Hayashi, Takanori; Matsuzaki, Yuri; Yanagisawa, Keisuke; Ohue, Masahito; Akiyama, Yutaka
2018-05-08
Protein-protein interactions (PPIs) play several roles in living cells, and computational PPI prediction is a major focus of many researchers. The three-dimensional (3D) structure and binding surface are important for the design of PPI inhibitors. Therefore, rigid body protein-protein docking calculations for two protein structures are expected to allow elucidation of PPIs different from known complexes in terms of 3D structures because known PPI information is not explicitly required. We have developed rapid PPI prediction software based on protein-protein docking, called MEGADOCK. In order to fully utilize the benefits of computational PPI predictions, it is necessary to construct a comprehensive database to gather prediction results and their predicted 3D complex structures and to make them easily accessible. Although several databases exist that provide predicted PPIs, the previous databases do not contain a sufficient number of entries for the purpose of discovering novel PPIs. In this study, we constructed an integrated database of MEGADOCK PPI predictions, named MEGADOCK-Web. MEGADOCK-Web provides more than 10 times the number of PPI predictions than previous databases and enables users to conduct PPI predictions that cannot be found in conventional PPI prediction databases. In MEGADOCK-Web, there are 7528 protein chains and 28,331,628 predicted PPIs from all possible combinations of those proteins. Each protein structure is annotated with PDB ID, chain ID, UniProt AC, related KEGG pathway IDs, and known PPI pairs. Additionally, MEGADOCK-Web provides four powerful functions: 1) searching precalculated PPI predictions, 2) providing annotations for each predicted protein pair with an experimentally known PPI, 3) visualizing candidates that may interact with the query protein on biochemical pathways, and 4) visualizing predicted complex structures through a 3D molecular viewer. MEGADOCK-Web provides a huge amount of comprehensive PPI predictions based on docking calculations with biochemical pathways and enables users to easily and quickly assess PPI feasibilities by archiving PPI predictions. MEGADOCK-Web also promotes the discovery of new PPIs and protein functions and is freely available for use at http://www.bi.cs.titech.ac.jp/megadock-web/ .
Chang, Yi-Chien; Hu, Zhenjun; Rachlin, John; Anton, Brian P; Kasif, Simon; Roberts, Richard J; Steffen, Martin
2016-01-04
The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼ 3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung
2016-01-01
Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.
López, Yosvany; Nakai, Kenta; Patil, Ashwini
2015-01-01
HitPredict is a consolidated resource of experimentally identified, physical protein-protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein-protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of physical, genetic and predicted interactions. Automated integration of interactions is further complicated by varying levels of accuracy of database content and lack of adherence to standard formats. To address these issues, the latest version of HitPredict provides a manually curated dataset of 398 696 physical associations between 70 808 proteins from 105 species. Manual confirmation was used to resolve all issues encountered during data integration. For improved reliability assessment, this version combines a new score derived from the experimental information of the interactions with the original score based on the features of the interacting proteins. The combined interaction score performs better than either of the individual scores in HitPredict as well as the reliability score of another similar database. HitPredict provides a web interface to search proteins and visualize their interactions, and the data can be downloaded for offline analysis. Data usability has been enhanced by mapping protein identifiers across multiple reference databases. Thus, the latest version of HitPredict provides a significantly larger, more reliable and usable dataset of protein-protein interactions from several species for the study of gene groups. Database URL: http://hintdb.hgc.jp/htp. © The Author(s) 2015. Published by Oxford University Press.
Domain fusion analysis by applying relational algebra to protein sequence and domain databases
Truong, Kevin; Ikura, Mitsuhiko
2003-01-01
Background Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. Results This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at . Conclusion As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time. PMID:12734020
Gene Unprediction with Spurio: A tool to identify spurious protein sequences.
Höps, Wolfram; Jeffryes, Matt; Bateman, Alex
2018-01-01
We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation. Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases. We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes. Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.
