Science.gov

Sample records for predicted g-protein-coupled receptor

  1. Rapid Computational Prediction of Thermostabilizing Mutations for G Protein-Coupled Receptors

    PubMed Central

    2015-01-01

    G protein-coupled receptors (GPCRs) are highly dynamic and often denature when extracted in detergents. Deriving thermostable mutants has been a successful strategy to stabilize GPCRs in detergents, but this process is experimentally tedious. We have developed a computational method to predict the position of the thermostabilizing mutations for a given GPCR sequence. We have validated the method against experimentally measured thermostability data for single mutants of the β1-adrenergic receptor (β1AR), adenosine A2A receptor (A2AR) and neurotensin receptor 1 (NTSR1). To make these predictions we started from homology models of these receptors of varying accuracies and generated an ensemble of conformations by sampling the rigid body degrees of freedom of transmembrane helices. Then, an all-atom force field function was used to calculate the enthalpy gain, known as the “stability score” upon mutation of every residue, in these receptor structures, to alanine. For all three receptors, β1AR, A2AR, and NTSR1, we observed that mutations of hydrophobic residues in the transmembrane domain to alanine that have high stability scores correlate with high experimental thermostability. The prediction using the stability score improves when using an ensemble of receptor conformations compared to a single structure, showing that receptor flexibility is important. We also find that our previously developed LITiCon method for generating conformation ensembles is similar in performance to predictions using ensembles obtained from microseconds of molecular dynamics simulations (which is computationally hundred times slower than LITiCon). We improved the thermostability prediction by including other properties such as residue-based stress and the extent of allosteric communication by each residue in the stability score. Our method is the first step toward a computational method for rapid prediction of thermostable mutants of GPCRs. PMID:25400524

  2. Prediction of G Protein-Coupled Receptors with SVM-Prot Features and Random Forest

    PubMed Central

    Ju, Ying

    2016-01-01

    G protein-coupled receptors (GPCRs) are the largest receptor superfamily. In this paper, we try to employ physical-chemical properties, which come from SVM-Prot, to represent GPCR. Random Forest was utilized as classifier for distinguishing them from other protein sequences. MEME suite was used to detect the most significant 10 conserved motifs of human GPCRs. In the testing datasets, the average accuracy was 91.61%, and the average AUC was 0.9282. MEME discovery analysis showed that many motifs aggregated in the seven hydrophobic helices transmembrane regions adapt to the characteristic of GPCRs. All of the above indicate that our machine-learning method can successfully distinguish GPCRs from non-GPCRs. PMID:27529053

  3. G-protein-coupled receptors and cancer.

    PubMed

    Dorsam, Robert T; Gutkind, J Silvio

    2007-02-01

    G-protein-coupled receptors (GPCRs), the largest family of cell-surface molecules involved in signal transmission, have recently emerged as crucial players in tumour growth and metastasis. Malignant cells often hijack the normal physiological functions of GPCRs to survive, proliferate autonomously, evade the immune system, increase their blood supply, invade their surrounding tissues and disseminate to other organs. This Review will address our current understanding of the many roles of GPCRs and their signalling circuitry in tumour progression and metastasis. We will also discuss how interfering with GPCRs might provide unique opportunities for cancer prevention and treatment.

  4. Prediction of G protein-coupled receptor encoding sequences from the synganglion transcriptome of the cattle tick, Rhipicephalus microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cattle tick, Rhipicephalus (Boophilus) microplus, is a pest which causes multiple health complications in cattle. The G-protein coupled receptor (GPCR) super-family presents an interesting target for developing novel tick control methods. However, GPCRs share limited sequence similarity among or...

  5. Ligand and Structure-based Methodologies for the Prediction of the Activity of G Protein-Coupled Receptor Ligands

    PubMed Central

    Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.

    2008-01-01

    Summary Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered. PMID:18483766

  6. Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands

    NASA Astrophysics Data System (ADS)

    Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.

    2009-11-01

    Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.

  7. G-protein-coupled receptors and melanoma.

    PubMed

    Lee, Hwa Jin; Wall, Brian; Chen, Suzie

    2008-08-01

    G-protein-coupled receptors (GPCR) are the largest family of receptors with over 500 members. Evaluation of GPCR gene expression in primary human tumors identified over-expression of GPCR in several tumor types. Analysis of cancer samples in different disease stages also suggests that some GPCR may be involved in early tumor progression and others may play a critical role in tumor invasion and metastasis. Currently, >50% of drug targets to various human diseases are based on GPCR. In this review, the relationships between several GPCR and melanoma development and/or progression will be discussed. Finally, the possibility of using one or more of these GPCR as therapeutic targets in melanoma will be summarized.

  8. G Protein-Coupled Receptor Biased Agonism

    PubMed Central

    Hodavance, Sima Y.; Gareri, Clarice; Torok, Rachel D.; Rockman, Howard A.

    2016-01-01

    G protein-coupled receptors (GPCR) are the largest family of targets for current therapeutics. The classic model of their activation was binary, where agonist binding induced an active conformation and subsequent downstream signaling. Subsequently, the revised concept of biased agonism emerged, where different ligands at the same GPCR selectively activate one downstream pathway versus another. Advances in understanding the mechanism of biased agonism has led to the development of novel ligands, which have the potential for improved therapeutic and safety profiles. In this review, we summarize the theory and most recent breakthroughs in understanding biased signaling, examine recent laboratory investigations concerning biased ligands across different organ systems, and discuss the promising clinical applications of biased agonism. PMID:26751266

  9. Prediction of Loops in G Protein-Coupled Receptor Homology Models: Effect of Imprecise Surroundings and Constraints.

    PubMed

    Arora, Bhumika; Coudrat, Thomas; Wootten, Denise; Christopoulos, Arthur; Noronha, Santosh B; Sexton, Patrick M

    2016-04-25

    In the present study, we explored the extent to which inaccuracies inherent in homology models of the transmembrane helical cores of G protein-coupled receptors (GPCRs) can impact loop prediction. We demonstrate that loop prediction in homology models is much more difficult than loop reconstruction in crystal structures because of the imprecise positioning of loop anchors. Deriving information from 17 recently available GPCR crystal structures, we estimated all of the possible errors that could occur in loop anchors as the result of comparative modeling. Subsequently, we performed an exhaustive analysis to decipher the effect of these errors on loop modeling using ICM High Precision Sampling. The influence of the presence of other extracellular loops was also explored. Our results reveal that the error space of modeled loop residues is much larger than that of the anchor residues, although modeling a particular extracellular loop in the presence of other extracellular loops provides constraints that help in predicting near-native loop conformations observed in crystal structures. This implies that errors in loop anchor positions introduce increased uncertainty in the modeled loop coordinates. Therefore, for the success of any GPCR structure prediction algorithm, minimizing errors in the helical end points is likely to be critical for successful loop modeling.

  10. Prediction of G protein-coupled receptor encoding sequences from the synganglion transcriptome of the cattle tick, Rhipicephalus microplus

    PubMed Central

    Guerrero, Felix D.; Kellogg, Anastasia; Ogrey, Alexandria N.; Heekin, Andrew M.; Barrero, Roberto; Bellgard, Matthew I.; Dowd, Scot E.; Leung, Ming-Ying

    2016-01-01

    The cattle tick, Rhipicephalus (Boophilus) microplus, is a pest which causes multiple health complications in cattle. The G protein-coupled receptor (GPCR) super-family presents a candidate target for developing novel tick control methods. However, GPCRs share limited sequence similarity among orthologous family members, and there is no reference genome available for R. microplus. This limits the effectiveness of alignment-dependent methods such as BLAST and Pfam for identifying GPCRs from R. microplus. However, GPCRs share a common structure consisting of seven transmembrane helices. We present an analysis of the R. microplus synganglion transcriptome using a combination of structurally-based and alignment-free methods which supplement the identification of GPCRs by sequence similarity. TMHMM predicts the number of transmembrane helices in a protein sequence. GPCRpred is a support vector machine-based method developed to predict and classify GPCRs using the dipeptide composition of a query aminoacid sequence. These two bioinformatic tools were applied to our transcriptome assembly of the cattle tick synganglion. Together, BLAST and Pfam identified 85 unique contigs as encoding partial or full length candidate cattle tick GPCRs. Collectively, TMHMM and GPCRpred identified 27 additional GPCR candidates that BLAST and Pfam missed. This demonstrates that the addition of structurally-based and alignment-free bioinformatic approaches to transcriptome annotation and analysis produces a greater collection of prospective GPCRs than an analysis based solely upon methodologies dependent upon sequence alignment and similarity. PMID:26922323

  11. Crystallization of G Protein-Coupled Receptors

    PubMed Central

    Salom, David; Padayatti, Pius S.; Palczewski, Krzysztof

    2015-01-01

    Oligomerization is one of several mechanisms that can regulate the activity of G protein-coupled receptors (GPCRs), but little is known about the structure of GPCR oligomers. Crystallography and NMR are the only methods able to reveal the details of receptor–receptor interactions at an atomic level, and several GPCR homodimers already have been described from crystal structures. Two clusters of symmetric interfaces have been identified from these structures that concur with biochemical data, one involving helices I, II, and VIII and the other formed mainly by helices V and VI. In this chapter, we describe the protocols used in our laboratory for the crystallization of rhodopsin and the β2-adrenergic receptor (β2-AR). For bovine rhodopsin, we developed a new purification strategy including a (NH4)2SO4-induced phase separation that proved essential to obtain crystals of photoactivated rhodopsin containing parallel dimers. Crystallization of native bovine rhodopsin was achieved by the classic vapor-diffusion technique. For β2-AR, we developed a purification strategy based on previously published protocols employing a lipidic cubic phase to obtain diffracting crystals of a β2-AR/T4-lysozyme chimera bound to the antagonist carazolol. PMID:24143992

  12. G Protein-Coupled Receptors in Cancer

    PubMed Central

    Bar-Shavit, Rachel; Maoz, Myriam; Kancharla, Arun; Nag, Jeetendra Kumar; Agranovich, Daniel; Grisaru-Granovsky, Sorina; Uziely, Beatrice

    2016-01-01

    Despite the fact that G protein-coupled receptors (GPCRs) are the largest signal-conveying receptor family and mediate many physiological processes, their role in tumor biology is underappreciated. Numerous lines of evidence now associate GPCRs and their downstream signaling targets in cancer growth and development. Indeed, GPCRs control many features of tumorigenesis, including immune cell-mediated functions, proliferation, invasion and survival at the secondary site. Technological advances have further substantiated GPCR modifications in human tumors. Among these are point mutations, gene overexpression, GPCR silencing by promoter methylation and the number of gene copies. At this point, it is imperative to elucidate specific signaling pathways of “cancer driver” GPCRs. Emerging data on GPCR biology point to functional selectivity and “biased agonism”; hence, there is a diminishing enthusiasm for the concept of “one drug per GPCR target” and increasing interest in the identification of several drug options. Therefore, determining the appropriate context-dependent conformation of a functional GPCR as well as the contribution of GPCR alterations to cancer development remain significant challenges for the discovery of dominant cancer genes and the development of targeted therapeutics. PMID:27529230

  13. G Protein-Coupled Receptors in Cancer.

    PubMed

    Bar-Shavit, Rachel; Maoz, Myriam; Kancharla, Arun; Nag, Jeetendra Kumar; Agranovich, Daniel; Grisaru-Granovsky, Sorina; Uziely, Beatrice

    2016-08-12

    Despite the fact that G protein-coupled receptors (GPCRs) are the largest signal-conveying receptor family and mediate many physiological processes, their role in tumor biology is underappreciated. Numerous lines of evidence now associate GPCRs and their downstream signaling targets in cancer growth and development. Indeed, GPCRs control many features of tumorigenesis, including immune cell-mediated functions, proliferation, invasion and survival at the secondary site. Technological advances have further substantiated GPCR modifications in human tumors. Among these are point mutations, gene overexpression, GPCR silencing by promoter methylation and the number of gene copies. At this point, it is imperative to elucidate specific signaling pathways of "cancer driver" GPCRs. Emerging data on GPCR biology point to functional selectivity and "biased agonism"; hence, there is a diminishing enthusiasm for the concept of "one drug per GPCR target" and increasing interest in the identification of several drug options. Therefore, determining the appropriate context-dependent conformation of a functional GPCR as well as the contribution of GPCR alterations to cancer development remain significant challenges for the discovery of dominant cancer genes and the development of targeted therapeutics.

  14. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines.

    PubMed

    Nie, Guoping; Li, Yong; Wang, Feichi; Wang, Siwen; Hu, Xuehai

    2015-01-01

    G-protein-coupled receptors (GPCRs) are seven membrane-spanning proteins and regulate many important physiological processes, such as vision, neurotransmission, immune response and so on. GPCRs-related pathways are the targets of a large number of marketed drugs. Therefore, the design of a reliable computational model for predicting GPCRs from amino acid sequence has long been a significant biomedical problem. Chaos game representation (CGR) reveals the fractal patterns hidden in protein sequences, and then fractal dimension (FD) is an important feature of these highly irregular geometries with concise mathematical expression. Here, in order to extract important features from GPCR protein sequences, CGR algorithm, fractal dimension and amino acid composition (AAC) are employed to formulate the numerical features of protein samples. Four groups of features are considered, and each group is evaluated by support vector machine (SVM) and 10-fold cross-validation test. To test the performance of the present method, a new non-redundant dataset was built based on latest GPCRDB database. Comparing the results of numerical experiments, the group of combined features with AAC and FD gets the best result, the accuracy is 99.22% and Matthew's correlation coefficient (MCC) is 0.9845 for identifying GPCRs from non-GPCRs. Moreover, if it is classified as a GPCR, it will be further put into the second level, which will classify a GPCR into one of the five main subfamilies. At this level, the group of combined features with AAC and FD also gets best accuracy 85.73%. Finally, the proposed predictor is also compared with existing methods and shows better performances.

  15. How Can Mutations Thermostabilize G-Protein-Coupled Receptors?

    PubMed

    Vaidehi, Nagarajan; Grisshammer, Reinhard; Tate, Christopher G

    2016-01-01

    Structures of over 30 different G-protein-coupled receptors (GPCRs) have advanced our understanding of cell signaling and have provided a foundation for structure-guided drug design. This exciting progress has required the development of three complementary methods to facilitate GPCR crystallization, one of which is the thermostabilization of receptors by systematic mutagenesis. However, the reason why a particular mutation, or combination of mutations, stabilizes the receptor is not always evident from a static crystal structure. Molecular dynamics (MD) simulations have been used to identify and estimate the energetic factors that affect thermostability through comparing the dynamics of the thermostabilized receptors with structure-based models of the wild-type receptor. The data indicate that receptors are stabilized through a combination of factors, including an increase in receptor rigidity, a decrease in collective motion, reduced stress at specific residues, and the presence of ordered water molecules. Predicting thermostabilizing mutations computationally represents a major challenge for the field.

  16. System and methods for predicting transmembrane domains in membrane proteins and mining the genome for recognizing G-protein coupled receptors

    DOEpatents

    Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely

    2013-02-05

    The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.

  17. Anatomical profiling of G protein-coupled receptor expression

    PubMed Central

    Regard, Jean B.; Sato, Isaac T.; Coughlin, Shaun R.

    2008-01-01

    Summary G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane signaling molecules and regulate a host of physiological and disease processes. To better understand the functions of GPCRs in vivo, we quantified transcript levels of 353 non-odorant GPCRs in 41 adult mouse tissues. Cluster analysis placed many GPCRs into anticipated anatomical and functional groups and predicted novel roles for less studied receptors. From one such prediction, we showed that the Gpr91 ligand succinate can regulate lipolysis in white adipose tissue suggesting that signaling by this citric acid cycle intermediate may regulate energy homeostasis. We also showed that pairwise analysis of GPCR expression across tissues may help predict drug side effects. This resource will aid studies to understand GPCR function in vivo and may assist in the identification of therapeutic targets. PMID:18984166

  18. G-protein-coupled receptors: past, present and future

    PubMed Central

    Hill, Stephen J

    2006-01-01

    The G-protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Drugs active at these receptors have therapeutic actions across a wide range of human diseases ranging from allergic rhinitis to pain, hypertension and schizophrenia. This review provides a brief historical overview of the properties and signalling characteristics of this important family of receptors. PMID:16402114

  19. Multiple switches in G protein-coupled receptor activation.

    PubMed

    Ahuja, Shivani; Smith, Steven O

    2009-09-01

    The activation mechanism of G protein-coupled receptors has presented a puzzle that finally may be close to solution. These receptors have a relatively simple architecture consisting of seven transmembrane helices that contain just a handful of highly conserved amino acids, yet they respond to light and a range of chemically diverse ligands. Recent NMR structural studies on the active metarhodopsin II intermediate of the visual receptor rhodopsin, along with the recent crystal structure of the apoprotein opsin, have revealed multiple structural elements or 'switches' that must be simultaneously triggered to achieve full activation. The confluence of several required structural changes is an example of "coincidence counting", which is often used by nature to regulate biological processes. In ligand-activated G protein-coupled receptors, the presence of multiple switches may provide an explanation for the differences between full, partial and inverse agonists.

  20. A monoclonal antibody for G protein-coupled receptor crystallography.

    PubMed

    Day, Peter W; Rasmussen, Søren G F; Parnot, Charles; Fung, Juan José; Masood, Asna; Kobilka, Tong Sun; Yao, Xiao-Jie; Choi, Hee-Jung; Weis, William I; Rohrer, Daniel K; Kobilka, Brian K

    2007-11-01

    G protein-coupled receptors (GPCRs) constitute the largest family of signaling proteins in mammals, mediating responses to hormones, neurotransmitters, and senses of sight, smell and taste. Mechanistic insight into GPCR signal transduction is limited by a paucity of high-resolution structural information. We describe the generation of a monoclonal antibody that recognizes the third intracellular loop (IL3) of the native human beta(2) adrenergic (beta(2)AR) receptor; this antibody was critical for acquiring diffraction-quality crystals.

  1. Applications of molecular replacement to G protein-coupled receptors

    SciTech Connect

    Kruse, Andrew C.; Manglik, Aashish; Kobilka, Brian K.; Weis, William I.

    2013-11-01

    The use of molecular replacement in solving the structures of G protein-coupled receptors is discussed, with specific examples being described in detail. G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every aspect of human physiology. Despite their profound importance in human health and disease, structural information regarding GPCRs has been extremely limited until recently. With the advent of a variety of new biochemical and crystallographic techniques, the structural biology of GPCRs has advanced rapidly, offering key molecular insights into GPCR activation and signal transduction. To date, almost all GPCR structures have been solved using molecular-replacement techniques. Here, the unique aspects of molecular replacement as applied to individual GPCRs and to signaling complexes of these important proteins are discussed.

  2. Bioinformatic prediction of G protein-coupled receptor encoding sequences from the transcriptome of the foreleg, including the Haller's organ, of the cattle tick, Rhipicephalus australis.

    PubMed

    Munoz, Sergio; Guerrero, Felix D; Kellogg, Anastasia; Heekin, Andrew M; Leung, Ming-Ying

    2017-01-01

    The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller's organ, located in the tick's forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this agricultural pest, we aimed to sequence and annotate the transcriptome of the R. australis forelegs and associated tissues, including the Haller's organ. As G protein-coupled receptors (GPCRs) are an important family of eukaryotic proteins studied as pharmaceutical targets in humans, we prioritized the identification and classification of the GPCRs expressed in the foreleg tissues. The two forelegs from adult R. australis were excised, RNA extracted, and pyrosequenced with 454 technology. Reads were assembled into unigenes and annotated by sequence similarity. Python scripts were written to find open reading frames (ORFs) from each unigene. These ORFs were analyzed by different GPCR prediction approaches based on sequence alignments, support vector machines, hidden Markov models, and principal component analysis. GPCRs consistently predicted by multiple methods were further studied by phylogenetic analysis and 3D homology modeling. From 4,782 assembled unigenes, 40,907 possible ORFs were predicted. Using Blastp, Pfam, GPCRpred, TMHMM, and PCA-GPCR, a basic set of 46 GPCR candidates were compiled and a phylogenetic tree was constructed. With further screening of tertiary structures predicted by RaptorX, 6 likely GPCRs emerged and the strongest candidate was classified by PCA-GPCR to be a GABAB receptor.

  3. Bioinformatic prediction of G protein-coupled receptor encoding sequences from the transcriptome of the foreleg, including the Haller’s organ, of the cattle tick, Rhipicephalus australis

    PubMed Central

    Munoz, Sergio; Guerrero, Felix D.; Kellogg, Anastasia; Heekin, Andrew M.

    2017-01-01

    The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller’s organ, located in the tick’s forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this agricultural pest, we aimed to sequence and annotate the transcriptome of the R. australis forelegs and associated tissues, including the Haller's organ. As G protein-coupled receptors (GPCRs) are an important family of eukaryotic proteins studied as pharmaceutical targets in humans, we prioritized the identification and classification of the GPCRs expressed in the foreleg tissues. The two forelegs from adult R. australis were excised, RNA extracted, and pyrosequenced with 454 technology. Reads were assembled into unigenes and annotated by sequence similarity. Python scripts were written to find open reading frames (ORFs) from each unigene. These ORFs were analyzed by different GPCR prediction approaches based on sequence alignments, support vector machines, hidden Markov models, and principal component analysis. GPCRs consistently predicted by multiple methods were further studied by phylogenetic analysis and 3D homology modeling. From 4,782 assembled unigenes, 40,907 possible ORFs were predicted. Using Blastp, Pfam, GPCRpred, TMHMM, and PCA-GPCR, a basic set of 46 GPCR candidates were compiled and a phylogenetic tree was constructed. With further screening of tertiary structures predicted by RaptorX, 6 likely GPCRs emerged and the strongest candidate was classified by PCA-GPCR to be a GABAB receptor. PMID:28231302

  4. G Protein-Coupled Receptors in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Hill, Catherine A.; Fox, A. Nicole; Pitts, R. Jason; Kent, Lauren B.; Tan, Perciliz L.; Chrystal, Mathew A.; Cravchik, Anibal; Collins, Frank H.; Robertson, Hugh M.; Zwiebel, Laurence J.

    2002-10-01

    We used bioinformatic approaches to identify a total of 276 G protein-coupled receptors (GPCRs) from the Anopheles gambiae genome. These include GPCRs that are likely to play roles in pathways affecting almost every aspect of the mosquito's life cycle. Seventy-nine candidate odorant receptors were characterized for tissue expression and, along with 76 putative gustatory receptors, for their molecular evolution relative to Drosophila melanogaster. Examples of lineage-specific gene expansions were observed as well as a single instance of unusually high sequence conservation.

  5. G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation

    PubMed Central

    Ichikawa, Osamu; Fujimoto, Kazushi; Yamada, Atsushi; Okazaki, Susumu; Yamazaki, Kazuto

    2016-01-01

    The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/β-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligand—receptor interactions is complicated. Here, we identified the G-protein/β-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the β2-adrenergic receptor (β2AR) with a diverse collection of ligands and correlation analysis of their G protein/β-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the β-arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/β-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs. PMID:27187591

  6. G protein-coupled receptors as promising cancer targets.

    PubMed

    Liu, Ying; An, Su; Ward, Richard; Yang, Yang; Guo, Xiao-Xi; Li, Wei; Xu, Tian-Rui

    2016-07-01

    G protein-coupled receptors (GPCRs) regulate an array of fundamental biological processes, such as growth, metabolism and homeostasis. Specifically, GPCRs are involved in cancer initiation and progression. However, compared with the involvement of the epidermal growth factor receptor in cancer, that of GPCRs have been largely ignored. Recent findings have implicated many GPCRs in tumorigenesis, tumor progression, invasion and metastasis. Moreover, GPCRs contribute to the establishment and maintenance of a microenvironment which is permissive for tumor formation and growth, including effects upon surrounding blood vessels, signaling molecules and the extracellular matrix. Thus, GPCRs are considered to be among the most useful drug targets against many solid cancers. Development of selective ligands targeting GPCRs may provide novel and effective treatment strategies against cancer and some anticancer compounds are now in clinical trials. Here, we focus on tumor related GPCRs, such as G protein-coupled receptor 30, the lysophosphatidic acid receptor, angiotensin receptors 1 and 2, the sphingosine 1-phosphate receptors and gastrin releasing peptide receptor. We also summarize their tissue distributions, activation and roles in tumorigenesis and discuss the potential use of GPCR agonists and antagonists in cancer therapy.

  7. G protein-coupled receptor mutations and human genetic disease.

    PubMed

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  8. [G-protein-coupled receptors targeting: the allosteric approach].

    PubMed

    Sebag, Julien A; Pantel, Jacques

    2012-10-01

    G-protein-coupled receptors (GPCR) are a major family of drug targets. Essentially all drugs targeting these receptors on the market compete with the endogenous ligand (agonists or antagonists) for binding the receptor. Recently, non-competitive compounds binding to distinct sites from the cognate ligand were documented in various classes of these receptors. These compounds, called allosteric modulators, generally endowed of a better selectivity are able to modulate specifically the endogenous signaling of the receptor. To better understand the promising potential of this class of GPCRs targeting compounds, this review highlights the properties of allosteric modulators, the strategies used to identify them and the challenges associated with the development of these compounds.

  9. [Regulation of G protein-coupled receptor kinase activity].

    PubMed

    Haga, T; Haga, K; Kameyama, K; Nakata, H

    1994-09-01

    Recent progress on the activation of G protein-coupled receptor kinases is reviewed. beta-Adrenergic receptor kinase (beta ARK) is activated by G protein beta gamma -subunits, which interact with the carboxyl terminal portion of beta ARK. Muscarinic receptor m2-subtypes are phosphorylated by beta ARK1 in the central part of the third intracellular loop (I3). Phosphorylation of I3-GST fusion protein by beta ARK1 is synergistically stimulated by the beta gamma -subunits and mastoparan or a peptide corresponding to portions adjacent to the transmembrane segments of m2-receptors or by beta gamma -subunits and the agonist-bound I3-deleted m2 variant. These results indicate that agonist-bound receptors serve as both substrates and activators of beta ARK.

  10. Membrane cholesterol access into a G-protein-coupled receptor

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Albasanz, José L.; Rodriguez-Espigares, Ismael; Pastor, Manuel; Sanz, Ferran; Martí-Solano, Maria; Manna, Moutusi; Martinez-Seara, Hector; Hildebrand, Peter W.; Martín, Mairena; Selent, Jana

    2017-02-01

    Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs.

  11. Oligomeric forms of G protein-coupled receptors (GPCRs)

    PubMed Central

    Palczewski, Krzysztof

    2010-01-01

    Oligomerization is a general characteristic of cell membrane receptors that is shared by G protein-coupled receptors (GPCRs) together with their G protein partners. Recent studies of these complexes, both in vivo and in purified reconstituted forms, unequivocally support this contention for GPCRs, perhaps with only rare exceptions. As evidence has evolved from experimental cell lines to more relevant in vivo studies and from indirect biophysical approaches to well defined isolated complexes of dimeric receptors alone and complexed with G proteins, there is an expectation that the structural basis of oligomerization and the functional consequences for membrane signaling will be elucidated. Oligomerization of cell membrane receptors is fully supported by both thermodynamic calculations and the selectivity and duration of signaling required to reach targets located in various cellular compartments. PMID:20538466

  12. Crystal Structure of a Lipid G Protein-Coupled Receptor

    SciTech Connect

    Hanson, Michael A; Roth, Christopher B; Jo, Euijung; Griffith, Mark T; Scott, Fiona L; Reinhart, Greg; Desale, Hans; Clemons, Bryan; Cahalan, Stuart M; Schuerer, Stephan C; Sanna, M Germana; Han, Gye Won; Kuhn, Peter; Rosen, Hugh; Stevens, Raymond C

    2012-03-01

    The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P1-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P1, resulting in the modulation of immune and stromal cell responses.

  13. Membrane cholesterol access into a G-protein-coupled receptor

    PubMed Central

    Guixà-González, Ramon; Albasanz, José L.; Rodriguez-Espigares, Ismael; Pastor, Manuel; Sanz, Ferran; Martí-Solano, Maria; Manna, Moutusi; Martinez-Seara, Hector; Hildebrand, Peter W.; Martín, Mairena; Selent, Jana

    2017-01-01

    Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs. PMID:28220900

  14. Serial Femtosecond Crystallography of G Protein-Coupled Receptors

    PubMed Central

    Liu, Wei; Wacker, Daniel; Gati, Cornelius; Han, Gye Won; James, Daniel; Wang, Dingjie; Nelson, Garrett; Weierstall, Uwe; Katritch, Vsevolod; Barty, Anton; Zatsepin, Nadia A.; Li, Dianfan; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Koglin, Jason E.; Seibert, M. Marvin; Wang, Chong; Shah, Syed T.A.; Basu, Shibom; Fromme, Raimund; Kupitz, Christopher; Rendek, Kimberley N.; Grotjohann, Ingo; Fromme, Petra; Kirian, Richard A.; Beyerlein, Kenneth R.; White, Thomas A.; Chapman, Henry N.; Caffrey, Martin; Spence, John C.H.; Stevens, Raymond C.; Cherezov, Vadim

    2014-01-01

    X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. Here we used an x-ray free-electron laser (XFEL) with individual 50-fs duration x-ray pulses to minimize radiation damage and obtained a high-resolution room temperature structure of a human serotonin receptor using sub-10 µm microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared to the structure solved by traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment. PMID:24357322

  15. Lysophospholipid activation of G protein-coupled receptors.

    PubMed

    Mutoh, Tetsuji; Chun, Jerold

    2008-01-01

    One of the major lipid biology discoveries in last decade was the broad range of physiological activities of lysophospholipids that have been attributed to the actions of lysophospholipid receptors. The most well characterized lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). Documented cellular effects of these lipid mediators include growth-factor-like effects on cells, such as proliferation, survival, migration, adhesion, and differentiation. The mechanisms for these actions are attributed to a growing family of 7-transmembrane, G protein-coupled receptors (GPCRs). Their pathophysiological actions include immune modulation, neuropathic pain modulation, platelet aggregation, wound healing, vasopressor activity, and angiogenesis. Here we provide a brief introduction to receptor-mediated lysophospholipid signaling and physiology, and then discuss potential therapeutic roles in human diseases.

  16. Cross-Pharmacology Analysis of G Protein-Coupled Receptors

    PubMed Central

    Briansó, Ferran; Carrascosa, Maria C.; Oprea, Tudor I.; Mestres, Jordi

    2013-01-01

    The degree of applicability of chemogenomic approaches to protein families depends on the accuracy and completeness of pharmacological data and the corresponding level of pharmacological similarity observed among their protein members. The recent public domain availability of pharmacological data for thousands of small molecules on 204 G protein-coupled receptors (GPCRs) provides a firm basis for an in-depth cross-pharmacology analysis of this superfamily. The number of protein targets included in the cross-pharmacology profile of the different GPCRs changes significantly upon varying the ligand similarity and binding affinity criteria. However, with the exception of muscarinic receptors, aminergic GPCRs distinguish themselves from the rest of the members in the family by their remarkably high levels of pharmacological similarity among them. Clusters of non-GPCR targets related by cross-pharmacology with particular GPCRs are identified and the implications for unwanted side-effects, as well as for repurposing opportunities, discussed. PMID:21851335

  17. Therapeutic antibodies directed at G protein-coupled receptors.

    PubMed

    Hutchings, Catherine J; Koglin, Markus; Marshall, Fiona H

    2010-01-01

    G protein-coupled receptors (GPCRs) are one of the most important classes of targets for small molecule drug discovery, but many current GPCRs of interest are proving intractable to small molecule discovery and may be better approached with bio-therapeutics. GPCRs are implicated in a wide variety of diseases where antibody therapeutics are currently used. These include inflammatory diseases such as rheumatoid arthritis and Crohn disease, as well as metabolic disease and cancer. Raising antibodies to GPCRs has been difficult due to problems in obtaining suitable antigen because GPCRs are often expressed at low levels in cells and are very unstable when purified. A number of new developments in over-expressing receptors, as well as formulating stable pure protein, are contributing to the growing interest in targeting GPCRs with antibodies. This review discusses the opportunities for targeting GPCRs with antibodies using these approaches and describes the therapeutic antibodies that are currently in clinical development.

  18. Therapeutic antibodies directed at G protein-coupled receptors

    PubMed Central

    Hutchings, Catherine J; Koglin, Markus

    2010-01-01

    G protein-coupled receptors (GPCRs) are one of the most important classes of targets for small molecule drug discovery, but many current GPCRs of interest are proving intractable to small molecule discovery and may be better approached with bio-therapeutics. GPCRs are implicated in a wide variety of diseases where antibody therapeutics are currently used. These include inflammatory diseases such as rheumatoid arthritis and Crohn disease, as well as metabolic disease and cancer. Raising antibodies to GPCRs has been difficult due to problems in obtaining suitable antigen because GPCRs are often expressed at low levels in cells and are very unstable when purified. A number of new developments in overexpressing receptors, as well as formulating stable pure protein, are contributing to the growing interest in targeting GPCRs with antibodies. This review discusses the opportunities for targeting GPCRs with antibodies using these approaches and describes the therapeutic antibodies that are currently in clinical development. PMID:20864805

  19. Enhancement of G Protein-Coupled Receptor Surface Expression

    PubMed Central

    Dunham, Jill H.; Hall, Randy A.

    2009-01-01

    G protein-coupled receptors (GPCRs) mediate physiological responses to a diverse array of stimuli and are the molecular targets for numerous therapeutic drugs. GPCRs primarily signal from the plasma membrane, but when expressed in heterologous cells many GPCRs exhibit poor trafficking to the cell surface. Multiple approaches have been taken to enhance GPCR surface expression in heterologous cells, including addition/deletion of receptor sequences, co-expression with interacting proteins, and treatment with pharmacological chaperones. In addition to allowing for enhanced surface expression of certain GPCRs in heterologous cells, these approaches have also shed light on the control of GPCR trafficking in vivo and in some cases have led to new therapeutic approaches for treating human diseases that result from defects in GPCR trafficking. PMID:19679364

  20. G protein-coupled receptors and the regulation of autophagy

    PubMed Central

    Wauson, Eric M.; Dbouk, Hashem A.; Ghosh, Anwesha B.; Cobb, Melanie H.

    2014-01-01

    Autophagy is an important catabolic cellular process that eliminates damaged and unnecessary cytoplasmic proteins and organelles. Basal autophagy occurs during normal physiological conditions, but the activity of this process can be significantly altered in human diseases. Thus, defining the regulatory inputs and signals that control autophagy is essential. Nutrients are key modulators of autophagy. While autophagy is generally accepted to be regulated in a cell autonomous fashion, recent studies suggest nutrients can modulate autophagy in a systemic manner by inducing the secretion of hormones and neurotransmitters that regulate G protein-coupled receptors (GPCRs). Emerging studies show that GPCRs also regulate autophagy by directly detecting extracellular nutrients. We review the role of GPCRs in autophagy regulation, highlighting their potential as therapeutic drug targets. PMID:24751357

  1. Cell-free expression of G-protein-coupled receptors.

    PubMed

    Orbán, Erika; Proverbio, Davide; Haberstock, Stefan; Dötsch, Volker; Bernhard, Frank

    2015-01-01

    Cell-free expression has emerged as a new standard for the production of membrane proteins. The reduction of expression complexity in cell-free systems eliminates central bottlenecks and allows the reliable and efficient synthesis of many different types of membrane proteins. Furthermore, the open accessibility of cell-free reactions enables the co-translational solubilization of cell-free expressed membrane proteins in a large variety of supplied additives. Hydrophobic environments can therefore be adjusted according to the requirements of individual membrane protein targets. We present different approaches for the preparative scale cell-free production of G-protein-coupled receptors using the extracts of Escherichia coli cells. We exemplify expression conditions implementing detergents, nanodiscs, or liposomes. The generated protein samples could be directly used for further functional characterization.

  2. Molecular dynamics techniques for modeling G protein-coupled receptors.

    PubMed

    McRobb, Fiona M; Negri, Ana; Beuming, Thijs; Sherman, Woody

    2016-10-01

    G protein-coupled receptors (GPCRs) constitute a major class of drug targets and modulating their signaling can produce a wide range of pharmacological outcomes. With the growing number of high-resolution GPCR crystal structures, we have the unprecedented opportunity to leverage structure-based drug design techniques. Here, we discuss a number of advanced molecular dynamics (MD) techniques that have been applied to GPCRs, including long time scale simulations, enhanced sampling techniques, water network analyses, and free energy approaches to determine relative binding free energies. On the basis of the many success stories, including those highlighted here, we expect that MD techniques will be increasingly applied to aid in structure-based drug design and lead optimization for GPCRs.

  3. GPCRDB: an information system for G protein-coupled receptors.

    PubMed Central

    Horn, F; Weare, J; Beukers, M W; Hörsch, S; Bairoch, A; Chen, W; Edvardsen, O; Campagne, F; Vriend, G

    1998-01-01

    The GPCRDB is a G protein-coupled receptor (GPCR) database system aimed at the collection and dissemination of GPCR related data. It holds sequences, mutant data and ligand binding constants as primary (experimental) data. Computationally derived data such as multiple sequence alignments, three dimensional models, phylogenetic trees and two dimensional visualization tools are added to enhance the database's usefulness. The GPCRDB is an EU sponsored project aimed at building a generic molecular class specific database capable of dealing with highly heterogeneous data. GPCRs were chosen as test molecules because of their enormous importance for medical sciences and due to the availability of so much highly heterogeneous data. The GPCRDB is available via the WWW at http://www.gpcr.org/7tm PMID:9399852

  4. Engineering therapeutic antibodies targeting G-protein-coupled receptors.

    PubMed

    Jo, Migyeong; Jung, Sang Taek

    2016-02-05

    G-protein-coupled receptors (GPCRs) are one of the most attractive therapeutic target classes because of their critical roles in intracellular signaling and their clinical relevance to a variety of diseases, including cancer, infection and inflammation. However, high conformational variability, the small exposed area of extracellular epitopes and difficulty in the preparation of GPCR antigens have delayed both the isolation of therapeutic anti-GPCR antibodies as well as studies on the structure, function and biochemical mechanisms of GPCRs. To overcome the challenges in generating highly specific anti-GPCR antibodies with enhanced efficacy and safety, various forms of antigens have been successfully designed and employed for screening with newly emerged systems based on laboratory animal immunization and high-throughput-directed evolution.

  5. Peptide drugs to target G protein-coupled receptors.

    PubMed

    Bellmann-Sickert, Kathrin; Beck-Sickinger, Annette G

    2010-09-01

    Major indications for use of peptide-based therapeutics include endocrine functions (especially diabetes mellitus and obesity), infectious diseases, and cancer. Whereas some peptide pharmaceuticals are drugs, acting as agonists or antagonists to directly treat cancer, others (including peptide diagnostics and tumour-targeting pharmaceuticals) use peptides to 'shuttle' a chemotherapeutic agent or a tracer to the tumour and allow sensitive imaging or targeted therapy. Significant progress has been made in the last few years to overcome disadvantages in peptide design such as short half-life, fast proteolytic cleavage, and low oral bioavailability. These advances include peptide PEGylation, lipidisation or multimerisation; the introduction of peptidomimetic elements into the sequences; and innovative uptake strategies such as liposomal, capsule or subcutaneous formulations. This review focuses on peptides targeting G protein-coupled receptors that are promising drug candidates or that have recently entered the pharmaceutical market.

  6. G-protein-coupled receptors, Hedgehog signaling and primary cilia.

    PubMed

    Mukhopadhyay, Saikat; Rohatgi, Rajat

    2014-09-01

    The Hedgehog (Hh) pathway has become an important model to study the cell biology of primary cilia, and reciprocally, the study of ciliary processes provides an opportunity to solve longstanding mysteries in the mechanism of vertebrate Hh signal transduction. The cilium is emerging as an unique compartment for G-protein-coupled receptor (GPCR) signaling in many systems. Two members of the GPCR family, Smoothened and Gpr161, play important roles in the Hh pathway. We review the current understanding of how these proteins may function to regulate Hh signaling and also highlight some of the critical unanswered questions being tackled by the field. Uncovering GPCR-regulated mechanisms important in Hh signaling may provide therapeutic strategies against the Hh pathway that plays important roles in development, regeneration and cancer.

  7. Lysophospholipids and their G protein-coupled receptors in atherosclerosis.

    PubMed

    Li, Ya-Feng; Li, Rong-Shan; Samuel, Sonia B; Cueto, Ramon; Li, Xin-Yuan; Wang, Hong; Yang, Xiao-Feng

    2016-01-01

    Lysophospholipids (LPLs) are bioactive lipid-derived signaling molecules generated by the enzymatic and chemical processes of regiospecific phospholipases on substrates such as membrane phospholipids (PLs) and sphingolipids (SLs). They play a major role as extracellular mediators by activating G-protein coupled receptors (GPCRs) and stimulating diverse cellular responses from their signaling pathways. LPLs are involved in various pathologies of the vasculature system including coronary heart disease and hypertension. Many studies suggest the importance of LPLs in their association with the development of atherosclerosis, a chronic and severe vascular disease. This paper focuses on the pathophysiological effects of different lysophospholipids on atherosclerosis, which may promote the pathogenesis of myocardial infarction and strokes. Their atherogenic biological activities take place in vascular endothelial cells, vascular smooth muscle cells, fibroblasts, monocytes and macrophages, dendritic cells, T-lymphocytes, platelets, etc.

  8. Lysophospholipids and their G protein-coupled receptors in atherosclerosis

    PubMed Central

    Li, Ya-Feng; Li, Rong-Shan; Samuel, Sonia B.; Cueto, Ramon; Li, Xin-Yuan; Wang, Hong; Yang, Xiao-Feng

    2015-01-01

    Lysophospholipids (LPLs) are bioactive lipid-derived signaling molecules generated by the enzymatic and chemical processes of regiospecific phospholipases on substrates such as membrane phospholipids (PLs) and sphingolipids (SLs). They play a major role as extracellular mediators by activating G-protein coupled receptors (GPCRs) and stimulating diverse cellular responses from their signaling pathways. LPLs are involved in various pathologies of the vasculature system including coronary heart disease and hypertension. Many studies suggest the importance of LPLs in their association with the development of atherosclerosis, a chronic and severe vascular disease. This paper focuses on the pathophysiological effects of different lysophospholipids on atherosclerosis, which may promote the pathogenesis of myocardial infarction and strokes. Their atherogenic biological activities take place in vascular endothelial cells, vascular smooth muscle cells, fibroblasts, monocytes and macrophages, dendritic cells, T-lymphocytes, platelets, etc. PMID:26594106

  9. Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis

    PubMed Central

    Zhang, Xiaohan; Kim, Kyeong-Man

    2017-01-01

    Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with β-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis. PMID:28035080

  10. Structural organization of G-protein-coupled receptors

    NASA Astrophysics Data System (ADS)

    Lomize, Andrei L.; Pogozheva, Irina D.; Mosberg, Henry I.

    1999-07-01

    Atomic-resolution structures of the transmembrane 7-α-helical domains of 26 G-protein-coupled receptors (GPCRs) (including opsins, cationic amine, melatonin, purine, chemokine, opioid, and glycoprotein hormone receptors and two related proteins, retinochrome and Duffy erythrocyte antigen) were calculated by distance geometry using interhelical hydrogen bonds formed by various proteins from the family and collectively applied as distance constraints, as described previously [Pogozheva et al., Biophys. J., 70 (1997) 1963]. The main structural features of the calculated GPCR models are described and illustrated by examples. Some of the features reflect physical interactions that are responsible for the structural stability of the transmembrane α-bundle: the formation of extensive networks of interhelical H-bonds and sulfur-aromatic clusters that are spatially organized as 'polarity gradients' the close packing of side-chains throughout the transmembrane domain; and the formation of interhelical disulfide bonds in some receptors and a plausible Zn2+ binding center in retinochrome. Other features of the models are related to biological function and evolution of GPCRs: the formation of a common 'minicore' of 43 evolutionarily conserved residues; a multitude of correlated replacements throughout the transmembrane domain; an Na+-binding site in some receptors, and excellent complementarity of receptor binding pockets to many structurally dissimilar, conformationally constrained ligands, such as retinal, cyclic opioid peptides, and cationic amine ligands. The calculated models are in good agreement with numerous experimental data.

  11. Peptide ligand recognition by G protein-coupled receptors

    PubMed Central

    Krumm, Brian E.

    2015-01-01

    The past few years have seen spectacular progress in the structure determination of G protein-coupled receptors (GPCRs). We now have structural representatives from classes A, B, C, and F. Within the rhodopsin-like class A, most structures belong to the α group, whereas fewer GPCR structures are available from the β, γ, and δ groups, which include peptide GPCRs such as the receptors for neurotensin (β group), opioids, chemokines (γ group), and protease-activated receptors (δ group). Structural information on peptide GPCRs is restricted to complexes with non-peptidic drug-like antagonists with the exception of the chemokine receptor CXCR4 that has been crystallized in the presence of a cyclic peptide antagonist. Notably, the neurotensin receptor 1 is to date the only peptide GPCR whose structure has been solved in the presence of a peptide agonist. Although limited in number, the current peptide GPCR structures reveal great diversity in shape and electrostatic properties of the ligand binding pockets, features that play key roles in the discrimination of ligands. Here, we review these aspects of peptide GPCRs in view of possible models for peptide agonist binding. PMID:25852552

  12. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  13. Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction?

    PubMed Central

    Johnson, Kari A.; Lovinger, David M.

    2016-01-01

    Drug abuse and addiction cause widespread social and public health problems, and the neurobiology underlying drug actions and drug use and abuse is an area of intensive research. Drugs of abuse alter synaptic transmission, and these actions contribute to acute intoxication as well as the chronic effects of abused substances. Transmission at most mammalian synapses involves neurotransmitter activation of two receptor subtypes, ligand-gated ion channels that mediate fast synaptic responses and G protein-coupled receptors (GPCRs) that have slower neuromodulatory actions. The GPCRs represent a large proportion of neurotransmitter receptors involved in almost all facets of nervous system function. In addition, these receptors are targets for many pharmacotherapeutic agents. Drugs of abuse directly or indirectly affect neuromodulation mediated by GPCRs, with important consequences for intoxication, drug taking and responses to prolonged drug exposure, withdrawal and addiction. Among the GPCRs are several subtypes involved in presynaptic inhibition, most of which are coupled to the Gi/o class of G protein. There is increasing evidence that these presynaptic Gi/o-coupled GPCRs have important roles in the actions of drugs of abuse, as well as behaviors related to these drugs. This topic will be reviewed, with particular emphasis on receptors for three neurotransmitters, Dopamine (DA; D1- and D2-like receptors), Endocannabinoids (eCBs; CB1 receptors) and glutamate (group II metabotropic glutamate (mGlu) receptors). The focus is on recent evidence from laboratory animal models (and some evidence in humans) implicating these receptors in the acute and chronic effects of numerous abused drugs, as well as in the control of drug seeking and taking. The ability of drugs targeting these receptors to modify drug seeking behavior has raised the possibility of using compounds targeting these receptors for addiction pharmacotherapy. This topic is also discussed, with emphasis on

  14. GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions.

    PubMed

    Xiao, Xuan; Wang, Pu; Chou, Kuo-Chen

    2011-03-01

    G protein-coupled receptors (GPCRs) are among the most frequent targets of therapeutic drugs. With the avalanche of newly generated protein sequences in the post genomic age, to expedite the process of drug discovery, it is highly desirable to develop an automated method to rapidly identify GPCRs and their types. A new predictor was developed by hybridizing two different modes of pseudo-amino acid composition (PseAAC): the functional domain PseAAC and the low-frequency Fourier spectrum PseAAC. The new predictor is called GPCR-2L, where "2L" means that it is a two-layer predictor: the 1st layer prediction engine is to identify a query protein as GPCR or not; if it is, the prediction will be automatically continued to further identify it as belonging to one of the following six types: (1) rhodopsin-like (Class A), (2) secretin-like (Class B), (3) metabotropic glutamate/pheromone (Class C), (4) fungal pheromone (Class D), (5) cAMP receptor (Class E), or (6) frizzled/smoothened family (Class F). The overall success rate of GPCR-2L in identifying proteins as GPCRs or non-GPCRs is over 97.2%, while identifying GPCRs among their six types is over 97.8%. Such high success rates were derived by the rigorous jackknife cross-validation on a stringent benchmark dataset, in which none of the included proteins had ≥40% pairwise sequence identity to any other protein in a same subset. As a user-friendly web-server, GPCR-2L is freely accessible to the public at http://icpr.jci.edu.cn/, by which one can obtain the 2-level results in about 20 s for a query protein sequence of 500 amino acids. The longer the sequence is, the more time it may usually need. The high success rates reported here indicate that it is a quite effective approach to identify GPCRs and their types with the functional domain information and the low-frequency Fourier spectrum analysis. It is anticipated that GPCR-2L may become a useful tool for both basic research and drug development in the areas related to

  15. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  16. Minireview: Nutrient Sensing by G Protein-Coupled Receptors

    PubMed Central

    Wauson, Eric M.; Lorente-Rodríguez, Andrés

    2013-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that recognize molecules in the extracellular milieu and transmit signals inside cells to regulate their behaviors. Ligands for many GPCRs are hormones or neurotransmitters that direct coordinated, stereotyped adaptive responses. Ligands for other GPCRs provide information to cells about the extracellular environment. Such information facilitates context-specific decision making that may be cell autonomous. Among ligands that are important for cellular decisions are amino acids, required for continued protein synthesis, as metabolic starting materials and energy sources. Amino acids are detected by a number of class C GPCRs. One cluster of amino acid-sensing class C GPCRs includes umami and sweet taste receptors, GPRC6A, and the calcium-sensing receptor. We have recently found that the umami taste receptor heterodimer T1R1/T1R3 is a sensor of amino acid availability that regulates the activity of the mammalian target of rapamycin. This review focuses on an array of findings on sensing amino acids and sweet molecules outside of neurons by this cluster of class C GPCRs and some of the physiologic processes regulated by them. PMID:23820899

  17. Regulation of G protein-coupled receptor export trafficking

    PubMed Central

    Dong, Chunmin; Filipeanu, Catalin M.; Duvernay, Matthew T.; Wu, Guangyu

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling. PMID:17074298

  18. Heterodimerization and Surface Localization of G Protein Coupled Receptors

    PubMed Central

    Minneman, Kenneth P.

    2007-01-01

    G protein coupled receptors (GPCRs) are one of the largest human gene families, and are targets for many important therapeutic drugs. Over the last few years, there has been a major paradigm shift in our understanding of how these receptors function. Formerly, GPCRs were thought to exist as monomers that, upon agonist occupation, activated a heterotrimeric G protein to alter the concentrations of specific second messengers. Until recently, this relatively linear cascade has been the standard paradigm for signaling by these molecules. However, it is now clear that this model is not adequate to explain many aspects of GPCR function. We now know that many, if not most, GPCRs form homo- and/or hetero-oligomeric complexes and interact directly with intracellular proteins in addition to G proteins. It now appears that many GPCRs may not function independently, but might more accurately be described as subunits of large multi-protein signaling complexes. These observations raise many important new questions; some of which include: 1) How many functionally and pharmacologically distinct receptor subtypes exist in vivo? 2) Which GPCRs physically associate, and in what stochiometries? 3) What are the roles of individual subunits in binding ligand and activating responses? 4) Are the pharmacological or signaling properties of GPCR heterodimers different from monomers? Since these receptors are the targets for a large number of clinically useful compounds, such information is likely to be of direct therapeutic importance, both in understanding how existing drugs work, but also in discovering novel compounds to treat disease. PMID:17011524

  19. Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists.

    PubMed

    Gertzen, Christoph G W; Spomer, Lina; Smits, Sander H J; Häussinger, Dieter; Keitel, Verena; Gohlke, Holger

    2015-11-02

    TGR5 (Gpbar-1, M-Bar) is a class A G-protein coupled bile acid-sensing receptor predominately expressed in brain, liver and gastrointestinal tract, and a promising drug target for the treatment of metabolic disorders. Due to the lack of a crystal structure of TGR5, the development of TGR5 agonists has been guided by ligand-based approaches so far. Three binding mode models of bile acid derivatives have been presented recently. However, they differ from one another in terms of overall orientation or with respect to the location and interactions of the cholane scaffold, or cannot explain all results from mutagenesis experiments. Here, we present an extended binding mode model based on an iterative and integrated computational and biological approach. An alignment of 68 TGR5 agonists based on this binding mode leads to a significant and good structure-based 3D QSAR model, which constitutes the most comprehensive structure-based 3D-QSAR study of TGR5 agonists undertaken so far and suggests that the binding mode model is a close representation of the "true" binding mode. The binding mode model is further substantiated in that effects predicted for eight mutations in the binding site agree with experimental analyses on the impact of these TGR5 variants on receptor activity. In the binding mode, the hydrophobic cholane scaffold of taurolithocholate orients towards the interior of the orthosteric binding site such that rings A and B are in contact with TM5 and TM6, the taurine side chain orients towards the extracellular opening of the binding site and forms a salt bridge with R79(EL1), and the 3-hydroxyl group forms hydrogen bonds with E169(5.44) and Y240(6.51). The binding mode thus differs in important aspects from the ones recently presented. These results are highly relevant for the development of novel, more potent agonists of TGR5 and should be a valuable starting point for the development of TGR5 antagonists, which could show antiproliferative effects in tumor

  20. Interaction of G protein coupled receptors and cholesterol.

    PubMed

    Gimpl, Gerald

    2016-09-01

    G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs.

  1. G-Protein-Coupled Receptors in Adult Neurogenesis

    PubMed Central

    Doze, Van A.

    2012-01-01

    The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed. PMID:22611178

  2. Adhesion family of G protein-coupled receptors and cancer.

    PubMed

    Lin, Hsi-Hsien

    2012-01-01

    The adhesion-class G protein-coupled receptors (adhesion-GPCRs) constitute the second largest GPCR sub-family in humans. Adhesion-GPCRs are defined by the chimeric structure of an unusually large extracellular cell-adhesion domain and a GPCR-like seven-pass transmembrane domain. Adhesion-GPCRs are hence expected to display both cellular adhesion and signaling functions in many biological systems. Adhesion-GPCRs are normally expressed in the central nervous, immune, and reproductive systems in a cell type- or tissue-restricted fashion. However, aberrant expression of distinct adhesion-GPCR molecules has been identified in various human cancers with some of the receptors closely associated with cancer development. Tumor-associated adhesion-GPCRs are thought to involve in tumorigenesis by affecting the growth of tumor cells, angiogenesis, tumor cell migration, invasion and metastasis either positively or negatively. Furthermore, some adhesion-GPCRs are considered potential biomarkers for specific types of cancers. In this review article, the expressional characteristics and functional role of cancer-associated adhesion-GPCRs are discussed in depth.

  3. G protein-coupled receptors participate in cytokinesis.

    PubMed

    Zhang, Xin; Bedigian, Anne V; Wang, Wenchao; Eggert, Ulrike S

    2012-10-01

    Cytokinesis, the last step during cell division, is a highly coordinated process that involves the relay of signals from both the outside and inside of the cell. We have a basic understanding of how cells regulate internal events, but how cells respond to extracellular cues is less explored. In a systematic RNAi screen of G protein-coupled receptors (GPCRs) and their effectors, we found that some GPCRs are involved in cytokinesis. RNAi knockdown of these GPCRs caused increased binucleated cell formation, and live cell imaging showed that most formed midbodies but failed at the abscission stage. OR2A4 (olfactory receptor, family 2, subfamily A, member 4) localized to cytokinetic structures in cells and its knockdown caused cytokinesis failure at an earlier stage, likely due to effects on the actin cytoskeleton. Identifying the downstream components that transmit GPCR signals during cytokinesis will be the next step and we show that GIPC1 (GIPC PDZ domain containing family, member 1), an adaptor protein for GPCRs, may play a part. RNAi knockdown of GIPC1 significantly increased binucleated cell formation. Understanding the molecular details of GPCRs and their interaction proteins in cytokinesis regulation will give us important clues about GPCRs signaling as well as how cells communicate with their environment during division.

  4. Quantifying agonist activity at G protein-coupled receptors.

    PubMed

    Ehlert, Frederick J; Suga, Hinako; Griffin, Michael T

    2011-12-26

    When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (K(b)) is much greater than that for the inactive state (K(a)). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (K(obs)), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the K(obs) and relative efficacy of an agonist. In this report, we show how to modify this analysis to estimate the agonist K(b) value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate K(b) in absolute units of M(-1). Our method of analyzing agonist concentration-response curves consists of global nonlinear regression using the operational model. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of K(obs) and a parameter proportional to efficacy (

  5. Alpha-Bulges in G Protein-Coupled Receptors

    PubMed Central

    van der Kant, Rob; Vriend, Gert

    2014-01-01

    Agonist binding is related to a series of motions in G protein-coupled receptors (GPCRs) that result in the separation of transmembrane helices III and VI at their cytosolic ends and subsequent G protein binding. A large number of smaller motions also seem to be associated with activation. Most helices in GPCRs are highly irregular and often contain kinks, with extensive literature already available about the role of prolines in kink formation and the precise function of these kinks. GPCR transmembrane helices also contain many α-bulges. In this article we aim to draw attention to the role of these α-bulges in ligand and G-protein binding, as well as their role in several aspects of the mobility associated with GPCR activation. This mobility includes regularization and translation of helix III in the extracellular direction, a rotation of the entire helix VI, an inward movement of the helices near the extracellular side, and a concerted motion of the cytosolic ends of the helices that makes their orientation appear more circular and that opens up space for the G protein to bind. In several cases, α-bulges either appear or disappear as part of the activation process. PMID:24806342

  6. G protein-coupled estrogen receptor protects from atherosclerosis.

    PubMed

    Meyer, Matthias R; Fredette, Natalie C; Howard, Tamara A; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B; Barton, Matthias; Prossnitz, Eric R

    2014-12-23

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity.

  7. G Protein-coupled Estrogen Receptor Protects from Atherosclerosis

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Howard, Tamara A.; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B.; Barton, Matthias; Prossnitz, Eric R.

    2014-01-01

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity. PMID:25532911

  8. G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling

    PubMed Central

    Zhao, Wen-Li; Wang, Di; Liu, Chun-Yan; Zhao, Xiao-Fan

    2016-01-01

    G-protein-coupled receptors (GPCRs) transmit extracellular signals across the cell membrane. GPCR kinases (GRKs) desensitize GPCR signals in the cell membrane. However, the role and mechanism of GRKs in the desensitization of steroid hormone signaling are unclear. In this study, we propose that GRK2 is phosphorylated by protein kinase C (PKC) in response to induction by the steroid hormone 20-hydroxyecdysone (20E), which determines its translocation to the cell membrane of the lepidopteran Helicoverpa armigera. GRK2 protein expression is increased during the metamorphic stage because of induction by 20E. Knockdown of GRK2 in larvae causes accelerated pupation, an increase in 20E-response gene expression, and advanced apoptosis and metamorphosis. 20E induces translocation of GRK2 from the cytoplasm to the cell membrane via steroid hormone ecdysone-responsive GPCR (ErGPCR-2). GRK2 is phosphorylated by PKC on serine 680 after induction by 20E, which leads to the translocation of GRK2 to the cell membrane. GRK2 interacts with ErGPCR-2. These data indicate that GRK2 terminates the ErGPCR-2 function in 20E signaling in the cell membrane by a negative feedback mechanism. PMID:27412951

  9. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups

    PubMed Central

    2013-01-01

    Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways

  10. Isolation of Drosophila genes encoding G protein-coupled receptor kinases.

    PubMed Central

    Cassill, J A; Whitney, M; Joazeiro, C A; Becker, A; Zuker, C S

    1991-01-01

    G protein-coupled receptors are regulated via phosphorylation by a variety of protein kinases. Recently, termination of the active state of two such receptors, the beta-adrenergic receptor and rhodopsin, has been shown to be mediated by agonist- or light-dependent phosphorylation of the receptor by members of a family of protein-serine/threonine kinases (here referred to as G protein-coupled receptor kinases). We now report the isolation of a family of genes encoding a set of Drosophila protein kinases that appear to code for G protein-coupled receptor kinases. These proteins share a high degree of sequence homology with the bovine beta-adrenergic receptor kinase. The presence of a conserved family of G protein-coupled receptor kinases in vertebrates and invertebrates points to the central role of these kinases in signal transduction cascades. Images PMID:1662381

  11. Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding.

