eeeq > 95% and eeeq > 97%. © 2016 Wiley Periodicals, Inc.

  1. Quantum size effects on the (0001) surface of double hexagonal close packed americium

    NASA Astrophysics Data System (ADS)

    Gao, D.; Ray, A. K.

    2007-01-01

    Electronic structures of double hexagonal close-packed americium and the (0001) surface have been studied via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and antiferromagnetic configurations with and without spin orbit coupling. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of dhcp Am with the 5f electrons primarily localized. Our results show that both magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Our calculated equilibrium lattice constant and bulk modulus at the ground state are in good agreement with the experimental values respectively. The work function of dhcp Am (0001) 7-layer surface at the ground state is predicted to be 2.90 eV. The surface energy for dhcp Am (0001) semi-infinite surface energy at the ground state is predicted to be 0.84 J/m2. Quantum size effects are found to be more pronounced in work functions than in surface energies.

  2. The Impact of Alzheimer's Disease on the Chinese Economy.

    PubMed

    Keogh-Brown, Marcus R; Jensen, Henning Tarp; Arrighi, H Michael; Smith, Richard D

    2016-02-01

    Recent increases in life expectancy may greatly expand future Alzheimer's Disease (AD) burdens. China's demographic profile, aging workforce and predicted increasing burden of AD-related care make its economy vulnerable to AD impacts. Previous economic estimates of AD predominantly focus on health system burdens and omit wider whole-economy effects, potentially underestimating the full economic benefit of effective treatment. AD-related prevalence, morbidity and mortality for 2011-2050 were simulated and were, together with associated caregiver time and costs, imposed on a dynamic Computable General Equilibrium model of the Chinese economy. Both economic and non-economic outcomes were analyzed. Simulated Chinese AD prevalence quadrupled during 2011-50 from 6-28 million. The cumulative discounted value of eliminating AD equates to China's 2012 GDP (US$8 trillion), and the annual predicted real value approaches US AD cost-of-illness (COI) estimates, exceeding US$1 trillion by 2050 (2011-prices). Lost labor contributes 62% of macroeconomic impacts. Only 10% derives from informal care, challenging previous COI-estimates of 56%. Health and macroeconomic models predict an unfolding 2011-2050 Chinese AD epidemic with serious macroeconomic consequences. Significant investment in research and development (medical and non-medical) is warranted and international researchers and national authorities should therefore target development of effective AD treatment and prevention strategies.

  3. The Impact of Alzheimer's Disease on the Chinese Economy

    PubMed Central

    Keogh-Brown, Marcus R.; Jensen, Henning Tarp; Arrighi, H. Michael; Smith, Richard D.

    2015-01-01

    Background Recent increases in life expectancy may greatly expand future Alzheimer's Disease (AD) burdens. China's demographic profile, aging workforce and predicted increasing burden of AD-related care make its economy vulnerable to AD impacts. Previous economic estimates of AD predominantly focus on health system burdens and omit wider whole-economy effects, potentially underestimating the full economic benefit of effective treatment. Methods AD-related prevalence, morbidity and mortality for 2011–2050 were simulated and were, together with associated caregiver time and costs, imposed on a dynamic Computable General Equilibrium model of the Chinese economy. Both economic and non-economic outcomes were analyzed. Findings Simulated Chinese AD prevalence quadrupled during 2011–50 from 6–28 million. The cumulative discounted value of eliminating AD equates to China's 2012 GDP (US$8 trillion), and the annual predicted real value approaches US AD cost-of-illness (COI) estimates, exceeding US$1 trillion by 2050 (2011-prices). Lost labor contributes 62% of macroeconomic impacts. Only 10% derives from informal care, challenging previous COI-estimates of 56%. Interpretation Health and macroeconomic models predict an unfolding 2011–2050 Chinese AD epidemic with serious macroeconomic consequences. Significant investment in research and development (medical and non-medical) is warranted and international researchers and national authorities should therefore target development of effective AD treatment and prevention strategies. PMID:26981556

  4. Tidal Response of Preliminary Jupiter Model

    NASA Astrophysics Data System (ADS)

    Wahl, Sean M.; Hubbard, William B.; Militzer, Burkhard

    2016-11-01

    In anticipation of improved observational data for Jupiter’s gravitational field, from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms, using the non-perturbative concentric Maclaurin Spheroid method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal and rotational perturbations, which we find to be important for a rapidly rotating planet like Jupiter. Our predicted static tidal Love number, {k}2=0.5900, is ˜10% larger than previous estimates. The value is, as expected, highly correlated with the zonal harmonic coefficient J 2, and is thus nearly constant when plausible changes are made to the interior structure while holding J 2 fixed at the observed value. We note that the predicted static k 2 might change, due to Jupiter’s dynamical response to the Galilean moons, and find reasons to argue that the change may be detectable—although we do not present here a theory of dynamical tides for highly oblate Jovian planets. An accurate model of Jupiter’s tidal response will be essential for interpreting Juno observations and identifying tidal signals from effects of other interior dynamics of Jupiter’s gravitational field.

  5. Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O

    NASA Astrophysics Data System (ADS)

    Pabalan, Roberto T.; Pitzer, Kenneth S.

    1987-09-01

    Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term θ ij and values of ψ ijk which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl 2-H 2O.

  6. Theoretical estimates of equilibrium sulfur isotope effects in aqueous sulfur systems: Highlighting the role of isomers in the sulfite and sulfoxylate systems

    NASA Astrophysics Data System (ADS)

    Eldridge, D. L.; Guo, W.; Farquhar, J.

    2016-12-01

    We present theoretical calculations for all three isotope ratios of sulfur (33S/32S, 34S/32S, 36S/32S) at the B3LYP/6-31+G(d,p) level of theory for aqueous sulfur compounds modeled in 30-40H2O clusters spanning the range of sulfur oxidation state (Sn, n = -2 to +6) for estimating equilibrium fractionation factors in aqueous systems. Computed 34β values based on major isotope (34S/32S) reduced partition function ratios (RPFRs) scale to a first order with sulfur oxidation state and coordination, where 34β generally increase with higher oxidation state and increasing coordination of the sulfur atom. Exponents defining mass dependent relationships based on β values (x/34κ = ln(xβ)/ln(34β), x = 33 or 36) conform to tight ranges over a wide range of temperature for all aqueous compounds (33/34κ ≈ 0.5148-0.5159, 36/34κ ≈ 1.89-1.90 from T ⩾ 0 °C). The exponents converge near a singular value for all compounds at the high temperature limit (33/34κT→∞ = 0.51587 ± 0.00003 and 36/34κT→∞ = 1.8905 ± 0.0002; 1 s.d. of all computed compounds), and typically follow trends based on oxidation state and coordination similar to those seen in 34β values at lower temperatures. Theoretical equilibrium fractionation factors computed from these β-values are compared to experimental constraints for HSO3-T(aq)/SO2(g, aq), SO2(aq)/SO2(g), H2S(aq)/H2S(g), H2S(aq)/HS-(aq), SO42-(aq)/H2ST(aq), S2O32-(aq) (intramolecular), and S2O32-(aq)/H2ST(aq), and generally agree within a reasonable estimation of uncertainties. We make predictions of fractionation factors where other constraints are unavailable. Isotope partitioning of the isomers of protonated compounds in the sulfite and sulfoxylate systems depend strongly on whether protons are bound to either sulfur or oxygen atoms. The magnitude of the HSO3-T/SO32- major isotope (34S/32S) fractionation factor is predicted to increase with temperature from 0 to 70 °C due to the combined effects of the large magnitude (HS)O3-/SO32- fractionation factor (1000ln34α(HS)bisulfite-sulfite = 19.9‰, 25 °C) relative to the (HO)SO2-/SO32- fractionation factor (1000ln34α(HO)bisulfite-sulfite = -2.2‰, 25 °C), and the increased stability of the (HS)O3- isomer with increasing temperature. We argue that isomerization phenomenon should be considered in models of the sulfur cycle, including models that describe the overall sulfur isotope fractionations associated with microbial metabolism (e.g., microbial sulfate reduction).

  7. Sensitivity of the equilibrium surface temperature of a GCM to systematic changes in atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Saltzman, Barry

    1990-01-01

    The equilibrium response of surface temperature to atmospheric CO2 concentration, for six values between 100 and 1000 ppm, is calculated from a series of GCM experiments. This response is nonlinear, showing greater sensitivity for lower values of CO2 than for the higher values. It is suggested that changes in CO2 concentration of a given magnitude (e.g., 100 ppm) played a larger role in the Pleistocene ice-age-type temperature variations than in causing global temperature changes due to anthropogenic increases.

  8. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; ...

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  9. To predict the niche, model colonization and extinction

    USGS Publications Warehouse

    Yackulic, Charles B.; Nichols, James D.; Reid, Janice; Der, Ricky

    2015-01-01

    Ecologists frequently try to predict the future geographic distributions of species. Most studies assume that the current distribution of a species reflects its environmental requirements (i.e., the species' niche). However, the current distributions of many species are unlikely to be at equilibrium with the current distribution of environmental conditions, both because of ongoing invasions and because the distribution of suitable environmental conditions is always changing. This mismatch between the equilibrium assumptions inherent in many analyses and the disequilibrium conditions in the real world leads to inaccurate predictions of species' geographic distributions and suggests the need for theory and analytical tools that avoid equilibrium assumptions. Here, we develop a general theory of environmental associations during periods of transient dynamics. We show that time-invariant relationships between environmental conditions and rates of local colonization and extinction can produce substantial temporal variation in occupancy–environment relationships. We then estimate occupancy–environment relationships during three avian invasions. Changes in occupancy–environment relationships over time differ among species but are predicted by dynamic occupancy models. Since estimates of the occupancy–environment relationships themselves are frequently poor predictors of future occupancy patterns, research should increasingly focus on characterizing how rates of local colonization and extinction vary with environmental conditions.

  10. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

    PubMed Central

    2015-01-01

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies. PMID:26113956

  11. A comparative study of the adsorption equilibrium of progesterone by a carbon black and a commercial activated carbon

    NASA Astrophysics Data System (ADS)

    Valenzuela-Calahorro, Cristóbal; Navarrete-Guijosa, Antonio; Stitou, Mostafa; Cuerda-Correa, Eduardo M.

    2007-04-01

    In this paper the adsorption process of a natural steroid hormone (progesterone) by a carbon black and a commercial activated carbon has been studied. The corresponding equilibrium isotherms have been analyzed according to a previously proposed model which establishes a kinetic law satisfactorily fitting the C versus t isotherms. The analysis of the experimental data points out the existence of two well-defined sections in the equilibrium isotherms. A general equation including these two processes has been proposed, the global adsorption process being fitted to such equation. From the values of the kinetic equilibrium constant so obtained, values of standard average adsorption enthalpy ( ΔH°) and entropy ( ΔS°) have been calculated. Finally, information related to variations of differential adsorption enthalpy ( ΔH) and entropy ( ΔS) with the surface coverage fraction ( θ) was obtained by using the corresponding Clausius-Clapeyron equations.

  12. The equilibrium assumption is valid for the kinetic treatment of most time-dependent protein-modification reactions.

    PubMed Central

    Brocklehurst, K

    1979-01-01

    To facilitate mechanistic interpretation of the kinetics of time-dependent inhibition of enzymes and of similar protein modification reactions, it is important to know when the equilibrium assumption may be applied to the model: formula: (see text). The conventional criterion of quasi-equilibrium, k + 2 less than k-1, is not always easy to assess, particularly when k + 2 cannot be separately determined. It is demonstrated that the condition k + 2 less than k-1 is necessarily true, however, when the value of the apparent second-order rate constant for the modification reaction is much smaller than the value of k + 1. Since k + 1 is commonly at least 10(7)M-1.S-1 for substrates, it is probable that the equilibrium assumption may be properly applied to most irreversible inhibitions and modification reactions. PMID:518556

  13. Habitat islands and the equilibrium theory of island biogeography: testing some predictions

    USGS Publications Warehouse

    Brown, M.; Dinsmore, J.J.

    1988-01-01

    Species-area data from a study of marsh birds are used to test five predictions generated by the equilibrium theory of island biogeography. Three predictions are supported: we found a significant species-area relationship, a non-zero level of turnover, and a variance-mean ratio of 0.5. One prediction is rejected: the extinction rates were not greater on small islands. The results of one test are equivocal: the number of species on each island was not always the same. As Gilbert (1980) suggests, a strong species-area relationship alone does not validate the theory. The avian communities we studied were on habitat islands, not true islands, and underwent complete extinction annually. Thus caution must be used before applying the theory to these and other habitat islands.

  14. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  15. Numerical Experiments Based on the Catastrophe Model of Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Xie, X. Y.; Ziegler, U.; Mei, Z. X.; Wu, N.; Lin, J.

    2017-11-01

    On the basis of the catastrophe model developed by Isenberg et al., we use the NIRVANA code to perform the magnetohydrodynamics (MHD) numerical experiments to look into various behaviors of the coronal magnetic configuration that includes a current-carrying flux rope used to model the prominence levitating in the corona. These behaviors include the evolution in equilibrium heights of the flux rope versus the change in the background magnetic field, the corresponding internal equilibrium of the flux rope, dynamic properties of the flux rope after the system loses equilibrium, as well as the impact of the referential radius on the equilibrium heights of the flux rope. In our calculations, an empirical model of the coronal density distribution given by Sittler & Guhathakurta is used, and the physical diffusion is included. Our experiments show that the deviation of simulations in the equilibrium heights from the theoretical results exists, but is not apparent, and the evolutionary features of the two results are similar. If the flux rope is initially locate at the stable branch of the theoretical equilibrium curve, the flux rope will quickly reach the equilibrium position in the simulation after several rounds of oscillations as a result of the self-adjustment of the system; and the flux rope lose the equilibrium if the initial location of the flux rope is set at the critical point on the theoretical equilibrium curve. Correspondingly, the internal equilibrium of the flux rope can be reached as well, and the deviation from the theoretical results is somewhat apparent since the approximation of the small radius of the flux rope is lifted in our experiments, but such deviation does not affect the global equilibrium in the system. The impact of the referential radius on the equilibrium heights of the flux rope is consistent with the prediction of the theory. Our calculations indicate that the motion of the flux rope after the loss of equilibrium is consistent with which is predicted by the Lin-Forbes model and observations. Formation of the fast mode shock ahead of the flux rope is observed in our experiments. Outward motions of the flux rope are smooth, and magnetic energy is continuously converted into the other types of energy because both the diffusions are considered in calculations, and magnetic reconnection is allowed to occur successively in the current sheet behind the flux rope.

  16. Understanding Chemical Equilibrium: The Role of Gas Phases and Mixing Contributions in the Minimum of Free Energy Plots

    ERIC Educational Resources Information Center

    Tomba, J. Pablo

    2017-01-01

    The use of free energy plots to understand the concept of thermodynamic equilibrium has been shown to be of great pedagogical value in materials science. Although chemical equilibrium is also amenable to this kind of analysis, it is not part of the agenda of materials science textbooks. Something similar is found in chemistry branches, where free…

  17. Laser Raman Diagnostics in Subsonic and Supersonic Turbulent Jet Diffusion Flames.

    NASA Astrophysics Data System (ADS)

    Cheng, Tsarng-Sheng

    1991-02-01

    UV spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. For the first time, simultaneous measurements of temperature, major species (H_2, O_2, N_2, H_2O), and minor species (OH) concentrations are made with a "single" narrowband KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat -flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. Single-shot uncertainties for temperature and concentration measurements are analyzed with photon statistics. Calibration constants and bandwidth factors are used in the data reduction program to arrive at temperature and species concentration measurements. UV Raman measurements in the subsonic lifted turbulent diffusion flame indicate that fuel and oxidizer are in rich, premixed, and unignited conditions in the center core of the lifted flame base. The unignited mixtures are due to rapid turbulent mixing that affects chemical reaction. Combustion occurs in an intermittent annular turbulent flame brush with strong finite-rate chemistry effects. The OH radical exists in sub-equilibrium and super-equilibrium concentrations. Major species and temperature are found with non-equilibrium values. Further downstream the super-equilibrium OH radicals decay toward equilibrium through slow three-body recombination reactions. In the supersonic lifted flame, a little reaction occurs upstream of the flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and total enthalpy fluctuations lead to temperature, major, and minor species concentrations with non-equilibrium values. Combustion occurs farther downstream of the lifted region. Slow three-body recombination reactions result in super-equilibrium OH concentrations that depress temperature below the equilibrium values. Near the equilibrium region, ambient air entrainment contaminates flame properties. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intravaia, F.; Behunin, R. O.; Henkel, C.

    Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.

  19. Pre-equilibrium Longitudinal Flow in the IP-Glasma Framework for Pb+Pb Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    McDonald, Scott; Shen, Chun; Fillion-Gourdeau, François; Jeon, Sangyong; Gale, Charles

    2017-08-01

    In this work, we debut a new implementation of IP-Glasma and quantify the pre-equilibrium longitudinal flow in the IP-Glasma framework. The saturation physics based IP-Glasma model naturally provides a non-zero initial longitudinal flow through its pre-equilibrium Yang-Mills evolution. A hybrid IP-Glasma+MUSIC+UrQMD frame-work is employed to test this new implementation against experimental data and to make further predictions about hadronic flow observables in Pb+Pb collisions at 5.02 TeV. Finally, the non-zero pre-equilibrium longitudinal flow of the IP-Glasma model is quantified, and its origin is briefly discussed.

  20. Mate-sampling costs and sexy sons.

    PubMed

    Kokko, H; Booksmythe, I; Jennions, M D

    2015-01-01

    Costly female mating preferences for purely Fisherian male traits (i.e. sexual ornaments that are genetically uncorrelated with inherent viability) are not expected to persist at equilibrium. The indirect benefit of producing 'sexy sons' (Fisher process) disappears: in some models, the male trait becomes fixed; in others, a range of male trait values persist, but a larger trait confers no net fitness advantage because it lowers survival. Insufficient indirect selection to counter the direct cost of producing fewer offspring means that preferences are lost. The only well-cited exception assumes biased mutation on male traits. The above findings generally assume constant direct selection against female preferences (i.e. fixed costs). We show that if mate-sampling costs are instead derived based on an explicit account of how females acquire mates, an initially costly mating preference can coevolve with a male trait so that both persist in the presence or absence of biased mutation. Our models predict that empirically detecting selection at equilibrium will be difficult, even if selection was responsible for the location of the current equilibrium. In general, it appears useful to integrate mate sampling theory with models of genetic consequences of mating preferences: being explicit about the process by which individuals select mates can alter equilibria. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  1. A partition-limited model for the plant uptake of organic contaminants from soil and water

    USGS Publications Warehouse

    Chiou, C.T.; Sheng, G.; Manes, M.

    2001-01-01

    In dealing with the passive transport of organic contaminants from soils to plants (including crops), a partition-limited model is proposed in which (i) the maximum (equilibrium) concentration of a contaminant in any location in the plant is determined by partition equilibrium with its concentration in the soil interstitial water, which in turn is determined essentially by the concentration in the soil organic matter (SOM) and (ii) the extent of approach to partition equilibrium, as measured by the ratio of the contaminant concentrations in plant water and soil interstitial water, ??pt (??? 1), depends on the transport rate of the contaminant in soil water into the plant and the volume of soil water solution that is required for the plant contaminant level to reach equilibrium with the external soil-water phase. Through reasonable estimates of plant organic-water compositions and of contaminant partition coefficients with various plant components, the model accounts for calculated values of ??pt in several published crop-contamination studies, including near-equilibrium values (i.e., ??pt ??? 1) for relatively water-soluble contaminants and lower values for much less soluble contaminants; the differences are attributed to the much higher partition coefficients of the less soluble compounds between plant lipids and plant water, which necessitates much larger volumes of the plant water transport for achieving the equilibrium capacities. The model analysis indicates that for plants with high water contents the plant-water phase acts as the major reservoir for highly water-soluble contaminants. By contrast, the lipid in a plant, even at small amounts, is usually the major reservoir for highly water-insoluble contaminants.

  2. Development and application of a predictive model of Aspergillus candidus growth as a tool to improve shelf life of bakery products.

    PubMed

    Huchet, V; Pavan, S; Lochardet, A; Divanac'h, M L; Postollec, F; Thuault, D

    2013-12-01

    Molds are responsible for spoilage of bakery products during storage. A modeling approach to predict the effect of water activity (aw) and temperature on the appearance time of Aspergillus candidus was developed and validated on cakes. The gamma concept of Zwietering was adapted to model fungal growth, taking into account the impact of temperature and aw. We hypothesized that the same model could be used to calculate the time for mycelium to become visible (tv), by substituting the matrix parameter by tv. Cardinal values of A. candidus were determined on potato dextrose agar, and predicted tv were further validated by challenge-tests run on 51 pastries. Taking into account the aw dynamics recorded in pastries during reasonable conditions of storage, high correlation was shown between predicted and observed tv when the aw at equilibrium (after 14 days of storage) was used for modeling (Af = 1.072, Bf = 0.979). Validation studies on industrial cakes confirmed the experimental results and demonstrated the suitability of the model to predict tv in food as a function of aw and temperature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Implications for Climate Sensitivity from the Response to Individual Forcings

    NASA Technical Reports Server (NTRS)

    Marvel, Kate; Schmidt, Gavin A.; Miller, Ron L.; Nazarenko, Larissa

    2015-01-01

    Climate sensitivity to doubled CO2 is a widely-used metric of the large-scale response to external forcing. Climate models predict a wide range for two commonly used definitions: the transient climate response (TCR: the warming after 70 years of CO2 concentrations that riseat 1 per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature change following a doubling of CO2 concentrations). Many observational datasets have been used to constrain these values, including temperature trends over the recent past 16, inferences from paleo-climate and process-based constraints from the modern satellite eras. However, as the IPCC recently reported different classes of observational constraints produce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived from recent observations must account for the efficacy of each forcing active during the historical period. When we use single forcing experiments to estimate these efficacies and calculate climate sensitivity from the observed twentieth-century warming, our estimates of both TCR and ECS are revised upward compared to previous studies, improving the consistency with independent constraints.

  4. Technique Incorporating Cooling & Contraction / Expansion Analysis to Illustrate Shrinkage Tendency in Cast Irons

    NASA Astrophysics Data System (ADS)

    Stan, S.; Chisamera, M.; Riposan, I.; Neacsu, L.; Cojocaru, A. M.; Stan, I.

    2017-06-01

    With the more widespread adoption of thermal analysis testing, thermal analysis data have become an indicator of cast iron quality. The cooling curve and its first derivative display patterns that can be used to predict the characteristics of a cast iron. An experimental device was developed with a technique to simultaneously evaluate cooling curves and expansion or contraction of cast metals during solidification. Its application is illustrated with results on shrinkage tendency of ductile iron treated with FeSiMgRECa master alloy and inoculated with FeSi based alloys, as affected by mould rigidity (green sand and resin sand moulds). Undercooling at the end of solidification relative to the metastable (carbidic) equilibrium temperature and the expansion within the solidification sequence appear to have a strong influence on the susceptibility to macro - and micro - shrinkage in ductile iron castings. Green sand moulds, as less rigid moulds, encourage the formation of contraction defects, not only because of high initial expansion values, but also because of a higher cooling rate during solidification, and consequently, increased undercooling below the metastable equilibrium temperature up to the end of solidification.

  5. Mechanistic information from the first volume profile analysis for a reversible intermolecular electron-transfer reaction involving pentaammine(isonicotinamide)ruthenium and cytochrome c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baensch, B.; Meier, M.; Martinez, P.

    1994-10-12

    The reversible intermolecular electron-transfer reaction between pentaammine(isonicotinamide)ruthenium(II/III) and horse-heart cytochrome c iron(III/II) was subjected to a detailed kinetic and thermodynamic study as a function of temperature and pressure. Theoretical calculations based on the Marcus-Hush theory were employed to predict all rate and equilibrium constants as well as activation parameters. There is an excellent agreement between the kinetically and thermodynamically determined equilibrium constants and associated pressure parameters. These data are used to construct a volume profile for the overall process, from which it follows that the transition state lies halfway between the reactant and product states on a volume basis. Themore » reorganization in the transition state has reached a similar degree in both directions of the electron-transfer process and corresponds to a {lambda}{sup {double_dagger}} value of 0.44 for this reversible reaction. This is the first complete volume profile analysis for a reversible intermolecular electron-transfer reaction.« less

  6. Biophase equilibration times.

    PubMed

    Veng-Pedersen, P; Mandema, J W; Danhof, M

    1991-09-01

    Various methods for describing how quickly a drug equilibrates at the biophase are proposed. The biophase equilibration time (BET) is the time it takes the biophase drug level to reach a given percentage (p) of its predicted steady state in a drug administration that leads to a steady-state condition. The time to reach biophase equilibrium may be defined as the BET value for p = 95, and the 50% biophase equilibration time is obtained when p = 50. Biophase equilibration profiles (BEPs), obtained by plotting p versus BET, give a dynamic representation of the approach to equilibrium and may serve as an indicator of the rate of drug delivery to the biophase. A pharmacodynamic system analysis method is proposed to determine BETs and BEPs from the biophase conduction function. The approach is demonstrated using pharmacodynamic data from the CNS effect of amobarbital evaluated by an aperiodic analysis of EEG recordings. The relevance of the BET and/or BEP principles in optimal computer-controlled drug infusion, drug design, and evaluation of targeted drug delivery is discussed. Both vascular and extravascular drug administrations are considered in the analysis.