Kim, Woo-Yeon; Kang, Sungsoo; Kim, Byoung-Chul; Oh, Jeehyun; Cho, Seongwoong; Bhak, Jong; Choi, Jong-Soon
2008-01-01
Cyanobacteria are model organisms for studying photosynthesis, carbon and nitrogen assimilation, evolution of plant plastids, and adaptability to environmental stresses. Despite many studies on cyanobacteria, there is no web-based database of their regulatory and signaling protein-protein interaction networks to date. We report a database and website SynechoNET that provides predicted protein-protein interactions. SynechoNET shows cyanobacterial domain-domain interactions as well as their protein-level interactions using the model cyanobacterium, Synechocystis sp. PCC 6803. It predicts the protein-protein interactions using public interaction databases that contain mutually complementary and redundant data. Furthermore, SynechoNET provides information on transmembrane topology, signal peptide, and domain structure in order to support the analysis of regulatory membrane proteins. Such biological information can be queried and visualized in user-friendly web interfaces that include the interactive network viewer and search pages by keyword and functional category. SynechoNET is an integrated protein-protein interaction database designed to analyze regulatory membrane proteins in cyanobacteria. It provides a platform for biologists to extend the genomic data of cyanobacteria by predicting interaction partners, membrane association, and membrane topology of Synechocystis proteins. SynechoNET is freely available at http://synechocystis.org/ or directly at http://bioportal.kobic.kr/SynechoNET/.
Mukhopadhyay, Anirban; Maulik, Ujjwal; Bandyopadhyay, Sanghamitra
2012-01-01
Identification of potential viral-host protein interactions is a vital and useful approach towards development of new drugs targeting those interactions. In recent days, computational tools are being utilized for predicting viral-host interactions. Recently a database containing records of experimentally validated interactions between a set of HIV-1 proteins and a set of human proteins has been published. The problem of predicting new interactions based on this database is usually posed as a classification problem. However, posing the problem as a classification one suffers from the lack of biologically validated negative interactions. Therefore it will be beneficial to use the existing database for predicting new viral-host interactions without the need of negative samples. Motivated by this, in this article, the HIV-1–human protein interaction database has been analyzed using association rule mining. The main objective is to identify a set of association rules both among the HIV-1 proteins and among the human proteins, and use these rules for predicting new interactions. In this regard, a novel association rule mining technique based on biclustering has been proposed for discovering frequent closed itemsets followed by the association rules from the adjacency matrix of the HIV-1–human interaction network. Novel HIV-1–human interactions have been predicted based on the discovered association rules and tested for biological significance. For validation of the predicted new interactions, gene ontology-based and pathway-based studies have been performed. These studies show that the human proteins which are predicted to interact with a particular viral protein share many common biological activities. Moreover, literature survey has been used for validation purpose to identify some predicted interactions that are already validated experimentally but not present in the database. Comparison with other prediction methods is also discussed. PMID:22539940
Domain fusion analysis by applying relational algebra to protein sequence and domain databases.
Truong, Kevin; Ikura, Mitsuhiko
2003-05-06
Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at http://calcium.uhnres.utoronto.ca/pi. As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time.
Crosara, Karla Tonelli Bicalho; Moffa, Eduardo Buozi; Xiao, Yizhi; Siqueira, Walter Luiz
2018-01-16
Protein-protein interaction is a common physiological mechanism for protection and actions of proteins in an organism. The identification and characterization of protein-protein interactions in different organisms is necessary to better understand their physiology and to determine their efficacy. In a previous in vitro study using mass spectrometry, we identified 43 proteins that interact with histatin 1. Six previously documented interactors were confirmed and 37 novel partners were identified. In this tutorial, we aimed to demonstrate the usefulness of the STRING database for studying protein-protein interactions. We used an in-silico approach along with the STRING database (http://string-db.org/) and successfully performed a fast simulation of a novel constructed histatin 1 protein-protein network, including both the previously known and the predicted interactors, along with our newly identified interactors. Our study highlights the advantages and importance of applying bioinformatics tools to merge in-silico tactics with experimental in vitro findings for rapid advancement of our knowledge about protein-protein interactions. Our findings also indicate that bioinformatics tools such as the STRING protein network database can help predict potential interactions between proteins and thus serve as a guide for future steps in our exploration of the Human Interactome. Our study highlights the usefulness of the STRING protein database for studying protein-protein interactions. The STRING database can collect and integrate data about known and predicted protein-protein associations from many organisms, including both direct (physical) and indirect (functional) interactions, in an easy-to-use interface. Copyright © 2017 Elsevier B.V. All rights reserved.