    PubMed

    Ahn, Kwang H; Scott, Caitlin E; Abrol, Ravinder; Goddard, William A; Kendall, Debra A

    2013-08-01

    The cannabinoid receptor 1 (CB1), a member of the class A G-protein-coupled receptor (GPCR) family, possesses an observable level of constitutive activity. Its activation mechanism, however, has yet to be elucidated. Previously we discovered dramatic changes in CB1 activity due to single mutations; T3.46A, which made the receptor inactive, and T3.46I and L3.43A, which made it essentially fully constitutively active. Our subsequent prediction of the structures of these mutant receptors indicated that these changes in activity are explained in terms of the pattern of salt-bridges in the receptor region involving transmembrane domains 2, 3, 5, and 6. Here we identified key salt-bridges, R2.37 + D6.30 and D2.63 + K3.28, critical for CB1 inactive and active states, respectively, and generated new mutant receptors that we predicted would change CB1 activity by either precluding or promoting these interactions. We find that breaking the R2.37 + D6.30 salt-bridge resulted in substantial increase in G-protein coupling activity and reduced thermal stability relative to the wild-type reflecting the changes in constitutive activity from inactive to active. In contrast, breaking the D2.63 + K3.28 salt-bridge produced the opposite profile suggesting this interaction is critical for the receptor activation. Thus, we demonstrate an excellent correlation with the predicted pattern of key salt-bridges and experimental levels of activity and conformational flexibility. These results are also consistent with the extended ternary complex model with respect to shifts in agonist and inverse agonist affinity and provide a powerful framework for understanding the molecular basis for the multiple stages of CB1 activation and that of other GPCRs in general.

  12. Computational methods for studying G protein-coupled receptors (GPCRs).

    PubMed

    Kaczor, Agnieszka A; Rutkowska, Ewelina; Bartuzi, Damian; Targowska-Duda, Katarzyna M; Matosiuk, Dariusz; Selent, Jana

    2016-01-01

    The functioning of GPCRs is classically described by the ternary complex model as the interplay of three basic components: a receptor, an agonist, and a G protein. According to this model, receptor activation results from an interaction with an agonist, which translates into the activation of a particular G protein in the intracellular compartment that, in turn, is able to initiate particular signaling cascades. Extensive studies on GPCRs have led to new findings which open unexplored and exciting possibilities for drug design and safer and more effective treatments with GPCR targeting drugs. These include discovery of novel signaling mechanisms such as ligand promiscuity resulting in multitarget ligands and signaling cross-talks, allosteric modulation, biased agonism, and formation of receptor homo- and heterodimers and oligomers which can be efficiently studied with computational methods. Computer-aided drug design techniques can reduce the cost of drug development by up to 50%. In particular structure- and ligand-based virtual screening techniques are a valuable tool for identifying new leads and have been shown to be especially efficient for GPCRs in comparison to water-soluble proteins. Modern computer-aided approaches can be helpful for the discovery of compounds with designed affinity profiles. Furthermore, homology modeling facilitated by a growing number of available templates as well as molecular docking supported by sophisticated techniques of molecular dynamics and quantitative structure-activity relationship models are an excellent source of information about drug-receptor interactions at the molecular level.

  13. [Roles of G protein-coupled estrogen receptor in the male reproductive system].

    PubMed

    Chen, Kai-hong; Zhang, Xian; Jiang, Xue-wu

    2016-02-01

    The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.

  14. Role of antibodies in developing drugs that target G-protein-coupled receptor dimers.

    PubMed

    Hipser, Chris; Bushlin, Ittai; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A

    2010-01-01

    G-protein-coupled receptors are important molecular targets in drug discovery. These receptors play a pivotal role in physiological signaling pathways and are targeted by nearly 50% of currently available drugs. Mounting evidence suggests that G-protein-coupled receptors form dimers, and various studies have shown that dimerization is necessary for receptor maturation, signaling, and trafficking. However, the physiological implications of dimerization in vivo have not been well explored because detection of GPCR dimers in endogenous systems has been a challenging task. One exciting new approach to this challenge is the generation of antibodies against specific G-protein-coupled receptor dimers. Such antibodies could be used as tools for characterization of heteromer-specific function; as reagents for their purification, tissue localization, and regulation in vivo; and as probes for mapping their functional domains. In addition, such antibodies could serve as alternative ligands for G-protein-coupled receptor heteromers. Thus, heteromer-specific antibodies represent novel tools for the exploration and manipulation of G-protein-coupled receptor-dimer pharmacology.

  15. G protein-coupled receptors show unusual patterns of intrinsic unfolding.

    PubMed

    Jaakola, Veli-Pekka; Prilusky, Jaime; Sussman, Joel L; Goldman, Adrian

    2005-02-01

    Intrinsically unstructured proteins (IUPs) or IUP-like regions often play key roles in controlling processes ranging from transcription to the cell cycle. In silico such proteins can be identified by their sequence properties; they have low hydrophobicity and high net charge. In this study, we applied the FoldIndex (http://bioportal.weizmann.ac.il/fldbin/findex) program to analyze human G protein-coupled receptors and compared them with membrane proteins of known structure and with IUPs. We show that human G protein-coupled receptor (GPCR) extramembranous domains include long (>50 residues) disordered segments, unlike membrane proteins of known structure. The predicted disorder occurred primarily in the N-terminal, C-terminal and third intracellular domain regions: 55, 69 and 56% of the human GPCRs were disordered in these regions, respectively. This increased flexibility may therefore be critical for GPCR function. Surprisingly, however, the kinds of residues used in GPCR unstructured regions were different than in hitherto-identified IUPs. The GPCR third intracellular loop domains contain very high percentages of Arg, Lys and His residues, especially Arg, but the percentage of Glu, Asp and Pro is no higher than in folded proteins. We propose that this has structural and functional consequences.

  16. Allosteric Activation of a G Protein-coupled Receptor with Cell-penetrating Receptor Mimetics*

    PubMed Central

    Zhang, Ping; Leger, Andrew J.; Baleja, James D.; Rana, Rajashree; Corlin, Tiffany; Nguyen, Nga; Koukos, Georgios; Bohm, Andrew; Covic, Lidija; Kuliopulos, Athan

    2015-01-01

    G protein-coupled receptors (GPCRs) are remarkably versatile signaling systems that are activated by a large number of different agonists on the outside of the cell. However, the inside surface of the receptors that couple to G proteins has not yet been effectively modulated for activity or treatment of diseases. Pepducins are cell-penetrating lipopeptides that have enabled chemical and physical access to the intracellular face of GPCRs. The structure of a third intracellular (i3) loop agonist, pepducin, based on protease-activated receptor-1 (PAR1) was solved by NMR and found to closely resemble the i3 loop structure predicted for the intact receptor in the on-state. Mechanistic studies revealed that the pepducin directly interacts with the intracellular H8 helix region of PAR1 and allosterically activates the receptor through the adjacent (D/N)PXXYYY motif through a dimer-like mechanism. The i3 pepducin enhances PAR1/Gα subunit interactions and induces a conformational change in fluorescently labeled PAR1 in a very similar manner to that induced by thrombin. As pepducins can potentially be made to target any GPCR, these data provide insight into the identification of allosteric modulators to this major drug target class. PMID:25934391

  17. G-Protein Coupled Receptors (GPCRs): A Comprehensive Computational Perspective.

    PubMed

    Ramesh, M; Soliman, Mahmoud E

    2015-01-01

    GPCRs are ubiquitous in most of the organs of the human body. These receptors were found to be the important targets to attenuate inflammation, cancer, cardiac dysfunction, diabetes, etc. The advanced technologies employed on GPCRs provided an opportunity to understand the physiological process of various diseases. Recently, GPCRs were viewed as viable therapeutic targets to deliver safer and more efficacious drug. In the literature, several computational studies were reported to describe the biological mechanism, function and three-dimensional structure of GPCRs. These studies revealed the multiple conserved transmembrane domains of GPCRs which were connected by intra and extracellular loops. In this review, we provide an updated overview on the computational tools and methodologies which were conducted to explore the structural and mechanistic features of GPCRs. The study also demonstrates the most recent computer-aided drug design approaches employed on GPCRs. This review provides the information that can be exploited toward the molecular understanding of GPCRs with an aim to design the novel ligands for GPCRs.

  18. G protein-coupled receptors provide survival signals in prostate cancer.

    PubMed

    Yowell, Charles W; Daaka, Yehia

    2002-12-01

    Prostate cancer is the leading cause for noncutaneous cancer-related deaths among men in the United States. The disease is biologically characterized as being either androgen dependent or androgen independent. Whereas androgen-dependent prostate cancer can be successfully treated with androgen ablative therapy, to date no cure exists for androgen-independent disease. Mechanisms involved in the progression of prostate cancer to androgen independence are not known. Here we present evidence that in addition to growth factor receptor tyrosine kinases, G protein- coupled receptors can mediate survival signals in prostate cancer cells. The G protein- coupled receptors exert their effects by activating multiple intracellular signal transduction networks that promote prostate cancer cell survival, including the activation of c-Jun N-terminal kinase, protein kinase B (Akt) and nuclear factor-kB. Prostate-expressed G protein- coupled receptors and their downstream effectors may prove to be effective targets in the treatment of advanced prostate cancer.

  19. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical c...

  20. An algebra of dimerization and its implications for G-protein coupled receptor signaling.

    PubMed

    Woolf, Peter J; Linderman, Jennifer J

    2004-07-21

    Many species of receptors form dimers, but how can we use this information to make predictions about signal transduction? This problem is particularly difficult when receptors dimerize with many different species, leading to a combinatoric increase in the possible number of dimer pairs. As an example system, we focus on receptors in the G-protein coupled receptor (GPCR) family. GPCRs have been shown to reversibly form dimers, but this dimerization does not directly affect signal transduction. Here we present a new theoretical framework called a dimerization algebra. This algebra provides a systematic and rational way to represent, manipulate, and in some cases simplify large and often complicated networks of dimerization interactions. To compliment this algebra, Monte Carlo simulations are used to predict dimerization's effect on receptor organization on the membrane, signal transduction, and internalization. These simulation results are directly comparable to various experimental measures such as fluorescence resonance energy transfer (FRET), and as such provide a link between the dimerization algebra and experimental data. As an example, we show how the algebra and computational results can be used to predict the effects of dimerization on the dopamine D2 and somatastatin SSTR1 receptors. When these predictions were compared to experimental findings from the literature, good agreement was found, demonstrating the utility of our approach. Applications of this work to the development of a novel class of dimerization-modulating drugs are also discussed.

  1. Integrating Pharmacophore into Membrane Molecular Dynamics Simulations to Improve Homology Modeling of G Protein-coupled Receptors with Ligand Selectivity: A2A Adenosine Receptor as an Example.

    PubMed

    Zeng, Lingxiao; Guan, Mengxin; Jin, Hongwei; Liu, Zhenming; Zhang, Liangren

    2015-12-01

    Homology modeling has been applied to fill in the gap in experimental G protein-coupled receptors structure determination. However, achievement of G protein-coupled receptors homology models with ligand selectivity remains challenging due to structural diversity of G protein-coupled receptors. In this work, we propose a novel strategy by integrating pharmacophore and membrane molecular dynamics (MD) simulations to improve homology modeling of G protein-coupled receptors with ligand selectivity. To validate this integrated strategy, the A2A adenosine receptor (A2A AR), whose structures in both active and inactive states have been established, has been chosen as an example. We performed blind predictions of the active-state A2A AR structure based on the inactive-state structure and compared the performance of different refinement strategies. The blind prediction model combined with the integrated strategy identified ligand-receptor interactions and conformational changes of key structural elements related to the activation of A2 A AR, including (i) the movements of intracellular ends of TM3 and TM5/TM6; (ii) the opening of ionic lock; (iii) the movements of binding site residues. The integrated strategy of pharmacophore with molecular dynamics simulations can aid in the optimization in the identification of side chain conformations in receptor models. This strategy can be further investigated in homology modeling and expand its applicability to other G protein-coupled receptor modeling, which should aid in the discovery of more effective and selective G protein-coupled receptor ligands.

  2. The G protein-coupled estrogen receptor 1 (GPER/GPR30) does not predict survival in patients with ovarian cancer

    PubMed Central

    2012-01-01

    Background Even though ovarian tumors are not generally considered estrogen-sensitive, estrogens may still have an impact on ovarian tumor progression. The recently identified trans-membrane estrogen receptor GPER is involved in rapid estrogen signaling. Furthermore, it binds selective estrogen receptor modulators with agonistic effect, which could explain tamoxifen controversies. Methods GPER mRNA was assayed with quantitative real-time PCR (qPCR) in 42 primary ovarian tumors and 7 ovarian cancer cell lines. ERα and ERβ mRNA were analyzed for comparison. GPER protein was semi-quantified with densitometric scanning of Western blots and its tissue distribution analyzed with immunohistochemistry (IHC) in 40 ovarian tumors. In addition, IHC was evaluated in a tissue microarray (TMA) of 150 primary malignant ovarian tumors. Results All tumor samples contained GPER mRNA. The content of mRNA was not different between benign and malignant tumors, but one third of malignant samples over-expressed GPER mRNA. The content of ERα mRNA was higher in malignant than in benign tumors, whereas ERβ mRNA was higher in benign than in malignant tumors. GPER mRNA was detected in all seven ovarian cancer cell lines with highest levels in TOV21G and TOV112D cells. Similar expression pattern was seen for ERβ mRNA. Western blot demonstrated GPER protein in all tumor samples. Semi-quantification showed no difference between benign and malignant tumors, but about one third of malignant samples over-expressed GPER protein. GPER staining was localized mainly in epithelial cells. In the TMA study we found no correlation between GPER staining and clinical stage, histological grade or patient survival. Conclusions GPER mRNA as well as GPER protein is present in both benign and malignant ovarian tumor tissue. About one third of malignant tumors over-expressed both GPER mRNA and protein. This, however, correlated neither with histological or clinical parameters nor with patient survival. PMID

  3. Ligands Raise the Constraint That Limits Constitutive Activation in G Protein-coupled Opioid Receptors*

    PubMed Central

    Vezzi, Vanessa; Onaran, H. Ongun; Molinari, Paola; Guerrini, Remo; Balboni, Gianfranco; Calò, Girolamo; Costa, Tommaso

    2013-01-01

    Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4–5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the “two state” extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form. PMID:23836900

  4. Ligands raise the constraint that limits constitutive activation in G protein-coupled opioid receptors.

    PubMed

    Vezzi, Vanessa; Onaran, H Ongun; Molinari, Paola; Guerrini, Remo; Balboni, Gianfranco; Calò, Girolamo; Costa, Tommaso

    2013-08-16

    Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4-5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the "two state" extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form.

  5. GRK2: multiple roles beyond G protein-coupled receptor desensitization

    PubMed Central

    Evron, Tama; Daigle, Tanya L.; Caron, Marc G.

    2012-01-01

    G protein-coupled receptor kinases (GRKs) regulate numerous G protein-coupled receptors (GPCRs) by phosphorylating the intracellular domain of the active receptor, resulting in receptor desensitization and internalization. GRKs also regulate GPCR trafficking in a phosphorylation-independent manner via direct protein-protein interactions. Emerging evidence suggests that GRK2, the most widely studied member of this family of kinases, modulates multiple cellular responses in various physiological contexts by either phosphorylating non-receptor substrates or by directly interacting with signaling molecules. In this review, we discuss traditional and newly discovered roles of GRK2 in receptor internalization and signaling as well as its impact on non-receptor substrates. We also discuss novel exciting roles of GRK2 in the regulation of dopamine receptor signaling and in the activation and trafficking of the atypical GPCR, Smoothened (Smo). PMID:22277298

  6. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection.

    PubMed

    Rosero, Rebecca A; Villares, Gabriel J; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers.

  7. Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands

    PubMed Central

    Ciruela, Francisco; Fernández-Dueñas, Víctor; Jacobson, Kenneth A.

    2015-01-01

    The use of G protein-coupled receptors fluorescent ligands is undergoing continuous expansion. In line with this, fluorescent agonists and antagonists of high affinity for G protein-coupled adenosine and P2Y receptors have been shown to be useful pharmacological probe compounds. Fluorescent ligands for A1R, A2AR, and A3R (adenosine receptors) and P2Y2R, P2Y4R, P2Y6R, and P2Y14R (nucleotide receptors) have been reported. Such ligands have been successfully applied to drug discovery and to GPCR characterization by flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer and scanning confocal microscopy. Here we summarize recently reported and readily available representative fluorescent ligands of purinergic receptors. In addition, we pay special attention on the use of this family of fluorescent ligands revealing two main aspects of purinergic receptor biology, namely ligand binding and receptor oligomerization. PMID:25890205

  8. Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response.

    PubMed

    Alvaro, Christopher G; Thorner, Jeremy

    2016-04-08

    The DNAs encoding the receptors that respond to the peptide mating pheromones of the budding yeastSaccharomyces cerevisiaewere isolated in 1985, and were the very first genes for agonist-binding heterotrimeric G protein-coupled receptors (GPCRs) to be cloned in any organism. Now, over 30 years later, this yeast and its receptors continue to provide a pathfinding experimental paradigm for investigating GPCR-initiated signaling and its regulation, as described in this retrospective overview.

  9. G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids.

    PubMed

    Wang, Chen; Liu, Yi; Cao, Ji-Min

    2014-09-01

    Steroids hormones possess two distinct actions, a delayed genomic effect and a rapid non-genomic effect. Rapid steroid-triggered signaling is mediated by specific receptors localized most often to the plasma membrane. The nature of these receptors is of great interest and accumulated data suggest that G protein-coupled receptors (GPCRs) are appealing candidates. Increasing evidence regarding the interaction between steroids and specific membrane proteins, as well as the involvement of G protein and corresponding downstream signaling, have led to identification of physiologically relevant GPCRs as steroid extranuclear receptors. Examples include G protein-coupled receptor 30 (GPR30) for estrogen, membrane progestin receptor for progesterone, G protein-coupled receptor family C group 6 member A (GPRC6A) and zinc transporter member 9 (ZIP9) for androgen, and trace amine associated receptor 1 (TAAR1) for thyroid hormone. These receptor-mediated biological effects have been extended to reproductive development, cardiovascular function, neuroendocrinology and cancer pathophysiology. However, although great progress have been achieved, there are still important questions that need to be answered, including the identities of GPCRs responsible for the remaining steroids (e.g., glucocorticoid), the structural basis of steroids and GPCRs' interaction and the integration of extranuclear and nuclear signaling to the final physiological function. Here, we reviewed the several significant developments in this field and highlighted a hypothesis that attempts to explain the general interaction between steroids and GPCRs.

  10. The use of receptor-specific antibodies to study G-protein-coupled receptors.

    PubMed

    Gupta, Achla; Devi, Lakshmi A

    2006-07-01

    The identification of G-protein-coupled receptor (GPCR) cDNAs has facilitated a number of studies characterizing the biochemical properties of the receptor protein. Most of these studies have used antibodies directed against the epitope-tagged receptor expressed in heterologous cells, because of the lack of sensitive and selective antibodies capable of recognizing endogenous receptors in their native state. In order to facilitate studies with endogenous receptors, efforts have been made to generate receptor-type selective, sensitive antibodies that are able to recognize endogenous receptors. In this review, we discuss the strategies as well as the details of the techniques used for the generation of monoclonal and polyclonal antibodies with a focus on family A GPCRs.

  11. Antibodies to probe endogenous G protein-coupled receptor heteromer expression, regulation, and function

    PubMed Central

    Gomes, Ivone; Gupta, Achla; Bushlin, Ittai; Devi, Lakshmi A.

    2014-01-01

    Over the last decade an increasing number of studies have focused on the ability of G protein-coupled receptors to form heteromers and explored how receptor heteromerization modulates the binding, signaling and trafficking properties of individual receptors. Most of these studies were carried out in heterologous cells expressing epitope tagged receptors. Very little information is available about the in vivo physiological role of G protein-coupled receptor heteromers due to a lack of tools to detect their presence in endogenous tissue. Recent advances such as the generation of mouse models expressing fluorescently labeled receptors, of TAT based peptides that can disrupt a given heteromer pair, or of heteromer-selective antibodies that recognize the heteromer in endogenous tissue have begun to elucidate the physiological and pathological roles of receptor heteromers. In this review we have focused on heteromer-selective antibodies and describe how a subtractive immunization strategy can be successfully used to generate antibodies that selectively recognize a desired heteromer pair. We also describe the uses of these antibodies to detect the presence of heteromers, to study their properties in endogenous tissues, and to monitor changes in heteromer levels under pathological conditions. Together, these findings suggest that G protein-coupled receptor heteromers represent unique targets for the development of drugs with reduced side-effects. PMID:25520661

  12. GAP-43 augments G protein-coupled receptor transduction in Xenopus laevis oocytes.

    PubMed Central

    Strittmatter, S M; Cannon, S C; Ross, E M; Higashijima, T; Fishman, M C

    1993-01-01

    The neuronal protein GAP-43 is thought to play a role in determining growth-cone motility, perhaps as an intracellular regulator of signal transduction, but its molecular mechanism of action has remained unclear. We find that GAP-43, when microinjected into Xenopus laevis oocytes, increases the oocyte response to G protein-coupled receptor agonists by 10- to 100-fold. Higher levels of GAP-43 cause a transient current flow, even without receptor stimulation. The GAP-43-induced current, like receptor-stimulated currents, is mediated by a calcium-activated chloride channel and can be desensitized by injection of inositol 1,4,5-trisphosphate. This suggests that neuronal GAP-43 may serve as an intracellular signal to greatly enhance the sensitivity of G protein-coupled receptor transduction. Images Fig. 1 Fig. 2 PMID:7685122

  13. Structure-based drug design for G protein-coupled receptors.

    PubMed

    Congreve, Miles; Dias, João M; Marshall, Fiona H

    2014-01-01

    Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed.

  14. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases.

    PubMed

    Singh, Anukriti; Nunes, Jessica J; Ateeq, Bushra

    2015-09-15

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases.

  15. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases

    PubMed Central

    Singh, Anukriti; Nunes, Jessica J.; Ateeq, Bushra

    2015-01-01

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases. PMID:25981295

  16. Structural modeling of G-protein coupled receptors: An overview on automatic web-servers.

    PubMed

    Busato, Mirko; Giorgetti, Alejandro

    2016-08-01

    Despite the significant efforts and discoveries during the last few years in G protein-coupled receptor (GPCR) expression and crystallization, the receptors with known structures to date are limited only to a small fraction of human GPCRs. The lack of experimental three-dimensional structures of the receptors represents a strong limitation that hampers a deep understanding of their function. Computational techniques are thus a valid alternative strategy to model three-dimensional structures. Indeed, recent advances in the field, together with extraordinary developments in crystallography, in particular due to its ability to capture GPCRs in different activation states, have led to encouraging results in the generation of accurate models. This, prompted the community of modelers to render their methods publicly available through dedicated databases and web-servers. Here, we present an extensive overview on these services, focusing on their advantages, drawbacks and their role in successful applications. Future challenges in the field of GPCR modeling, such as the predictions of long loop regions and the modeling of receptor activation states are presented as well.

  17. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer

    PubMed Central

    Lynch, Jennifer R.; Wang, Jenny Yingzi

    2016-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies. PMID:27187360

  18. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer.

    PubMed

    Lynch, Jennifer R; Wang, Jenny Yingzi

    2016-05-11

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.

  19. Strategic Research Institute G-Protein-Coupled Receptors Drug Discovery World Summit.

    PubMed

    Felder, Christian C

    2004-08-01

    The Strategic Research Institute provided a well-organised 2-day summit that offered presentations and posters on new assay technology, structure-based small-molecule discovery and examples of clinical candidates targeted to G-protein-coupled receptor (GPCR) targets. A wide variety of topics were presented providing recent advances in GPCR target selection, bioassay-enabling technology and medicinal chemistry targeted to GPCR-relevant chemical libraries. GPCRs continue to be an attractive platform for drug discovery.

  20. A Practical Guide to Approaching Biased Agonism at G Protein Coupled Receptors.

    PubMed

    Gundry, Jaimee; Glenn, Rachel; Alagesan, Priya; Rajagopal, Sudarshan

    2017-01-01

    Biased agonism, the ability of a receptor to differentially activate downstream signaling pathways depending on binding of a "biased" agonist compared to a "balanced" agonist, is a well-established paradigm for G protein-coupled receptor (GPCR) signaling. Biased agonists have the promise to act as smarter drugs by specifically targeting pathogenic or therapeutic signaling pathways while avoiding others that could lead to side effects. A number of biased agonists targeting a wide array of GPCRs have been described, primarily based on their signaling in pharmacological assays. However, with the promise of biased agonists as novel therapeutics, comes the peril of not fully characterizing and understanding the activities of these compounds. Indeed, it is likely that some of the compounds that have been described as biased, may not be if quantitative approaches for bias assessment are used. Moreover, cell specific effects can result in "system bias" that cannot be accounted by current approaches for quantifying ligand bias. Other confounding includes kinetic effects which can alter apparent bias and differential propagation of biological signal that results in different levels of amplification of reporters downstream of the same effector. Moreover, the effects of biased agonists frequently cannot be predicted from their pharmacological profiles, and must be tested in the vivo physiological context. Thus, the development of biased agonists as drugs requires a detailed pharmacological characterization, involving both qualitative and quantitative approaches, and a detailed physiological characterization. With this understanding, we stand on the edge of a new era of smarter drugs that target GPCRs.

  1. G protein-coupled receptors in child development, growth, and maturation.

    PubMed

    Latronico, Ana Claudia; Hochberg, Ze'ev

    2010-10-12

    G protein-coupled receptors (GPCRs) constitute a large family of cell membrane receptors that affect embryogenesis, development, and child physiology, and they are targets for approved drugs and those still in development. The sensitivity of GPCRs to their respective extracellular hormones, neurotransmitters, and environmental stimulants, as well as their interaction with other receptors and intracellular signaling proteins (such as receptor activity-modifying proteins), contribute to variations in child development, growth, and maturation. Here, we summarize current knowledge about the mechanisms of activation (in either the presence or absence of ligands) that lead to the sensitivities of GPCRs and their respective effects as seen throughout human developmental and maturational phases.

  2. Large-scale production and protein engineering of G protein-coupled receptors for structural studies

    PubMed Central

    Milić, Dalibor; Veprintsev, Dmitry B.

    2015-01-01

    Structural studies of G protein-coupled receptors (GPCRs) gave insights into molecular mechanisms of their action and contributed significantly to molecular pharmacology. This is primarily due to technical advances in protein engineering, production and crystallization of these important receptor targets. On the other hand, NMR spectroscopy of GPCRs, which can provide information about their dynamics, still remains challenging due to difficulties in preparation of isotopically labeled receptors and their low long-term stabilities. In this review, we discuss methods used for expression and purification of GPCRs for crystallographic and NMR studies. We also summarize protein engineering methods that played a crucial role in obtaining GPCR crystal structures. PMID:25873898

  3. Large-scale production and protein engineering of G protein-coupled receptors for structural studies.

    PubMed

    Milić, Dalibor; Veprintsev, Dmitry B

    2015-01-01

    Structural studies of G protein-coupled receptors (GPCRs) gave insights into molecular mechanisms of their action and contributed significantly to molecular pharmacology. This is primarily due to technical advances in protein engineering, production and crystallization of these important receptor targets. On the other hand, NMR spectroscopy of GPCRs, which can provide information about their dynamics, still remains challenging due to difficulties in preparation of isotopically labeled receptors and their low long-term stabilities. In this review, we discuss methods used for expression and purification of GPCRs for crystallographic and NMR studies. We also summarize protein engineering methods that played a crucial role in obtaining GPCR crystal structures.

  4. Sequential Co-immunoprecipitation and Immunoblot Approach to Determine Oligomerisation of G-Protein-Coupled Receptors.

    PubMed

    Guest, Paul C

    2017-01-01

    G-protein-coupled receptors (GPCRs) play a major role in psychiatric disorders and are the targets of several current therapeutic approaches in this field. A number of studies have now shown that GPCRs can assemble as high molecular weight homo- and hetero-oligomers, which could affect ligand binding, intracellular signalling or trafficking. This information could be critical in design of new drugs to treat neurological and psychiatric disorders. This chapter describes a sequential co-immunoprecipitation and immunoblot protocol for determining oligomerisation of the 5-hydroxytryptamine (HT)1A receptor with other GPCRs in co-transfected HEK-293 cells.

  5. Understanding the added value of g-protein-coupled receptor heteromers.

    PubMed

    Franco, Nuria; Franco, Rafael

    2014-01-01

    G-protein-coupled receptors (GPCRs) constitute the most populated family of proteins within the human genome. Since the early sixties work on GPCRs and on GPCR-mediated signaling has led to a number of awards, the most recent being the Nobel Prize in Chemistry for 2012. The future of GPCRs research is surely based on their capacity for heteromerization. Receptor heteromers offer a series of challenges that will help in providing success in academic/basic research and translation into more effective and safer drugs.

  6. Amphipols in G protein-coupled receptor pharmacology: what are they good for?

    PubMed

    Mary, Sophie; Damian, Marjorie; Rahmeh, Rita; Mouillac, Bernard; Marie, Jacky; Granier, Sébastien; Banères, Jean-Louis

    2014-10-01

    G protein-coupled receptors are at a central node of all cell communications. Investigating their molecular functioning is therefore crucial for both academic purposes and drug design. However, getting the receptors as isolated, stable and purified proteins for such studies still stumbles over their instability out of the membrane environment. Different membrane-mimicking environments have been developed so far to increase the stability of purified receptors. Among them are amphipols. These polymers not only preserve the native fold of receptors purified from membrane fractions but they also allow specific applications such as folding receptors purified from inclusion bodies back to their native state. Of importance, amphipol-trapped G protein-coupled receptors essentially maintain their pharmacological properties so that they are perfectly adapted to further investigate the molecular mechanisms underlying signaling processes. We review here how amphipols have been used to refold and stabilize detergent-solubilized purified receptors and what are the main subsequent molecular pharmacology analyses that were performed using this strategy.

  7. Tyrosine kinase receptor transactivation associated to G protein-coupled receptors.

    PubMed

    Almendro, Vanessa; García-Recio, Susana; Gascón, Pedro

    2010-09-01

    G protein-coupled receptors (GPCRs) comprise a large family of membrane receptors involved in signal transduction. These receptors are linked to a variety of physiological and biological processes such as regulation of neurotransmission, growth, cell differentiation and oncogenesis among others. Some of the effects of GPCRs are known to be mediated by the activation of MAPK pathways. Several GPCRs are also able to transactivate receptors with tyrosine kinase activity (TKR) such as EGFR and HER2 and thus to control DNA synthesis and cell proliferation. The interaction between these receptors not only plays an important physiological role but its disregulation can induce pathological states such as cancer. For this reason, the crosstalk between these two types of receptors can be considered a possible mechanism for cell transformation, tumor progression, reactivation of the metastatic disease, and the acquisition of resistance to therapies targeting TKR receptors. The transactivation of some TKRs by GPCRs is related to the lost of response of TKRs to inhibitors of TK activity, mainly by the activation of the c-Src protein which can directly phosphorylate and activate the cytoplasmic domain of a TKR. For these reason, the dual inhibition of GPCRs and TKRs in some types of cancer has been proposed as a better strategy to kill tumor cells. Increased understanding of the mechanisms that interconnect the two pathways regulated by GPCRs and TKRs may facilitate the design of new therapeutic strategies.

  8. The Concise Guide to Pharmacology 2013/14: G Protein-Coupled Receptors

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24517644

  9. Production of a bioengineered G-protein coupled receptor of human formyl peptide receptor 3.

    PubMed

    Wang, Xiaoqiang; Zhang, Shuguang

    2011-01-01

    G-protein coupled receptors (GPCRs) participate in a wide range of vital regulations of our physiological actions. They are also of pharmaceutical importance and have become many therapeutic targets for a number of disorders and diseases. Purified GPCR-based approaches including structural study and novel biophysical and biochemical function analyses are increasingly being used in GPCR-directed drug discovery. Before these approaches become routine, however, several hurdles need to be overcome; they include overexpression, solubilization, and purification of large quantities of functional and stable receptors on a regular basis. Here we report milligram production of a human formyl peptide receptor 3 (FPR3). FPR3 comprises a functionally distinct GPCR subfamily that is involved in leukocyte chemotaxis and activation. The bioengineered FPR3 was overexpressed in stable tetracycline-inducible mammalian cell lines (HEK293S). After a systematic detergent screening, fos-choline-14 (FC-14) was selected for subsequent solubilization and purification processes. A two-step purification method, immunoaffinity using anti-rho-tag monoclonal antibody 1D4 and gel filtration, was used to purify the receptors to near homogeneity. Immunofluorescence analysis showed that expressed FPR3 was predominantly displayed on cellular membrane. Secondary structural analysis using circular dichroism showed that the purified FPR3 receptor was correctly folded with >50% α-helix, which is similar to other known GPCR secondary structures. Our method can readily produce milligram quantities of human FPR3, which would facilitate in developing human FPR as therapeutic drug targets.

  10. A Practical Guide to Approaching Biased Agonism at G Protein Coupled Receptors

    PubMed Central

    Gundry, Jaimee; Glenn, Rachel; Alagesan, Priya; Rajagopal, Sudarshan

    2017-01-01

    Biased agonism, the ability of a receptor to differentially activate downstream signaling pathways depending on binding of a “biased” agonist compared to a “balanced” agonist, is a well-established paradigm for G protein-coupled receptor (GPCR) signaling. Biased agonists have the promise to act as smarter drugs by specifically targeting pathogenic or therapeutic signaling pathways while avoiding others that could lead to side effects. A number of biased agonists targeting a wide array of GPCRs have been described, primarily based on their signaling in pharmacological assays. However, with the promise of biased agonists as novel therapeutics, comes the peril of not fully characterizing and understanding the activities of these compounds. Indeed, it is likely that some of the compounds that have been described as biased, may not be if quantitative approaches for bias assessment are used. Moreover, cell specific effects can result in “system bias” that cannot be accounted by current approaches for quantifying ligand bias. Other confounding includes kinetic effects which can alter apparent bias and differential propagation of biological signal that results in different levels of amplification of reporters downstream of the same effector. Moreover, the effects of biased agonists frequently cannot be predicted from their pharmacological profiles, and must be tested in the vivo physiological context. Thus, the development of biased agonists as drugs requires a detailed pharmacological characterization, involving both qualitative and quantitative approaches, and a detailed physiological characterization. With this understanding, we stand on the edge of a new era of smarter drugs that target GPCRs. PMID:28174517

  11. Allosteric mechanisms of G protein coupled receptor signaling: a structural perspective

    PubMed Central

    Thaker, Tarjani M.; Kaya, Ali I.; Preininger, Anita M.; Hamm, Heidi E.; Iverson, T.M.

    2012-01-01

    G protein-Coupled Receptors (GPCRs) use a complex series of intramolecular conformational changes to couple agonist binding to the binding and activation of cognate heterotrimeric G protein (Gαβγ). The mechanisms underlying this long-range activation have been identified using a variety of biochemical and structural approaches and have primarily used visual signal transduction via the GPCR rhodopsin and cognate heterotrimeric G protein transducin (Gt) as a model system. In this chapter, we will review the methods that have revealed allosteric signaling through rhodopsin and transducin. These methods can be applied to a variety of GPCR-mediated signaling pathways. PMID:22052489

  12. Alternative Splicing of G-protein Coupled Receptors: Relevance to Pain Management

    PubMed Central

    Oladosu, Folabomi A.; Maixner, William; Nackley, Andrea G.

    2015-01-01

    Drugs that target G-protein coupled receptors (GPCRs) represent the primary treatment strategy for patients with acute and chronic pain; however, there is substantial individual variability in both the efficacy and adverse side effects associated with these drugs. Variability in drug responses is, in part, due to individuals’ diversity in alternative splicing of pain-relevant GPCRs. GPCR alternative splice variants often exhibit distinct tissue distribution patterns, drug binding properties, and signaling characteristics that may impact disease pathology as well as the size and direction of analgesic effects. Here, we review the importance of GPCRs and their known splice variants to the management of pain. PMID:26250730

  13. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer.

    PubMed

    O'Hayre, Morgan; Vázquez-Prado, José; Kufareva, Irina; Stawiski, Eric W; Handel, Tracy M; Seshagiri, Somasekar; Gutkind, J Silvio

    2013-06-01

    Aberrant expression and activity of G proteins and G-protein-coupled receptors (GPCRs) are frequently associated with tumorigenesis. Deep sequencing studies show that 4.2% of tumours carry activating mutations in GNAS (encoding Gαs), and that oncogenic activating mutations in genes encoding Gαq family members (GNAQ or GNA11) are present in ~66% and ~6% of melanomas arising in the eye and skin, respectively. Furthermore, nearly 20% of human tumours harbour mutations in GPCRs. Many human cancer-associated viruses also express constitutively active viral GPCRs. These studies indicate that G proteins, GPCRs and their linked signalling circuitry represent novel therapeutic targets for cancer prevention and treatment.

  14. Biased ligands at G-protein-coupled receptors: promise and progress.

    PubMed

    Violin, Jonathan D; Crombie, Aimee L; Soergel, David G; Lark, Michael W

    2014-07-01

    Drug discovery targeting G protein-coupled receptors (GPCRs) is no longer limited to seeking agonists or antagonists to stimulate or block cellular responses associated with a particular receptor. GPCRs are now known to support a diversity of pharmacological profiles, a concept broadly referred to as functional selectivity. In particular, the concept of ligand bias, whereby a ligand stabilizes subsets of receptor conformations to engender novel pharmacological profiles, has recently gained increasing prominence. This review discusses how biased ligands may deliver safer, better tolerated, and more efficacious drugs, and highlights several biased ligands that are in clinical development. Biased ligands targeting the angiotensin II type 1 receptor and the μ opioid receptor illustrate the translation of the biased ligand concept from basic biology to clinical drug development.

  15. Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization

    PubMed Central

    Franco, Rafael; Martínez-Pinilla, Eva; Lanciego, José L.; Navarro, Gemma

    2016-01-01

    Cell membrane receptors rarely work on isolation, often they form oligomeric complexes with other receptor molecules and they may directly interact with different proteins of the signal transduction machinery. For a variety of reasons, rhodopsin-like class A G-protein-coupled receptors (GPCRs) seem an exception to the general rule of receptor–receptor direct interaction. In fact, controversy surrounds their potential to form homo- hetero-dimers/oligomers with other class A GPCRs; in a sense, the field is going backward instead of forward. This review focuses on the convergent, complementary and telling evidence showing that homo- and heteromers of class A GPCRs exist in transfected cells and, more importantly, in natural sources. It is time to decide between questioning the occurrence of heteromers or, alternatively, facing the vast scientific and technical challenges that class A receptor-dimer/oligomer existence pose to Pharmacology and to Drug Discovery. PMID:27065866

  16. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    SciTech Connect

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K.

    2010-01-14

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  17. The therapeutic potential of G-protein coupled receptors in Huntington's disease.

    PubMed

    Dowie, Megan J; Scotter, Emma L; Molinari, Emanuela; Glass, Michelle

    2010-11-01

    Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease.

  18. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    PubMed Central

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; De Marinis, Marta; Tafuri, Domenico; Cinelli, Mariapia; Ammendola, Rosario

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we

  19. Cell-free expression of G-protein coupled receptors: new pipelines for challenging targets.

    PubMed

    Rues, Ralf-Bernhardt; Orbán, Erika; Dötsch, Volker; Bernhard, Frank

    2014-12-01

    Based on their eminent importance for medical applications, G-protein coupled receptors are currently amongst the most frequently membrane protein targets analyzed by cell-free expression. The cell-free expression approach removes most bottlenecks known from conventional cell-based protein production pipelines and ensures fast access to a selected receptor target. In addition, receptors can be synthesized in presence of a large variety of artificial solubilization environments comprising detergents, lipids, nanodiscs and other amphiphilic compounds. The currently accumulated data based on a variety of analyzed receptors already opens promising perspectives for applications of cell-free synthesized samples in functional characterization and drug screening. Structural evaluation still suffers from high conformational dynamics causing sample instability and might be addressed in future by molecular engineering or immuno-stabilization approaches.

  20. Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive System Tumors

    PubMed Central

    Qian, Hongyan; Xuan, Jingxiu; Liu, Yuan; Shi, Guixiu

    2016-01-01

    The G-protein-coupled estrogen receptor-1 (GPER-1), also known as GPR30, is a novel estrogen receptor mediating estrogen receptor signaling in multiple cell types. The progress of estrogen-related cancer is promoted by GPER-1 activation through mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), and phospholipase C (PLC) signaling pathways. However, this promoting effect of GPER-1 is nonclassic estrogen receptor (ER) dependent manner. In addition, clinical evidences revealed that GPER-1 is associated with estrogen resistance in estrogen-related cancer patients. These give a hint that GPER-1 may be a novel therapeutic target for the estrogen-related cancers. However, preclinical studies also found that GPER-1 activation of its special agonist G-1 inhibits cancer cell proliferation. This review aims to summarize the characteristics and complex functions of GPER-1 in cancers. PMID:27314054

  1. Systematic and quantitative analysis of G protein-coupled receptor trafficking motifs.

    PubMed

    Hurt, Carl M; Ho, Vincent K; Angelotti, Timothy

    2013-01-01

    Plasma membrane expression of G protein-coupled receptors (GPCRs) is a dynamic process balancing anterograde and retrograde trafficking. Multiple interrelated cellular processes determine the final level of cell surface expression, including endoplasmic reticulum (ER) export/retention, receptor internalization, recycling, and degradation. These processes are highly regulated to achieve specific localization to subcellular domains (e.g., dendrites or basolateral membranes) and to affect receptor signaling. Analysis of potential ER trafficking motifs within GPCRs requires careful consideration of intracellular dynamics, such as protein folding, ER export and retention, and glycosylation. This chapter presents an approach and methods for qualitative and quantitative assessment of these processes to aid in accurate identification of GPCR trafficking motifs, utilizing the analysis of a hydrophobic extracellular trafficking motif in α2C adrenergic receptors as a model system.

  2. G protein-coupled receptors stimulation and the control of cell migration.

    PubMed

    Cotton, Mathieu; Claing, Audrey

    2009-07-01

    Cell migration is a fundamental biological process involved in normal physiology. Altered motile phenotypes are however often associated with the development and progression of diseases such as cancer and atherosclerosis. Remodeling of the actin cytoskeleton is required for cell shape changes and is controlled by a broad variety of cellular proteins. Interestingly, several extracellular stimuli can promote actin reorganization and result in enhanced cell migration. Namely, G protein-coupled receptors (GPCRs), which are activated by factors ranging from small amines, to hormones, and chemokines, initiate signalling cascades resulting in cell shape changes, formation of a migrating front (leading edge) and altered adhesion. GPCRs are heptahelical membrane proteins, which classically transmit signal via the activation of heterotrimeric G proteins. Sustained stimulation leads to the activation of G protein-coupled receptor kinases (GRKs) and the recruitment of arrestin proteins, which engage alternative signalling pathways. In this review, we will discuss the role of GPCR mediated signal transduction and review their importance in the regulation of actin remodeling leading to cell migration.

  3. Crosstalk between G-protein-coupled receptors and epidermal growth factor receptor in cancer.

    PubMed

    Bhola, Neil E; Grandis, Jennifer R

    2008-01-01

    EGFR and its respective ligands are overexpressed in various tumors and this over-expression correlates with poor prognosis in selected cancers. In addition to direct activation by EGFR autocrine ligands, the large family of G-protein-coupled receptors (GPCRs) has been reported to transactivate EGFR via both ligand-dependent and independent mechanisms. GPCRs can induce the cleavage of membrane-bound EGFR-ligand precursors or directly activate the juxtamembrane tyrosine kinase domain of EGFR. Due to the heterogenous expression of GPCRs in tumors, this form of receptor crosstalk may contribute to the modest clinical responses to EGFR-targeted therapies observed to date. Studies, so far, have indicated that the signaling mechanisms involved in transactivation are specifically influenced by the activated GPCR and the tumor type in question. The progression of colon, lung, breast, head and neck, prostate and ovarian cancers have all been reported to be mediated, at least in part, by GPCR-EGFR crosstalk. Increased understanding of the specific signaling pathways involved in EGFR transactivation by GPCR will facilitate the identification of new biomarkers for molecular targeting strategies.

  4. G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake

    PubMed Central

    Hild, Wolfgang; Pollinger, Klaus; Caporale, Andrea; Cabrele, Chiara; Keller, Max; Pluym, Nicola; Buschauer, Armin; Rachel, Reinhard; Tessmar, Joerg; Breunig, Miriam; Goepferich, Achim

    2010-01-01

    More selective interactions of nanoparticles with cells would substantially increase their potential for diagnostic and therapeutic applications. Thus, it would not only be highly desirable that nanoparticles can be addressed to any cell with high target specificity and affinity, but that we could unequivocally define whether they rest immobilized on the cell surface as a diagnostic tag, or if they are internalized to serve as a delivery vehicle for drugs. To date no class of targets is known that would allow direction of nanoparticle interactions with cells alternatively into one of these mutually exclusive events. Using MCF-7 breast cancer cells expressing the human Y1-receptor, we demonstrate that G protein-coupled receptors provide us with this option. We show that quantum dots carrying a surface-immobilized antagonist remain with nanomolar affinity on the cell surface, and particles carrying an agonist are internalized upon receptor binding. The receptor functions like a logic “and-gate” that grants cell access only to those particles that carry a receptor ligand “and” where the ligand is an agonist. We found that agonist- and antagonist-modified nanoparticles bind to several receptor molecules at a time. This multiligand binding leads to five orders of magnitude increased-receptor affinities, compared with free ligand, in displacement studies. More than 800 G protein-coupled receptors in humans provide us with the paramount advantage that targeting of a plethora of cells is possible, and that switching from cell recognition to cell uptake is simply a matter of nanoparticle surface modification with the appropriate choice of ligand type. PMID:20498042

  5. Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases.

    PubMed

    Wallukat, Gerd; Schimke, Ingolf

    2014-05-01

    Agonistic autoantibodies (AABs) against G-protein-coupled receptor (GPCR) are present mainly in diseases of the cardiovascular system or in diseases associated with cardiovascular disturbances. The increasing knowledge about the role of autoantibodies against G-protein-coupled receptor (GPCR-AABs) as pathogenic drivers, the resulting development of strategies aimed at their removal or neutralization, and the evidenced patient benefit associated with such therapies have created the need for a summary of GPCR-AAB-associated diseases. Here, we summarize the present knowledge about GPCR-AABs in cardiovascular diseases. The identity of the GPCR-AABs and their prevalence in each of several specific cardiovascular diseases are documented. The structure of GPCR is also briefly discussed. Using this information, differences between classic agonists and GPCR-AABs in their GPCR binding and activation are presented and the resulting pathogenic consequences are discussed. Furthermore, treatment strategies that are currently under study, most of which are aimed at the removal and in vivo neutralization of GPCR-AABs, are indicated and their patient benefits discussed. In this context, immunoadsorption using peptides/proteins or aptamers as binders are introduced. The use of peptides or aptamers for in vivo neutralization of GPCR-AABs is also described. Particular attention is given to the GPCR-AABs directed against the adrenergic beta1-, beta2-, and α1-receptor as well as the muscarinic receptor M2, angiotensin II-angiotensin receptor type I, endothelin1 receptor type A, angiotensin (1-7) Mas-receptor, and 5-hydroxytryptamine receptor 4. Among the diseases associated with GPCR-AABs, special focus is given to idiopathic dilated cardiomyopathy, Chagas' cardiomyopathy, malignant and pulmonary hypertension, and kidney diseases. Relationships of GPCR-AABs are indicated to glaucoma, peripartum cardiomyopathy, myocarditis, pericarditis, preeclampsia, Alzheimer's disease, Sj

  6. G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake.

    PubMed

    Hild, Wolfgang; Pollinger, Klaus; Caporale, Andrea; Cabrele, Chiara; Keller, Max; Pluym, Nicola; Buschauer, Armin; Rachel, Reinhard; Tessmar, Joerg; Breunig, Miriam; Goepferich, Achim

    2010-06-08

    More selective interactions of nanoparticles with cells would substantially increase their potential for diagnostic and therapeutic applications. Thus, it would not only be highly desirable that nanoparticles can be addressed to any cell with high target specificity and affinity, but that we could unequivocally define whether they rest immobilized on the cell surface as a diagnostic tag, or if they are internalized to serve as a delivery vehicle for drugs. To date no class of targets is known that would allow direction of nanoparticle interactions with cells alternatively into one of these mutually exclusive events. Using MCF-7 breast cancer cells expressing the human Y(1)-receptor, we demonstrate that G protein-coupled receptors provide us with this option. We show that quantum dots carrying a surface-immobilized antagonist remain with nanomolar affinity on the cell surface, and particles carrying an agonist are internalized upon receptor binding. The receptor functions like a logic "and-gate" that grants cell access only to those particles that carry a receptor ligand "and" where the ligand is an agonist. We found that agonist- and antagonist-modified nanoparticles bind to several receptor molecules at a time. This multiligand binding leads to five orders of magnitude increased-receptor affinities, compared with free ligand, in displacement studies. More than 800 G protein-coupled receptors in humans provide us with the paramount advantage that targeting of a plethora of cells is possible, and that switching from cell recognition to cell uptake is simply a matter of nanoparticle surface modification with the appropriate choice of ligand type.

  7. G Protein-Coupled Receptors in cancer: biochemical interactions and drug design.

    PubMed

    Audigier, Yves; Picault, François-Xavier; Chaves-Almagro, Carline; Masri, Bernard

    2013-01-01

    G Protein-Coupled Receptors (GPCRs) share the same topology made of seven-transmembrane segments and represent the largest family of membrane receptors. Initially associated with signal transduction in differentiated cells, GPCRs and heterotrimeric G proteins were shown to behave as proto-oncogenes whose overexpression or activating mutations confer transforming properties. The first part of this review focuses on the link between biochemical interactions of a GPCR with other receptors, such as dimerization or multiprotein complexes, and their oncogenic properties. Alteration of these interactions or deregulation of transduction cascades can promote uncontrolled cell proliferation or cell transformation that leads to tumorigenicity and malignancy. The second part concerns the design of drugs specifically targeting these complex interactions and their promise in cancer therapy.

  8. G-protein-coupled receptors in control of natural killer cell migration.

    PubMed

    Walzer, Thierry; Vivier, Eric

    2011-10-01

    Natural killer (NK) cells are highly motile cells that patrol lymphoid and non-lymphoid organs, and are poised to react to infectious or other inflammatory situations. Several NK cell subsets equipped with different sets of chemotactic G-protein-coupled receptors, and which display distinct distribution across lymphoid and non-lymphoid organs, have been described. These receptors detect various guidance cues including sphingosine-1-phosphate and chemokines that orchestrate NK cell trafficking. Here, we highlight recent advances regarding the receptors involved in NK cell migration, with a focus on bone marrow egress, entry into activated lymph nodes, extravasation into inflamed tissues, and motility within lymph nodes or tumors. Understanding NK cell migration could provide a rational basis for the design of novel therapies in various clinical conditions.

  9. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors.

    PubMed

    Nørskov-Lauritsen, Lenea; Bräuner-Osborne, Hans

    2015-09-15

    G protein-coupled receptors are divided into three classes (A, B and C) based on homology of their seven transmembrane domains. Class C is the smallest class with 22 human receptor subtypes including eight metabotropic glutamate (mGlu1-8) receptors, two GABAB receptors (GABAB1 and GABAB2), three taste receptors (T1R1-3), one calcium-sensing (CaS) receptor, one GPCR, class C, group 6, subtype A (GPRC6) receptor, and seven orphan receptors. G protein-coupled receptors undergo a number of post-translational modifications, which regulate their structure, function and/or pharmacology. Here, we review the existence of post-translational modifications in class C G protein-coupled receptors and their regulatory roles, with particular focus on glycosylation, phosphorylation, ubiquitination, SUMOylation, disulphide bonding and lipidation.

  10. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  11. Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets

    PubMed Central

    Tang, Xiao-long; Wang, Ying; Li, Da-li; Luo, Jian; Liu, Ming-yao

    2012-01-01

    The superfamily of G protein-coupled receptors (GPCRs) includes at least 800 seven-transmembrane receptors that participate in diverse physiological and pathological functions. GPCRs are the most successful targets of modern medicine, and approximately 36% of marketed pharmaceuticals target human GPCRs. However, the endogenous ligands of more than 140 GPCRs remain unidentified, leaving the natural functions of those GPCRs in doubt. These are the so-called orphan GPCRs, a great source of drug targets. This review focuses on the signaling transduction pathways of the adhesion GPCR family, the LGR subfamily, and the PSGR subfamily, and their potential functions in immunology, development, and cancers. In this review, we present the current approaches and difficulties of orphan GPCR deorphanization and characterization. PMID:22367282

  12. Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation.

    PubMed

    Schöneberg, Torsten; Liebscher, Ines; Luo, Rong; Monk, Kelly R; Piao, Xianhua

    2015-06-01

    The family of adhesion G protein-coupled receptors (aGPCRs) comprises 33 members in the human genome, which are subdivided into nine subclasses. Many aGPCRs undergo an autoproteolytic process via their GPCR Autoproteolysis-INducing (GAIN) domain during protein maturation to generate an N- and a C-terminal fragments, NTF and CTF, respectively. The NTF and CTF are non-covalently reassociated on the plasma membrane to form a single receptor unit. How aGPCRs are activated upon ligand binding remains one of the leading questions in the field of aGPCR research. Recent work from our labs and others shows that ligand binding can remove the NTF from the plasma membrane-bound CTF, exposing a tethered agonist which potently activates downstream signaling.

  13. From G Protein-coupled Receptor Structure Resolution to Rational Drug Design.

    PubMed

    Jazayeri, Ali; Dias, Joao M; Marshall, Fiona H

    2015-08-07

    A number of recent technical solutions have led to significant advances in G protein-coupled receptor (GPCR) structural biology. Apart from a detailed mechanistic view of receptor activation, the new structures have revealed novel ligand binding sites. Together, these insights provide avenues for rational drug design to modulate the activities of these important drug targets. The application of structural data to GPCR drug discovery ushers in an exciting era with the potential to improve existing drugs and discover new ones. In this review, we focus on technical solutions that have accelerated GPCR crystallography as well as some of the salient findings from structures that are relevant to drug discovery. Finally, we outline some of the approaches used in GPCR structure based drug design.

  14. Identification of G protein-coupled estrogen receptor in human and pig spermatozoa.

    PubMed

    Rago, V; Giordano, F; Brunelli, E; Zito, D; Aquila, S; Carpino, A

    2014-06-01

    Estrogens are known to influence functional properties of mammalian spermatozoa inducing rapid responses through the classical estrogen receptors (ERα and ERβ). Recently, the G protein-coupled estrogen receptor (GPER) has been identified as mediator of fast non-genomic estrogen effects in different cells. This work investigated the expression of GPER in human and pig spermatozoa using immunofluorescence, Western blot analysis and RT-PCR. GPER was found to be confined to the mid-piece of human sperm cells, whereas it was detected in the acrosomal region, the equatorial segment and the mid-piece of pig spermatozoa. Furthermore, in the male gametes of both species, the immunoblots of sperm extracts revealed a band at ~42 kDa, consistent with the GPER molecular weight, and RT-PCR detected the GPER transcripts. This is the first report demonstrating the expression of GPER in human and pig mature sperm cells and evidencing its species-specific cellular localization.

  15. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    SciTech Connect

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  16. Denatured G-protein coupled receptors as immunogens to generate highly specific antibodies.

    PubMed

    Talmont, Franck; Moulédous, Lionel; Boué, Jérôme; Mollereau, Catherine; Dietrich, Gilles

    2012-01-01

    G-protein coupled receptors (GPCRs) play a major role in a number of physiological and pathological processes. Thus, GPCRs have become the most frequent targets for development of new therapeutic drugs. In this context, the availability of highly specific antibodies may be decisive to obtain reliable findings on localization, function and medical relevance of GPCRs. However, the rapid and easy generation of highly selective anti-GPCR antibodies is still a challenge. Herein, we report that highly specific antibodies suitable for detection of GPCRs in native and unfolded forms can be elicited by immunizing animals against purified full length denatured recombinant GPCRs. Contrasting with the currently admitted postulate, our study shows that an active and well-folded GPCR is not required for the production of specific anti-GPCR antibodies. This new immunizing strategy validated with three different human GPCR (μ-opioid, κ-opioid, neuropeptide FF2 receptors) might be generalized to other members of the GPCR family.

  17. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2

    PubMed Central

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  18. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors

    PubMed Central

    de Munnik, Sabrina M.; Smit, Martine J.; Leurs, Rob; Vischer, Henry F.

    2015-01-01

    Human herpesviruses (HHVs) are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, HHVs have pirated genes encoding viral G protein-coupled receptors (vGPCRs), which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies. PMID:25805993

  19. EGFR Transactivation by Peptide G Protein-Coupled Receptors in Cancer.

    PubMed

    Moody, Terry W; Nuche-Berenguer, Bernardo; Nakamura, Taichi; Jensen, Robert T

    2016-01-01

    Lung cancer kills approximately 1.3 million citizens in the world annually. The tyrosine kinase inhibitors (TKI) erlotinib and gefitinib are effective anti-tumor agents especially in lung cancer patients with epidermal growth factor receptor (EGFR) mutations. The goal is to increase the potency of TKI in lung cancer patients with wild type EGFR. G protein-coupled receptors (GPCR) transactivate the wild type EGFR in lung cancer cells. The GPCR can be activated by peptide agonists causing phosphatidylinositol turnover or stimulation of adenylylcyclase. Recently, nonpeptide antagonists were found to inhibit the EGFR transactivation caused by peptides. Nonpeptide antagonists for bombesin (BB), neurotensin (NTS) and cholecystokinin (CCK) inhibit lung cancer growth and increase the cytotoxicity of gefitinib. The results suggest that GPCR transactivation of the EGFR may play an important role in cancer cell proliferation.

  20. Receptor component protein (RCP): a member of a multi-protein complex required for G-protein-coupled signal transduction.

    PubMed

    Prado, M A; Evans-Bain, B; Dickerson, I M

    2002-08-01

    The calcitonin-gene-related peptide (CGRP) receptor component protein (RCP) is a 148-amino-acid intracellular protein that is required for G-protein-coupled signal transduction at receptors for the neuropeptide CGRP. RCP works in conjunction with two other proteins to constitute a functional CGRP receptor: calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying protein 1 (RAMP1). CRLR has the stereotypical seven-transmembrane topology of a G-protein-coupled receptor; it requires RAMP1 for trafficking to the cell surface and for ligand specificity, and requires RCP for coupling to the cellular signal transduction pathway. We have made cell lines that expressed an antisense construct of RCP and determined that CGRP-mediated signal transduction was reduced, while CGRP binding was unaffected. Furthermore, signalling at two other endogenous G-protein-coupled receptors was unaffected, suggesting that RCP was specific for a limited subset of receptors.

  1. Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology.

    PubMed

    DeWire, Scott M; Violin, Jonathan D

    2011-07-08

    Drug discovery efforts targeting G-protein-coupled receptors (GPCR) have been immensely successful in creating new cardiovascular medicines. Currently marketed GPCR drugs are broadly classified as either agonists that activate receptors or antagonists that prevent receptor activation by endogenous stimuli. However, GPCR couple to a multitude of intracellular signaling pathways beyond classical G-protein signals, and these signals can be independently activated by biased ligands to vastly expand the potential for new drugs at these classic targets. By selectively engaging only a subset of a receptor's potential intracellular partners, biased ligands may deliver more precise therapeutic benefit with fewer side effects than current GPCR-targeted drugs. In this review, we discuss the history of biased ligand research, the current understanding of how biased ligands exert their unique pharmacology, and how research into GPCR signaling has uncovered previously unappreciated capabilities of receptor pharmacology. We focus on several receptors to illustrate the approaches taken and discoveries made, and how these are steadily illuminating the intricacies of GPCR pharmacology. Discoveries of biased ligands targeting the angiotensin II type 1 receptor and of separable pharmacology suggesting the potential value of biased ligands targeting the β-adrenergic receptors and nicotinic acid receptor GPR109a highlight the powerful clinical promise of this new category of potential therapeutics.