  7. Moisture Sorption and Thermodynamic Properties of Vacuum-Dried Capsosiphon fulvescens Powder

    PubMed Central

    Zuo, Li; Rhim, Jong-Whan; Lee, Jun Ho

    2015-01-01

    The moisture sorption isotherms of vacuum-dried edible green alga (Capsosiphon fulvescens) powders were determined at 25, 35, and 45°C and water activity (aw) in the range of 0.11~0.94. An inversion effect of temperature was found at high water activity (>0.75). Various mathematical models were fitted to the experimental data, and Brunauer, Emmett, and Teller model was found to be the most suitable model describing the relationship between equilibrium moisture content and water activity (<0.45). Henderson model could also provide excellent agreement between the experimental and predicted values despite of the intersection point. Net isosteric heat of adsorption decreased from 15.77 to 9.08 kJ/mol with an increase in equilibrium moisture content from 0.055 to 0.090 kg H2O/kg solids. The isokinetic temperature (Tβ) was 434.79 K, at which all the adsorption reactions took place at the same rate. The enthalpy-entropy compensation suggested that the mechanism of the adsorption process was shown to be enthalpy-driven. PMID:26451360

  8. Temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments

    USGS Publications Warehouse

    Piatt, Joseph J.; Backhus, Debera A.; Capel, Paul D.; Eisenreich, Steven J.

    1996-01-01

    Sorption experiments were conducted with naphthalene, phenanthrene, and pyrene on low organic carbon sediments at 4 and 26 °C using batch and column techniques. Experimental controls ensured the absence of biologic and photolytic activity and colloid-free solution supernatants. Equilibrium distribution coefficients (Kd) increased 1.1−1.6 times with a decrease in temperature of 22 °C. Fraction instantaneous sorption (F) values did not change significantly with a decrease in temperature of 22 °C. Desorption rate constants (k2) decreased 1.2−2.6 times with a decrease in temperature of 22 °C. Times to equilibrium were at least 40 h. The magnitude of observed Kd and k2 values and the effect of temperature on Kd (e.g., low enthalpy of sorption) are consistent with sorbate partitioning between the aqueous phase and small amounts of organic matter (foc = 0.02%) on the sediments. The temperature dependence of Kd and k2 may be small as compared to the effects of heterogeneities in field-scale aquifer systems. Thus, thermal gradients may not be of major importance in most saturated subsurface regimes when predicting solute transport. However, aquifer remediation pump-and-treat times could be decreased because increased temperature decreases both retardation and tailing.

  9. Ortho-para-hydrogen equilibration on Jupiter

    NASA Technical Reports Server (NTRS)

    Carlson, Barbara E.; Lacis, Andrew A.; Rossow, William B.

    1992-01-01

    Voyager IRIS observations reveal that the Jovian para-hydrogen fraction is not in thermodynamic equilibrium near the NH3 cloud top, implying that a vertical gradient exists between the high-temperature equilibrium value of 0.25 at depth and the cloud top values. The height-dependent para-hydrogen profile is obtained using an anisotropic multiple-scattering radiative transfer model. A vertical correlation is found to exist between the location of the para-hydrogen gradient and the NH3 cloud, strongly suggesting that paramagnetic conversion on NH3 cloud particle surfaces is the dominant equilibration mechanism. Below the NH3 cloud layer, the para fraction is constant with depth and equal to the high-temperature equilibrium value of 0.25. The degree of cloud-top equilibration appears to depend on the optical depth of the NH3 cloud layer. Belt-zone variations in the para-hydrogen profile seem to be due to differences in the strength of the vertical mixing.

  10. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    PubMed

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. Copyright © 2015 the American Physiological Society.

  11. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation

    PubMed Central

    Berman, Marvin D.

    2014-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  12. Liquid Engine Design: Effect of Chamber Dimensions on Specific Impulse

    NASA Technical Reports Server (NTRS)

    Hoggard, Lindsay; Leahy, Joe

    2009-01-01

    Which assumption of combustion chemistry - frozen or equilibrium - should be used in the prediction of liquid rocket engine performance calculations? Can a correlation be developed for this? A literature search using the LaSSe tool, an online repository of old rocket data and reports, was completed. Test results of NTO/Aerozine-50 and Lox/LH2 subscale and full-scale injector and combustion chamber test results were found and studied for this task. NASA code, Chemical Equilibrium with Applications (CEA) was used to predict engine performance using both chemistry assumptions, defined here. Frozen- composition remains frozen during expansion through the nozzle. Equilibrium- instantaneous chemical equilibrium during nozzle expansion. Chamber parameters were varied to understand what dimensions drive chamber C* and Isp. Contraction Ratio is the ratio of the nozzle throat area to the area of the chamber. L is the length of the chamber. Characteristic chamber length, L*, is the length that the chamber would be if it were a straight tube and had no converging nozzle. Goal: Develop a qualitative and quantitative correlation for performance parameters - Specific Impulse (Isp) and Characteristic Velocity (C*) - as a function of one or more chamber dimensions - Contraction Ratio (CR), Chamber Length (L ) and/or Characteristic Chamber Length (L*). Determine if chamber dimensions can be correlated to frozen or equilibrium chemistry.

  13. Predictions and Tests of the "Late Noachian Icy Highlands" Climate Model: Can Evidence for Fluvial/Lacustrine Systems Be Reconciled?

    NASA Astrophysics Data System (ADS)

    Head, J. W., III

    2016-12-01

    Improved 3D global simulations (GCMs) of the early martian climate have found that for atmospheric pressures greater than a fraction of a bar, atmospheric-surface thermal coupling occurs and the adiabatic cooling effect (ACE) causes temperatures in the southern uplands to fall significantly below the global average. Long-term climate evolution simulations indicate that in these circumstances, water ice is transported to the highlands from low-lying regions for a wide range of obliquities. Conditions are too cold (MAT 225 K) to permit the presence of long-term surface liquid water, including streams, lakes and oceans. The LNIH equilibrium state predicts: 1) a global permafrost layer, 2) a horizontally stratified hydrological cycle/system, 3) thick ice deposits in the southern uplands, 4) an extended water ice cap on the southern pole, and 5) no rainfall, streams lakes or oceans. The majority of these predictions are in direct conflict with the observed fluvial/lacustrine geologic record. Can non-equilibrium conditions in a LNIH scenario explain these conflicts by transient heating and melting of the LNIH? As steps in the comprehensive testing of this "Late Noachian Icy Highlands" (LNIH) model we explore the predictions for geologic settings and processes in both equilibrium and non-equilibrium climate states. We assess the following sources of disequilibrium: 1) Top-down heating and melting: a) impact cratering, b) extrusive/explosive volcanism, and c) short-term emission of greenhouse gases. 2) Bottom up heating and melting: a) enhanced regional-global geothermal gradients, and b) thick ice accumulation to cause/sustain basal melting, wet-based glaciation and runoff. We assess these disequilibrium mechanisms in terms of: 1) the altitude dependence of melting, 2) melting duration, 3) volumes of meltwater produced, 4) predicted locations of meltwater production, and 6) comparison to the distribution of fluvial/lacustrine features. We find that the Late Noachian Icy Highlands climate model cannot be reconciled with observations unless punctuated non-equilibrium conditions occur. We show that the best candidates for LNIH disequilibrium conditions involve top-down heating and melting conditions chronologically summing in duration to more than tens of thousands to millions of years.

  14. University Policies under Varying Market Conditions: The Training of Electrical Engineers.

    ERIC Educational Resources Information Center

    Eckstein, Zvi; And Others

    1988-01-01

    Analyzes an Israeli university's problem in optimizing the quality and quantity of electrical engineers in response to fluctuating enrollment. An equilibrium model considers the effect of students' occupation choice and the university's decision on the current and future demand and supply of engineers, in order to predict the equilibrium number of…

  15. Drop-tower experiments for capillary surfaces in an exotic container

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert; Weislogel, Mark

    1991-01-01

    Low-gravity drop-tower experiments are carried out for an 'exotic' rotationally-symmetric container, which admits an entire continuum of distinct equilibrium symmetric capillary free surfaces. It is found that an initial equilibrium planer interface, a member of the continuum, will reorient toward a non-symmetric interface, as predicted by recent mathematical theory.

  16. An Evaluation of the Venous Equilibrium Model for Hepatic Clearance using Isolated Perfused Rainbow Trout Livers

    EPA Science Inventory

    The venous equilibrium model is widely used to describe hepatic clearance (CLH) of chemicals metabolized by the liver. If chemical delivery to the tissue does not limit CLH, this model predicts that CLH will approximately equal the product of intrinsic metabolic clearance and a t...

  17. Using Think-Aloud Protocols to Investigate Secondary School Chemistry Teachers' Misconceptions about Chemical Equilibrium

    ERIC Educational Resources Information Center

    Cheung, Derek

    2009-01-01

    Secondary school chemistry teachers' understanding of chemical equilibrium was investigated through interviews using the think-aloud technique. The interviews were conducted with twelve volunteer chemistry teachers in Hong Kong. Their teaching experience ranged from 3 to 18 years. They were asked to predict what would happen to the equilibrium…

  18. Interfacial profiles in fluid/liquid systems: a description based on the storing of elastic energy.

    PubMed

    Castellanos-Suárez, Aly J; Toro-Mendoza, Jhoan; García-Sucre, Máximo

    2011-06-01

    An analytical expression for the interfacial energy is found by solving a Poisson equation and assuming a Boltzmann distribution of volume elements forming the fluid/liquid system. Interfacial phenomena are treated as a result of the response of a liquid when it makes contact with other fluid phase, in order to reach thermal and mechanical equilibrium. This model gives a quantitative description of the interface, obtaining values for its molar, force and energy density profiles. Also, our model allows the determination of the proportion of the fluids present in the interfacial zone, the values of interfacial tension and thickness. In the case of water+n-alkanes systems, the tensions are in agreement with the behavior shown by the experimental data. Finally, the values for interfacial thickness predicted from molar density profiles are lower than the range of influence of the elastic energy and elastic field. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Electrophoretic Study of the SnO2/Aqueous Solution Interface up to 260 degrees C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Santiago, V; Fedkin, Mark V.; Wesolowski, David J

    2009-01-01

    An electrophoresis cell developed in our laboratory was utilized to determine the zeta potential at the SnO{sub 2} (cassiterite)/aqueous solution (10{sup -3} mol kg{sup -1} NaCl) interface over the temperature range from 25 to 260 C. Experimental techniques and methods for the calculation of zeta potential at elevated temperature are described. From the obtained zeta potential data as a function of pH, the isoelectric points (IEPs) of SnO{sub 2} were obtained for the first time. From these IEP values, the standard thermodynamic functions were calculated for the protonation-deprotonation equilibrium at the SnO{sub 2} surface, using the 1-pK surface complexation model.more » It was found that the IEP values for SnO{sub 2} decrease with increasing temperature, and this behavior is compared to the predicted values by the multisite complexation (MUSIC) model and other semitheoretical treatments, and were found to be in excellent agreement.« less

  20. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    PubMed

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  1. Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas

    NASA Astrophysics Data System (ADS)

    Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito

    2010-11-01

    The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.

  2. Applying the concept of ecohydrological equilibrium to predict steady-state leaf area index for Australian ecosystems

    NASA Astrophysics Data System (ADS)

    Yang, J.; Medlyn, B.; De Kauwe, M. G.; Duursma, R.

    2017-12-01

    Leaf Area Index (LAI) is a key variable in modelling terrestrial vegetation, because it has a major impact on carbon, water and energy fluxes. However, LAI is difficult to predict: several recent intercomparisons have shown that modelled LAI differs significantly among models, and between models and satellite-derived estimates. Empirical studies show that long-term mean LAI is strongly related to mean annual precipitation. This observation is predicted by the theory of ecohydrological equilibrium, which provides a promising alternative means to predict steady-state LAI. We implemented this theory in a simple optimisation model. We hypothesized that, when water availability is limited, plants should adjust long-term LAI and stomatal behavior (g1) to maximize net canopy carbon export, under the constraint that canopy transpiration is a fixed fraction of total precipitation. We evaluated the predicted LAI (Lopt) for Australia against ground-based observations of LAI at 135 sites, and continental-scale satellite-derived estimates. For the site-level data, the RMSE of predicted Lopt was 0.14 m2 m-2, which was similar to the RMSE of a comparison of the data against nine-year mean satellite-derived LAI at those sites. Continentally, Lopt had a R2 of over 70% when compared to satellite-derived LAI, which is comparable to the R2 obtained when different satellite products are compared against each other. The predicted response of Lopt to the increase in atmospheric CO2 over the last 30 years also agreed with the estimate based on satellite-derivatives. Our results indicate that long-term equilibrium LAI can be successfully predicted from a simple application of ecohydrological theory. We suggest that this theory could be usefully incorporated into terrestrial vegetation models to improve their predictions of LAI.

  3. Effect of Temperature on Acidity and Hydration Equilibrium Constants of Delphinidin-3-O- and Cyanidin-3-O-sambubioside Calculated from Uni- and Multiwavelength Spectroscopic Data.

    PubMed

    Vidot, Kévin; Achir, Nawel; Mertz, Christian; Sinela, André; Rawat, Nadirah; Prades, Alexia; Dangles, Olivier; Fulcrand, Hélène; Dornier, Manuel

    2016-05-25

    Delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside are the main anthocyanins of Hibiscus sabdariffa calyces, traditionally used to make a bright red beverage by decoction in water. At natural pH, these anthocyanins are mainly in their flavylium form (red) in equilibrium with the quinonoid base (purple) and the hemiketal (colorless). For the first time, their acidity and hydration equilibrium constants were obtained from a pH-jump method followed by UV-vis spectroscopy as a function of temperature from 4 to 37 °C. Equilibrium constant determination was also performed by multivariate curve resolution (MCR). Acidity and hydration constants of cyanidin-3-O-sambubioside at 25 °C were 4.12 × 10(-5) and 7.74 × 10(-4), respectively, and were significantly higher for delphinidin-3-O-sambubioside (4.95 × 10(-5) and 1.21 × 10(-3), respectively). MCR enabled the obtaining of concentration and spectrum of each form but led to overestimated values for the equilibrium constants. However, both methods showed that formations of the quinonoid base and hemiketal were endothermic reactions. Equilibrium constants of anthocyanins in the hibiscus extract showed comparable values as for the isolated anthocyanins.

  4. Late-time Cooling of Neutron Star Transients and the Physics of the Inner Crust

    NASA Astrophysics Data System (ADS)

    Deibel, Alex; Cumming, Andrew; Brown, Edward F.; Reddy, Sanjay

    2017-04-01

    An accretion outburst onto a neutron star transient heats the neutron star’s crust out of thermal equilibrium with the core. After the outburst, the crust thermally relaxes toward equilibrium with the neutron star core, and the surface thermal emission powers the quiescent X-ray light curve. Crust cooling models predict that thermal equilibrium of the crust will be established ≈ 1000 {days} into quiescence. Recent observations of the cooling neutron star transient MXB 1659-29, however, suggest that the crust did not reach thermal equilibrium with the core on the predicted timescale and continued to cool after ≈ 2500 {days} into quiescence. Because the quiescent light curve reveals successively deeper layers of the crust, the observed late-time cooling of MXB 1659-29 depends on the thermal transport in the inner crust. In particular, the observed late-time cooling is consistent with a low thermal conductivity layer near the depth predicted for nuclear pasta that maintains a temperature gradient between the neutron star’s inner crust and core for thousands of days into quiescence. As a result, the temperature near the crust-core boundary remains above the critical temperature for neutron superfluidity, and a layer of normal neutrons forms in the inner crust. We find that the late-time cooling of MXB 1659-29 is consistent with heat release from a normal neutron layer near the crust-core boundary with a long thermal time. We also investigate the effect of inner crust physics on the predicted cooling curves of the accreting transient KS 1731-260 and the magnetar SGR 1627-41.

  5. Thermodynamic Simulation of Carbonate Cements-Water-Carbon Dioxide Equilibrium in Sandstone for Prediction of Precipitation/Dissolution of Carbonate Cements

    PubMed Central

    Zhong, Xinyan; Shang, Ruishu; Huang, Lihong

    2016-01-01

    Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, PCO2, variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide. PMID:27907043

  6. Thermodynamic Simulation of Carbonate Cements-Water-Carbon Dioxide Equilibrium in Sandstone for Prediction of Precipitation/Dissolution of Carbonate Cements.

    PubMed

    Duan, Yiping; Feng, Mingshi; Zhong, Xinyan; Shang, Ruishu; Huang, Lihong

    2016-01-01

    Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, [Formula: see text], variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1 and remains negative, indicating it is also a precipitation process at burial depth of 3.9 km where overpressure generated. The method used in this study can be applied in assessing burial precipitation-dissolution processes and predicting possible pores in reservoirs with carbonate cement-water-carbon dioxide.

  7. Balanced MR cholangiopancreatography with motion-sensitized driven-equilibrium (MSDE) preparation: Feasibility and optimization of imaging parameters.

    PubMed

    Nakayama, Tomohiro; Nishie, Akihiro; Yoshiura, Takashi; Asayama, Yoshiki; Ishigami, Kousei; Kakihara, Daisuke; Obara, Makoto; Honda, Hiroshi

    2015-12-01

    To show the feasibility of motion-sensitized driven-equilibrium-balanced magnetic resonance cholangiopancreatography and to determine the optimal velocity encoding (VENC) value. Sixteen healthy volunteers underwent MRI study using a 1.5-T clinical unit and a 32-channel body array coil. For each volunteer, images were obtained using the following seven respiratory-triggered sequences: (1) balanced magnetic resonance cholangiopancreatography without motion-sensitized driven-equilibrium, and (2)-(7) balanced magnetic resonance cholangiopancreatography with motion-sensitized driven-equilibrium, with VENC=1, 3, 5, 7, 9 and ∞cm/s for the x-, y-, and z-directions, respectively. Quantitative evaluation was obtained by measuring the maximum signal intensity of the common hepatic duct, portal vein, liver tissue including visible peripheral vessels, and liver tissue excluding visible peripheral vessels that were evaluated. We compared the contrast ratios of portal vein/common hepatic duct, liver tissue including visible peripheral vessels/common hepatic duct and liver tissue excluding visible peripheral vessels/common hepatic duct among the five finite sequences (VENC=1, 3, 5, 7, and 9cm/s). Statistical comparisons were performed using the t-test for paired data with the Bonferroni correction. Suppression of blood vessel signals was achieved with motion-sensitized driven-equilibrium sequences. We found the optimal VENC values to be either 3 or 5cm/s with the best suppression of relative vessel signals to bile ducts. At a lower VENC value (1cm/s), the bile duct signal was reduced, presumably due to minimal biliary flow. The feasibility of motion-sensitized driven-equilibrium-balanced magnetic resonance cholangiopancreatography was suggested. The optimal VENC value was considered to be either 3 or 5cm/s. The clinical usefulness of this new magnetic resonance cholangiopancreatography sequence needs to be verified by further studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. On Nash-Equilibria of Approximation-Stable Games

    NASA Astrophysics Data System (ADS)

    Awasthi, Pranjal; Balcan, Maria-Florina; Blum, Avrim; Sheffet, Or; Vempala, Santosh

    One reason for wanting to compute an (approximate) Nash equilibrium of a game is to predict how players will play. However, if the game has multiple equilibria that are far apart, or ɛ-equilibria that are far in variation distance from the true Nash equilibrium strategies, then this prediction may not be possible even in principle. Motivated by this consideration, in this paper we define the notion of games that are approximation stable, meaning that all ɛ-approximate equilibria are contained inside a small ball of radius Δ around a true equilibrium, and investigate a number of their properties. Many natural small games such as matching pennies and rock-paper-scissors are indeed approximation stable. We show furthermore there exist 2-player n-by-n approximation-stable games in which the Nash equilibrium and all approximate equilibria have support Ω(log n). On the other hand, we show all (ɛ,Δ) approximation-stable games must have an ɛ-equilibrium of support O(Δ^{2-o(1)}/ɛ2{log n}), yielding an immediate n^{O(Δ^{2-o(1)}/ɛ^2log n)}-time algorithm, improving over the bound of [11] for games satisfying this condition. We in addition give a polynomial-time algorithm for the case that Δ and ɛ are sufficiently close together. We also consider an inverse property, namely that all non-approximate equilibria are far from some true equilibrium, and give an efficient algorithm for games satisfying that condition.

  9. Stability analysis of the Euler discretization for SIR epidemic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanto, Agus

    2014-06-19

    In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaosmore » phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.« less

  10. Observations and modelling of shoreline and multiple sandbar behaviour on a high-energy meso-tidal beach

    NASA Astrophysics Data System (ADS)

    Splinter, Kristen D.; Gonzalez, Maria V. G.; Oltman-Shay, Joan; Rutten, Jantien; Holman, Robert

    2018-05-01

    This contribution describes 10 years of observed sandbar and shoreline cross-shore position variability at a meso-tidal, high energy, multiple sandbar beach. To examine relationships between the temporal variability in shoreline/sandbar position with offshore wave forcing, a simple equilibrium model is applied to these data. The analysis presented in this paper shows that the equilibrium model is skilled at predicting the alongshore-averaged, time-varying position of the shoreline (R = 0.82) and the outer sandbar position (R = 0.75), suggesting that these end members of the nearshore sediment system are most strongly influenced by offshore wave forcing in a predictable, equilibrium-forced manner. The middle and inner bars are hypothesized to act as sediment transport pathways between the shoreline and the outer bar. Prediction of these more transient features by an equilibrium model was less skilful. Model coefficients reveal that these two end members (outer bar and shoreline) in the sediment system act in opposite directions to changes in the annual offshore wave forcing. During high wave events, sediment is removed from the shoreline and deposited in the nearshore sediment system with simultaneous landward retreat of the shoreline and offshore migration of the outer sandbar. While both end member features have cycles at annual and inter-annual scales, their respective equilibrium response factor differs by almost a factor of 10, with the shoreline responding around an inter-annual mean (ϕ = 1000 days) and the outer bar responding around a seasonal mean (ϕ = 170 days). The model accurately predicts shoreline response to both mild (e.g. 2004/05, 2008/09) and extreme (e.g. 2005/06, 2009/10) winter storms, as well as their summer recovery. The more mobile and dynamic outer sandbar is well-modelled during typical winters. Summer onshore sandbar migration of the outer bar in 2005 and 2006 is under-predicted as the system transitioned between a triple (winter) and double (summer) sandbar system. The changing of the number of bars present in the system is something that this simple model cannot predict. Analysis of the data suggests that this multi-bar system adjusts its cross-shore seasonal movement when there is a significant change in the sediment supply to the system (e.g., nourishment projects, severe storms).

  11. The influence of pressure relaxation on the structure of an axial vortex

    NASA Astrophysics Data System (ADS)

    Ash, Robert L.; Zardadkhan, Irfan; Zuckerwar, Allan J.

    2011-07-01

    Governing equations including the effects of pressure relaxation have been utilized to study an incompressible, steady-state viscous axial vortex with specified far-field circulation. When sound generation is attributed to a velocity gradient tensor-pressure gradient product, the modified conservation of momentum equations that result yield an exact solution for a steady, incompressible axial vortex. The vortex velocity profile has been shown to closely approximate experimental vortex measurements in air and water over a wide range of circulation-based Reynolds numbers. The influence of temperature and humidity on the pressure relaxation coefficient in air has been examined using theoretical and empirical approaches, and published axial vortex experiments have been employed to estimate the pressure relaxation coefficient in water. Non-equilibrium pressure gradient forces have been shown to balance the viscous stresses in the vortex core region, and the predicted pressure deficits that result from this non-equilibrium balance can be substantially larger than the pressure deficits predicted using a Bernoulli equation approach. Previously reported pressure deficit distributions for dust devils and tornados have been employed to validate the non-equilibrium pressure deficit predictions.

  12. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  13. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities.