PrionScan: an online database of predicted prion domains in complete proteomes.
Espinosa Angarica, Vladimir; Angulo, Alfonso; Giner, Arturo; Losilla, Guillermo; Ventura, Salvador; Sancho, Javier
2014-02-05
Prions are a particular type of amyloids related to a large variety of important processes in cells, but also responsible for serious diseases in mammals and humans. The number of experimentally characterized prions is still low and corresponds to a handful of examples in microorganisms and mammals. Prion aggregation is mediated by specific protein domains with a remarkable compositional bias towards glutamine/asparagine and against charged residues and prolines. These compositional features have been used to predict new prion proteins in the genomes of different organisms. Despite these efforts, there are only a few available data sources containing prion predictions at a genomic scale. Here we present PrionScan, a new database of predicted prion-like domains in complete proteomes. We have previously developed a predictive methodology to identify and score prionogenic stretches in protein sequences. In the present work, we exploit this approach to scan all the protein sequences in public databases and compile a repository containing relevant information of proteins bearing prion-like domains. The database is updated regularly alongside UniprotKB and in its present version contains approximately 28000 predictions in proteins from different functional categories in more than 3200 organisms from all the taxonomic subdivisions. PrionScan can be used in two different ways: database query and analysis of protein sequences submitted by the users. In the first mode, simple queries allow to retrieve a detailed description of the properties of a defined protein. Queries can also be combined to generate more complex and specific searching patterns. In the second mode, users can submit and analyze their own sequences. It is expected that this database would provide relevant insights on prion functions and regulation from a genome-wide perspective, allowing researches performing cross-species prion biology studies. Our database might also be useful for guiding experimentalists in the identification of new candidates for further experimental characterization.
BIOPEP database and other programs for processing bioactive peptide sequences.
Minkiewicz, Piotr; Dziuba, Jerzy; Iwaniak, Anna; Dziuba, Marta; Darewicz, Małgorzata
2008-01-01
This review presents the potential for application of computational tools in peptide science based on a sample BIOPEP database and program as well as other programs and databases available via the World Wide Web. The BIOPEP application contains a database of biologically active peptide sequences and a program enabling construction of profiles of the potential biological activity of protein fragments, calculation of quantitative descriptors as measures of the value of proteins as potential precursors of bioactive peptides, and prediction of bonds susceptible to hydrolysis by endopeptidases in a protein chain. Other bioactive and allergenic peptide sequence databases are also presented. Programs enabling the construction of binary and multiple alignments between peptide sequences, the construction of sequence motifs attributed to a given type of bioactivity, searching for potential precursors of bioactive peptides, and the prediction of sites susceptible to proteolytic cleavage in protein chains are available via the Internet as are other approaches concerning secondary structure prediction and calculation of physicochemical features based on amino acid sequence. Programs for prediction of allergenic and toxic properties have also been developed. This review explores the possibilities of cooperation between various programs.