  2. Progestin, estrogen and androgen G-protein coupled receptors in fish gonads.

    PubMed

    Thomas, Peter; Dressing, Gwen; Pang, Yefei; Berg, Hakan; Tubbs, Christopher; Benninghoff, Abby; Doughty, Kelly

    2006-04-01

    The identities of the membrane receptors mediating the majority of rapid, cell surface-initiated, nongenomic (i.e. nonclassical) steroid actions described to date are unclear. Two novel 7-transmembrane spanning proteins, representing two distinct classes of steroid membrane receptors, membrane progestin receptor alpha (mPRalpha) and a membrane estrogen receptor (mER), GPR30, have recently been identified in several vertebrate species. Evidence that both receptors activate G-proteins and function as G-protein coupled receptors (GPCRs) is briefly reviewed. New data on progestin actions on fish gametes suggest a widespread involvement of mPRalpha in oocyte maturation and sperm hyperactivity in this vertebrate group. Information on the second messenger pathways activated upon estrogen binding to a membrane estrogen receptor in croaker gonads and preliminary evidence for the presence of a GPR30-like protein in fish gonads are discussed. Finally, initial characterization of the ligand binding, G-protein activation and molecular size of a membrane androgen receptor (mAR) in croaker ovaries suggests the presence of a third unique steroid receptor in fish gonads that also may function as a GPCR.

  3. Functional characterisation of the Anopheles leucokinins and their cognate G-protein coupled receptor.

    PubMed

    Radford, Jonathan C; Terhzaz, Selim; Cabrero, Pablo; Davies, Shireen-A; Dow, Julian A T

    2004-12-01

    Identification of the Anopheles gambiae leucokinin gene from the completed A. gambiae genome revealed that this insect species contains three leucokinin peptides, named Anopheles leucokinin I-III. These peptides are similar to those identified in two other mosquito species, Aedes aegypti and Culex salinarius. Additionally, Anopheles leucokinin I displays sequence similarity to Drosophila melanogaster leucokinin. Using a combination of computational and molecular approaches, a full-length cDNA for a candidate leucokinin-like receptor was isolated from A. stephensi, a close relative of A. gambiae. Alignment of the known leucokinin receptors--all G protein-coupled receptors (GPCRs)--with this receptor, identified some key conserved regions within the receptors, notably transmembrane (TM) domains I, II, III, VI and VII. The Anopheles leucokinins and receptor were shown to be a functional receptor-ligand pair. All three Anopheles leucokinins caused a dose-dependent rise in intracellular calcium ([Ca2+]i) when applied to S2 cells co-expressing the receptor and an aequorin transgene, with a potency order of I>II>III. Drosophila leucokinin was also found to activate the Anopheles receptor with a similar EC50 value to Anopheles leucokinin I. However, when the Anopheles peptides were applied to the Drosophila receptor, only Anopheles leucokinin I and II elicited a rise in [Ca2+]i. This suggests that the Anopheles receptor has a broader specificity for leucokinin ligands than the Drosophila receptor. Antisera raised against the Anopheles receptor identified a doublet of approx. 65 and 72 kDa on western blots, consistent with the presence of four N-glycosylation sites within the receptor sequence, and the known glycosylation of the receptor in Drosophila. In Anopheles tubules, as in Drosophila, the receptor was localised to the stellate cells. Thus we provide the first identification of Anopheles mosquito leucokinins (Anopheles leucokinins) and a cognate leucokinin receptor

  4. Fluorescent Approaches for Understanding Interactions of Ligands with G Protein Coupled Receptors

    PubMed Central

    Sridharan, Rajashri; Zuber, Jeffrey; Connelly, Sara M.; Mathew, Elizabeth; Dumont, Mark E.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remains unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes, that can be difficult to extract from x-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of GPCRs and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in GPCRs. PMID:24055822

  5. G-protein-coupled receptors for free fatty acids: nutritional and therapeutic targets.

    PubMed

    Milligan, Graeme; Ulven, Trond; Murdoch, Hannah; Hudson, Brian D

    2014-06-01

    It is becoming evident that nutrients and metabolic intermediates derived from such nutrients regulate cellular function by activating a number of cell-surface G-protein coupled receptors (GPCRs). Until now, members of the GPCR family have largely been considered as the molecular targets that communicate cellular signals initiated by hormones and neurotransmitters. Recently, based on tissue expression patterns of these receptors and the concept that they may elicit the production of a range of appetite- and hunger-regulating peptides, such nutrient sensing GPCRs are attracting considerable attention due to their potential to modulate satiety, improve glucose homeostasis and supress the production of various pro-inflammatory mediators. Despite the developing interests in these nutrients sensing GPCR both as sensors of nutritional status, and targets for limiting the development of metabolic diseases, major challenges remain to exploit their potential for therapeutic purposes. Mostly, this is due to limited characterisation and validation of these receptors because of paucity of selective and high-potency/affinity pharmacological agents to define the detailed function and regulation of these receptors. However, ongoing clinical trials of agonists of free fatty acid receptor 1 suggest that this receptor and other receptors for free fatty acids may provide a successful strategy for controlling hyperglycaemia and providing novel approaches to treat diabetes. Receptors responsive to free fatty acid have been of particular interest, and some aspects of these are considered herein.

  6. Endothelial nitric oxide synthase interactions with G-protein-coupled receptors.

    PubMed Central

    Marrero, M B; Venema, V J; Ju, H; He, H; Liang, H; Caldwell, R B; Venema, R C

    1999-01-01

    The endothelial nitric oxide synthase (eNOS) is activated in response to stimulation of endothelial cells by a number of vasoactive substances including, bradykinin (BK), angiotensin II (Ang II), endothelin-1 (ET-1) and ATP. In the present study we have used in vitro activity assays of purified eNOS and in vitro binding assays with glutathione S-transferase fusion proteins to show that the capacity to bind and inhibit eNOS is a common feature of membrane-proximal regions of intracellular domain 4 of the BK B2, the Ang II AT1 and the ET-1 ETB receptors, but not of the ATP P2Y2 receptor. Phosphorylation of serine or tyrosine residues in the eNOS-interacting region of the B2 receptor results in a loss of eNOS inhibition due to a decrease in the binding affinity of the receptor domain for the eNOS enzyme. Furthermore, the B2 receptor is transiently phosphorylated on tyrosine residues in cultured endothelial cells in response to BK stimulation. Phosphorylation occurs during the time in which eNOS transiently dissociates from the receptor accompanied by a transient increase in nitric oxide production. Taken together, these data support the hypotheses that eNOS is regulated in endothelial cells by reversible and inhibitory interactions with G-protein-coupled receptors and that these interactions can be modulated by receptor phosphorylation. PMID:10510297

  7. G protein-coupled receptors: potential therapeutic targets for diabetic nephropathy.

    PubMed

    Ding, Hai-Hua; Ni, Wei-Jian; Tang, Li-Qin; Wei, Wei

    2015-12-16

    Diabetic nephropathy, a lethal microvascular complication of diabetes mellitus, is characterized by progressive albuminuria, excessive deposition of extracellular matrix, thickened glomerular basement membrane, podocyte abnormalities, and podocyte loss. The G protein-coupled receptors (GPCRs) have attracted considerable attention in diabetic nephropathy, but the specific effects have not been elucidated yet. Likewise, abnormal signaling pathways are closely interrelated to the pathologic process of diabetic nephropathy, despite the fact that the mechanisms have not been explored clearly. Therefore, GPCRs and its mediated signaling pathways are essential for priority research, so that preventative strategies and potential targets might be developed for diabetic nephropathy. This article will give us comprehensive overview of predominant GPCR types, roles, and correlative signaling pathways in diabetic nephropathy.

  8. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed.

  9. Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family

    PubMed Central

    de Mendoza, Alexandre; Jones, Jeffery W.; Friedrich, Markus

    2016-01-01

    Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family. PMID:26915348

  10. G protein-coupled receptor kinase GRK5 phosphorylates moesin and regulates metastasis in prostate cancer.

    PubMed

    Chakraborty, Prabir Kumar; Zhang, Yushan; Coomes, Alexandra S; Kim, Wan-Ju; Stupay, Rachel; Lynch, Lauren D; Atkinson, Tamieka; Kim, Jae I; Nie, Zhongzhen; Daaka, Yehia

    2014-07-01

    G protein-coupled receptor kinases (GRK) regulate diverse cellular functions ranging from metabolism to growth and locomotion. Here, we report an important contributory role for GRK5 in human prostate cancer. Inhibition of GRK5 kinase activity attenuated the migration and invasion of prostate cancer cells and, concordantly, increased cell attachment and focal adhesion formation. Mass spectrometric analysis of the phosphoproteome revealed the cytoskeletal-membrane attachment protein moesin as a putative GRK5 substrate. GRK5 regulated the subcellular distribution of moesin and colocalized with moesin at the cell periphery. We identified amino acid T66 of moesin as a principal GRK5 phosphorylation site and showed that enforcing the expression of a T66-mutated moesin reduced cell spreading. In a xenograft model of human prostate cancer, GRK5 silencing reduced tumor growth, invasion, and metastasis. Taken together, our results established GRK5 as a key contributor to the growth and metastasis of prostate cancer.

  11. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination

    PubMed Central

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes. PMID:26961174

  12. Antibodies against G-protein coupled receptors: novel uses in screening and drug development.

    PubMed

    Gupta, Achla; Heimann, Andrea S; Gomes, Ivone; Devi, Lakshmi A

    2008-07-01

    Antibodies are components of the body's humoral immune system that are generated in response to foreign pathogens. Modern biomedical research has employed these very specific and efficient molecules designed by nature in the diagnosis of diseases, localization of gene products as well as in the rapid screening of targets for drug discovery and testing. In addition, the introduction of antibodies with fluorescent or enzymatic tags has significantly contributed to advances in imaging and microarray technology, which are revolutionizing disease research and the search for effective therapeutics. More recently antibodies have been used in the isolation of dimeric G protein-coupled receptor (GPCR) complexes. In this review, we discuss antibodies as powerful research tools for studying GPCRs, and their potential to be developed as drugs themselves.

  13. Novel insights into G protein and G protein-coupled receptor signaling in cancer.

    PubMed

    O'Hayre, Morgan; Degese, Maria S; Gutkind, J Silvio

    2014-04-01

    G protein-coupled receptors (GPCRs) play a central role in signal transmission, thereby controlling many facets of cellular function. Overwhelming evidence now implicates GPCRs, G proteins and their downstream signaling targets in cancer initiation and progression, where they can influence aberrant cell growth and survival, largely through activation of AKT/mTOR, MAPKs, and Hippo signaling pathways. GPCRs also play critical roles in the invasion and metastasis of cancer cells via activation of Rho GTPases and cytoskeletal changes, and angiogenesis to supply the tumor with nutrients and provide routes for metastasis. Lastly, GPCRs contribute to the establishment and maintenance of a permissive tumor microenvironment. Understanding GPCR involvement in cancer malignancy may help identify novel therapeutic opportunities for cancer prevention and treatment.

  14. The Emerging Mutational Landscape of G-proteins and G-protein Coupled Receptors in Cancer

    PubMed Central

    O’Hayre, Morgan; Vázquez-Prado, José; Kufareva, Irina; Stawiski, Eric W.; Handel, Tracy M.; Seshagiri, Somasekar; Gutkind, J. Silvio

    2014-01-01

    Aberrant expression and activity of G proteins and G protein coupled receptors (GPCRs) are frequently associated with tumorigenesis. Deep sequencing studies show that 4.2% of tumors carry activating mutations in GNAS (encoding Gαs), and that oncogenic activating mutants in genes encoding Gαq family members (GNAQ or GNA11) are present in ~66% and ~6% of melanomas arising in the eye and skin, respectively. Furthermore, nearly 20% of human tumors harbor mutations in GPCRs. Many human cancer-associated viruses also express constitutively active viral GPCRs. These studies indicate that G proteins, GPCRs and their linked signaling circuitry represent novel therapeutic targets for cancer prevention and treatment. PMID:23640210

  15. Harnessing the genome for characterization of G-protein coupled receptors in cancer pathogenesis.

    PubMed

    Feigin, Michael E

    2013-10-01

    G-protein coupled receptors (GPCRs) mediate numerous physiological processes and represent the targets for a vast array of therapeutics for diseases ranging from depression to hypertension to reflux. Despite the recognition that GPCRs can act as oncogenes and tumour suppressors by regulating oncogenic signalling networks, few drugs targeting GPCRs are utilized in cancer therapy. Recent large-scale genome-wide analyses of multiple human tumours have uncovered novel GPCRs altered in cancer. However, work aiming to determine which GPCRs from these lists are the drivers of tumourigenesis, and hence valid therapeutic targets, comprises a formidable challenge. The present review highlights recent studies providing evidence that GPCRs are relevant targets for cancer therapy through their effects on known cancer signalling pathways, tumour progression, invasion and metastasis, and the microenvironment. Furthermore, the review also explores how genomic analysis is beginning to highlight GPCRs as therapeutic targets in the age of personalized medicine.

  16. G protein-coupled receptors: novel targets for drug discovery in cancer.

    PubMed

    Lappano, Rosamaria; Maggiolini, Marcello

    2011-01-01

    G protein-coupled receptors (GPCRs) belong to a superfamily of cell surface signalling proteins that have a pivotal role in many physiological functions and in multiple diseases, including the development of cancer and cancer metastasis. Current drugs that target GPCRs - many of which have excellent therapeutic benefits - are directed towards only a few GPCR members. Therefore, huge efforts are currently underway to develop new GPCR-based drugs, particularly for cancer. We review recent findings that present unexpected opportunities to interfere with major tumorigenic signals by manipulating GPCR-mediated pathways. We also discuss current data regarding novel GPCR targets that may provide promising opportunities for drug discovery in cancer prevention and treatment.

  17. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition.

    PubMed

    Zhang, Panpan; He, Qiuping; Chen, Dongbo; Liu, Weixiao; Wang, Lu; Zhang, Chunxia; Ma, Dongyuan; Li, Wei; Liu, Bing; Liu, Feng

    2015-10-01

    In vertebrates, embryonic hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of endothelial cells, the hemogenic endothelium (HE), through the endothelial-to-hematopoietic transition (EHT). Notch signaling is essential for HSPC development during embryogenesis across vertebrates. However, whether and how it regulates EHT remains unclear. Here, we show that G protein-coupled receptor 183 (Gpr183) signaling serves as an indispensable switch for HSPC emergence by repressing Notch signaling before the onset of EHT. Inhibition of Gpr183 significantly upregulates Notch signaling and abolishes HSPC emergence. Upon activation by its ligand 7α-25-OHC, Gpr183 recruits β-arrestin1 and the E3 ligase Nedd4 to degrade Notch1 in specified HE cells and then facilitates the subsequent EHT. Importantly, 7α-25-OHC stimulation promotes HSPC emergence in vivo and in vitro, providing an attractive strategy for enhancing the in vitro generation of functional HSPCs.

  18. Adhesion G-protein-coupled receptors: elusive hybrids come of age.

    PubMed

    Simundza, Julia; Cowin, Pamela

    2013-12-01

    Adhesion G-protein-coupled receptors (GPCRs) are the most recently identified and least understood subfamily of GPCRs. Adhesion GPCRs are characterized by unusually long ectodomains with adhesion-related repeats that facilitate cell- cell and cell-cell matrix contact, as well as a proteolytic cleavage site-containing domain that is a structural hallmark of the family. Their unusual chimeric structure of adhesion-related ectodomain with a seven-pass transmembrane domain and cytoplasmic signaling makes these proteins highly versatile in mediating cellular signaling in response to extracellular adhesion or cell motility events. The ligand binding and cytoplasmic signaling modes for members of this family are beginning to be elucidated, and recent studies have demonstrated critical roles for Adhesion GPCRs in planar polarity and other important cell-cell and cell-matrix interactions during development and morphogenesis, as well as heritable diseases and cancer.

  19. Structure-based drug screening for G protein-coupled receptors

    PubMed Central

    Shoichet, Brian K.; Kobilka, Brian K.

    2012-01-01

    G protein-coupled receptors (GPCRs) represent a large family of signaling proteins that includes many therapeutic targets; however, progress in identifying new small molecule drugs has been disappointing. The past four years have seen remarkable progress in the structural biology of GPCRs, raising the possibility of applying structure-based approaches to GPCR drug discovery efforts. Of the various structure-based approaches that have been applied to soluble protein targets, such as proteases and kinases, in silico docking is among the most ready applicable to GPCRs. Early studies suggest that GPCR binding pockets are well suited to docking, and docking screens have identified potent and novel compounds for these targets. This review will focus on the current state of in silico docking for GPCRs. PMID:22503476

  20. G-protein-coupled estrogen receptor-30 gene polymorphisms are associated with uterine leiomyoma risk

    PubMed Central

    Kasap, Burcu; Turhan, Nilgün Öztürk; Edgünlü, Tuba; Duran, Müzeyyen; Akbaba, Eren; Öner, Gökalp

    2016-01-01

    The G-protein-coupled estrogen receptor, GPER-1) is a member of the G-protein-coupled receptor 1 family and is expressed significantly in uterine leiomyomas. To understand the relationship between GPR30 single nucleotide polymorphisms and the risk of leiomyoma, we measured the follicle-stimulating hormone (FSH) and estradiol (E2) levels of 78 perimenopausal healthy women and 111 perimenopausal women with leiomyomas. The participants’ leiomyoma number and volume were recorded. DNA was extracted from whole blood with a GeneJET Genomic DNA Purification Kit. An amplification-refractory mutation system polymerase chain reaction approach was used for genotyping of the GPR30 gene (rs3808350, rs3808351, and rs11544331). The differences in genotype and allele frequencies between the leiomyoma and control groups were calculated using the chi-square (χ2) and Fischer’s exact test. The median FSH level was higher in controls (63 vs. 10 IU/L, p=0.000), whereas the median E2 level was higher in the leiomyoma group (84 vs. 9.1 pg/mL, p=0.000). The G allele of rs3808351 and the GG genotype of both the rs3808350 and rs3808351 polymorphisms and the GGC haplotype increased the risk of developing leiomyoma. There was no significant difference in genotype frequencies or leiomyoma volume. However, the GG genotype of the GPR30 rs3808351 polymorphism and G allele of the GPR30 rs3808351 polymorphism were associated with the risk of having a single leiomyoma. Our results suggest that the presence of the GG genotype of the GPR30 rs3808351 polymorphism and the G allele of the GPR30 rs3808351 polymorphism affect the characteristics and development of leiomyomas in the Turkish population. PMID:26773178

  1. Use of Kaede fusions to visualize recycling of G protein-coupled receptors.

    PubMed

    Schmidt, Antje; Wiesner, Burkhard; Weisshart, Klaus; Schulz, Katharina; Furkert, Jens; Lamprecht, Björn; Rosenthal, Walter; Schülein, Ralf

    2009-01-01

    The heptahelical G protein-coupled receptors (GPCRs) are internalized following agonist treatment and either recycle rapidly to the plasma membrane or enter the lysosomal degradation pathway. Many conventional GPCR recycling assays suffer from the fact that receptors arriving from the secretory pathway may interfere with recycling receptors. In this study, we introduce a new methodology to study post-endocytotic GPCR trafficking using fusions with the recently cloned Kaede protein. In contrast to the widely used green fluorescent protein, the fluorescence of Kaede can be converted from green to red using ultraviolet irradiation. Our methodology allows to study recycling of GPCRs microscopically in real-time bypassing problems with secretory pathway receptors. Initially, receptors are internalized using an agonist. Fluorescence signals in endosomes are switched, and trafficking of the receptors to the plasma membrane can be easily visualized by monitoring their new fluorescence. Using this methodology, we show that the corticotropin-releasing factor receptor type 1 belongs to the family of recycling GPCRs. Moreover, we demonstrate by fluorescence correlation spectroscopy that Kaede does not oligomerize when fused to membrane proteins, representing an additional advantage of this technique. The Kaede technology may be a powerful tool to study membrane protein trafficking in general.

  2. G protein-coupled receptors as oncogenic signals in glioma: emerging therapeutic avenues

    PubMed Central

    Cherry, Allison E; Stella, Nephi

    2014-01-01

    Gliomas are the most common malignant intracranial tumors. Newly developed targeted therapies for these cancers aim to inhibit oncogenic signals, many of which emanate from receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR). Unfortunately, the first generation treatments targeting these oncogenic signals provide little survival benefit in both mouse xenograft models and human patients. The search for new treatment options has uncovered several G protein-coupled receptor (GPCR) candidates and generated a growing interest in this class of proteins as alternative therapeutic targets for the treatment of various cancers, including GBM. GPCRs constitute a large family of membrane receptors that influence oncogenic pathways through canonical and non-canonical signaling. Accordingly, evidence indicates that GPCRs display a unique ability to crosstalk with receptor tyrosine kinases, making them important molecular components controlling tumorigenesis. This review summarizes the current research on GPCR functionality in gliomas and explores the potential of modulating these receptors to treat this devastating disease. PMID:25158675

  3. Orphan G-protein-coupled receptors: the next generation of drug targets?

    PubMed Central

    Wilson, Shelagh; Bergsma, Derk J; Chambers, Jon K; Muir, Alison I; Fantom, Kenneth G M; Ellis, Catherine; Murdock, Paul R; Herrity, Nicole C; Stadel, Jeffrey M

    1998-01-01

    The pharmaceutical industry has readily embraced genomics to provide it with new targets for drug discovery. Large scale DNA sequencing has allowed the identification of a plethora of DNA sequences distantly related to known G protein-coupled receptors (GPCRs), a superfamily of receptors that have a proven history of being excellent therapeutic targets. In most cases the extent of sequence homology is insufficient to assign these `orphan' receptors to a particular receptor subfamily. Consequently, reverse molecular pharmacological and functional genomic strategies are being employed to identify the activating ligands of the cloned receptors. Briefly, the reverse molecular pharmacological methodology includes cloning and expression of orphan GPCRs in mammalian cells and screening these cells for a functional response to cognate or surrogate agonists present in biological extract preparations, peptide libraries, and complex compound collections. The functional genomics approach involves the use of `humanized yeast cells, where the yeast GPCR transduction system is engineered to permit functional expression and coupling of human GPCRs to the endogenous signalling machinery. Both systems provide an excellent platform for identifying novel receptor ligands. Once activating ligands are identified they can be used as pharmacological tools to explore receptor function and relationship to disease. PMID:9884064

  4. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs.

    PubMed

    Dror, Ron O; Green, Hillary F; Valant, Celine; Borhani, David W; Valcourt, James R; Pan, Albert C; Arlow, Daniel H; Canals, Meritxell; Lane, J Robert; Rahmani, Raphaël; Baell, Jonathan B; Sexton, Patrick M; Christopoulos, Arthur; Shaw, David E

    2013-11-14

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15 Å from the classical, 'orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  5. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

    NASA Astrophysics Data System (ADS)

    Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.

    2013-11-01

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  6. The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery

    PubMed Central

    Salon, John A.; Lodowski, David T.

    2011-01-01

    Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination. PMID:21969326

  7. G-protein coupled receptors of the renin-angiotensin system: new targets against breast cancer?

    PubMed Central

    Rodrigues-Ferreira, Sylvie; Nahmias, Clara

    2015-01-01

    G-protein coupled receptors (GPCRs) constitute the largest family of membrane receptors, with high potential for drug discovery. These receptors can be activated by a panel of different ligands including ions, hormones, small molecules, and vasoactive peptides. Among those, angiotensins [angiotensin II (AngII) and angiotensin 1–7] are the major biologically active products of the classical and alternative renin-angiotensin system (RAS). These peptides bind and activate three different subtypes of GPCRs, namely AT1, AT2, and Mas receptors, to regulate cardiovascular functions. Over the past decade, the contribution of several RAS components in tumorigenesis has emerged as a novel important concept, AngII being considered as harmful and Ang1–7 as protective against cancer. Development of selective ligands targeting each RAS receptor may provide novel and efficient targeted therapeutic strategies against cancer. In this review, we focus on breast cancer to summarize current knowledge on angiotensin receptors (AT1, AT2, and Mas), and discuss the potential use of angiotensin receptor agonists and antagonists in clinics. PMID:25741281

  8. G-protein coupled receptors of the renin-angiotensin system: new targets against breast cancer?

    PubMed

    Rodrigues-Ferreira, Sylvie; Nahmias, Clara

    2015-01-01

    G-protein coupled receptors (GPCRs) constitute the largest family of membrane receptors, with high potential for drug discovery. These receptors can be activated by a panel of different ligands including ions, hormones, small molecules, and vasoactive peptides. Among those, angiotensins [angiotensin II (AngII) and angiotensin 1-7] are the major biologically active products of the classical and alternative renin-angiotensin system (RAS). These peptides bind and activate three different subtypes of GPCRs, namely AT1, AT2, and Mas receptors, to regulate cardiovascular functions. Over the past decade, the contribution of several RAS components in tumorigenesis has emerged as a novel important concept, AngII being considered as harmful and Ang1-7 as protective against cancer. Development of selective ligands targeting each RAS receptor may provide novel and efficient targeted therapeutic strategies against cancer. In this review, we focus on breast cancer to summarize current knowledge on angiotensin receptors (AT1, AT2, and Mas), and discuss the potential use of angiotensin receptor agonists and antagonists in clinics.

  9. G protein-coupled receptors as oncogenic signals in glioma: emerging therapeutic avenues.

    PubMed

    Cherry, A E; Stella, N

    2014-10-10

    Gliomas are the most common malignant intracranial tumors. Newly developed targeted therapies for these cancers aim to inhibit oncogenic signals, many of which emanate from receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR). Unfortunately, the first-generation treatments targeting these oncogenic signals provide little survival benefit in both mouse xenograft models and human patients. The search for new treatment options has uncovered several G protein-coupled receptor (GPCR) candidates and generated a growing interest in this class of proteins as alternative therapeutic targets for the treatment of various cancers, including glioblastoma multiforme (GBM). GPCRs constitute a large family of membrane receptors that influence oncogenic pathways through canonical and non-canonical signaling. Accordingly, evidence indicates that GPCRs display a unique ability to crosstalk with receptor tyrosine kinases, making them important molecular components controlling tumorigenesis. This review summarizes the current research on GPCR functionality in gliomas and explores the potential of modulating these receptors to treat this devastating disease.

  10. Disease-Specific Heteromerization of G-Protein-Coupled Receptors That Target Drugs of Abuse

    PubMed Central

    Gomes, Ivone; Fujita, Wakako; Chandrakala, Moraje V.; Devi, Lakshmi A.

    2014-01-01

    Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions. PMID:23663971

  11. Molecular cloning and characterisation of a novel GABAB-related G-protein coupled receptor.

    PubMed

    Calver, A R; Michalovich, D; Testa, T T; Robbins, M J; Jaillard, C; Hill, J; Szekeres, P G; Charles, K J; Jourdain, S; Holbrook, J D; Boyfield, I; Patel, N; Medhurst, A D; Pangalos, M N

    2003-02-20

    Using a homology-based bioinformatics approach we have analysed human genomic sequence and identified the human and rodent orthologues of a novel putative seven transmembrane G protein coupled receptor, termed GABA(BL). The amino acid sequence homology of these cDNAs compared to GABA(B1) and GABA(B2) led us to postulate that GABA(BL) was a putative novel GABA(B) receptor subunit. The C-terminal sequence of GABA(BL) contained a putative coiled-coil domain, di-leucine and several RXR(R) ER retention motifs, all of which have been shown to be critical in GABA(B) receptor subunit function. In addition, the distribution of GABA(BL) in the central nervous system was reminiscent of that of the other known GABA(B) subunits. However, we were unable to detect receptor function in response to any GABA(B) ligands when GABA(BL) was expressed in isolation or in the presence of either GABA(B1) or GABA(B2). Therefore, if GABA(BL) is indeed a GABA(B) receptor subunit, its partner is a potentially novel receptor subunit or chaperone protein which has yet to be identified.

  12. Zinc Is Involved in Depression by Modulating G Protein-Coupled Receptor Heterodimerization.

    PubMed

    Tena-Campos, Mercè; Ramon, Eva; Lupala, Cecylia S; Pérez, Juan J; Koch, Karl-W; Garriga, Pere

    2016-04-01

    5-Hydroxytryptamine 1A receptor and galanin receptor 1 belong to the G protein-coupled receptors superfamily, and they have been described to heterodimerize triggering an anomalous physiological state that would underlie depression. Zinc supplementation has been widely reported to improve treatment against major depressive disorder. Our work has focused on the study and characterization of these receptors and its relationships with zinc both under purified conditions and in cell culture. To this aim, we have designed a strategy to purify the receptors in a conformationally active state. We have used receptors tagged with the monoclonal Rho-1D4 antibody and employed ligand-assisted purification in order to successfully purify both receptors in a properly folded and active state. The interaction between both purified receptors has been analyzed by surface plasmon resonance in order to determine the kinetics of dimerization. Zinc effect on heteromer has also been tested using the same methodology but exposing the 5-hydroxytryptamine 1A receptor to zinc before the binding experiment. These results, combined with Förster resonance energy transfer (FRET) measurements, in the absence and presence of zinc, suggest that this ion is capable of disrupting this interaction. Moreover, molecular modeling suggests that there is a coincidence between zinc-binding sites and heterodimerization interfaces for the serotonin receptor. Our results establish a rational explanation for the role of zinc in the molecular processes associated with receptor-receptor interactions and its relationship with depression, in agreement with previously reported evidence for the positive effects of zinc in depression treatment, and the involvement of our target dimer in the same disease.

  13. Molecular recognition of parathyroid hormone by its G protein-coupled receptor

    SciTech Connect

    Pioszak, Augen A.; Xu, H. Eric

    2008-08-07

    Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineered as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.

  14. G protein coupled receptor 18: A potential role for endocannabinoid signaling in metabolic dysfunction.

    PubMed

    Rajaraman, Gayathri; Simcocks, Anna; Hryciw, Deanne H; Hutchinson, Dana S; McAinch, Andrew J

    2016-01-01

    Endocannabinoids are products of dietary fatty acids that are modulated by an alteration in food intake levels. Overweight and obese individuals have substantially higher circulating levels of the arachidonic acid derived endocannabinoids, anandamide and 2-arachidonoyl glycerol, and show an altered pattern of cannabinoid receptor expression. These cannabinoid receptors are part of a large family of G protein coupled receptors (GPCRs). GPCRs are major therapeutic targets for various diseases within the cardiovascular, neurological, gastrointestinal, and endocrine systems, as well as metabolic disorders such as obesity and type 2 diabetes mellitus. Obesity is considered a state of chronic low-grade inflammation elicited by an immunological response. Interestingly, the newly deorphanized GPCR (GPR18), which is considered to be a putative cannabinoid receptor, is proposed to have an immunological function. In this review, the current scientific knowledge on GPR18 is explored including its localization, signaling pathways, and pharmacology. Importantly, the involvement of nutritional factors and potential dietary regulation of GPR18 and its (patho)physiological roles are described. Further research on this receptor and its regulation will enable a better understanding of the complex mechanisms of GPR18 and its potential as a novel therapeutic target for treating metabolic disorders.

  15. Computational approaches for ligand discovery and design in class-A G protein- coupled receptors.

    PubMed

    Rodríguez, David; Gutiérrez-de-Terán, Hugo

    2013-01-01

    Our structural understanding of the superfamily of G-protein coupled receptors, a group of targets of utmost pharmacological importance, has improved dramatically in the last few years. This was directly translated in an increase of both the number and the relevance of computer-assisted drug design efforts devoted to these receptors. The field, which had been greatly influenced by ligand-based methods, has experienced a radical transformation with a number of successful structure-based ligand design and ligand discovery studies. This revolution has been accompanied by the exponential increase of computational resources, and as a result the scenario in GPCR structural and chemical studies is now more complex and richer than ever. Virtual screens, both structure- and ligand-based, co-exist with accurate computational characterizations of the receptor conformational dynamics and of the energy landscapes of receptor-ligand interactions. We here provide an integrated and updated view of the different computational techniques applied to the ligand design of GPCRs. Particular emphasis is put on the studies that take into account the novel structural information of GPCRs, together with those that consider the enormous amount of chemical information accumulated on these receptors in the last decades. Indeed, we propose that proper combinations of the different computational techniques: ligand-based, structure-based and molecular dynamics studies, should be performed to better integrate all available information whenever possible. With this in mind, a major impact of computational technologies in the ligand design on GPCRs is expected in the forthcoming years.

  16. Novel antigen design for the generation of antibodies to G-protein-coupled receptors.

    PubMed

    Larsson, K; Hofström, C; Lindskog, C; Hansson, M; Angelidou, P; Hökfelt, T; Uhlén, M; Wernérus, H; Gräslund, T; Hober, S

    2011-07-29

    Antibodies are important tools for the study of G-protein-coupled receptors, key proteins in cellular signaling. Due to their large hydrophobic membrane spanning regions and often very short loops exposed on the surface of the cells, generation of antibodies able to recognize the receptors in the endogenous environment has been difficult. Here, we describe an antigen-design method where the extracellular loops and N-terminus are combined to a single antigen for generation of antibodies specific to three selected GPCRs: NPY5R, B2ARN and GLP1R. The design strategy enabled straightforward antigen production and antibody generation. Binding of the antibodies to intact receptors was analyzed using flow cytometry and immunofluorescence based confocal microscopy on A-431 cells overexpressing the respective GPCR. The antibody-antigen interactions were characterized using epitope mapping, and the antibodies were applied in immunohistochemical staining of human tissues. Most of the antibodies showed specific binding to their respective overexpressing cell line but not to the non-transfected cells, thus indicating binding to their respective target receptor. The epitope mapping showed that sub-populations within the purified antibody pool recognized different regions of the antigen. Hence, the genetic combination of several different epitopes enables efficient generation of specific antibodies with potential use in several applications for the study of endogenous receptors.

  17. Phosphorylation of G protein-coupled receptors: from the barcode hypothesis to the flute model.

    PubMed

    Yang, Zhao; Yang, Fan; Zhang, Daolai; Liu, Zhixin; Lin, Amy; Liu, Chuan; Xiao, Peng; Yu, Xiao; Sun, Jin-Peng

    2017-02-28

    Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C-terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases (GRKs) and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions, not only by mediating receptor desensitization and internalization, but also by redirecting signalling to G protein-independent pathways via interactions with numerous downstream effector molecules. Accumulating evidence over the past decade has given rise to the phospho-barcode hypothesis, which states that ligand-specific phosphorylation patterns of a receptor direct its distinct functional outcomes. Our recent work, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, led to the flute model, which provides preliminary insight into the receptor phospho-coding mechanism, by which receptor phosphorylation patterns are recognized by an array of phosphate-binding pockets on arrestin and are translated into distinct conformations. These selective conformations are recognized by various effector molecules downstream of arrestin. The phospho-barcoding mechanism enables arrestin to recognize a wide range of phosphorylation patterns of GPCRs, contributing to their diverse functions.

  18. Overexpression of G protein-coupled receptors in cancer cells: involvement in tumor progression.

    PubMed

    Li, Shuyu; Huang, Shuguang; Peng, Sheng-Bin

    2005-11-01

    G protein-coupled receptors (GPCRs) play important roles in a variety of biological and pathological processes. They are considered among the most desirable targets for drug development. Recent studies have demonstrated that many GPCRs, such as endothelin receptors, chemokine receptors and lysophosphatidic acid receptors have been implicated in the tumorigenesis and metastasis of multiple human cancers. In this study, we conducted an in silico analysis of GPCR gene expression in primary human tumors by analyzing some publicly available gene expression profiling data. Statistical analysis was performed on eight microarray data sets of non-small cell lung cancer, breast cancer, prostate cancer, melanoma, gastric cancer and diffused large B cell lymphoma to identify GPCRs that are up-regulated in primary or metastatic cancer cells. Our analysis has demonstrated overexpression of several GPCRs in primary tumor cells, including chemokine receptors and protease-activated receptors that were shown to be important for tumorigenesis by previous studies. In addition, we have uncovered several GPCRs, such as neuropeptide receptors, adenosine A2B receptor, P2Y purinoceptor, calcium-sensing receptor and metabotropic glutamate receptors, that are expressed at a significantly higher level in some cancer tissue and may play a role in cancer progression. Analysis of cancer samples in different disease stages also suggests that some GPCRs, such as endothelin receptor A, may be involved in early tumor progression and others, such as CXCR4, may play a critical role in tumor invasion and metastasis. The present study demonstrates the value of publicly available microarray data as a resource to gain more understanding of cancer biology, to validate previous findings from in vitro experiments, and to identify potential novel anticancer targets and biomarkers.

  19. Effects of central galanin administration on muscarinic cholinergic and galanin receptor G protein coupling.

    PubMed

    Barreda-Gómez, G; Giralt, M T; Rodríguez-Puertas, R

    2005-06-01

    The neuropeptide galanin is expressed in the mammalian central nervous system and has been implicated in neurotrophic actions. Central galanin administration induces cognitive deficits in rodents and inhibits the release of acetylcholine in the hippocampus. In addition, a galanin hyperinnervation of the basal forebrain cholinergic cells in Alzheimer's disease patients has been reported. To evaluate the effect of galanin treatment on galanin and muscarinic cholinergic receptor G protein coupling, galanin was administered into the lateral ventricle of rats via an implanted cannula. Galanin or muscarinic receptor functional coupling to G proteins was quantified by galanin or carbachol stimulation of guanosine 5'-(gamma-[35S]thio)triphosphate binding in rat brain slices. Guanosine 5'-(gamma-[35S]thio)triphosphate basal binding in nucleus basalis of Meynert and thalamic nuclei was increased in the vehicle treated group. This effect was reverted by galanin treatment and indicates that the surgery increased receptor functional coupling to G proteins, which is restored by a possible neurotrophic action mediated by galanin. In addition, in galanin administered animals, galanin-stimulated binding was increased in the amygdala but decreased in the diagonal band, whilst binding stimulation mediated by carbachol was found to be increased in the amygdala, thalamic nuclei and diagonal band. These findings indicate that galanin treatment modulates the coupling of galanin and muscarinic cholinergic receptors to G proteins in specific regions of the rat central nervous system.

  20. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa

    PubMed Central

    Li, Shizhong; Hauser, Frank; Skadborg, Signe K.; Nielsen, Stine V.; Kirketerp-Møller, Nikolaj; Grimmelikhuijzen, Cornelis J. P.

    2016-01-01

    Most multicellular animals belong to two evolutionary lineages, the Proto– and Deuterostomia, which diverged 640–760 million years (MYR) ago. Neuropeptide signaling is abundant in animals belonging to both lineages, but it is often unclear whether there exist evolutionary relationships between the neuropeptide systems used by proto- or deuterostomes. An exception, however, are members of the gonadotropin-releasing hormone (GnRH) receptor superfamily, which occur in both evolutionary lineages, where GnRHs are the ligands in Deuterostomia and GnRH-like peptides, adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP) are the ligands in Protostomia. AKH is a well-studied insect neuropeptide that mobilizes lipids and carbohydrates from the insect fat body during flight. In our present paper, we show that AKH is not only widespread in insects, but also in other Ecdysozoa and in Lophotrochozoa. Furthermore, we have cloned and deorphanized two G protein-coupled receptors (GPCRs) from the oyster Crassostrea gigas (Mollusca) that are activated by low nanomolar concentrations of oyster AKH (pQVSFSTNWGSamide). Our discovery of functional AKH receptors in molluscs is especially significant, because it traces the emergence of AKH signaling back to about 550 MYR ago and brings us closer to a more complete understanding of the evolutionary origins of the GnRH receptor superfamily. PMID:27628442

  1. G protein-coupled receptors: bridging the gap from the extracellular signals to the Hippo pathway.

    PubMed

    Zhou, Xin; Wang, Zhen; Huang, Wei; Lei, Qun-Ying

    2015-01-01

    The Hippo pathway is crucial in organ size control, whereas its dysregulation contributes to organ degeneration or tumorigenesis. The kinase cascade of MST1/2 and LATS1/2 and the coupling transcription co-activators YAP/TAZ represent the core components of the Hippo pathway. Extensive studies have identified a number of upstream regulators of the Hippo pathway, including contact inhibition, mechanic stress, extracellular matrix stiffness, cytoskeletal rearrangement, and some molecules of cell polarity and cell junction. However, how the diffuse extracellular signals regulate the Hippo pathway puzzles the researchers for a long time. Unexpectedly, recent elegant studies demonstrated that stimulation of some G protein-coupled receptors (GPCRs), such as lysophosphatidic acid receptor, sphingosine-1-phosphate receptor, and the protease activated receptor PAR1, causes potent YAP/TAZ dephosphorylation and activation by promoting actin cytoskeleton assemble. In this review, we briefly describe the components of the Hippo pathway and focus on the recent progress with respect to the regulation of the Hippo pathway by GPCRs and G proteins in cancer cells. In addition, we also discuss the potential therapeutic roles targeting the Hippo pathway in human cancers.

  2. Study of G-protein-coupled receptor-protein interactions by bioluminescence resonance energy transfer.

    PubMed

    Kroeger, Karen M; Eidne, Karin A

    2004-01-01

    Complex networks of protein-protein interactions are key determinants of cellular function, including those regulated by G-protein-coupled receptors (GPCRs). Formation of either stable or transitory complexes are involved in regulating all aspects of receptor function, from ligand binding through to signal transduction, desensitization, resensitization and downregulation. Today, 50% of all recently launched drugs are targeted against GPCRs. This particular class of proteins is extremely useful as a drug target because the receptors are partly located outside the cell, simplifying bioavailability and delivery of drugs directed against them. However, being located within the cell membrane causes difficulties for the study of GPCR function and bioluminescence resonance energy transfer (BRET), a naturally occurring phenomenon, represents a newly emerging, powerful tool with which to investigate and monitor dynamic interactions involving this receptor class. BRET is a noninvasive, highly sensitive technique, performed as a simple homogeneous assay. involving the proximity-dependent transfer of energy from an energy donor to acceptor resulting in the emission of light. This technology has several advantages over alternative approaches as the detection occurs within live cells, in real time, and is not restricted to a particular cellular compartment. The use of such biophysical techniques as BRET, will not only increase our understanding of the nature of GPCR regulation and the protein complexes involved, but could also potentially lead to the development of novel therapeutics that modulate these interactions.

  3. Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1

    SciTech Connect

    Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly; Xu, H. Eric

    2009-01-15

    The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observed for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.

  4. G-protein coupled receptor-mediated nutrient sensing and developmental control in Aspergillus nidulans.

    PubMed

    Brown, Neil Andrew; Dos Reis, Thaila Fernanda; Ries, Laure Nicolas Annick; Caldana, Camila; Mah, Jae-Hyung; Yu, Jae-Hyuk; Macdonald, Jeffrey M; Goldman, Gustavo Henrique

    2015-10-01

    Nutrient sensing and utilisation are fundamental for all life forms. As heterotrophs, fungi have evolved a diverse range of mechanisms for sensing and taking up various nutrients. Despite its importance, only a limited number of nutrient receptors and their corresponding ligands have been identified in fungi. G-protein coupled receptors (GPCRs) are the largest family of transmembrane receptors. The Aspergillus nidulans genome encodes 16 putative GPCRs, but only a few have been functionally characterised. Our previous study showed the increased expression of an uncharacterised putative GPCR, gprH, during carbon starvation. GprH appears conserved throughout numerous filamentous fungi. Here, we reveal that GprH is a putative receptor involved in glucose and tryptophan sensing. The absence of GprH results in a reduction in cAMP levels and PKA activity upon adding glucose or tryptophan to starved cells. GprH is pre-formed in conidia and is increasingly active during carbon starvation, where it plays a role in glucose uptake and the recovery of hyphal growth. GprH also represses sexual development under conditions favouring sexual fruiting and during carbon starvation in submerged cultures. In summary, the GprH nutrient-sensing system functions upstream of the cAMP-PKA pathway, influences primary metabolism and hyphal growth, while represses sexual development in A. nidulans.

  5. Chemical biology methods for investigating G protein-coupled receptor signaling.

    PubMed

    Huber, Thomas; Sakmar, Thomas P

    2014-09-18

    G protein-coupled receptors (GPCRs) are targets for a quarter of prescription drugs. Despite recent progress in structural biology of GPCRs, only few key conformational states in the signal transduction process have been elucidated. Agonist ligands frequently display functional selectivity where activated receptors are biased to either G protein- or arrestin-mediated downstream signaling pathways. Selective manipulation of individual steps in the GPCR activation scheme requires precise information about the kinetics of ligand binding and the dynamics of downstream signaling. One approach is to obtain time-resolved information using receptors tagged with fluorescent or structural probes. Recent advances allow for site-specific introduction of genetically encoded unnatural amino acids into expressed GPCRs. We describe how bioorthogonal functional groups on GPCRs enable the mapping of receptor-ligand interactions and how bioorthogonal chemical reactions can be used to introduce fluorescent labels for single-molecule fluorescence applications to study the kinetics and conformational dynamics of GPCR signaling complexes ("signalosomes").

  6. Thematic Minireview Series: New Directions in G Protein-coupled Receptor Pharmacology.

    PubMed

    Dohlman, Henrik G

    2015-08-07

    Over the past half-century, The Journal of Biological Chemistry has been the venue for many landmark publications on the topic of G protein-coupled receptors (GPCRs, also known as seven-transmembrane receptors). The GPCR superfamily in humans is composed of about 800 members, and is the target of about one-third of all pharmaceuticals. Most of these drugs target a very small subset of GPCRs, and do so by mimicking or competing with endogenous hormones and neurotransmitters. This thematic minireview series examines some emerging trends in GPCR drug discovery. The first article describes efforts to systematically interrogate the human "GPCR-ome," including more than 150 uncharacterized "orphan" receptors. The second article describes recent efforts to target alternative receptor binding sites with drugs that act as allosteric modulators of orthosteric ligands. The third article describes how the recent expansion of GPCR structures is providing new opportunities for computer-guided drug discovery. Collectively, these three articles provide a roadmap for the most important emerging trends in GPCR pharmacology.

  7. G-Protein-Coupled Receptors: Next Generation Therapeutic Targets in Head and Neck Cancer?

    PubMed

    Kanazawa, Takeharu; Misawa, Kiyoshi; Misawa, Yuki; Uehara, Takayuki; Fukushima, Hirofumi; Kusaka, Gen; Maruta, Mikiko; Carey, Thomas E

    2015-08-05

    Therapeutic outcome in head and neck squamous cell carcinoma (HNSCC) is poor in most advanced cases. To improve therapeutic efficiency, novel therapeutic targets and prognostic factors must be discovered. Our studies have identified several G protein-coupled receptors (GPCRs) as promising candidates. Significant epigenetic silencing of GPCR expression occurs in HNSCC compared with normal tissue, and is significantly correlated with clinical behavior. Together with the finding that GPCR activity can suppress tumor cell growth, this indicates that GPCR expression has potential utility as a prognostic factor. In this review, we discuss the roles that galanin receptor type 1 (GALR1) and type 2 (GALR2), tachykinin receptor type 1 (TACR1), and somatostatin receptor type 1 (SST1) play in HNSCC. GALR1 inhibits proliferation of HNSCC cells though ERK1/2-mediated effects on cell cycle control proteins such as p27, p57, and cyclin D1, whereas GALR2 inhibits cell proliferation and induces apoptosis in HNSCC cells. Hypermethylation of GALR1, GALR2, TACR1, and SST1 is associated with significantly reduced disease-free survival and a higher recurrence rate. Although their overall activities varies, each of these GPCRs has value as both a prognostic factor and a therapeutic target. These data indicate that further study of GPCRs is a promising strategy that will enrich pharmacogenomics and prognostic research in HNSCC.

  8. G-Protein-Coupled Receptors: Next Generation Therapeutic Targets in Head and Neck Cancer?

    PubMed Central

    Kanazawa, Takeharu; Misawa, Kiyoshi; Misawa, Yuki; Uehara, Takayuki; Fukushima, Hirofumi; Kusaka, Gen; Maruta, Mikiko; Carey, Thomas E.

    2015-01-01

    Therapeutic outcome in head and neck squamous cell carcinoma (HNSCC) is poor in most advanced cases. To improve therapeutic efficiency, novel therapeutic targets and prognostic factors must be discovered. Our studies have identified several G protein-coupled receptors (GPCRs) as promising candidates. Significant epigenetic silencing of GPCR expression occurs in HNSCC compared with normal tissue, and is significantly correlated with clinical behavior. Together with the finding that GPCR activity can suppress tumor cell growth, this indicates that GPCR expression has potential utility as a prognostic factor. In this review, we discuss the roles that galanin receptor type 1 (GALR1) and type 2 (GALR2), tachykinin receptor type 1 (TACR1), and somatostatin receptor type 1 (SST1) play in HNSCC. GALR1 inhibits proliferation of HNSCC cells though ERK1/2-mediated effects on cell cycle control proteins such as p27, p57, and cyclin D1, whereas GALR2 inhibits cell proliferation and induces apoptosis in HNSCC cells. Hypermethylation of GALR1, GALR2, TACR1, and SST1 is associated with significantly reduced disease-free survival and a higher recurrence rate. Although their overall activities varies, each of these GPCRs has value as both a prognostic factor and a therapeutic target. These data indicate that further study of GPCRs is a promising strategy that will enrich pharmacogenomics and prognostic research in HNSCC. PMID:26251921

  9. Expression and functional roles of G-protein-coupled estrogen receptor (GPER) in human eosinophils.

    PubMed

    Tamaki, Mami; Konno, Yasunori; Kobayashi, Yoshiki; Takeda, Masahide; Itoga, Masamichi; Moritoki, Yuki; Oyamada, Hajime; Kayaba, Hiroyuki; Chihara, Junichi; Ueki, Shigeharu

    2014-07-01

    Sexual dimorphism in asthma links the estrogen and allergic immune responses. The function of estrogen was classically believed to be mediated through its nuclear receptors, i.e., estrogen receptors (ERs). However, recent studies established the important roles of G-protein-coupled estrogen receptor (GPER/GPR30) as a novel membrane receptor for estrogen. To date, the role of GPER in allergic inflammation is poorly understood. The purpose of this study was to examine whether GPER might affect the functions of eosinophils, which play an important role in the pathogenesis of asthma. Here, we demonstrated that GPER was expressed in purified human peripheral blood eosinophils both at the mRNA and protein levels. Although GPER agonist G-1 did not induce eosinophil chemotaxis or chemokinesis, preincubation with G-1 enhanced eotaxin (CCL11)-directed eosinophil chemotaxis. G-1 inhibited eosinophil spontaneous apoptosis and caspase-3 activities. The anti-apoptotic effect was not affected by the cAMP-phospodiesterase inhibitor rolipram or phosphoinositide 3-kinase inhibitors. In contrast to resting eosinophils, G-1 induced apoptosis and increased caspase-3 activities when eosinophils were co-stimulated with IL-5. No effect of G-1 was observed on eosinophil degranulation in terms of release of eosinophil-derived neurotoxin (EDN). The current study indicates the functional capacities of GPER on human eosinophils and also provides the previously unrecognized mechanisms of interaction between estrogen and allergic inflammation.

  10. Recent Advances on the Role of G Protein-Coupled Receptors in Hypoxia-Mediated Signaling.

    PubMed

    Lappano, Rosamaria; Rigiracciolo, Damiano; De Marco, Paola; Avino, Silvia; Cappello, Anna Rita; Rosano, Camillo; Maggiolini, Marcello; De Francesco, Ernestina Marianna

    2016-03-01

    G protein-coupled receptors (GPCRs) are cell surface proteins mainly involved in signal transmission; however, they play a role also in several pathophysiological conditions. Chemically heterogeneous molecules like peptides, hormones, lipids, and neurotransmitters activate second messengers and induce several biological responses by binding to these seven transmembrane receptors, which are coupled to heterotrimeric G proteins. Recently, additional molecular mechanisms have been involved in GPCR-mediated signaling, leading to an intricate network of transduction pathways. In this regard, it should be mentioned that diverse GPCR family members contribute to the adaptive cell responses to low oxygen tension, which is a distinguishing feature of several illnesses like neoplastic and cardiovascular diseases. For instance, the G protein estrogen receptor, namely G protein estrogen receptor (GPER)/GPR30, has been shown to contribute to relevant biological effects induced by hypoxia via the hypoxia-inducible factor (HIF)-1α in diverse cell contexts, including cancer. Likewise, GPER has been found to modulate the biological outcome of hypoxic/ischemic stress in both cardiovascular and central nervous systems. Here, we describe the role exerted by GPCR-mediated signaling in low oxygen conditions, discussing, in particular, the involvement of GPER by a hypoxic microenvironment.

  11. Chemotactic G protein-coupled receptors control cell migration by repressing autophagosome biogenesis.

    PubMed

    Coly, Pierre-Michaël; Perzo, Nicolas; Le Joncour, Vadim; Lecointre, Céline; Schouft, Marie-Thérèse; Desrues, Laurence; Tonon, Marie-Christine; Wurtz, Olivier; Gandolfo, Pierrick; Castel, Hélène; Morin, Fabrice

    2016-12-01

    Chemotactic migration is a fundamental behavior of cells and its regulation is particularly relevant in physiological processes such as organogenesis and angiogenesis, as well as in pathological processes such as tumor metastasis. The majority of chemotactic stimuli activate cell surface receptors that belong to the G protein-coupled receptor (GPCR) superfamily. Although the autophagy machinery has been shown to play a role in cell migration, its mode of regulation by chemotactic GPCRs remains largely unexplored. We found that ligand-induced activation of 2 chemotactic GPCRs, the chemokine receptor CXCR4 and the urotensin 2 receptor UTS2R, triggers a marked reduction in the biogenesis of autophagosomes, in both HEK-293 and U87 glioblastoma cells. Chemotactic GPCRs exert their anti-autophagic effects through the activation of CAPNs, which prevent the formation of pre-autophagosomal vesicles from the plasma membrane. We further demonstrated that CXCR4- or UTS2R-induced inhibition of autophagy favors the formation of adhesion complexes to the extracellular matrix and is required for chemotactic migration. Altogether, our data reveal a new link between GPCR signaling and the autophagy machinery, and may help to envisage therapeutic strategies in pathological processes such as cancer cell invasion.

  12. Fluorescent knock-in mice to decipher the physiopathological role of G protein-coupled receptors

    PubMed Central

    Ceredig, Rhian A.; Massotte, Dominique

    2015-01-01

    G protein-coupled receptors (GPCRs) modulate most physiological functions but are also critically involved in numerous pathological states. Approximately a third of marketed drugs target GPCRs, which places this family of receptors in the main arena of pharmacological pre-clinical and clinical research. The complexity of GPCR function demands comprehensive appraisal in native environment to collect in-depth knowledge of receptor physiopathological roles and assess the potential of therapeutic molecules. Identifying neurons expressing endogenous GPCRs is therefore essential to locate them within functional circuits whereas GPCR visualization with subcellular resolution is required to get insight into agonist-induced trafficking. Both remain frequently poorly investigated because direct visualization of endogenous receptors is often hampered by the lack of appropriate tools. Also, monitoring intracellular trafficking requires real-time visualization to gather in-depth knowledge. In this context, knock-in mice expressing a fluorescent protein or a fluorescent version of a GPCR under the control of the endogenous promoter not only help to decipher neuroanatomical circuits but also enable real-time monitoring with subcellular resolution thus providing invaluable information on their trafficking in response to a physiological or a pharmacological challenge. This review will present the animal models and discuss their contribution to the understanding of the physiopathological role of GPCRs. We will also address the drawbacks associated with this methodological approach and browse future directions. PMID:25610398

  13. Affinity Purification and Characterization of a G-Protein Coupled Receptor, Saccharomyces cerevisiae Ste2p

    SciTech Connect

    Lee, Byung-Kwon; Jung, Kyung-Sik; Son, Cagdas D; Kim, Heejung; Verberkmoes, Nathan C; Arshava, Boris; Naider, Fred; Becker, Jeffrey Marvin

    2007-01-01

    We present a rare example of a biologically active G protein coupled receptor (GPCR) whose purity and identity were verified by mass spectrometry after being purified to near homogeneity from its native system. An overexpression vector was constructed to encode the Saccharomyces cerevisiae GPCR -factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Tests of the epitope-tagged, mutated receptor showed it maintained its full biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5 % n-dodecyl maltoside (DM). Approximately 120 g of purified -factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (Kd) of the purified -factor receptor in DM micelles was 28 nM as compared to Kd = 12.7 nM for Ste2p in cell membranes, and approximately 40 % of the purified receptor was correctly folded as judged by ligand saturation binding. About 50 % of the receptor sequence was retrieved from MALDITOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the -factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.

  14. The G protein-coupled receptor GPRC5B contributes to neurogenesis in the developing mouse neocortex.

    PubMed

    Kurabayashi, Nobuhiro; Nguyen, Minh Dang; Sanada, Kamon

    2013-11-01

    Neural progenitor cells in the developing brain give rise to neurons and glia. Multiple extrinsic signalling molecules and their cognate membrane receptors have been identified to control neural progenitor fate. However, a role for G protein-coupled receptors in cell fate decisions in the brain remains largely putative. Here we show that GPRC5B, which encodes an orphan G protein-coupled receptor, is present in the ventricular surface of cortical progenitors in the mouse developing neocortex and is required for their neuronal differentiation. GPRC5B-depleted progenitors fail to adopt a neuronal fate and ultimately become astrocytes. Furthermore, GPRC5B-mediated signalling is associated with the proper regulation of β-catenin signalling, a pathway crucial for progenitor fate decision. Our study uncovers G protein-coupled receptor signalling in the neuronal fate determination of cortical progenitors.

  15. G Protein Coupled Receptor Kinase 3 Regulates Breast Cancer Migration, Invasion, and Metastasis

    PubMed Central

    Billard, Matthew J.; Fitzhugh, David J.; Parker, Joel S.; Brozowski, Jaime M.; McGinnis, Marcus W.; Timoshchenko, Roman G.; Serafin, D. Stephen; Lininger, Ruth; Klauber-Demore, Nancy; Sahagian, Gary; Truong, Young K.; Sassano, Maria F.; Serody, Jonathan S.; Tarrant, Teresa K.

    2016-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis. PMID:27049755

  16. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function

    PubMed Central

    Gahbauer, Stefan; Böckmann, Rainer A.

    2016-01-01

    The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function. PMID:27826255

  17. Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology

    PubMed Central

    Bologna, Zuzana; Teoh, Jian-peng; Bayoumi, Ahmed S.; Tang, Yaoliang; Kim, Il-man

    2017-01-01

    G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas β-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of β-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of β-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or β-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or β-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation. PMID:28035079

  18. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4

    PubMed Central

    Kranz, Franziska

    2016-01-01

    G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment. PMID:27812115

  19. G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates

    PubMed Central

    Hamoud, Noumeira; Tran, Viviane; Croteau, Louis-Philippe; Kania, Artur; Côté, Jean-François

    2014-01-01

    Muscle fibers form as a result of myoblast fusion, yet the cell surface receptors regulating this process are unknown in vertebrates. In Drosophila, myoblast fusion involves the activation of the Rac pathway by the guanine nucleotide exchange factor Myoblast City and its scaffolding protein ELMO, downstream of cell-surface cell-adhesion receptors. We previously showed that the mammalian ortholog of Myoblast City, DOCK1, functions in an evolutionarily conserved manner to promote myoblast fusion in mice. In search for regulators of myoblast fusion, we identified the G-protein coupled receptor brain-specific angiogenesis inhibitor (BAI3) as a cell surface protein that interacts with ELMO. In cultured cells, BAI3 or ELMO1/2 loss of function severely impaired myoblast fusion without affecting differentiation and cannot be rescued by reexpression of BAI3 mutants deficient in ELMO binding. The related BAI protein family member, BAI1, is functionally distinct from BAI3, because it cannot rescue the myoblast fusion defects caused by the loss of BAI3 function. Finally, embryonic muscle precursor expression of a BAI3 mutant unable to bind ELMO was sufficient to block myoblast fusion in vivo. Collectively, our findings provide a role for BAI3 in the relay of extracellular fusion signals to their intracellular effectors, identifying it as an essential transmembrane protein for embryonic vertebrate myoblast fusion. PMID:24567399

  20. Amphipol-assisted in vitro folding of G protein-coupled receptors.

    PubMed

    Dahmane, Tassadite; Damian, Marjorie; Mary, Sophie; Popot, Jean-Luc; Banères, Jean-Louis

    2009-07-14

    G protein-coupled receptors (GPCRs) regulate numerous physiological functions. The primary difficulty presented by their study in vitro is to obtain them in sufficient amounts under a functional and stable form. Escherichia coli is a host of choice for producing recombinant proteins for structural studies. However, the insertion of GPCRs into its plasma membrane usually results in bacterial death. An alternative approach consists of targeting recombinant receptors to inclusion bodies, where they accumulate without affecting bacterial growth, and then folding them in vitro. This approach, however, stumbles over the very low folding yields typically achieved, whether in detergent solutions or in detergent-lipid mixtures. Here, we show that synthetic polymers known as amphipols provide a highly efficient medium for folding GPCRs. Using a generic protocol, we have folded four class A GPCRs to their functional state, as evidenced by the binding of their respective ligands. This strategy thus appears to have the potential to be generalized to a large number of GPCRs. These data are also of interest from a more fundamental point of view: they indicate that the structural information stored in the sequence of these four receptors allows them to reach their correct three-dimensional structure in an environment that bears no similarity, beyond the amphiphilic character, to lipid bilayers.