    PubMed

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-01

    A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  14. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-15

    Purpose: A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. Results: An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenthmore » value layer are calculated from the broad beam transmission for these tube potentials. Conclusions: The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.« less

  15. Thermodynamics of the formaldehyde-water and formaldehyde-ice systems for atmospheric applications.

    PubMed

    Barret, Manuel; Houdier, Stephan; Domine, Florent

    2011-01-27

    Formaldehyde (HCHO) is a species involved in numerous key atmospheric chemistry processes that can significantly impact the oxidative capacity of the atmosphere. Since gaseous HCHO is soluble in water, the water droplets of clouds and the ice crystals of snow exchange HCHO with the gas phase and the partitioning of HCHO between the air, water, and ice phases must be known to understand its chemistry. This study proposes thermodynamic formulations for the partitioning of HCHO between the gas phase and the ice and liquid water phases. A reanalysis of existing data on the vapor-liquid equilibrium has shown the inadequacy of the Henry's law formulation, and we instead propose the following equation to predict the mole fraction of HCHO in liquid water at equilibrium, X(HCHO,liq), as a function of the partial pressure P(HCHO) (Pa) and temperature T (K): X(HCHO,liq) = 1.700 × 10(-15) e((8014/T))(P(HCHO))(1.105). Given the paucity of data on the gas-ice equilibrium, the solubility of HCHO and the diffusion coefficient (D(HCHO)) in ice were measured by exposing large single ice crystals to low P(HCHO). Our recommended value for D(HCHO) over the temperature range 243-266 K is D(HCHO) = 6 × 10(-12) cm(2) s(-1). The solubility of HCHO in ice follows the relationship X(HCHO,ice) = 9.898 × 10(-13) e((4072/T))(P(HCHO))(0.803). Extrapolation of these data yields the P(HCHO) versus 1/T phase diagram for the H(2)O-HCHO system. The comparison of our results to existing data on the partitioning of HCHO between the snow and the atmosphere in the high arctic highlights the interplay between thermodynamic equilibrium and kinetics processes in natural systems.

  16. Reverse Mössbauer effect as a possible source of “hot” molecules absorbed in crystalline solids at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demontis, Pierfranco; Suffritti, Giuseppe B., E-mail: pino@uniss.it

    2016-09-07

    As an attempt to explain some of the many anomalies and unresolved problems which have been reported about the dynamic behavior of particles and molecules absorbed in crystalline solids, the “reverse Mössbauer effect” (RME) is proposed. RME theory posits that a particle in non-equilibrium state with respect to a crystal (colliding with the crystal or absorbed in it, but set out of thermal equilibrium by some external cause) is scattered by the whole crystal with a momentum proportional to a vector representing a reciprocal lattice point. The scattering is expected to occur with a well-defined probability and the momentum transferablemore » to the particle is expected to follow a predictable distribution. The RME theory, in practice, is an extension of the Bragg–von Laue scattering law to high-energy colliding particles, in general, and can be applied to any particle or molecule colliding with the surface of a crystalline solid or absorbed in it, but not in thermal equilibrium with the crystal lattice. We verified the RME theory by considering a well-defined unresolved problem. In an experimental study about methane adsorbed in the zeolite Na-ZSM-5 [H. Jobic, Chem. Phys. Lett. 170, 217 (1990)] reporting neutron inelastic-scattering spectra (recoiled bands) at 10 K, the translational kinetic energy of methane resulted to be much higher than equilibrium expected value, namely, about 85 K (or 7.3 meV). The author concluded that “the interpretation of this unusual behavior has yet to be found.” In the present study, on the basis of the RME, an explanation of this behavior is put forward.« less

  17. Effects of the microbial siderophore DFO-B on Pb and Cd speciation in aqueous solution.

    PubMed

    Mishra, Bhoopesh; Haack, Elizabeth A; Maurice, Patricia A; Bunker, Bruce A

    2009-01-01

    This study investigates the complexation environments of aqueous Pb and Cd in the presence of the trihydroxamate microbial siderophore, desferrioxamine-B (DFO-B) as a function of pH. Complexation of aqueous Pb and Cd with DFO-B was predicted using equilibrium speciation calculation. Synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy at Pb L(III) edge and Cd K edge was used to characterize Pb and Cd-DFO-B complexes at pH values predicted to best represent each of the metal-siderophore complexes. Pb was not found to be complexed measurably by DFO-B at pH 3.0, but was complexed by all three hydroxamate groups to form a totally "caged" hexadentate structure at pH 7.5-9.0. At the intermediate pH value (pH 4.8), a mixture of Pb-DFOB complexes involving binding of the metal through one and two hydroxamate groups was observed. Cd, on the other hand, remained as hydrated Cd2+ at pH 5.0, occurred as a mixture of Cd-DFOB and inorganic species at pH 8.0, and was bound by three hydroxamate groups from DFO-B at pH 9.0. Overall, the solution species observed with EXAFS were consistent with those predicted thermodynamically. However, Pb speciation at higher pH values differed from that predicted and suggests that published constants underestimate the binding constant for complexation of Pb with all three hydroxamate groups of the DFO-B ligand. This molecular-level understanding of metal-siderophore solution coordination provides physical evidence for complexes of Pb and Cd with DFO-B, and is an important first step toward understanding processes at the microbial- and/or mineral-water interface in the presence of siderophores.

  18. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  19. The effect of alumina in slag on manganese and silicon distributions in silicomanganese smelting

    NASA Astrophysics Data System (ADS)

    Swinbourne, D. R.; Rankin, W. J.; Eric, R. H.

    1995-02-01

    The distribution ratios of manganese and silicon between silicomanganese alloy and slag, in equilibrium with carbon, were investigated at 1500 °C. The alumina content of the slag was varied from about 9 to 32 pct. Both distribution ratios decreased as A12O3 increased to about 20 pct and, thereafter, remained constant. The value of the “apparent equilibrium constant” displayed a maximum at about 24 pct A12O3, mainly because of the variation in the values of the activity coefficients of SiO2 and MnO. It was concluded that the slag and silicomanganese alloy in a submerged arc furnace are at, or at least close to, equilibrium.

  20. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric

    2016-10-17

    Here, atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell inline images equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing themore » Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.« less

  1. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric; Ji, Wei

    2016-10-01

    Atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell's equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing the Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.

  2. Experimentally observed conformation-dependent geometry and hidden strain in proteins.

    PubMed Central

    Karplus, P. A.

    1996-01-01

    A database has been compiled documenting the peptide conformations and geometries from 70 diverse proteins refined at 1.75 A or better. Analysis of the well-ordered residues within the database shows phi, psi-distributions that have more fine structure than is generally observed. Also, clear evidence is presented that the peptide covalent geometry depends on conformation, with the interpeptide N-C alpha-C bond angle varying by nearly +/-5 degrees from its standard value. The observed deviations from standard peptide geometry are greatest near the edges of well-populated regions, consistent with strain occurring in these conformations. Minimization of such hidden strain could be an important factor in thermostability of proteins. These empirical data describing how equilibrium peptide geometry varies as a function of conformation confirm and extend quantum mechanics calculations, and have predictive value that will aid both theoretical and experimental analyses of protein structure. PMID:8819173

  3. Ab initio predictions of structural and elastic properties of struvite: contribution to urinary stone research.

    PubMed

    Piechota, Jacek; Prywer, Jolanta; Torzewska, Agnieszka

    2012-01-01

    In the present work, we carried out density functional calculations of struvite--the main component of the so-called infectious urinary stones--to study its structural and elastic properties. Using a local density approximation and a generalised gradient approximation, we calculated the equilibrium structural parameters and elastic constants C(ijkl). At present, there is no experimental data for these elastic constants C (ijkl) for comparison. Besides the elastic constants, we also present the calculated macroscopic mechanical parameters, namely the bulk modulus (K), the shear modulus (G) and Young's modulus (E). The values of these moduli are found to be in good agreement with available experimental data. Our results imply that the mechanical stability of struvite is limited by the shear modulus, G. The study also explores the energy-band structure to understand the obtained values of the elastic constants.

  4. Stock markets as Minority Games: cognitive heterogeneity and equilibrium emergence

    NASA Astrophysics Data System (ADS)

    Brandouy, O.

    2005-04-01

    Standard finance theory generally assumes homogeneous agents relatively to their preferences, heuristics and investment strategies. We propose to study, in an agent-based simulation, the emergence of equilibrium under various heterogeneous conditions. Market interaction is stylized with the Minority Game representation. It is shown that inductive rational equilibrium emerges even though agents do not share the same representations of the value. This may lead to consider again the roots of EMH and REH.

  5. Non-Markovianity in atom-surface dispersion forces

    DOE PAGES

    Intravaia, F.; Behunin, R. O.; Henkel, C.; ...

    2016-10-18

    Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.

  6. Non-Markovianity in atom-surface dispersion forces

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.

    2016-10-01

    We discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. In particular, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. Our findings highlight the importance of non-Markovian effects in dispersion interactions.

  7. The non-equilibrium statistical mechanics of a simple geophysical fluid dynamics model

    NASA Astrophysics Data System (ADS)

    Verkley, Wim; Severijns, Camiel

    2014-05-01

    Lorenz [1] has devised a dynamical system that has proved to be very useful as a benchmark system in geophysical fluid dynamics. The system in its simplest form consists of a periodic array of variables that can be associated with an atmospheric field on a latitude circle. The system is driven by a constant forcing, is damped by linear friction and has a simple advection term that causes the model to behave chaotically if the forcing is large enough. Our aim is to predict the statistics of Lorenz' model on the basis of a given average value of its total energy - obtained from a numerical integration - and the assumption of statistical stationarity. Our method is the principle of maximum entropy [2] which in this case reads: the information entropy of the system's probability density function shall be maximal under the constraints of normalization, a given value of the average total energy and statistical stationarity. Statistical stationarity is incorporated approximately by using `stationarity constraints', i.e., by requiring that the average first and possibly higher-order time-derivatives of the energy are zero in the maximization of entropy. The analysis [3] reveals that, if the first stationarity constraint is used, the resulting probability density function rather accurately reproduces the statistics of the individual variables. If the second stationarity constraint is used as well, the correlations between the variables are also reproduced quite adequately. The method can be generalized straightforwardly and holds the promise of a viable non-equilibrium statistical mechanics of the forced-dissipative systems of geophysical fluid dynamics. [1] E.N. Lorenz, 1996: Predictability - A problem partly solved, in Proc. Seminar on Predictability (ECMWF, Reading, Berkshire, UK), Vol. 1, pp. 1-18. [2] E.T. Jaynes, 2003: Probability Theory - The Logic of Science (Cambridge University Press, Cambridge). [3] W.T.M. Verkley and C.A. Severijns, 2014: The maximum entropy principle applied to a dynamical system proposed by Lorenz, Eur. Phys. J. B, 87:7, http://dx.doi.org/10.1140/epjb/e2013-40681-2 (open access).

  8. Thermodynamic equilibrium with acceleration and the Unruh effect

    NASA Astrophysics Data System (ADS)

    Becattini, F.

    2018-04-01

    We address the problem of thermodynamic equilibrium with constant acceleration along the velocity field lines in a quantum relativistic statistical mechanics framework. We show that for a free scalar quantum field, after vacuum subtraction, all mean values vanish when the local temperature T is as low as the Unruh temperature TU=A /2 π where A is the magnitude of the acceleration four-vector. We argue that the Unruh temperature is an absolute lower bound for the temperature of any accelerated fluid at global thermodynamic equilibrium. We discuss the conditions of this bound to be applicable in a local thermodynamic equilibrium situation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suenram, Richard D.; Pate, Brooks H.; Lesarri, Alberto

    Twenty-five microwave lines were observed for cis-1,3,5-hexatriene (0.05 D dipole moment) and a smaller number for its three 13C isotopomers in natural abundance. Ground-state rotational constants were fitted for all four species to a Watson-type rotational Hamiltonian for an asymmetric top (κ ) -0.9768). Vibration-rotation (alpha) constants were predicted with a B3LYP/cc-pVTZ model and used to adjust the ground-state rotational constants to equilibrium rotational constants. The small inertial defect for cis-hexatriene shows that the molecule is planar, despite significant H-H repulsion. The substitution method was applied to the equilibrium rotational constants to give a semiexperimental equilibrium structure for the C6more » backbone. This structure and one predicted with the B3LYP/cc-pVTZ model show structural evidence for increased π-electron delocalization in comparison with butadiene, the first member of the polyene series.« less

  10. Aggregation of 2-aminobenzimidazole--a combined experimental and theoretical investigation.

    PubMed

    Angelova, Silvia E; Spassova, Milena I; Deneva, Vera V; Rogojerov, Marin I; Antonov, Liudmil M

    2011-06-20

    An investigation of 2-aminobenzimidazole was carried out by calculations at HF, MP2, and DFT levels of theory and also by UV and IR spectroscopy. The quantum chemical calculations predict a full shift of the equilibrium towards the amino form, but the absorption spectra in different solvents distinctly show a two-component equilibrium system. Examination of possible equilibria in solution shows that an equilibrium between two dimeric forms of the amino tautomer of 2-aminobenzimidazole explains the spectral observations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Balancing Eggs

    ERIC Educational Resources Information Center

    Mills, Allan

    2014-01-01

    Theory predicts that an egg-shaped body should rest in stable equilibrium when on its side, balance vertically in metastable equilibrium on its broad end and be completely unstable on its narrow end. A homogeneous solid egg made from wood, clay or plastic behaves in this way, but a real egg will not stand on either end. It is shown that this…

  12. AN ASSESSMENT OF THE ABILITY OF 3-D AIR QUALITY MODELS WITH CURRENT THERMODYNAMIC EQUILIBRIUM MODELS TO PREDICT AEROSOL NO3

    EPA Science Inventory

    The partitioning of total nitrate (TNO3) and total ammonium (TNH4) between gas and aerosol phases is studied with two thermodynamic equilibrium models, ISORROPIA and AIM, and three datasets: high time-resolution measurement data from the 1999 Atlanta SuperSite Experiment and from...

  13. Time-dependent Ionization in a Steady Flow in an MHD Model of the Solar Corona and Wind

    NASA Astrophysics Data System (ADS)

    Shen, Chengcai; Raymond, John C.; Mikić, Zoran; Linker, Jon A.; Reeves, Katharine K.; Murphy, Nicholas A.

    2017-11-01

    Time-dependent ionization is important for diagnostics of coronal streamers and pseudostreamers. We describe time-dependent ionization calculations for a three-dimensional magnetohydrodynamic (MHD) model of the solar corona and inner heliosphere. We analyze how non-equilibrium ionization (NEI) influences emission from a pseudostreamer during the Whole Sun Month interval (Carrington rotation CR1913, 1996 August 22 to September 18). We use a time-dependent code to calculate NEI states, based on the plasma temperature, density, velocity, and magnetic field in the MHD model, to obtain the synthetic emissivities and predict the intensities of the Lyα, O VI, Mg x, and Si xii emission lines observed by the SOHO/Ultraviolet Coronagraph Spectrometer (UVCS). At low coronal heights, the predicted intensity profiles of both Lyα and O VI lines match UVCS observations well, but the Mg x and Si xii emission are predicted to be too bright. At larger heights, the O VI and Mg x lines are predicted to be brighter for NEI than equilibrium ionization around this pseudostreamer, and Si xii is predicted to be fainter for NEI cases. The differences of predicted UVCS intensities between NEI and equilibrium ionization are around a factor of 2, but neither matches the observed intensity distributions along the full length of the UVCS slit. Variations in elemental abundances in closed field regions due to the gravitational settling and the FIP effect may significantly contribute to the predicted uncertainty. The assumption of Maxwellian electron distributions and errors in the magnetic field on the solar surface may also have notable effects on the mismatch between observations and model predictions.

  14. The Nash Equilibrium Revisited: Chaos and Complexity Hidden in Simplicity

    NASA Astrophysics Data System (ADS)

    Fellman, Philip V.

    The Nash Equilibrium is a much discussed, deceptively complex, method for the analysis of non-cooperative games (McLennan and Berg, 2005). If one reads many of the commonly available definitions the description of the Nash Equilibrium is deceptively simple in appearance. Modern research has discovered a number of new and important complex properties of the Nash Equilibrium, some of which remain as contemporary conundrums of extraordinary difficulty and complexity (Quint and Shubik, 1997). Among the recently discovered features which the Nash Equilibrium exhibits under various conditions are heteroclinic Hamiltonian dynamics, a very complex asymptotic structure in the context of two-player bi-matrix games and a number of computationally complex or computationally intractable features in other settings (Sato, Akiyama and Farmer, 2002). This paper reviews those findings and then suggests how they may inform various market prediction strategies.

  15. Multiphase, multicomponent phase behavior prediction

    NASA Astrophysics Data System (ADS)

    Dadmohammadi, Younas

    Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using quantitative structure-property parameter generalizations (QSPR). For ternary systems, where all three constituent binary systems were available, the NRTL-QSPR, UNIQUAC-QSPR, and UNIFAC-6 models produce comparable accuracy. For systems where at least one constituent binary is missing, the UNIFAC-6 model produces larger errors than the QSPR generalized models. In general, the LLE characterization results indicate the accuracy of the modified models in reproducing the findings of the original NRTL model.

  16. Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Over, Thomas M.; Domanski, Marian M.

    2013-01-01

    The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present the results of testing the ultimate pier and contraction scour methods for cohesive soils on 30 bridge sites in Illinois. Comparison of the ultimate cohesive and noncohesive methods, along with the Illinois Department of Transportation (IDOT) cohesive soil reduction-factor method and measured scour are presented. Also, results of the comparison of historic IDOT laboratory and field values of unconfined compressive strength of soils (Qu) are presented. The unconfined compressive strength is used in both ultimate cohesive and reduction-factor methods, and knowing how the values from field methods compare to the laboratory methods is critical to the informed application of the methods. On average, the non-cohesive method results predict the highest amount of scour, followed by the reduction-factor method results; and the ultimate cohesive method results predict the lowest amount of scour. The 100-year scour predicted for the ultimate cohesive, noncohesive, and reduction-factor methods for each bridge site and soil are always larger than observed scour in this study, except 12% of predicted values that are all within 0.4 ft of the observed scour. The ultimate cohesive scour prediction is smaller than the non-cohesive scour prediction method for 78% of bridge sites and soils. Seventy-six percent of the ultimate cohesive predictions show a 45% or greater reduction from the non-cohesive predictions that are over 10 ft. Comparing the ultimate cohesive and reduction-factor 100-year scour predictions methods for each bridge site and soil, the scour predicted by the ultimate cohesive scour prediction method is less than the reduction-factor 100-year scour prediction method for 51% of bridge sites and soils. Critical shear stress remains a needed parameter in the ultimate scour prediction for cohesive soils. The unconfined soil compressive strength measured by IDOT in the laboratory was found to provide a good prediction of critical shear stress, as measured by using the erosion function apparatus in a previous study. Because laboratory Qu analyses are time-consuming and expensive, the ability of field-measured Rimac data to estimate unconfined soil strength in the critical shear–soil strength relation was tested. A regression analysis was completed using a historic IDOT dataset containing 366 data pairs of laboratory Qu and field Rimac measurements from common sites with cohesive soils. The resulting equations provide a point prediction of Qu, given any Rimac value with the 90% confidence interval. The prediction equations are not significantly different from the identity Qu = Rimac. The alternative predictions of ultimate cohesive scour presented in this study assume Qu will be estimated using Rimac measurements that include computed uncertainty. In particular, the ultimate cohesive predicted scour is greater than observed scour for the entire 90% confidence interval range for predicting Qu at the bridges and soils used in this study, with the exception of the six predicted values that are all within 0.6 ft of the observed scour.

  17. The Temporal Evolution of the Nanostructure of a Model Ni-Al-Cr Superalloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.

    2004-01-01

    The early to the later stages of precipitation of ordered gamma'-precipitates (L1(sub 2)) in Ni-5.2 Al-14.2 Cr (at.%) are studied at 873 K. Precipitates with radii as small as 0.45 nm are characterized fully by three-dimensional atom-probe (3DAP) microscopy. Contrary to what is often assumed by theory or in models, the average precipitate composition is shown to evolve with time, such that solute concentrations decrease toward an equilibrium value given by the solvus lines. Power-law time dependencies of the number density, mean radius, and supersaturations of Al and Cr are discussed in light of theoretical predictions for Ostwald ripening.

  18. A mathematical model for the deformation of the eyeball by an elastic band.

    PubMed

    Keeling, Stephen L; Propst, Georg; Stadler, Georg; Wackernagel, Werner

    2009-06-01

    In a certain kind of eye surgery, the human eyeball is deformed sustainably by the application of an elastic band. This article presents a mathematical model for the mechanics of the combined eye/band structure along with an algorithm to compute the model solutions. These predict the immediate and the lasting indentation of the eyeball. The model is derived from basic physical principles by minimizing a potential energy subject to a volume constraint. Assuming spherical symmetry, this leads to a two-point boundary-value problem for a non-linear second-order ordinary differential equation that describes the minimizing static equilibrium. By comparison with laboratory data, a preliminary validation of the model is given.

  19. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; White, Todd; Mangini, Nancy

    2009-01-01

    Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.

  20. Stability boundaries for command augmentation systems

    NASA Technical Reports Server (NTRS)

    Shrivastava, P. C.

    1987-01-01

    The Stability Augmentation System (SAS) is a special case of the Command Augmentation System (CAS). Control saturation imposes bounds on achievable commands. The state equilibrium depends only on the open loop dynamics and control deflection. The control magnitude to achieve a desired command equilibrium is independent of the feedback gain. A feedback controller provides the desired response, maintains the system equilibrium under disturbances, but it does not affect the equilibrium values of states and control. The saturation boundaries change with commands, but the location of the equilibrium points in the saturated region remains unchanged. Nonzero command vectors yield saturation boundaries that are asymmetric with respect to the state equilibrium. Except for the saddle point case with MCE control law, the stability boundaries change with commands. For the cases of saddle point and unstable nodes, the region of stability decreases with increasing command magnitudes.

  1. Regional Assessment of Storm-triggered Shall Landslide Risks using the SLIDE (SLope-Infiltration-Distributed Equilibrium) Model

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Kirschbaum, D. B.; Fukuoka, H.

    2011-12-01

    The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. An early warning system applying such physical models has been developed to predict rainfall-induced shallow landslides over Java Island in Indonesia and Honduras. The prototyped early warning system integrates three major components: (1) a susceptibility mapping or hotspot identification component based on a land surface geospatial database (topographical information, maps of soil properties, and local landslide inventory etc.); (2) a satellite-based precipitation monitoring system (http://trmm.gsfc.nasa.gov) and a precipitation forecasting model (i.e. Weather Research Forecast); and (3) a physically-based, rainfall-induced landslide prediction model SLIDE (SLope-Infiltration-Distributed Equilibrium). The system utilizes the modified physical model to calculate a Factor of Safety (FS) that accounts for the contribution of rainfall infiltration and partial saturation to the shear strength of the soil in topographically complex terrains. The system's prediction performance has been evaluated using a local landslide inventory. In Java Island, Indonesia, evaluation of SLIDE modeling results by local news reports shows that the system successfully predicted landslides in correspondence to the time of occurrence of the real landslide events. Further study of SLIDE is implemented in Honduras where Hurricane Mitch triggered widespread landslides in 1998. Results shows within the approximately 1,200 square kilometers study areas, the values of hit rates reached as high as 78% and 75%, while the error indices were 35% and 49%. Despite positive model performance, the SLIDE model is limited in the early warning system by several assumptions including, using general parameter calibration rather than in situ tests and neglecting geologic information. Advantages and limitations of this model will be discussed with respect to future applications of landslide assessment and prediction over large scales. In conclusion, integration of spatially distributed remote sensing precipitation products and in-situ datasets and physical models in this prototype system enable us to further develop a regional early warning tool in the future for forecasting storm-induced landslides.

  2. Effects of elastic strain energy on the antisite defect of D0 22-Ni 3V phase

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Chen, Zheng; Wang, Yong Xin; Lu, Yan Li

    2010-01-01

    A time-dependent phase field microelasticity model of an elastically anisotropic Ni-Al-V solid is employed for a D0 22-Ni 3V antisite defect application. The elastic strain energy (ESE), caused by a coherent misfit, changes the behavior of the temporal evolution occupancy probability (OP), slows down the phase transformation, and eventually leads to directional coarsening of coherent microstructures. In particular, for the antisite defects (Ni V, V Ni) and ternary alloying elements (Al Ni, Al V), ESE is responsible for the decrease in the calculated equilibrium values of Ni V, Al Ni, and Al V, as well as the increase in the equilibrium value of V Ni. The gap between Ni V and V Ni and Al Ni and Al V is narrowed in the system involving ESE, but the calculated equilibrium magnitude of Ni V is still greater than that of V Ni. The calculated equilibrium magnitude of Al Ni was always greater than Al V in this study.