  1. Chaperoning G Protein-Coupled Receptors: From Cell Biology to Therapeutics

    PubMed Central

    Conn, P. Michael

    2014-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases. PMID:24661201

  2. Opioid desensitization: interactions with G-protein-coupled receptors in the locus coeruleus.

    PubMed

    Fiorillo, C D; Williams, J T

    1996-02-15

    In rat locus coeruleus (LC) neurons, alpha 2 adrenoceptors, mu-opioid and somatostatin receptors all activate the same potassium conductance. Chronic treatment with morphine causes a loss of sensitivity that is specific to the mu-opioid response, with no change in the alpha 2 adrenoceptor-mediated response. Acute desensitization induced by opioid, somatostatin, and alpha 2-adrenoceptor agonists was studied in brain slices of rat LC using intracellular recording. A supramaximal concentration of the opioid agonist Met5-enkephalin induced a profound homologous desensitization but little heterologous desensitization to an alpha 2-adrenoceptor agonist (UK 14304) or somatostatin. All desensitized currents showed partial recovery. A supramaximal concentration of UK14304 caused a relatively small amount of desensitization. Although little interaction was observed among inhibitory G-protein-coupled receptors, activation of an excitatory receptor had marked effects on inhibitory responses. Muscarinic agonists, which produce an inward current in LC neurons, reduced the magnitude of agonist-induced outward currents and increased both the rate and amount of opioid desensitization. Muscarinic activation did not alter desensitization of alpha 2-adrenoceptor responses. Acute desensitization shares several characteristics with the tolerance induced by chronic morphine treatment of animals.

  3. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors

    NASA Astrophysics Data System (ADS)

    Woods, Kristina N.; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith

    2016-11-01

    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals.

  4. Molecular manipulation of G-protein-coupled receptors: a new avenue into drug discovery.

    PubMed

    Sautel, M; Milligan, G

    2000-09-01

    During the past 10 years or so, associated with the introduction of molecular biology techniques to G protein-coupled receptor (GPCR) research, outstanding progress has been made in understanding the mechanisms of action of these key proteins and their physiological functions. in-vivo manipulation of levels of GPCRs using transgenic and gene knock-out approaches have been particularly successful in assessing the roles of specific GPCRs in animal physiology. Drug discovery is aiming to produce highly specific compounds based on subtle definition of receptor subtypes which can best be studied using heterologous expression of wild type or mutated forms of cDNA or genes encoding these proteins. Furthermore, new therapeutic opportunities may be provided by investigation of orphan receptors, the natural ligands for which remain unidentified. Some human diseases have been shown to be associated with rare mutations of GPCRs and the possibility that widely distributed polymorphisms in GPCR genes may allow selective therapeutic strategies for population subgroups is driving the development of the science of pharmacogenetics.

  5. Responsiveness of G protein-coupled odorant receptors is partially attributed to the activation mechanism

    PubMed Central

    Yu, Yiqun; de March, Claire A.; Ni, Mengjue J.; Adipietro, Kaylin A.; Golebiowski, Jérôme; Matsunami, Hiroaki; Ma, Minghong

    2015-01-01

    Mammals detect and discriminate numerous odors via a large family of G protein-coupled odorant receptors (ORs). However, little is known about the molecular and structural basis underlying OR response properties. Using site-directed mutagenesis and computational modeling, we studied ORs sharing high sequence homology but with different response properties. When tested in heterologous cells by diverse odorants, MOR256-3 responded broadly to many odorants, whereas MOR256-8 responded weakly to a few odorants. Out of 36 mutant MOR256-3 ORs, the majority altered the responses to different odorants in a similar manner and the overall response of an OR was positively correlated with its basal activity, an indication of ligand-independent receptor activation. Strikingly, a single mutation in MOR256-8 was sufficient to confer both high basal activity and broad responsiveness to this receptor. These results suggest that broad responsiveness of an OR is at least partially attributed to its activation likelihood. PMID:26627247

  6. Tre1, a G Protein-Coupled Receptor, Directs Transepithelial Migration of Drosophila Germ Cells

    PubMed Central

    Bainton, Roland J; Heberlein, Ulrike

    2003-01-01

    In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target. PMID:14691551

  7. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors.

    PubMed

    Woods, Kristina N; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith

    2016-11-16

    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals.

  8. G-protein-coupled receptor signaling and neural tube closure defects.

    PubMed

    Shimada, Issei S; Mukhopadhyay, Saikat

    2017-01-30

    Disruption of the normal mechanisms that mediate neural tube closure can result in neural tube defects (NTDs) with devastating consequences in affected patients. With the advent of next-generation sequencing, we are increasingly detecting mutations in multiple genes in NTD cases. However, our ability to determine which of these genes contribute to the malformation is limited by our understanding of the pathways controlling neural tube closure. G-protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors in humans and have been historically favored as drug targets. Recent studies implicate several GPCRs and downstream signaling pathways in neural tube development and closure. In this review, we will discuss our current understanding of GPCR signaling pathways in pathogenesis of NTDs. Notable examples include the orphan primary cilia-localized GPCR, Gpr161 that regulates the basal suppression machinery of sonic hedgehog pathway by means of activation of cAMP-protein kinase A signaling in the neural tube, and protease-activated receptors that are activated by a local network of membrane-tethered proteases during neural tube closure involving the surface ectoderm. Understanding the role of these GPCR-regulated pathways in neural tube development and closure is essential toward identification of underlying genetic causes to prevent NTDs. Birth Defects Research 109:129-139, 2017. © 2016 Wiley Periodicals, Inc.

  9. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors

    PubMed Central

    Woods, Kristina N.; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith

    2016-01-01

    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals. PMID:27849063

  10. G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease

    PubMed Central

    Divorty, Nina; Mackenzie, Amanda E.; Nicklin, Stuart A.; Milligan, Graeme

    2015-01-01

    G protein-coupled receptor 35 (GPR35) is an orphan receptor, discovered in 1998, that has garnered interest as a potential therapeutic target through its association with a range of diseases. However, a lack of pharmacological tools and the absence of convincingly defined endogenous ligands have hampered the understanding of function necessary to exploit it therapeutically. Although several endogenous molecules can activate GPR35 none has yet been confirmed as the key endogenous ligand due to reasons that include lack of biological specificity, non-physiologically relevant potency and species ortholog selectivity. Recent advances have identified several highly potent synthetic agonists and antagonists, as well as agonists with equivalent potency at rodent and human orthologs, which will be useful as tool compounds. Homology modeling and mutagenesis studies have provided insight into the mode of ligand binding and possible reasons for the species selectivity of some ligands. Advances have also been made in determining the role of the receptor in disease. In the past, genome-wide association studies have associated GPR35 with diseases such as inflammatory bowel disease, type 2 diabetes, and coronary artery disease. More recent functional studies have implicated it in processes as diverse as heart failure and hypoxia, inflammation, pain transduction and synaptic transmission. In this review, we summarize the progress made in understanding the molecular pharmacology, downstream signaling and physiological function of GPR35, and discuss its emerging potential applications as a therapeutic target. PMID:25805994

  11. G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism.

    PubMed

    Ye, Ping; Mariniello, Barbara; Mantero, Franco; Shibata, Hirotaka; Rainey, William E

    2007-10-01

    The source of aldosterone in 30-40% of patients with primary hyperaldosteronism (PA) is unilateral aldosterone-producing adenoma (APA). The mechanisms causing elevated aldosterone production in APA are unknown. Herein, we examined the expression of G-protein-coupled receptors (GPCRs) in APA and demonstrated that when compared with normal adrenals, there is a general elevation of certain GPCR in many APA and/or ectopic expression of GPCR in others. RNA samples from normal adrenals (n = 5), APAs (n = 10), and cortisol-producing adenomas (CPAs; n = 13) were used on 15 genomic expression arrays, each of which included 223 GPCR transcripts presented in at least 1 out of 15 of the independent microarrays. The array results were confirmed using real-time RT-PCR (qPCR). Four GPCR transcripts exhibited a statistically significant increase that was greater than threefold when compared with normal adrenals, suggesting a general increase in expression when compared with normal adrenal glands. Four GPCR transcripts exhibited a > 15-fold increase of expression in one or more of the APA samples when compared with normal adrenals. qPCR analysis confirmed array data and found the receptors with the highest fold increase in APA expression to be LH receptor, serotonin receptor 4, GnRH receptor, glutamate receptor metabotropic 3, endothelin receptor type B-like protein, and ACTH receptor. There are also sporadic increased expressions of these genes in the CPAs. Together, these findings suggest a potential role of altered GPCR expression in many cases of PA and provide candidate GPCR for further study.

  12. Ca2+-dependent inhibition of G protein-coupled receptor kinase 2 by calmodulin.

    PubMed

    Haga, K; Tsuga, H; Haga, T

    1997-02-11

    Agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptor m2 subtypes (m2 receptors) or rhodopsin by G protein-coupled receptor kinase 2 (GRK2) was found to be inhibited by calmodulin in a Ca2+-dependent manner. The phosphorylation was fully inhibited in the absence of G protein betagamma subunits and partially inhibited in the presence of betagamma subunits. The dose-response curve for stimulation by betagamma subunits of the m2 and rhodopsin phosphorylation was shifted to the higher concentration of betagamma subunits by addition of Ca2+-calmodulin. The phosphorylation by GRK2 of a glutathione S-transferase fusion protein containing a peptide corresponding to the central part of the third intracellular loop of m2 receptors (I3-GST) was not affected by Ca2+-calmodulin in the presence or absence of betagamma subunits, but the agonist-dependent stimulation of I3-GST phosphorylation by an I3-deleted m2 receptor mutant in the presence of betagamma subunits was suppressed by Ca2+-calmodulin. These results indicate that Ca2+-calmodulin does not directly interact with the catalytic site of GRK2 but inhibits the kinase activity of GRK2 by interfering with the activation of GRK2 by agonist-bound m2 receptors and G protein betagamma subunits. In agreement with the assumption that GRK2 activity is suppressed by the increase in intracellular Ca2+, the sequestration of m2 receptors expressed in Chinese hamster ovary cells was found to be attenuated by the treatment with a Ca2+ ionophore, A23187.

  13. Synthetic FXR agonist GW4064 is a modulator of multiple G protein-coupled receptors.

    PubMed

    Singh, Nidhi; Yadav, Manisha; Singh, Abhishek Kumar; Kumar, Harish; Dwivedi, Shailendra Kumar Dhar; Mishra, Jay Sharan; Gurjar, Anagha; Manhas, Amit; Chandra, Sharat; Yadav, Prem Narayan; Jagavelu, Kumaravelu; Siddiqi, Mohammad Imran; Trivedi, Arun Kumar; Chattopadhyay, Naibedya; Sanyal, Sabyasachi

    2014-05-01

    The synthetic nuclear bile acid receptor (farnesoid X receptor [FXR]) agonist GW4064 is extensively used as a specific pharmacological tool to illustrate FXR functions. We noticed that GW4064 activated empty luciferase reporters in FXR-deficient HEK-293T cells. We postulated that this activity of GW4064 might be routed through as yet unknown cellular targets and undertook an unbiased exploratory approach to identify these targets. Investigations revealed that GW4064 activated cAMP and nuclear factor for activated T-cell response elements (CRE and NFAT-RE, respectively) present on these empty reporters. Whereas GW4064-induced NFAT-RE activation involved rapid intracellular Ca(2+) accumulation and NFAT nuclear translocation, CRE activation involved soluble adenylyl cyclase-dependent cAMP accumulation and Ca(2+)-calcineurin-dependent nuclear translocation of transducers of regulated CRE-binding protein 2. Use of dominant negative heterotrimeric G-protein minigenes revealed that GW4064 caused activation of Gαi/o and Gq/11 G proteins. Sequential pharmacological inhibitor-based screening and radioligand-binding studies revealed that GW4064 interacted with multiple G protein-coupled receptors. Functional studies demonstrated that GW4064 robustly activated H1 and H4 and inhibited H2 histamine receptor signaling events. We also found that MCF-7 breast cancer cells, reported to undergo GW4064-induced apoptosis in an FXR-dependent manner, did not express FXR, and the GW4064-mediated apoptosis, also apparent in HEK-293T cells, could be blocked by selective histamine receptor regulators. Taken together, our results demonstrate identification of histamine receptors as alternate targets for GW4064, which not only necessitates cautious interpretation of the biological functions attributed to FXR using GW4064 as a pharmacological tool but also provides a basis for the rational designing of new pharmacophores for histamine receptor modulation.

  14. Regulation of bone formation and remodeling by G-protein-coupled receptor 48.

    PubMed

    Luo, Jian; Zhou, Wei; Zhou, Xin; Li, Dali; Weng, Jinsheng; Yi, Zhengfang; Cho, Sung Gook; Li, Chenghai; Yi, Tingfang; Wu, Xiushan; Li, Xiao-Ying; de Crombrugghe, Benoit; Höök, Magnus; Liu, Mingyao

    2009-08-01

    G-protein-coupled receptor (GPCR) 48 (Gpr48; Lgr4), a newly discovered member of the glycoprotein hormone receptor subfamily of GPCRs, is an orphan GPCR of unknown function. Using a knockout mouse model, we have characterized the essential roles of Gpr48 in bone formation and remodeling. Deletion of Gpr48 in mice results in a dramatic delay in osteoblast differentiation and mineralization, but not in chondrocyte proliferation and maturation, during embryonic bone formation. Postnatal bone remodeling is also significantly affected in Gpr48(-/-) mice, including the kinetic indices of bone formation rate, bone mineral density and osteoid formation, whereas the activity and number of osteoclasts are increased as assessed by tartrate-resistant acid phosphatase staining. Examination of the molecular mechanism of Gpr48 action in bone formation revealed that Gpr48 can activate the cAMP-PKA-CREB signaling pathway to regulate the expression level of Atf4 in osteoblasts. Furthermore, we show that Gpr48 significantly downregulates the expression levels of Atf4 target genes/proteins, such as osteocalcin (Ocn; Bglap2), bone sialoprotein (Bsp; Ibsp) and collagen. Together, our data demonstrate that Gpr48 regulates bone formation and remodeling through the cAMP-PKA-Atf4 signaling pathway.

  15. G-protein coupled receptor 15 mediates angiogenesis and cytoprotective function of thrombomodulin.

    PubMed

    Pan, Bin; Wang, Xiangmin; Nishioka, Chie; Honda, Goichi; Yokoyama, Akihito; Zeng, Lingyu; Xu, Kailin; Ikezoe, Takayuki

    2017-04-06

    Thrombomodulin (TM) stimulates angiogenesis and protects vascular endothelial cells (ECs) via its fifth epidermal growth factor-like region (TME5); however, the cell surface receptor that mediates the pro-survival signaling activated by TM has remained unknown. We applied pull-down assay followed by MALDI-TOF MS and western blot analysis, and identified G-protein coupled receptor 15 (GPR15) as a binding partner of TME5. TME5 rescued growth inhibition and apoptosis caused by calcineurin inhibitor FK506 in vascular ECs isolated from wild type (WT) C57BL/6 mice. On the other hand, TME5 failed to protect ECs isolated from GPR15 knockout (GPR15 KO) mice from FK506-caused vascular injury. TME5 induced activation of extracellular signal-regulated kinase (ERK) and increased level of anti-apoptotic proteins in a GPR15 dependent manner. In addition, in vivo Matrigel plug angiogenesis assay found that TME5 stimulated angiogenesis in mice. TME5 promoted endothelial migration in vitro. Furthermore, TME5 increased production of NO in association with activated endothelial NO synthase (eNOS) in ECs. All these pro-angiogenesis functions of TME5 were abolished by knockout of GPR15. Our findings suggest that GPR15 plays an important role in mediating cytoprotective function as well as angiogenesis of TM.

  16. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors.

    PubMed

    He, Weihai; Miao, Frederick J-P; Lin, Daniel C-H; Schwandner, Ralf T; Wang, Zhulun; Gao, Jinhai; Chen, Jin-Long; Tian, Hui; Ling, Lei

    2004-05-13

    The citric acid cycle is central to the regulation of energy homeostasis and cell metabolism. Mutations in enzymes that catalyse steps in the citric acid cycle result in human diseases with various clinical presentations. The intermediates of the citric acid cycle are present at micromolar concentration in blood and are regulated by respiration, metabolism and renal reabsorption/extrusion. Here we show that GPR91 (ref. 3), a previously orphan G-protein-coupled receptor (GPCR), functions as a receptor for the citric acid cycle intermediate succinate. We also report that GPR99 (ref. 4), a close relative of GPR91, responds to alpha-ketoglutarate, another intermediate in the citric acid cycle. Thus by acting as ligands for GPCRs, succinate and alpha-ketoglutarate are found to have unexpected signalling functions beyond their traditional roles. Furthermore, we show that succinate increases blood pressure in animals. The succinate-induced hypertensive effect involves the renin-angiotensin system and is abolished in GPR91-deficient mice. Our results indicate a possible role for GPR91 in renovascular hypertension, a disease closely linked to atherosclerosis, diabetes and renal failure.

  17. Diverse roles of G-protein coupled receptors in the regulation of neurohypophyseal hormone secretion.

    PubMed

    Sladek, C D; Song, Z

    2012-04-01

    The magnocellular neurones in the supraoptic nucleus project to the neural lobe and release vasopressin and oxytocin into the peripheral circulation, where they act on the kidney to promote fluid retention or stimulate smooth muscles in the vasculature, uterus and mammary glands to support blood pressure, promote parturition or induce milk let-down, respectively. Hormone release is regulated by complex afferent pathways carrying information about plasma osmolality, blood pressure and volume, cervical stretch, and suckling. These afferent pathways utilise a broad array of neurotransmitters and peptides that activate both ligand-gated ion channels and G-protein coupled receptors (GPCRs). The ligand-gated ion channels induce rapid changes in membrane potential resulting in the generation of action potentials, initiation of exocytosis and the release of hormone into the periphery. By contrast, the GPCRs activate a host of diverse signalling cascades that modulate action potential firing and regulate other cellular functions required to support hormone release (e.g. hormone synthesis, processing, packaging and trafficking). The diversity of these actions is critical for integration of the distinct regulatory signals into a response appropriate for maintaining homeostasis. This review describes several diverse roles of GPCRs in magnocellular neurones, focusing primarily on adrenergic, purinergic and peptidergic (neurokinin and angiotensin) receptors.

  18. Improvements in G protein-coupled receptor purification yield light stable rhodopsin crystals.

    PubMed

    Salom, David; Le Trong, Isolde; Pohl, Ehmke; Ballesteros, Juan A; Stenkamp, Ronald E; Palczewski, Krzysztof; Lodowski, David T

    2006-12-01

    G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling proteins and are the target of approximately half of all therapeutic agents. Agonist ligands bind their cognate GPCRs stabilizing the active conformation that is competent to bind G proteins, thus initiating a cascade of intracellular signaling events leading to modification of the cell activity. Despite their biomedical importance, the only known GPCR crystal structures are those of inactive rhodopsin forms. In order to understand how GPCRs are able to transduce extracellular signals across the plasma membrane, it is critical to determine the structure of these receptors in their ligand-bound, active state. Here, we report a novel combination of purification procedures that allowed the crystallization of rhodopsin in two new crystal forms and can be applicable to the purification and crystallization of other membrane proteins. Importantly, these new crystals are stable upon photoactivation and the preliminary X-ray diffraction analysis of both photoactivated and ground state rhodopsin crystals are also reported.

  19. G-protein coupled receptor-evoked glutamate exocytosis from astrocytes: role of prostaglandins.

    PubMed

    Cali, Corrado; Lopatar, Jan; Petrelli, Francesco; Pucci, Luca; Bezzi, Paola

    2014-01-01

    Astrocytes are highly secretory cells, participating in rapid brain communication by releasing glutamate. Recent evidences have suggested that this process is largely mediated by Ca(2+)-dependent regulated exocytosis of VGLUT-positive vesicles. Here by taking advantage of VGLUT1-pHluorin and TIRF illumination, we characterized mechanisms of glutamate exocytosis evoked by endogenous transmitters (glutamate and ATP), which are known to stimulate Ca(2+) elevations in astrocytes. At first we characterized the VGLUT1-pHluorin expressing vesicles and found that VGLUT1-positive vesicles were a specific population of small synaptic-like microvesicles containing glutamate but which do not express VGLUT2. Endogenous mediators evoked a burst of exocytosis through activation of G-protein coupled receptors. Subsequent glutamate exocytosis was reduced by about 80% upon pharmacological blockade of the prostaglandin-forming enzyme, cyclooxygenase. On the other hand, receptor stimulation was accompanied by extracellular release of prostaglandin E2 (PGE2). Interestingly, administration of exogenous PGE2 produced per se rapid, store-dependent burst exocytosis of glutamatergic vesicles in astrocytes. Finally, when PGE2-neutralizing antibody was added to cell medium, transmitter-evoked exocytosis was again significantly reduced (by about 50%). Overall these data indicate that cyclooxygenase products are responsible for a major component of glutamate exocytosis in astrocytes and that large part of such component is sustained by autocrine/paracrine action of PGE2.

  20. Select Neuropeptides and their G-Protein Coupled Receptors in Caenorhabditis Elegans and Drosophila Melanogaster

    PubMed Central

    Bendena, William G.; Campbell, Jason; Zara, Lian; Tobe, Stephen S.; Chin-Sang, Ian D.

    2012-01-01

    The G-protein coupled receptor (GPCR) family is comprised of seven transmembrane domain proteins and play important roles in nerve transmission, locomotion, proliferation and development, sensory perception, metabolism, and neuromodulation. GPCR research has been targeted by drug developers as a consequence of the wide variety of critical physiological functions regulated by this protein family. Neuropeptide GPCRs are the least characterized of the GPCR family as genetic systems to characterize their functions have lagged behind GPCR gene discovery. Drosophila melanogaster and Caenorhabditis elegans are genetic model organisms that have proved useful in characterizing neuropeptide GPCRs. The strength of a genetic approach leads to an appreciation of the behavioral plasticity that can result from subtle alterations in GPCRs or regulatory proteins in the pathways that GPCRs control. Many of these invertebrate neuropeptides, GPCRs, and signaling pathway components serve as models for mammalian counterparts as they have conserved sequences and function. This review provides an overview of the methods to match neuropeptides to their cognate receptor and a state of the art account of neuropeptide GPCRs that have been characterized in D. melanogaster and C. elegans and the behaviors that have been uncovered through genetic manipulation. PMID:22908006

  1. GPCR-ModSim: A comprehensive web based solution for modeling G-protein coupled receptors

    PubMed Central

    Esguerra, Mauricio; Siretskiy, Alexey; Bello, Xabier; Sallander, Jessica; Gutiérrez-de-Terán, Hugo

    2016-01-01

    GPCR-ModSim (http://open.gpcr-modsim.org) is a centralized and easy to use service dedicated to the structural modeling of G-protein Coupled Receptors (GPCRs). 3D molecular models can be generated from amino acid sequence by homology-modeling techniques, considering different receptor conformations. GPCR-ModSim includes a membrane insertion and molecular dynamics (MD) equilibration protocol, which can be used to refine the generated model or any GPCR structure uploaded to the server, including if desired non-protein elements such as orthosteric or allosteric ligands, structural waters or ions. We herein revise the main characteristics of GPCR-ModSim and present new functionalities. The templates used for homology modeling have been updated considering the latest structural data, with separate profile structural alignments built for inactive, partially-active and active groups of templates. We have also added the possibility to perform multiple-template homology modeling in a unique and flexible way. Finally, our new MD protocol considers a series of distance restraints derived from a recently identified conserved network of helical contacts, allowing for a smoother refinement of the generated models which is particularly advised when there is low homology to the available templates. GPCR- ModSim has been tested on the GPCR Dock 2013 competition with satisfactory results. PMID:27166369

  2. Peptide modifications differentially alter G protein-coupled receptor internalization and signaling bias.

    PubMed

    Mäde, Veronika; Babilon, Stefanie; Jolly, Navjeet; Wanka, Lizzy; Bellmann-Sickert, Kathrin; Diaz Gimenez, Luis E; Mörl, Karin; Cox, Helen M; Gurevich, Vsevolod V; Beck-Sickinger, Annette G

    2014-09-15

    Although G protein-coupled receptors (GPCRs) are targeted by more clinically used drugs than any other type of protein, their ligand development is particularly challenging. Humans have four neuropeptide Y receptors: hY1R and hY5R are orexigenic, while hY2R and hY4R are anorexigenic, and represent important anti-obesity drug targets. We show for the first time that PEGylation and lipidation, chemical modifications that prolong the plasma half-lives of peptides, confer additional benefits. Both modifications enhance pancreatic polypeptide preference for hY2R/hY4R over hY1R/hY5R. Lipidation biases the ligand towards arrestin recruitment and internalization, whereas PEGylation confers the opposite bias. These effects were independent of the cell system and modified residue. We thus provide novel insights into the mode of action of peptide modifications and open innovative venues for generating peptide agonists with extended therapeutic potential.

  3. Peptide Modifications Differentially Alter G Protein-Coupled Receptor Internalization and Signaling Bias**

    PubMed Central

    Mäde, Veronika; Babilon, Stefanie; Jolly, Navjeet; Wanka, Lizzy; Bellmann-Sickert, Kathrin; Diaz Gimenez, Luis E.; Mörl, Karin; Cox, Helen M.; Gurevich, Vsevolod V.; Beck-Sickinger, Annette G.

    2016-01-01

    Although G protein-coupled receptors (GPCRs) are targeted by more clinically used drugs than any other type of protein, their ligand development is particularly challenging. Humans have four neuropeptide Y receptors: hY1R and hY5R are orexigenic, while hY2R and hY4R are anorexigenic, and represent important anti-obesity drug targets. We show for the first time that PEGylation and lipidation, chemical modifications that prolong the plasma half-lives of peptides, confer additional benefits. Both modifications enhance pancreatic polypeptide preference for hY2R/hY4R over hY1R/hY5R. Lipidation biases the ligand towards arrestin recruitment and internalization, whereas PEGylation confers the opposite bias. These effects were independent of the cell system and modified residue. We thus provide novel insights into the mode of action of peptide modifications and open innovative venues for generating peptide agonists with extended therapeutic potential. PMID:25065900

  4. Systematic generation of in vivo G protein-coupled receptor mutants in the rat

    PubMed Central

    van Boxtel, R; Vroling, B; Toonen, P; Nijman, I J; van Roekel, H; Verheul, M; Baakman, C; Guryev, V; Vriend, G; Cuppen, E

    2011-01-01

    G-protein-coupled receptors (GPCRs) constitute a large family of cell surface receptors that are involved in a wide range of physiological and pathological processes, and are targets for many therapeutic interventions. However, genetic models in the rat, one of the most widely used model organisms in physiological and pharmacological research, are largely lacking. Here, we applied N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis to generate an in vivo GPCR mutant collection in the rat. A pre-selected panel of 250 human GPCR homologs was screened for mutations in 813 rats, resulting in the identification of 131 non-synonymous mutations. From these, seven novel potential rat gene knockouts were established as well as 45 lines carrying missense mutations in various genes associated with or involved in human diseases. We provide extensive in silico modeling results of the missense mutations and show experimental data, suggesting loss-of-function phenotypes for several models, including Mc4r and Lpar1. Taken together, the approach used resulted not only in a set of novel gene knockouts, but also in allelic series of more subtle amino acid variants, similar as commonly observed in human disease. The mutants presented here may greatly benefit studies to understand specific GPCR function and support the development of novel therapeutic strategies. PMID:20531371

  5. Systematic generation of in vivo G protein-coupled receptor mutants in the rat.

    PubMed

    van Boxtel, R; Vroling, B; Toonen, P; Nijman, I J; van Roekel, H; Verheul, M; Baakman, C; Guryev, V; Vriend, G; Cuppen, E

    2011-10-01

    G-protein-coupled receptors (GPCRs) constitute a large family of cell surface receptors that are involved in a wide range of physiological and pathological processes, and are targets for many therapeutic interventions. However, genetic models in the rat, one of the most widely used model organisms in physiological and pharmacological research, are largely lacking. Here, we applied N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis to generate an in vivo GPCR mutant collection in the rat. A pre-selected panel of 250 human GPCR homologs was screened for mutations in 813 rats, resulting in the identification of 131 non-synonymous mutations. From these, seven novel potential rat gene knockouts were established as well as 45 lines carrying missense mutations in various genes associated with or involved in human diseases. We provide extensive in silico modeling results of the missense mutations and show experimental data, suggesting loss-of-function phenotypes for several models, including Mc4r and Lpar1. Taken together, the approach used resulted not only in a set of novel gene knockouts, but also in allelic series of more subtle amino acid variants, similar as commonly observed in human disease. The mutants presented here may greatly benefit studies to understand specific GPCR function and support the development of novel therapeutic strategies.

  6. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    PubMed

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-04

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

  7. G-protein-coupled receptor 137 accelerates proliferation of urinary bladder cancer cells in vitro.

    PubMed

    Du, Yiheng; Bi, Wenhuan; Zhang, Fei; Wu, Wenbo; Xia, Shujie; Liu, Haitao

    2015-01-01

    Urinary bladder cancer is a worldwide concern because of its level of incidence and recurrence. To search an effective therapeutic strategy for urinary bladder cancer, it is important to identify proteins involved in tumorigenesis that could serve as potential targets for diagnosis and treatment. G-protein-coupled receptors (GPRs) constitute a large protein family of receptors that sense molecules outside the cell and activate signal transduction pathways and cellular responses inside the cell. GPR137 is a newly discovered human gene encoding orphan GPRs. In this study, we aimed to investigate the physiological role of GPR137 in urinary bladder cancer. The effect of GPR137 on cell growth was examined via an RNA interference (RNAi) lentivirus system in two human urinary bladder cancer cell lines BT5637 and T24. Lentivirus-mediated RNAi could specifically suppressed GPR137 expression in vitro, resulting in alleviated cell viability and impaired colony formation, as well as blocks G0/G1 and S phases of the cell cycle. These results suggested GPR137 as an essential player in urinary bladder cancer cell growth, and it may serve as a potential target for gene therapy in the treatment of urinary bladder cancer.

  8. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    PubMed Central

    Culhane, Kelly J.; Liu, Yuting; Cai, Yingying; Yan, Elsa C. Y.

    2015-01-01

    Although family B G protein-coupled receptors (GPCRs) contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs. PMID:26594176

  9. New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors.

    PubMed

    Liebscher, Ines; Ackley, Brian; Araç, Demet; Ariestanti, Donna M; Aust, Gabriela; Bae, Byoung-il; Bista, Bigyan R; Bridges, James P; Duman, Joseph G; Engel, Felix B; Giera, Stefanie; Goffinet, André M; Hall, Randy A; Hamann, Jörg; Hartmann, Nicole; Lin, Hsi-Hsien; Liu, Mingyao; Luo, Rong; Mogha, Amit; Monk, Kelly R; Peeters, Miriam C; Prömel, Simone; Ressl, Susanne; Schiöth, Helgi B; Sigoillot, Séverine M; Song, Helen; Talbot, William S; Tall, Gregory G; White, James P; Wolfrum, Uwe; Xu, Lei; Piao, Xianhua

    2014-12-01

    The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region. In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis-inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF are associated noncovalently as a heterodimer at the plasma membrane. While the biological function of the GAIN domain-mediated autocleavage is not fully understood, mounting evidence suggests that the NTF and CTF possess distinct biological activities in addition to their function as a receptor unit. We discuss recent advances in understanding the biological functions, signaling mechanisms, and disease associations of the aGPCRs.

  10. Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases.

    PubMed

    Montaner, Silvia; Kufareva, Irina; Abagyan, Ruben; Gutkind, J Silvio

    2013-01-01

    G protein-coupled receptors (GPCRs) represent the largest family of cell surface molecules involved in signal transduction. Surprisingly, open reading frames for multiple GPCRs were hijacked in the process of coevolution between Herpesviridae family viruses and their human and mammalian hosts. Virally encoded GPCRs (vGPCRs) evolved as parts of viral genomes, and this evolution allowed the power of host GPCR signaling circuitries to be harnessed in order to ensure viral replicative success. Phylogenetically, vGPCRs are distantly related to human chemokine receptors, although they feature several unique characteristics. Here, we describe the molecular mechanisms underlying vGPCR-mediated viral pathogenesis. These mechanisms include constitutive activity, aberrant coupling to human G proteins and β-arrestins, binding and activation by human chemokines, and dimerization with other GPCRs expressed in infected cells. The likely structural basis for these molecular events is described for the two closest viral homologs of human GPCRs. This information may aid in the development of novel targeted therapeutic strategies against viral diseases.

  11. Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2016-10-25

    G-protein-coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 μs in total) to investigate structural dynamics of the M2 muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor-nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M2 receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M2 receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.

  12. Glucocorticoids regulate arrestin gene expression and redirect the signaling profile of G protein-coupled receptors.

    PubMed

    Oakley, Robert H; Revollo, Javier; Cidlowski, John A

    2012-10-23

    G protein-coupled receptors (GPCRs) compose the largest family of cell surface receptors and are the most common target of therapeutic drugs. The nonvisual arrestins, β-arrestin-1 and β-arrestin-2, are multifunctional scaffolding proteins that play critical roles in GPCR signaling. On binding of activated GPCRs at the plasma membrane, β-arrestins terminate G protein-dependent responses (desensitization) and stimulate β-arrestin-dependent signaling pathways. Alterations in the cellular complement of β-arrestin-1 and β-arrestin-2 occur in many human diseases, and their genetic ablation in mice has severe consequences. Surprisingly, however, the factors that control β-arrestin gene expression are poorly understood. We demonstrate that glucocorticoids differentially regulate β-arrestin-1 and β-arrestin-2 gene expression in multiple cell types. Glucocorticoids act via the glucocorticoid receptor (GR) to induce the synthesis of β-arrestin-1 and repress the expression of β-arrestin-2. Glucocorticoid-dependent regulation involves the recruitment of ligand-activated glucocorticoid receptors to conserved and functional glucocorticoid response elements in intron-1 of the β-arrestin-1 gene and intron-11 of the β-arrestin-2 gene. In human lung adenocarcinoma cells, the increased expression of β-arrestin-1 after glucocorticoid treatment impairs G protein-dependent activation of inositol phosphate signaling while enhancing β-arrestin-1-dependent stimulation of the MAPK pathway by protease activated receptor 1. These studies demonstrate that glucocorticoids redirect the signaling profile of GPCRs via alterations in β-arrestin gene expression, revealing a paradigm for cross-talk between nuclear and cell surface receptors and a mechanism by which glucocorticoids alter the clinical efficacy of GPCR-based drugs.

  13. Chemical modification of Class II G-protein coupled receptor ligands

    PubMed Central

    Chapter, Megan C.; White, Caitlin M.; De Ridder, Angela; Chadwick, Wayne; Martin, Bronwen; Maudsley, Stuart

    2009-01-01

    Recent research and clinical data have begun to demonstrate the huge potential therapeutic importance of ligands that modulate the activity of the secretin-like, Class II, G-protein coupled receptors (GPCRs). Ligands that can modulate the activity of these Class II GPCRs may have important clinical roles in the treatment of a wide variety of conditions such as osteoporosis, diabetes, amyotrophic lateral sclerosis and autism spectrum disorders. While these receptors present important new therapeutic targets, the large glycoprotein nature of their cognate ligands poses many problems with respect to therapeutic peptidergic drug design. These native peptides often exhibit poor bioavailability, metabolic instability, poor receptor selectivity and resultant low potencies in vivo. Recently, increased attention has been paid to the structural modification of these peptides to enhance their therapeutic efficacy. Successful modification strategies have included D-amino acid substitutions, selective truncation, and fatty acid acylation of the peptide. Through these and other processes, these novel peptide ligand analogs can demonstrate enhanced receptor subtype selectivity, directed signal transduction pathway activation, resistance to proteolytic degradation, and improved systemic bioavailability. In the future, it is likely, through additional modification strategies such as addition of circulation-stabilizing transferrin moieties, that the therapeutic pharmacopeia of drugs targeted towards Class II secretin-like receptors may rival that of the Class I rhodopsin-like receptors that currently provide the majority of clinically used GPCR-based therapeutics. Currently, Class II-based drugs include synthesized analogues of vasoactive intestinal peptide for type 2 diabetes or parathyroid hormone for osteoporosis. PMID:19686775

  14. Consequences of splice variation on Secretin family G protein-coupled receptor function

    PubMed Central

    Furness, Sebastian GB; Wootten, Denise; Christopoulos, Arthur; Sexton, Patrick M

    2012-01-01

    The Secretin family of GPCRs are endocrine peptide hormone receptors that share a common genomic organization and are the subject of a wide variety of alternative splicing. All GPCRs contain a central seven transmembrane domain responsible for transducing signals from the outside of the cell as well as extracellular amino and intracellular carboxyl termini. Members of the Secretin receptor family have a relatively large N-terminus and a variety of lines of evidence support a common mode of ligand binding and a common ligand binding fold. These receptors are best characterized as coupling to intracellular signalling pathways via Gαs and Gαq but are also reported to couple to a multitude of other signalling pathways. The intracellular loops are implicated in regulating the interaction between the receptor and heterotrimeric G protein complexes. Alternative splicing of exons encoding both the extracellular N-terminal domain as well as the extracellular loops of some family members has been reported and as expected these splice variants display altered ligand affinity as well as differential activation by endogenous ligands. Various forms of alternative splicing have also been reported to alter intracellular loops 1 and 3 as well as the C-terminus and as one might expect these display differences in signalling bias towards downstream effectors. These diverse pharmacologies require that the physiological role of these splice variants be addressed but should provide unique opportunities for drug design and development. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1 PMID:21718310

  15. Ligand-Based Peptide Design and Combinatorial Peptide Libraries to Target G Protein-Coupled Receptors

    PubMed Central

    Gruber, Christian W.; Muttenthaler, Markus; Freissmuth, Michael

    2016-01-01

    G protein-coupled receptors (GPCRs) are considered to represent the most promising drug targets; it has been repeatedly said that a large fraction of the currently marketed drugs elicit their actions by binding to GPCRs (with cited numbers varying from 30–50%). Closer scrutiny, however, shows that only a modest fraction of (~60) GPCRs are, in fact, exploited as drug targets, only ~20 of which are peptide-binding receptors. The vast majority of receptors in the humane genome have not yet been explored as sites of action for drugs. Given the drugability of this receptor class, it appears that opportunities for drug discovery abound. In addition, GPCRs provide for binding sites other than the ligand binding sites (referred to as the “orthosteric site”). These additional sites include (i) binding sites for ligands (referred to as “allosteric ligands”) that modulate the affinity and efficacy of orthosteric ligands, (ii) the interaction surface that recruits G proteins and arrestins, (iii) the interaction sites of additional proteins (GIPs, GPCR interacting proteins that regulate G protein signaling or give rise to G protein-independent signals). These sites can also be targeted by peptides. Combinatorial and natural peptide libraries are therefore likely to play a major role in identifying new GPCR ligands at each of these sites. In particular the diverse natural peptide libraries such as the venom peptides from marine cone-snails and plant cyclotides have been established as a rich source of drug leads. High-throughput screening and combinatorial chemistry approaches allow for progressing from these starting points to potential drug candidates. This will be illustrated by focusing on the ligand-based drug design of oxytocin (OT) and vasopressin (AVP) receptor ligands using natural peptide leads as starting points. PMID:20687879

  16. Lipid modulation of early G protein-coupled receptor signalling events.

    PubMed

    Dijkman, Patricia M; Watts, Anthony

    2015-11-01

    Upon binding of extracellular ligands, G protein coupled-receptors (GPCRs) initiate signalling cascades by activating heterotrimeric G proteins through direct interactions with the α subunit. While the lipid dependence of ligand binding has previously been studied for one class A GPCR, the neurotensin receptor 1 (NTS1), the role the lipid environment plays in the interaction of activated GPCRs with G proteins is less well understood. It is therefore of interest to understand the balance of lipid interactions required to support both ligand binding and G protein activation, not least since some receptors have multiple locations, and may experience different membrane environments when signalling in the plasma membrane or during endocytosis. Here, using the sensitive biophysical technique of microscale thermophoresis in conjunction with nanodisc lipid bilayer reconstitution, we show that in more native lipid environments rich in phosphatidyl ethanolamine (PE), the Gαi1 subunit has a ~4-fold higher affinity for NTS1 than in the absence of native lipids. The G protein-receptor affinity was further shown to be dependent on the ligand-binding state of the receptor, with potential indication of biased signalling for the known antagonist SR142948A. Gαi1 also showed preferential interaction with empty nanodiscs of native lipid mixtures rich in PE by around 2- to 4-fold over phosphatidyl choline (PC)/phosphatidyl glycerol (PG) lipid mixtures. The lipid environment may therefore play a role in creating favourable micro-environments for efficient GPCR signalling. Our approach combining nanodiscs with microscale thermophoresis will be useful in future studies to elucidate further the complexity of the GPCR interactome.

  17. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction

    PubMed Central

    Bradley, Sophie J.; Iglesias, Max Maza; Kong, Kok Choi; Butcher, Adrian J.; Plouffe, Bianca; Goupil, Eugénie; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; LeGouill, Christian; Russell, Kirsty; Laporte, Stéphane A.; König, Gabriele M.; Kostenis, Evi; Bouvier, Michel; Chung, Kian Fan; Amrani, Yassine; Tobin, Andrew B.

    2016-01-01

    G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR–biased ligands with important implications for drug discovery. PMID:27071102

  18. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction.

    PubMed

    Bradley, Sophie J; Wiegman, Coen H; Iglesias, Max Maza; Kong, Kok Choi; Butcher, Adrian J; Plouffe, Bianca; Goupil, Eugénie; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; LeGouill, Christian; Russell, Kirsty; Laporte, Stéphane A; König, Gabriele M; Kostenis, Evi; Bouvier, Michel; Chung, Kian Fan; Amrani, Yassine; Tobin, Andrew B

    2016-04-19

    G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR-biased ligands with important implications for drug discovery.

  19. Kisspeptin/G protein-coupled receptor-54 system as an essential gatekeeper of pubertal development

    PubMed Central

    2013-01-01

    Puberty is the end-point of a complex series of developmental events, defined by the dynamic interaction between genetic factors and environmental cues, ultimately leading to the attainment of reproductive capacity. Kisspeptins, products of the KISS1 gene, were originally identified as metastasis suppressor peptides with the ability to bind G protein-coupled receptors (GPR54). In 2003, loss-of-function mutations of the GPR54 gene were found in patients with hypogonadotropic hypogonadism. This finding triggered study of the role of the kisspeptin/GPR54 system as an essential gatekeeper of control of reproduction and pubertal development. Kisspeptins are very potent elicitors of gonadotropin secretion, primarily through stimulation of gonadotropin-releasing hormone release. KISS1 also functions as an essential integrator for peripheral inputs, including gonadal steroids and nutritional signals, and for controlling GnRH and gonadotropin secretion. Whether the kisspeptin/GPR54 system is the trigger for puberty onset and/or it operates as integrator and effector of up-stream regulatory factors warrants further investigation. PMID:24904852

  20. G Protein-Coupled Receptor Kinase 2 Promotes Flaviviridae Entry and Replication

    PubMed Central

    Le Sommer, Caroline; Barrows, Nicholas J.; Bradrick, Shelton S.; Pearson, James L.; Garcia-Blanco, Mariano A.

    2012-01-01

    Flaviviruses cause a wide range of severe diseases ranging from encephalitis to hemorrhagic fever. Discovery of host factors that regulate the fate of flaviviruses in infected cells could provide insight into the molecular mechanisms of infection and therefore facilitate the development of anti-flaviviral drugs. We performed genome-scale siRNA screens to discover human host factors required for yellow fever virus (YFV) propagation. Using a 2×2 siRNA pool screening format and a duplicate of the screen, we identified a high confidence list of YFV host factors. To find commonalities between flaviviruses, these candidates were compared to host factors previously identified for West Nile virus (WNV) and dengue virus (DENV). This comparison highlighted a potential requirement for the G protein-coupled receptor kinase family, GRKs, for flaviviral infection. The YFV host candidate GRK2 (also known as ADRBK1) was validated both in siRNA-mediated knockdown HuH-7 cells and in GRK−/− mouse embryonic fibroblasts. Additionally, we showed that GRK2 was required for efficient propagation of DENV and Hepatitis C virus (HCV) indicating that GRK2 requirement is conserved throughout the Flaviviridae. Finally, we found that GRK2 participates in multiple distinct steps of the flavivirus life cycle by promoting both entry and RNA synthesis. Together, our findings identified GRK2 as a novel regulator of flavivirus infection and suggest that inhibition of GRK2 function may constitute a new approach for treatment of flavivirus associated diseases. PMID:23029581

  1. Isotopic labeling of mammalian G protein-coupled receptors (GPCRs) heterologously expressed in Caenorhabditis elegans*

    PubMed Central

    Salom, David; Cao, Pengxiu; Yuan, Yiyuan; Miyagi, Masaru; Feng, Zhaoyang; Palczewski, Krzysztof

    2015-01-01

    High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack posttranslational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with 15N,13C by providing them with isotopically labeled bacteria. 2H labeling also was achieved by growing C. elegans in presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the ‘test’ GPCR to demonstrate the viability of this approach. Although the worms’ cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization. PMID:25461480

  2. Minireview: Ubiquitination-regulated G Protein-Coupled Receptor Signaling and Trafficking

    PubMed Central

    Alonso, Verónica

    2013-01-01

    G protein-coupled receptors (GPCRs) are the largest and most diverse superfamily of membrane proteins and mediate most cellular responses to hormones and neurotransmitters. Posttranslational modifications are considered the main regulators of all GPCRs. In addition to phosphorylation, glycosylation, and palmitoylation, increasing evidence as reviewed here reveals that ubiquitination also regulates the magnitude and temporospatial aspects of GPCR signaling. Posttranslational protein modification by ubiquitin is a key molecular mechanism governing proteins degradation. Ubiquitination mediates the covalent conjugation of ubiquitin, a highly conserved polypeptide of 76 amino acids, to protein substrates. This process is catalyzed by 3 enzymes acting in tandem: an E1, ubiquitin-activating enzyme; an E2, ubiquitin-carrying enzyme; and an E3, ubiquitin ligase. Ubiquitination is counteracted by deubiquitinating enzymes that deconjugate ubiquitin-modified proteins and rescue the substrate from proteasomal degradation. Although ubiquitination is known to target many GPCRs for lysosomal or proteasomal degradation, emerging findings define novel roles for the basal status of ubiquitination and for rapid deubiquitination and transubiquitination controlling cell surface expression and cellular responsiveness of some GPCRs. In this review, we highlight the classical and novel roles of ubiquitin in the regulation of GPCR function, signaling, and trafficking. PMID:23471539

  3. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms

    PubMed Central

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications. PMID:26447102

  4. G-Protein-Coupled Receptor Kinase 2 as a Potential Modulator of the Hallmarks of Cancer.

    PubMed

    Nogués, Laura; Reglero, Clara; Rivas, Verónica; Neves, María; Penela, Petronila; Mayor, Federico

    2017-03-01

    Malignant features-such as sustained proliferation, refractoriness to growth suppressors, resistance to cell death or aberrant motility, and metastasis-can be triggered by a variety of mutations and signaling adaptations. Signaling nodes can act as cancer-associated factors by cooperating with oncogene-governed pathways or participating in compensatory transduction networks to strengthen tumor properties. G-protein-coupled receptor kinase 2 (GRK2) is arising as one of such nodes. Via its complex network of connections with other cellular proteins, GRK2 contributes to the modulation of basic cellular functions-such as cell proliferation, survival, or motility-and is involved in metabolic homeostasis, inflammation, or angiogenic processes. Moreover, altered GRK2 levels are starting to be reported in different tumoral contexts and shown to promote breast tumorigenesis or to trigger the tumoral angiogenic switch. The ability to modulate several of the hallmarks of cancer puts forward GRK2 as an oncomodifier, able to modulate carcinogenesis in a cell-type specific way.

  5. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    PubMed Central

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  6. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    SciTech Connect

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G.

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  7. Targeting G protein coupled receptor-related pathways as emerging molecular therapies

    PubMed Central

    Ghanemi, Abdelaziz

    2013-01-01

    G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties. PMID:25972730

  8. Regulation of Ca(V)2 calcium channels by G protein coupled receptors.

    PubMed

    Zamponi, Gerald W; Currie, Kevin P M

    2013-07-01

    Voltage gated calcium channels (Ca²⁺ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of Ca(V)2 (N- and P/Q-type) Ca²⁺-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of Ca(V)2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. This article is part of a Special Issue entitled: Calcium channels.

  9. CARMA3 deficiency abrogates G protein-coupled receptor-induced NF-κB activation

    PubMed Central

    Grabiner, Brian C.; Blonska, Marzenna; Lin, Pei-Chun; You, Yun; Wang, Donghai; Sun, Jiyuan; Darnay, Bryant G.; Dong, Chen; Lin, Xin

    2007-01-01

    G protein-coupled receptors (GPCRs) play pivotal roles in regulating various cellular functions. Although many GPCRs induce NF-κB activation, the molecular mechanism of GPCR-induced NF-κB activation remains largely unknown. CARMA3 (CARD and MAGUK domain-containing protein 3) is a scaffold molecule with unknown biological functions. By generating CARMA3 knockout mice using the gene targeting approach, here we show CARMA3 is required for GPCR-induced NF-κB activation. Mechanistically, we found that CARMA3 deficiency impairs GPCR-induced IκB kinase (IKK) activation, although it does not affect GPCR-induced IKKα/β phosphorylation, indicating that inducible phosphorylation of IKKα/β alone is not sufficient to induce its kinase activity. We also found that CARMA3 is physically associated with NEMO/IKKγ, and induces polyubiquitination of an unknown protein(s) that associates with NEMO, likely by linking NEMO to TRAF6. Consistently, we found TRAF6 deficiency also abrogates GPCR-induced NF-κB activation. Together, our results provide the genetic evidence that CARMA3 is required for GPCR-induced NF-κB activation. PMID:17438001

  10. G-protein-coupled receptor controls steroid hormone signaling in cell membrane

    PubMed Central

    Wang, Di; Zhao, Wen-Li; Cai, Mei-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2015-01-01

    G-protein-coupled receptors (GPCRs) are involved in animal steroid hormone signaling, but their mechanism is unclear. In this research, we report that a GPCR called ErGPCR-2 controls steroid hormone 20-hydroxyecdysone (20E) signaling in the cell membrane of the lepidopteran insect Helicoverpa armigera. ErGPCR-2 was highly expressed during molting and metamorphosis. 20E, via ErGPCR-2, regulated rapid intracellular calcium increase, protein phosphorylation, gene transcription, and insect metamorphosis. ErGPCR-2 was located in the cell surface and was internalized by 20E induction. GPCR kinase 2 participated in 20E-induced ErGPCR-2 phosphorylation and internalization. The internalized ErGPCR-2 was degraded by proteases to desensitize 20E signaling. ErGPCR-2 knockdown suppressed the entrance of 20E analog [3H] ponasterone A ([3H]Pon A) into the cells. ErGPCR-2 overexpression or blocking of ErGPCR-2 internalization increased the entrance of [3H]Pon A into the cells. However, ErGPCR-2 did not bind to [3H]Pon A. Results suggest that ErGPCR-2 transmits steroid hormone 20E signaling and controls 20E entrance into cells in the cell membrane. PMID:25728569

  11. Cross-Genome Clustering of Human and C. elegans G-Protein Coupled Receptors

    PubMed Central

    Nagarathnam, Balasubramanian; Kalaimathy, Singaravelu; Balakrishnan, Veluchamy; Sowdhamini, Ramanathan

    2012-01-01

    G-protein coupled receptors (GPCRs) are one of the largest groups of membrane proteins and are popular drug targets. The work reported here attempts to perform cross-genome phylogeny on GPCRs from two widely different taxa, human versus C. elegans genomes and to address the issues on evolutionary plasticity, to identify functionally related genes, orthologous relationship, and ligand binding properties through effective bioinformatic approaches. Through RPS blast around 1106 nematode GPCRs were given chance to associate with previously established 8 types of human GPCR profiles at varying E-value thresholds and resulted 32 clusters were illustrating co-clustering and class-specific retainsionship. In the significant thresholds, 81% of the C. elegans GPCRs were associated with 32 clusters and 27 C. elegans GPCRs (2%) inferred for orthology. 177 hypothetical proteins were observed in cluster association and could be reliably associated with one of 32 clusters. Several nematode-specific GPCR clades were observed suggesting lineage-specific functional recruitment in response to environment. PMID:22807621

  12. Class II G Protein-Coupled Receptors and Their Ligands in Neuronal Function and Protection

    PubMed Central

    Martin, Bronwen; de Maturana, Rakel Lopez; Brenneman, Randall; Walent, Tom; Mattson, Mark P.; Maudsley, Stuart

    2008-01-01

    G protein-coupled receptors (GPCRs) play pivotal roles in regulating the function and plasticity of neuronal circuits in the nervous system. Among the myriad of GPCRs expressed in neural cells, class II GPCRs which couples predominantly to the Gs–adenylate cyclase–cAMP signaling pathway, have recently received considerable attention for their involvement in regulating neuronal survival. Neuropeptides that activate class II GPCRs include secretin, glucagon-like peptides (GLP-1 and GLP-2), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating peptide (PACAP), corticotropin-releasing hormone (CRH), vasoactive intestinal peptide (VIP), parathyroid hormone (PTH), and calcitonin-related peptides. Studies of patients and animal and cell culture models, have revealed possible roles for class II GPCRs signaling in the pathogenesis of several prominent neurodegenerative conditions including stroke, Alzheimer's, Parkinson's, and Huntington's diseases. Many of the peptides that activate class II GPCRs promote neuron survival by increasing the resistance of the cells to oxidative, metabolic, and excitotoxic injury. A better understanding of the cellular and molecular mechanisms by which class II GPCRs signaling modulates neuronal survival and plasticity will likely lead to novel therapeutic interventions for neurodegenerative disorders. PMID:16052036

  13. Developmental Expression of Orphan G Protein-Coupled Receptor 50 in the Mouse Brain

    PubMed Central

    2012-01-01

    Mental disorders have a complex etiology resulting from interactions between multiple genetic risk factors and stressful life events. Orphan G protein-coupled receptor 50 (GPR50) has been identified as a genetic risk factor for bipolar disorder and major depression in women, and there is additional genetic and functional evidence linking GPR50 to neurite outgrowth, lipid metabolism, and adaptive thermogenesis and torpor. However, in the absence of a ligand, a specific function has not been identified. Adult GPR50 expression has previously been reported in brain regions controlling the HPA axis, but its developmental expression is unknown. In this study, we performed extensive expression analysis of GPR50 and three protein interactors using rt-PCR and immunohistochemistry in the developing and adult mouse brain. Gpr50 is expressed at embryonic day 13 (E13), peaks at E18, and is predominantly expressed by neurons. Additionally we identified novel regions of Gpr50 expression, including brain stem nuclei involved in neurotransmitter signaling: the locus coeruleus, substantia nigra, and raphe nuclei, as well as nuclei involved in metabolic homeostasis. Gpr50 colocalizes with yeast-two-hybrid interactors Nogo-A, Abca2, and Cdh8 in the hypothalamus, amygdala, cortex, and selected brain stem nuclei at E18 and in the adult. With this study, we identify a link between GPR50 and neurotransmitter signaling and strengthen a likely role in stress response and energy homeostasis. PMID:22860215

  14. Expression analysis of G Protein-Coupled Receptors in mouse macrophages

    PubMed Central

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-01-01

    Background Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Results Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. Conclusion The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery. PMID:18442421

  15. Antibody fragments for stabilization and crystallization of G protein-coupled receptors and their signaling complexes.

    PubMed

    Shukla, Arun K; Gupta, Charu; Srivastava, Ashish; Jaiman, Deepika

    2015-01-01

    G protein-coupled receptors (GPCRs) are one of the key players in extracellular signal recognition and their subsequent communications with cellular signaling machinery. Crystallization and high-resolution structure determination of GPCRs has been one of the major advances in the area of GPCR biology over the last 7-8 years. There have primarily been three approaches to GPCR crystallization till date. These are fusion protein strategy, thermostabilization, and antibody fragment-mediated crystallization. Of these, antibody fragment-mediated crystallization has not only provided the first breakthrough in structure determination of a non-rhodopsin GPCR but it has also assisted in obtaining structures of fully active conformations of GPCRs. Antibody fragment approach has also been crucial in obtaining structural information on GPCR signaling complexes. Here, we highlight the specific examples of GPCR crystal structures that have utilized antibody fragments for promoting crystallogenesis and structure solution. We also discuss emerging powerful technologies such as the nanobody technology and the synthetic phage display libraries in the context of GPCR crystallization and underline how these tools are likely to propel key GPCR structural studies in future.

  16. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling.

    PubMed

    Li, Tingting; Holmstrom, Sam R; Kir, Serkan; Umetani, Michihisa; Schmidt, Daniel R; Kliewer, Steven A; Mangelsdorf, David J

    2011-06-01

    TGR5 is a G protein-coupled bile acid receptor present in brown adipose tissue and intestine, where its agonism increases energy expenditure and lowers blood glucose. Thus, it is an attractive drug target for treating human metabolic disease. However, TGR5 is also highly expressed in gallbladder, where its functions are less well characterized. Here, we demonstrate that TGR5 stimulates the filling of the gallbladder with bile. Gallbladder volume was increased in wild-type but not Tgr5(-/-) mice by administration of either the naturally occurring TGR5 agonist, lithocholic acid, or the synthetic TGR5 agonist, INT-777. These effects were independent of fibroblast growth factor 15, an enteric hormone previously shown to stimulate gallbladder filling. Ex vivo analyses using gallbladder tissue showed that TGR5 activation increased cAMP concentrations and caused smooth muscle relaxation in a TGR5-dependent manner. These data reveal a novel, gallbladder-intrinsic mechanism for regulating gallbladder contractility. They further suggest that TGR5 agonists should be assessed for effects on human gallbladder as they are developed for treating metabolic disease.

  17. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms.

    PubMed

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications.

  18. Ensemble Activation of G-Protein -Coupled Receptors Revealed by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Qiang; Perera, Suchithranga; Shrestha, Utsab; Chawla, Udeep; Struts, Andrey; Qian, Shuo; Brown, Michael

    2014-03-01

    Rhodopsin is a G-protein -coupled receptor (GPCR) involved in visual light perception and occurs naturally in a membrane lipid environment. Rhodopsin photoactivation yields cis-trans isomerization of retinal giving equilibrium between inactive Meta-I and active Meta-II states. Does photoactivation lead to a single Meta-II conformation, or do substates exist as described by an ensemble-activation mechanism (EAM)? We use small-angle neutron scattering (SANS) to investigate conformational changes in rhodopsin-detergent and rhodopsin-lipid complexes upon photoactivation. Meta-I state is stabilized in CHAPS-solubilized rhodopsin, while Meta-II is trapped in DDM-solubilized rhodopsin. SANS data are acquired from 80% D2O solutions and at contrast-matching points for both DDM and CHAPS samples. Our experiments demonstrate that for detergent-solubilized rhodopsin, SANS with contrast variation can detect structural differences between the rhodopsin dark-state, Meta-I, Meta-II, and ligand-free opsin states. Dark-state rhodopsin has more conformational flexibility in DDM micelles compared to CHAPS, which is consistent with an ensemble of activated Meta-II states. Furthermore, time-resolved SANS enables study of the time-dependent structural transitions between Meta-I and Meta-II, which is crucial to understanding the ensemble-based activation.

  19. Therapeutic implications of peptide interactions with G-protein-coupled receptors in diabetic vasculopathy.

    PubMed

    Carrillo-Sepulveda, M A; Matsumoto, T; Nunes, K P; Webb, R C

    2014-05-01

    The dramatic worldwide increase in the prevalence of diabetes has generated an attempt by the scientific community to identify strategies for its treatment and prevention. Vascular dysfunction is a hallmark of diabetes and frequently leads to the development of atherosclerosis, coronary disease-derived myocardial infarction, stroke, peripheral arterial disease and diabetic 'triopathy' (retinopathy, nephropathy and neuropathy). These vascular complications, developing in an increasingly younger cohort of patients with diabetes, contribute to morbidity and mortality. Despite the development of new anti-diabetic or anti-hyperglycaemic drugs, vascular complications remain to be a problem. This warrants a need for new therapeutic strategies to tackle diabetic vasculopathy. There is a growing body of evidence showing that peptide-binding G-protein-coupled receptors (peptide-binding GPCRs) play an important role in the pathophysiology of vascular dysfunction during diabetes. Thus, in this review, we discuss some of the peptide-binding GPCRs involved in the regulation of vascular function that have potential to be a therapeutic target in the treatment of diabetic vasculopathy.

  20. Modular Integrated Secretory System Engineering in Pichia pastoris To Enhance G-Protein Coupled Receptor Expression.

    PubMed

    Claes, Katrien; Vandewalle, Kristof; Laukens, Bram; Laeremans, Toon; Vosters, Olivier; Langer, Ingrid; Parmentier, Marc; Steyaert, Jan; Callewaert, Nico

    2016-10-21

    Membrane protein research is still hampered by the generally very low levels at which these proteins are naturally expressed, necessitating heterologous expression. Protein degradation, folding problems, and undesired post-translational modifications often occur, together resulting in low expression levels of heterogeneous protein products that are unsuitable for structural studies. We here demonstrate how the integration of multiple engineering modules in Pichia pastoris can be used to increase both the quality and the quantity of overexpressed integral membrane proteins, with the human CXCR4 G-protein coupled receptor as an example. The combination of reduced proteolysis, enhanced ER folding capacity, GlycoDelete-based N-Glycan trimming, and nanobody-based fold stabilization improved the expression of this GPCR in P. pastoris from a low expression level of a heterogeneously glycosylated, proteolyzed product to substantial quantities (2-3 mg/L shake flask culture) of a nonproteolyzed, homogeneously glycosylated proteoform. We expect that this set of tools will contribute to successful expression of more membrane proteins in a quantity and quality suitable for functional and structural studies.

  1. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors.

    PubMed

    Justus, Calvin R; Dong, Lixue; Yang, Li V

    2013-12-05

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  2. Lysophosphatidylinositol: a novel link between ABC transporters and G-protein-coupled receptors.

    PubMed

    Ruban, Emily L; Ferro, Riccardo; Arifin, Syamsul Ahmad; Falasca, Marco

    2014-10-01

    Lysophosphatidylinositol (LPI) is a well-known bioactive lipid that is able to activate signalling cascades relevant to cell proliferation, migration, survival and tumorigenesis. Our previous work suggested that LPI is involved in cancer progression since it can be released in the medium of Ras-transformed fibroblasts and can function as an autocrine modulator of cell growth. Different research groups have established that LPI is the specific and functional ligand for G-protein-coupled receptor 55 (GPR55) and that this GPR55-LPI axis is able to activate signalling cascades that are relevant for different cell functions. Work in our laboratory has recently unravelled an autocrine loop, by which LPI synthesized by cytosolic phospholipase A₂ (cPLA₂) is pumped out of the cell by ATP-binding cassette (ABC) transporter C1 (ABCC1)/multidrug resistance protein 1 (MRP1), initiating a signalling cascade downstream of GPR55. Our current work suggests that blockade of this pathway may represent a novel strategy to inhibit cancer cell proliferation.

  3. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics.

    PubMed

    Yonezawa, Tomo; Kurata, Riho; Yoshida, Kaori; Murayama, Masanori A; Cui, Xiaofeng; Hasegawa, Akihiko

    2013-01-01

    G protein-coupled receptor (GPCR) (also known as seven-transmembrane domain receptor) superfamily represents the largest protein family in the human genome. These receptors respond to various physiological ligands such as photons, odors, pheromones, hormones, ions, and small molecules including amines, amino acids to large peptides and steroids. Thus, GPCRs are involved in many diseases and the target of around half of all conventional drugs. The physiological roles of free fatty acids (FFAs), in particular, long-chain FFAs, are important for the development of many metabolic disease including obesity, diabetes, and atherosclerosis. In the past half decade, deorphanization of several GPCRs has revealed that GPR40, GPR41, GPR43, GPR84 and GPR120 sense concentration of extracellular FFAs with various carbon chain lengths. GPR40 and GPR120 are activated by medium- and long-chain FFAs. GPR84 is activated by medium- chain, but not long-chain, FFAs. GPR41 and GPR43 are activated by short-chain FFAs. GPR40 is highly expressed in pancreatic beta cells and plays a crucial role in FFAs-induced insulin secretion. GPR120 is mainly expressed in enteroendocrine cells and plays an important role for FFAs-induced glucagon-like peptide-1. GPR43 is abundant in leukocytes and adipose tissue, whilst GPR41 is highly expressed in adipose tissue, the pancreas and leukocytes. GPR84 is expressed in leukocytes and monocyte/macrophage. This review aims to shed light on the physiological roles and development of drugs targeting these receptors.

  4. High content screening for G protein-coupled receptors using cell-based protein translocation assays.

    PubMed

    Grånäs, Charlotta; Lundholt, Betina Kerstin; Heydorn, Arne; Linde, Viggo; Pedersen, Hans-Christian; Krog-Jensen, Christian; Rosenkilde, Mette M; Pagliaro, Len

    2005-06-01

    G protein-coupled receptors (GPCRs) have been one of the most productive classes of drug targets for several decades, and new technologies for GPCR-based discovery promise to keep this field active for years to come. While molecular screens for GPCR receptor agonist- and antagonist-based drugs will continue to be valuable discovery tools, the most exciting developments in the field involve cell-based assays for GPCR function. Some cell-based discovery strategies, such as the use of beta-arrestin as a surrogate marker for GPCR function, have already been reduced to practice, and have been used as valuable discovery tools for several years. The application of high content cell-based screening to GPCR discovery has opened up additional possibilities, such as direct tracking of GPCRs, G proteins and other signaling pathway components using intracellular translocation assays. These assays provide the capability to probe GPCR function at the cellular level with better resolution than has previously been possible, and offer practical strategies for more definitive selectivity evaluation and counter-screening in the early stages of drug discovery. The potential of cell-based translocation assays for GPCR discovery is described, and proof-of-concept data from a pilot screen with a CXCR4 assay are presented. This chemokine receptor is a highly relevant drug target which plays an important role in the pathogenesis of inflammatory disease and also has been shown to be a co-receptor for entry of HIV into cells as well as to play a role in metastasis of certain cancer cells.

  5. Structural Basis for Hormone Recognition by the Human CRFR2[alpha] G Protein-coupled Receptor

    SciTech Connect

    Pal, Kuntal; Swaminathan, Kunchithapadam; Xu, H. Eric; Pioszak, Augen A.

    2012-05-09

    The mammalian corticotropin releasing factor (CRF)/urocortin (Ucn) peptide hormones include four structurally similar peptides, CRF, Ucn1, Ucn2, and Ucn3, that regulate stress responses, metabolism, and cardiovascular function by activating either of two related class B G protein-coupled receptors, CRFR1 and CRFR2. CRF and Ucn1 activate both receptors, whereas Ucn2 and Ucn3 are CRFR2-selective. The molecular basis for selectivity is unclear. Here, we show that the purified N-terminal extracellular domains (ECDs) of human CRFR1 and the CRFR2{alpha} isoform are sufficient to discriminate the peptides, and we present three crystal structures of the CRFR2{alpha} ECD bound to each of the Ucn peptides. The CRFR2{alpha} ECD forms the same fold observed for the CRFR1 and mouse CRFR2{beta} ECDs but contains a unique N-terminal {alpha}-helix formed by its pseudo signal peptide. The CRFR2{alpha} ECD peptide-binding site architecture is similar to that of CRFR1, and binding of the {alpha}-helical Ucn peptides closely resembles CRF binding to CRFR1. Comparing the electrostatic surface potentials of the ECDs suggests a charge compatibility mechanism for ligand discrimination involving a single amino acid difference in the receptors (CRFR1 Glu104/CRFR2{alpha} Pro-100) at a site proximate to peptide residue 35 (Arg in CRF/Ucn1, Ala in Ucn2/3). CRFR1 Glu-104 acts as a selectivity filter preventing Ucn2/3 binding because the nonpolar Ala-35 is incompatible with the negatively charged Glu-104. The structures explain the mechanisms of ligand recognition and discrimination and provide a molecular template for the rational design of therapeutic agents selectively targeting these receptors.

  6. Interacting residues in an activated state of a G protein-coupled receptor.

    PubMed

    Lee, Yong-Hun; Naider, Fred; Becker, Jeffrey M

    2006-01-27

    Ste2p, the G protein-coupled receptor (GPCR) for the tridecapeptide pheromone alpha-factor of Saccharomyces cerevisiae, was used as a model GPCR to investigate the role of specific residues in the resting and activated states of the receptor. Using a series of biological and biochemical analyses of wild-type and site-directed mutant receptors, we identified Asn(205) as a potential interacting partner with the Tyr(266) residue. An N205H/Y266H double mutant showed pH-dependent functional activity, whereas the N205H receptor was non-functional and the Y266H receptor was partially active indicating that the histidine 205 and 266 residues interact in an activated state of the receptor. The introduction of N205K or Y266D mutations into the P258L/S259L constitutively active receptor suppressed the constitutive activity; in contrast, the N205K/Y266D/P258L/S259L quadruple mutant was fully constitutively active, again indicating an interaction between residues at the 205 and 206 positions in the receptor-active state. To further test this interaction, we introduced the N205C/Y266C, F204C/Y266C, and N205C/A265C double mutations into wild-type and P258L/S259L constitutively active receptors. After trypsin digestion, we found that a disulfide-cross-linked product, with the molecular weight expected for a receptor fragment with a cross-link between N205C and Y266C, formed only in the N205C/Y266C constitutively activated receptor. This study represents the first experimental demonstration of an interaction between specific residues in an active state, but not the resting state, of Ste2p. The information gained from this study should contribute to an understanding of the conformational differences between resting and active states in GPCRs.

  7. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1.

    PubMed

    De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela

    2017-02-01

    Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis.

  8. The repertoire of G protein-coupled receptors in the sea squirt Ciona intestinalis

    PubMed Central

    2008-01-01

    Background G protein-coupled receptors (GPCRs) constitute a large family of integral transmembrane receptor proteins that play a central role in signal transduction in eukaryotes. The genome of the protochordate Ciona intestinalis has a compact size with an ancestral complement of many diversified gene families of vertebrates and is a good model system for studying protochordate to vertebrate diversification. An analysis of the Ciona repertoire of GPCRs from a comparative genomic perspective provides insight into the evolutionary origins of the GPCR signalling system in vertebrates. Results We have identified 169 gene products in the Ciona genome that code for putative GPCRs. Phylogenetic analyses reveal that Ciona GPCRs have homologous representatives from the five major GRAFS (Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin) families concomitant with other vertebrate GPCR repertoires. Nearly 39% of Ciona GPCRs have unambiguous orthologs of vertebrate GPCR families, as defined for the human, mouse, puffer fish and chicken genomes. The Rhodopsin family accounts for ~68% of the Ciona GPCR repertoire wherein the LGR-like subfamily exhibits a lineage specific gene expansion of a group of receptors that possess a novel domain organisation hitherto unobserved in metazoan genomes. Conclusion Comparison of GPCRs in Ciona to that in human reveals a high level of orthology of a protochordate repertoire with that of vertebrate GPCRs. Our studies suggest that the ascidians contain the basic ancestral complement of vertebrate GPCR genes. This is evident at the subfamily level comparisons since Ciona GPCR sequences are significantly analogous to vertebrate GPCR subfamilies even while exhibiting Ciona specific genes. Our analysis provides a framework to perform future experimental and comparative studies to understand the roles of the ancestral chordate versions of GPCRs that predated the divergence of the urochordates and the vertebrates. PMID:18452600

  9. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER).

    PubMed

    Moreno-Ulloa, Aldo; Mendez-Luna, David; Beltran-Partida, Ernesto; Castillo, Carmen; Guevara, Gustavo; Ramirez-Sanchez, Israel; Correa-Basurto, José; Ceballos, Guillermo; Villarreal, Francisco

    2015-10-01

    We have provided evidence that the stimulatory effects of (-)-epicatechin ((-)-EPI) on endothelial cell nitric oxide (NO) production may involve the participation of a cell-surface receptor. Thus far, such entity(ies) has not been fully elucidated. The G protein-coupled estrogen receptor (GPER) is a cell-surface receptor that has been linked to protective effects on the cardiovascular system and activation of intracellular signaling pathways (including NO production) similar to those reported with (-)-EPI. In bovine coronary artery endothelial cells (BCAEC) by the use of confocal imaging, we evidence the presence of GPER at the cell-surface and on F-actin filaments. Using in silico studies we document the favorable binding mode between (-)-EPI and GPER. Such binding is comparable to that of the GPER agonist, G1. By the use of selective blockers, we demonstrate that the activation of ERK 1/2 and CaMKII by (-)-EPI is dependent on the GPER/c-SRC/EGFR axis mimicking those effects noted with G1. We also evidence by the use of siRNA the role that GPER has on mediating ERK1/2 activation by (-)-EPI. GPER appears to be coupled to a non Gαi/o or Gαs, protein subtype. To extrapolate our findings to an ex vivo model, we employed phenylephrine pre-contracted aortic rings evidencing that (-)-EPI can mediate vasodilation through GPER activation. In conclusion, we provide evidence that suggests the GPER as a potential mediator of (-)-EPI effects and highlights the important role that GPER may have on cardiovascular system protection.

  10. Computing Highly Correlated Positions Using Mutual Information and Graph Theory for G Protein-Coupled Receptors

    PubMed Central

    Fatakia, Sarosh N.; Costanzi, Stefano; Chow, Carson C.

    2009-01-01

    G protein-coupled receptors (GPCRs) are a superfamily of seven transmembrane-spanning proteins involved in a wide array of physiological functions and are the most common targets of pharmaceuticals. This study aims to identify a cohort or clique of positions that share high mutual information. Using a multiple sequence alignment of the transmembrane (TM) domains, we calculated the mutual information between all inter-TM pairs of aligned positions and ranked the pairs by mutual information. A mutual information graph was constructed with vertices that corresponded to TM positions and edges between vertices were drawn if the mutual information exceeded a threshold of statistical significance. Positions with high degree (i.e. had significant mutual information with a large number of other positions) were found to line a well defined inter-TM ligand binding cavity for class A as well as class C GPCRs. Although the natural ligands of class C receptors bind to their extracellular N-terminal domains, the possibility of modulating their activity through ligands that bind to their helical bundle has been reported. Such positions were not found for class B GPCRs, in agreement with the observation that there are not known ligands that bind within their TM helical bundle. All identified key positions formed a clique within the MI graph of interest. For a subset of class A receptors we also considered the alignment of a portion of the second extracellular loop, and found that the two positions adjacent to the conserved Cys that bridges the loop with the TM3 qualified as key positions. Our algorithm may be useful for localizing topologically conserved regions in other protein families. PMID:19262747

  11. PEGylated Dendritic Unimolecular Micelles as Versatile Carriers for Ligands of G Protein-Coupled Receptors

    PubMed Central

    Kim, Yoonkyung; Hechler, Béatrice; Gao, Zhan-Guo; Gachet, Christian; Jacobson, Kenneth A.

    2009-01-01

    Despite its widespread application in nanomedicine, poly(ethylene glycol) (PEG) is seldom used for covalent modification of ligands for G protein-coupled receptors (GPCRs) due to potential steric complications. In order to study the influence of PEG chains on the biological activity of GPCR ligands bound to a common macromolecular carrier, we prepared a series of G3 polyamidoamine (PAMAM) dendrimers derivatized with Alexa Fluor 488, varying numbers of PEG550/PEG750/PEG2000, and nucleoside moieties derived from the A2A adenosine receptor (AR) agonist CGS21680 (2-[4-(2-carboxylethyl)phenylethylamino]-5′-N-ethylcarboxamidoadenosine). These dendrimer conjugates were purified by size exclusion chromatography and characterized by 1H NMR and MALDI MS. In radioligand binding assays, some PAMAM-PEG conjugates showed enhanced subtype-selectivity at the human A2A AR compared to monomeric ligands of comparable affinity. The functional potency was measured in the A2A AR-mediated activation of adenylate cyclase and inhibition of ADP-induced platelet aggregation. Interestingly, the dendrimer conjugate 10c bearing 11 PEG750 chains (out of theo. 32 amino end groups) and 14 nucleoside moieties was 5-fold more potent in A2A AR–mediated stimulation of cyclic AMP formation than 10d with four PEG2000 chains and 21 nucleosides, although the binding affinities of these two compounds were similar. Thus, a relatively small (≤10 nm) multivalent ligand 10c modified for water solubility maintained high potency and displayed increased A2A AR binding selectivity over the monomeric nucleosides. Longer PEG chains reduced affinity at the A2A AR. The current study demonstrates the feasiblity of using short PEG chains in the design of carriers that target ligand-receptor interactions. PMID:19785401

  12. Quantum dot-based screening system for discovery of g protein-coupled receptor agonists.

    PubMed

    Lee, Junghan; Kwon, Yong-Jun; Choi, Youngseon; Kim, Hi Chul; Kim, Keumhyun; Kim, JinYeop; Park, Sun; Song, Rita

    2012-07-09

    Cellular imaging has emerged as an important tool to unravel biological complexity and to accelerate the drug-discovery process, including cell-based screening, target identification, and mechanism of action studies. Recently, semiconductor nanoparticles known as quantum dots (QDs) have attracted great interest in cellular imaging applications due to their unique photophysical properties such as size, tunable optical property, multiplexing capability, and photostability. Herein, we show that QDs can also be applied to assay development and eventually to high-throughput/content screening (HTS/HCS) for drug discovery. We have synthesized QDs modified with PEG and primary antibodies to be used as fluorescent probes for a cell-based HTS system. The G protein-coupled receptor (GPCR) family is known to be involved in most major diseases. We therefore constructed human osteosarcoma (U2OS) cells that specifically overexpress two types of differently tagged GPCRs: influenza hemagglutinin (HA) peptide-tagged κ-opioid receptors (κ-ORs) and GFP-tagged A3 adenosine receptors (A3AR). In this study, we have demonstrated that 1) anti-HA antibody-conjugated QDs could specifically label HA-tagged κ-ORs, 2) subsequent treatment of QD-tagged GPCR agonists allowed agonist-induced translocation to be monitored in real time, 3) excellent emission spectral properties of QD permitted the simultaneous detection of two GPCRs in one cell, and 4) the robust imaging capabilities of the QD-antibody conjugates could lead to reproducible quantitative data from high-content cellular images. These results suggest that the present QD-based GPCR inhibitor screening system can be a promising platform for further drug screening applications.

  13. Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cells.

    PubMed

    Scott, Daniel J; Plückthun, Andreas

    2013-02-08

    G protein-coupled receptors (GPCRs) are the largest class of pharmaceutical protein targets, yet drug development is encumbered by a lack of information about their molecular structure and conformational dynamics. Most mechanistic and structural studies as well as in vitro drug screening with purified receptors require detergent solubilization of the GPCR, but typically, these proteins exhibit only low stability in detergent micelles. We have developed the first directed evolution method that allows the direct selection of GPCRs stable in a chosen detergent from libraries containing over 100 million individual variants. The crucial concept was to encapsulate single Escherichia coli cells of a library, each expressing a different GPCR variant, to form detergent-resistant, semipermeable nano-containers. Unlike naked cells, these containers are not dissolved by detergents, allowing us to solubilize the GPCR proteins in situ while maintaining an association with the protein's genetic information, a prerequisite for directed evolution. The pore size was controlled to permit GPCR ligands to permeate but the solubilized receptor to remain within the nanocapsules. Fluorescently labeled ligands were used to bind to those GPCR variants inside the nano-containers that remained active in the detergent tested. With the use of fluorescence-activated cell sorting, detergent-stable mutants derived from two different family A GPCRs could be identified, some with the highest stability reported in short-chain detergents. In principle, this method (named cellular high-throughput encapsulation, solubilization and screening) is not limited to engineering stabilized GPCRs but could be used to stabilize other proteins for biochemical and structural studies.

  14. [Construction of controlled expression system of class B G-protein coupled receptor PAC1].

    PubMed

    Li, Mei; Yu, Rongjie; Zhong, Jiaping; Cui, Zekai; Yang, Yanxu; Zhang, Huahua

    2014-04-01

    PAC1 is the neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) preferring receptor, which belongs to class B G protein-coupled receptors (GPCR) family. PAC1 mediates the most effects of PACAP as neurotransmitter, neuroregulator and neuroprotectant, while its high expression has close relationship with some physiological and pathological processes such as nerve-injury and tumor. To further understand the function of PAC1, a cell line that expressed inducible PAC1 was constructed to achieve Doxycycline (Dox) dependent expression of PAC1 in CHO (Chinese hamster ovary) cell using the improved Tet (tetracycline)-on Advanced System. First, the PAC1-EYFP fusion gene composed of PAC1 gene and gene encoding EYFP (enhanced yellow fluorescent protein) was sub-cloned to the tetracycline response element pTRE-Tight vector to construct the recombinant vector pEYFP-PAC1-EYFP by double enzyme digestion. Second, the tetracycline regulation components pTet-On advanced vector and the response element pTRE-PAC1-EYFP vector were both introduced into CHO cells successively and the positive clones were screened with G418 and hygromycin respectively. Third, the controlled expression of PAC1-EYFP in CHO was induced by tetracycline analogues Dox in different concentrations and the different levels of receptor PAC1-EYFP were detected. The results of fluorescence analysis and western blotting show that the cell strain with Dox dependent expression of PAC1-EYFP named PAC1-Tet-CHO was obtained. Moreover, in PAC1-Tet-CHO cells the expression of PAC1-EYFP was induced by Dox in a dose-dependent manner. The inducible expression of PAC1 still was stable after sub-culturing for more than 10 passages. It was also found by MTT assay that the higher expression level of PAC1 endowed the cells with higher proliferative viabilities. The construction of controlled expression system of PAC1 will lay a foundation for the further research on PAC1 profiles.

  15. Characterization of G Protein-coupled Receptors by a Fluorescence-based Calcium Mobilization Assay

    PubMed Central

    Caers, Jelle; Peymen, Katleen; Suetens, Nick; Temmerman, Liesbet; Janssen, Tom; Schoofs, Liliane; Beets, Isabel

    2014-01-01

    For more than 20 years, reverse pharmacology has been the preeminent strategy to discover the activating ligands of orphan G protein-coupled receptors (GPCRs). The onset of a reverse pharmacology assay is the cloning and subsequent transfection of a GPCR of interest in a cellular expression system. The heterologous expressed receptor is then challenged with a compound library of candidate ligands to identify the receptor-activating ligand(s). Receptor activation can be assessed by measuring changes in concentration of second messenger reporter molecules, like calcium or cAMP. The fluorescence-based calcium mobilization assay described here is a frequently used medium-throughput reverse pharmacology assay. The orphan GPCR is transiently expressed in human embryonic kidney 293T (HEK293T) cells and a promiscuous Gα16 construct is co-transfected. Following ligand binding, activation of the Gα16 subunit induces the release of calcium from the endoplasmic reticulum. Prior to ligand screening, the receptor-expressing cells are loaded with a fluorescent calcium indicator, Fluo-4 acetoxymethyl. The fluorescent signal of Fluo-4 is negligible in cells under resting conditions, but can be amplified more than a 100-fold upon the interaction with calcium ions that are released after receptor activation. The described technique does not require the time-consuming establishment of stably transfected cell lines in which the transfected genetic material is integrated into the host cell genome. Instead, a transient transfection, generating temporary expression of the target gene, is sufficient to perform the screening assay. The setup allows medium-throughput screening of hundreds of compounds. Co-transfection of the promiscuous Gα16, which couples to most GPCRs, allows the intracellular signaling pathway to be redirected towards the release of calcium, regardless of the native signaling pathway in endogenous settings. The HEK293T cells are easy to handle and have proven their

  16. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    SciTech Connect

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G.

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  17. Loss of Gi G-Protein-Coupled Receptor Signaling in Osteoblasts Accelerates Bone Fracture Healing.

    PubMed

    Wang, Liping; Hsiao, Edward C; Lieu, Shirley; Scott, Mark; O'Carroll, Dylan; Urrutia, Ashley; Conklin, Bruce R; Colnot, Celine; Nissenson, Robert A

    2015-10-01

    G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair.

  18. G protein-coupled receptors: signalling and regulation by lipid agonists for improved glucose homoeostasis.

    PubMed

    Moran, Brian M; Flatt, Peter R; McKillop, Aine M

    2016-04-01

    G protein-coupled receptors (GPCRs) play a pivotal role in cell signalling, controlling many processes such as immunity, growth, cellular differentiation, neurological pathways and hormone secretions. Fatty acid agonists are increasingly recognised as having a key role in the regulation of glucose homoeostasis via stimulation of islet and gastrointestinal GPCRs. Downstream cell signalling results in modulation of the biosynthesis, secretion, proliferation and anti-apoptotic pathways of islet and enteroendocrine cells. GPR40 and GPR120 are activated by long-chain fatty acids (>C12) with both receptors coupling to the Gαq subunit that activates the Ca(2+)-dependent pathway. GPR41 and GPR43 are stimulated by short-chain fatty acids (C2-C5), and activation results in binding to Gαi that inhibits the adenylyl cyclase pathway attenuating cAMP production. In addition, GPR43 also couples to the Gαq subunit augmenting intracellular Ca(2+) and activating phospholipase C. GPR55 is specific for cannabinoid endogenous agonists (endocannabinoids) and non-cannabinoid fatty acids, which couples to Gα12/13 and Gαq proteins, leading to enhancing intracellular Ca(2+), extracellular signal-regulated kinase 1/2 (ERK) phosphorylation and Rho kinase. GPR119 is activated by fatty acid ethanolamides and binds to Gαs utilising the adenylate cyclase pathway, which is dependent upon protein kinase A. Current research indicates that GPCR therapies may be approved for clinical use in the near future. This review focuses on the recent advances in preclinical diabetes research in the signalling and regulation of GPCRs on islet and enteroendocrine cells involved in glucose homoeostasis.

  19. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors.

    PubMed

    Hamann, Jörg; Aust, Gabriela; Araç, Demet; Engel, Felix B; Formstone, Caroline; Fredriksson, Robert; Hall, Randy A; Harty, Breanne L; Kirchhoff, Christiane; Knapp, Barbara; Krishnan, Arunkumar; Liebscher, Ines; Lin, Hsi-Hsien; Martinelli, David C; Monk, Kelly R; Peeters, Miriam C; Piao, Xianhua; Prömel, Simone; Schöneberg, Torsten; Schwartz, Thue W; Singer, Kathleen; Stacey, Martin; Ushkaryov, Yuri A; Vallon, Mario; Wolfrum, Uwe; Wright, Mathew W; Xu, Lei; Langenhan, Tobias; Schiöth, Helgi B

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.

  20. G protein-coupled receptor signaling through Gq and JNK negatively regulates neural progenitor cell migration

    PubMed Central

    Mizuno, Norikazu; Kokubu, Hiroshi; Sato, Maiko; Nishimura, Akiyuki; Yamauchi, Junji; Kurose, Hitoshi; Itoh, Hiroshi

    2005-01-01

    In the early development of the central nervous system, neural progenitor cells divide in an asymmetric manner and migrate along the radial glia cells. The radial migration is an important process for the proper lamination of the cerebral cortex. Recently, a new mode of the radial migration was found at the intermediate zone where the neural progenitor cells become multipolar and reduce the migration rate. However, the regulatory signals for the radial migration are unknown. Using the migration assay in vitro, we examined how neural progenitor cell migration is regulated. Neural progenitor cells derived from embryonic mouse telencephalon migrated on laminin-coated dishes. Endothelin (ET)-1 inhibited the neural progenitor cell migration. This ET-1 effect was blocked by BQ788, a specific inhibitor of the ETB receptor, and by the expression of a carboxyl-terminal peptide of Gαq but not Gαi. The expression of constitutively active mutant of Gαq, GαqR183C, inhibited the migration of neural progenitor cells. Moreover, the inhibitory effect of ET-1 was suppressed by the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the expression of the JNK-binding domain of JNK-interacting protein-1, a specific inhibitor of the JNK pathway. Using the slice culture system of embryonic brain, we demonstrated that ET-1 and the constitutively active mutant of Gαq caused the retention of the neural progenitor cells in the intermediate zone and JNK-binding domain of JNK-interacting protein-1 abrogated the effect of ET-1. These results indicated that G protein-coupled receptor signaling negatively regulates neural progenitor cell migration through Gq and JNK. PMID:16116085

  1. G Protein-Coupled Receptor 43 Modulates Neutrophil Recruitment during Acute Inflammation

    PubMed Central

    Nicholls, Alyce J.; Oliveira, Ana Carolina; Mason, Linda J.; Binge, Lauren; Mackay, Charles R.; Wong, Connie H. Y.

    2016-01-01

    Fermentation of dietary fibre in the gut yields large amounts of short chain fatty acids (SCFAs). SCFAs can impart biological responses in cells through their engagement of ‘metabolite-sensing’ G protein-coupled receptors (GPCRs). One of the main SCFA receptors, GPR43, is highly expressed by neutrophils, which suggests that the actions of GPR43 and dietary fibre intake may affect neutrophil recruitment during inflammatory responses in vivo. Using intravital imaging of the small intestine, we found greater intravascular neutrophil rolling and adhesion in Gpr43−/−mice in response to LPS at 1 h. After 4 h of LPS challenge, the intravascular rolling velocity of GPR43-deficient neutrophils was reduced significantly and increased numbers of neutrophils were found in the lamina propria of Gpr43−/−mice. Additionally, GPR43-deficient leukocytes demonstrated exacerbated migration into the peritoneal cavity following fMLP challenge. The fMLP-induced neutrophil migration was significantly suppressed in wildtype mice that were treated with acetate, but not in Gpr43−/−mice, strongly suggesting a role for SCFAs in modulating neutrophil migration via GPR43. Indeed, neutrophils of no fibre-fed wildtype mice exhibited elevated migratory behaviour compared to normal chow-fed wildtype mice. Interestingly, this elevated migration could also be reproduced through simple transfer of a no fibre microbiota into germ-free mice, suggesting that the composition and function of microbiota stemming from a no fibre diet mediated the changes in neutrophil migration. Therefore, GPR43 and a microbiota composition that allows for SCFA production function to modulate neutrophil recruitment during inflammatory responses. PMID:27658303

  2. Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice.

    PubMed

    Lymer, Jennifer; Robinson, Alana; Winters, Boyer D; Choleris, Elena

    2017-03-01

    Through rapid mechanisms of action, estrogens affect learning and memory processes. It has been shown that 17β-estradiol and an Estrogen Receptor (ER) α agonist enhances performance in social recognition, object recognition, and object placement tasks when administered systemically or infused in the dorsal hippocampus. In contrast, systemic and dorsal hippocampal ERβ activation only promote spatial learning. In addition, 17β-estradiol, the ERα and the G-protein coupled estrogen receptor (GPER) agonists increase dendritic spine density in the CA1 hippocampus. Recently, we have shown that selective systemic activation of the GPER also rapidly facilitated social recognition, object recognition, and object placement learning in female mice. Whether activation the GPER specifically in the dorsal hippocampus can also rapidly improve learning and memory prior to acquisition is unknown. Here, we investigated the rapid effects of infusion of the GPER agonist, G-1 (dose: 50nM, 100nM, 200nM), in the dorsal hippocampus on social recognition, object recognition, and object placement learning tasks in home cage. These paradigms were completed within 40min, which is within the range of rapid estrogenic effects. Dorsal hippocampal administration of G-1 improved social (doses: 50nM, 200nM G-1) and object (dose: 200nM G-1) recognition with no effect on object placement. Additionally, when spatial cues were minimized by testing in a Y-apparatus, G-1 administration promoted social (doses: 100nM, 200nM G-1) and object (doses: 50nM, 100nM, 200nM G-1) recognition. Therefore, like ERα, the GPER in the hippocampus appears to be sufficient for the rapid facilitation of social and object recognition in female mice, but not for the rapid facilitation of object placement learning. Thus, the GPER in the dorsal hippocampus is involved in estrogenic mediation of learning and memory and these effects likely occur through rapid signalling mechanisms.

  3. Visualization of arrestin recruitment by a G Protein-Coupled Receptor

    PubMed Central

    Reis, Rosana I.; Huang, Li-Yin; Tripathi-Shukla, Prachi; Qian, Jiang; Li, Sheng; Blanc, Adi; Oleskie, Austin N.; Dosey, Anne M.; Su, Min; Liang, Cui-Rong; Gu, Ling-Ling; Shan, Jin-Ming; Chen, Xin; Hanna, Rachel; Choi, Minjung; Yao, Xiao Jie; Klink, Bjoern U.; Kahsai, Alem W.; Sidhu, Sachdev S.; Koide, Shohei; Penczek, Pawel A.; Kossiakoff, Anthony A.; Jr, Virgil L. Woods; Kobilka, Brian K.; Skiniotis, Georgios; Lefkowitz, Robert J.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are critically regulated by β-arrestins (βarrs), which not only desensitize G protein signaling but also initiate a G protein independent wave of signaling1-5. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)-G protein complex, has provided novel insights into the structural basis of receptor activation6-11. Lacking however has been complementary information on recruitment of βarrs to activated GPCRs primarily due to challenges in obtaining stable receptor-βarr complexes for structural studies. Here, we devised a strategy for forming and purifying a functional β2AR-βarr1 complex that allowed us to visualize its architecture by single particle negative stain electron microscopy (EM) and to characterize the interactions between β2AR and βarr1 using hydrogen-deuterium exchange mass spectrometry (HDXMS) and chemical cross-linking. EM 2D averages and 3D reconstructions reveal bimodal binding of βarr1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy-terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of cross-linked residues suggest engagement of the finger loop of βarr1 with the seven-transmembrane core of the receptor. In contrast, focal areas of increased HDX indicate regions of increased dynamics in both N and C domains of βarr1 when coupled to the β2AR. A molecular model of the β2AR-βarr signaling complex was made by docking activated βarr1 and β2AR crystal structures into the EM map densities with constraints provided by HDXMS and cross-linking, allowing us to obtain valuable insights into the overall architecture of a receptor-arrestin complex. The dynamic and structural information presented herein provides a framework for better understanding the basis of GPCR regulation by arrestins. PMID:25043026

  4. Identification of G-Protein-Coupled Receptors (GPCRs) in Pulmonary Artery Smooth Muscle Cells as Novel Therapeutic Targets

    DTIC Science & Technology

    2015-10-01

    the search for the endogenous ligand. Br J Pharmacol, in press. Amisten S, Neville M, Hawkes R, Persaud SJ, Karpe F, and Salehi A (2015) An atlas of G...protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacol Ther 146:61–93. Amisten S, Salehi A, Rorsman P

  5. THE GRK4 SUBFAMILY OF G PROTEIN-COUPLED RECEPTOR KINASES: ALTERNATIVE SPLICING, GENE ORGANIZATION, AND SEQUENCE CONSERVATION

    EPA Science Inventory

    The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.

    Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.

    Department of Medicine, Howard Hughes Medical Institute, Duke Univer...

  6. Induction of RAGE Shedding by Activation of G Protein-Coupled Receptors

    PubMed Central

    Metz, Verena V.; Kojro, Elzbieta; Rat, Dorothea; Postina, Rolf

    2012-01-01

    The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes, including diabetic inflammatory conditions and Alzheimes disease. Full-length RAGE, a cell surface-located type I membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form. Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled receptors (GPCRs). We chose three different GPCRs coupled to distinct signaling cascades: the V2 vasopressin receptor (V2R) activating adenylyl cyclase, the oxytocin receptor (OTR) linked to phospholipase Cβ, and the PACAP receptor (subtype PAC1) coupled to adenylyl cyclase, phospholipase Cβ, calcium signaling and MAP kinases. We generated HEK cell lines stably coexpressing an individual GPCR and full-length RAGE and then investigated GPCR ligand-induced activation of RAGE shedding. We found metalloproteinase-mediated RAGE shedding on the cell surface to be inducible via ligand-specific activation of all analyzed GPCRs. By using specific inhibitors we have identified Ca2+ signaling, PKCα/PKCβI, CaMKII, PI3 kinases and MAP kinases to be involved in PAC1 receptor-induced RAGE shedding. We detected an induction of calcium signaling in all our cell lines coexpressing RAGE and different GPCRs after agonist treatment. However, we did not disclose a contribution of adenylyl cyclase in RAGE shedding induction. Furthermore, by using a selective metalloproteinase inhibitor and siRNA-mediated knock-down approaches, we show that ADAM10 and/or MMP9 are playing important roles in constitutive and PACAP-induced RAGE shedding. We also found that treatment of mice with PACAP increases the amount of

  7. Induction of RAGE shedding by activation of G protein-coupled receptors.

    PubMed

    Metz, Verena V; Kojro, Elzbieta; Rat, Dorothea; Postina, Rolf

    2012-01-01

    The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes, including diabetic inflammatory conditions and Alzheimers disease. Full-length RAGE, a cell surface-located type I membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form. Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled receptors (GPCRs). We chose three different GPCRs coupled to distinct signaling cascades: the V2 vasopressin receptor (V2R) activating adenylyl cyclase, the oxytocin receptor (OTR) linked to phospholipase Cβ, and the PACAP receptor (subtype PAC1) coupled to adenylyl cyclase, phospholipase Cβ, calcium signaling and MAP kinases. We generated HEK cell lines stably coexpressing an individual GPCR and full-length RAGE and then investigated GPCR ligand-induced activation of RAGE shedding. We found metalloproteinase-mediated RAGE shedding on the cell surface to be inducible via ligand-specific activation of all analyzed GPCRs. By using specific inhibitors we have identified Ca(2+) signaling, PKCα/PKCβI, CaMKII, PI3 kinases and MAP kinases to be involved in PAC1 receptor-induced RAGE shedding. We detected an induction of calcium signaling in all our cell lines coexpressing RAGE and different GPCRs after agonist treatment. However, we did not disclose a contribution of adenylyl cyclase in RAGE shedding induction. Furthermore, by using a selective metalloproteinase inhibitor and siRNA-mediated knock-down approaches, we show that ADAM10 and/or MMP9 are playing important roles in constitutive and PACAP-induced RAGE shedding. We also found that treatment of mice with PACAP increases the amount

  8. An evolutionary comparison of leucine-rich repeat containing G protein-coupled receptors reveals a novel LGR subtype.

    PubMed

    Van Hiel, Matthias B; Vandersmissen, Hans Peter; Van Loy, Tom; Vanden Broeck, Jozef

    2012-03-01

    Leucine-rich repeat containing G protein-coupled receptors or LGRs are receptors with important functions in development and reproduction. Belonging to this evolutionarily conserved group of receptors are the well-studied glycoprotein hormone receptors and relaxin receptors in mammals, as well as the bursicon receptor, which triggers cuticle hardening and tanning in freshly enclosed insects. In this study, the numerous LGR sequences in different animal phyla are analyzed and compared. Based on these data a phylogenetic tree was generated. This information sheds new light on structural and evolutionary aspects regarding this receptor group. Apart from vertebrates and insects, LGRs are also present in early chordates (Urochordata, Cephalochordata and Hyperoartia) and other arthropods (Arachnida and Branchiopoda) as well as in Mollusca, Echinodermata, Hemichordata, Nematoda, and even in ancient animal life forms, such as Cnidaria and Placozoa. Three distinct types of LGR exist, distinguishable by their number of leucine-rich repeats (LRRs), their type-specific hinge region and the presence or absence of an LDLa motif. Type C LGRs containing only one LDLa (C1 subtype) appear to be present in nearly all animal phyla. We here describe a second subtype, C2, containing multiple LDLa motifs, which was discovered in echinoderms, mollusks and in one insect species (Pediculus humanis corporis). In addition, eight putative LGRs can be predicted from the genome data of the placozoan species Trichoplax adhaerens. They may represent an ancient form of the LGRs, however, more genomic data will be required to confirm this hypothesis.

  9. Chemogenomics knowledgebased polypharmacology analyses of drug abuse related G-protein coupled receptors and their ligands

    PubMed Central

    Xie, Xiang-Qun; Wang, Lirong; Liu, Haibin; Ouyang, Qin; Fang, Cheng; Su, Weiwei

    2013-01-01

    Drug abuse (DA) and addiction is a complex illness, broadly viewed as a neurobiological impairment with genetic and environmental factors that influence its development and manifestation. Abused substances can disrupt the activity of neurons by interacting with many proteins, particularly G-protein coupled receptors (GPCRs). A few medicines that target the central nervous system (CNS) can also modulate DA related proteins, such as GPCRs, which can act in conjunction with the controlled psychoactive substance(s) and increase side effects. To fully explore the molecular interaction networks that underlie DA and to effectively modulate the GPCRs in these networks with small molecules for DA treatment, we built a drug-abuse domain specific chemogenomics knowledgebase (DA-KB) to centralize the reported chemogenomics research information related to DA and CNS disorders in an effort to benefit researchers across a broad range of disciplines. We then focus on the analysis of GPCRs as many of them are closely related with DA. Their distribution in human tissues was also analyzed for the study of side effects caused by abused drugs. We further implement our computational algorithms/tools to explore DA targets, DA mechanisms and pathways involved in polydrug addiction and to explore polypharmacological effects of the GPCR ligands. Finally, the polypharmacology effects of GPCRs-targeted medicines for DA treatment were investigated and such effects can be exploited for the development of drugs with polypharmacophore for DA intervention. The chemogenomics database and the analysis tools will help us better understand the mechanism of drugs abuse and facilitate to design new medications for system pharmacotherapy of DA. PMID:24567719

  10. Differential Role of G Protein-Coupled Receptor Kinase 5 in Physiological Versus Pathological Cardiac Hypertrophy

    PubMed Central

    Traynham, Christopher J.; Cannavo, Alessandro; Zhou, Yan; Vouga, Alexandre G.; Woodall, Benjamin P.; Hullmann, Jonathan; Ibetti, Jessica; Gold, Jessica I.; Chuprun, J. Kurt; Gao, Erhe; Koch, Walter J.

    2015-01-01

    Rationale G protein-coupled receptor (GPCR) kinases (GRKs) are dynamic regulators of cellular signaling. GRK5 is highly expressed within myocardium and is up-regulated in heart failure (HF). Although GRK5 is a critical regulator of cardiac GPCR signaling, recent data has uncovered non-canonical activity of GRK5 within nuclei that plays a key role in pathological hypertrophy. Targeted cardiac elevation of GRK5 in mice leads to exaggerated hypertrophy and early HF after transverse aortic constriction (TAC) due to GRK5 nuclear accumulation. Objective In this study we investigated the role of GRK5 in physiological, swimming induced hypertrophy (SIH). Methods and Results Cardiac-specific GRK5 transgenic mice (TgGRK5) and non-transgenic littermate control (NLC) mice were subjected to a 21-day high intensity swim protocol (or no swim sham controls). SIH and specific molecular and genetic indices of physiological hypertrophy were assessed including nuclear localization of GRK5 and compared to TAC. Unlike after TAC, swim-trained TgGRK5 and NLC mice exhibited similar increases in cardiac growth. Mechanistically, SIH did not lead to GRK5 nuclear accumulation, which was confirmed in vitro as insulin-like growth factor-1, a known mediator of physiological hypertrophy, was unable to induce GRK5 nuclear translocation in myocytes. We found specific patterns of altered gene expression between TAC and SIH with GRK5 overexpression. Further, SIH in post-TAC TgGRK5 mice was able to preserve cardiac function. Conclusions These data suggest that while nuclear-localized GRK5 is a pathological mediator after stress, this non-canonical nuclear activity of GRK5 is not induced during physiological hypertrophy. PMID:26515328

  11. GPR133 (ADGRD1), an adhesion G-protein-coupled receptor, is necessary for glioblastoma growth

    PubMed Central

    Bayin, N S; Frenster, J D; Kane, J R; Rubenstein, J; Modrek, A S; Baitalmal, R; Dolgalev, I; Rudzenski, K; Scarabottolo, L; Crespi, D; Redaelli, L; Snuderl, M; Golfinos, J G; Doyle, W; Pacione, D; Parker, E C; Chi, A S; Heguy, A; MacNeil, D J; Shohdy, N; Zagzag, D; Placantonakis, D G

    2016-01-01

    Glioblastoma (GBM) is a deadly primary brain malignancy with extensive intratumoral hypoxia. Hypoxic regions of GBM contain stem-like cells and are associated with tumor growth and angiogenesis. The molecular mechanisms that regulate tumor growth in hypoxic conditions are incompletely understood. Here, we use primary human tumor biospecimens and cultures to identify GPR133 (ADGRD1), an orphan member of the adhesion family of G-protein-coupled receptors, as a critical regulator of the response to hypoxia and tumor growth in GBM. GPR133 is selectively expressed in CD133+ GBM stem cells (GSCs) and within the hypoxic areas of PPN in human biospecimens. GPR133 mRNA is transcriptionally upregulated by hypoxia in hypoxia-inducible factor 1α (Hif1α)-dependent manner. Genetic inhibition of GPR133 with short hairpin RNA reduces the prevalence of CD133+ GSCs, tumor cell proliferation and tumorsphere formation in vitro. Forskolin rescues the GPR133 knockdown phenotype, suggesting that GPR133 signaling is mediated by cAMP. Implantation of GBM cells with short hairpin RNA-mediated knockdown of GPR133 in the mouse brain markedly reduces tumor xenograft formation and increases host survival. Analysis of the TCGA data shows that GPR133 expression levels are inversely correlated with patient survival. These findings indicate that GPR133 is an important mediator of the hypoxic response in GBM and has significant protumorigenic functions. We propose that GPR133 represents a novel molecular target in GBM and possibly other malignancies where hypoxia is fundamental to pathogenesis. PMID:27775701

  12. Mechanisms of G protein-coupled estrogen receptor-mediated spinal nociception

    PubMed Central

    Deliu, Elena; Brailoiu, G. Cristina; Arterburn, Jeffrey B.; Oprea, Tudor I.; Benamar, Khalid; Dun, Nae J.; Brailoiu, Eugen

    2012-01-01

    Human and animal studies suggest estrogens are involved in the processing of nociceptive sensory information and analgesic responses in the central nervous system. Rapid pro-nociceptive estrogenic effects have been reported, some of which likely involve G protein-coupled estrogen receptor (GPER) activation. Membrane depolarization, increases in cytosolic calcium and reactive oxygen species (ROS) levels are markers of neuronal activation, underlying pain sensitization in the spinal cord. Using behavioral, electrophysiological and fluorescent imaging studies, we evaluated GPER involvement in spinal nociceptive processing. Intrathecal challenging of mice with the GPER agonist G-1 results in pain-related behaviors. GPER antagonism with G15 reduces the G-1 induced response. Electrophysiological recordings from superficial dorsal horn neurons indicate neuronal membrane depolarization upon G-1 application, which is G15 sensitive. In cultured spinal sensory neurons G-1 increases intracellular calcium concentration and induces mitochondrial and cytosolic ROS accumulation. In the presence of G15, G-1 does not elicit the calcium and ROS responses, confirming specific GPER involvement in this process. Following G-1 intracellular microinjections, cytosolic calcium concentration elevates faster and with higher amplitude compared to extracellular exposure, suggesting subcellular GPER functionality. Thus, GPER activation results in spinal nociception, and the downstream mechanisms involve cytosolic calcium increase, ROS accumulation and neuronal membrane depolarization. Perspective Our results suggest that GPER modulates pain processing in spinal sensory neurons via cytosolic calcium increase and ROS accumulation. These findings extend the current knowledge on GPER involvement in physiology and disease, providing the first evidence of its pro-nociceptive effects at central levels and characterizing some of the underlying mechanisms. PMID:22858342

  13. Probing the existence of G protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding.

    PubMed

    Albizu, Laura; Balestre, Marie-Noëlle; Breton, Christophe; Pin, Jean-Philippe; Manning, Maurice; Mouillac, Bernard; Barberis, Claude; Durroux, Thierry

    2006-11-01

    An increasing amount of ligand binding data on G protein-coupled receptors (GPCRs) is not compatible with the prediction of the simple mass action law. This may be related to the propensity of most GPCRs, if not all, to oligomerize. Indeed, one of the consequences of receptor oligomerization could be a possible cross-talk between the protomers, which in turn could lead to negative or positive cooperative ligand binding. We prove here that this can be demonstrated experimentally. Saturation, dissociation, and competition binding experiments were performed on vasopressin and oxytocin receptors expressed in Chinese hamster ovary or COS-7 cells. Linear, concave, and convex Scatchard plots were then obtained, depending on the ligand used. Moreover, some competition curves exhibited an increase of the radiotracer binding for low concentrations of competitors, suggesting a cooperative binding process. These data demonstrate that various vasopressin analogs display either positive or negative cooperative binding. Because positive cooperative binding cannot be explained without considering receptor as multivalent, these binding data support the concept of GPCR dimerization process. The results, which are in good accordance with the predictions of previous mathematical models, suggest that binding experiments can be used to probe the existence of receptor dimers.

  14. GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer.

    PubMed

    Robbins, M J; Calver, A R; Filippov, A K; Hirst, W D; Russell, R B; Wood, M D; Nasir, S; Couve, A; Brown, D A; Moss, S J; Pangalos, M N

    2001-10-15

    GABA(B) receptors are unique among G-protein-coupled receptors (GPCRs) in their requirement for heterodimerization between two homologous subunits, GABA(B1) and GABA(B2), for functional expression. Whereas GABA(B1) is capable of binding receptor agonists and antagonists, the role of each GABA(B) subunit in receptor signaling is unknown. Here we identified amino acid residues within the second intracellular domain of GABA(B2) that are critical for the coupling of GABA(B) receptor heterodimers to their downstream effector systems. Our results provide strong evidence for a functional role of the GABA(B2) subunit in G-protein coupling of the GABA(B) receptor heterodimer. In addition, they provide evidence for a novel "sequential" GPCR signaling mechanism in which ligand binding to one heterodimer subunit can induce signal transduction through the second partner of a heteromeric complex.

  15. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors.

    PubMed

    Wittenberger, T; Schaller, H C; Hellebrand, S

    2001-03-30

    We have developed a comprehensive expressed sequence tag database search method and used it for the identification of new members of the G-protein coupled receptor superfamily. Our approach proved to be especially useful for the detection of expressed sequence tag sequences that do not encode conserved parts of a protein, making it an ideal tool for the identification of members of divergent protein families or of protein parts without conserved domain structures in the expressed sequence tag database. At least 14 of the expressed sequence tags found with this strategy are promising candidates for new putative G-protein coupled receptors. Here, we describe the sequence and expression analysis of five new members of this receptor superfamily, namely GPR84, GPR86, GPR87, GPR90 and GPR91. We also studied the genomic structure and chromosomal localization of the respective genes applying in silico methods. A cluster of six closely related G-protein coupled receptors was found on the human chromosome 3q24-3q25. It consists of four orphan receptors (GPR86, GPR87, GPR91, and H963), the purinergic receptor P2Y1, and the uridine 5'-diphosphoglucose receptor KIAA0001. It seems likely that these receptors evolved from a common ancestor and therefore might have related ligands. In conclusion, we describe a data mining procedure that proved to be useful for the identification and first characterization of new genes and is well applicable for other gene families.

  16. Identification of G protein-coupled receptor signaling pathway proteins in marine diatoms using comparative genomics

    PubMed Central

    2013-01-01

    Background The G protein-coupled receptor (GPCR) signaling pathway plays an essential role in signal transmission and response to external stimuli in mammalian cells. Protein components of this pathway have been characterized in plants and simpler eukaryotes such as yeast, but their presence and role in unicellular photosynthetic eukaryotes have not been determined. We use a comparative genomics approach using whole genome sequences and gene expression libraries of four diatoms (Pseudo-nitzschia multiseries, Thalassiosira pseudonana, Phaeodactylum tricornutum and Fragilariopsis cylindrus) to search for evidence of GPCR signaling pathway proteins that share sequence conservation to known GPCR pathway proteins. Results The majority of the core components of GPCR signaling were well conserved in all four diatoms, with protein sequence similarity to GPCRs, human G protein α- and β-subunits and downstream effectors. There was evidence for the Gγ-subunit and thus a full heterotrimeric G protein only in T. pseudonana. Phylogenetic analysis of putative diatom GPCRs indicated similarity but deep divergence to the class C GPCRs, with branches basal to the GABAB receptor subfamily. The extracellular and intracellular regions of these putative diatom GPCR sequences exhibited large variation in sequence length, and seven of these sequences contained the necessary ligand binding domain for class C GPCR activation. Transcriptional data indicated that a number of the putative GPCR sequences are expressed in diatoms under various stress conditions in culture, and that many of the GPCR-activated signaling proteins, including the G protein, are also expressed. Conclusions The presence of sequences in all four diatoms that code for the proteins required for a functional mammalian GPCR pathway highlights the highly conserved nature of this pathway and suggests a complex signaling machinery related to environmental perception and response in these unicellular organisms. The lack of

  17. Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled alpha-factor receptor.

    PubMed Central

    Konopka, J B; Margarit, S M; Dube, P

    1996-01-01

    The alpha-factor pheromone receptor stimulates MATa yeast cells to undergo conjugation. The receptor contains seven transmembrane domains that function in ligand binding and in transducing a signal to the cytoplasmic receptor sequences to mediate G protein activation. A genetic screen was used to isolate receptor mutations that constitutively signal in the absence of alpha-factor. The Pro-258-->Leu (P258L) mutation caused constitutive receptor signaling that was equivalent to about 45% of the maximum level observed in wild-type cells stimulated with alpha-factor. Mutations of both Pro-258 and the adjacent Ser-259 to Leu increased constitutive signaling to > or = 90% of the maximum level. Since Pro-258 occurs in the central portion of transmembrane domain 6, and since proline residues are expected to cause a kink in alpha-helical domains, the P258L mutation is predicted to alter the structure of transmembrane domain 6. The P258L mutation did not result in a global distortion of receptor structure because alpha-factor bound to the mutant receptors with high affinity and induced even higher levels of signaling. These results suggest that sequences surrounding Pro-258 may be involved in ligand activation of the receptor. Conformational changes in transmembrane domain 6 may effect a change in the adjacent sequences in the third intracellular loop that are thought to function in G protein activation. Greater than 90% of all G protein-coupled receptors contain a proline residue at a similar position in transmembrane domain 6, suggesting that this aspect of receptor activation may be conserved in other receptors. Images Fig. 3 PMID:8692892

  18. FRPR-4 Is a G-Protein Coupled Neuropeptide Receptor That Regulates Behavioral Quiescence and Posture in Caenorhabditis elegans

    PubMed Central

    York, Neil; Lee, Kun He; Schoofs, Liliane; Raizen, David M.

    2015-01-01

    Neuropeptides signal through G-protein coupled receptors (GPCRs) to regulate a broad array of animal behaviors and physiological processes. The Caenorhabditis elegans genome encodes approximately 100 predicted neuropeptide receptor GPCRs, but in vivo roles for only a few have been identified. We describe here a role for the GPCR FRPR-4 in the regulation of behavioral quiescence and locomotive posture. FRPR-4 is activated in cell culture by several neuropeptides with an amidated isoleucine-arginine-phenylalanine (IRF) motif or an amidated valine-arginine-phenylalanine (VRF) motif at their carboxy termini, including those encoded by the gene flp-13. Loss of frpr-4 function results in a minor feeding quiescence defect after heat-induced cellular stress. Overexpression of frpr-4 induces quiescence of locomotion and feeding as well as an exaggerated body bend posture. The exaggerated body bend posture requires the gene flp-13. While frpr-4 is expressed broadly, selective overexpression of frpr-4 in the proprioceptive DVA neurons results in exaggerated body bends that require flp-13 in the ALA neuron. Our results suggest that FLP-13 and other neuropeptides signal through FRPR-4 and other receptors to regulate locomotion posture and behavioral quiescence. PMID:26571132

  19. Analysis of Drug Design for a Selection of G Protein-Coupled Neuro- Receptors Using Neural Network Techniques.

    PubMed

    Agerskov, Claus; Mortensen, Rasmus M; Bohr, Henrik G

    2015-01-01

    A study is presented on how well possible drug-molecules can be predicted with respect to their function and binding to a selection of neuro-receptors by the use of artificial neural networks. The ligands investigated in this study are chosen to be corresponding to the G protein-coupled receptors µ-opioid, serotonin 2B (5-HT2B) and metabotropic glutamate D5. They are selected due to the availability of pharmacological drug-molecule binding data for these receptors. Feedback and deep belief artificial neural network architectures (NNs) were chosen to perform the task of aiding drugdesign. This is done by training on structural features, selected using a "minimum redundancy, maximum relevance"-test, and testing for successful prediction of categorized binding strength. An extensive comparison of the neural network performances was made in order to select the optimal architecture. Deep belief networks, trained with greedy learning algorithms, showed superior performance in prediction over the simple feedback NNs. The best networks obtained scores of more than 90 % accuracy in predicting the degree of binding drug molecules to the mentioned receptors and with a maximal Matthew`s coefficient of 0.925. The performance of 8 category networks (8 output classes for binding strength) obtained a prediction accuracy of above 60 %. After training the networks, tests were done on how well the systems could be used as an aid in designing candidate drug molecules. Specifically, it was shown how a selection of chemical characteristics could give the lowest observed IC50 values, meaning largest bio-effect pr. nM substance, around 0.03-0.06 nM. These ligand characteristics could be total number of atoms, their types etc. In conclusion, deep belief networks trained on drug-molecule structures were demonstrated as powerful computational tools, able to aid in drug-design in a fast and cheap fashion, compared to conventional pharmacological techniques.

  20. Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2

    PubMed Central

    Aragay, A. M.; Mellado, M.; Frade, J. M. R.; Martin, A. M.; Jimenez-Sainz, M. C.; Martinez-A, C.; Mayor, F.

    1998-01-01

    Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine cytokine family, whose physiological function is mediated by binding to the CCR2 and CCR4 receptors, which are members of the G protein-coupled receptor family. MCP-1 plays a critical role in both activation and migration of leukocytes. Rapid chemokine receptor desensitization is very likely essential for accurate chemotaxis. In this report, we show that MCP-1 binding to the CCR2 receptor in Mono Mac 1 cells promotes the rapid desensitization of MCP-1-induced calcium flux responses. This desensitization correlates with the Ser/Thr phosphorylation of the receptor and with the transient translocation of the G protein-coupled receptor kinase 2 (GRK2, also called β-adrenergic kinase 1 or βARK1) to the membrane. We also demonstrate that GRK2 and the uncoupling protein β-arrestin associate with the receptor, forming a macromolecular complex shortly after MCP-1 binding. Calcium flux responses to MCP-1 in HEK293 cells expressing the CCR2B receptor were also markedly reduced upon cotransfection with GRK2 or the homologous kinase GRK3. Nevertheless, expression of the GRK2 dominant-negative mutant βARK-K220R did not affect the initial calcium response, but favored receptor response to a subsequent challenge by agonists. The modulation of the CCR2B receptor by GRK2 suggests an important role for this kinase in the regulation of monocyte and lymphocyte response to chemokines. PMID:9501202

  1. Integrated Approaches for Genome-wide Interrogation of the Druggable Non-olfactory G Protein-coupled Receptor Superfamily*

    PubMed Central

    Roth, Bryan L.; Kroeze, Wesley K.