  3. Impact of haze-fog days to radon progeny equilibrium factor and discussion of related factors.

    PubMed

    Hou, Changsong; Shang, Bing; Zhang, Qingzhao; Cui, Hongxing; Wu, Yunyun; Deng, Jun

    2015-11-01

    The equilibrium factor F between radon and its short-lived progenies is an important parameter to estimate radon exposure of humans. Therefore, indoor and outdoor concentrations of radon and its short-lived radon progeny were measured in Beijing area using a continuously measuring device, in an effort to obtain information on the F value. The results showed that the mean values of F were 0.58 ± 0.13 (0.25-0.95, n = 305) and 0.52 ± 0.12 (0.31-0.91, n = 64) for indoor and outdoor, respectively. The indoor F value during haze-fog days was higher than the typical value of 0.4 recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation, and it was also higher than the values of 0.47 and 0.49 reported in the literature. A positive correlation was observed between indoor F values and PM2.5 concentrations (R (2) = 0.71). Since 2013, owing to frequent heavy haze-fog events in Beijing and surrounding areas, the number of the days with severe pollution remains at a high level. Future studies on the impact of the ambient fine particulate matter on indoor radon progeny equilibrium factor F could be important.

  4. Graphical tests for Hardy-Weinberg equilibrium based on the ternary plot.

    PubMed

    Graffelman, Jan; Camarena, Jair Morales

    2008-01-01

    We design a graphical test for Hardy-Weinberg equilibrium. This can circumvent the calculation of p values and the statistical (non)significance of a large number of bi-allelic markers can be inferred from their position in a graph. By rewriting expressions for the chi(2) statistic (with and without continuity correction) in terms of the heterozygote frequency an acceptance region for Hardy-Weinberg equilibrium is obtained that can be depicted in a ternary plot. We obtain equations for curves in the ternary plot that separate markers that are out of Hardy-Weinberg equilibrium from those that are in equilibrium. The curves depend on the chosen significance level, the sample size and on a continuity correction parameter. Some examples of graphical tests using a set of 106 SNPs on the long arm of human chromosome 22 are described. Significant markers and poor markers with a lot of missing values are easily identified in the proposed plots. R software for making the diagrams is provided. The proposed graphs can be used as control charts for spotting problematic markers in large scale genotyping studies, and constitute an excellent tool for the graphical exploration of bi-allelic marker data. (c) 2007 S. Karger AG, Basel.

  5. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  6. Silicic acid competes for dimethylarsinic acid (DMA) immobilization by the iron hydroxide plaque mineral goethite.

    PubMed

    Kersten, Michael; Daus, Birgit

    2015-03-01

    A surface complexation modeling approach was used to extend the knowledge about processes that affect the availability of dimethylarsinic acid (DMA) in the soil rhizosphere in presence of a strong sorbent, e.g., Fe plaques on rice roots. Published spectroscopic and molecular modeling information suggest for the organoarsenical agent to form bidentate-binuclear inner-sphere surface complexes with Fe hydroxides similar to the inorganic As oxyanions. However, since also the ubiquitous silicic acid oxyanion form the same bidentate binuclear surface complexes, our hypothesis was that it may have an effect on the adsorption of DMA by Fe hydroxides in soil. Our experimental batch equilibrium data show that DMA is strongly adsorbed in the acidic pH range, with a steep adsorption edge in the circumneutral pH region between the DMA acidity constant (pKa=6.3) and the point of zero charge value of the goethite adsorbent (pHpzc=8.6). A 1-pK CD-MUSIC surface complexation model was chosen to fit the experimental adsorption vs. pH data. The same was done for silicic acid batch equilibrium data with our goethite adsorbent. Both model parameters for individual DMA and silicic acid adsorption were then merged into one CD-MUSIC model to predict the binary DMA+Si adsorption behavior. Silicic acid (500 μM) was thus predicted by the model to strongly compete for DMA with up to 60% mobilization of the latter at a pH6. This model result could be verified subsequently by experimental batch equilibrium data with zero adjustable parameters. The thus quantified antagonistic relation between DMA and silicic acid is discussed as one of factors to explain the increase of the DMA proportion in rice grains as observed upon silica fertilization of rice fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Reconstructing the δ(18) O of atmospheric water vapour via the CAM epiphyte Tillandsia usneoides: seasonal controls on δ(18) O in the field and large-scale reconstruction of δ(18) Oa.

    PubMed

    Helliker, Brent R

    2014-03-01

    Using both oxygen isotope ratios of leaf water (δ(18) OL ) and cellulose (δ(18) OC ) of Tillandsia usneoides in situ, this paper examined how short- and long-term responses to environmental variation and model parameterization affected the reconstruction of the atmospheric water vapour (δ(18) Oa ). During sample-intensive field campaigns, predictions of δ(18) OL matched observations well using a non-steady-state model, but the model required data-rich parameterization. Predictions from the more easily parameterized maximum enrichment model (δ(18) OL-M ) matched observed δ(18) OL and observed δ(18) Oa when leaf water turnover was less than 3.5 d. Using the δ(18) OL-M model and weekly samples of δ(18) OL across two growing seasons in Florida, USA, reconstructed δ(18) Oa was -12.6 ± 0.3‰. This is compared with δ(18) Oa of -12.4 ± 0.2‰ resolved from the growing-season-weighted δ(18) OC . Both of these values were similar to δ(18) Oa in equilibrium with precipitation, -12.9‰. δ(18) Oa was also reconstructed through a large-scale transect with δ(18) OL and the growing-season-integrated δ(18) OC across the southeastern United States. There was considerable large-scale variation, but there was regional, weather-induced coherence in δ(18) Oa when using δ(18) OL . The reconstruction of δ(18) Oa with δ(18) OC generally supported the assumption of δ(18) Oa being in equilibrium with precipitation δ(18) O (δ(18) Oppt ), but the pool of δ(18) Oppt with which δ(18) Oa was in equilibrium - growing season versus annual δ(18) Oppt - changed with latitude. © 2013 John Wiley & Sons Ltd.

  8. The specific entropy of elliptical galaxies: an explanation for profile-shape distance indicators?

    NASA Astrophysics Data System (ADS)

    Lima Neto, G. B.; Gerbal, D.; Márquez, I.

    1999-10-01

    Dynamical systems in equilibrium have a stationary entropy; we suggest that elliptical galaxies, as stellar systems in a stage of quasi-equilibrium, may have in principle a unique specific entropy. This uniqueness, a priori unknown, should be reflected in correlations between the fundamental parameters describing the mass (light) distribution in galaxies. Following recent photometrical work on elliptical galaxies by Caon et al., Graham & Colless and Prugniel & Simien, we use the Sérsic law to describe the light profile and an analytical approximation to its three-dimensional deprojection. The specific entropy is then calculated, supposing that the galaxy behaves as a spherical, isotropic, one-component system in hydrostatic equilibrium, obeying the ideal-gas equations of state. We predict a relation between the three parameters of the Sérsic law linked to the specific entropy, defining a surface in the parameter space, an `Entropic Plane', by analogy with the well-known Fundamental Plane. We have analysed elliptical galaxies in two rich clusters of galaxies (Coma and ABCG 85) and a group of galaxies (associated with NGC 4839, near Coma). We show that, for a given cluster, the galaxies follow closely a relation predicted by the constant specific entropy hypothesis with a typical dispersion (one standard deviation) of 9.5per cent around the mean value of the specific entropy. Moreover, assuming that the specific entropy is also the same for galaxies of different clusters, we are able to derive relative distances between Coma, ABGC 85, and the group of NGC 4839. If the errors are due only to the determination of the specific entropy (about 10per cent), then the error in the relative distance determination should be less than 20per cent for rich clusters. We suggest that the unique specific entropy may provide a physical explanation for the distance indicators based on the Sérsic profile put forward by Young & Currie and recently discussed by Binggeli & Jerjen.

  9. Recent terebratulide brachiopods: Do they faithfully record oceanographic conditions throughout ontogeny?

    NASA Astrophysics Data System (ADS)

    Kercher, P.; Carlson, S. J.

    2012-12-01

    Brachiopods have commonly been used to infer secular changes in ocean chemistry over the Phanerozoic Eon since Lowenstam (1961) concluded that Recent brachiopod calcite was precipitated in equilibrium with seawater. In order to infer paleoenvironmental conditions with confidence, however, the impact of potential kinetic and metabolic fractionation effects on the final isotopic signature, as it varies among individuals, must be determined. In this study, we analyzed the oxygen and carbon isotopic composition of closely spaced (~2/mm) samples of calcite along growth transects from individuals of the rhynchonelliform brachiopod, Laqueus californianus. By combining local oceanographic information with knowledge of brachiopod shell structure and growth patterns through ontogeny, in individuals of different ages from the same locality that died simultaneously, we can address the fidelity of brachiopod shell calcite as both an environmental proxy and a recorder of biological activity among conspecific individuals, in real time. This is an essential, but largely ignored, component in the paleoenvironmental interpretation of brachiopod shell calcite. In May 2011, more than 75 live L. californianus specimens were collected by Dr. J. Barry at Monterey Bay Aquarium Research Institute (MBARI) from Monterey Bay at 160 m water depth (36.7322N, 121.9739W) and generously given to us for use in this study. The specimens range in length from 5.75 to 46.16 mm, representing a range of ontogenetic ages. Water temperatures at 160 m range annually from 8C in the spring/summer upwelling season to 10C during the winter, while salinity fluctuates from 33.76 ppt in the winter to 34.11 ppt in the summer. Daily temperature and salinity data collected by MBARI over three decades allow us to calculate approximate equilibrium calcite values. We use these values to evaluate the claim that brachiopods mineralize in isotopic equilibrium with seawater throughout their lifespan with minimal intraspecific variation. We also use the MBARI data to correlate annual temperature fluctuations with δ18O trends within the calcite to estimate ontogenetic ages and growth rates. Full-grown adults were 10-11 years old when collected live, and grow an average of about 4 mm/year over their lifespan, growing faster before sexual maturity and slowing down after. The early results of the ontogenetic sampling tracts indicate calcite δ18O and δ13C values are strongly positively correlated. This relationship suggests kinetic fractionation effects are likely influencing the isotopic composition of the shells. Cyclic isotopic fluctuations are also recorded, in accordance with seasonal temperature oscillations in Monterey Bay, apparent even at 160 m depth. In most of the specimens, the amplitudes of the isotopic fluctuations exceed those of the predicted equilibrium values. Furthermore, our data support the claim made by other researchers that the outer primary layer of the shell is significantly depleted in both oxygen and carbon isotopes, below the range of equilibrium calcite. Isotopic oscillations across individuals align reasonably well both with each other and with ambient water temperature patterns. These results suggest that intraspecific variability is low in L. californianus and that these organisms are recording their environment similarly.

  10. Aspects of Weak Interactions between Folate and Glycine Betaine.

    PubMed

    Bhojane, Purva P; Duff, Michael R; Bafna, Khushboo; Rimmer, Gabriella P; Agarwal, Pratul K; Howell, Elizabeth E

    2016-11-15

    Folate, or vitamin B 9 , is an important compound in one-carbon metabolism. Previous studies have found weaker binding of dihydrofolate to dihydrofolate reductase in the presence of osmolytes. In other words, osmolytes are more difficult to remove from the dihydrofolate solvation shell than water; this shifts the equilibrium toward the free ligand and protein species. This study uses vapor-pressure osmometry to explore the interaction of folate with the model osmolyte, glycine betaine. This method yields a preferential interaction potential (μ 23 /RT value). This value is concentration-dependent as folate dimerizes. The μ 23 /RT value also tracks the deprotonation of folate's N3-O4 keto-enol group, yielding a pK a of 8.1. To determine which folate atoms interact most strongly with betaine, the interaction of heterocyclic aromatic compounds (as well as other small molecules) with betaine was monitored. Using an accessible surface area approach coupled with osmometry measurements, deconvolution of the μ 23 /RT values into α values for atom types was achieved. This allows prediction of μ 23 /RT values for larger molecules such as folate. Molecular dynamics simulations of folate show a variety of structures from extended to L-shaped. These conformers possess μ 23 /RT values from -0.18 to 0.09 m -1 , where a negative value indicates a preference for solvation by betaine and a positive value indicates a preference for water. This range of values is consistent with values observed in osmometry and solubility experiments. As the average predicted folate μ 23 /RT value is near zero, this indicates folate interacts almost equally well with betaine and water. Specifically, the glutamate tail prefers to interact with water, while the aromatic rings prefer betaine. In general, the more protonated species in our small molecule survey interact better with betaine as they provide a source of hydrogens (betaine is not a hydrogen bond donor). Upon deprotonation of the small molecule, the preference swings toward water interaction because of its hydrogen bond donating capacities.

  11. The phenotypic equilibrium of cancer cells: From average-level stability to path-wise convergence.

    PubMed

    Niu, Yuanling; Wang, Yue; Zhou, Da

    2015-12-07

    The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In the previous literature, some theoretical models were used to predict the experimental phenomena of the phenotypic equilibrium, which were often explained by different concepts of stabilities of the models. Here we present a stochastic multi-phenotype branching model by integrating conventional cellular hierarchy with phenotypic plasticity mechanisms of cancer cells. Based on our model, it is shown that: (i) our model can serve as a framework to unify the previous models for the phenotypic equilibrium, and then harmonizes the different kinds of average-level stabilities proposed in these models; and (ii) path-wise convergence of our model provides a deeper understanding to the phenotypic equilibrium from stochastic point of view. That is, the emergence of the phenotypic equilibrium is rooted in the stochastic nature of (almost) every sample path, the average-level stability just follows from it by averaging stochastic samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Mathematical model for HIV dynamics in HIV-specific helper cells

    NASA Astrophysics Data System (ADS)

    Pinto, Carla M. A.; Carvalho, Ana

    2014-03-01

    In this paper we study a delay mathematical model for the dynamics of HIV in HIV-specific CD4 + T helper cells. We modify the model presented by Roy and Wodarz in 2012, where the HIV dynamics is studied, considering a single CD4 + T cell population. Non-specific helper cells are included as alternative target cell population, to account for macrophages and dendritic cells. In this paper, we include two types of delay: (1) a latent period between the time target cells are contacted by the virus particles and the time the virions enter the cells and; (2) virus production period for new virions to be produced within and released from the infected cells. We compute the reproduction number of the model, R0, and the local stability of the disease free equilibrium and of the endemic equilibrium. We find that for values of R0<1, the model approaches asymptotically the disease free equilibrium. For values of R0>1, the model approximates asymptotically the endemic equilibrium. We observe numerically the phenomenon of backward bifurcation for values of R0⪅1. This statement will be proved in future work. We also vary the values of the latent period and the production period of infected cells and free virus. We conclude that increasing these values translates in a decrease of the reproduction number. Thus, a good strategy to control the HIV virus should focus on drugs to prolong the latent period and/or slow down the virus production. These results suggest that the model is mathematically and epidemiologically well-posed.

  13. Determination of the partition coefficient between dissolved organic carbon and seawater using differential equilibrium kinetics.

    PubMed

    Kim, Du Yung; Kwon, Jung-Hwan

    2018-05-04

    Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (K DOCw ) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain K DOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4'-trichlorobiphenyl (PCB 28), 2,2',3,5'-tetrachlorobiphenyl (PCB 44), 2,2',4,5,5'-pentachlorobiphenyl (PCB 101), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (K DOCsw ) were determined using seawater samples from the Korean coast. The log K DOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k 2 ) and their log K DOCsw values were obtained by comparing their k 2 with that of PCB 28. The calculated log K DOCsw values were 6.57-7.35 for PCB 44, 6.23-7.44 for PCB 101, and 6.35-7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the K DOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Local Nash equilibrium in social networks.

    PubMed

    Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong

    2014-08-29

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  15. Local Nash Equilibrium in Social Networks

    PubMed Central

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong

    2014-01-01

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures. PMID:25169150

  16. Local Nash Equilibrium in Social Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong

    2014-08-01

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  17. Pluto's atmosphere - Models based on refraction, inversion, and vapor-pressure equilibrium

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1989-01-01

    Viking spacecraft radio-occultation measurements indicate that, irrespective of substantial differences, the polar ice cap regions on Mars have inversions similar to those of Pluto, and may also share vapor pressure equilibrium characteristics at the surface. This temperature-inversion phenomenon occurs in a near-surface boundary layer; surface pressure-temperature may correspond to the vapor-pressure equilibrium with CH4 ice, or the temperature may be slightly higher to match the value derived from IRAS data.

  18. Generation of Strategies for Environmental Deception in Two-Player Normal-Form Games

    DTIC Science & Technology

    2015-06-18

    found in the literature is pre- sented by Kohlberg and Mertens [23]. A stable equilibrium by their definition is an equi- librium in an extensive-form...the equilibrium in this state provides them with an increased payoff. While interesting, Kohlberg and Mertens’ defi- 13 nition of equilibrium...stability used by Kohlberg and Mertens. Arsham’s work focuses on determining the amount by which a mixed-strategy Nash equilibrium’s payoff values can

  19. Group Contribution Methods for Phase Equilibrium Calculations.

    PubMed

    Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian

    2015-01-01

    The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.

  20. Validation of a coupled core-transport, pedestal-structure, current-profile and equilibrium model

    NASA Astrophysics Data System (ADS)

    Meneghini, O.

    2015-11-01

    The first workflow capable of predicting the self-consistent solution to the coupled core-transport, pedestal structure, and equilibrium problems from first-principles and its experimental tests are presented. Validation with DIII-D discharges in high confinement regimes shows that the workflow is capable of robustly predicting the kinetic profiles from on axis to the separatrix and matching the experimental measurements to within their uncertainty, with no prior knowledge of the pedestal height nor of any measurement of the temperature or pressure. Self-consistent coupling has proven to be essential to match the experimental results, and capture the non-linear physics that governs the core and pedestal solutions. In particular, clear stabilization of the pedestal peeling ballooning instabilities by the global Shafranov shift and destabilization by additional edge bootstrap current, and subsequent effect on the core plasma profiles, have been clearly observed and documented. In our model, self-consistency is achieved by iterating between the TGYRO core transport solver (with NEO and TGLF for neoclassical and turbulent flux), and the pedestal structure predicted by the EPED model. A self-consistent equilibrium is calculated by EFIT, while the ONETWO transport package evolves the current profile and calculates the particle and energy sources. The capabilities of such workflow are shown to be critical for the design of future experiments such as ITER and FNSF, which operate in a regime where the equilibrium, the pedestal, and the core transport problems are strongly coupled, and for which none of these quantities can be assumed to be known. Self-consistent core-pedestal predictions for ITER, as well as initial optimizations, will be presented. Supported by the US Department of Energy under DE-FC02-04ER54698, DE-SC0012652.

  1. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    NASA Astrophysics Data System (ADS)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  2. Chemical Equilibrium and Polynomial Equations: Beware of Roots.

    ERIC Educational Resources Information Center

    Smith, William R.; Missen, Ronald W.

    1989-01-01

    Describes two easily applied mathematical theorems, Budan's rule and Rolle's theorem, that in addition to Descartes's rule of signs and intermediate-value theorem, are useful in chemical equilibrium. Provides examples that illustrate the use of all four theorems. Discusses limitations of the polynomial equation representation of chemical…

  3. Value of mechanical dyssynchrony as assessed by radionuclide ventriculography to predict the cardiac resynchronization therapy response.

    PubMed

    Tournoux, Francois; Chequer, Renata; Sroussi, Marjorie; Hyafil, Fabien; Algalarrondo, Vincent; Cohen-Solal, Alain; Bodson-Clermont, Paule; Le Guludec, Dominique; Rouzet, Francois

    2016-11-01

    To assess the value of mechanical dyssynchrony measured by equilibrium radionuclide angiography (ERNA) in predicting long-term outcome in cardiac resynchronization therapy (CRT) patients. We reviewed 146 ERNA studies performed in heart failure patients between 2001 and 2011 at our institution. Long-term follow-up focused on death from any cause or heart transplantation. Phase images were computed using the first harmonic Fourier transform. Intra-ventricular dyssynchrony was calculated as the delay between the earliest and most delayed 20% of the left ventricular (LV) (IntraV-20/80) and inter-ventricular dyssynchrony as the difference between LV- and right ventricular (RV)-mode phase angles (InterV). Eighty-three patients (57%) were implanted with a CRT device after ERNA. Median follow-up was 35 [21-50] months. Twenty-four events were observed during the first 41 months. Median baseline ERNA dyssynchrony values were 28 [3 to 46] degrees for intraV-20/80 and 9 [-6 to 24] degrees for interV. Comparing survival between CRT and non-CRT patients according to dyssynchrony status, log-rank tests showed no difference in survival in patients with no ERNA dyssynchrony (P = 0.34) while a significant difference was observed in ERNA patients with high level of mechanical dyssynchrony (P = 0.004). ERNA mechanical dyssynchrony could be of value in CRT patient selection. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  4. Statistical investigation of simulated fed intestinal media composition on the equilibrium solubility of oral drugs.

    PubMed

    Zhou, Zhou; Dunn, Claire; Khadra, Ibrahim; Wilson, Clive G; Halbert, Gavin W

    2017-03-01

    Gastrointestinal fluid is a complex milieu and it is recognised that gut drug solubility is different to that observed in simple aqueous buffers. Simulated gastrointestinal media have been developed covering fasted and fed states to facilitate in vitro prediction of gut solubility and product dissolution. However, the combination of bile salts, phospholipids, fatty acids and proteins in an aqueous buffered system creates multiple phases and drug solubility is therefore a complex interaction between these components, which may create unique environments for each API. The impact on solubility can be assessed through a statistical design of experiment (DoE) approach, to determine the influence and relationships between factors. In this paper DoE has been applied to fed simulated gastrointestinal media consisting of eight components (pH, bile salt, lecithin, sodium oleate, monoglyceride, buffer, salt and pancreatin) using a two level D-optimal design with forty-four duplicate measurements and four centre points. The equilibrium solubility of a range of poorly soluble acidic (indomethacin, ibuprofen, phenytoin, valsartan, zafirlukast), basic (aprepitant, carvedilol, tadalafil, bromocriptine) and neutral (fenofibrate, felodipine, probucol, itraconazole) drugs was investigated. Results indicate that the DoE provides equilibrium solubility values that are comparable to literature results for other simulated fed gastrointestinal media systems or human intestinal fluid samples. For acidic drugs the influence of pH predominates but other significant factors related to oleate and bile salt or interactions between them are present. For basic drugs pH, oleate and bile salt have equal significance along with interactions between pH and oleate and lecithin and oleate. Neutral drugs show diverse effects of the media components particularly with regard to oleate, bile salt, pH and lecithin but the presence of monoglyceride, pancreatin and buffer have significant but smaller effects on solubility. There are fourteen significant interactions between factors mainly related to the surfactant components and pH, indicating that the solubility of neutral drugs in fed simulated media is complex. The results also indicate that the equilibrium solubility of each drug can exhibit individualistic behaviour associated with the drug's chemical structure, physicochemical properties and interaction with media components. The utility of DoE for fed simulated media has been demonstrated providing equilibrium solubility values comparable with similar in vitro systems whilst also providing greater information on the influence of media factors and their interactions. The determination of a drug's gastrointestinal solubility envelope provides useful limits that can potentially be applied to in silico modelling and in vivo experiments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Measuring the hydrostatic mass bias in galaxy clusters by combining Sunyaev-Zel'dovich and CMB lensing data

    NASA Astrophysics Data System (ADS)

    Hurier, G.; Angulo, R. E.

    2018-02-01

    The cosmological parameters preferred by the cosmic microwave background (CMB) primary anisotropies predict many more galaxy clusters than those that have been detected via the thermal Sunyaev-Zeldovich (tSZ) effect. This discrepancy has attracted considerable attention since it might be evidence of physics beyond the simplest ΛCDM model. However, an accurate and robust calibration of the mass-observable relation for clusters is necessary for the comparison, which has been proven difficult to obtain so far. Here, we present new constraints on the mass-pressure relation by combining tSZ and CMB lensing measurements of optically selected clusters. Consequently, our galaxy cluster sample is independent of the data employed to derive cosmological constrains. We estimate an average hydrostatic mass bias of b = 0.26 ± 0.07, with no significant mass or redshift evolution. This value greatly reduces the discrepancy between the predictions of ΛCDM and the observed abundance of tSZ clusters but agrees with recent estimates from tSZ clustering. On the other hand, our value for b is higher than the predictions from hydrodynamical simulations. This suggests mechanisms that drive large departures from hydrostatic equilibrium and that are not included in the latest simulations, and/or unaccounted systematic errors such as biases in the cluster catalogue that are due to the optical selection.