    2015-01-01

    G-protein-coupled receptors (GPCRs) are frequent and fruitful targets for drug discovery and development, as well as being off-targets for the side effects of a variety of medications. Much of the druggable non-olfactory human GPCR-ome remains under-interrogated, and we present here various approaches that we and others have used to shine light into these previously dark corners of the human genome. PMID:26100629

  2. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    SciTech Connect

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  3. Phenotypic Regulation of the Sphingosine 1-Phosphate Receptor Miles Apart by G Protein-Coupled Receptor Kinase 2

    PubMed Central

    2016-01-01

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling. PMID:25555130

  4. Topology of Class A G Protein-Coupled Receptors: Insights Gained from Crystal Structures of Rhodopsins, Adrenergic and Adenosine Receptors

    PubMed Central

    Mustafi, Debarshi; Palczewski, Krzysztof

    2009-01-01

    Biological membranes are densely packed with membrane proteins that occupy approximately half of their volume. In almost all cases, membrane proteins in the native state lack the higher-order symmetry required for their direct study by diffraction methods. Despite many technical difficulties, numerous crystal structures of detergent solubilized membrane proteins have been determined that illustrate their internal organization. Among such proteins, class A G protein-coupled receptors have become amenable to crystallization and high resolution X-ray diffraction analyses. The derived structures of native and engineered receptors not only provide insights into their molecular arrangements but also furnish a framework for designing and testing potential models of transformation from inactive to active receptor signaling states and for initiating rational drug design. PMID:18945819

  5. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research

    PubMed Central

    Wang, Zhixiang

    2016-01-01

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges. PMID:26771606

  6. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research.

    PubMed

    Wang, Zhixiang

    2016-01-12

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges.

  7. Complexing receptor pharmacology: modulation of family B G protein-coupled receptor function by RAMPs.

    PubMed

    Sexton, Patrick M; Morfis, Maria; Tilakaratne, Nanda; Hay, Debbie L; Udawela, Madhara; Christopoulos, George; Christopoulos, Arthur

    2006-07-01

    The most well-characterized subgroup of family B G protein-coupledreceptors (GPCRs) comprises receptors for peptide hormones, such as secretin, calcitonin (CT), glucagon, and vasoactive intestinal peptide (VIP). Recent data suggest that many of these receptors can interact with a novel family of GPCR accessory proteins termed receptor activity modifying proteins (RAMPs). RAMP interaction with receptors can lead to a variety of actions that include chaperoning of the receptor protein to the cell surface as is the case for the calcitonin receptor-like receptor (CLR) and the generation of novel receptor phenotypes. RAMP heterodimerization with the CLR and related CT receptor is required for the formation of specific CT gene-related peptide, adrenomedullin (AM) or amylin receptors. More recent work has revealed that the specific RAMP present in a heterodimer may modulate other functions such as receptor internalization and recycling and also the strength of activation of downstream signaling pathways. In this article we review our current state of knowledge of the consequence of RAMP interaction with family B GPCRs.

  8. Mutations in the pH-Sensing G-protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta.

    PubMed

    Parry, David A; Smith, Claire E L; El-Sayed, Walid; Poulter, James A; Shore, Roger C; Logan, Clare V; Mogi, Chihiro; Sato, Koichi; Okajima, Fumikazu; Harada, Akihiro; Zhang, Hong; Koruyucu, Mine; Seymen, Figen; Hu, Jan C-C; Simmer, James P; Ahmed, Mushtaq; Jafri, Hussain; Johnson, Colin A; Inglehearn, Chris F; Mighell, Alan J

    2016-10-06

    Amelogenesis is the process of dental enamel formation, leading to the deposition of the hardest tissue in the human body. This process requires the intricate regulation of ion transport and controlled changes to the pH of the developing enamel matrix. The means by which the enamel organ regulates pH during amelogenesis is largely unknown. We identified rare homozygous variants in GPR68 in three families with amelogenesis imperfecta, a genetically and phenotypically heterogeneous group of inherited conditions associated with abnormal enamel formation. Each of these homozygous variants (a large in-frame deletion, a frameshift deletion, and a missense variant) were predicted to result in loss of function. GPR68 encodes a proton-sensing G-protein-coupled receptor with sensitivity in the pH range that occurs in the developing enamel matrix during amelogenesis. Immunohistochemistry of rat mandibles confirmed localization of GPR68 in the enamel organ at all stages of amelogenesis. Our data identify a role for GPR68 as a proton sensor that is required for proper enamel formation.

  9. Extracellular acidification activates ovarian cancer G-protein-coupled receptor 1 and GPR4 homologs of zebra fish

    SciTech Connect

    Mochimaru, Yuta; Azuma, Morio; Oshima, Natsuki; Ichijo, Yuta; Satou, Kazuhiro; Matsuda, Kouhei; Asaoka, Yoichi; Nishina, Hiroshi; Nakakura, Takashi; Mogi, Chihiro; Sato, Koichi; Okajima, Fumikazu; Tomura, Hideaki

    2015-02-20

    Mammalian ovarian G-protein-coupled receptor 1 (OGR1) and GPR4 are identified as a proton-sensing G-protein-coupled receptor coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebra fish OGR1 and GPR4 homologs (zOGR1 and zGPR4) could sense protons and activate the multiple intracellular signaling pathways and, if so, whether the similar positions of histidine residue, which is critical for sensing protons in mammalian OGR and GPR4, also play a role to sense protons and activate the multiple signaling pathways in the zebra fish receptors. We found that extracellular acidic pH stimulated CRE-, SRE-, and NFAT-promoter activities in zOGR1 overexpressed cells and stimulated CRE- and SRE- but not NFAT-promoter activities in zGPR4 overexpressed cells. The substitution of histidine residues at the 12th, 15th, 162th, and 264th positions from the N-terminal of zOGR1 with phenylalanine attenuated the proton-induced SRE-promoter activities. The mutation of the histidine residue at the 78th but not the 84th position from the N-terminal of zGPR4 to phenylalanine attenuated the proton-induced SRE-promoter activities. These results suggest that zOGR1 and zGPR4 are also proton-sensing G-protein-coupled receptors, and the receptor activation mechanisms may be similar to those of the mammalian receptors. - Highlights: • Zebra fish OGR1 and GPR4 homologs (zOGR1, zGPR4) are proton-sensing receptors. • The signaling pathways activated by zOGR1 and zGPR4 are different. • Histidine residues critical for sensing protons are conserved.

  10. The recent progress in research on effects of anesthetics and analgesics on G protein-coupled receptors.

    PubMed

    Minami, Kouichiro; Uezono, Yasuhito

    2013-04-01

    The exact mechanisms of action behind anesthetics and analgesics are still unclear. Much attention was focused on ion channels in the central nervous system as targets for anesthetics and analgesics in the 1980s. During the 1990s, major advances were made in our understanding of the physiology and pharmacology of G protein coupled receptor (GPCR) signaling. Thus, several lines of studies have shown that G protein coupled receptors (GPCRs) are one of the targets for anesthetics and analgesics and especially, that some of them inhibit the functions of GPCRs, i.e,, muscarinic receptors and substance P receptors. However, these studies had been focused on only G(q) coupled receptors. There has been little work on G(s)- and G(i)-coupled receptors. In the last decade, a new assay system, using chimera G(i/o)-coupled receptor fused to Gq(i5), has been established and the effects of anesthetics and analgesics on the function of G(i)-coupled receptors is now more easily studied. This review highlights the recent progress of the studies regarding the effects of anesthetics and analgesics on GPCRs.

  11. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors.

    PubMed Central

    Hermans, E; Challiss, R A

    2001-01-01

    In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders. PMID:11672421

  12. Extracellular acidification activates ovarian cancer G-protein-coupled receptor 1 and GPR4 homologs of zebra fish.

    PubMed

    Mochimaru, Yuta; Azuma, Morio; Oshima, Natsuki; Ichijo, Yuta; Satou, Kazuhiro; Matsuda, Kouhei; Asaoka, Yoichi; Nishina, Hiroshi; Nakakura, Takashi; Mogi, Chihiro; Sato, Koichi; Okajima, Fumikazu; Tomura, Hideaki

    2015-02-20

    Mammalian ovarian G-protein-coupled receptor 1 (OGR1) and GPR4 are identified as a proton-sensing G-protein-coupled receptor coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebra fish OGR1 and GPR4 homologs (zOGR1 and zGPR4) could sense protons and activate the multiple intracellular signaling pathways and, if so, whether the similar positions of histidine residue, which is critical for sensing protons in mammalian OGR and GPR4, also play a role to sense protons and activate the multiple signaling pathways in the zebra fish receptors. We found that extracellular acidic pH stimulated CRE-, SRE-, and NFAT-promoter activities in zOGR1 overexpressed cells and stimulated CRE- and SRE- but not NFAT-promoter activities in zGPR4 overexpressed cells. The substitution of histidine residues at the 12th, 15th, 162th, and 264th positions from the N-terminal of zOGR1 with phenylalanine attenuated the proton-induced SRE-promoter activities. The mutation of the histidine residue at the 78th but not the 84th position from the N-terminal of zGPR4 to phenylalanine attenuated the proton-induced SRE-promoter activities. These results suggest that zOGR1 and zGPR4 are also proton-sensing G-protein-coupled receptors, and the receptor activation mechanisms may be similar to those of the mammalian receptors.

  13. Adrenal G protein-coupled receptor kinase-2 in regulation of sympathetic nervous system activity in heart failure.

    PubMed

    McCrink, Katie A; Brill, Ava; Lymperopoulos, Anastasios

    2015-09-26

    Heart failure (HF), the number one cause of death in the western world, is caused by the insufficient performance of the heart leading to tissue underperfusion in response to an injury or insult. It comprises complex interactions between important neurohormonal mechanisms that try but ultimately fail to sustain cardiac output. The most prominent such mechanism is the sympathetic (adrenergic) nervous system (SNS), whose activity and outflow are greatly elevated in HF. SNS hyperactivity confers significant toxicity to the failing heart and markedly increases HF morbidity and mortality via excessive activation of adrenergic receptors, which are G protein-coupled receptors. Thus, ligand binding induces their coupling to heterotrimeric G proteins that transduce intracellular signals. G protein signaling is turned-off by the agonist-bound receptor phosphorylation courtesy of G protein-coupled receptor kinases (GRKs), followed by βarrestin binding, which prevents the GRK-phosphorylated receptor from further interaction with the G proteins and simultaneously leads it inside the cell (receptor sequestration). Recent evidence indicates that adrenal GRK2 and βarrestins can regulate adrenal catecholamine secretion, thereby modulating SNS activity in HF. The present review gives an account of all these studies on adrenal GRKs and βarrestins in HF and discusses the exciting new therapeutic possibilities for chronic HF offered by targeting these proteins pharmacologically.

  14. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation.

    PubMed

    Peeters, M C; van Westen, G J P; Li, Q; IJzerman, A P

    2011-01-01

    G protein-coupled receptors (GPCRs) are the major drug target of medicines on the market today. Therefore, much research is and has been devoted to the elucidation of the function and three-dimensional structure of this large family of membrane proteins, which includes multiple conserved transmembrane domains connected by intra- and extracellular loops. In the last few years, the less conserved extracellular loops have garnered increasing interest, particularly after the publication of several GPCR crystal structures that clearly show the extracellular loops to be involved in ligand binding. This review will summarize the recent progress made in the clarification of the ligand binding and activation mechanism of class-A GPCRs and the role of extracellular loops in this process.

  15. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans.

    PubMed

    Park, Donha; O'Doherty, Inish; Somvanshi, Rishi K; Bethke, Axel; Schroeder, Frank C; Kumar, Ujendra; Riddle, Donald L

    2012-06-19

    A chemically diverse family of small-molecule signals, the ascarosides, control developmental diapause (dauer), olfactory learning, and social behaviors of the nematode model organism, Caenorhabditis elegans. The ascarosides act upstream of conserved signaling pathways, including the insulin, TGF-β, serotonin, and guanylyl cyclase pathways; however, the sensory processes underlying ascaroside function are poorly understood. Because ascarosides often are multifunctional and show strongly synergistic effects, characterization of their receptors will be essential for understanding ascaroside biology and may provide insight into molecular mechanisms that produce synergistic outcomes in small-molecule sensing. Based on DAF-8 immunoprecipitation, we here identify two G-protein-coupled receptors, DAF-37 and DAF-38, which cooperatively mediate ascaroside perception. daf-37 mutants are defective in all responses to ascr#2, one of the most potent dauer-inducing ascarosides, although this mutant responds normally to other ascarosides. In contrast, daf-38 mutants are partially defective in responses to several different ascarosides. Through cell-specific overexpression, we show that DAF-37 regulates dauer when expressed in ASI neurons and adult behavior when expressed in ASK neurons. Using a photoaffinity-labeled ascr#2 probe and amplified luminescence assays (AlphaScreen), we demonstrate that ascr#2 binds to DAF-37. Photobleaching fluorescent energy transfer assays revealed that DAF-37 and DAF-38 form heterodimers, and we show that heterodimerization strongly increases cAMP inhibition in response to ascr#2. These results suggest that that the ascarosides' intricate signaling properties result in part from the interaction of highly structure-specific G-protein-coupled receptors such as DAF-37 with more promiscuous G-protein-coupled receptors such as DAF-38.

  16. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane

    SciTech Connect

    Funakoshi, Takeshi; Yanai, Akie; Shinoda, Koh; Kawano, Michio M.; Mizukami, Yoichi . E-mail: mizukami@yamaguchi-u.ac.jp

    2006-08-04

    Recently, GPR30 was reported to be a novel estrogen receptor; however, its intracellular localization has remained controversial. To investigate the intracellular localization of GPR30 in vivo, we produced four kinds of polyclonal antibodies for distinct epitopes on GPR30. Immunocytochemical observations using anti-GPR30 antibody and anti-FLAG antibody show that FLAG-GPR30 localizes to the plasma membrane 24 h after transfection. Treatment with estrogen (17{beta}-estradiol or E2) causes an elevation in the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) within 10 s in HeLa cells expressing FLAG-GPR30. In addition, E2 induces the translocation of GPR30 from the plasma membrane to the cytoplasm by 1 h after stimulation. Immunohistochemical analysis shows that GPR30 exists on the cell surface of CA2 pyramidal neuronal cells. The images on transmission electron microscopy show that GPR30 is localized to a particular region associated with the plasma membranes of the pyramidal cells. These data indicate that GPR30, a transmembrane receptor for estrogen, is localized to the plasma membrane of CA2 pyramidal neuronal cells of the hippocampus in rat brain.

  17. Cloning of a novel G protein-coupled receptor, SLT, a subtype of the melanin-concentrating hormone receptor.

    PubMed

    Mori, M; Harada, M; Terao, Y; Sugo, T; Watanabe, T; Shimomura, Y; Abe, M; Shintani, Y; Onda, H; Nishimura, O; Fujino, M

    2001-05-25

    A DNA fragment encoding an amino acid sequence possessing common features to the G protein-coupled receptor (GPCR) superfamily was found in the human genomic sequence, and from this information, the full-length cDNA of a novel GPCR, designated SLT, was cloned from the human hippocampus cDNA library. SLT showed the highest homology to the melanin-concentrating hormone (MCH) receptor, SLC-1 (31.5% identity), and to a lesser extent, to the somatostatin (SST) receptor subtypes. MCH exhibited agonistic behavior when applied to the SLT-expressing CHO cells at subnanomolar doses whereas more than 200 known peptides, including SST and cortistatin, did not. These results indicated that MCH is the cognate ligand of the SLT receptor and that this newly cloned GPCR is the second subtype of the MCH receptor. Quantitative polymerase chain reaction analysis of the SLT gene expression in human tissues showed that the SLT receptor is expressed mainly in brain areas including the cerebral cortex, amygdala, hippocampus, and corpus callosum, as well as in a limited number of peripheral tissues. The distribution of the SLT nearly overlapped that of SLC-1, suggesting that some of the neural functions of MCH may be mediated by both of these receptor subtypes.

  18. Dynamics of the β2-adrenergic G-protein coupled receptor revealed by hydrogen-deuterium exchange

    PubMed Central

    Zhang, Xi; Chien, Ellen Y.T.; Chalmers, Michael J.; Pascal, Bruce D.; Gatchalian, Jovylyn; Stevens, Raymond C.; Griffin, Patrick R.

    2010-01-01

    To examine the molecular details of ligand activation of G-protein coupled receptor (GPCRs), emphasis has been placed on structure determination of these receptors with stabilizing ligands. Here we present the methodology for receptor dynamics characterization of the GPCR human β2 adrenergic receptor bound to the inverse agonist carazolol using the technique of amide hydrogen/deuterium exchange coupled with mass spectrometry (HDX MS). The HDX MS profile of receptor bound to carazolol is consistent with thermal parameter observations in the crystal structure and provides additional information in highly dynamic regions of the receptor and chemical modifications demonstrating the highly complementary nature of the techniques. Following optimization of HDX experimental conditions for this membrane protein, better than 89% sequence coverage was obtained for the receptor. The methodology presented paves the way for future analysis of β2AR bound to pharmacologically distinct ligands as well as analysis of other GPCR family members. PMID:20058880

  19. Classification of G-protein coupled receptors based on support vector machine with maximum relevance minimum redundancy and genetic algorithm

    PubMed Central

    2010-01-01

    Background Because a priori knowledge about function of G protein-coupled receptors (GPCRs) can provide useful information to pharmaceutical research, the determination of their function is a quite meaningful topic in protein science. However, with the rapid increase of GPCRs sequences entering into databanks, the gap between the number of known sequence and the number of known function is widening rapidly, and it is both time-consuming and expensive to determine their function based only on experimental techniques. Therefore, it is vitally significant to develop a computational method for quick and accurate classification of GPCRs. Results In this study, a novel three-layer predictor based on support vector machine (SVM) and feature selection is developed for predicting and classifying GPCRs directly from amino acid sequence data. The maximum relevance minimum redundancy (mRMR) is applied to pre-evaluate features with discriminative information while genetic algorithm (GA) is utilized to find the optimized feature subsets. SVM is used for the construction of classification models. The overall accuracy with three-layer predictor at levels of superfamily, family and subfamily are obtained by cross-validation test on two non-redundant dataset. The results are about 0.5% to 16% higher than those of GPCR-CA and GPCRPred. Conclusion The results with high success rates indicate that the proposed predictor is a useful automated tool in predicting GPCRs. GPCR-SVMFS, a corresponding executable program for GPCRs prediction and classification, can be acquired freely on request from the authors. PMID:20550715

  20. Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2.

    PubMed

    Whalen, Erin J; Foster, Matthew W; Matsumoto, Akio; Ozawa, Kentaro; Violin, Jonathan D; Que, Loretta G; Nelson, Chris D; Benhar, Moran; Keys, Janelle R; Rockman, Howard A; Koch, Walter J; Daaka, Yehia; Lefkowitz, Robert J; Stamler, Jonathan S

    2007-05-04

    beta-adrenergic receptors (beta-ARs), prototypic G-protein-coupled receptors (GPCRs), play a critical role in regulating numerous physiological processes. The GPCR kinases (GRKs) curtail G-protein signaling and target receptors for internalization. Nitric oxide (NO) and/or S-nitrosothiols (SNOs) can prevent the loss of beta-AR signaling in vivo, but the molecular details are unknown. Here we show in mice that SNOs increase beta-AR expression and prevent agonist-stimulated receptor downregulation; and in cells, SNOs decrease GRK2-mediated beta-AR phosphorylation and subsequent recruitment of beta-arrestin to the receptor, resulting in the attenuation of receptor desensitization and internalization. In both cells and tissues, GRK2 is S-nitrosylated by SNOs as well as by NO synthases, and GRK2 S-nitrosylation increases following stimulation of multiple GPCRs with agonists. Cys340 of GRK2 is identified as a principal locus of inhibition by S-nitrosylation. Our studies thus reveal a central molecular mechanism through which GPCR signaling is regulated.

  1. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain.

    PubMed

    Morland, Cecilie; Lauritzen, Knut Husø; Puchades, Maja; Holm-Hansen, Signe; Andersson, Krister; Gjedde, Albert; Attramadal, Håvard; Storm-Mathisen, Jon; Bergersen, Linda Hildegard

    2015-07-01

    We have proposed that lactate is a "volume transmitter" in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes the cerebral neocortex and the hippocampus, where it can be stimulated by physiological concentrations of lactate and by the HCAR1 agonist 3,5-dihydroxybenzoate to reduce cAMP levels. Cerebral HCAR1 is concentrated on the postsynaptic membranes of excitatory synapses and also is enriched at the blood-brain barrier. In synaptic spines and in adipocytes, HCAR1 immunoreactivity is also located on subplasmalemmal vesicular organelles, suggesting trafficking to and from the plasma membrane. Through activation of HCAR1, lactate can act as a volume transmitter that links neuronal activity, cerebral blood flow, energy metabolism, and energy substrate availability, including a glucose- and glycogen-saving response. HCAR1 may contribute to optimizing the cAMP concentration. For instance, in the prefrontal cortex, excessively high cAMP levels are implicated in impaired cognition in old age, fatigue, stress, and schizophrenia and in the deposition of phosphorylated tau protein in Alzheimer's disease. HCAR1 could serve to ameliorate these conditions and might also act through downstream mechanisms other than cAMP. Lactate exits cells through monocarboxylate transporters in an equilibrating manner and through astrocyte anion channels activated by depolarization. In addition to locally produced lactate, lactate produced by exercising muscle as well as exogenous HCAR1 agonists, e.g., from fruits and berries, might activate the receptor on cerebral blood vessels and brain cells.

  2. Note: Magnetic targeting for enhancement of the activation efficiency of G protein-coupled receptor with a two-pair coil system.

    PubMed

    Cao, Quanliang; Han, Xiaotao; Chun, Lei; Liu, Jianfeng; Li, Liang

    2016-01-01

    Insufficient contact of drug with target cells is a primary reason for limited efficiency of G protein-coupled receptor activation. To overcome this limitation, a simple approach based on magnetic targeting for enhancing drug delivery towards the cell surfaces using magnetic nanoparticles and a two-pair coil system consisting of Helmholtz and Maxwell coils was reported. As a proof of the concept, comparative experiments on G protein-coupled receptor activation process were carried out and results show that the efficiency of G protein-coupled receptor activation can be increased about 6 times in the experiments with the aid of the proposed magnetic targeting system.

  3. KiSS1 and its G-protein-coupled receptor GPR54 in cancer development and metastasis.

    PubMed

    Cho, Sung-Gook; Li, Dali; Tan, Kunrong; Siwko, Stefan K; Liu, Mingyao

    2012-12-01

    KiSS1 and its cognate G-protein-coupled receptor, GPR54, have diverse functions. While KiSS1 and GPR54 have been intensively studied in physiology, their role in cancer is still unclear. In cancer, KiSS1 and GPR54 have been known to suppress metastasis by inhibiting cancer cell motility. However, recent studies suggest that KiSS1 and GPR54 have varied roles even in cancer development and metastasis. Here, we examine recent advances in understanding the roles of KiSS1 and GPR54 in cancer development and metastasis.

  4. Live Cell Bioluminescence Imaging in Temporal Reaction of G Protein-Coupled Receptor for High-Throughput Screening and Analysis.

    PubMed

    Hattori, Mitsuru; Ozawa, Takeaki

    2016-01-01

    G protein-coupled receptors (GPCRs) are notable targets of basic therapeutics. Many screening methods have been established to identify novel agents for GPCR signaling in a high-throughput manner. However, information related to the temporal reaction of GPCR with specific ligands remains poor. We recently developed a bioluminescence method for the quantitative detection of the interaction between GPCR and β-arrestin using split luciferase complementation. To monitor time-course variation of the interactions, a new imaging system contributes to the accurate evaluation of drugs for GPCRs in a high-throughput manner.

  5. Matrix metalloproteinase and G protein coupled receptors: co-conspirators in the pathogenesis of autoimmune disease and cancer.

    PubMed

    Eck, Sarah M; Blackburn, Jessica S; Schmucker, Adam C; Burrage, Peter S; Brinckerhoff, Constance E

    2009-01-01

    Similarities in the pathologies of autoimmune diseases and cancer have been noted for at least 30 years. Inflammatory cytokines and growth factors mediate cell proliferation, and proteinases, especially the collagenase, Matrix Metalloproteinase-1 (MMP-1), contribute to disease progression by remodeling the extracellular matrix and modulating the microenvironment. This review focuses on two cancers (melanoma and breast) and on the autoimmune disorder, rheumatoid arthritis (RA), and discusses the activated stromal cells found in these diseases. MMP-1 was originally thought to function only to degrade interstitial collagens, but recent studies have revealed novel roles for MMP-1 involving the G protein-coupled receptors: the chemokine receptor, CXCR-4, and Protease Activated Receptor-1 (PAR-1). Cooperativity between MMP-1 and CXCR4/SDF-1 signaling influences the behavior of activated fibroblasts in both RA and cancer. Further, MMP-1 is a vital part of an autocrine/paracrine MMP-1/PAR-1 signal transduction axis, a function that amplifies its potential to remodel the matrix and to modify cell behavior. Finally, new therapeutic agents directed at MMP-1 and G protein-coupled receptors are emerging. Even though these agents are more specific in their targets than past therapies, these targets are often shared between RA and cancer, underscoring fundamental similarities between autoimmune disorders and some cancers.

  6. Matrix Metalloproteinase and G Protein Coupled Receptors: Co-conspirators in the pathogenesis of autoimmune disease and cancer

    PubMed Central

    Eck, Sarah M.; Blackburn, Jessica S.; Schmucker, Adam C.; Burrage, Peter S.; Brinckerhoff, Constance E.

    2009-01-01

    Similarities in the pathologies of autoimmune diseases and cancer have been noted for at least 30 years. Inflammatory cytokines and growth factors mediate cell proliferation, and proteinases, especially the collagenase, Matrix Metalloproteinase-1 (MMP-1), contribute to disease progression by remodeling the extracellular matrix and modulating the microenvironment. This review focuses on two cancers (melanoma and breast) and on the autoimmune disorder, rheumatoid arthritis (RA), and discusses the activated stromal cells found in these diseases. MMP-1 was originally thought to function only to degrade interstitial collagens, but recent studies have revealed novel roles for MMP-1 involving the G protein-coupled receptors: the chemokine receptor, CXCR-4, and Protease Activated Receptor-1 (PAR-1). Cooperativity between MMP-1 and CXCR4/SDF-1 signaling influences the behavior of activated fibroblasts in both RA and cancer. Further, MMP-1 is a vital part of an autocrine/paracrine MMP-1/PAR-1 signal transduction axis, a function that amplifies its potential to remodel the matrix and to modify cell behavior. Finally, new therapeutic agents directed at MMP-1 and G protein-coupled receptors are emerging. Even though these agents are more specific in their targets than past therapies, these targets are often shared between RA and cancer, underscoring fundamental similarities between autoimmune disorders and some cancers. PMID:19800199

  7. Characterization of gprK Encoding a Putative Hybrid G-Protein-Coupled Receptor in Aspergillus fumigatus

    PubMed Central

    Jung, Mun-Gu; Kim, Sung Su; Yu, Jae-Hyuk; Shin, Kwang-Soo

    2016-01-01

    The G-protein-coupled receptor (GPCR) family represents the largest and most varied collection of membrane embedded proteins that are sensitized by ligand binding and interact with heterotrimeric G proteins. Despite their presumed critical roles in fungal biology, the functions of the GPCR family members in the opportunistic human pathogen Aspergillus fumigatus are largely unknown, as only two (GprC and GprD) of the 15 predicted GPCRs have been studied. Here, we characterize the gprK gene, which is predicted to encode a hybrid GPCR with both 7-transmembrane and regulator of G-protein signaling (RGS) domains. The deletion of gprK causes severely impaired asexual development coupled with reduced expression of key developmental activators. Moreover, ΔgprK results in hyper-activation of germination even in the absence of carbon source, and elevated expression and activity of the protein kinase A PkaC1. Furthermore, proliferation of the ΔgprK mutant is restricted on the medium when pentose is the sole carbon source, suggesting that GprK may function in external carbon source sensing. Notably, the absence of gprK results in reduced tolerance to oxidative stress and significantly lowered mRNA levels of the stress-response associated genes sakA and atfA. Activities of catalases and SODs are severely decreased in the ΔgprK mutant, indicating that GprK may function in proper activation of general stress response. The ΔgprK mutant is also defective in gliotoxin (GT) production and slightly less virulent toward the greater wax moth, Galleria mellonella. Transcriptomic studies reveal that a majority of transporters are down-regulated by ΔgprK. In summary, GprK is necessary for proper development, GT production, and oxidative stress response, and functions in down-regulating the PKA-germination pathway. PMID:27584150

  8. The G protein-coupled receptor N-terminus and receptor signalling: N-tering a new era.

    PubMed

    Coleman, James L J; Ngo, Tony; Smith, Nicola J

    2017-05-01

    G protein-coupled receptors (GPCRs) are a vast family of membrane-traversing proteins, essential to the ability of eukaryotic life to detect, and mount an intracellular response to, a diverse range of extracellular stimuli. GPCRs have evolved with archetypal features including an extracellular N-terminus and intracellular C-terminus that flank a transmembrane structure of seven sequential helices joined by intracellular and extracellular loops. These structural domains contribute to the ability of a GPCR to be correctly synthesised and inserted into the cell membrane, to interact with its cognate ligand(s) and to couple with signal-transducing heterotrimeric G proteins, allowing the activated receptor to selectively modulate a number of signalling cascades. Whilst well known for its importance in receptor translation and trafficking, the GPCR N-terminus is underexplored as a participant in receptor signalling. This review aims to discuss and integrate recent advances in knowledge of the vital roles of the GPCR N-terminus in receptor signalling.

  9. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway.

    PubMed

    Yuan, Shuguang; Filipek, Slawomir; Palczewski, Krzysztof; Vogel, Horst

    2014-09-09

    Recent crystal structures of G-protein-coupled receptors (GPCRs) have revealed ordered internal water molecules, raising questions about the functional role of those waters for receptor activation that could not be answered by the static structures. Here, we used molecular dynamics simulations to monitor--at atomic and high temporal resolution--conformational changes of central importance for the activation of three prototypical GPCRs with known crystal structures: the adenosine A2A receptor, the β2-adrenergic receptor and rhodopsin. Our simulations reveal that a hydrophobic layer of amino acid residues next to the characteristic NPxxY motif forms a gate that opens to form a continuous water channel only upon receptor activation. The highly conserved tyrosine residue Y(7.53) undergoes transitions between three distinct conformations representative of inactive, G-protein activated and GPCR metastates. Additional analysis of the available GPCR crystal structures reveals general principles governing the functional roles of internal waters in GPCRs.

  10. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    PubMed

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B; Ahmed, Mohamed R; Gurevich, Eugenia V

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  11. Distinct Cellular and Subcellular Distributions of G Protein-Coupled Receptor Kinase and Arrestin Isoforms in the Striatum

    PubMed Central

    Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B.; Ahmed, Mohamed R.; Gurevich, Eugenia V.

    2012-01-01

    G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling. PMID:23139825

  12. Visualization of G protein-coupled receptor (GPCR) interactions in living cells using bimolecular fluorescence complementation (BiFC).

    PubMed

    Vidi, Pierre-Alexandre; Przybyla, Julie A; Hu, Cheng-Deng; Watts, Val J

    2010-04-01

    Members of the G protein-coupled receptor (GPCR) superfamily have been shown to homo- and hetero-oligomerize both in vitro and in vivo. Although the functional and pharmacological significance of GPCR oligomerization is far from being completely understood, evidence suggests that, depending on the receptor, oligomerization may influence ligand binding, G protein coupling, and receptor targeting. Bimolecular fluorescence complementation (BiFC) is a technique based on the complementation of fragments from fluorescent proteins that allows the measurement and visualization of protein interactions in living cells. It can be extended to the simultaneous detection of distinct protein-protein interactions using a multicolor setup. This unit describes the application of BiFC and multicolor BiFC to the visualization of GPCR oligomerization in a neuronal cell model. Oligomerization of GPCR fusions to BiFC tags is visualized and measured using fluorescence microscopy and fluorometry. The effect of ligands on the relative formation of distinct oligomeric species is monitored with a ratiometric multicolor BiFC approach.

  13. The G Protein-coupled Receptor P2Y14 Influences Insulin Release and Smooth Muscle Function in Mice*

    PubMed Central

    Meister, Jaroslawna; Le Duc, Diana; Ricken, Albert; Burkhardt, Ralph; Thiery, Joachim; Pfannkuche, Helga; Polte, Tobias; Grosse, Johannes; Schöneberg, Torsten; Schulz, Angela

    2014-01-01

    UDP sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor P2Y14 (GPR105) was found to bind extracellular UDP and UDP sugars. Little is known about the physiological functions of this G protein-coupled receptor. To study its physiological role, we used a gene-deficient mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung, and uterus. Among other phenotypical differences, knock-out mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets, highlighting P2Y14 as a new modulator of proper insulin secretion. PMID:24993824

  14. The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors.

    PubMed

    Kilpatrick, Laura E; Hill, Stephen J

    2016-04-15

    The membranes of living cells have been shown to be highly organized into distinct microdomains, which has spatial and temporal consequences for the interaction of membrane bound receptors and their signalling partners as complexes. Fluorescence correlation spectroscopy (FCS) is a technique with single cell sensitivity that sheds light on the molecular dynamics of fluorescently labelled receptors, ligands or signalling complexes within small plasma membrane regions of living cells. This review provides an overview of the use of FCS to probe the real time quantification of the diffusion and concentration of G protein-coupled receptors (GPCRs), primarily to gain insights into ligand-receptor interactions and the molecular composition of signalling complexes. In addition we document the use of photon counting histogram (PCH) analysis to investigate how changes in molecular brightness (ε) can be a sensitive indicator of changes in molecular mass of fluorescently labelled moieties.

  15. The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors

    PubMed Central

    Kilpatrick, Laura E.; Hill, Stephen J.

    2016-01-01

    The membranes of living cells have been shown to be highly organized into distinct microdomains, which has spatial and temporal consequences for the interaction of membrane bound receptors and their signalling partners as complexes. Fluorescence correlation spectroscopy (FCS) is a technique with single cell sensitivity that sheds light on the molecular dynamics of fluorescently labelled receptors, ligands or signalling complexes within small plasma membrane regions of living cells. This review provides an overview of the use of FCS to probe the real time quantification of the diffusion and concentration of G protein-coupled receptors (GPCRs), primarily to gain insights into ligand–receptor interactions and the molecular composition of signalling complexes. In addition we document the use of photon counting histogram (PCH) analysis to investigate how changes in molecular brightness (ε) can be a sensitive indicator of changes in molecular mass of fluorescently labelled moieties. PMID:27068980

  16. Directed evolution of G protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts

    PubMed Central

    Schütz, Marco; Schöppe, Jendrik; Sedlák, Erik; Hillenbrand, Matthias; Nagy-Davidescu, Gabriela; Ehrenmann, Janosch; Klenk, Christoph; Egloff, Pascal; Kummer, Lutz; Plückthun, Andreas

    2016-01-01

    Despite recent successes, many G protein-coupled receptors (GPCRs) remained refractory to detailed molecular studies due to insufficient production yields, even in the most sophisticated eukaryotic expression systems. Here we introduce a robust method employing directed evolution of GPCRs in yeast that allows fast and efficient generation of receptor variants which show strongly increased functional production levels in eukaryotic expression hosts. Shown by evolving three different receptors in this study, the method is widely applicable, even for GPCRs which are very difficult to express. The evolved variants showed up to a 26-fold increase of functional production in insect cells compared to the wild-type receptors. Next to the increased production, the obtained variants exhibited improved biophysical properties, while functional properties remained largely unaffected. Thus, the presented method broadens the portfolio of GPCRs accessible for detailed investigations. Interestingly, the functional production of GPCRs in yeast can be further increased by induced host adaptation. PMID:26911446

  17. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids.

    PubMed

    Briscoe, Celia P; Tadayyon, Mohammad; Andrews, John L; Benson, William G; Chambers, Jon K; Eilert, Michelle M; Ellis, Catherine; Elshourbagy, Nabil A; Goetz, Aaron S; Minnick, Dana T; Murdock, Paul R; Sauls, Howard R; Shabon, Usman; Spinage, Lisa D; Strum, Jay C; Szekeres, Philip G; Tan, Kong B; Way, James M; Ignar, Diane M; Wilson, Shelagh; Muir, Alison I

    2003-03-28

    GPR40 is a member of a subfamily of homologous G protein-coupled receptors that include GPR41 and GPR43 and that have no current function or ligand ascribed. Ligand fishing experiments in HEK293 cells expressing human GPR40 revealed that a range of saturated and unsaturated carboxylic acids with carbon chain lengths greater than six were able to induce an elevation of [Ca(2+)](i), measured using a fluorometric imaging plate reader. 5,8,11-Eicosatriynoic acid was the most potent fatty acid tested, with a pEC(50) of 5.7. G protein coupling of GPR40 was examined in Chinese hamster ovary cells expressing the G alpha(q/i)-responsive Gal4-Elk1 reporter system. Expression of human GPR40 led to a constitutive induction of luciferase activity, which was further increased by exposure of the cells to eicosatriynoic acid. Neither the constitutive nor ligand-mediated luciferase induction was inhibited by pertussis toxin treatment, suggesting that GPR40 was coupled to G alpha(q/11.) Expression analysis by quantitative reverse transcription-PCR showed that GPR40 was specifically expressed in brain and pancreas, with expression in rodent pancreas being localized to insulin-producing beta-cells. These data suggest that some of the physiological effects of fatty acids in pancreatic islets and brain may be mediated through a cell-surface receptor.

  18. Functional characterization of G-Protein Coupled receptors: a bioinformatics approach

    PubMed Central

    Tovo-Rodrigues, Luciana; Roux, Aurélie; Hutz, Mara H; Rohde, Luiz A; Woods, Amina S

    2014-01-01

    Complex molecular and cellular mechanisms regulate GPCRs. It is suggested that proteins Intrinsically Disordered regions (IDR) are to play a role in GPCR’s intra and extracellular regions plasticity, due to their potential for post-translational modification and interaction with other proteins. These regions are defined as lacking a stable three-dimensional (3D) structure. They are rich in hydrophilic and charged, amino acids and are capable to assume different conformation which allows them to interact with multiple partners. In this study we analyzed 75 GPCR involved in synaptic transmission using computational tools for sequence based prediction of intrinsically disordered regions within a protein. We also evaluated putative ligand binding motifs using receptor sequences. The disorder analysis indicated that neurotransmitter GPCRs have a significant amount of disorder in their N-terminus, third Intracellular loop (3IL) and C-terminus. About 31, 39 and 53% of human GPCR involved in synaptic transmission are disordered in these regions. Thirty-three percent of receptors show at least one predicted PEST motif, this being statistically greater than the estimate for the rest of human GPCRs. About 90% of the receptors had at least one putative site for dimerization in their 3IL or C-terminus. The ELM instance sampled in these domains were 14-3-3, SH3, SH2 and PDZ motifs. In conclusion, the increased flexibility observed in GPCRs, added to the enrichment of linear motifs, PEST and heteromerization sites, may be critical for the nervous system’s functional plasticity. PMID:24997265

  19. Revisiting automated G-protein coupled receptor modeling: the benefit of additional template structures for a neurokinin-1 receptor model.

    PubMed

    Kneissl, Benny; Leonhardt, Bettina; Hildebrandt, Andreas; Tautermann, Christofer S

    2009-05-28

    The feasibility of automated procedures for the modeling of G-protein coupled receptors (GPCR) is investigated on the example of the human neurokinin-1 (NK1) receptor. We use a combined method of homology modeling and molecular docking and analyze the information content of the resulting docking complexes regarding the binding mode for further refinements. Moreover, we explore the impact of different template structures, the bovine rhodopsin structure, the human beta(2) adrenergic receptor, and in particular a combination of both templates to include backbone flexibility in the target conformational space. Our results for NK1 modeling demonstrate that model selection from a set of decoys can in general not solely rely on docking experiments but still requires additional mutagenesis data. However, an enrichment factor of 2.6 in a nearly fully automated approach indicates that reasonable models can be created automatically if both available templates are used for model construction. Thus, the recently resolved GPCR structures open new ways to improve the model building fundamentally.

  20. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    PubMed Central

    De Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; Di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-01-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders. PMID:28233865

  1. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    NASA Astrophysics Data System (ADS)

    de Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-02-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders.

  2. Identification of the Orphan G Protein-coupled Receptor GPR31 as a Receptor for 12-(S)-Hydroxyeicosatetraenoic Acid*

    PubMed Central

    Guo, Yande; Zhang, Wenliang; Giroux, Craig; Cai, Yinlong; Ekambaram, Prasanna; Dilly, Ashok-kumar; Hsu, Andrew; Zhou, Senlin; Maddipati, Krishna Rao; Liu, Jingjing; Joshi, Sangeeta; Tucker, Stephanie C.; Lee, Menq-Jer; Honn, Kenneth V.

    2011-01-01

    Hydroxy fatty acids are critical lipid mediators involved in various pathophysiologic functions. We cloned and identified GPR31, a plasma membrane orphan G protein-coupled receptor that displays high affinity for the human 12-lipoxygenase-derived product 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE). Thus, GPR31 is named 12-(S)-HETE receptor (12-HETER) in this study. The cloned 12-HETER demonstrated high affinity binding for 12-(S)-[3H]HETE (Kd = 4.8 ± 0.12 nm). Also, 12-(S)-HETE efficiently and selectively stimulated GTPγS coupling in the membranes of 12-HETER-transfected cells (EC50 = 0.28 ± 1.26 nm). Activating GTPγS coupling with 12-(S)-HETE proved to be both regio- and stereospecific. Also, 12-(S)-HETE/12-HETER interactions lead to activation of ERK1/2, MEK, and NFκB. Moreover, knocking down 12-HRTER specifically inhibited 12-(S)-HETE-stimulated cell invasion. Thus, 12-HETER represents the first identified high affinity receptor for the 12-(S)-HETE hydroxyl fatty acids. PMID:21712392

  3. Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19.

    PubMed

    Stein, Lauren M; Yosten, Gina L C; Samson, Willis K

    2016-03-15

    Adropin, a recently described peptide hormone produced in the brain and liver, has been reported to have physiologically relevant actions on glucose homeostasis and lipogenesis, and to exert significant effect on endothelial function. We describe a central nervous system action of adropin to inhibit water drinking and identify a potential adropin receptor, the orphan G protein-coupled receptor, GPR19. Reduction in GPR19 mRNA levels in medial basal hypothalamus of male rats resulted in the loss of the inhibitory effect of adropin on water deprivation-induced thirst. The identification of a novel brain action of adropin and a candidate receptor for the peptide should extend and accelerate the study of the potential therapeutic value of adropin or its mimetics for the treatment of metabolic disorders.

  4. G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination.

    PubMed

    Luo, Rong; Jeong, Sung-Jin; Jin, Zhaohui; Strokes, Natalie; Li, Shihong; Piao, Xianhua

    2011-08-02

    GPR56, an orphan G protein-coupled receptor (GPCR) from the family of adhesion GPCRs, plays an indispensable role in cortical development and lamination. Mutations in the GPR56 gene cause a malformed cerebral cortex in both humans and mice that resembles cobblestone lissencephaly, which is characterized by overmigration of neurons beyond the pial basement membrane. However, the molecular mechanisms through which GPR56 regulates cortical development remain elusive due to the unknown status of its ligand. Here we identify collagen, type III, alpha-1 (gene symbol Col3a1) as the ligand of GPR56 through an in vitro biotinylation/proteomics approach. Further studies demonstrated that Col3a1 null mutant mice exhibit overmigration of neurons beyond the pial basement membrane and a cobblestone-like cortical malformation similar to the phenotype seen in Gpr56 null mutant mice. Functional studies suggest that the interaction of collagen III with its receptor GPR56 inhibits neural migration in vitro. As for intracellular signaling, GPR56 couples to the Gα(12/13) family of G proteins and activates RhoA pathway upon ligand binding. Thus, collagen III regulates the proper lamination of the cerebral cortex by acting as the major ligand of GPR56 in the developing brain.

  5. Functional Role of the C-Terminal Amphipathic Helix 8 of Olfactory Receptors and Other G Protein-Coupled Receptors

    PubMed Central

    Sato, Takaaki; Kawasaki, Takashi; Mine, Shouhei; Matsumura, Hiroyoshi

    2016-01-01

    G protein-coupled receptors (GPCRs) transduce various extracellular signals, such as neurotransmitters, hormones, light, and odorous chemicals, into intracellular signals via G protein activation during neurological, cardiovascular, sensory and reproductive signaling. Common and unique features of interactions between GPCRs and specific G proteins are important for structure-based design of drugs in order to treat GPCR-related diseases. Atomic resolution structures of GPCR complexes with G proteins have revealed shared and extensive interactions between the conserved DRY motif and other residues in transmembrane domains 3 (TM3), 5 and 6, and the target G protein C-terminal region. However, the initial interactions formed between GPCRs and their specific G proteins remain unclear. Alanine scanning mutagenesis of the murine olfactory receptor S6 (mOR-S6) indicated that the N-terminal acidic residue of helix 8 of mOR-S6 is responsible for initial transient and specific interactions with chimeric Gα15_olf, resulting in a response that is 2.2-fold more rapid and 1.7-fold more robust than the interaction with Gα15. Our mutagenesis analysis indicates that the hydrophobic core buried between helix 8 and TM1–2 of mOR-S6 is important for the activation of both Gα15_olf and Gα15. This review focuses on the functional role of the C-terminal amphipathic helix 8 based on several recent GPCR studies. PMID:27869740

  6. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors.

    PubMed

    Gardella, Thomas J; Vilardaga, Jean-Pierre

    2015-01-01

    The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors.

  7. Insights into Basal Signaling Regulation, Oligomerization, and Structural Organization of the Human G-Protein Coupled Receptor 83

    PubMed Central

    Scheerer, Patrick; Biebermann, Heike; Kleinau, Gunnar

    2016-01-01

    The murine G-protein coupled receptor 83 (mGPR83) is expressed in the hypothalamus and was previously suggested to be involved in the regulation of metabolism. The neuropeptide PEN has been recently identified as a potent GPR83 ligand. Moreover, GPR83 constitutes functionally relevant hetero-oligomers with other G-protein coupled receptors (GPCR) such as the ghrelin receptor (GHSR) or GPR171. Previous deletion studies also revealed that the long N-terminal extracellular receptor domain (eNDo) of mGPR83 may act as an intra-molecular ligand, which participates in the regulation of basal signaling activity, which is a key feature of GPCR function. Here, we investigated particular amino acids at the eNDo of human GPR83 (hGPR83) by side-directed mutagenesis to identify determinants of the internal ligand. These studies were accompanied by structure homology modeling to combine functional insights with structural information. The capacity for hetero-oligomer formation of hGPR83 with diverse family A GPCRs such as the melanocortin-4 receptor (MC4R) was also investigated, with a specific emphasis on the impact of the eNDo on oligomerization and basal signaling properties. Finally, we demonstrate that hGPR83 exhibits an unusual basal signaling for different effectors, which also supports signaling promiscuity. hGPR83 interacts with a variety of hypothalamic GPCRs such as the MC4R or GHSR. These interactions are not dependent on the ectodomain and most likely occur at interfaces constituted in the transmembrane regions. Moreover, several amino acids at the transition between the eNDo and transmembrane helix 1 were identified, where mutations lead also to biased basal signaling modulation. PMID:27936173

  8. Molecular Mechanism for Inhibition of G Protein-Coupled Receptor Kinase 2 by a Selective RNA Aptamer

    SciTech Connect

    Tesmer, Valerie M.; Lennarz, Sabine; Mayer, Günter; Tesmer, John J.G.

    2012-08-31

    Cardiovascular homeostasis is maintained in part by the rapid desensitization of activated heptahelical receptors that have been phosphorylated by G protein-coupled receptor kinase 2 (GRK2). However, during chronic heart failure GRK2 is upregulated and believed to contribute to disease progression. We have determined crystallographic structures of GRK2 bound to an RNA aptamer that potently and selectively inhibits kinase activity. Key to the mechanism of inhibition is the positioning of an adenine nucleotide into the ATP-binding pocket and interactions with the basic {alpha}F-{alpha}G loop region of the GRK2 kinase domain. Constraints imposed on the RNA by the terminal stem of the aptamer also play a role. These results highlight how a high-affinity aptamer can be used to selectively trap a novel conformational state of a protein kinase.

  9. [Prospects for use of peptides and their derivatives, structurally corresponding to the G protein-coupled receptors, in medicine].

    PubMed

    Shpakov, A O; Shpakova, E A

    2015-01-01

    The regulation of signaling pathways involved in the control of many physiological functions is carried out via the heterotrimeric G protein-coupled receptors (GPCR). The search of effective and selective regulators of GPCR and intracellular signaling cascades coupled with them is one of the important problems of modern fundamental and clinical medicine. Recently data suggest that synthetic peptides and their derivatives, structurally corresponding to the intracellular and transmembrane regions of GPCR, can interact with high efficiency and selectivity with homologous receptors and influence, thus, the functional activity of intracellular signaling cascades and fundamental cellular processes controlled by them. GPCR-peptides are active in both in vitro and in vivo. They regulate hematopoiesis, angiogenesis and cell proliferation, inhibit tumor growth and metastasis, and prevent the inflammatory diseases and septic shock. These data show greatest prospects in the development of the new generations of drugs based on GPCR-derived peptides, capable of regulating the important functions of the organism.

  10. High-resolution metabolic profiling towards G protein-coupled receptors: rapid and comprehensive screening of histamine H₄ receptor ligands.

    PubMed

    Kool, J; Rudebeck, A F; Fleurbaaij, F; Nijmeijer, S; Falck, D; Smits, R A; Vischer, H F; Leurs, R; Niessen, W M A

    2012-10-12

    In the past years we developed high-resolution screening platforms involving separation of bioactive mixtures and on-line or at-line bioassays for a wide variety of biological targets with parallel mass spectrometric detection and identification. In the current research, we make a major step forward in the development of at-line bioassays by implementation of radioligand receptor binding and functional cellular assays to evaluate bioactvity and selectivity. We demonstrate a new platform for high-resolution metabolic profiling of lead compounds for functional activity and selectivity toward the human histamine H(4) receptor (hH(4)R), a member of the large family of membrane-bound G protein-coupled receptors. In this platform analytical chemistry, cell biology and pharmacology are merged. The methodology is based on chromatographic separation of metabolic mixtures by HPLC coupled to high-resolution fractionation onto (multiple) microtiter well plates for complementary assaying. The methodology was used for efficient and rapid metabolic profiling of the drug clozapine and three selective hH(4)R lead compounds. With this new platform metabolites with undesired alterations in target selectivity profiles can be readily identified. Moreover, the parallel identification of metabolite structures, with accurate-mass measurements and MS/MS, allowed identification of liable metabolic 'hotspots' for further lead optimization and plays a central role in the workflow and in this study. The methodology can be easily adapted for use with other receptor screening formats. The efficient combination of pharmacological assays with analytical techniques by leveraging high-resolution at-line fractionation as a linking technology will allow implementation of comprehensive metabolic profiling in an early phase of the drug discovery process.

  11. Crosstalk between G protein-coupled receptors (GPCRs) and tyrosine kinase receptor (TXR) in the heart after morphine withdrawal.

    PubMed

    Almela, Pilar; García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2013-01-01

    G protein-coupled receptors (GPCRs) comprise a large family of membrane receptors involved in signal transduction. These receptors are linked to a variety of physiological and biological processes such as regulation of neurotransmission, growth, and cell differentiation among others. Some of the effects of GPCRs are known to be mediated by the activation of mitogen-activated extracellular kinase (MAPK) pathways. Cross-talk among various signal pathways plays an important role in activation of intracellular and intranuclear signal transduction cascades. Naloxone-induced morphine withdrawal leads to an up-regulation of adenyl cyclase-mediated signaling, resulting in high expression of protein kinase (PK) A. In addition, there is also an increased expression of extracellular signal regulated kinase (ERK), one member of MAPK. For this reason, the crosstalk between these GPCRs and receptors with tyrosine kinase activity (TKR) can be considered a possible mechanism for adaptive changes that occurs after morphine withdrawal. Morphine withdrawal activates ERK1/2 and phosphorylated tyrosine hydroxylase (TH) at Ser31 in the right and left ventricle. When N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), a PKA inhibitor was infused, the ability of morphine withdrawal to activate ERK, which phosphorylates TH at Ser31, was reduced. The present finding demonstrated that the enhancement of ERK1/2 expression and the phosphorylation state of TH at Ser31 during morphine withdrawal are dependent on PKA and suggest cross-talk between PKA and ERK1/2 transduction pathway mediating morphine withdrawal-induced activation of TH. Increasing understanding of the mechanisms that interconnect the two pathway regulated by GPCRs and TKRs may facilitate the design of new therapeutic strategies.

  12. Crosstalk between G protein-coupled receptors (GPCRs) and tyrosine kinase receptor (TXR) in the heart after morphine withdrawal

    PubMed Central

    Almela, Pilar; García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2013-01-01

    G protein-coupled receptors (GPCRs) comprise a large family of membrane receptors involved in signal transduction. These receptors are linked to a variety of physiological and biological processes such as regulation of neurotransmission, growth, and cell differentiation among others. Some of the effects of GPCRs are known to be mediated by the activation of mitogen-activated extracellular kinase (MAPK) pathways. Cross-talk among various signal pathways plays an important role in activation of intracellular and intranuclear signal transduction cascades. Naloxone-induced morphine withdrawal leads to an up-regulation of adenyl cyclase-mediated signaling, resulting in high expression of protein kinase (PK) A. In addition, there is also an increased expression of extracellular signal regulated kinase (ERK), one member of MAPK. For this reason, the crosstalk between these GPCRs and receptors with tyrosine kinase activity (TKR) can be considered a possible mechanism for adaptive changes that occurs after morphine withdrawal. Morphine withdrawal activates ERK1/2 and phosphorylated tyrosine hydroxylase (TH) at Ser31 in the right and left ventricle. When N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), a PKA inhibitor was infused, the ability of morphine withdrawal to activate ERK, which phosphorylates TH at Ser31, was reduced. The present finding demonstrated that the enhancement of ERK1/2 expression and the phosphorylation state of TH at Ser31 during morphine withdrawal are dependent on PKA and suggest cross-talk between PKA and ERK1/2 transduction pathway mediating morphine withdrawal-induced activation of TH. Increasing understanding of the mechanisms that interconnect the two pathway regulated by GPCRs and TKRs may facilitate the design of new therapeutic strategies. PMID:24409147

  13. G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling

    PubMed Central

    Nilsson, Bengt-Olof; Olde, Björn; Leeb-Lundberg, LM Fredrik

    2011-01-01

    Oestrogens are important sex hormones central to health and disease in both genders that have protective effects on the cardiovascular and metabolic systems. These hormones act in complex ways via both genomic and non-genomic mechanisms. The genomic mechanisms are relatively well characterized, whereas the non-genomic ones are only beginning to be explored. Two oestrogen receptors (ER), ERα and ERβ, have been described that act as nuclear transcription factors but can also associate with the plasma membrane and influence cytosolic signalling. ERα has been shown to mediate both anti-atherogenic effects and pro-survival effects in pancreatic β-cells. In recent years, a third membrane-bound ER has emerged, G protein-coupled receptor 30 or G protein-coupled oestrogen receptor 1 (GPER1), which mediates oestrogenic responses in cardiovascular and metabolic regulation. Both GPER1 knock-out models and pharmacological agents are now available to study GPER1 function. These tools have revealed that GPER1 activation may have several beneficial effects in the cardiovascular system including vasorelaxation, inhibition of smooth muscle cell proliferation, and protection of the myocardium against ischaemia/reperfusion injury, and in the metabolic system including stimulation of insulin release and protection against pancreatic β-cell apoptosis. Thus, GPER1 is emerging as a candidate therapeutic target in both cardiovascular and metabolic disease. LINKED ARTICLES This article is one of a set of reviews submitted to BJP in connection with talks given at the September 2010 meeting of the International Society of Hypertension in Vancouver, Canada. To view the other articles in this collection visit http://dx.doi.org/10.1111/j.1476-5381.2010.01167.x, http://dx.doi.org/10.1111/j.1476-5381.2011.01260.x and http://dx.doi.org/10.1111/j.1476-5381.2011.01366.x PMID:21250980

  14. Expression, Functional Characterization, and Solid-State NMR Investigation of the G Protein-Coupled GHS Receptor in Bilayer Membranes

    PubMed Central

    Schrottke, Stefanie; Kaiser, Anette; Vortmeier, Gerrit; Els-Heindl, Sylvia; Worm, Dennis; Bosse, Mathias; Schmidt, Peter; Scheidt, Holger A.; Beck-Sickinger, Annette G.; Huster, Daniel

    2017-01-01

    The expression, functional reconstitution and first NMR characterization of the human growth hormone secretagogue (GHS) receptor reconstituted into either DMPC or POPC membranes is described. The receptor was expressed in E. coli. refolded, and reconstituted into bilayer membranes. The molecule was characterized by 15N and 13C solid-state NMR spectroscopy in the absence and in the presence of its natural agonist ghrelin or an inverse agonist. Static 15N NMR spectra of the uniformly labeled receptor are indicative of axially symmetric rotational diffusion of the G protein-coupled receptor in the membrane. In addition, about 25% of the 15N sites undergo large amplitude motions giving rise to very narrow spectral components. For an initial quantitative assessment of the receptor mobility, 1H-13C dipolar coupling values, which are scaled by molecular motions, were determined quantitatively. From these values, average order parameters, reporting the motional amplitudes of the individual receptor segments can be derived. Average backbone order parameters were determined with values between 0.56 and 0.69, corresponding to average motional amplitudes of 40–50° of these segments. Differences between the receptor dynamics in DMPC or POPC membranes were within experimental error. Furthermore, agonist or inverse agonist binding only insignificantly influenced the average molecular dynamics of the receptor. PMID:28387359

  15. Endolysosomal trafficking of viral G protein-coupled receptor functions in innate immunity and control of viral oncogenesis.

    PubMed

    Dong, Xiaonan; Cheng, Adam; Zou, Zhongju; Yang, Yih-Sheng; Sumpter, Rhea M; Huang, Chou-Long; Bhagat, Govind; Virgin, Herbert W; Lira, Sergio A; Levine, Beth

    2016-03-15

    The ubiquitin-proteasome system degrades viral oncoproteins and other microbial virulence factors; however, the role of endolysosomal degradation pathways in these processes is unclear. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma, and a constitutively active viral G protein-coupled receptor (vGPCR) contributes to the pathogenesis of KSHV-induced tumors. We report that a recently discovered autophagy-related protein, Beclin 2, interacts with KSHV GPCR, facilitates its endolysosomal degradation, and inhibits vGPCR-driven oncogenic signaling. Furthermore, monoallelic loss of Becn2 in mice accelerates the progression of vGPCR-induced lesions that resemble human Kaposi's sarcoma. Taken together, these findings indicate that Beclin 2 is a host antiviral molecule that protects against the pathogenic effects of KSHV GPCR by facilitating its endolysosomal degradation. More broadly, our data suggest a role for host endolysosomal trafficking pathways in regulating viral pathogenesis and oncogenic signaling.

  16. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling

    PubMed Central

    Dolatshad, Nazanin F.; Hellen, Nicola; Jabbour, Richard J.; Harding, Sian E.; Földes, Gabor

    2015-01-01

    Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies. PMID:26697426

  17. Quasi-elastic neutron scattering reveals ligand-induced protein dynamics of a G-protein-coupled receptor

    SciTech Connect

    Shrestha, Utsab R.; Perera, Suchithranga M. D. C.; Bhowmik, Debsindhu; Chawla, Udeep; Mamontov, Eugene; Brown, Michael F.; Chu, Xiang -Qiang

    2016-09-15

    Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond–nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differences can be attributed to the influence of the covalently bound retinal ligand. Moreover, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.

  18. Novel Agonist Bioisosteres and Common Structure-Activity Relationships for The Orphan G Protein-Coupled Receptor GPR139

    PubMed Central

    Shehata, Mohamed A.; Nøhr, Anne C.; Lissa, Delphine; Bisig, Christoph; Isberg, Vignir; Andersen, Kirsten B.; Harpsøe, Kasper; Björkling, Fredrik; Bräuner-Osborne, Hans; Gloriam, David E.

    2016-01-01

    GPR139 is an orphan class A G protein-coupled receptor found mainly in the central nervous system. It has its highest expression levels in the hypothalamus and striatum, regions regulating metabolism and locomotion, respectively, and has therefore been suggested as a potential target for obesity and Parkinson’s disease. The two aromatic amino acids L-Trp and L-Phe have been proposed as putative endogenous agonists, and three structurally related benzohydrazide, glycine benzamide, and benzotriazine surrogate agonist series have been published. Herein, we assayed 158 new analogues selected from a pharmacophore model, and identified 12 new GPR139 agonists, containing previously untested bioisosteres. Furthermore, we present the first combined structure-activity relationships, and a refined pharmacophore model to serve as a rationale for future ligand identification and optimization. PMID:27830715

  19. Imaging G Protein-coupled Receptor-mediated Chemotaxis and its Signaling Events in Neutrophil-like HL60 Cells

    PubMed Central

    Wen, Xi; Jin, Tian; Xu, Xuehua

    2016-01-01

    Eukaryotic cells sense and move towards a chemoattractant gradient, a cellular process referred as chemotaxis. Chemotaxis plays critical roles in many physiological processes, such as embryogenesis, neuron patterning, metastasis of cancer cells, recruitment of neutrophils to sites of inflammation, and the development of the model organism Dictyostelium discoideum. Eukaryotic cells sense chemo-attractants using G protein-coupled receptors. Visual chemotaxis assays are essential for a better understanding of how eukaryotic cells control chemoattractant-mediated directional cell migration. Here, we describe detailed methods for: 1) real-time, high-resolution monitoring of multiple chemotaxis assays, and 2) simultaneously visualizing the chemoattractant gradient and the spatiotemporal dynamics of signaling events in neutrophil-like HL60 cells. PMID:27684322

  20. Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour

    PubMed Central

    Doi, Masao; Murai, Iori; Kunisue, Sumihiro; Setsu, Genzui; Uchio, Naohiro; Tanaka, Rina; Kobayashi, Sakurako; Shimatani, Hiroyuki; Hayashi, Hida; Chao, Hsu-Wen; Nakagawa, Yuuki; Takahashi, Yukari; Hotta, Yunhong; Yasunaga, Jun-ichirou; Matsuoka, Masao; Hastings, Michael H.; Kiyonari, Hiroshi; Okamura, Hitoshi

    2016-01-01

    G-protein-coupled receptors (GPCRs) participate in a broad range of physiological functions. A priority for fundamental and clinical research, therefore, is to decipher the function of over 140 remaining orphan GPCRs. The suprachiasmatic nucleus (SCN), the brain's circadian pacemaker, governs daily rhythms in behaviour and physiology. Here we launch the SCN orphan GPCR project to (i) search for murine orphan GPCRs with enriched expression in the SCN, (ii) generate mutant animals deficient in candidate GPCRs, and (iii) analyse the impact on circadian rhythms. We thereby identify Gpr176 as an SCN-enriched orphan GPCR that sets the pace of circadian behaviour. Gpr176 is expressed in a circadian manner by SCN neurons, and molecular characterization reveals that it represses cAMP signalling in an agonist-independent manner. Gpr176 acts independently of, and in parallel to, the Vipr2 GPCR, not through the canonical Gi, but via the unique G-protein subclass Gz. PMID:26882873

  1. Phospholipase Cε is a nexus for Rho and Rap-mediated G protein-coupled receptor-induced astrocyte proliferation

    PubMed Central

    Citro, Simona; Malik, Sundeep; Oestreich, Emily A.; Radeff-Huang, Julie; Kelley, Grant G.; Smrcka, Alan V.; Brown, Joan Heller

    2007-01-01

    Phospholipase Cε (PLCε) has been suggested to transduce signals from small GTPases, but its biological function has not yet been clarified. Using astrocytes from PLCε-deficient mice, we demonstrate that endogenous G protein-coupled receptors (GPCRs) for lysophosphatidic acid, sphingosine 1-phosphate, and thrombin regulate phosphoinositide hydrolysis primarily through PLCε. Stimulation by lysophospholipids occurs through Gi, whereas thrombin activates PLC through Rho. Further studies reveal that PLCε is required for thrombin- but not LPA-induced sustained ERK activation and DNA synthesis, providing a novel mechanism for GPCR and Rho signaling to cell proliferation. The requirement for PLCε in this pathway can be explained by its role as a guanine nucleotide exchange factor for Rap1. Thus, PLCε serves to transduce mitogenic signals through a mechanism distinct from its role in generation of PLC-derived second messengers. PMID:17878312

  2. Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma.

    PubMed

    Prickett, Todd D; Wei, Xiaomu; Cardenas-Navia, Isabel; Teer, Jamie K; Lin, Jimmy C; Walia, Vijay; Gartner, Jared; Jiang, Jiji; Cherukuri, Praveen F; Molinolo, Alfredo; Davies, Michael A; Gershenwald, Jeffrey E; Stemke-Hale, Katherine; Rosenberg, Steven A; Margulies, Elliott H; Samuels, Yardena

    2011-09-25

    G protein-coupled receptors (GPCRs), the largest human gene family, are important regulators of signaling pathways. However, knowledge of their genetic alterations is limited. In this study, we used exon capture and massively parallel sequencing methods to analyze the mutational status of 734 GPCRs in melanoma. This investigation revealed that one family member, GRM3, was frequently mutated and that one of its mutations clustered within one position. Biochemical analysis of GRM3 alterations revealed that mutant GRM3 selectively regulated the phosphorylation of MEK, leading to increased anchorage-independent growth and migration. Melanoma cells expressing mutant GRM3 had reduced cell growth and cellular migration after short hairpin RNA-mediated knockdown of GRM3 or treatment with a selective MEK inhibitor, AZD-6244, which is currently being used in phase 2 clinical trials. Our study yields the most comprehensive map of genetic alterations in the GPCR gene family.

  3. Regulation of oxytocin receptor responsiveness by G protein-coupled receptor kinase 6 in human myometrial smooth muscle.

    PubMed

    Willets, Jonathon M; Brighton, Paul J; Mistry, Rajendra; Morris, Gavin E; Konje, Justin C; Challiss, R A John

    2009-08-01

    Oxytocin plays an important role in the progression, timing, and modulation of uterine contraction during labor and is widely used as an uterotonic agent. We investigated the mechanisms regulating oxytocin receptor (OTR) signaling in human primary myometrial smooth muscle cells and the ULTR cell-line. Oxytocin produced concentration-dependent increases in both total [(3)H]inositol phosphate accumulation and intracellular Ca(2+) concentration ([Ca(2+)](i)); however, responses were greater and more reproducible in the ULTR cell line. Assessment of phospholipase C activity in single cells revealed that the OTR desensitizes rapidly (within 5 min) in the presence of oxytocin (100 nm). To characterize OTR desensitization further, cells were stimulated with a maximally effective concentration of oxytocin (100 nm, 30 sec) followed by a variable washout period and a second identical application of oxytocin. This brief exposure to oxytocin caused a marked decrease (>70%) in OTR responsiveness to rechallenge and was fully reversed by increasing the time period between agonist challenges. To assess involvement of G protein-coupled receptor kinases (GRKs) in OTR desensitization, cells were transfected with small interfering RNAs to cause specific > or =75% knockdown of GRKs 2, 3, 5, or 6. In both primary myometrial and ULTR cells, knockdown of GRK6 largely prevented oxytocin-induced OTR desensitization; in contrast, selective depletion of GRKs 2, 3, or 5 was without effect. These data indicate that GRK6 recruitment is a cardinal effector of OTR responsiveness and provide mechanistic insight into the likely in vivo regulation of OTR signaling in uterine smooth muscle.

  4. Activation of the G protein-coupled estrogen receptor, but not estrogen receptor α or β, rapidly enhances social learning.

    PubMed

    Ervin, Kelsy Sharice Jean; Mulvale, Erin; Gallagher, Nicola; Roussel, Véronique; Choleris, Elena

    2015-08-01

    Social learning is a highly adaptive process by which an animal acquires information from a conspecific. While estrogens are known to modulate learning and memory, much of this research focuses on individual learning. Estrogens have been shown to enhance social learning on a long-term time scale, likely via genomic mechanisms. Estrogens have also been shown to affect individual learning on a rapid time scale through cell-signaling cascades, rather than via genomic effects, suggesting they may also rapidly influence social learning. We therefore investigated the effects of 17β-estradiol and involvement of the estrogen receptors (ERs) using the ERα agonist propyl pyrazole triol, the ERβ agonist diarylpropionitrile, and the G protein-coupled ER 1 (GPER1) agonist G1 on the social transmission of food preferences (STFP) task, within a time scale that focused on the rapid effects of estrogens. General ER activation with 17β-estradiol resulted in a modest facilitation of social learning, with mice showing a preference up to 30min of testing. Specific activation of the GPER1 also rapidly enhanced social learning, with mice showing a socially learned preference up to 2h of testing. ERα activation instead shortened the expression of a socially learned food preference, while ERβ activation had little to no effects. Thus, rapid estrogenic modulation of social learning in the STFP may be the outcome of competing action at the three main receptors. Hence, estrogens' rapid effects on social learning likely depend on the specific ERs present in brain regions recruited during social learning.

  5. Effective G-protein coupling of Y2 receptors along axonal fiber tracts and its relevance for epilepsy.

    PubMed

    Dum, Elisabeth; Fürtinger, Sabine; Gasser, Elisabeth; Bukovac, Anneliese; Drexel, Meinrad; Tasan, Ramon; Sperk, Günther

    2017-02-01

    Neuropeptide Y (NPY)-Y2 receptors are G-protein coupled receptors and, upon activation, induce opening of potassium channels or closing of calcium channels. They are generally presynaptically located. Depending on the neuron in which they are expressed they mediate inhibition of release of NPY and of the neuron's classical transmitter GABA, glutamate or noradrenaline, respectively. Here we provide evidence that Y2 receptor binding is inhibited dose-dependently by GTPγS along Schaffer collaterals, the stria terminalis and the fimbria indicating that Y2 receptors are functionally coupled to G-proteins along these fiber tracts. Double immune fluorescence revealed coexistence of Y2-immunoreactivity with β-tubulin, a marker for axons in the stria terminalis, but not with synaptophysin labeling presynaptic terminals, supporting the localization of Y2 receptors along axonal tracts. After kainic acid-induced seizures in rats, GTPγS-induced inhibition of Y2 receptor binding is facilitated in the Schaffer collaterals but not in the stria terminalis. Our data indicate that Y2 receptors are not only located at nerve terminals but also along fiber tracts and are there functionally coupled to G-proteins.

  6. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor.

    PubMed

    Gravati, Marta; Busnelli, Marta; Bulgheroni, Elisabetta; Reversi, Alessandra; Spaiardi, Paolo; Parenti, Marco; Toselli, Mauro; Chini, Bice

    2010-09-01

    Oxytocin receptor is a seven transmembrane receptor widely expressed in the CNS that triggers G(i) or G(q) protein-mediated signaling cascades leading to the regulation of a variety of neuroendocrine and cognitive functions. We decided to investigate whether and how the promiscuous receptor/G protein coupling affects neuronal excitability. As an experimental model, we used the immortalized gonadotropin-releasing hormone-positive GN11 cell line displaying the features of immature, migrating olfactory neurons. Using RT-PCR analysis, we detected the presence of oxytocin receptors whose stimulation by oxytocin led to the accumulation of inositol phosphates and to the inhibition of cell proliferation, and the expression of several inward rectifier (IR) K+ channel subtypes. Moreover, electrophysiological and pharmacological inspections using whole-cell patch-clamp recordings evidenced that in GN11 cells, IR channel subtypes are responsive to oxytocin. In particular, we found that: (i) peptide activation of receptor either inhibited or stimulated IR conductances, and (ii) IR current inhibition was mediated by a pertussis toxin-resistant G protein presumably of the G(q/11) subtype, and by phospholipase C, whereas IR current activation was achieved via receptor coupling to a pertussis toxin-sensitive G(i/o) protein. The findings suggest that neuronal excitability might be tuned by a single peptide receptor that mediates opposing effects on distinct K+ channels through the promiscuous coupling to different G proteins.

  7. Tick G protein-coupled receptors as targets for development of new acaricides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The GPCR class of receptors is a source of many pharmacologicals in human medicine and are still being pursued in research programs as promising targets for drug development. GPCRs have been identified in arthropods and with the advent of expressed sequence tag (EST) and genome projects in the ticks...

  8. Sex peptides and MIPs can activate the same G protein-coupled receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many animal species, copulation elicits a number of physiological and behavioral changes in the female partner. In Drosophila melanogaster, the main molecular effector of these physiological responses has been identified as sex peptide (SP). The sex peptide receptor (SPR) has been characterized a...

  9. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    SciTech Connect

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  10. Peptides derived from cardiovascular G-protein-coupled receptors induce morphological cardiomyopathic changes in immunized rabbits.

    PubMed

    Matsui, S; Fu, M L; Katsuda, S; Hayase, M; Yamaguchi, N; Teraoka, K; Kurihara, T; Takekoshi, N; Murakami, E; Hoebeke, J; Hjalmarson, A

    1997-02-01

    An experimental model of early-stage cardiomyopathy was created by immunizing rabbits for 1 year with synthetic peptides corresponding to the sequence of the second extracellular loop of either beta-adrenoceptors or M2-muscarinic receptors. Thirty male rabbits were used and divided into three groups: a control group (n = 10), a group immunized with the peptide corresponding to the beta-adrenoceptor (beta 1 group) (n = 10) and a group immunized with the peptide corresponding to the M2-muscarinic receptor (M2 group) (n = 10). If the sera from both groups of immunized rabbits high-titres of anti-peptide antibodies were found throughout the study period but not in the sera from control rabbits or in the preimmune sera of immunized rabbits. No significant cross-reaction with peptides other than those used for immunization was found. The myocardial receptor density of both immunized groups displayed a strong trend toward receptor up-regulation. This was significant in the beta 1 group but not in the M2 group. Both groups of immunized rabbits displayed significantly enlarged ventricles and thinner walls, as compared with the control group. However, in contrast to the beta 1 group, which showed enlarged cavities in both left and right ventricles, the M2 group was mainly affected in the right ventricles. Moreover, morphological examinations of the hearts of rabbits from both immunized groups demonstrated focal myofibrillar lysis, loss of myofilament, mitochondrial swelling and condensation, sarcoplasmic vacuolation, deposition of dense granules in the sarcoplasm and the myofibrils. One of the sex control rabbit hearts which were examined showed mild degenerative changes in the myocardium and scant mononuclear cell infiltration. However, when all the control rabbit hearts were examined by electron microscopy, no significant alterations were found. These results suggest that immunization by peptides, corresponding to the target sequences for anti-receptor autoantibodies in

  11. Allosteric modulation in monomers and oligomers of a G protein-coupled receptor

    PubMed Central

    Shivnaraine, Rabindra V; Kelly, Brendan; Sankar, Krishana S; Redka, Dar'ya S; Han, Yi Rang; Huang, Fei; Elmslie, Gwendolynne; Pinto, Daniel; Li, Yuchong; Rocheleau, Jonathan V; Gradinaru, Claudiu C; Ellis, John; Wells, James W

    2016-01-01

    The M2 muscarinic receptor is the prototypic model of allostery in GPCRs, yet the molecular and the supramolecular determinants of such effects are unknown. Monomers and oligomers of the M2 muscarinic receptor therefore have been compared to identify those allosteric properties that are gained in oligomers. Allosteric interactions were monitored by means of a FRET-based sensor of conformation at the allosteric site and in pharmacological assays involving mutants engineered to preclude intramolecular effects. Electrostatic, steric, and conformational determinants of allostery at the atomic level were examined in molecular dynamics simulations. Allosteric effects in monomers were exclusively negative and derived primarily from intramolecular electrostatic repulsion between the allosteric and orthosteric ligands. Allosteric effects in oligomers could be positive or negative, depending upon the allosteric-orthosteric pair, and they arose from interactions within and between the constituent protomers. The complex behavior of oligomers is characteristic of muscarinic receptors in myocardial preparations. DOI: http://dx.doi.org/10.7554/eLife.11685.001 PMID:27151542

  12. Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures

    SciTech Connect

    Guescini, M.; Leo, G.; Genedani, S.; Carone, C.; Pederzoli, F.; Ciruela, F.; Guidolin, D.; Stocchi, V.; Mantuano, M.; Borroto-Escuela, D.O.; Fuxe, K.; Agnati, L.F.

    2012-03-10

    Recent evidence shows that cells exchange collections of signals via microvesicles (MVs) and tunneling nano-tubes (TNTs). In this paper we have investigated whether in cell cultures GPCRs can be transferred by means of MVs and TNTs from a source cell to target cells. Western blot, transmission electron microscopy and gene expression analyses demonstrate that A{sub 2A} and D{sub 2} receptors are present in released MVs. In order to further demonstrate the involvement of MVs in cell-to-cell communication we created two populations of cells (HEK293T and COS-7) transiently transfected with D{sub 2}R-CFP or A{sub 2A}R-YFP. These two types of cells were co-cultured, and FRET analysis demonstrated simultaneously positive cells to the D{sub 2}R-CFP and A{sub 2A}R-YFP. Fluorescence microscopy analysis also showed that GPCRs can move from one cell to another also by means of TNTs. Finally, recipient cells pre-incubated for 24 h with A{sub 2A}R positive MVs were treated with the adenosine A{sub 2A} receptor agonist CGS-21680. The significant increase in cAMP accumulation clearly demonstrated that A{sub 2A}Rs were functionally competent in target cells. These findings demonstrate that A{sub 2A} receptors capable of recognizing and decoding extracellular signals can be safely transferred via MVs from source to target cells.

  13. Multiplex detection of functional G protein-coupled receptors harboring site-specifically modified unnatural amino acids.

    PubMed

    Naganathan, Saranga; Ray-Saha, Sarmistha; Park, Minyoung; Tian, He; Sakmar, Thomas P; Huber, Thomas

    2015-01-27

    We developed a strategy for identifying positions in G protein-coupled receptors that are amenable to bioorthogonal modification with a peptide epitope tag under cell culturing conditions. We introduced the unnatural amino acid p-azido-l-phenylalanine (azF) into human CC chemokine receptor 5 (CCR5) at site-specific amber codon mutations. We then used strain-promoted azide-alkyne [3+2] cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich fluorophore-linked immunosorbent assay was used to probe simultaneously the FLAG epitope and the receptor using infrared dye-conjugated antibodies so that the extent of DBCO incorporation, corresponding nominally to labeling efficiency, could be quantified ratiometrically. The extent of incorporation of DBCO at the various sites was evaluated in the context of a recent crystal structure of maraviroc-bound CCR5. We observed that labeling efficiency varied dramatically depending on the topological location of the azF in CCR5. Interestingly, position 109 in transmembrane helix 3, located in a hydrophobic cavity on the extracellular side of the receptor, was labeled most efficiently. Because the bioorthogonal labeling and detection strategy described might be used to introduce a variety of different peptide epitopes or fluorophores into engineered expressed receptors, it might prove to be useful for a wide range of applications, including single-molecule detection studies of receptor trafficking and signaling mechanism.

  14. Multiplex Detection of Functional G Protein-Coupled Receptors Harboring Site-Specifically Modified Unnatural Amino Acids

    PubMed Central

    2015-01-01

    We developed a strategy for identifying positions in G protein-coupled receptors that are amenable to bioorthogonal modification with a peptide epitope tag under cell culturing conditions. We introduced the unnatural amino acid p-azido-l-phenylalanine (azF) into human CC chemokine receptor 5 (CCR5) at site-specific amber codon mutations. We then used strain-promoted azide–alkyne [3+2] cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich fluorophore-linked immunosorbent assay was used to probe simultaneously the FLAG epitope and the receptor using infrared dye-conjugated antibodies so that the extent of DBCO incorporation, corresponding nominally to labeling efficiency, could be quantified ratiometrically. The extent of incorporation of DBCO at the various sites was evaluated in the context of a recent crystal structure of maraviroc-bound CCR5. We observed that labeling efficiency varied dramatically depending on the topological location of the azF in CCR5. Interestingly, position 109 in transmembrane helix 3, located in a hydrophobic cavity on the extracellular side of the receptor, was labeled most efficiently. Because the bioorthogonal labeling and detection strategy described might be used to introduce a variety of different peptide epitopes or fluorophores into engineered expressed receptors, it might prove to be useful for a wide range of applications, including single-molecule detection studies of receptor trafficking and signaling mechanism. PMID:25524496

  15. Reciprocal regulation of two G protein-coupled receptors sensing extracellular concentrations of Ca2+ and H.

    PubMed

    Wei, Wei-Chun; Jacobs, Benjamin; Becker, Esther B E; Glitsch, Maike D

    2015-08-25

    G protein-coupled receptors (GPCRs) are cell surface receptors that detect a wide range of extracellular messengers and convey this information to the inside of cells. Extracellular calcium-sensing receptor (CaSR) and ovarian cancer gene receptor 1 (OGR1) are two GPCRs that sense extracellular Ca(2+) and H(+), respectively. These two ions are key components of the interstitial fluid, and their concentrations change in an activity-dependent manner. Importantly, the interstitial fluid forms part of the microenvironment that influences cell function in health and disease; however, the exact mechanisms through which changes in the microenvironment influence cell function remain largely unknown. We show that CaSR and OGR1 reciprocally inhibit signaling through each other in central neurons, and that this is lost in their transformed counterparts. Furthermore, strong intracellular acidification impairs CaSR function, but potentiates OGR1 function. Thus, CaSR and OGR1 activities can be regulated in a seesaw manner, whereby conditions promoting signaling through one receptor simultaneously inhibit signaling through the other receptor, potentiating the difference in their relative signaling activity. Our results provide insight into how small but consistent changes in the ionic microenvironment of cells can significantly alter the balance between two signaling pathways, which may contribute to disease progression.

  16. Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors.

    PubMed

    Binet, Virginie; Duthey, Béatrice; Lecaillon, Jennifer; Vol, Claire; Quoyer, Julie; Labesse, Gilles; Pin, Jean-Philippe; Prézeau, Laurent

    2007-04-20

    G protein-coupled receptors (GPCRs) are key players in cell communication. Several classes of such receptors have been identified. Although all GPCRs possess a heptahelical domain directly activating G proteins, important structural and sequence differences within receptors from different classes suggested distinct activation mechanisms. Here we show that highly conserved charged residues likely involved in an interaction network between transmembrane domains (TM) 3 and 6 at the cytoplasmic side of class C GPCRs are critical for activation of the gamma-aminobutyric acid type B receptor. Indeed, the loss of function resulting from the mutation of the conserved lysine residue into aspartate or glutamate in the TM3 of gamma-aminobutyric acid type B(2) can be partly rescued by mutating the conserved acidic residue of TM6 into either lysine or arginine. In addition, mutation of the conserved lysine into an acidic residue leads to a nonfunctional receptor that displays a high agonist affinity. This is reminiscent of a similar ionic network that constitutes a lock stabilizing the inactive state of many class A rhodopsin-like GPCRs. These data reveal that despite their original structure, class C GPCRs share with class A receptors at least some common structural feature controlling G protein activation.

  17. The G protein-coupled receptors in the pufferfish Takifugu rubripes

    PubMed Central

    2011-01-01

    Background Guanine protein-coupled receptors (GPCRs) constitute a eukaryotic transmembrane protein family and function as “molecular switches” in the second messenger cascades and are found in all organisms between yeast and humans. They form the single, biggest drug-target family due to their versatility of action and their role in several physiological functions, being active players in detecting the presence of light, a variety of smells and tastes, amino acids, nucleotides, lipids, chemicals etc. in the environment of the cell. Comparative genomic studies on model organisms provide information on target receptors in humans and their function. The Japanese teleost Fugu has been identified as one of the smallest vertebrate genomes and a compact model to study the human genome, owing to the great similarity in its gene repertoire with that of human and other vertebrates. Thus the characterization of the GPCRs of Fugu would provide insights to the evolution of the vertebrate genome. Results We classified the GPCRs in the Fugu genome and our analysis of its 316 membrane-bound receptors, available on the public databases as well as from literature, detected 298 GPCRs that were grouped into five main families according to the GRAFS classification system (namely, Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin). We also identified 18 other GPCRs that could not be grouped under the GRAFS family and hence were classified as ‘Other 7TM’ receptors. On comparison of the GPCR information from the Fugu genome with those in the human and chicken genomes, we detected 96.83% (306/316) and 96.51% (305/316) orthology in GPCRs among the Fugu-human genomes and Fugu-chicken genomes, respectively. Conclusions This study reveals the position of pisces in vertebrate evolution from the GPCR perspective. Fugu can act as a reference model for the human genome for other protein families as well, going by the high orthology observed for GPCRs between Fugu and human. The

  18. Sex peptides and MIPs can activate the same G protein-coupled receptor.

    PubMed

    Vandersmissen, Hans Peter; Nachman, Ronald J; Vanden Broeck, Jozef

    2013-07-01

    In many animal species, copulation elicits a number of physiological and behavioral changes in the female partner. In Drosophila melanogaster, the main molecular effector of these physiological responses has been identified as sex peptide (SP). The sex peptide receptor (SPR) has been characterized and recently, its activation by Drosophila myoinhibiting peptides (MIPs)-in addition to SP-has been demonstrated. The myoinhibiting peptides are members of a conserved peptide family, also known as B-type allatostatins, which generally feature the C-terminal motif -WX6Wamide.

  19. Morphological characterization of rat Mas-related G-protein-coupled receptor C and functional analysis of agonists.

    PubMed

    Hager, U A; Hein, A; Lennerz, J K M; Zimmermann, K; Neuhuber, W L; Reeh, P W

    2008-01-02

    A recently described family of "orphan" receptors, called Mas-related G-protein-coupled receptors (Mrg), is preferentially expressed in small nociceptive neurons of the rodent and human dorsal root ganglia (DRG). Mrg are activated by high affinity peptide fragments derived from the proenkephalin A gene, e.g. BAM22 (bovine adrenal medullary). To study the histological distribution and functional properties of these receptors, we combined confocal immunohistochemistry in rat DRG and dermis whole mounts, using new antibodies against the rat Mas-related G-protein-coupled receptor C (MrgC), with single-fiber recordings and neurochemical experiments using isolated hind-paw skin and sciatic nerve. In lumbar DRG we found cytoplasmic MrgC labeling mainly in small- and medium-sized neurons; coexpression with isolectin B4 (46%) and transient receptor potential vanilloid receptor 1 channel protein (TRPV1) (52%) occurred frequently, whereas calcitonin gene-related peptide (CGRP) was rarely colocalized with MrgC in DRG (11%) and dermal nerve fibers (6%). One of the MrgC agonists, BAM22, more than doubled the heat-induced cutaneous CGRP release from rat and mouse skin. The effect of BAM22, also known to activate opioid receptors, was further enhanced by combination with naloxone that had no effect on its own. This sensitizing effect proved to be independent of secondary prostaglandin formation, mast cell degranulation, protein kinase C (PKC) activation and independent of TRPV1. Nonetheless, the capsaicin-induced CGRP release was also sensitized. Receptive fields of 26 mechano-heat sensitive C-fibers were treated with MrgC agonists. Only one unit was strongly and repeatedly excited and showed a profound sensitization to heat upon BAM22+naloxone. Two other established MrgC agonists (gamma2-melanocyte stimulating hormone and BAM8-22) were ineffective. Thus, BAM22 sensitizes the capsaicin- and heat-induced CGRP release in an apparently MrgC-unrelated way. The sensitization to heat

  20. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors.

    PubMed

    Seifert, Roland; Wenzel-Seifert, Katharina

    2002-11-01

    The aim of this review is to provide a systematic overview on constitutively active G-protein-coupled receptors (GPCRs), a rapidly evolving area in signal transduction research. We will discuss mechanisms, pharmacological tools and methodological approaches to analyze constitutive activity. The two-state model defines constitutive activity as the ability of a GPCR to undergo agonist-independent isomerization from an inactive (R) state to an active (R*) state. While the two-state model explains basic concepts of constitutive GPCR activity and inverse agonism, there is increasing evidence for multiple active GPCR conformations with distinct biological activities. As a result of constitutive GPCR activity, basal G-protein activity increases. Until now, constitutive activity has been observed for more than 60 wild-type GPCRs from the families 1-3 and from different species including humans and commonly used laboratory animal species. Additionally, several naturally occurring and disease-causing GPCR mutants with increased constitutive activity relative to wild-type GPCRs have been identified. Alternative splicing, RNA editing, polymorphisms within a given species, species variants and coupling to specific G-proteins all modulate the constitutive activity of GPCRs, providing multiple regulatory switches to fine-tune basal cellular activities. The most important pharmacological tools to analyze constitutive activity are inverse agonists and Na(+) that stabilize the R state, and pertussis toxin that uncouples GPCRs from G(i)/G(o)-proteins. Constitutive activity is observed at low and high GPCR expression levels, in native systems and in recombinant systems, and has been reported for GPCRs coupled to G(s)-, G(i)- and G(q)-proteins. Constitutive activity of neurotransmitter GPCRs may provide a tonic support for basal neuronal activity. For the majority of GPCRs known to be constitutively active, inverse agonists have already been identified. Inverse agonists may be useful

  1. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, Classification, and Pharmacology of G Protein-Coupled Melatonin Receptors

    PubMed Central

    Delagrange, Philippe; Krause, Diana N.; Sugden, David; Cardinali, Daniel P.; Olcese, James

    2010-01-01

    The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT1 and MT2, that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer. PMID:20605968

  2. Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-Tethered Photochromic Ligand

    PubMed Central

    2015-01-01

    The covalent attachment of synthetic photoswitches is a general approach to impart light sensitivity onto native receptors. It mimics the logic of natural photoreceptors and significantly expands the reach of optogenetics. Here we describe a novel photoswitch design—the photoswitchable orthogonal remotely tethered ligand (PORTL)—that combines the genetically encoded SNAP-tag with photochromic ligands connected to a benzylguanine via a long flexible linker. We use the method to convert the G protein-coupled receptor mGluR2, a metabotropic glutamate receptor, into a photoreceptor (SNAG-mGluR2) that provides efficient optical control over the neuronal functions of mGluR2: presynaptic inhibition and control of excitability. The PORTL approach enables multiplexed optical control of different native receptors using distinct bioconjugation methods. It should be broadly applicable since SNAP-tags have proven to be reliable, many SNAP-tagged receptors are already available, and photochromic ligands on a long leash are readily designed and synthesized. PMID:27162996

  3. Automation and validation of the Transflour technology: a universal screening assay for G protein-coupled receptors

    NASA Astrophysics Data System (ADS)

    Hudson, Christine C.; Oakley, Robert H.; Cruickshank, Rachael D.; Rhem, Shay M.; Loomis, Carson R.

    2002-06-01

    G protein-coupled receptors (GPCRs) are historically the richest targets for drug discovery, accounting for nearly 60 percent of prescription drugs. The ligands and functions of only 200 out of possibly 1000 GPCRs are known. Screening methods that directly and accurately measure GPCR activation and inhibition are required to identify ligands for orphan receptors and cultivate superior drugs for known GPCRs. Norak Biosciences utilizes the redistribution of a fluorescently-labeled protein, arrestin, as a novel screen for monitoring GPCR activation. In contrast to the present methods of analyzing GPCR function, the power of the Transfluor technology is in its simplicity, large signal to noise ratio, and applicability to all GPCRs. Here, we demonstrate that the Transfluor technology can be automated and quantitated on high throughput image analysis systems. Cells transfected with an arrestin-green fluorescent protein conjugate and the neurokinin-1 GPCR were seeded on 96-well plates. Activation of the NK-1 receptor with Substance P induced translocation of arrestin-GFP from the cytosol to the receptor. Image quantitation of the arrestin-GFP translocation was used to generate dose dependent curves. These results reveal that the Transfluor technology combined with an image analysis system forms a universal platform capable of measuring ligand-receptor interactions for all GPCRs.

  4. Absorption of PCB126 by upper airways impairs G protein-coupled receptor-mediated immune response

    NASA Astrophysics Data System (ADS)

    Shimada, Ana Lúcia B.; Cruz, Wesley S.; Loiola, Rodrigo A.; Drewes, Carine C.; Dörr, Fabiane; Figueiredo, Natália G.; Pinto, Ernani; Farsky, Sandra H. P.

    2015-10-01

    PCB126 is a dioxin-like polychlorinated biphenyl (PCB) environmental pollutant with a significant impact on human health, as it bioaccumulates and causes severe toxicity. PCB126-induced immune toxicity has been described, although the mechanisms have not been fully elucidated. In this study, an in vivo protocol of PCB126 intoxication into male Wistar rats by intranasal route was used, which has not yet been described. The intoxication was characterised by PCB126 accumulation in the lungs and liver, and enhanced aryl hydrocarbon receptor expression in the liver, lungs, kidneys, and adipose tissues. Moreover, an innate immune deficiency was characterised by impairment of adhesion receptors on blood leukocytes and by reduced blood neutrophil locomotion and oxidative burst activation elicited by ex vivo G protein-coupled receptor (GPCR) activation. Specificity of PCB126 actions on the GPCR pathway was shown by normal burst oxidative activation evoked by Toll-like receptor 4 and protein kinase C direct activation. Moreover, in vivo PCB180 intoxication did not alter adhesion receptors on blood leukocytes either blood neutrophil locomotion, and only partially reduced the GPCR-induced burst oxidative activation on neutrophils. Therefore, a novel mechanism of in vivo PCB126 toxicity is described which impairs a pivotal inflammatory pathway to the host defence against infections.

  5. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma

    PubMed Central

    Moore, Amanda R; Ceraudo, Emilie; Sher, Jessica J; Guan, Youxin; Shoushtari, Alexander N; Chang, Matthew T; Zhang, Jenny Q; Walczak, Edward G; Kazmi, Manija A; Taylor, Barry S; Huber, Thomas; Chi, Ping; Sakmar, Thomas P; Chen, Yu

    2016-01-01

    Uveal melanomas are molecularly distinct from cutaneous melanomas and lack mutations in BRAF, NRAS, KIT, and NF1. Instead, they are characterized by activating mutations in GNAQ and GNA11, two highly homologous α subunits of Gαq/11 heterotrimeric G proteins, and in PLCB4 (phospholipase C β4), the downstream effector of Gαq signaling 1–3. We analyzed genomics data from 136 uveal melanoma samples and found a recurrent mutation in CYSLTR2 (cysteinyl leukotriene receptor 2) encoding a p.Leu129Gln substitution in 4 of 9 samples that lacked mutations in GNAQ, GNA11, and PLCB4 but in 0 of 127 samples that harbored mutations in these genes. The Leu129Gln CysLT2R mutant protein constitutively activates endogenous Gαq and is unresponsive to stimulation by leukotriene. Expression of Leu129Gln CysLT2R in melanocytes enforces expression of a melanocyte-lineage signature, drives phorbol ester–independent growth in vitro, and promotes tumorigenesis in vivo. Our findings implicate CYSLTR2 as a uveal melanoma oncogene and highlight the critical role of Gαq signaling in uveal melanoma pathogenesis. PMID:27089179

  6. Cloning and Characterization of Spliced Variants of the Porcine G Protein Coupled Receptor 120

    PubMed Central

    Song, Tongxing; Peng, Jie; Ren, Jiao; Wei, Hong-kui; Peng, Jian

    2015-01-01

    The polyunsaturated fatty acids (PUFAs) receptor GPR120 exerts a significant impact on systemic nutrient homeostasis in human and rodents. However, the porcine GPR120 (pGPR120) has not been well characterized. In the current study, we found that pGPR120 had 3 spliced variants. Transcript 1 encoded 362-amino acids (aa) wild type pGPR120-WT, which shared 88% homology with human short form GPR120. Transcript 1 was the mainly expressed transcript of pGPR120. It was expressed predominantly in ileum, jejunum, duodenum, spleen, and adipose. Transcript 3 (coding 320-aa isoform) was detected in spleen, while the transcript 2 (coding 310-aa isoform) was only slightly expressed in spleen. A selective agonist for human GPR120 (TUG-891) and PUFAs activated SRE-luc and NFAT-luc reporter in HEK293T cells transfected with construct for pGPR120-WT but not pGPR120-V2. However, 320-aa isoform was not a dominant negative isoform. The extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation levels in cells transfected with construct for pGPR120-WT were well activated by PUFAs, especially n-3 PUFA. These results showed that although pGPR120 had 3 transcripts, transcript 1 which encoded pGPR120-WT was the mainly expressed transcript. TUG-891 and PUFAs, especially n-3 PUFA, well activated pGPR120-WT. The current study contributed to dissecting the molecular regulation mechanisms of n-3 PUFA in pigs. PMID:26075265

  7. Confined Diffusion Without Fences of a G-Protein-Coupled Receptor as Revealed by Single Particle Tracking

    PubMed Central

    Daumas, Frédéric; Destainville, Nicolas; Millot, Claire; Lopez, André; Dean, David; Salomé, Laurence

    2003-01-01

    Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the μ-opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients. PMID:12524289

  8. Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data.

    PubMed

    Stott, Lisa A; Hall, David A; Holliday, Nicholas D

    2016-02-01

    Stephenson's empirical definition of an agonist, as a ligand with binding affinity and intrinsic efficacy (the ability to activate the receptor once bound), underpins classical receptor pharmacology. Quantifying intrinsic efficacy using functional concentration response relationships has always presented an experimental challenge. The requirement for realistic determination of efficacy is emphasised by recent developments in our understanding of G protein coupled receptor (GPCR) agonists, with recognition that some ligands stabilise different active conformations of the receptor, leading to pathway-selective, or biased agonism. Biased ligands have potential as therapeutics with improved selectivity and clinical efficacy, but there are also pitfalls to the identification of pathway selective effects. Here we explore the basics of concentration response curve analysis, beginning with the need to distinguish ligand bias from other influences of the functional system under study. We consider the different approaches that have been used to quantify and compare biased ligands, many of which are based on the Black and Leff operational model of agonism. Some of the practical issues that accompany these analyses are highlighted, with opportunities to improve estimates in future, particularly in the separation of true agonist intrinsic efficacy from the contributions of system dependent coupling efficiency. Such methods are by their nature practical approaches, and all rely on Stephenson's separation of affinity and efficacy parameters, which are interdependent at the mechanistic level. Nevertheless, operational analysis methods can be justified by mechanistic models of GPCR activation, and if used wisely are key elements to biased ligand identification.

  9. The GPS motif is a molecular switch for bimodal activities of adhesion class G protein-coupled receptors.

    PubMed

    Prömel, Simone; Frickenhaus, Marie; Hughes, Samantha; Mestek, Lamia; Staunton, David; Woollard, Alison; Vakonakis, Ioannis; Schöneberg, Torsten; Schnabel, Ralf; Russ, Andreas P; Langenhan, Tobias

    2012-08-30

    Adhesion class G protein-coupled receptors (aGPCR) form the second largest group of seven-transmembrane-spanning (7TM) receptors whose molecular layout and function differ from canonical 7TM receptors. Despite their essential roles in immunity, tumorigenesis, and development, the mechanisms of aGPCR activation and signal transduction have remained obscure to date. Here, we use a transgenic assay to define the protein domains required in vivo for the activity of the prototypical aGPCR LAT-1/Latrophilin in Caenorhabditis elegans. We show that the GPCR proteolytic site (GPS) motif, the molecular hallmark feature of the entire aGPCR class, is essential for LAT-1 signaling serving in two different activity modes of the receptor. Surprisingly, neither mode requires cleavage but presence of the GPS, which relays interactions with at least two different partners. Our work thus uncovers the versatile nature of aGPCR activity in molecular detail and places the GPS motif in a central position for diverse protein-protein interactions.

  10. A calixpyrrole derivative acts as an antagonist to GPER, a G-protein coupled receptor: mechanisms and models

    PubMed Central

    Lappano, Rosamaria; Rosano, Camillo; Pisano, Assunta; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; De Marco, Paola; Dolce, Vincenza; Ponassi, Marco; Felli, Lamberto; Cafeo, Grazia; Kohnke, Franz Heinrich; Abonante, Sergio; Maggiolini, Marcello

    2015-01-01

    ABSTRACT Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells. PMID:26183213

  11. Reduced G-protein coupling to the GABAB receptor in the nucleus accumbens and the medial prefrontal cortex of the rat after chronic treatment with nicotine.

    PubMed

    Amantea, Diana; Tessari, Michela; Bowery, Norman G

    2004-01-30

    The effect of repeated administration of nicotine (0.4 mg/kg, daily, s.c., for 14 days) on GABAB receptor density, affinity and G-protein coupling was investigated in the mesocorticolimbic system of the rat brain. Baclofen-stimulated [35S]GTPgammaS binding autoradiography revealed that the level of G-protein coupling to GABAB receptors was significantly reduced in the medial prefrontal cortex and the nucleus accumbens of nicotine-treated rats as compared to vehicle-injected controls. By contrast, GABAB receptor density and affinity, as revealed by [3H]GABA saturation binding autoradiography, were not altered by the nicotine exposure in any of the regions examined. Reduced G-protein coupling to the GABAB receptor may result in disinhibition of mesocorticolimbic dopaminergic neurones, which would contribute to the development of sensitised dopaminergic responses to repeated administration of nicotine.

  12. Identification and Characterization of Novel Variations in Platelet G-Protein Coupled Receptor (GPCR) Genes in Patients Historically Diagnosed with Type 1 von Willebrand Disease.

    PubMed

    Stockley, Jacqueline; Nisar, Shaista P; Leo, Vincenzo C; Sabi, Essa; Cunningham, Margaret R; Eikenboom, Jeroen C; Lethagen, Stefan; Schneppenheim, Reinhard; Goodeve, Anne C; Watson, Steve P; Mundell, Stuart J; Daly, Martina E

    2015-01-01

    The clinical expression of type 1 von Willebrand disease may be modified by co-inheritance of other mild bleeding diatheses. We previously showed that mutations in the platelet P2Y12 ADP receptor gene (P2RY12) could contribute to the bleeding phenotype in patients with type 1 von Willebrand disease. Here we investigated whether variations in platelet G protein-coupled receptor genes other than P2RY12 also contributed to the bleeding phenotype. Platelet G protein-coupled receptor genes P2RY1, F2R, F2RL3, TBXA2R and PTGIR were sequenced in 146 index cases with type 1 von Willebrand disease and the potential effects of identified single nucleotide variations were assessed using in silico methods and heterologous expression analysis. Seven heterozygous single nucleotide variations were identified in 8 index cases. Two single nucleotide variations were detected in F2R; a novel c.-67G>C transversion which reduced F2R transcriptional activity and a rare c.1063C>T transition predicting a p.L355F substitution which did not interfere with PAR1 expression or signalling. Two synonymous single nucleotide variations were identified in F2RL3 (c.402C>G, p.A134 =; c.1029 G>C p.V343 =), both of which introduced less commonly used codons and were predicted to be deleterious, though neither of them affected PAR4 receptor expression. A third single nucleotide variation in F2RL3 (c.65 C>A; p.T22N) was co-inherited with a synonymous single nucleotide variation in TBXA2R (c.6680 C>T, p.S218 =). Expression and signalling of the p.T22N PAR4 variant was similar to wild-type, while the TBXA2R variation introduced a cryptic splice site that was predicted to cause premature termination of protein translation. The enrichment of single nucleotide variations in G protein-coupled receptor genes among type 1 von Willebrand disease patients supports the view of type 1 von Willebrand disease as a polygenic disorder.

  13. Selectivity of commonly used inhibitors of clathrin-mediated and caveolae-dependent endocytosis of G protein-coupled receptors.

    PubMed

    Guo, Shuohan; Zhang, Xiaohan; Zheng, Mei; Zhang, Xiaowei; Min, Chengchun; Wang, Zengtao; Cheon, Seung Hoon; Oak, Min-Ho; Nah, Seung-Yeol; Kim, Kyeong-Man

    2015-10-01

    Among the multiple G protein-coupled receptor (GPCR) endocytic pathways, clathrin-mediated endocytosis (CME) and caveolar endocytosis are more extensively characterized than other endocytic pathways. A number of endocytic inhibitors have been used to block CME; however, systemic studies to determine the selectivity of these inhibitors are needed. Clathrin heavy chain or caveolin1-knockdown cells have been employed to determine the specificity of various chemical and molecular biological tools for CME and caveolar endocytosis. Sucrose, concanavalin A, and dominant negative mutants of dynamin blocked other endocytic pathways, in addition to CME. In particular, concanavalin A nonspecifically interfered with the signaling of several GPCRs tested in the study. Decreased pH, monodansylcadaverine, and dominant negative mutants of epsin were more specific for CME than other treatments were. A recently introduced CME inhibitor, Pitstop2™, showed only marginal selectivity for CME and interfered with receptor expression on the cell surface. Blockade of receptor endocytosis by epsin mutants and knockdown of the clathrin heavy chain enhanced the β2AR-mediated ERK activation. Overall, our studies show that previous experimental results should be interpreted with discretion if they included the use of endocytic inhibitors that were previously thought to be CME-selective. In addition, our study shows that endocytosis of β2 adrenoceptor through clathrin-mediated pathway has negative effects on ERK activation.

  14. Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with beta-catenin mutations.

    PubMed

    Yamamoto, Yoshiya; Sakamoto, Michiie; Fujii, Gen; Tsuiji, Hitomi; Kenetaka, Kengo; Asaka, Masahiro; Hirohashi, Setsuo

    2003-03-01

    To identify the genes responsible for carcinogenesis and progression of hepatocellular carcinoma (HCC), we screened differentially expressed genes in several human HCC cell lines. Among these genes, Gpr49 was up-regulated in PLC/PRF/5 and HepG2. Gpr49 is a member of the glycoprotein hormone receptor subfamily, which includes the thyroid-stimulating hormone receptor (TSHR). However, Gpr49 remains to be an orphan G-protein-coupled receptor. By real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis, overexpression (>3-fold increase compared with the corresponding noncancerous liver tissue) of Gpr49 mRNA was observed in 18 of 38 (47%) HCCs compared with corresponding noncancerous livers. Clinicopathologically, overexpression of Gpr49 was frequently observed in HCC with mutation in beta-catenin exon 3 (14 of 16 cases, 87.5%). Moreover, introduction of mutant beta-catenin into mouse hepatocytes in culture caused up-regulation of the Gpr49 mouse homologue. Therefore, Gpr49 is likely to be a target gene activated by Wnt-signaling in HCC. In conclusion, although much is still unknown, Gpr49 may be critically involved in the development of HCCs with beta-catenin mutations and has the potential to be a new therapeutic target in the treatment of HCC.

  15. Identification of a Chemoattractant G-Protein-Coupled Receptor for Folic Acid that Controls Both Chemotaxis and Phagocytosis.

    PubMed

    Pan, Miao; Xu, Xuehua; Chen, Yong; Jin, Tian

    2016-02-22

    Eukaryotic phagocytes search and destroy invading microorganisms via chemotaxis and phagocytosis. The social amoeba Dictyostelium discoideum is a professional phagocyte that chases bacteria through chemotaxis and engulfs them as food via phagocytosis. G-protein-coupled receptors (GPCRs) are known for detecting chemoattractants and directing cell migration, but their roles in phagocytosis are not clear. Here, we developed a quantitative phosphoproteomic technique to discover signaling components. Using this approach, we discovered the long sought after folic acid receptor, fAR1, in D. discoideum. We showed that the seven-transmembrane receptor fAR1 is required for folic acid-mediated signaling events. Significantly, we discovered that fAR1 is essential for both chemotaxis and phagocytosis of bacteria, thereby representing a chemoattractant GPCR that mediates not only chasing but also ingesting bacteria. We revealed that a phagocyte is able to internalize particles via a chemoattractant-mediated engulfment process. We propose that mammalian phagocytes may also use this mechanism to engulf and ingest bacterial pathogens.

  16. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis.

    PubMed

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-06-29

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors.

  17. The α-arrestin ARRDC3 mediates ALIX ubiquitination and G protein-coupled receptor lysosomal sorting.

    PubMed

    Dores, Michael R; Lin, Huilan; J Grimsey, Neil; Mendez, Francisco; Trejo, JoAnn

    2015-12-15

    The sorting of G protein-coupled receptors (GPCRs) to lysosomes is critical for proper signaling and cellular responses. We previously showed that the adaptor protein ALIX regulates lysosomal degradation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, independent of ubiquitin-binding ESCRTs and receptor ubiquitination. However, the mechanisms that regulate ALIX function during PAR1 lysosomal sorting are not known. Here we show that the mammalian α-arrestin arrestin domain-containing protein-3 (ARRDC3) regulates ALIX function in GPCR sorting via ubiquitination. ARRDC3 colocalizes with ALIX and is required for PAR1 sorting at late endosomes and degradation. Depletion of ARRDC3 by small interfering RNA disrupts ALIX interaction with activated PAR1 and the CHMP4B ESCRT-III subunit, suggesting that ARRDC3 regulates ALIX activity. We found that ARRDC3 is required for ALIX ubiquitination induced by activation of PAR1. A screen of nine mammalian NEDD4-family E3 ubiquitin ligases revealed a critical role for WWP2. WWP2 interacts with ARRDC3 and not ALIX. Depletion of WWP2 inhibited ALIX ubiquitination and blocked ALIX interaction with activated PAR1 and CHMP4B. These findings demonstrate a new role for the α-arrestin ARRDC3 and the E3 ubiquitin ligase WWP2 in regulation of ALIX ubiquitination and lysosomal sorting of GPCRs.

  18. Functional assay for T4 lysozyme-engineered G Protein-Coupled Receptors with an ion channel reporter

    PubMed Central

    Niescierowicz, Katarzyna; Caro, Lydia; Cherezov, Vadim; Vivaudou, Michel; Moreau, Christophe J.

    2013-01-01

    Summary: Structural studies of G protein-coupled receptors (GPCRs) extensively use the insertion of globular soluble protein domains in order to facilitate their crystallization. However, when inserted in the third intracellular loop (i3 loop), the soluble protein domain disrupts their coupling to G proteins and impedes the GPCRs functional characterization by standard G protein-based assays. Therefore, activity tests of crystallization-optimized GPCRs are essentially limited to their ligand binding properties using radioligand binding assays. Functional characterization of additional thermostabilizing mutations requires the insertion of similar mutations in the wild-type receptor to allow G protein-activation tests. We demonstrate that Ion Channel-Coupled Receptor technology is a complementary approach for a comprehensive functional characterization of crystallization-optimized GPCRs and potentially of any engineered GPCR. Ligand-induced conformational changes of the GPCRs are translated into electrical signal and detected by simple current recordings, even though binding of G proteins is sterically blocked by the added soluble protein domain. PMID:24268646

  19. Throughput expression of multiple G-protein coupled receptors for HIV infection in choriocarcinoma cells, trophoblasts, and breast milk cells.

    PubMed

    Usami, Masashi; Trinh, Quang Duy; Yagyu, Fumihiro; Hayakawa, Yuuko; Inaba, Noriyuki; Okitsu, Shoko; Phan, Tung Gia; Ushijima, Hiroshi

    2009-01-01

    The chemokine receptors, which belong to G-protein coupled receptors (GPCRs) and become co-receptors when HIV enters the cell, have been mentioned in recent research. Numerous studies have reported that the cellular mechanism of HIV crossing the placental barrier is still not totally understood. This study was conducted to investigate whether the mRNAs of nineteen typs of GPCRs and CD4 were expressed in choriocarcinoma cell lines, trophoblasts, and breast milk cells by using RT-PCR. It was found that the expression of GPCRs varied in different cell lines. Of note is that CD4 could not be expressed in either choriocarcinoma cells or trophoblasts. It was noteworthy that mRNAs of multiple GPCRs were identified in choriocarcinoma cells, trophoblasts, and breast milk cells for the first time. The expression amounts of these mRNAs were further measured by quantitative RT-PCR. Interestingly, mRNAs of CCR9/CCR10 were strongly expressed in trophoblasts. This study provided further insights to the cellular mechanism of mother-to-child transmission of HIV.

  20. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET

    PubMed Central

    Namkung, Yoon; Le Gouill, Christian; Lukashova, Viktoria; Kobayashi, Hiroyuki; Hogue, Mireille; Khoury, Etienne; Song, Mideum; Bouvier, Michel; Laporte, Stéphane A.

    2016-01-01

    Endocytosis and intracellular trafficking of receptors are pivotal to maintain physiological functions and drug action; however, robust quantitative approaches are lacking to study such processes in live cells. Here we present new bioluminescence resonance energy transfer (BRET) sensors to quantitatively monitor G protein-coupled receptors (GPCRs) and β-arrestin trafficking. These sensors are based on bystander BRET and use the naturally interacting chromophores luciferase (RLuc) and green fluorescent protein (rGFP) from Renilla. The versatility and robustness of this approach are exemplified by anchoring rGFP at the plasma membrane or in endosomes to generate high dynamic spectrometric BRET signals on ligand-promoted recruitment or sequestration of RLuc-tagged proteins to, or from, specific cell compartments, as well as sensitive subcellular BRET imaging for protein translocation visualization. These sensors are scalable to high-throughput formats and allow quantitative pharmacological studies of GPCR trafficking in real time, in live cells, revealing ligand-dependent biased trafficking of receptor/β-arrestin complexes. PMID:27397672

  1. Superfamily of genes encoding G protein-coupled receptors in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Wu, S-F; Yu, H-Y; Jiang, T-T; Gao, C-F; Shen, J-L

    2015-08-01

    G protein-coupled receptors (GPCRs) are the largest and most versatile superfamily of cell membrane proteins, which mediate various physiological processes including reproduction, development and behaviour. The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), is one of the most notorious insect pests, preferentially feeding on cruciferous plants. P. xylostella is not only one of the world's most widespread lepidopteran insects, but has also developed resistance to nearly all classes of insecticides. Although the mechanisms of insecticide resistance have been studied extensively in many insect species, few investigations have been carried out on GPCRs in P. xylostella. In the present study, we identified 95 putative GPCRs in the P. xylostella genome. The identified GPCRs were compared with their homologues in Bombyx mori and Drosophila melanogaster. Our results suggest that GPCRs in different insect species may have evolved by a birth-and-death process. One of the differences among compared insects is the duplication of short neuropeptide F receptor and adipokinetic hormone receptors in P. xylostella and B. mori. Another divergence is the decrease in quantity and diversity of the stress-tolerance gene, Mth, in P. xylostella. The evolution by the birth-and-death process is probably involved in adaptation to the feeding behaviour, reproduction and stress responses of P. xylostella. Some of the genes identified in the present study could be potential targets for the development of novel pesticides.

  2. Paradoxical gain-of-function mutant of the G-protein-coupled receptor PROKR2 promotes early puberty.

    PubMed

    Fukami, Maki; Suzuki, Erina; Izumi, Yoko; Torii, Tomohiro; Narumi, Satoshi; Igarashi, Maki; Miyado, Mami; Katsumi, Momori; Fujisawa, Yasuko; Nakabayashi, Kazuhiko; Hata, Kenichiro; Umezawa, Akihiro; Matsubara, Yoichi; Yamauchi, Junji; Ogata, Tsutomu

    2017-03-24

    The human genome encodes ~750 G-protein-coupled receptors (GPCRs), including prokineticin receptor 2 (PROKR2) involved in the regulation of sexual maturation. Previously reported pathogenic gain-of-function mutations of GPCR genes invariably encoded aberrant receptors with excessive signal transduction activity. Although in vitro assays demonstrated that an artificially created inactive mutant of PROKR2 exerted paradoxical gain-of-function effects when co-transfected with wild-type proteins, such a phenomenon has not been observed in vivo. Here, we report a heterozygous frameshift mutation of PROKR2 identified in a 3.5-year-old girl with central precocious puberty. The mutant mRNA escaped nonsense-mediated decay and generated a GPCR lacking two transmembrane domains and the carboxyl-terminal tail. The mutant protein had no in vitro signal transduction activity; however, cells co-expressing the mutant and wild-type PROKR2 exhibited markedly exaggerated ligand-induced Ca(2+) responses. The results indicate that certain inactive PROKR2 mutants can cause early puberty by enhancing the functional property of coexisting wild-type proteins. Considering the structural similarity among GPCRs, this paradoxical gain-of-function mechanism may underlie various human disorders.

  3. Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rajan; Heim, Andrew J.; Li, Zhijun

    2015-05-01

    Evidenced by the three-rounds of G-protein coupled receptors (GPCR) Dock competitions, improving homology modeling methods of helical transmembrane proteins including the GPCRs, based on templates of low sequence identity, remains an eminent challenge. Current approaches addressing this challenge adopt the philosophy of "modeling first, refinement next". In the present work, we developed an alternative modeling approach through the novel application of available multiple templates. First, conserved inter-residue interactions are derived from each additional template through conservation analysis of each template-target pairwise alignment. Then, these interactions are converted into distance restraints and incorporated in the homology modeling process. This approach was applied to modeling of the human β2 adrenergic receptor using the bovin rhodopsin and the human protease-activated receptor 1 as templates and improved model quality was demonstrated compared to the homology model generated by standard single-template and multiple-template methods. This method of "refined restraints first, modeling next", provides a fast and complementary way to the current modeling approaches. It allows rational identification and implementation of additional conserved distance restraints extracted from multiple templates and/or experimental data, and has the potential to be applicable to modeling of all helical transmembrane proteins.

  4. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis

    PubMed Central

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-01-01

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors. PMID:27353701

  5. Constitutive Activation of G Protein-Coupled Receptors and Diseases: Insights into Mechanisms of Activation and Therapeutics

    PubMed Central

    Tao, Ya-Xiong

    2008-01-01

    The existence of constitutive activity for G protein-coupled receptors (GPCRs) was first described in 1980s. In 1991, the first naturally occurring constitutively active mutations in GPCRs that cause diseases were reported in rhodopsin. Since then, numerous constitutively active mutations that cause human diseases were reported in several additional receptors. More recently, loss of constitutive activity was postulated to also cause diseases. Animal models expressing some of these mutants confirmed the roles of these mutations in the pathogenesis of the diseases. Detailed functional studies of these naturally occurring mutations, combined with homology modeling using rhodopsin crystal structure as the template, lead to important insights into the mechanism of activation in the absence of crystal structure of GPCRs in active state. Search for inverse agonists on these receptors will be critical for correcting the diseases cause by activating mutations in GPCRs. Theoretically, these inverse agonists are better therapeutics than neutral antagonists in treating genetic diseases caused by constitutively activating mutations in GPCRs. PMID:18768149

  6. Use of label-free optical biosensors to detect modulation of potassium channels by G-protein coupled receptors.

    PubMed

    Fleming, Matthew R; Shamah, Steven M; Kaczmarek, Leonard K

    2014-02-10

    Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ions to flow through the plasma membrane(1). To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex(2,3). Traditional assays examining the interaction between channels and regulatory proteins require exogenous labels that can potentially alter the protein's behavior and decrease the physiological relevance of the target, while providing little information on the time course of interactions in living cells. Optical biosensors, such as the X-BODY Biosciences BIND Scanner system, use a novel label-free technology, resonance wavelength grating (RWG) optical biosensors, to detect changes in resonant reflected light near the biosensor. This assay allows the detection of the relative change in mass within the bottom portion of living cells adherent to the biosensor surface resulting from ligand induced changes in cell adhesion and spreading, toxicity, proliferation, and changes in protein-protein interactions near the plasma membrane. RWG optical biosensors have been used to detect changes in mass near the plasma membrane of cells following activation of G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and other cell surface receptors. Ligand-induced changes in ion channel-protein interactions can also be studied using this assay. In this paper, we will describe the experimental procedure used to detect the modulation of Slack-B sodium-activated potassium (KNa) channels by GPCRs.