  6. Isotopic Evidence for the Source and Fate of Phosphorus in Everglades Wetland Ecosystems

    NASA Technical Reports Server (NTRS)

    Li, Xin; Wang, Yang; Stern, Jennifer; Gu, Binhe

    2011-01-01

    Phosphorus has historically been a limiting nutrient in the Florida Everglades. Increased P loading to the Everglades over the past several decades has led to significant changes in water quality and plant communities. Stormwater runoff that drains agricultural lands and enters the Water Conservation Areas (WCAs) are known to contain elevated levels of P, but the exact source of this P has not been fully determined. Here the results of an O isotope study of dissolved inorganic phosphate (DIP) in both polluted and relatively pristine (or reference) areas of the Everglades are reported. The data reveal spatial and temporal variations in the delta 18O signature of DIP, reflecting the source and the degree of cycling of P. The delta 18O values of DIP collected from the Everglades National Park were close or equal to the predicted delta 18O values of DIP formed in situ in equilibrium with ambient water, indicating that P is quickly cycled in the water column in oligotrophic ecosystems with very low P concentrations. However, most DIP samples collected from areas impacted by agricultural runoff yielded delta 18O values that deviated from the predicted equilibrium DIP delta 18O values based on the delta 18O of water and water temperature, suggesting that biological cycling of P was not rapid enough to remove the fertilizer ?18O signature in the DIP pool from areas receiving high P loading. The delta 18O signature of DIP in impacted areas reflects a mixing of fertilizer P and biologically cycled P, where the relative proportions of biologically cycled vs. fertilizer DIP are controlled by both biological (microbial activities and plant uptake) and hydrologic factors (loading rate and residence time). Using a two-end-member (i.e., fertilizer P and biologically cycled P) mixing model, fertilizers were estimated to contribute about 15 100% of the DIP pool in the highly impacted areas of the northern Everglades, whereas the DIP pool in the reference (i.e., relatively pristine) wetlands in the Everglades National Park was dominated by biologically cycled P. The study shows that O isotopic measurements of dissolved PO(exp 3-, sub 4) can be a useful tool for tracing the fertilizer P inputs to freshwater ecosystems.

  7. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    PubMed

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. Copyright © 2014. Published by Elsevier B.V.

  8. Determining the release of radionuclides from tank waste residual solids. FY2015 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, William D.; Hobbs, David T.

    Methodology development for pore water leaching studies has been continued to support Savannah River Site High Level Waste tank closure efforts. For FY2015, the primary goal of this testing was the achievement of target pH and Eh values for pore water solutions representative of local groundwater in the presence of grout or grout-representative (CaCO 3 or FeS) solids as well as waste surrogate solids representative of residual solids expected to be present in a closed tank. For oxidizing conditions representative of a closed tank after aging, a focus was placed on using solid phases believed to be controlling pH andmore » E h at equilibrium conditions. For three pore water conditions (shown below), the target pH values were achieved to within 0.5 pH units. Tank 18 residual surrogate solids leaching studies were conducted over an E h range of approximately 630 mV. Significantly higher Eh values were achieved for the oxidizing conditions (ORII and ORIII) than were previously observed. For the ORII condition, the target Eh value was nearly achieved (within 50 mV). However, E h values observed for the ORIII condition were approximately 160 mV less positive than the target. E h values observed for the RRII condition were approximately 370 mV less negative than the target. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively. Plutonium and uranium concentrations measured during Tank 18 residual surrogate solids leaching studies under these conditions (shown below) followed the general trends predicted for plutonium and uranium oxide phases, assuming equilibrium with dissolved oxygen. The highest plutonium and uranium concentrations were observed for the ORIII condition and the lowest concentrations were observed for the RRII condition. Based on these results, it is recommended that these test methodologies be used to conduct leaching studies with actual Tank 18 residual solids material. Actual waste testing will include leaching evaluations of technetium and neptunium, as well as plutonium and uranium.« less

  9. Numerical study of the existence criterion for the reversed shear Alfven eigenmode in the presence of a parallel equilibrium current

    NASA Astrophysics Data System (ADS)

    Shahzad, M.; Rizvi, H.; Panwar, A.; Ryu, C. M.

    2017-06-01

    We have re-visited the existence criterion of the reverse shear Alfven eigenmodes (RSAEs) in the presence of the parallel equilibrium current by numerically solving the eigenvalue equation using a fast eigenvalue solver code KAES. The parallel equilibrium current can bring in the kink effect and is known to be strongly unfavorable for the RSAE. We have numerically estimated the critical value of the toroidicity factor Qtor in a circular tokamak plasma, above which RSAEs can exist, and compared it to the analytical one. The difference between the numerical and analytical critical values is small for low frequency RSAEs, but it increases as the frequency of the mode increases, becoming greater for higher poloidal harmonic modes.

  10. Methods for Estimating Adsorbed Uranium(VI) and Distribution Coefficients of Contaminated Sediments

    USGS Publications Warehouse

    Kohler, M.; Curtis, G.P.; Meece, D.E.; Davis, J.A.

    2004-01-01

    Assessing the quantity of U(VI) that participates in sorption/desorption processes in a contaminated aquifer is an important task when investigating U migration behavior. U-contaminated aquifer sediments were obtained from 16 different locations at a former U mill tailings site at Naturita, CO (U.S.A.) and were extracted with an artificial groundwater, a high pH sodium bicarbonate solution, hydroxylamine hydrochloride solution, and concentrated nitric acid. With an isotopic exchange method, both a KD value for the specific experimental conditions as well as the total exchangeable mass of U(VI) was determined. Except for one sample, KD values determined by isotopic exchange with U-contaminated sediments that were in equilibrium with atmospheric CO2 agreed within a factor of 2 with KD values predicted from a nonelectrostatic surface complexation model (NEM) developed from U(VI) adsorption experiments with uncontaminated sediments. The labile fraction of U(VI) and U extracted by the bicarbonate solution were highly correlated (r2 = 0.997), with a slope of 0.96 ?? 0.01. The proximity of the slope to one suggests that both methods likely access the same reservoir of U(VI) associated with the sediments. The results indicate that the bicarbonate extraction method is useful for estimating the mass of labile U(VI) in sediments that do not contain U(IV). In-situ KD values calculated from the measured labile U(VI) and the dissolved U(VI) in the Naturita alluvial aquifer agreed within a factor of 3 with in-situ K D values predicted with the NEM and groundwater chemistry at each well.

  11. He I lines in B stars - Comparison of non-local thermodynamic equilibrium models with observations

    NASA Technical Reports Server (NTRS)

    Heasley, J. N.; Timothy, J. G.; Wolff, S. C.

    1982-01-01

    Profiles of He gamma-gamma 4026, 4387, 4471, 4713, 5876, and 6678 have been obtained in 17 stars of spectral type B0-B5. Parameters of the nonlocal thermodynamic equilibrium models appropriate to each star are determined from the Stromgren index and fits to H-alpha line profiles. These parameters yield generally good fits to the observed He I line profiles, with the best fits being found for the blue He I lines where departures from local thermodynamic equilibrium are relatively small. For the two red lines it is found that, in the early B stars and in stars with log g less than 3.5, both lines are systematically stronger than predicted by the nonlocal thermodynamic equilibrium models.

  12. Application of a random walk model to geographic distributions of animal mitochondrial DNA variation.

    PubMed

    Neigel, J E; Avise, J C

    1993-12-01

    In rapidly evolving molecules, such as animal mitochondrial DNA, mutations that delineate specific lineages may not be dispersed at sufficient rates to attain an equilibrium between genetic drift and gene flow. Here we predict conditions that lead to nonequilibrium geographic distributions of mtDNA lineages, test the robustness of these predictions and examine mtDNA data sets for consistency with our model. Under a simple isolation by distance model, the variance of an mtDNA lineage's geographic distribution is expected be proportional to its age. Simulation results indicated that this relationship is fairly robust. Analysis of mtDNA data from natural populations revealed three qualitative distributional patterns: (1) significant departure of lineage structure from equilibrium geographic distributions, a pattern exhibited in three rodent species with limited dispersal; (2) nonsignificant departure from equilibrium expectations, exhibited by two avian and two marine fish species with potentials for relatively long-distance dispersal; and (3) a progression from nonequilibrium distributions for younger lineages to equilibrium distributions for older lineages, a condition displayed by one surveyed avian species. These results demonstrate the advantages of considering mutation and genealogy in the interpretation of mtDNA geographic variation.

  13. Laser short-pulse heating of an aluminum thin film: Energy transfer in electron and lattice sub-systems

    NASA Astrophysics Data System (ADS)

    Bin Mansoor, Saad; Sami Yilbas, Bekir

    2015-08-01

    Laser short-pulse heating of an aluminum thin film is considered and energy transfer in the film is formulated using the Boltzmann equation. Since the heating duration is short and the film thickness is considerably small, thermal separation of electron and lattice sub-systems is incorporated in the analysis. The electron-phonon coupling is used to formulate thermal communication of both sub-systems during the heating period. Equivalent equilibrium temperature is introduced to account for the average energy of all phonons around a local point when they redistribute adiabatically to an equilibrium state. Temperature predictions of the Boltzmann equation are compared with those obtained from the two-equation model. It is found that temperature predictions from the Boltzmann equation differ slightly from the two-equation model results. Temporal variation of equivalent equilibrium temperature does not follow the laser pulse intensity in the electron sub-system. The time occurrence of the peak equivalent equilibrium temperature differs for electron and lattice sub-systems, which is attributed to phonon scattering in the irradiated field in the lattice sub-system. In this case, time shift is observed for occurrence of the peak temperature in the lattice sub-system.

  14. Freshwater Mussel Shell δ13C Values as a Proxy for δ13CDIC in a Polluted, Temperate River

    NASA Astrophysics Data System (ADS)

    Graniero, L. E.; Gillikin, D. P.; Surge, D. M.

    2017-12-01

    Freshwater mussel shell δ13C values have been examined as an indicator of ambient δ13C composition of dissolved inorganic carbon (DIC) in temperate rivers. However, shell δ13C values may be obscured by the assimilation of respired, metabolic carbon (CM) derived from the organism's diet. Water δ18O and δ13CDIC values were collected fortnightly from August 2015 through July 2017 from three sites (one agricultural, one downstream of a wastewater treatment plant, one urban) in the Neuse River, NC to test the reliability of Elliptio complanata shell δ13C values as a proxy for δ13CDIC values. Muscle, mantle, gill, and stomach δ13C values were analyzed to approximate the %CM incorporated into the shell. All tissue δ13C values were within 2‰ of each other, which equates to a ±1% difference in calculated %CM. As such, muscle tissue δ13C values will be used for calculating the %CM, because they have the slowest turnover rate of the tissues sampled. Water temperature and δ18O values were used to calculate predicted aragonite shell δ18O­ values (δ18O­ar) based on the aragonite-water fractionation relationship. To assign dates to each shell microsample, predicted δ18O­ar values were compared to high-resolution serially sampled shell values. Consistent with previous studies, E. complanata cease growth in winter when temperatures are below about 12ºC. Preliminary results indicate that during the growing season, shell δ13C values are lower than expected equilibrium values, reflecting the assimilation of 15% CM, on average. Shell δ13C values are not significantly different than δ13CDIC values, but do not capture the full range of δ13CDIC values during each growing season. Thus, δ13C values of E. complanata shells can be used to reliably reconstruct past δ13CDIC values within 2‰ of coeval values. Further research will investigate how differing land-use affects the relationship between shell δ13C, CM, and δ13CDIC values.

  15. Molecular model for the diffusion of associating telechelic polymer networks

    NASA Astrophysics Data System (ADS)

    Ramirez, Jorge; Dursch, Thomas; Olsen, Bradley

    Understanding the mechanisms of motion and stress relaxation of associating polymers at the molecular level is critical for advanced technological applications such as enhanced oil-recovery, self-healing materials or drug delivery. In associating polymers, the strength and rates of association/dissociation of the reversible physical crosslinks govern the dynamics of the network and therefore all the macroscopic properties, like self-diffusion and rheology. Recently, by means of forced Rayleigh scattering experiments, we have proved that associating polymers of different architectures show super-diffusive behavior when the free motion of single molecular species is slowed down by association/dissociation kinetics. Here we discuss a new molecular picture for unentangled associating telechelic polymers that considers concentration, molecular weight, number of arms of the molecules and equilibrium and rate constants of association/dissociation. The model predicts super-diffusive behavior under the right combination of values of the parameters. We discuss some of the predictions of the model using scaling arguments, show detailed results from Brownian dynamics simulations of the FRS experiments, and attempt to compare the predictions of the model to experimental data.

  16. Ternary liquid-liquid equilibria for the phenolic compounds extraction from artificial textile industrial waste

    NASA Astrophysics Data System (ADS)

    Fardhyanti, Dewi Selvia; Prasetiawan, Haniif; Hermawan, Sari, Lelita Sakina

    2017-03-01

    Liquid waste in textile industry contains large amounts of dyes and chemicals which are capable of harming the environment and human health. It is due to liquid waste characteristics which have high BOD, COD, temperature, dissolved and suspended solid. One of chemical compound which might be harmful for environment when disposed in high concentration is phenol. Currently, Phenol compound in textile industrial waste has reached 10 ppm meanwhile maximum allowable phenol concentration is not more than 0.2 ppm. Otherwise, Phenol also has economic value as feedstock of plastic, pharmaceutical and cosmetic industry. Furthermore, suitable method to separate phenol from waste water is needed. In this research, liquid - liquid extraction method was used with extraction time for 70 minutes. Waste water sample was then separated into two layers which are extract and raffinate. Thereafter, extract and raffinate were then tested by using UV-Vis Spectrophotometer to obtained liquid - liquid equilibrium data. Aim of this research is to study the effect of temperature, stirring speed and type of solvent to obtain distribution coefficient (Kd), phenol yield and correlation of Three-Suffix Margules model for the liquid - liquid extraction data equilibrium. The highest extraction yield at 80.43 % was found by using 70% methanol as solvent at extraction temperature 50 °C with stirring speed 300 rpm, coefficient distribution was found 216.334. From this research it can be concluded that Three-Suffix Margules Model is suitable to predict liquid - liquid equilibrium data for phenol system.

  17. The interaction of spatial scale and predator-prey functional response

    USGS Publications Warehouse

    Blaine, T.W.; DeAngelis, D.L.

    1997-01-01

    Predator-prey models with a prey-dependent functional response have the property that the prey equilibrium value is determined only by predator characteristics. However, in observed natural systems (for instance, snail-periphyton interactions in streams) the equilibrium periphyton biomass has been shown experimentally to be influenced by both snail numbers and levels of available limiting nutrient in the water. Hypothesizing that the observed patchiness in periphyton in streams may be part of the explanation for the departure of behavior of the equilibrium biomasses from predictions of the prey-dependent response of the snail-periphyton system, we developed and analyzed a spatially-explicit model of periphyton in which snails were modeled as individuals in their movement and feeding, and periphyton was modeled as patches or spatial cells. Three different assumptions on snail movement were used: (1) random movement between spatial cells, (2) tracking by snails of local abundances of periphyton, and (3) delayed departure of snails from cells to reduce costs associated with movement. Of these assumptions, only the third strategy, based on an herbivore strategy of staying in one patch until local periphyton biomass concentration falls below a certain threshold amount, produced results in which both periphyton and snail biomass increased with nutrient input. Thus, if data are averaged spatially over the whole system, we expect that a ratio-dependent functional response may be observed if the herbivore behaves according to the third assumption. Both random movement and delayed cell departure had the result that spatial heterogeneity of periphyton increased with nutrient input.

  18. Coupling of PIES 3-D Equilibrium Code and NIFS Bootstrap Code with Applications to the Computation of Stellarator Equilibria

    NASA Astrophysics Data System (ADS)

    Monticello, D. A.; Reiman, A. H.; Watanabe, K. Y.; Nakajima, N.; Okamoto, M.

    1997-11-01

    The existence of bootstrap currents in both tokamaks and stellarators was confirmed, experimentally, more than ten years ago. Such currents can have significant effects on the equilibrium and stability of these MHD devices. In addition, stellarators, with the notable exception of W7-X, are predicted to have such large bootstrap currents that reliable equilibrium calculations require the self-consistent evaluation of bootstrap currents. Modeling of discharges which contain islands requires an algorithm that does not assume good surfaces. Only one of the two 3-D equilibrium codes that exist, PIES( Reiman, A. H., Greenside, H. S., Compt. Phys. Commun. 43), (1986)., can easily be modified to handle bootstrap current. Here we report on the coupling of the PIES 3-D equilibrium code and NIFS bootstrap code(Watanabe, K., et al., Nuclear Fusion 35) (1995), 335.

  19. Evaluation of indoor radon equilibrium factor using CFD modeling and resulting annual effective dose

    NASA Astrophysics Data System (ADS)

    Rabi, R.; Oufni, L.

    2018-04-01

    The equilibrium factor is an important parameter for reasonably estimating the population dose from radon. However, the equilibrium factor value depended mainly on the ventilation rate and the meteorological factors. Therefore, this study focuses on investigating numerically the influence of the ventilation rate, temperature and humidity on equilibrium factor between radon and its progeny. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on indoor equilibrium factor. The variations of equilibrium factor with the ventilation, temperature and relative humidity are discussed. Moreover, the committed equivalent doses due to 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of indoor air. The annual effective dose due to radon short lived progeny from the inhalation of indoor air by the members of the public was investigated.

  20. Ozone chemical equilibrium in the extended mesopause under the nighttime conditions

    NASA Astrophysics Data System (ADS)

    Belikovich, M. V.; Kulikov, M. Yu.; Grygalashvyly, M.; Sonnemann, G. R.; Ermakova, T. S.; Nechaev, A. A.; Feigin, A. M.

    2018-01-01

    For retrieval of atomic oxygen and atomic hydrogen via ozone observations in the extended mesopause region (∼70-100 km) under nighttime conditions, an assumption on photochemical equilibrium of ozone is often used in research. In this work, an assumption on chemical equilibrium of ozone near mesopause region during nighttime is proofed. We examine 3D chemistry-transport model (CTM) annual calculations and determine the ratio between the correct (modeled) distributions of the O3 density and its equilibrium values depending on the altitude, latitude, and season. The results show that the retrieval of atomic oxygen and atomic hydrogen distributions using an assumption on ozone chemical equilibrium may lead to large errors below ∼81-87 km. We give simple and clear semi-empirical criterion for practical utilization of the lower boundary of the area with ozone's chemical equilibrium near mesopause.

  1. Work and heat fluctuations in two-state systems: a trajectory thermodynamics formalism

    NASA Astrophysics Data System (ADS)

    Ritort, F.

    2004-10-01

    Two-state models provide phenomenological descriptions of many different systems, ranging from physics to chemistry and biology. We investigate work fluctuations in an ensemble of two-state systems driven out of equilibrium under the action of an external perturbation. We calculate the probability density PN(W) that work equal to W is exerted upon the system (of size N) along a given non-equilibrium trajectory and introduce a trajectory thermodynamics formalism to quantify work fluctuations in the large-N limit. We then define a trajectory entropy SN(W) that counts the number of non-equilibrium trajectories PN(W) = exp(SN(W)/kBT) with work equal to W and characterizes fluctuations of work trajectories around the most probable value Wmp. A trajectory free energy {\\cal F}_N(W) can also be defined, which has a minimum at W = W†, this being the value of the work that has to be efficiently sampled to quantitatively test the Jarzynski equality. Within this formalism a Lagrange multiplier is also introduced, the inverse of which plays the role of a trajectory temperature. Our general solution for PN(W) exactly satisfies the fluctuation theorem by Crooks and allows us to investigate heat fluctuations for a protocol that is invariant under time reversal. The heat distribution is then characterized by a Gaussian component (describing small and frequent heat exchange events) and exponential tails (describing the statistics of large deviations and rare events). For the latter, the width of the exponential tails is related to the aforementioned trajectory temperature. Finite-size effects to the large-N theory and the recovery of work distributions for finite N are also discussed. Finally, we pay particular attention to the case of magnetic nanoparticle systems under the action of a magnetic field H where work and heat fluctuations are predicted to be observable in ramping experiments in micro-SQUIDs.

  2. The use of laboratory-determined ion exchange parameters in the predictive modelling of field-scale major cation migration in groundwater over a 40-year period.

    PubMed

    Carlyle, Harriet F; Tellam, John H; Parker, Karen E

    2004-01-01

    An attempt has been made to estimate quantitatively cation concentration changes as estuary water invades a Triassic Sandstone aquifer in northwest England. Cation exchange capacities and selectivity coefficients for Na(+), K(+), Ca(2+), and Mg(2+) were measured in the laboratory using standard techniques. Selectivity coefficients were also determined using a method involving optimized back-calculation from flushing experiments, thus permitting better representation of field conditions; in all cases, the Gaines-Thomas/constant cation exchange capacity (CEC) model was found to be a reasonable, though not perfect, first description. The exchange parameters interpreted from the laboratory experiments were used in a one-dimensional reactive transport mixing cell model, and predictions compared with field pumping well data (Cl and hardness spanning a period of around 40 years, and full major ion analyses in approximately 1980). The concentration patterns predicted using Gaines-Thomas exchange with calcite equilibrium were similar to the observed patterns, but the concentrations of the divalent ions were significantly overestimated, as were 1980 sulphate concentrations, and 1980 alkalinity concentrations were underestimated. Including representation of sulphate reduction in the estuarine alluvium failed to replicate 1980 HCO(3) and pH values. However, by including partial CO(2) degassing following sulphate reduction, a process for which there is 34S and 18O evidence from a previous study, a good match for SO(4), HCO(3), and pH was attained. Using this modified estuary water and averaged values from the laboratory ion exchange parameter determinations, good predictions for the field cation data were obtained. It is concluded that the Gaines-Thomas/constant exchange capacity model with averaged parameter values can be used successfully in ion exchange predictions in this aquifer at a regional scale and over extended time scales, despite the numerous assumptions inherent in the approach; this has also been found to be the case in the few other published studies of regional ion exchanging flow.

  3. The use of laboratory-determined ion exchange parameters in the predictive modelling of field-scale major cation migration in groundwater over a 40-year period

    NASA Astrophysics Data System (ADS)

    Carlyle, Harriet F.; Tellam, John H.; Parker, Karen E.

    2004-01-01

    An attempt has been made to estimate quantitatively cation concentration changes as estuary water invades a Triassic Sandstone aquifer in northwest England. Cation exchange capacities and selectivity coefficients for Na +, K +, Ca 2+, and Mg 2+ were measured in the laboratory using standard techniques. Selectivity coefficients were also determined using a method involving optimized back-calculation from flushing experiments, thus permitting better representation of field conditions; in all cases, the Gaines-Thomas/constant cation exchange capacity (CEC) model was found to be a reasonable, though not perfect, first description. The exchange parameters interpreted from the laboratory experiments were used in a one-dimensional reactive transport mixing cell model, and predictions compared with field pumping well data (Cl and hardness spanning a period of around 40 years, and full major ion analyses in ˜1980). The concentration patterns predicted using Gaines-Thomas exchange with calcite equilibrium were similar to the observed patterns, but the concentrations of the divalent ions were significantly overestimated, as were 1980 sulphate concentrations, and 1980 alkalinity concentrations were underestimated. Including representation of sulphate reduction in the estuarine alluvium failed to replicate 1980 HCO 3 and pH values. However, by including partial CO 2 degassing following sulphate reduction, a process for which there is 34S and 18O evidence from a previous study, a good match for SO 4, HCO 3, and pH was attained. Using this modified estuary water and averaged values from the laboratory ion exchange parameter determinations, good predictions for the field cation data were obtained. It is concluded that the Gaines-Thomas/constant exchange capacity model with averaged parameter values can be used successfully in ion exchange predictions in this aquifer at a regional scale and over extended time scales, despite the numerous assumptions inherent in the approach; this has also been found to be the case in the few other published studies of regional ion exchanging flow.

  4. Economic development, flow of funds, and the equilibrium interaction of financial frictions.

    PubMed

    Moll, Benjamin; Townsend, Robert M; Zhorin, Victor

    2017-06-13

    We use a variety of different datasets from Thailand to study not only the extremes of micro and macro variables but also within-country flow of funds and labor migration. We develop a general equilibrium model that encompasses regional variation in the type of financial friction and calibrate it to measured variation in regional aggregates. The model predicts substantial capital and labor flows from rural to urban areas even though these differ only in the underlying financial regime. Predictions for micro variables not used directly provide a model validation. Finally, we estimate the impact of a policy of counterfactual, regional isolationism.

  5. Predicted torque equilibrium attitude utilization for Space Station attitude control

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Heck, Michael L.; Robertson, Brent P.

    1990-01-01

    An approximate knowledge of the torque equilibrium attitude (TEA) is shown to improve the performance of a control moment gyroscope (CMG) momentum management/attitude control law for Space Station Freedom. The linearized equations of motion are used in conjunction with a state transformation to obtain a control law which uses full state feedback and the predicted TEA to minimize both attitude excursions and CMG peak and secular momentum. The TEA can be computationally determined either by observing the steady state attitude of a 'controlled' spacecraft using arbitrary initial attitude, or by simulating a fixed attitude spacecraft flying in desired orbit subject to realistic environmental disturbance models.

  6. Economic development, flow of funds, and the equilibrium interaction of financial frictions

    PubMed Central

    Moll, Benjamin; Townsend, Robert M.; Zhorin, Victor

    2017-01-01

    We use a variety of different datasets from Thailand to study not only the extremes of micro and macro variables but also within-country flow of funds and labor migration. We develop a general equilibrium model that encompasses regional variation in the type of financial friction and calibrate it to measured variation in regional aggregates. The model predicts substantial capital and labor flows from rural to urban areas even though these differ only in the underlying financial regime. Predictions for micro variables not used directly provide a model validation. Finally, we estimate the impact of a policy of counterfactual, regional isolationism. PMID:28592655

  7. The effects of practice on movement distance and final position reproduction: implications for the equilibrium-point control of movements.

    PubMed

    Jaric, S; Corcos, D M; Gottlieb, G L; Ilic, D B; Latash, M L

    1994-01-01

    Predictions of two views on single-joint motor control, namely programming of muscle force patterns and equilibrium-point control, were compared with the results of experiments with reproduction of movement distance and final location during fast unidirectional elbow flexions. Two groups of subjects were tested. The first group practiced movements over a fixed distance (36 degrees), starting from seven different initial positions (distance group, DG). The second group practiced movements from the same seven initial positions to a fixed final location (location group, LG). Later, all the subjects were tested at the practiced task with their eyes closed, and then, unexpectedly for the subjects, they were tested at the other, unpracticed task. In both groups, the task to reproduce final position had lower indices of final position variability than the task to reproduce movement distance. Analysis of the linear regression lines between initial position and final position (or movement distance) also demonstrated a better (more accurate) performance during final position reproduction than during distance reproduction. The data are in a good correspondence with the predictions of the equilibrium-point hypothesis, but not with the predictions of the force-pattern control approach.

  8. The case for an internal dynamics model versus equilibrium point control in human movement.

    PubMed

    Hinder, Mark R; Milner, Theodore E

    2003-06-15

    The equilibrium point hypothesis (EPH) was conceived as a means whereby the central nervous system could control limb movements by a relatively simple shift in equilibrium position without the need to explicitly compensate for task dynamics. Many recent studies have questioned this view with results that suggest the formation of an internal dynamics model of the specific task. However, supporters of the EPH have argued that these results are not incompatible with the EPH and that there is no reason to abandon it. In this study, we have tested one of the fundamental predictions of the EPH, namely, equifinality. Subjects learned to perform goal-directed wrist flexion movements while a motor provided assistance in proportion to the instantaneous velocity. It was found that the subjects stopped short of the target on the trials where the magnitude of the assistance was randomly decreased, compared to the preceding control trials (P = 0.003), i.e. equifinality was not achieved. This is contrary to the EPH, which predicts that final position should not be affected by external loads that depend purely on velocity. However, such effects are entirely consistent with predictions based on the formation of an internal dynamics model.

  9. Predicting Keto-Enol Equilibrium from Combining UV/Visible Absorption Spectroscopy with Quantum Chemical Calculations of Vibronic Structures for Many Excited States. A Case Study on Salicylideneanilines.

    PubMed

    Zutterman, Freddy; Louant, Orian; Mercier, Gabriel; Leyssens, Tom; Champagne, Benoît

    2018-06-21

    Salicylideneanilines are characterized by a tautomer equilibrium, between an enol and a keto form of different colors, at the origin of their remarkable thermochromic, solvatochromic, and photochromic properties. The enol form is usually the most stable but appropriate choice of substituents and conditions (solvent, crystal, host compound) can displace the equilibrium toward the keto form so that there is a need for fast prediction of the keto:enol abundance ratio. Here we demonstrate the reliability of a combined theoretical-experimental method, based on comparing simulated and measured UV/visible absorption spectra, to determine this keto/enol ratio. The calculations of the excitation energies, oscillator strengths, and vibronic structures of both enol and keto forms are performed for all excited states absorbing in the relevant (visible and near-UV) wavelength range at the time-dependent density functional theory level by accounting for solvent effects using the polarizable continuum model. This approach is illustrated for two salicylideneaniline derivatives, which are present, in solution, under the form of keto-enol mixtures. The results are compared to those of chemometric analysis as well as ab initio predictions of the reaction free enthalpies.

  10. Direct numerical simulation of turbulent H2-O2 combustion using reduced chemistry

    NASA Technical Reports Server (NTRS)

    Montgomery, Christopher J.; Kosaly, George; Riley, James J.

    1993-01-01

    Results of direct numerical simulations of hydrogen-oxygen combustion using a partial-equilibrium chemistry scheme in constant density, decaying, isotropic turbulence are reported. The simulations qualitatively reproduce many features of experimental results, such as superequilibrium radical species mole fractions, with temperature and major species mole fractions closer to chemical equilibrium. It was also observed that the peak reaction rates occur in narrow zones where the stoichiometric surface intersects regions of high scalar dissipation, as might be expected for combustion conditions close to chemical equilibrium. Another finding was that high OH mole fraction correspond more closely to the stoichiometric surface than to areas of high reaction rate for conditions of the simulations. Simulation results were compared to predictions of the Conditional Moment Closure model. This model was found to give good results for all quantities of interest when the conditionally averaged scalar dissipation was used in the prediction. When the nonconditioned average dissipation was used, the predictions compared well to the simulations for most of the species and temperature, but not for the reaction rate. The comparison would be expected to improve for higher Reynolds number flows, however.

  11. Monte Carlo Simulation of the Rapid Crystallization of Bismuth-Doped Silicon

    NASA Technical Reports Server (NTRS)

    Jackson, Kenneth A.; Gilmer, George H.; Temkin, Dmitri E.

    1995-01-01

    In this Letter we report Ising model simulations of the growth of alloys which predict quite different behavior near and far from equilibrium. Our simulations reproduce the phenomenon which has been termed 'solute trapping,' where concentrations of solute, which are far in excess of the equilibrium concentrations, are observed in the crystal after rapid crystallization. This phenomenon plays an important role in many processes which involve first order phase changes which take place under conditions far from equilibrium. The underlying physical basis for it has not been understood, but these Monte Carlo simulations provide a powerful means for investigating it.

  12. Prediction of Combustion Gas Deposit Compositions

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Mcbride, B. J.; Zeleznik, F. J.; Gordon, S.

    1985-01-01

    Demonstrated procedure used to predict accurately chemical compositions of complicated deposit mixtures. NASA Lewis Research Center's Computer Program for Calculation of Complex Chemical Equilibrium Compositions (CEC) used in conjunction with Computer Program for Calculation of Ideal Gas Thermodynamic Data (PAC) and resulting Thermodynamic Data Base (THDATA) to predict deposit compositions from metal or mineral-seeded combustion processes.

  13. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.

    PubMed

    Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei

    2016-01-21

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation.

  14. Predictive momentum management for a space station measurement and computation requirements

    NASA Technical Reports Server (NTRS)

    Adams, John Carl

    1986-01-01

    An analysis is made of the effects of errors and uncertainties in the predicting of disturbance torques on the peak momentum buildup on a space station. Models of the disturbance torques acting on a space station in low Earth orbit are presented, to estimate how accurately they can be predicted. An analysis of the torque and momentum buildup about the pitch axis of the Dual Keel space station configuration is formulated, and a derivation of the Average Torque Equilibrium Attitude (ATEA) is presented, for the case of no MRMS (Mobile Remote Manipulation System) motion, Y vehicle axis MRMS motion, and Z vehicle axis MRMS motion. Results showed the peak momentum buildup to be approximately 20000 N-m-s and to be relatively insensitive to errors in the predicting torque models, for Z axis motion of the MRMS was found to vary significantly with model errors, but not exceed a value of approximately 15000 N-m-s for the Y axis MRMS motion with 1 deg attitude hold error. Minimum peak disturbance momentum was found not to occur at the ATEA angle, but at a slightly smaller angle. However, this minimum peak momentum attitude was found to produce significant disturbance momentum at the end of the predicting time interval.

  15. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics.

    PubMed

    Buschmann, M D; Grodzinsky, A J

    1995-05-01

    Measured values of the swelling pressure of charged proteoglycans (PG) in solution (Williams RPW, and Comper WD; Biophysical Chemistry 36:223, 1990) and the ionic strength dependence of the equilibrium modulus of PG-rich articular cartilage (Eisenberg SR, and Grodzinsky AJ; J Orthop Res 3: 148, 1985) are compared to the predictions of two models. Each model is a representation of electrostatic forces arising from charge present on spatially fixed macromolecules and spatially mobile micro-ions. The first is a macroscopic continuum model based on Donnan equilibrium that includes no molecular-level structure and assumes that the electrical potential is spatially invariant within the polyelectrolyte medium (i.e. zero electric field). The second model is based on a microstructural, molecular-level solution of the Poisson-Boltzmann (PB) equation within a unit cell containing a charged glycosaminoglycan (GAG) molecule and its surrounding atmosphere of mobile ions. This latter approach accounts for the space-varying electrical potential and electrical field between the GAG constituents of the PG. In computations involving no adjustable parameters, the PB-cell model agrees with the measured pressure of PG solutions to within experimental error (10%), whereas the ideal Donnan model overestimates the pressure by up to 3-fold. In computations involving one adjustable parameter for each model, the PB-cell model predicts the ionic strength dependence of the equilibrium modulus of articular cartilage. Near physiological ionic strength, the Donnan model overpredicts the modulus data by 2-fold, but the two models coincide for low ionic strengths (C0 < 0.025M) where the spatially invariant Donnan potential is a closer approximation to the PB potential distribution. The PB-cell model result indicates that electrostatic forces between adjacent GAGs predominate in determining the swelling pressure of PG in the concentration range found in articular cartilage (20-80 mg/ml). The PB-cell model is also consistent with data (Eisenberg and Grodzinsky, 1985, Lai WM, Hou JS, and Mow VC; J Biomech Eng 113: 245, 1991) showing that these electrostatic forces account for approximately 1/2 (290kPa) the equilibrium modulus of cartilage at physiological ionic strength while absolute swelling pressures may be as low as approximately 25-100kPa. This important property of electrostatic repulsion between GAGs that are highly charged but spaced a few Debye lengths apart allows cartilage to resist compression (high modulus) without generating excessive intratissue swelling pressures.

  16. How can we model selectively neutral density dependence in evolutionary games.

    PubMed

    Argasinski, Krzysztof; Kozłowski, Jan

    2008-03-01

    The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.

  17. Complexation of Cd, Ni, and Zn by DOC in polluted groundwater: A comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, J.B.; Christensen, T.H.

    1999-11-01

    Complexation of cadmium (Cd), nickel (Ni), and zinc (Zn) by dissolved organic carbon (DOC) in leachate-polluted groundwater was measured using a resin equilibrium method and an aquifer material sorption technique. The first method is commonly used in complexation studies, while the second method better represents aquifer conditions. The two approaches gave similar results. Metal-DOC complexation was measured over a range of DOC concentrations using the resin equilibrium method, and the results were compared to simulations made by two speciation models containing default databases on metal-DOC complexes (WHAM and MINTEQA2). The WHAM model gave reasonable estimates of Cd and Ni complexationmore » by DOC for both leachate-polluted groundwater samples. The estimated effect of complexation differed less than 50% from the experimental values corresponding to a deviation on the activity of the free metal ion of a factor of 2.5. The effect of DOC complexation for Zn was largely overestimated by the WHAM model, and it was found that using a binding constant of 1.7 instead of the default value of 1.3 would improve the fit between the simulations and experimental data. The MINTEQA2 model gave reasonable predictions of the complexation of Cd and Zn by DOC, whereas deviations in the estimated activity of the free Ni{sup 2+} ion as compared to experimental results are up to a factor of 5.« less

  18. On exchange rate misalignments in the Eurozone's peripheral countries

    NASA Astrophysics Data System (ADS)

    Grochová, Ladislava; Plecitá, Klára

    2013-10-01

    In this paper we model equilibrium exchange rates for the Eurozone's countries on the basis of the Behavioural Equilibrium Exchange Rate approach, which assumes, that equilibrium exchange rates are in the long run affected by economic fundamentals. To assess the degree of exchange rate misalignment for the Eurozone's peripheral countries - Portugal, Ireland, Greece and Spain - the gap between the actual and the modelled equilibrium exchange rate value is calculated. Our results show that Spain, Portugal and Ireland had their real exchange rates in equilibrium when they joined the Eurozone; however their real exchange rates have been persistently overvalued since the beginning of the 2000s. Greece, on the other hand, has experienced diminishing undervaluation at the beginning of its membership in the Eurozone and since 2009 has exhibited an overvalued real exchange rate.

  19. Species-Specific Thiol-Disulfide Equilibrium Constant: A Tool To Characterize Redox Transitions of Biological Importance.

    PubMed

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-08-13

    Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  20. A Mathematical Model with Quarantine States for the Dynamics of Ebola Virus Disease in Human Populations.

    PubMed

    Ngwa, Gideon A; Teboh-Ewungkem, Miranda I

    2016-01-01

    A deterministic ordinary differential equation model for the dynamics and spread of Ebola Virus Disease is derived and studied. The model contains quarantine and nonquarantine states and can be used to evaluate transmission both in treatment centres and in the community. Possible sources of exposure to infection, including cadavers of Ebola Virus victims, are included in the model derivation and analysis. Our model's results show that there exists a threshold parameter, R 0, with the property that when its value is above unity, an endemic equilibrium exists whose value and size are determined by the size of this threshold parameter, and when its value is less than unity, the infection does not spread into the community. The equilibrium state, when it exists, is locally and asymptotically stable with oscillatory returns to the equilibrium point. The basic reproduction number, R 0, is shown to be strongly dependent on the initial response of the emergency services to suspected cases of Ebola infection. When intervention measures such as quarantining are instituted fully at the beginning, the value of the reproduction number reduces and any further infections can only occur at the treatment centres. Effective control measures, to reduce R 0 to values below unity, are discussed.

  1. A Mathematical Model with Quarantine States for the Dynamics of Ebola Virus Disease in Human Populations

    PubMed Central

    Ngwa, Gideon A.

    2016-01-01

    A deterministic ordinary differential equation model for the dynamics and spread of Ebola Virus Disease is derived and studied. The model contains quarantine and nonquarantine states and can be used to evaluate transmission both in treatment centres and in the community. Possible sources of exposure to infection, including cadavers of Ebola Virus victims, are included in the model derivation and analysis. Our model's results show that there exists a threshold parameter, R 0, with the property that when its value is above unity, an endemic equilibrium exists whose value and size are determined by the size of this threshold parameter, and when its value is less than unity, the infection does not spread into the community. The equilibrium state, when it exists, is locally and asymptotically stable with oscillatory returns to the equilibrium point. The basic reproduction number, R 0, is shown to be strongly dependent on the initial response of the emergency services to suspected cases of Ebola infection. When intervention measures such as quarantining are instituted fully at the beginning, the value of the reproduction number reduces and any further infections can only occur at the treatment centres. Effective control measures, to reduce R 0 to values below unity, are discussed. PMID:27579053

  2. Group additivity equations of state for calculating the standard molal thermodynamic properties of aqueous organic species at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Amend, Jan P.; Helgeson, Harold C.

    1997-01-01

    Group additivity equations of state for aqueous organic molecules have been generated by combining the revised Helgeson-Kirkham-Flowers (HKF) equations of state ( Shock and Helgeson, 1988, 1990; Tanger and Helgeson, 1988; Shock et al., 1989, 1992) with experimental values of the standard molal properties of aqueous alkanes, alkanols, alkylbenzenes, car☐ylic acids, amides, and amines. Equations of state parameters for the groups represented by -CH 2-, -CH 3, -CHCH 3-, -C 6H 5, -CH 2OH, -COOH, -CONH 2, and -CH 2NH 2 were determined by regression of the experimental data. This procedure permits calculation of the standard molal thermodynamic properties of these groups at elevated temperatures and pressures. Although curves representing the apparent standard molal Gibbs free energies (Δ G°) and enthalpies (Δ H°) of formation, and the standard molal entropies ( S°) of the groups as a function of temperature and pressure are respectively similar for each of them, the temperature dependence of the standard molal heat capacities ( Cp°) and volumes ( V°) of a number of the groups are quite different from one another. For example, the standard molal heat capacities of the hydrocarbon groups minimize with increasing temperature, but those of -CH 2OH and -CH 2NH 2 maximize. Computed values of Δ G°, Δ H°, S°, Cp°, V°, and the equations of state parameters for the various groups were used together with group additivity relations to generate corresponding values of these properties for aqueous n-alkanes, 2-methylalkanes, n-alkylbenzenes, n-alkanols, n-car☐ylic acids, n-amides, and n-amines at temperatures ≤ 250°C and pressures ≤ 1 kbar. The validity and generality of the equations of state are supported by the fact that predicted equilibrium constants for liquid n-alkane solubility reactions in water compare favorably with experimental values reported in the literature for temperatures as high as 200°C. Furthermore, equilibrium constants for aqueous ethane coexisting with ethene at 325 and 350°C at 350 bars predicted from the equations of state are in close agreement with independently determined experimental values reported by Seewald (1994). The standard molal thermodynamic properties and equations of state parameters reported below provide the means to characterize the thermodynamic behavior of a wide variety of aqueous organic species involved in hydrothermal reactions at elevated temperatures and pressures.

  3. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite

    USGS Publications Warehouse

    Tesoriero, A.J.; Pankow, J.F.

    1996-01-01

    Although solid solutions play important roles in controlling the concentrations of minor metal ions in natural waters, uncertainties regarding their compositions, thermodynamics, and kinetics usually prevent them from being considered. A range of precipitation rates was used here to study the nonequilibrium and equilibrium partitioning behaviors of Sr2+, Ba2+, and Cd2+ to calcite (CaCO3(s)). The distribution coefficient of a divalent metal ion Me2+ for partitioning from an aqueous solution into calcite is given by DMe = (XMeCO3(s)/[Me2+])/(XCaCO3(s)/[Ca 2+]). The X values are solid-phase mole fractions; the bracketed values are the aqueous molal concentrations. In agreement with prior work, at intermediate to high precipitation rates R (nmol/mg-min), DSr, DBa, and DCd were found to depend strongly on R. At low R, the values of DSr, DBa, and DCd became constant with R. At 25??C, the equilibrium values for DSr, DBa, and DCd for dilute solid solutions were estimated to be 0.021 ?? 0.003, 0.012 ?? 0.005, and 1240 ?? 300, respectively. Calculations using these values were made to illustrate the likely importance of partitioning of these ions to calcite in groundwater systems. Due to its large equilibrium DMe value, movement of Cd2+ will be strongly retarded in aquifers containing calcite; Sr2+ and Ba2+ will not be retarded nearly as much.

  4. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.

    PubMed

    Ginzburg, Irina

    2017-01-01

    Impact of the unphysical tangential advective-diffusion constraint of the bounce-back (BB) reflection on the impermeable solid surface is examined for the first four moments of concentration. Despite the number of recent improvements for the Neumann condition in the lattice Boltzmann method-advection-diffusion equation, the BB rule remains the only known local mass-conserving no-flux condition suitable for staircase porous geometry. We examine the closure relation of the BB rule in straight channel and cylindrical capillary analytically, and show that it excites the Knudsen-type boundary layers in the nonequilibrium solution for full-weight equilibrium stencil. Although the d2Q5 and d3Q7 coordinate schemes are sufficient for the modeling of isotropic diffusion, the full-weight stencils are appealing for their advanced stability, isotropy, anisotropy and anti-numerical-diffusion ability. The boundary layers are not covered by the Chapman-Enskog expansion around the expected equilibrium, but they accommodate the Chapman-Enskog expansion in the bulk with the closure relation of the bounce-back rule. We show that the induced boundary layers introduce first-order errors in two primary transport properties, namely, mean velocity (first moment) and molecular diffusion coefficient (second moment). As a side effect, the Taylor-dispersion coefficient (second moment), skewness (third moment), and kurtosis (fourth moment) deviate from their physical values and predictions of the fourth-order Chapman-Enskog analysis, even though the kurtosis error in pure diffusion does not depend on grid resolution. In two- and three-dimensional grid-aligned channels and open-tubular conduits, the errors of velocity and diffusion are proportional to the diagonal weight values of the corresponding equilibrium terms. The d2Q5 and d3Q7 schemes do not suffer from this deficiency in grid-aligned geometries but they cannot avoid it if the boundaries are not parallel to the coordinate lines. In order to vanish or attenuate the disparity of the modeled transport coefficients with the equilibrium weights without any modification of the BB rule, we propose to use the two-relaxation-times collision operator with free-tunable product of two eigenfunctions Λ. Two different values Λ_{v} and Λ_{b} are assigned for bulk and boundary nodes, respectively. The rationale behind this is that Λ_{v} is adjustable for stability, accuracy, or other purposes, while the corresponding Λ_{b}(Λ_{v}) controls the primary accommodation effects. Two distinguished but similar functional relations Λ_{b}(Λ_{v}) are constructed analytically: they preserve advection velocity in parabolic profile, exactly in the two-dimensional channel and very accurately in a three-dimensional cylindrical capillary. For any velocity-weight stencil, the (local) double-Λ BB scheme produces quasi-identical solutions with the (nonlocal) specular-forward reflection for first four moments in a channel. In a capillary, this strategy allows for the accurate modeling of the Taylor-dispersion and non-Gaussian effects. As illustrative example, it is shown that in the flow around a circular obstacle, the double-Λ scheme may also vanish the dependency of mean velocity on the velocity weight; the required value for Λ_{b}(Λ_{v}) can be identified in a few bisection iterations in given geometry. A positive solution for Λ_{b}(Λ_{v}) may not exist in pure diffusion, but a sufficiently small value of Λ_{b} significantly reduces the disparity in diffusion coefficient with the mass weight in ducts and in the presence of rectangular obstacles. Although Λ_{b} also controls the effective position of straight or curved boundaries, the double-Λ scheme deals with the lower-order effects. Its idea and construction may help understanding and amelioration of the anomalous, zero- and first-order behavior of the macroscopic solution in the presence of the bulk and boundary or interface discontinuities, commonly found in multiphase flow and heterogeneous transport.

  5. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina

    2017-01-01

    Impact of the unphysical tangential advective-diffusion constraint of the bounce-back (BB) reflection on the impermeable solid surface is examined for the first four moments of concentration. Despite the number of recent improvements for the Neumann condition in the lattice Boltzmann method-advection-diffusion equation, the BB rule remains the only known local mass-conserving no-flux condition suitable for staircase porous geometry. We examine the closure relation of the BB rule in straight channel and cylindrical capillary analytically, and show that it excites the Knudsen-type boundary layers in the nonequilibrium solution for full-weight equilibrium stencil. Although the d2Q5 and d3Q7 coordinate schemes are sufficient for the modeling of isotropic diffusion, the full-weight stencils are appealing for their advanced stability, isotropy, anisotropy and anti-numerical-diffusion ability. The boundary layers are not covered by the Chapman-Enskog expansion around the expected equilibrium, but they accommodate the Chapman-Enskog expansion in the bulk with the closure relation of the bounce-back rule. We show that the induced boundary layers introduce first-order errors in two primary transport properties, namely, mean velocity (first moment) and molecular diffusion coefficient (second moment). As a side effect, the Taylor-dispersion coefficient (second moment), skewness (third moment), and kurtosis (fourth moment) deviate from their physical values and predictions of the fourth-order Chapman-Enskog analysis, even though the kurtosis error in pure diffusion does not depend on grid resolution. In two- and three-dimensional grid-aligned channels and open-tubular conduits, the errors of velocity and diffusion are proportional to the diagonal weight values of the corresponding equilibrium terms. The d2Q5 and d3Q7 schemes do not suffer from this deficiency in grid-aligned geometries but they cannot avoid it if the boundaries are not parallel to the coordinate lines. In order to vanish or attenuate the disparity of the modeled transport coefficients with the equilibrium weights without any modification of the BB rule, we propose to use the two-relaxation-times collision operator with free-tunable product of two eigenfunctions Λ . Two different values Λv and Λb are assigned for bulk and boundary nodes, respectively. The rationale behind this is that Λv is adjustable for stability, accuracy, or other purposes, while the corresponding Λb(Λv) controls the primary accommodation effects. Two distinguished but similar functional relations Λb(Λv) are constructed analytically: they preserve advection velocity in parabolic profile, exactly in the two-dimensional channel and very accurately in a three-dimensional cylindrical capillary. For any velocity-weight stencil, the (local) double-Λ BB scheme produces quasi-identical solutions with the (nonlocal) specular-forward reflection for first four moments in a channel. In a capillary, this strategy allows for the accurate modeling of the Taylor-dispersion and non-Gaussian effects. As illustrative example, it is shown that in the flow around a circular obstacle, the double-Λ scheme may also vanish the dependency of mean velocity on the velocity weight; the required value for Λb(Λv) can be identified in a few bisection iterations in given geometry. A positive solution for Λb(Λv) may not exist in pure diffusion, but a sufficiently small value of Λb significantly reduces the disparity in diffusion coefficient with the mass weight in ducts and in the presence of rectangular obstacles. Although Λb also controls the effective position of straight or curved boundaries, the double-Λ scheme deals with the lower-order effects. Its idea and construction may help understanding and amelioration of the anomalous, zero- and first-order behavior of the macroscopic solution in the presence of the bulk and boundary or interface discontinuities, commonly found in multiphase flow and heterogeneous transport.