  7. Differential helical orientations among related G protein-coupled receptors provide a novel mechanism for selectivity. Studies with salvinorin A and the kappa-opioid receptor.

    PubMed

    Vortherms, Timothy A; Mosier, Philip D; Westkaemper, Richard B; Roth, Bryan L

    2007-02-02

    Salvinorin A, the active component of the hallucinogenic sage Salvia divinorum, is an apparently selective and highly potent kappa-opioid receptor (KOR) agonist. Salvinorin A is unique among ligands for peptidergic G protein-coupled receptors in being nonnitrogenous and lipid-like in character. To examine the molecular basis for the subtype-selective binding of salvinorin A, we utilized an integrated approach using chimeric opioid receptors, site-directed mutagenesis, the substituted cysteine accessibility method, and molecular modeling and dynamics studies. We discovered that helix 2 is required for salvinorin A binding to KOR and that two residues (Val-108(2.53) and Val-118(2.63)) confer subtype selectivity. Intriguingly, molecular modeling studies predicted that these loci exhibit an indirect effect on salvinorin A binding, presumably through rotation of helix 2. Significantly, and in agreement with our in silico predictions, substituted cysteine accessibility method analysis of helix 2 comparing KOR and the delta-opioid receptor, which has negligible affinity for salvinorin A, revealed that residues known to be important for salvinorin A binding exhibit a differential pattern of water accessibility. These findings imply that differences in the helical orientation of helix 2 are critical for the selectivity of salvinorin A binding to KOR and provide a structurally novel basis for ligand selectivity.

  8. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor

    PubMed Central

    Miao, Yinglong; Goldfeld, Dahlia Anne; Moo, Ee Von; Sexton, Patrick M.; Christopoulos, Arthur; McCammon, J. Andrew; Valant, Celine

    2016-01-01

    Design of ligands that provide receptor selectivity has emerged as a new paradigm for drug discovery of G protein-coupled receptors, and may, for certain families of receptors, only be achieved via identification of chemically diverse allosteric modulators. Here, the extracellular vestibule of the M2 muscarinic acetylcholine receptor (mAChR) is targeted for structure-based design of allosteric modulators. Accelerated molecular dynamics (aMD) simulations were performed to construct structural ensembles that account for the receptor flexibility. Compounds obtained from the National Cancer Institute (NCI) were docked to the receptor ensembles. Retrospective docking of known ligands showed that combining aMD simulations with Glide induced fit docking (IFD) provided much-improved enrichment factors, compared with the Glide virtual screening workflow. Glide IFD was thus applied in receptor ensemble docking, and 38 top-ranked NCI compounds were selected for experimental testing. In [3H]N-methylscopolamine radioligand dissociation assays, approximately half of the 38 lead compounds altered the radioligand dissociation rate, a hallmark of allosteric behavior. In further competition binding experiments, we identified 12 compounds with affinity of ≤30 μM. With final functional experiments on six selected compounds, we confirmed four of them as new negative allosteric modulators (NAMs) and one as positive allosteric modulator of agonist-mediated response at the M2 mAChR. Two of the NAMs showed subtype selectivity without significant effect at the M1 and M3 mAChRs. This study demonstrates an unprecedented successful structure-based approach to identify chemically diverse and selective GPCR allosteric modulators with outstanding potential for further structure-activity relationship studies. PMID:27601651

  9. Presynaptic G protein-coupled receptors dynamically modify vesicle fusion, synaptic cleft glutamate concentrations and motor behavior

    PubMed Central

    Gerachshenko, Tatyana; Schwartz, Eric; Bleckert, Adam; Photowala, Huzefa; Seymour, Andrew; Alford, Simon

    2009-01-01

    Understanding how neuromodulators regulate behavior requires investigating their effects on functional neural systems, but also their underlying cellular mechanisms. Utilizing extensively characterized lamprey motor circuits, and the unique access to reticulospinal presynaptic terminals in the intact spinal cord that initiate these behaviours, we have investigated effects of presynaptic G protein-coupled receptors on locomotion from the systems level, to the molecular control of vesicle fusion. 5-HT inhibits neurotransmitter release via a Gβγ interaction with the SNARE complex that promotes kiss-and-run vesicle fusion. In the lamprey spinal cord we demonstrate that while presynaptic 5-HT receptors inhibit evoked neurotransmitter release from reticulospinal command neurons, their activation does not abolish locomotion, but rather modulates locomotor rhythms. Liberation of presynaptic Gβγ causes substantial inhibition of AMPA receptor-mediated synaptic responses, but leaves NMDA receptor-mediated components of neurotransmission largely intact. Because Gβγ binding to the SNARE complex is displaced by Ca2+-synaptotagmin binding, 5-HT-mediated inhibition displays Ca2+ sensitivity. We show that as Ca2+ accumulates presynaptically during physiological bouts of activity, 5-HT/Gβγ-mediated presynaptic inhibition is relieved leading to a frequency-dependent increase in synaptic concentrations of glutamate. This frequency dependent phenomenon mirrors a shift in the vesicle fusion mode and a recovery of AMPA receptor-mediated EPSCs from inhibition without a modification of NMDA receptor EPSCs. We conclude that activation of presynaptic 5-HT GPCRs state-dependently alters vesicle fusion properties to shift the weight of NMDA vs AMPA receptor-mediated responses at excitatory synapses. We have therefore identified a novel mechanism in which modification of vesicle fusion modes may profoundly alter locomotor behaviour. PMID:19692597

  10. Orphan G protein-coupled receptor GPRC5A modulates integrin β1-mediated epithelial cell adhesion.

    PubMed

    Bulanova, Daria R; Akimov, Yevhen A; Rokka, Anne; Laajala, Teemu D; Aittokallio, Tero; Kouvonen, Petri; Pellinen, Teijo; Kuznetsov, Sergey G

    2016-10-07

    G-Protein Coupled Receptor (GPCR), Class C, Group 5, Member A (GPRC5A) has been implicated in several malignancies. The underlying mechanisms, however, remain poorly understood. Using a panel of human cell lines, we demonstrate that CRISPR/Cas9-mediated knockout and RNAi-mediated depletion of GPRC5A impairs cell adhesion to integrin substrates: collagens I and IV, fibronectin, as well as to extracellular matrix proteins derived from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma (Matrigel). Consistent with the phenotype, knock-out of GPRC5A correlated with a reduced integrin β1 (ITGB1) protein expression, impaired phosphorylation of the focal adhesion kinase (FAK), and lower activity of small GTPases RhoA and Rac1. Furthermore, we provide the first evidence for a direct interaction between GPRC5A and a receptor tyrosine kinase EphA2, an upstream regulator of FAK, although its contribution to the observed adhesion phenotype is unclear. Our findings reveal an unprecedented role for GPRC5A in regulation of the ITGB1-mediated cell adhesion and it's downstream signaling, thus indicating a potential novel role for GPRC5A in human epithelial cancers.

  11. Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126.

    PubMed

    Paavola, Kevin J; Sidik, Harwin; Zuchero, J Bradley; Eckart, Michael; Talbot, William S

    2014-08-12

    GPR126 is an orphan heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) that is essential for the development of diverse organs. We found that type IV collagen, a major constituent of the basement membrane, binds to Gpr126 and activates its signaling function. Type IV collagen stimulated the production of cyclic adenosine monophosphate in rodent Schwann cells, which require Gpr126 activity to differentiate, and in human embryonic kidney (HEK) 293 cells expressing exogenous Gpr126. Type IV collagen specifically bound to the extracellular amino-terminal region of Gpr126 containing the CUB (complement, Uegf, Bmp1) and pentraxin domains. Gpr126 derivatives lacking the entire amino-terminal region were constitutively active, suggesting that this region inhibits signaling and that ligand binding relieves this inhibition to stimulate receptor activity. A new zebrafish mutation that truncates Gpr126 after the CUB and pentraxin domains disrupted development of peripheral nerves and the inner ear. Thus, our findings identify type IV collagen as an activating ligand for GPR126, define its mechanism of activation, and highlight a previously unrecognized signaling function of type IV collagen in basement membranes.

  12. G protein-coupled receptor kinase 6/β-arrestin 2 system in a rat model of dopamine supersensitivity psychosis.

    PubMed

    Oda, Yasunori; Tadokoro, Shigenori; Takase, Masayuki; Kanahara, Nobuhisa; Watanabe, Hiroyuki; Shirayama, Yukihiko; Hashimoto, Kenji; Iyo, Masaomi

    2015-12-01

    In humans, long-term antipsychotic treatment is known to induce movement disorders and a psychosis, called dopamine supersensitivity psychosis (DSP). The mechanism by which chronic administration of antipsychotic(s) causes DSP may be the treatment-induced up-regulation of dopamine D2 receptors (DRD2). G protein-coupled receptor kinase 6 (GRK6) and beta-arrestin 2 (ARRB2) play important roles in the trafficking of DRD2 by phosphorylation and internalization. We investigated the effects of chronic continuous treatment with mini-pump-administered haloperidol (HAL) on the sensitivity of Wistar rats to dopamine, as measured by the locomotor response to methamphetamine (MAP) and the density of striatal DRD2. Chronic continuous treatment with HAL resulted in significantly higher locomotor response to MAP and significantly higher striatal DRD2 density compared with those in rats administered vehicle (VEH). Enzyme-linked immunosorbent assays revealed that striatal ARRB2 in DSP model rats tended to decrease in comparison with that in the VEH group. In addition, the ratio of GRK6/ARRB2 in DSP model rats was significantly higher than that in controls. Our results suggest that alterations of the GRK6 and ARRB2 system could induce both DRD2 up-regulation and impairment of the dopamine signaling pathway, resulting potentially in the development of DSP.

  13. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation

    PubMed Central

    Carpenter, Byron; Tate, Christopher G.

    2016-01-01

    G protein-coupled receptors (GPCRs) modulate cytoplasmic signalling in response to extracellular stimuli, and are important therapeutic targets in a wide range of diseases. Structure determination of GPCRs in all activation states is important to elucidate the precise mechanism of signal transduction and to facilitate optimal drug design. However, due to their inherent instability, crystallisation of GPCRs in complex with cytoplasmic signalling proteins, such as heterotrimeric G proteins and β-arrestins, has proved challenging. Here, we describe the design of a minimal G protein, mini-Gs, which is composed solely of the GTPase domain from the adenylate cyclase stimulating G protein Gs. Mini-Gs is a small, soluble protein, which efficiently couples GPCRs in the absence of Gβγ subunits. We engineered mini-Gs, using rational design mutagenesis, to form a stable complex with detergent-solubilised β1-adrenergic receptor (β1AR). Mini G proteins induce similar pharmacological and structural changes in GPCRs as heterotrimeric G proteins, but eliminate many of the problems associated with crystallisation of these complexes, specifically their large size, conformational dynamics and instability in detergent. They are therefore novel tools, which will facilitate the biochemical and structural characterisation of GPCRs in their active conformation. PMID:27672048

  14. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment.

    PubMed

    Okito, Asuka; Nakahama, Ken-Ichi; Akiyama, Masako; Ono, Takashi; Morita, Ikuo

    2015-03-06

    Osteoclast activity is enhanced in acidic environments following systemic or local inflammation. However, the regulatory mechanism of receptor activator of NF-κB ligand (RANKL) expression in osteoblasts under acidic conditions is not fully understood. In the present paper, we detected the mRNA expression of the G-protein-coupled receptor (GPR) proton sensors GPR4 and GPR65 (T-cell death-associated gene 8, TDAG8), in osteoblasts. RANKL expression and the cyclic AMP (cAMP) level in osteoblasts were up-regulated under acidic culture conditions. Acidosis-induced up-regulation of RANKL was abolished by the protein kinase A inhibitor H89. To clarify the role of GPR4 in RANKL expression, GPR4 gain and loss of function experiments were performed. Gene knockdown and forced expression of GPR4 caused reduction and induction of RANKL expression, respectively. These results suggested that, at least in part, RANKL expression by osteoblasts in an acidic environment was mediated by cAMP/PKA signaling resulting from GPR4 activation. A comprehensive microarray analysis of gene expression of osteoblasts revealed that, under acidic conditions, the phenotype of osteoblasts was that of an osteoclast supporting cell rather than that of a mineralizing cell. These findings will contribute to a molecular understanding of bone disruption in an acidic environment.

  15. Potential use of G protein-coupled receptor-blocking monoclonal antibodies as therapeutic agents for cancers.

    PubMed

    Herr, Deron R

    2012-01-01

    The therapeutic use of monoclonal antibodies (mAbs) is the fastest growing area of pharmaceutical development and has enjoyed significant clinical success since approval of the first mAb drug in1984. However, despite significant effort, there are still no approved therapeutic mAbs directed against the largest and most attractive family of drug targets: G protein-coupled receptors (GPCRs). GPCRs regulate essentially all cellular processes, including those that are fundamental to cancer pathology, such as proliferation, survival/drug resistance, migration, differentiation, tissue invasion, and angiogenesis. Many different GPCR isoforms are enhanced or dysregulated in multiple tumor types, and several GPCRs have known oncogenic activity. With approximately 350 distinct GPCRs in the genome, these receptors provide a rich landscape for the design of effective, targeted therapies for cancer, a uniquely heterogeneous disease family. While the generation of selective, efficacious mAbs has been problematic for these structurally complex integral membrane proteins, progress in the development of immunotherapeutics has been made by several independent groups. This chapter provides an overview of the roles of GPCRs in cancer and describes the current state of the art of GPCR-targeted mAb drugs.

  16. G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells.

    PubMed

    Choi, Hye Yeon; Saha, Subbroto Kumar; Kim, Kyeongseok; Kim, Sangsu; Yang, Gwang-Mo; Kim, BongWoo; Kim, Jin-hoi; Cho, Ssang-Goo

    2015-02-01

    G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of selfrenewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.

  17. G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells

    PubMed Central

    Choi, Hye Yeon; Saha, Subbroto Kumar; Kim, Kyeongseok; Kim, Sangsu; Yang, Gwang-Mo; Kim, BongWoo; Kim, Jin-hoi; Cho, Ssang-Goo

    2015-01-01

    G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of selfrenewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs. [BMB Reports 2015; 48(2): 68-80] PMID:25413305

  18. Polymer-based cell-free expression of ligand-binding family B G-protein coupled receptors without detergents

    PubMed Central

    Klammt, Christian; Perrin, Marilyn H; Maslennikov, Innokentiy; Renault, Ludovic; Krupa, Martin; Kwiatkowski, Witek; Stahlberg, Henning; Vale, Wylie; Choe, Senyon

    2011-01-01

    G-protein coupled receptors (GPCRs) constitute the largest family of intercellular signaling molecules and are estimated to be the target of more than 50% of all modern drugs. As with most integral membrane proteins (IMPs), a major bottleneck in the structural and biochemical analysis of GPCRs is their expression by conventional expression systems. Cell-free (CF) expression provides a relatively new and powerful tool for obtaining preparative amounts of IMPs. However, in the case of GPCRs, insufficient homogeneity of the targeted protein is a problem as the in vitro expression is mainly done with detergents, in which aggregation and solubilization difficulties, as well as problems with proper folding of hydrophilic domains, are common. Here, we report that using CF expression with the help of a fructose-based polymer, NV10 polymer (NVoy), we obtained preparative amounts of homogeneous GPCRs from the three GPCR families. We demonstrate that two GPCR B family members, corticotrophin-releasing factor receptors 1 and 2β are not only solubilized in NVoy but also have functional ligand-binding characteristics with different agonists and antagonists in a detergent-free environment as well. Our findings open new possibilities for functional and structural studies of GPCRs and IMPs in general. PMID:21465615

  19. Glucose-dependent cell size is regulated by a G protein-coupled receptor system in yeast Saccharomyces cerevisiae.

    PubMed

    Tamaki, Hisanori; Yun, Cheol-Won; Mizutani, Tomohiro; Tsuzuki, Takahiro; Takagi, Yukinobu; Shinozaki, Makiko; Kodama, Yukiko; Shirahige, Katsuhiko; Kumagai, Hidehiko

    2005-03-01

    In the yeast, Saccharomyces cerevisiae, cell size is affected by the kind of carbon source in the medium. Here, we present evidence that the Gpr1 receptor and Gpa2 Galpha subunit are required for both maintenance and modulation of cell size in response to glucose. In the presence of glucose, mutants lacking GPR1 or GPA2 gene showed smaller cells than the wild-type strain. Physiological studies revealed that protein synthesis rate was reduced in the mutant strains indicating that reduced growth rate, while the level of mRNAs for CLN1, 2 and 3 was not affected in all strains. Gene chip analysis also revealed a down-regulation in the expression of genes related to biosynthesis of not only protein but also other cellular component in the mutant strains. We also show that GPR1 and GPA2 are required for a rapid increase in cell size in response to glucose. Wild-type cells grown in ethanol quickly increased in size by addition of glucose, while little change was observed in the mutant strains, in which glucose-dependent cell cycle arrest caused by CLN1 repression was somewhat alleviated. Our study indicates that the yeast G-protein coupled receptor system consisting of Gpr1 and Gpa2 regulates cell size by affecting both growth rate and cell division.

  20. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation.

    PubMed

    Carpenter, Byron; Tate, Christopher G

    2016-12-01

    G protein-coupled receptors (GPCRs) modulate cytoplasmic signalling in response to extracellular stimuli, and are important therapeutic targets in a wide range of diseases. Structure determination of GPCRs in all activation states is important to elucidate the precise mechanism of signal transduction and to facilitate optimal drug design. However, due to their inherent instability, crystallisation of GPCRs in complex with cytoplasmic signalling proteins, such as heterotrimeric G proteins and β-arrestins, has proved challenging. Here, we describe the design of a minimal G protein, mini-Gs, which is composed solely of the GTPase domain from the adenylate cyclase stimulating G protein Gs Mini-Gs is a small, soluble protein, which efficiently couples GPCRs in the absence of Gβγ subunits. We engineered mini-Gs, using rational design mutagenesis, to form a stable complex with detergent-solubilised β1-adrenergic receptor (β1AR). Mini G proteins induce similar pharmacological and structural changes in GPCRs as heterotrimeric G proteins, but eliminate many of the problems associated with crystallisation of these complexes, specifically their large size, conformational dynamics and instability in detergent. They are therefore novel tools, which will facilitate the biochemical and structural characterisation of GPCRs in their active conformation.

  1. Deriving structural and functional insights from a ligand-based hierarchical classification of G protein-coupled receptors.

    PubMed

    Attwood, T K; Croning, M D R; Gaulton, A

    2002-01-01

    G protein-coupled receptors (GPCRs) constitute the largest known family of cell-surface receptors. With hundreds of members populating the rhodopsin-like GPCR superfamily and many more awaiting discovery in the human genome, they are of interest to the pharmaceutical industry because of the opportunities they afford for yielding potentially lucrative drug targets. Typical sequence analysis strategies for identifying novel GPCRs tend to involve similarity searches using standard primary database search tools. This will reveal the most similar sequence, generally without offering any insight into its family or superfamily relationships. Conversely, searches of most 'pattern' or family databases are likely to identify the superfamily, but not the closest matching subtype. Here we describe a diagnostic resource that allows identification of GPCRs in a hierarchical fashion, based principally upon their ligand preference. This resource forms part of the PRINTS database, which now houses approximately 250 GPCR-specific fingerprints (http://www.bioinf.man.ac.uk/dbbrowser/gpcrPRINTS/). This collection of fingerprints is able to provide more sensitive diagnostic opportunities than have been realized by related approaches and is currently the only diagnostic tool for assigning GPCR subtypes. Mapping such fingerprints on to three-dimensional GPCR models offers powerful insights into the structural and functional determinants of subtype specificity.

  2. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells.

    PubMed

    Barker, Nick; Clevers, Hans

    2010-05-01

    Molecular markers are used to characterize and track adult stem cells. Colon cancer research has led to the identification of 2 related receptors, leucine-rich repeat-containing, G-protein-coupled receptors (Lgr)5 and Lgr6, that are expressed by small populations of cells in a variety of adult organs. Genetic mouse models have allowed the visualization, isolation, and genetic marking of Lgr5(+ve) and Lgr6(+ve) cells and provided evidence that they are stem cells. The Lgr5(+ve) cells were found to occupy locations not commonly associated with stem cells in the stomach, small intestine, colon, and hair follicles. A multipotent population of skin stem cells express Lgr6. Single Lgr5(+ve) stem cells from the small intestine and the stomach can be cultured into long-lived organoids. Further studies of these markers might reveal adult stem cell populations in additional tissues. Identification of the ligands for Lgr5 and 6 will help elucidate stem cell functions and modes of intracellular signaling.

  3. Leucine-rich repeat-containing G-protein-coupled receptor 5 is associated with invasion, metastasis, and could be a potential therapeutic target in human gastric cancer

    PubMed Central

    Xi, H Q; Cai, A Z; Wu, X S; Cui, J X; Shen, W S; Bian, S B; Wang, N; Li, J Y; Lu, C R; Song, Z; Wei, B; Chen, L

    2014-01-01

    Background: Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), which is identified as a novel intestinal stem cell marker, is overexpressed in various tumours. In this study, we explore Lgr5 expression in gastric carcinoma and analyse its role in invasion, metastasis, and prognosis in carcinoma. Methods: A combination of immunohistochemistry, western blotting, and quantitative reverse transcription–polymerase chain reaction were used to detect mRNA and protein expression levels of Lgr5 and matrix metalloproteinase 2 (MMP2). Small interfering RNA against Lgr5 was designed, synthesised, and transfected into AGS cells. The effects of Lgr5 siRNA on cell invasion were detected by transwell invasion chamber assay and wound healing assay. Results: Leucine-rich repeat-containing G-protein-coupled receptor 5 expression was significantly higher in gastric carcinomas than in normal mucosa. Leucine-rich repeat-containing G-protein-coupled receptor 5 expression positively correlated with the depth of invasion, lymph node metastasis, distance of metastasis, and MMP2 expression levels. Multivariate analysis showed that Lgr5 had an independent effect on survival, and that it positively correlated with MMP2. Leucine-rich repeat-containing G-protein-coupled receptor 5 siRNAs inhibited Lgr5 mRNA and protein expression. Transwell assays indicated that these siRNAs resulted in significantly fewer cells migrating through the polycarbonate membrane, and wound healing assay also indicated that siRNAs decreased the migration of cells. Inhibition of Lgr5 resulted in a significant decrease in MMP2 and β-catenin levels compared with those in controls. Conclusions: Leucine-rich repeat-containing G-protein-coupled receptor 5 was correlated with invasion and metastasis. Leucine-rich repeat-containing G-protein-coupled receptor 5 inhibition could serve as a novel therapeutic approach. PMID:24594994

  4. Targeting a G-protein-coupled receptor overexpressed in endocrine tumors by magnetic nanoparticles to induce cell death.

    PubMed

    Sanchez, Claire; El Hajj Diab, Darine; Connord, Vincent; Clerc, Pascal; Meunier, Etienne; Pipy, Bernard; Payré, Bruno; Tan, Reasmey P; Gougeon, Michel; Carrey, Julian; Gigoux, Véronique; Fourmy, Daniel

    2014-02-25

    Nanotherapy using targeted magnetic nanoparticles grafted with peptidic ligands of receptors overexpressed in cancers is a promising therapeutic strategy. However, nanoconjugation of peptides can dramatically affect their properties with respect to receptor recognition, mechanism of internalization, intracellular trafficking, and fate. Furthermore, investigations are needed to better understand the mechanism whereby application of an alternating magnetic field to cells containing targeted nanoparticles induces cell death. Here, we designed a nanoplatform (termed MG-IONP-DY647) composed of an iron oxide nanocrystal decorated with a ligand of a G-protein coupled receptor, the cholecystokinin-2 receptor (CCK2R) that is overexpressed in several malignant cancers. MG-IONP-DY647 did not stimulate inflammasome of Raw 264.7 macrophages. They recognized cells expressing CCK2R with a high specificity, subsequently internalized via a mechanism involving recruitment of β-arrestins, clathrin-coated pits, and dynamin and were directed to lysosomes. Binding and internalization of MG-IONP-DY647 were dependent on the density of the ligand at the nanoparticle surface and were slowed down relative to free ligand. Trafficking of CCK2R internalized with the nanoparticles was slightly modified relative to CCK2R internalized in response to free ligand. Application of an alternating magnetic field to cells containing MG-IONP-DY647 induced apoptosis and cell death through a lysosomal death pathway, demonstrating that cell death is triggered even though nanoparticles of low thermal power are internalized in minute amounts by the cells. Together with pioneer findings using iron oxide nanoparticles targeting tumoral cells expressing epidermal growth factor receptor, these data represent a solid basis for future studies aiming at establishing the proof-of-concept of nanotherapy of cancers using ligand-grafted magnetic nanoparticles specifically internalized via cell surface receptors.

  5. Development and application of hybrid structure based method for efficient screening of ligands binding to G-protein coupled receptors

    NASA Astrophysics Data System (ADS)

    Kortagere, Sandhya; Welsh, William J.

    2006-12-01

    G-protein coupled receptors (GPCRs) comprise a large superfamily of proteins that are targets for nearly 50% of drugs in clinical use today. In the past, the use of structure-based drug design strategies to develop better drug candidates has been severely hampered due to the absence of the receptor's three-dimensional structure. However, with recent advances in molecular modeling techniques and better computing power, atomic level details of these receptors can be derived from computationally derived molecular models. Using information from these models coupled with experimental evidence, it has become feasible to build receptor pharmacophores. In this study, we demonstrate the use of the Hybrid Structure Based (HSB) method that can be used effectively to screen and identify prospective ligands that bind to GPCRs. Essentially; this multi-step method combines ligand-based methods for building enriched libraries of small molecules and structure-based methods for screening molecules against the GPCR target. The HSB method was validated to identify retinal and its analogues from a random dataset of ˜300,000 molecules. The results from this study showed that the 9 top-ranking molecules are indeed analogues of retinal. The method was also tested to identify analogues of dopamine binding to the dopamine D2 receptor. Six of the ten top-ranking molecules are known analogues of dopamine including a prodrug, while the other thirty-four molecules are currently being tested for their activity against all dopamine receptors. The results from both these test cases have proved that the HSB method provides a realistic solution to bridge the gap between the ever-increasing demand for new drugs to treat psychiatric disorders and the lack of efficient screening methods for GPCRs.

  6. G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent

    PubMed Central

    Jamshad, Mohammed; Charlton, Jack; Lin, Yu-Pin; Routledge, Sarah J.; Bawa, Zharain; Knowles, Timothy J.; Overduin, Michael; Dekker, Niek; Dafforn, Tim R.; Bill, Roslyn M.; Poyner, David R.; Wheatley, Mark

    2015-01-01

    G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents required for their solubilization. In the present study, we report the first solubilization and purification of a functional GPCR [human adenosine A2A receptor (A2AR)], in the total absence of detergent at any stage, by exploiting spontaneous encapsulation by styrene maleic acid (SMA) co-polymer direct from the membrane into a nanoscale SMA lipid particle (SMALP). Furthermore, the A2AR–SMALP, generated from yeast (Pichia pastoris) or mammalian cells, exhibited increased thermostability (∼5°C) compared with detergent [DDM (n-dodecyl-β-D-maltopyranoside)]-solubilized A2AR controls. The A2AR–SMALP was also stable when stored for prolonged periods at 4°C and was resistant to multiple freeze-thaw cycles, in marked contrast with the detergent-solubilized receptor. These properties establish the potential for using GPCR–SMALP in receptor-based drug discovery assays. Moreover, in contrast with nanodiscs stabilized by scaffold proteins, the non-proteinaceous nature of the SMA polymer allowed unobscured biophysical characterization of the embedded receptor. Consequently, CD spectroscopy was used to relate changes in secondary structure to loss of ligand binding ([3H]ZM241385) capability. SMALP-solubilization of GPCRs, retaining the annular lipid environment, will enable a wide range of therapeutic targets to be prepared in native-like state to aid drug discovery and understanding of GPCR molecular mechanisms. PMID:25720391

  7. p90 ribosomal S6 kinase 2 exerts a tonic brake on G protein-coupled receptor signaling.

    PubMed

    Sheffler, Douglas J; Kroeze, Wesley K; Garcia, Bonnie G; Deutch, Ariel Y; Hufeisen, Sandra J; Leahy, Patrick; Brüning, Jens C; Roth, Bryan L

    2006-03-21

    G protein-coupled receptors (GPCRs) are essential for normal central CNS function and represent the proximal site(s) of action for most neurotransmitters and many therapeutic drugs, including typical and atypical antipsychotic drugs. Similarly, protein kinases mediate many of the downstream actions for both ionotropic and metabotropic receptors. We report here that genetic deletion of p90 ribosomal S6 kinase 2 (RSK2) potentiates GPCR signaling. Initial studies of 5-hydroxytryptamine (5-HT)(2A) receptor signaling in fibroblasts obtained from RSK2 wild-type (+/+) and knockout (-/-) mice showed that 5-HT(2A) receptor-mediated phosphoinositide hydrolysis and both basal and 5-HT-stimulated extracellular signal-regulated kinase 1/2 phosphorylation are augmented in RSK2 knockout fibroblasts. Endogenous signaling by other GPCRs, including P2Y-purinergic, PAR-1-thrombinergic, beta1-adrenergic, and bradykinin-B receptors, was also potentiated in RSK2-deficient fibroblasts. Importantly, reintroduction of RSK2 into RSK2-/- fibroblasts normalized signaling, thus demonstrating that RSK2 apparently modulates GPCR signaling by exerting a "tonic brake" on GPCR signal transduction. Our results imply the existence of a novel pathway regulating GPCR signaling, modulated by downstream members of the extracellular signal-related kinase/mitogen-activated protein kinase cascade. The loss of RSK2 activity in humans leads to Coffin-Lowry syndrome, which is manifested by mental retardation, growth deficits, skeletal deformations, and psychosis. Because RSK2-inactivating mutations in humans lead to Coffin-Lowry syndrome, our results imply that alterations in GPCR signaling may account for some of its clinical manifestations.

  8. Quinoline derivatives: candidate drugs for a Class B G-protein coupled receptor, the Calcitonin gene-related peptide receptor, a cause of migraines

    PubMed Central

    Iftikhar, Hira; Ahmad, Iqra; Gan, Siew Hua; Shaik, Munvar Miya; Iftikhar, Naveed; Nawaz, Muhammad Sulaman; Greig, Nigel H.; Kamal, Mohammad A

    2016-01-01

    Class B G-protein coupled receptors are involved in a wide variety of diseases and are a major focus in drug design. Migraines are a common problem, and one of their major causative agents is class B G-protein coupled receptor, Calcitonin gene-related peptide (CGRP) receptor, a target for competitive drug discovery. The calcitonin receptor-like receptor generates complexes with a receptor activity-modifying protein, which determines the type of receptor protein formed. The CGRP receptor comprises a complex formed from the calcitonin receptor-like receptor and receptor activity-modifying protein 1. In this study, an in silico docking approach was used to target calcitonin receptor-like receptor in the bound form with receptor activity-modifying protein 1 (CGRP receptor), as well as in the unbound form. In both cases, the resulting inhibitors bound to the same cavity of the calcitonin receptor-like receptor. The twelve evaluated compounds were competitive inhibitors and showed efficient inhibitory activity against the CGRP receptor and Calcitonin receptor-like receptor. The two studied quinoline derivatives demonstrated potentially ideal inhibitory activity in terms of binding interactions and low range nano-molar inhibition constants. These compounds could prove helpful in designing drugs for the effective treatment of migraines. We propose that quinoline derivatives possess inhibitory activity by disturbing CGRP binding in the trigeminovascular system and may be considered for further preclinical appraisal for the treatment of migraines. PMID:25230231

  9. Alteration in contractile G-protein coupled receptor expression by moist snus and nicotine in rat cerebral arteries

    SciTech Connect

    Sandhu, Hardip; Xu Cangbao; Edvinsson, Lars

    2011-04-15

    The cardiovascular risk for users of use of Swedish snus/American snuff (moist tobacco) has been debated for a long time. The present study was designed to examine the effects of water- or lipid-soluble (DMSO-soluble) snus and nicotine, the most important substance in tobacco, on the expression of vasocontractile G-protein coupled receptors (GPCR), such as endothelin ET{sub B}, serotonin 5-HT{sub 1B}, and thromboxane A{sub 2} TP receptors, in rat cerebral arteries. Studies show that these vasocontractile GPCR show alterations by lipid-soluble cigarette smoke particles via activation of mitogen-activated protein kinases (MAPK). However, the effects of moist tobacco on the expression of GPCR are less studied. Rat middle cerebral arteries were isolated and organ cultured in serum-free medium for 24 h in the presence of water-soluble snus (WSS), DMSO-soluble snus (DSS), or nicotine. The dose of snus and nicotine was kept at plasma level of snus users (25 ng nicotine/ml). A high dose (250 ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET{sub B} receptor agonist sarafotoxin 6c, 5-HT{sub 1B} receptor agonist 5-carboxamidotryptamine, and TP receptor agonist U46619 were investigated by a sensitive myograph. The expression of ET{sub B}, 5-HT{sub 1B}, and TP receptors was studied at mRNA and protein levels using quantitative real-time PCR and immunohistochemistry, respectively. Organ culture with WSS or DSS (25 ng nicotine/ml) lowered the 5-HT{sub 1B} receptor-mediated contraction. Furthermore, DSS shifted the TP receptor-mediated contraction curve left-wards with a stronger contraction. High dose of nicotine (250 ng nicotine/ml) increased the ET{sub B} receptor-mediated contraction. The combined 5-HT{sub 1B} and 5-HT{sub 2A} receptor-mediated contraction was increased, and both the 5-CT and TxA2 induced contractions were left-ward shifted by WSS, DSS, or

  10. Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell

    PubMed Central

    1995-01-01

    Receptor desensitization is a key process for the protection of the cell from continuous or repeated exposure to high concentrations of an agonist. Well-established mechanisms for desensitization of guanine nucleotide-binding protein (G protein)-coupled receptors include phosphorylation, sequestration/internalization, and down-regulation. In this work, we have examined some mechanisms for desensitization of the cholecystokinin (CCK) receptor which is native to the pancreatic acinar cell, and have found the predominant mechanism to be distinct from these recognized processes. Upon fluorescent agonist occupancy of the native receptor, it becomes "insulated" from the effects of acid washing and becomes immobilized on the surface of the plasma membrane in a time- and temperature-dependent manner. This localization was assessed by ultrastructural studies using a colloidal gold conjugate of CCK, and lateral mobility of the receptor was assessed using fluorescence recovery after photobleaching. Of note, recent application of the same morphologic techniques to a CCK receptor-bearing Chinese hamster ovary cell line demonstrated prominent internalization via the clathrin-dependent endocytic pathway, as well as entry into caveolae (Roettger, B.F., R.U. Rentsch, D. Pinon, E. Holicky, E. Hadac, J.M. Larkin, and L.J. Miller, 1995, J. Cell Biol. 128: 1029-1041). These organelles are not observed to represent prominent compartments for the same receptor to traverse in the acinar cell, although fluorescent insulin is clearly internalized in these cells via receptor-mediated endocytosis. In this work, the rate of lateral mobility of the CCK receptor is observed to be similar in both cell types (1-3 x 10(-10) cm2/s), while the fate of the agonist-occupied receptor is quite distinct in each cell. This supports the unique nature of desensitization processes which occur in a cell-specific manner. A plasmalemmal site of insulation of this important receptor on the pancreatic acinar cell

  11. A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes, Culex quinquefasciatus

    PubMed Central

    Li, Ting; Cao, Chuanwang; Yang, Ting; Zhang, Lee; He, Lin; Xi, Zhiyong; Bian, Guowu; Liu, Nannan

    2015-01-01

    Rhodopsin-like G protein-coupled receptors (GPCRs) are known to be involved in the GPCR signal transduction system and regulate many essential physiological processes in organisms. This study, for the first time, revealed that knockdown of the rhodopsin-like GPCR gene in resistant mosquitoes resulted in a reduction of mosquitoes’ resistance to permethrin, simultaneously reducing the expression of two cAMP-dependent protein kinase A genes (PKAs) and four resistance related cytochrome P450 genes. The function of rhodopsin-like GPCR was further confirmed using transgenic lines of Drosophila melanogaster, in which the tolerance to permethrin and the expression of Drosophila resistance P450 genes were both increased. The roles of GPCR signaling pathway second messenger cyclic adenosine monophosphate (cAMP) and downstream effectors PKAs in resistance were investigated using cAMP production inhibitor Bupivacaine HCl and the RNAi technique. Inhibition of cAMP production led to significant decreases in both the expression of four resistance P450 genes and two PKA genes and mosquito resistance to permethrin. Knockdown of the PKA genes had shown the similar effects on permethrin resistance and P450 gene expression. Taken together, our studies revealed, for the first time, the role of the GPCR/cAMP/PKA-mediated regulatory pathway governing P450 gene expression and P450-mediated resistance in Culex mosquitoes. PMID:26656663

  12. Mechanism for adhesion G protein-coupled receptor GPR56-mediated RhoA activation induced by collagen III stimulation.

    PubMed

    Luo, Rong; Jeong, Sung-Jin; Yang, Annie; Wen, Miaoyun; Saslowsky, David E; Lencer, Wayne I; Araç, Demet; Piao, Xianhua

    2014-01-01

    GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) family. Despite the importance of GPR56 in brain development, where mutations cause a devastating human brain malformation called bilateral frontoparietal polymicrogyria (BFPP), the signaling mechanism(s) remain largely unknown. Like many other adhesion GPCRs, GPR56 is cleaved via a GPCR autoproteolysis-inducing (GAIN) domain into N- and C-terminal fragments (GPR56N and GPR56C); however, the biological significance of this cleavage is elusive. Taking advantage of the recent identification of a GPR56 ligand and the presence of BFPP-associated mutations, we investigated the molecular mechanism of GPR56 signaling. We demonstrate that ligand binding releases GPR56N from the membrane-bound GPR56C and triggers the association of GPR56C with lipid rafts and RhoA activation. Furthermore, one of the BFPP-associated mutations, L640R, does not affect collagen III-induced lipid raft association of GPR56. Instead, it specifically abolishes collagen III-mediated RhoA activation. Together, these findings reveal a novel signaling mechanism that may apply to other members of the adhesion GPCR family.

  13. Mining of assembled expressed sequence tag (EST) data for protein families: application to the G protein-coupled receptor superfamily.

    PubMed

    Conklin, D; Yee, D P; Millar, R; Engelbrecht, J; Vissing, H

    2000-02-01

    The availability of large expressed sequence tag (EST) databases has led to a revolution in the way new genes are identified. Mining of these databases using known protein sequences as queries is a powerful technique for discovering orthologous and paralogous genes. The scientist is often confronted, however, by an enormous amount of search output owing to the inherent redundancy of EST data. In addition, high search sensitivity often cannot be achieved using only a single member of a protein superfamily as a query. In this paper a technique for addressing both of these issues is described. Assembled EST databases are queried with every member of a protein superfamily, the results are integrated and false positives are pruned from the set. The result is a set of assemblies enriched in members of the protein superfamily under consideration. The technique is applied to the G protein-coupled receptor (GPCR) superfamily in the construction of a GPCR Resource. A novel full-length human GPCR identified from the GPCR Resource is presented, illustrating the utility of the method.

  14. Reduced food intake and body weight in mice deficient for the G protein-coupled receptor GPR82.

    PubMed

    Engel, Kathrin M Y; Schröck, Kristin; Teupser, Daniel; Holdt, Lesca Miriam; Tönjes, Anke; Kern, Matthias; Dietrich, Kerstin; Kovacs, Peter; Krügel, Ute; Scheidt, Holger A; Schiller, Jürgen; Huster, Daniel; Brockmann, Gudrun A; Augustin, Martin; Thiery, Joachim; Blüher, Matthias; Stumvoll, Michael; Schöneberg, Torsten; Schulz, Angela

    2011-01-01

    G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments.

  15. The ubiquitin ligase deltex-3l regulates endosomal sorting of the G protein-coupled receptor CXCR4.

    PubMed

    Holleman, Justine; Marchese, Adriano

    2014-06-15

    G protein-coupled receptor (GPCR) sorting into the degradative pathway is important for limiting the duration and magnitude of signaling. Agonist activation of the GPCR CXCR4 induces its rapid ubiquitination and sorting to lysosomes via the endosomal sorting complex required for transport (ESCRT) pathway. We recently reported that ESCRT-0 ubiquitination is linked to the efficiency with which CXCR4 is sorted for lysosomal degradation; however mechanistic insight is lacking. Here we define a novel role for the really interesting new gene-domain E3 ubiquitin ligase deltex-3-like (DTX3L) in regulating CXCR4 sorting from endosomes to lysosomes. We show that DTX3L localizes to early endosomes upon CXCR4 activation and interacts directly with and inhibits the activity of the E3 ubiquitin ligase atrophin-1 interacting protein 4. This serves to limit the extent to which ESCRT-0 is ubiquitinated and is able to sort CXCR4 for lysosomal degradation. Therefore we define a novel role for DTX3L in GPCR endosomal sorting and reveal an unprecedented link between two distinct E3 ubiquitin ligases to control the activity of the ESCRT machinery.

  16. A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes, Culex quinquefasciatus.

    PubMed

    Li, Ting; Cao, Chuanwang; Yang, Ting; Zhang, Lee; He, Lin; Xi, Zhiyong; Bian, Guowu; Liu, Nannan

    2015-12-10

    Rhodopsin-like G protein-coupled receptors (GPCRs) are known to be involved in the GPCR signal transduction system and regulate many essential physiological processes in organisms. This study, for the first time, revealed that knockdown of the rhodopsin-like GPCR gene in resistant mosquitoes resulted in a reduction of mosquitoes' resistance to permethrin, simultaneously reducing the expression of two cAMP-dependent protein kinase A genes (PKAs) and four resistance related cytochrome P450 genes. The function of rhodopsin-like GPCR was further confirmed using transgenic lines of Drosophila melanogaster, in which the tolerance to permethrin and the expression of Drosophila resistance P450 genes were both increased. The roles of GPCR signaling pathway second messenger cyclic adenosine monophosphate (cAMP) and downstream effectors PKAs in resistance were investigated using cAMP production inhibitor Bupivacaine HCl and the RNAi technique. Inhibition of cAMP production led to significant decreases in both the expression of four resistance P450 genes and two PKA genes and mosquito resistance to permethrin. Knockdown of the PKA genes had shown the similar effects on permethrin resistance and P450 gene expression. Taken together, our studies revealed, for the first time, the role of the GPCR/cAMP/PKA-mediated regulatory pathway governing P450 gene expression and P450-mediated resistance in Culex mosquitoes.

  17. Quasi-elastic neutron scattering reveals ligand-induced protein dynamics of a G-protein-coupled receptor

    DOE PAGES

    Shrestha, Utsab R.; Perera, Suchithranga M. D. C.; Bhowmik, Debsindhu; ...

    2016-09-15

    Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond–nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differencesmore » can be attributed to the influence of the covalently bound retinal ligand. Moreover, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.« less

  18. A Perspective on Studying G-Protein-Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms.

    PubMed

    van Unen, Jakobus; Woolard, Jeanette; Rinken, Ago; Hoffmann, Carsten; Hill, Stephen J; Goedhart, Joachim; Bruchas, Michael R; Bouvier, Michel; Adjobo-Hermans, Merel J W

    2015-09-01

    The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)-based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology.

  19. Discovery and Cardioprotective Effects of the First Non-Peptide Agonists of the G Protein-Coupled Prokineticin Receptor-1

    PubMed Central

    Urayama, Kyoji; Nishi, Toshishide; Kurose, Hitoshi; Tafi, Andrea; Ribeiro, Nigel; Désaubry, Laurent; Nebigil, Canan G.

    2015-01-01

    Prokineticins are angiogenic hormones that activate two G protein-coupled receptors: PKR1 and PKR2. PKR1 has emerged as a critical mediator of cardiovascular homeostasis and cardioprotection. Identification of non-peptide PKR1 agonists that contribute to myocardial repair and collateral vessel growth hold promises for treatment of heart diseases. Through a combination of in silico studies, medicinal chemistry, and pharmacological profiling approaches, we designed, synthesized, and characterized the first PKR1 agonists, demonstrating their cardioprotective activity against myocardial infarction (MI) in mice. Based on high throughput docking protocol, 250,000 compounds were computationally screened for putative PKR1 agonistic activity, using a homology model, and 10 virtual hits were pharmacologically evaluated. One hit internalizes PKR1, increases calcium release and activates ERK and Akt kinases. Among the 30 derivatives of the hit compound, the most potent derivative, IS20, was confirmed for its selectivity and specificity through genetic gain- and loss-of-function of PKR1. Importantly, IS20 prevented cardiac lesion formation and improved cardiac function after MI in mice, promoting proliferation of cardiac progenitor cells and neovasculogenesis. The preclinical investigation of the first PKR1 agonists provides a novel approach to promote cardiac neovasculogenesis after MI. PMID:25831128

  20. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    SciTech Connect

    Shi, Yanan; Liu, Xiaochun; Zhu, Pei; Li, Jianzhen; Sham, Kathy W.Y.; Cheng, Shuk Han; Li, Shuisheng; Zhang, Yong; Cheng, Christopher H.K.; Lin, Haoran

    2013-05-24

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis. Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons.

  1. The Conserved G-Protein Coupled Receptor FSHR-1 Regulates Protective Host Responses to Infection and Oxidative Stress.

    PubMed

    Miller, Elizabeth V; Grandi, Leah N; Giannini, Jennifer A; Robinson, Joseph D; Powell, Jennifer R

    2015-01-01

    The innate immune system's ability to sense an infection is critical so that it can rapidly respond if pathogenic microorganisms threaten the host, but otherwise maintain a quiescent baseline state to avoid causing damage to the host or to commensal microorganisms. One important mechanism for discriminating between pathogenic and non-pathogenic bacteria is the recognition of cellular damage caused by a pathogen during the course of infection. In Caenorhabditis elegans, the conserved G-protein coupled receptor FSHR-1 is an important constituent of the innate immune response. FSHR-1 activates the expression of antimicrobial infection response genes in infected worms and delays accumulation of the ingested pathogen Pseudomonas aeruginosa. FSHR-1 is central not only to the worm's survival of infection by multiple pathogens, but also to the worm's survival of xenobiotic cadmium and oxidative stresses. Infected worms produce reactive oxygen species to fight off the pathogens; FSHR-1 is required at the site of infection for the expression of detoxifying genes that protect the host from collateral damage caused by this defense response. Finally, the FSHR-1 pathway is important for the ability of worms to discriminate pathogenic from benign bacteria and subsequently initiate an aversive learning program that promotes selective pathogen avoidance.

  2. G Protein-Coupled Receptors (GPCRs) in Alzheimer’s Disease: A Focus on BACE1 Related GPCRs

    PubMed Central

    Zhao, Juan; Deng, Yulin; Jiang, Zhaotan; Qing, Hong

    2016-01-01

    The G protein coupled receptors (GPCRs) have been considered as one of the largest families of validated drug targets, which involve in almost overall physiological functions and pathological processes. Meanwhile, Alzheimer’s disease (AD), the most common type of dementia, affects thinking, learning, memory and behavior of elderly people, that has become the hotspot nowadays for its increasing risks and incurability. The above fields have been intensively studied, and the link between the two has been demonstrated, whereas the way how GPCRs perturb AD progress are yet to be further explored given their complexities. In this review, we summarized recent progress regarding the GPCRs interacted with β-site APP cleaving enzyme 1 (BACE1), a key secretase in AD pathogenesis. Then we discussed the current findings on the regulatory roles of GPCRs on BACE1, and the possibility for pharmaceutical treatment of AD patients by the allosteric modulators and biased ligands of GPCRs. We hope this review can provide new insights into the understanding of mechanistic link between GPCRs and BACE1, and highlight the potential of GPCRs as therapeutic target for AD. PMID:27047374

  3. A mechanism regulating G protein-coupled receptor signaling that requires cycles of protein palmitoylation and depalmitoylation.

    PubMed

    Jia, Lixia; Chisari, Mariangela; Maktabi, Mohammad H; Sobieski, Courtney; Zhou, Hao; Konopko, Aaron M; Martin, Brent R; Mennerick, Steven J; Blumer, Kendall J

    2014-02-28

    Reversible attachment and removal of palmitate or other long-chain fatty acids on proteins has been hypothesized, like phosphorylation, to control diverse biological processes. Indeed, palmitate turnover regulates Ras trafficking and signaling. Beyond this example, however, the functions of palmitate turnover on specific proteins remain poorly understood. Here, we show that a mechanism regulating G protein-coupled receptor signaling in neuronal cells requires palmitate turnover. We used hexadecyl fluorophosphonate or palmostatin B to inhibit enzymes in the serine hydrolase family that depalmitoylate proteins, and we studied R7 regulator of G protein signaling (RGS)-binding protein (R7BP), a palmitoylated allosteric modulator of R7 RGS proteins that accelerate deactivation of Gi/o class G proteins. Depalmitoylation inhibition caused R7BP to redistribute from the plasma membrane to endomembrane compartments, dissociated R7BP-bound R7 RGS complexes from Gi/o-gated G protein-regulated inwardly rectifying K(+) (GIRK) channels and delayed GIRK channel closure. In contrast, targeting R7BP to the plasma membrane with a polybasic domain and an irreversibly attached lipid instead of palmitate rendered GIRK channel closure insensitive to depalmitoylation inhibitors. Palmitate turnover therefore is required for localizing R7BP to the plasma membrane and facilitating Gi/o deactivation by R7 RGS proteins on GIRK channels. Our findings broaden the scope of biological processes regulated by palmitate turnover on specific target proteins. Inhibiting R7BP depalmitoylation may provide a means of enhancing GIRK activity in neurological disorders.

  4. A putative G protein-coupled receptor involved in innate immune defense of Procambarus clarkii against bacterial infection.

    PubMed

    Dong, Chaohua; Zhang, Peng

    2012-02-01

    The immune functions of G protein-coupled receptor (GPCR) were widely investigated in mammals. However, limited researches on immune function of GPCRs were reported in invertebrates. In the present study, the immune functions of HP1R gene, a putative GPCR identified from red swamp crayfish Procambarus clarkii were reported. Expression of HP1R gene was significant up-regulated in response to heat-killed Aeromonas hydrophila challenge. HP1R gene silencing mediated by RNA interference significantly enhanced the susceptibility of red swamp crayfish to A. hydrophila and Vibrio alginolyticus, indicating that HP1R was required for red swamp crayfish to defend against bacterial challenge. In HP1R-silenced crayfish, increased bacterial burden and decreased THC in response to bacterial challenge were observed when compared with control crayfish. No significant difference of proPO gene expression was observed between HP1R-silenced and control crayfish after challenge with heat-killed A. hydrophila. However, PO activity in response to bacterial challenge was significantly reduced in HP1R-silenced crayfish. The results collectively indicated that HP1R was an important immune molecule which was required for red swamp crayfish to defend against bacterial infection.

  5. Identification of G protein coupled receptors for opsines and neurohormones in Rhodnius prolixus. Genomic and transcriptomic analysis.

    PubMed

    Ons, Sheila; Lavore, Andrés; Sterkel, Marcos; Wulff, Juan Pedro; Sierra, Ivana; Martínez-Barnetche, Jesús; Rodriguez, Mario Henry; Rivera-Pomar, Rolando

    2016-02-01

    The importance of Chagas disease motivated the scientific effort to obtain the complete genomic sequence of the vector species Rhodnius prolixus, this information is also relevant to the understanding of triatomine biology in general. The central nervous system is the key regulator of insect physiology and behavior. Neurohormones (neuropeptides and biogenic amines) are the chemical messengers involved in the regulation and integration of neuroendocrine signals. In insects, this signaling is mainly mediated by the interaction of neurohormone ligands with G protein coupled receptors (GPCRs). The recently sequenced R. prolixus genome provides us with the opportunity to analyze this important family of genes in triatomines, supplying relevant information for further functional studies. Next-generation sequencing methods offer an excellent opportunity for transcriptomic exploration in key organs and tissues in the presence of a reference genome as well as when a reference genome is not available. We undertook a genomic analysis to obtain a genome-wide inventory of opsines and the GPCRs for neurohormones in R. prolixus. Furthermore, we performed a transcriptomic analysis of R. prolixus central nervous system, focusing on neuropeptide precursor genes and neurohormone and opsines GPCRs. In addition, we mined the whole transcriptomes of Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis - three sanitary relevant triatomine species - to identify neuropeptide precursors and GPCRs genes. Our study reveals a high degree of sequence conservation in the molecular components of the neuroendocrine system of triatomines.

  6. In vivo stoichiometry monitoring of G protein coupled receptor oligomers using spectrally resolved two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Stoneman, M. R.; Singh, D. R.; Raicu, V.

    2010-02-01

    Resonance Energy Transfer (RET) between a donor molecule in an electronically excited state and an acceptor molecule in close proximity has been frequently utilized for studies of protein-protein interactions in living cells. Typically, the cell under study is scanned a number of times in order to accumulate enough spectral information to accurately determine the RET efficiency for each region of interest within the cell. However, the composition of these regions may change during the course of the acquisition period, limiting the spatial determination of the RET efficiency to an average over entire cells. By means of a novel spectrally resolved two-photon microscope, we were able to obtain a full set of spectrally resolved images after only one complete excitation scan of the sample of interest. From this pixel-level spectral data, a map of RET efficiencies throughout the cell is calculated. By applying a simple theory of RET in oligomeric complexes to the experimentally obtained distribution of RET efficiencies throughout the cell, a single spectrally resolved scan reveals stoichiometric and structural information about the oligomer complex under study. This presentation will describe our experimental setup and data analysis procedure, as well as an application of the method to the determination of RET efficiencies throughout yeast cells (S. cerevisiae) expressing a G-protein-coupled receptor, Sterile 2 α factor protein (Ste2p), in the presence and absence of α-factor - a yeast mating pheromone.

  7. Evidence for a bacterial lipopolysaccharide-recognizing G-protein-coupled receptor in the bacterial engulfment by Entamoeba histolytica.

    PubMed

    Brewer, Matthew T; Agbedanu, Prince N; Zamanian, Mostafa; Day, Tim A; Carlson, Steve A

    2013-11-01

    Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.

  8. D-GPCR: a novel putative G protein-coupled receptor overexpressed in prostate cancer and prostate.

    PubMed

    Weigle, Bernd; Fuessel, Susanne; Ebner, Reinhard; Temme, Achim; Schmitz, Marc; Schwind, Sandra; Kiessling, Andrea; Rieger, Michael A; Meye, Axel; Bachmann, Michael; Wirth, Manfred P; Rieber, E Peter

    2004-09-10

    The use of molecular targets in novel strategies of tumor treatment largely depends on the identification of proteins with a tumor- or tissue-restricted expression. We identified the novel protein D-GPCR that is selectively overexpressed in human prostate cancer and prostate and belongs to the subfamily of odorant-like orphan G protein-coupled receptors. Quantification of D-GPCR transcripts in different human tissues by real-time PCR demonstrated 27-fold overexpression in prostate compared to skeletal muscle, the organ with second highest transcript numbers in males. Investigation of tumor/normal cDNA pairs obtained from 241 cancer patients including four prostate tumors confirmed the preferential expression in prostate. When comparing the mean transcript level of 15 prostate cancer tissues to their non-tumorous counterparts, D-GPCR was almost 6-fold upregulated. Coupled in vitro transcription and translation of D-GPCR cDNA produced a protein band of approximately 28 kDa. Recombinant, His-tagged protein was expressed in transfected HEK293 cells and gave rise to a 30 kDa band specifically detected by anti-His antibody. These data provide the basis for future studies evaluating the diagnostic potential of D-GPCR and its utility as a novel target in immunotherapy of prostate cancer.

  9. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process.

    PubMed

    Arioka, Yuko; Ito, Hiroyasu; Hirata, Akihiro; Semi, Katsunori; Yamada, Yasuhiro; Seishima, Mitsuru

    2017-02-04

    It remains unclear what cells are proper for the generation of induced pluripotent stem cells (iPSCs). Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) is well known as a tissue stem cell and progenitor marker, both of which are reported to be sensitive to reprogramming. In the present study, we examined the reprogramming behavior of Lgr5-expressing cells (Lgr5+ cells). First, we compared reprogramming behavior using mouse Lgr5+ and Lgr5 negative (Lgr5-) hair follicles (HFs). The number of alkaline phosphatase staining-positive cells was lesser in a well of Lgr5+ HFs than in Lgr5- HFs; however, the ratio of Nanog+ SSEA1+ cells in the cell mixture derived from Lgr5+ HFs was much higher than that from Lgr5- HFs. Lgr5+ cells could be induced from mouse embryonic fibroblasts (MEFs) after transduction with Yamanaka factors. As shown in HFs, the progeny of Lgr5+ cells arising from MEFs highly converted into Nanog+ cells and did not form Nanog- colonies. The progeny represented the status of the late reprogramming phase to a higher degree than the nonprogeny. We also confirmed this using human Lg5+ cells. Our findings suggest that the use of Lgr5+ cells will minimize sorting efforts for obtaining superior iPSCs.

  10. Paroxetine Is a Direct Inhibitor of G Protein-Coupled Receptor Kinase 2 and Increases Myocardial Contractility

    SciTech Connect

    Thal, David M.; Homan, Kristoff T.; Chen, Jun; Wu, Emily K.; Hinkle, Patricia M.; Huang, Z. Maggie; Chuprun, J. Kurt; Song, Jianliang; Gao, Erhe; Cheung, Joseph Y.; Sklar, Larry A.; Koch, Walter J.; Tesmer, John J.G.

    2012-08-10

    G protein-coupled receptor kinase 2 (GRK2) is a well-established therapeutic target for the treatment of heart failure. In this paper we identify the selective serotonin reuptake inhibitor (SSRI) paroxetine as a selective inhibitor of GRK2 activity both in vitro and in living cells. In the crystal structure of the GRK2·paroxetine–Gβγ complex, paroxetine binds in the active site of GRK2 and stabilizes the kinase domain in a novel conformation in which a unique regulatory loop forms part of the ligand binding site. Isolated cardiomyocytes show increased isoproterenol-induced shortening and contraction amplitude in the presence of paroxetine, and pretreatment of mice with paroxetine before isoproterenol significantly increases left ventricular inotropic reserve in vivo with no significant effect on heart rate. Neither is observed in the presence of the SSRI fluoxetine. Our structural and functional results validate a widely available drug as a selective chemical probe for GRK2 and represent a starting point for the rational design of more potent and specific GRK2 inhibitors.

  11. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases.

    PubMed

    Heng, Boon Chin; Aubel, Dominique; Fussenegger, Martin

    2013-12-01

    G-protein coupled receptors (GPCRs) modulate diverse cellular responses to the majority of neurotransmitters and hormones within the human body. They exhibit much structural and functional diversity, and are responsive to a plethora of endogenous (biogenic amines, cations, lipids, peptides, and glycoproteins) and exogenous (therapeutic drugs, photons, tastants, and odorants) ligands and stimuli. Due to the key roles of GPCRs in tissue/cell physiology and homeostasis, signaling pathways associated with GPCRs are implicated in the pathophysiology of various diseases, ranging from metabolic, immunological, and neurodegenerative disorders, to cancer and infectious diseases. Approximately 40% of clinically approved drugs mediate their effects by modulating GPCR signaling pathways, which makes them attractive targets for drug screening and discovery. The pace of discovery of new GPCR-based drugs has recently accelerated due to rapid advancements in high-resolution structure determination, high-throughput screening technology and in silico computational modeling of GPCR binding interaction with potential drug molecules. This review aims to provide an overview of the diverse roles of GPCRs in the pathophysiology of various diseases that are the major focus of biopharmaceutical research as potential drug targets.