  6. Dynamical System Analysis of Reynolds Stress Closure Equations

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1997-01-01

    In this paper, we establish the causality between the model coefficients in the standard pressure-strain correlation model and the predicted equilibrium states for homogeneous turbulence. We accomplish this by performing a comprehensive fixed point analysis of the modeled Reynolds stress and dissipation rate equations. The results from this analysis will be very useful for developing improved pressure-strain correlation models to yield observed equilibrium behavior.

  7. Using chromium stable isotope ratios to quantify Cr(VI) reduction: Lack of sorption effects

    USGS Publications Warehouse

    Ellis, A.S.; Johnson, T.M.; Bullen, T.D.

    2004-01-01

    Chromium stable isotope values can be effectively used to monitor reduction of Cr(VI) in natural waters. We investigate effects of sorption during transport of Cr(VI) which may also shift Cr isotopes values, complicating efforts to quantify reduction. This study shows that Cr stable isotope fractionation caused by sorption is negligible. Equilibrium fractionation of Cr stable isotopes between dissolved Cr-(VI) and Cr(VI) adsorbed onto ??-Al2O3 and goethite is less than 0.04???. (53Cr/52Cr) under environmentally relevant pH conditions. Batch experiments at pH 4.0 and pH 6.0 were conducted in series to sequentially magnify small isotope fractionations. A simple transport model suggests that adsorption may cause amplification of a small isotope fractionation along extreme fringes of a plume, leading to shifts in 53Cr/52Cr values. We therefore suggest that isotope values at extreme fringes of Cr plumes be critically evaluated for sorption effects. A kinetic effect was observed in experiments with goethite at pH 4 where apparently lighter isotopes diffuse into goethite clumps at a faster rate before eventually reaching equilibrium. This observed kinetic effect may be important in a natural system that has not attained equilibrium and is in need of further study. Cr isotope fractionation caused by speciation of Cr(VI) between HCrO4- and CrO42- was also examined, and we conclude that it is not measurable. In the absence of isotope fractionation caused by equilibrium speciation and sorption, most of the variation in ??53 Cr values may be attributed to reduction, and reliable estimates of Cr reduction can be made.

  8. Gravity-oriented satellite dynamics subject to gravitational and active damping torques

    NASA Astrophysics Data System (ADS)

    Sarychev, V. A.; Gutnik, S. A.

    2018-01-01

    The dynamics of the rotational motion of a satellite moving in the central Newtonian field of force over a circular orbit under the effect of gravitational and active damping torques, which depend on the satellite angular velocity projections, has been investigated. The paper proposes a method of determining all equilibrium positions (equilibrium orientations) of a satellite in the orbital coordinate system for specified values of damping coefficients and principal central moments of inertia. The conditions of their existence have been obtained. For a zero equilibrium position where the axes of the satellite-centered coordinate system coincide with the axes of the orbital coordinate system, the necessary and sufficient conditions for asymptotic stability are obtained using the Routh-Hurwitz criterion. A detailed analysis of the regions where the conditions of the asymptotic stability of a zero equilibrium position are fulfilled have been obtained depending on three dimensionless parameters of the problem, and the numerical study of the process of attenuation of satellite's spatial oscillations for various damping coefficients has been carried out. It has been shown that there is a wide range of damping parameters from which, by choosing the necessary values, one can provide the asymptotic stability of satellite's zero equilibrium position in the orbital coordinate system.

  9. Sorption equilibrium, thermodynamics and pH-indicator properties of cresyl violet dye/bentonite composite system.

    PubMed

    Georgieva, Nedyalka; Yaneva, Zvezdelina; Dermendzhieva, Diyana

    2017-09-01

    The aim of the present study was to develop cresyl violet (CV)/bentonite composite system, to investigate the equilibrium sorption of the fluorescent dye on bentonite, to determine the characteristic equilibrium and thermodynamic parameters of the system by appropriate empirical isotherm models and to assess its pH-indicator properties. The absorption characteristics of CV solutions were investigated by UV/VIS spectrophotometer. Equilibrium experiments were conducted and the experimental data were modelled by six mathematical isotherm models. The analyses of the experimental data showed that bentonite exhibited significantly high capacity - 169.92 mg/g, towards CV. The encapsulation efficiency was 85%. The Langmuir, Flory-Huggins and El-Awady models best represented the experimental results. The free Gibbs energy of adsorption (ΔG o ) was calculated on the basis of the values of the equilibrium coefficients determined by the proposed models. The values of ΔG determined by the Langmuir, Temkin and Flory-Huggins models are within the range -20 to -40 kJ/mol, which indicates that the adsorption process is spontaneous and chemisorption takes place due to charge sharing or transfer from the dye molecules to the sorbent surface as a coordinate type of bond. The investigations of the obtained CV/bentonite hybrid systems for application as pH-markers showed satisfactory results.

  10. A Class of Solvable Stopping Games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Luis H. R.

    We consider a class of Dynkin games in the case where the underlying process evolves according to a one-dimensional but otherwise general diffusion. We establish general conditions under which both the value and the saddle point equilibrium exist and under which the exercise boundaries characterizing the saddle point strategy can be explicitly characterized in terms of a pair of standard first order necessary conditions for optimality. We also analyze those cases where an extremal pair of boundaries exists and investigate the overall impact of increased volatility on the equilibrium stopping strategies and their values.

  11. Human arm stiffness and equilibrium-point trajectory during multi-joint movement.

    PubMed

    Gomi, H; Kawato, M

    1997-03-01

    By using a newly designed high-performance manipulandum and a new estimation algorithm, we measured human multi-joint arm stiffness parameters during multi-joint point-to-point movements on a horizontal plane. This manipulandum allows us to apply a sufficient perturbation to subject's arm within a brief period during movement. Arm stiffness parameters were reliably estimated using a new algorithm, in which all unknown structural parameters could be estimated independent of arm posture (i.e., constant values under any arm posture). Arm stiffness during transverse movement was considerably greater than that during corresponding posture, but not during a longitudinal movement. Although the ratios of elbow, shoulder, and double-joint stiffness were varied in time, the orientation of stiffness ellipses during the movement did not change much. Equilibrium-point trajectories that were predicted from measured stiffness parameters and actual trajectories were slightly sinusoidally curved in Cartesian space and their velocity profiles were quite different from the velocity profiles of actual hand trajectories. This result contradicts the hypothesis that the brain does not take the dynamics into account in movement control depending on the neuromuscular servo mechanism; rather, it implies that the brain needs to acquire some internal models of controlled objects.

  12. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m length. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. Mixing tests began with the tank pressures at which the thermal stratification results in 4.9-6.2 K liquid subcooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed and expressed as functions of system and buoyancy parameters. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  13. Fragmentation of protoplanetary discs around M-dwarfs

    NASA Astrophysics Data System (ADS)

    Backus, Isaac; Quinn, Thomas

    2016-12-01

    We investigate the conditions required for planet formation via gravitational instability (GI) and protoplanetary disc (PPD) fragmentation around M-dwarfs. Using a suite of 64 SPH simulations with 106 particles, the parameter space of disc mass, temperature, and radius is explored, bracketing reasonable values based on theory and observation. Our model consists of an equilibrium, gaseous, and locally isothermal disc orbiting a central star of mass M* = M⊙/3. Discs with a minimum Toomre Q of Qmin ≲ 0.9 will fragment and form gravitationally bound clumps. Some previous literature has found Qmin < 1.3-1.5 to be sufficient for fragmentation. Increasing disc height tends to stabilize discs, and when incorporated into Q as Qeff ∝ Q(H/R)α for α = 0.18 is sufficient to predict fragmentation. Some discrepancies in the literature regarding Qcrit may be due to different methods of generating initial conditions (ICs). A series of 15 simulations demonstrates that perturbing ICs slightly out of equilibrium can cause discs to fragment for higher Q. Our method for generating ICs is presented in detail. We argue that GI likely plays a role in PPDs around M-dwarfs and that disc fragmentation at large radii is a plausible outcome for these discs.

  14. Variable (Tg, Ts) Measurements of Alkane Dissociative Sticking Coefficients

    NASA Astrophysics Data System (ADS)

    Valadez, Leticia; Dewitt, Kristy; Abbott, Heather; Kolasinski, Kurt; Harrision, Ian

    2006-03-01

    Dissociative sticking coefficients S(Tg, Ts) for CH4 and C2H6 on Pt(111) have been measured as a function of gas temperature (Tg) and surface temperature (Ts) using an effusive molecular beam. Microcanonical unimolecular rate theory (MURT) was employed to extract transition state characteristics [e.g., E0(CH4) = 52.5±3.5 kJ/mol-1 and E0(C2H6) = 26.5±3 kJ/mol-1]. MURT allows our S(Tg, Ts) values to be directly compared to other supersonic molecular beam and thermal equilibrium sticking measurements. The S(Tg, Ts) depend strongly on Ts, however, only for CH4 is a strong Tg dependence observed. The fairly weak Tg dependence for C2H6 suggests that vibrational mode specific behavior and/or molecular rotations play stronger roles in the dissociative chemisorption of C2H6 than they do for CH4. Interestingly, thermal S(Tg=Ts) predictions based on MURT modeling of our CH4/Pt(111) data are three orders of magnitude higher than recent thermal equilibrium measurements on supported Pt nanocrystallite catalysts [J. M. Wei, E. Iglesia, J. Phys. Chem. B 108, 4094 (2004)].

  15. Neoclassical Toroidal Viscosity Torque Induced by Plasma Response in a Low- β Tokamak with Edge Pedestal

    NASA Astrophysics Data System (ADS)

    Yan, Xingting; Zhu, Ping; Sun, Youwen

    2016-10-01

    The characteristic profile and magnitude are predicted in theory for the neoclassical toroidal viscosity (NTV) torque induced by the plasma response to the resonant magnetic perturbation (RMP) in a tokamak with an edge pedestal, using the newly developed module coupling the NIMROD and the NTVTOK codes. For a low β equilibrium, the NTV torque is mainly induced by the dominant toroidal mode of plasma response. The NTV torque profile is radially localized and peaked, which is determined by profiles of both the equilibrium temperature and the plasma response fields. In general, the peak of NTV torque profile is found to trace the pedestal location. The magnitude of NTV torque is extremely sensitive to the β of pedestal top; for a given plasma response, the peak value of NTV torque can increase by three orders of magnitude, when the pedestal β increases by only one order of magnitude. This suggests a more significant role of NTV torque in higher plasma β regimes. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, and the 100 Talent Program of the Chinese Academy of Sciences.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.

    Here, the controlled decomposition of metastable alloys is an attractive route to form nanostructured thermoelectric materials with reduced thermal conductivity. The ternary SnTe–MnTe and SnTe–SnSe heterostructural alloys have been demonstrated as promising materials for thermoelectric applications. In this work, the quaternary Sn 1–yMnyTe 1–xSe x phase space serves as a relevant model system to explore how a combination of computational and combinatorial-growth methods can be used to study equilibrium and non-equilibrium solubility limits. Results from first principle calculations indicate low equilibrium solubility for x,y < 0.05 that are in good agreement with results obtained from bulk equilibrium synthesis experiments andmore » predict significantly higher spinodal limits. An experimental screening using sputtered combinatorial thin film sample libraries showed a remarkable increase in non-equilibrium solubility for x,y > 0.2. These theoretical and experimental results were used to guide the bulk synthesis of metastable alloys. The ability to reproduce the non-equilibrium solubility levels in bulk materials indicates that such theoretical calculations and combinatorial growth can inform bulk synthetic routes. Further, the large difference between equilibrium and non-equilibrium solubility limits in Sn 1–yMn yTe 1–xSe x indicates these metastable alloys are attractive in terms of nano-precipitate formation for potential thermoelectric applications.« less

  17. Sorption of biodegradation end products of nonylphenol polyethoxylates onto activated sludge.

    PubMed

    Hung, Nguyen Viet; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori; Tsunoi, Shinji; Tanaka, Minoru

    2004-01-01

    Nonylphenol(NP), nonylphenoxy acetic acid (NP1EC), nonylphenol monoethoxy acetic acid (NP2EC), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) are biodegradation end products (BEPs) of nonionic surfactant nonylphenolpolyethoxylates (NPnEO). In this research, sorption of these compounds onto model activated sludge was characterized. Sorption equilibrium experiments showed that NP, NP1EO and NP2EO reached equilibrium in about 12 h, while equilibrium of NP1EC and NP2EC were reached earlier, in about 4 h. In sorption isotherm experiments, obtained equilibrium data at 28 degrees C fitted well to Freundlich sorption model for all investigated compounds. For NP1EC, in addition to Freundlich, equilibrium data also fitted well to Langmuir model. Linear sorption model was also tried, and equilibrium data of all NP, NP1EO, NP2EO and NP2EC except NP1EC fitted well to this model. Calculated Freundlich coefficient (K(F)) and linear sorption coefficient (K(D)) showed that sorption capacity of the investigated compounds were in order NP > NP2EO > NP1EO > NP1EC approximately NP2EC. For NP, NP1EO and NP2EO, high values of calculated K(F) and K(D) indicated an easy uptake of these compounds from aqueous phase onto activated sludge. Whereas, NP1EC and NP2EC with low values of K(F) and K(D) absorbed weakly to activated sludge and tended to preferably remain in aqueous phase.

  18. Experiential Learning of the Efficient Market Hypothesis: Two Trading Games

    ERIC Educational Resources Information Center

    Park, Andreas

    2010-01-01

    In goods markets, an equilibrium price balances demand and supply. In a financial market, an equilibrium price also aggregates people's information to reveal the true value of a financial security. Although the underlying idea of informationally efficient markets is one of the centerpieces of capital market theory, students often have difficulties…

  19. Steady bipartite coherence induced by non-equilibrium environment

    NASA Astrophysics Data System (ADS)

    Huangfu, Yong; Jing, Jun

    2018-01-01

    We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.

  20. Instantaneous charge state of uranium projectiles in fully ionized plasmas from energy loss experiments

    NASA Astrophysics Data System (ADS)

    Morales, Roberto; Barriga-Carrasco, Manuel D.; Casas, David

    2017-04-01

    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann et al. in the 1990s. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, and it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experimental data remain very scarce. Thus, the validity of our charge state model is checked by comparing the theoretical predictions with an energy loss experiment, as the energy loss has a generally quadratic dependence on the projectile charge state. The dielectric formalism has been used to calculate the plasma stopping power including the Brandt-Kitagawa (BK) model to describe the charge distribution of the projectile. In this charge distribution, the instantaneous number of bound electrons instead of the equilibrium number has been taken into account. Comparing our theoretical predictions with experiments, it is shown the necessity of including the instantaneous charge state and the BK charge distribution for a correct energy loss estimation. The results also show that the initial charge state has a strong influence in order to estimate the energy loss of the uranium ions.

  1. Solar heating of common lunar minerals for the production of oxygen

    NASA Technical Reports Server (NTRS)

    Senior, C. L.

    1991-01-01

    The purpose of this work was to demonstrate the feasibility of vapor-phase reduction (pyrolysis) of lunar materials to produce oxygen. Solar furnace experiments were conducted on two common lunar minerals, ilmenite and anorthite. Thermodynamic equilibrium calculations predicted that ilmenite should show a larger pressure increase than anorthite under conditions of the experiments and this was confirmed by the experiments. The measured mass loss of the ilmenite sample was consistent with loss of oxygen by reduction of iron in the liquid phase; this result was also predicted from equilibrium calculations. Based on preliminary experiments and equilibrium calculations, the temperatures needed for pyrolysis are expected to be in the range of 2000 to 2500 K, giving total gas pressures of 0.01 to 1 torr. Bulk regolith can be used as a feedstock without extensive beneficiation. Further, selective condensation of metal-containing species from the gas phase may yield metallic iron and silicon as byproducts from the process.

  2. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    PubMed Central

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  3. Haze heats Pluto's atmosphere yet explains its cold temperature.

    PubMed

    Zhang, Xi; Strobel, Darrell F; Imanaka, Hiroshi

    2017-11-15

    Pluto's atmosphere is cold and hazy. Recent observations have shown it to be much colder than predicted theoretically, suggesting an unknown cooling mechanism. Atmospheric gas molecules, particularly water vapour, have been proposed as a coolant; however, because Pluto's thermal structure is expected to be in radiative-conductive equilibrium, the required water vapour would need to be supersaturated by many orders of magnitude under thermodynamic equilibrium conditions. Here we report that atmospheric hazes, rather than gases, can explain Pluto's temperature profile. We find that haze particles have substantially larger solar heating and thermal cooling rates than gas molecules, dominating the atmospheric radiative balance from the ground to an altitude of 700 kilometres, above which heat conduction maintains an isothermal atmosphere. We conclude that Pluto's atmosphere is unique among Solar System planetary atmospheres, as its radiative energy equilibrium is controlled primarily by haze particles instead of gas molecules. We predict that Pluto is therefore several orders of magnitude brighter at mid-infrared wavelengths than previously thought-a brightness that could be detected by future telescopes.

  4. Mixed-order phase transition in a colloidal crystal.

    PubMed

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2017-12-05

    Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field [Formula: see text] At the transition field [Formula: see text], the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length [Formula: see text] Mean-field critical exponents are predicted, since the upper critical dimension of the transition is [Formula: see text] Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.

  5. Mixed-order phase transition in a colloidal crystal

    NASA Astrophysics Data System (ADS)

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2017-12-01

    Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2-Hs2|-1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.

  6. Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites.

    PubMed

    Fang, Linchuan; Huang, Qiaoyun; Wei, Xing; Liang, Wei; Rong, Xinming; Chen, Wenli; Cai, Peng

    2010-08-01

    Equilibrium adsorption experiments, isothermal titration calorimetry and potentiometric titration techniques were employed to investigate the adsorption of Cu(II) by extracellular polymeric substances (EPS) extracted from Pseudomonas putida X4, minerals (montmorillonite and goethite) and their composites. Compared with predicted values of Cu(II) adsorption on composites, the measured values of Cu(II) on EPS-montmorillonite composite increased, however, those on EPS-goethite composite decreased. Potentiometric titration results also showed that more surface sites were observed on EPS-montmorillonite composite and less reactive sites were found on EPS-goethite composite. The adsorption of Cu(II) on EPS molecules and their composites with minerals was an endothermic reaction, while that on minerals was exothermic. The positive values of enthalpy change (Delta H) and entropy change (DeltaS) for Cu(II) adsorption on EPS and mineral-EPS composites indicated that Cu(II) mainly interacts with carboxyl and phosphoryl groups as inner-sphere complexes on EPS molecules and their composites with minerals. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi

    2010-04-01

    This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 °C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg-1, which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 °C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 °C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 °C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.

  8. Quantum quench in a p+ip superfluid: Winding numbers and topological states far from equilibrium

    NASA Astrophysics Data System (ADS)

    Foster, Matthew S.; Dzero, Maxim; Gurarie, Victor; Yuzbashyan, Emil A.

    2013-09-01

    We study the nonadiabatic dynamics of a two-dimensional p+ip superfluid following an instantaneous quantum quench of the BCS coupling constant. The model describes a topological superconductor with a nontrivial BCS (trivial BEC) phase appearing at weak- (strong-) coupling strengths. We extract the exact long-time asymptotics of the order parameter Δ(t) by exploiting the integrability of the classical p-wave Hamiltonian, which we establish via a Lax construction. Three different types of asymptotic behavior can occur depending upon the strength and direction of the interaction quench. We refer to these as the nonequilibrium phases {I, II, III}, characterized as follows. In phase I, the order parameter asymptotes to zero due to dephasing. In phase II, Δ→Δ∞, a nonzero constant. Phase III is characterized by persistent oscillations of Δ(t). For quenches within phases I and II, we determine the topological character of the asymptotic states. We show that two different formulations of the bulk topological winding number, although equivalent in the BCS or BEC ground states, must be regarded as independent out of equilibrium. The first winding number Q characterizes the Anderson pseudospin texture of the initial state; we show that Q is generically conserved. For Q≠0, this leads to the prediction of a “gapless topological” state when Δ asymptotes to zero. The presence or absence of Majorana edge modes in a sample with a boundary is encoded in the second winding number W, which is formulated in terms of the retarded Green's function. We establish that W can change following a quench across the quantum critical point. When the order parameter asymptotes to a nonzero constant, the final value of W is well defined and quantized. We discuss the implications for the (dis)appearance of Majorana edge modes. Finally, we show that the parity of zeros in the bulk out-of-equilibrium Cooper-pair distribution function constitutes a Z2-valued quantum number, which is nonzero whenever W≠Q. The pair distribution can in principle be measured using rf spectroscopy in an ultracold-atom realization, allowing direct experimental detection of the Z2 number. This has the following interesting implication: topological information that is experimentally inaccessible in the bulk ground state can be transferred to an observable distribution function when the system is driven far from equilibrium.

  9. Positioning the Intracellular Salt Potassium Glutamate in the Hofmeister Series by Chemical Unfolding Studies of NTL9.

    PubMed

    Sengupta, Rituparna; Pantel, Adrian; Cheng, Xian; Shkel, Irina; Peran, Ivan; Stenzoski, Natalie; Raleigh, Daniel P; Record, M Thomas

    2016-04-19

    In vitro, replacing KCl with potassium glutamate (KGlu), the Escherichia coli cytoplasmic salt and osmolyte, stabilizes folded proteins and protein-nucleic acid complexes. To understand the chemical basis for these effects and rank Glu- in the Hofmeister anion series for protein unfolding, we quantify and interpret the strong stabilizing effect of KGlu on the ribosomal protein domain NTL9, relative to the effects of other stabilizers (KCl, KF, and K2SO4) and destabilizers (GuHCl and GuHSCN). GuHSCN titrations at 20 ° C, performed as a function of the concentration of KGlu or another salt and monitored by NTL9 fluorescence, are analyzed to obtain R-values quantifying the Hofmeister salt concentration (m3) dependence of the unfolding equilibrium constant K(obs) [r-value = −d ln K(obs)/dm3 = (1/RT) dΔG(obs) ° /dm3 = m-value/RT]. r-Values for both stabilizing K+ salts and destabilizing GuH+ salts are compared with predictions from model compound data. For two-salt mixtures, we find that contributions of stabilizing and destabilizing salts to observed r-values are additive and independent. At 20 ° C, we determine a KGlu r-value of 3.22 m(−1) and K2SO4, KF, KCl, GuHCl, and GuHSCN r-values of 5.38, 1.05, 0.64, −1.38, and −3.00 m(−1), respectively. The KGlu r-value represents a 25-fold (1.9 kcal) stabilization per molal KGlu added. KGlu is much more stabilizing than KF, and the stabilizing effect of KGlu is larger in magnitude than the destabilizing effect of GuHSCN. Interpretation of the data reveals good agreement between predicted and observed relative r-values and indicates the presence of significant residual structure in GuHSCN-unfolded NTL9 at 20 ° C.

  10. Bioconcentration of lipophilic compounds by some aquatic organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawker, D.W.; Connell, D.W.

    1986-04-01

    With nondegradable, lipophilic compounds having log P values ranging from 2 to 6, direct linear relationships have been found between the logarithms of the equilibrium bioconcentration factors, and also reciprocal clearance rate constants, with log P for daphnids and molluscs. These relationships permit calculation of the times required for equilibrium and significant bioconcentration of lipophilic chemicals. Compared with fish, these time periods are successively shorter for molluscs, then daphnids. The equilibrium biotic concentration was found to decrease with increasing chemical hydrophobicity for both molluscs and daphnids. Also, new linear relationships between the logarithm of the bioconcentration factor and log Pmore » were found for compounds not attaining equilibrium within finite exposure times.« less

  11. The Lack of Chemical Equilibrium does not Preclude the Use of the Classical Nucleation Theory in Circumstellar Outflows

    NASA Technical Reports Server (NTRS)

    Paquette, John A.; Nuth, Joseph A., III

    2011-01-01

    Classical nucleation theory has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of classical nucleation theory (CNT) to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of condensable species. A model of silicate grain nucleation and growth was modified to evaluate the effect of a nucleation flux orders of magnitUde below the equilibrium value. The results show that a lack of chemical equilibrium has only a small effect on the ultimate grain distribution.

  12. Fluctuations of radiative heat exchange between two bodies

    NASA Astrophysics Data System (ADS)

    Biehs, S.-A.; Ben-Abdallah, P.

    2018-05-01

    We present a theory to describe the fluctuations of nonequilibrium radiative heat transfer between two bodies both in the far- and near-field regimes. As predicted by the blackbody theory, in the far field, we show that the variance of radiative heat flux is of the same order of magnitude as its mean value. However, in the near-field regime, we demonstrate that the presence of surface polaritons makes this variance more than one order of magnitude larger than the mean flux. We further show that the correlation time of heat flux in this regime is comparable to the relaxation time of heat carriers in each medium. This theory could open the way to an experimental investigation of heat exchanges far from the thermal equilibrium condition.

  13. Eigenstate Thermalization for Degenerate Observables

    NASA Astrophysics Data System (ADS)

    Anza, Fabio; Gogolin, Christian; Huber, Marcus

    2018-04-01

    Under unitary time evolution, expectation values of physically reasonable observables often evolve towards the predictions of equilibrium statistical mechanics. The eigenstate thermalization hypothesis (ETH) states that this is also true already for individual energy eigenstates. Here we aim at elucidating the emergence of the ETH for observables that can realistically be measured due to their high degeneracy, such as local, extensive, or macroscopic observables. We bisect this problem into two parts, a condition on the relative overlaps and one on the relative phases between the eigenbases of the observable and Hamiltonian. We show that the relative overlaps are unbiased for highly degenerate observables and demonstrate that unless relative phases conspire to cumulative effects, this makes such observables verify the ETH. Through this we elucidate potential pathways towards proofs of thermalization.

  14. Acoustic positioning and orientation prediction

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Aveni, Glenn (Inventor); Putterman, Seth (Inventor); Rudnick, Joseph (Inventor)

    1990-01-01

    A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.

  15. Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.

    1988-01-01

    An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.

  16. Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations.

    PubMed

    Qiao, Yu; Tu, Bin; Lu, Benzhuo

    2014-05-07

    Ionic finite size can impose considerable effects to both the equilibrium and non-equilibrium properties of a solvated molecular system, such as the solvation energy, ionic concentration, and transport in a channel. As discussed in our former work [B. Lu and Y. C. Zhou, Biophys. J. 100, 2475 (2011)], a class of size-modified Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) models can be uniformly studied through the general nonuniform size-modified PNP (SMPNP) equations deduced from the extended free energy functional of Borukhov et al. [I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett. 79, 435 (1997)] This work focuses on the nonuniform size effects to molecular solvation energy and to ion current across a channel for real biomolecular systems. The main contributions are: (1) we prove that for solvation energy calculation with nonuniform size effects (through equilibrium SMPNP simulation), there exists a simplified approximation formulation which is the same as the widely used one in PB community. This approximate form avoids integration over the whole domain and makes energy calculations convenient. (2) Numerical calculations show that ionic size effects tend to negate the solvation effects, which indicates that a higher molecular solvation energy (lower absolute value) is to be predicted when ionic size effects are considered. For both calculations on a protein and a DNA fragment systems in a 0.5M 1:1 ionic solution, a difference about 10 kcal/mol in solvation energies is found between the PB and the SMPNP predictions. Moreover, it is observed that the solvation energy decreases as ionic strength increases, which behavior is similar as those predicted by the traditional PB equation (without size effect) and by the uniform size-modified Poisson-Boltzmann equation. (3) Nonequilibrium SMPNP simulations of ion permeation through a gramicidin A channel show that the ionic size effects lead to reduced ion current inside the channel compared with the results without considering size effects. As a component of the current, the drift term is the main contribution to the total current. The ionic size effects to the total current almost come through the drift term, and have little influence on the diffusion terms in SMPNP.

  17. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    NASA Astrophysics Data System (ADS)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  18. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic compounds is critical for understanding deep subsurface ecosystems and the origin of organic compounds on Mars and other planets.

  19. Investigation of the hydrochlorination of SiCl4

    NASA Technical Reports Server (NTRS)

    Mui, J. Y. P.

    1983-01-01

    A basic, experimental study on the hydrochlorination of silicon tetrachloride and metallurgical grade silicon with hydrogen gas to form trichlorosilane was carried out to greatly expand the range of reaction conditions. The equilibrium constant, K sub p, for the hydrochlorination reaction was measured as a function of temperature, pressure and concentration. The variation of the equilibrium constant as a function of temperature provided the measurement on the heat of reaction, delta H, by the Second Law Method. The value of delta H was measured to give 10.6 Kcal/mole. The equilibrium constant was also studied as a function of concentration. In agreement with the theory, the equilibrium constant remained constant with respect to the varying H2/SiCl4 feed ratios. On the other hand, the effect of pressure on the equilibrium constant was found to be more complex.

  20. Emergence of currents as a transient quantum effect in nonequilibrium systems

    NASA Astrophysics Data System (ADS)

    Granot, Er'El; Marchewka, Avi

    2011-09-01

    Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.

  1. Disequilibrium δ18O values in microbial carbonates as a tracer of metabolic production of dissolved inorganic carbon

    NASA Astrophysics Data System (ADS)

    Thaler, Caroline; Millo, Christian; Ader, Magali; Chaduteau, Carine; Guyot, François; Ménez, Bénédicte

    2017-02-01

    Carbon and oxygen stable isotope compositions of carbonates are widely used to retrieve paleoenvironmental information. However, bias may exist in such reconstructions as carbonate precipitation is often associated with biological activity. Several skeleton-forming eukaryotes have been shown to precipitate carbonates with significant offsets from isotopic equilibrium with water. Although poorly understood, the origin of these biologically-induced isotopic shifts in biogenic carbonates, commonly referred to as "vital effects", could be related to metabolic effects that may not be restricted to mineralizing eukaryotes. The aim of our study was to determine whether microbially-mediated carbonate precipitation can also produce offsets from equilibrium for oxygen isotopes. We present here δ18O values of calcium carbonates formed by the activity of Sporosarcina pasteurii, a carbonatogenic bacterium whose ureolytic activity produces ammonia (thus increasing pH) and dissolved inorganic carbon (DIC) that precipitates as solid carbonates in the presence of Ca2+. We show that the 1000 lnαCaCO3-H2O values for these bacterially-precipitated carbonates are up to 24.7‰ smaller than those expected for precipitation at isotopic equilibrium. A similar experiment run in the presence of carbonic anhydrase (an enzyme able to accelerate oxygen isotope equilibration between DIC and water) resulted in δ18O values of microbial carbonates in line with values expected at isotopic equilibrium with water. These results demonstrate for the first time that bacteria can induce calcium carbonate precipitation in strong oxygen isotope disequilibrium with water, similarly to what is observed for eukaryotes. This disequilibrium effect can be unambiguously ascribed to oxygen isotope disequilibrium between DIC and water inherited from the oxygen isotope composition of the ureolytically produced CO2, probably combined with a kinetic isotope effect during CO2 hydration/hydroxylation. The fact that both disequilibrium effects are triggered by the metabolic production of CO2, which is common in many microbially-mediated carbonation processes, leads us to propose that metabolically-induced offsets from isotopic equilibrium in microbial carbonates may be more common than previously considered. Therefore, precaution should be taken when using the oxygen isotope signature of microbial carbonates for diagenetic and paleoenvironmental reconstructions.

  2. On the relationships between Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics

    DOE PAGES

    Tang, J. Y.

    2015-09-03

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state formore » the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln [ E ] T of v with respect the total enzyme concentration [ E ] T and persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln [ S ] T of v with respect to the total substrate concentration [ S ] T. Meanwhile, the reverse Michaelis–Menten kinetics persistently under-predicts ∂ ln v / ∂ ln k 2 + and ∂ ln v / ∂ ln [ E ] T, and persistently over-predicts ∂ ln v / ∂ ln k 1 + and ∂ ln v / ∂ ln [ S ] T. In contrast, the Equilibrium Chemistry Approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k 2 +, ∂ ln v / ∂ ln k 1 +, ∂ ln v / ∂ ln [ E ] T and ∂ ln v / ∂ ln [ S ] T. Since the Equilibrium Chemistry Approximation kinetics includes the advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, soil biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.« less

  3. EnKF with closed-eye period - bridging intermittent model structural errors in soil hydrology

    NASA Astrophysics Data System (ADS)

    Bauser, Hannes H.; Jaumann, Stefan; Berg, Daniel; Roth, Kurt

    2017-04-01

    The representation of soil water movement exposes uncertainties in all model components, namely dynamics, forcing, subscale physics and the state itself. Especially model structural errors in the description of the dynamics are difficult to represent and can lead to an inconsistent estimation of the other components. We address the challenge of a consistent aggregation of information for a manageable specific hydraulic situation: a 1D soil profile with TDR-measured water contents during a time period of less than 2 months. We assess the uncertainties for this situation and detect initial condition, soil hydraulic parameters, small-scale heterogeneity, upper boundary condition, and (during rain events) the local equilibrium assumption by the Richards equation as the most important ones. We employ an iterative Ensemble Kalman Filter (EnKF) with an augmented state. Based on a single rain event, we are able to reduce all uncertainties directly, except for the intermittent violation of the local equilibrium assumption. We detect these times by analyzing the temporal evolution of estimated parameters. By introducing a closed-eye period - during which we do not estimate parameters, but only guide the state based on measurements - we can bridge these times. The introduced closed-eye period ensured constant parameters, suggesting that they resemble the believed true material properties. The closed-eye period improves predictions during periods when the local equilibrium assumption is met, but consequently worsens predictions when the assumption is violated. Such a prediction requires a description of the dynamics during local non-equilibrium phases, which remains an open challenge.

  4. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, Stewart

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less

  5. Preliminary study: Moisture-polymer interaction. Stuby objectives

    NASA Technical Reports Server (NTRS)

    Wen, L. C.

    1985-01-01

    The problems associated with mathematically modeling water-module interaction phenomena, including sorption and desorption, diffusion, and permeation are discussed. With reliable analytical models, an extensive materials data base, and solar radiation surface meteorological observations (SOLMET) weather data, predicting module lifetimes in realistic environments can become a practical reality. The status of the present techniques of simulating the various transport mechanisms was reported. The Dent model (a modified Brunauer-Emmet-Teller) approach represented polyvinyl butyral (PVB) sorption data. A 100-layer material model and Fick's diffusion model gave diffusivity values exhibiting adequate agreement with those measured for PVB. Diffusivity of PVB is concentration dependent, decreasing as the water content in PVB increases. The temperature dependence of diffusion in PVB is well modeled by the Arrhenius rate equation. Equilibrium conductivity and leakage current data are well represented by Hearle's model for bulk ionic conductivity. A nodal network analysis using the Systems Improved Numerical Differencing Analyzer (SINDA) Thermal Analyzer gave reasonable correlation with measurable data. It is concluded that realistic lifetime predictions seem to be feasible.

  6. Modeling and risk assessment of a 30-Year-old subsurface radioactive-liquid drain field

    NASA Astrophysics Data System (ADS)

    Dawson, Lon A.; Pohl, Phillip I.

    1997-11-01

    The contamination from a 30-year-old radioactive liquid drain field was assessed for movement in the subsurface and potential risks to humans. This assessment included determining field concentrations of cesium 137 (137Cs) and other inorganic contaminants and modeling of the flow and transport of the liquid waste that was sent to the drain field. The field investigation detected no contamination deeper than 15 feet (4.6 m) from the bottom of the drain field. Prediction of the water content of the vadose zone showed no saturated conditions for times greater than 10 years after the known infiltration. Sensitivity analysis of the modeling parameters showed the equilibrium sorption coefficient to be the most important factor in predicting the contaminant plumes. Calibration of modeling results with field data gave a 137Cs sorption coefficient that is within the range of values found in the literature. The risk assessment for the site showed that the contamination poses no significant risk to human health.

  7. Power-law decay exponents: A dynamical criterion for predicting thermalization

    NASA Astrophysics Data System (ADS)

    Távora, Marco; Torres-Herrera, E. J.; Santos, Lea F.

    2017-01-01

    From the analysis of the relaxation process of isolated lattice many-body quantum systems quenched far from equilibrium, we deduce a criterion for predicting when they are certain to thermalize. It is based on the algebraic behavior ∝t-γ of the survival probability at long times. We show that the value of the power-law exponent γ depends on the shape and filling of the weighted energy distribution of the initial state. Two scenarios are explored in detail: γ ≥2 and γ <1 . Exponents γ ≥2 imply that the energy distribution of the initial state is ergodically filled and the eigenstates are uncorrelated, so thermalization is guaranteed to happen. In this case, the power-law behavior is caused by bounds in the energy spectrum. Decays with γ <1 emerge when the energy eigenstates are correlated and signal lack of ergodicity. They are typical of systems undergoing localization due to strong onsite disorder and are found also in clean integrable systems.

  8. Thermodynamic Equilibrium Solubility of Diethanolamine – N-Butyl-1-Methylpyrrolidinium Dicyanamide [DEABMPYRR DCA] Mixtures for Carbon Dioxide Capture

    NASA Astrophysics Data System (ADS)

    Salleh, R. M.; Jamaludin, S. N.

    2018-05-01

    Solubility data of carbon dioxide (CO2) in aqueous Diethanolamine (DEA) blended with pyrrolidinium-based ionic liquid: N-Butyl-1-Methylpyrrolidinium Dıcyanamıde [Bmpyrr][DCA] are presented at various temperatures (313.15K-333.15K) and pressure up to about 700 psi. The concentration of [Bmpyrr][DCA] ranges from 0-10wt% and 30-40wt% for DEA. The solubility of CO2 was evaluated by measuring the pressure drop in high pressure stirred absorption cell reactor. The CO2 loading in all studied mixtures increases with an increase in CO2 partial pressure and decreases with temperature. It was also found that the CO2 loading capacity decrease as the concentration of [Bmpyrr][DCA] increases. The experimental data were correlated as a function of temperature and CO2 partial pressure to predict the solubility of CO2 in the mixtures. It was found that the model predicted results in a good agreement with experimental value.

  9. Prediction of water-rock interaction to 50 kb and 1,000 °C with equations of state for aqueous species

    NASA Astrophysics Data System (ADS)

    Sverjensky, D. A.; Harrison, B. W.; Azzolini, D.

    2012-12-01

    Comprehensive quantitative theoretical evaluation of water-rock interactions under deep crustal and upper mantle conditions has long been restricted to a pressure of 5.0 kb - too low to address mantle metasomatism in subduction zones or the origin of diamond. The reason for this restriction is the lack of information on the dielectric constant of water (ɛH2O) needed for the revised Helgeson-Kirkham-Flowers (HKF) equations for aqueous species [1]. Equation of state coefficients are available for hundreds of aqueous species in SUPCRT92 [2], but calculations can only be made to 5.0 kb. One way around this involves empirical extrapolation of equilibrium constants as functions of the logarithm of the density of water (ρH2O) [3]. However, this approach is best suited to simple systems. In order to model water-rock interactions, scores of equilibrium constants involving minerals and aqueous species must be known and internal consistency maintained. In the present study, the applicability of the HKF equations for aqueous species was extended to 50 kb by developing estimates of ɛH2O. We used a statistical mechanically-based equation for ɛ of a hard-sphere fluid applicable to water and other fluids [4]. It was calibrated with experimental data [5] and data from a comprehensive analysis of the literature [6] and extrapolated to a density of 1.1 g.cm-3. Values of ln(ɛH2O) were found to be linear with ln(ρH2O) enabling estimation of ɛH2O to 50 kb. Values of ρH2O were computed with a comprehensive evaluation [7] chosen because it is closely consistent with experimental data at less than 10 kb [8] as well as fluid inclusion studies to 40 kb [9]. Standard Gibbs free energies of water as a function of temperature and pressure were also calculated using volumes from [7]. The resulting dielectric constants were tested at 727 °C and 50 kb by comparison with the results of molecular dynamics [10] and ab initio quantum chemical calculations [11]. Additional testing was carried out by computing standard Gibbs free energies of aqueous species using the new values of ɛH2O and ρH2O in the revised HKF equations to predict equilibrium constants which in turn enabled prediction of the solubility of calcite for comparison with experimental measurements to 16 kb at 700 °C [12]. The results were almost identical with solubility predictions made with the density model up to 30 kb and high temperatures. These preliminary results strongly suggest that geochemically useful predictions can now be made that will facilitate analysis of water-rock interactions in the Earth at depths much greater than previously possible. [1] Shock, E. L. et al., GCA 61, 907 (1997). [2] Johnson, J. W. et al., Comp. & Geosci. 18, 899 (1992). [3] Manning, C. E., Earth Planet. Sci. Lett. 223, 1 (2004). [4] Franck, E. U. et al., Ber. Bun. Ges.-Phys.Chem. Chem. Phys. 94, 199 (1990). [5] Heger, K. et al., Ber. Bun. Ges.-Phys.Chem. Chem. Phys. 84, 758 (1980). [6] Fernandez, D. P., J. Phys.Chem. Ref. Data 26, 1125 (1997). [7] Zhang, Z. and Duan, Z., Phys. Earth Planet. Ints. 149, 335 (2005). [8] Burnham, C. W. et al., Amer. J. Sci. 267, 70 (1969). [9] Withers, A. C. et al., GCA 64, 1051 (2000). [10] Wasserman, E. et al., GCA 59, 1 (1995). [11] Pan, D. et al., http://meetings.aps.org/link/BAPS.2012.MAR.P25.8 [12] Caciagli, N.C. and Manning, C.E., Contribs. Min. & Petrol. 146, 275 (2003).

  10. Quantum Kinetics and the Zeno Ansatz: Sterile Neutrino Dark Matter in the Early Universe

    NASA Astrophysics Data System (ADS)

    Dvornikov, Olexiy V.

    We solved the quantum kinetic equations for the evolution of neutrino states in the early universe. Starting at high temperatures, we evolve neutrino states to observe the resonant conversion of active-to-sterile neutrinos in a lepton asymmetric (more neutrinos than anti-neutrinos) universe. We find that at high temperatures, the high neutrino scattering and oscillation rates enforce a local equilibrium that balances the growth of coherence at the oscillation rate and the damping of coherence through scattering. This equilibrium, which we call a "quantum kinetic equilibrium," appears to approximately hold throughout the neutrino evolution, from the initial conditions through resonances that may be non adiabatic. Using this quantum kinetic equilibrium informs a proper choice of the initial conditions of the neutrino state and the relaxation process that occurs to this equilibrium when the initial conditions (as are typically chosen in the literature) are not coincident with the equilibrium values. We also discuss how to use this equilibrium to reduce the computational expense of solving the full quantum kinetic equations for neutrino states evolving in the early universe.

  11. Maxwell's conjecture on three point charges with equal magnitudes

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Lun

    2015-08-01

    Maxwell's conjecture on three point charges states that the number of non-degenerate equilibrium points of the electrostatic field generated by them in R3 is at most four. We prove the conjecture in the cases when three point charges have equal magnitudes and show the number of isolated equilibrium points can only be zero, two, three, or four. Specifically, fixing positions of two positive charges in R3, we know exactly where to place the third positive charge to have two, three, or four equilibrium points. All equilibrium points are isolated and there are no other possibilities for the number of isolated equilibrium points. On the other hand, if both two of the fixed charges have negative charge values, there are always two equilibrium points except when the third positive charge lies in the line segment connecting the two negative charges. The exception cases are when the field contains only a curve of equilibrium points. In this paper, computations assisted by computer involve symbolic and exact integer computations. Therefore, all the results are proved rigorously.

  12. Saturated and unsaturated salt transport in peat from a constructed fen

    NASA Astrophysics Data System (ADS)

    Simhayov, Reuven B.; Weber, Tobias K. D.; Price, Jonathan S.

    2018-02-01

    The underlying processes governing solute transport in peat from an experimentally constructed fen peatland were analyzed by performing saturated and unsaturated solute breakthrough experiments using Na+ and Cl- as reactive and non-reactive solutes, respectively. We tested the performance of three solute transport models, including the classical equilibrium convection-dispersion equation (CDE), a chemical non-equilibrium one-site adsorption model (OSA) and a model to account for physical non-equilibrium, the mobile-immobile (MIM) phases. The selection was motivated by the fact that the applicability of the MIM in peat soils finds a wide consensus. However, results from inverse modeling and a robust statistical evaluation of this peat provide evidence that the measured breakthrough of the conservative tracer, Cl-, could be simulated well using the CDE. Furthermore, the very high Damköhler number (which approaches infinity) suggests instantaneous equilibration between the mobile and immobile phases underscoring the redundancy of the MIM approach for this particular peat. Scanning electron microscope images of the peat show the typical multi-pore size distribution structures have been homogenized sufficiently by decomposition, such that physical non-equilibrium solute transport no longer governs the transport process. This result is corroborated by the fact the soil hydraulic properties were adequately described using a unimodal van Genuchten-Mualem model between saturation and a pressure head of ˜ -1000 cm of water. Hence, MIM was not the most suitable choice, and the long tailing of the Na+ breakthrough curve was caused by chemical non-equilibrium. Successful description was possible using the OSA model. To test our results for the unsaturated case, we conducted an unsaturated steady-state evaporation experiment to drive Na+ and Cl- transport. Using the parameterized transport models from the saturated experiments, we could numerically simulate the unsaturated transport using Hydrus-1-D. The simulation showed a good prediction of observed values, confirming the suitability of the parameters for use in a slightly unsaturated transport simulation. The findings improve the understanding of solute redistribution in the constructed fen and imply that MIM should not be automatically assumed for solute transport in peat but rather should be evidence based.

  13. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  14. Nash equilibrium in differential games and the construction of the programmed iteration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Averboukh, Yurii V

    This work is devoted to the study of nonzero-sum differential games. The set of payoffs in a situation of Nash equilibrium is examined. It is shown that the set of payoffs in a situation of Nash equilibrium coincides with the set of values of consistent functions which are fixed points of the program absorption operator. A condition for functions to be consistent is given in terms of the weak invariance of the graph of the functions under a certain differential inclusion. Bibliography: 18 titles.

  15. Relation between the Surface Friction of Plates and their Statistical Microgeometry

    DTIC Science & Technology

    1980-01-01

    3-6 and 𔃽-7. Calibration-- are taken for each of the Uicr~r unit exponent values and best fit li;nes by least squares fitted through each"n set of...parameter, [ = 1.de (2-43) (Clauser 1954, 1956). Data from near equilibrium flows (Coles & Hurst 1968) was plotted along with some typical non-equilibrium...too bad a fit even for the non equilibrium flows. Coles and Hurst (1968) recommended that the fit of the law of the wake to velocity profiles should be

  16. Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films

    NASA Astrophysics Data System (ADS)

    Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.

    2002-06-01

    The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.

  17. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    NASA Astrophysics Data System (ADS)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  18. Prediction of boiling points of organic compounds by QSPR tools.

    PubMed

    Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun

    2013-07-01

    The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Bounded energy states in homogeneous turbulent shear flow - An alternative view

    NASA Technical Reports Server (NTRS)

    Bernard, P. S.; Speziale, C. G.

    1992-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.

  20. Equilibrium of fluid membranes endowed with orientational order

    NASA Astrophysics Data System (ADS)

    Kumar Alageshan, Jaya; Chakrabarti, Buddhapriya; Hatwalne, Yashodhan

    2017-04-01

    Minimization of the low-temperature elastic free-energy functional of orientationlly ordered membranes involves independent variation of the membrane-shape, while keeping the orientational order on it (its texture) fixed. We propose an operational, coordinate-independent method for implementing such a variation. Using the Nelson-Peliti formulation of elasticity that emphasizes the interplay between geometry, topology, and thermal fluctuations of orientationally ordered membranes, we minimize the elastic free energy to obtain equations governing their equilibrium shape, together with associated free boundary conditions. Our results are essential for understanding and predicting equilibrium shapes as well as textures of membranes and vesicles; particularly under conditions in which shape deformations are large.

Top