Mi, Tian; Merlin, Jerlin Camilus; Deverasetty, Sandeep; Gryk, Michael R; Bill, Travis J; Brooks, Andrew W; Lee, Logan Y; Rathnayake, Viraj; Ross, Christian A; Sargeant, David P; Strong, Christy L; Watts, Paula; Rajasekaran, Sanguthevar; Schiller, Martin R
2012-01-01
Minimotif Miner (MnM available at http://minimotifminer.org or http://mnm.engr.uconn.edu) is an online database for identifying new minimotifs in protein queries. Minimotifs are short contiguous peptide sequences that have a known function in at least one protein. Here we report the third release of the MnM database which has now grown 60-fold to approximately 300,000 minimotifs. Since short minimotifs are by their nature not very complex we also summarize a new set of false-positive filters and linear regression scoring that vastly enhance minimotif prediction accuracy on a test data set. This online database can be used to predict new functions in proteins and causes of disease.
A Brief Review of RNA–Protein Interaction Database Resources
Yi, Ying; Zhao, Yue; Huang, Yan; Wang, Dong
2017-01-01
RNA–Protein interactions play critical roles in various biological processes. By collecting and analyzing the RNA–Protein interactions and binding sites from experiments and predictions, RNA–Protein interaction databases have become an essential resource for the exploration of the transcriptional and post-transcriptional regulatory network. Here, we briefly review several widely used RNA–Protein interaction database resources developed in recent years to provide a guide of these databases. The content and major functions in databases are presented. The brief description of database helps users to quickly choose the database containing information they interested. In short, these RNA–Protein interaction database resources are continually updated, but the current state shows the efforts to identify and analyze the large amount of RNA–Protein interactions. PMID:29657278
VerSeDa: vertebrate secretome database
Cortazar, Ana R.; Oguiza, José A.
2017-01-01
Based on the current tools, de novo secretome (full set of proteins secreted by an organism) prediction is a time consuming bioinformatic task that requires a multifactorial analysis in order to obtain reliable in silico predictions. Hence, to accelerate this process and offer researchers a reliable repository where secretome information can be obtained for vertebrates and model organisms, we have developed VerSeDa (Vertebrate Secretome Database). This freely available database stores information about proteins that are predicted to be secreted through the classical and non-classical mechanisms, for the wide range of vertebrate species deposited at the NCBI, UCSC and ENSEMBL sites. To our knowledge, VerSeDa is the only state-of-the-art database designed to store secretome data from multiple vertebrate genomes, thus, saving an important amount of time spent in the prediction of protein features that can be retrieved from this repository directly. Database URL: VerSeDa is freely available at http://genomics.cicbiogune.es/VerSeDa/index.php PMID:28365718
RAIN: RNA–protein Association and Interaction Networks
Junge, Alexander; Refsgaard, Jan C.; Garde, Christian; Pan, Xiaoyong; Santos, Alberto; Alkan, Ferhat; Anthon, Christian; von Mering, Christian; Workman, Christopher T.; Jensen, Lars Juhl; Gorodkin, Jan
2017-01-01
Protein association networks can be inferred from a range of resources including experimental data, literature mining and computational predictions. These types of evidence are emerging for non-coding RNAs (ncRNAs) as well. However, integration of ncRNAs into protein association networks is challenging due to data heterogeneity. Here, we present a database of ncRNA–RNA and ncRNA–protein interactions and its integration with the STRING database of protein–protein interactions. These ncRNA associations cover four organisms and have been established from curated examples, experimental data, interaction predictions and automatic literature mining. RAIN uses an integrative scoring scheme to assign a confidence score to each interaction. We demonstrate that RAIN outperforms the underlying microRNA-target predictions in inferring ncRNA interactions. RAIN can be operated through an easily accessible web interface and all interaction data can be downloaded. Database URL: http://rth.dk/resources/rain PMID:28077569
VerSeDa: vertebrate secretome database.
Cortazar, Ana R; Oguiza, José A; Aransay, Ana M; Lavín, José L
2017-01-01
Based on the current tools, de novo secretome (full set of proteins secreted by an organism) prediction is a time consuming bioinformatic task that requires a multifactorial analysis in order to obtain reliable in silico predictions. Hence, to accelerate this process and offer researchers a reliable repository where secretome information can be obtained for vertebrates and model organisms, we have developed VerSeDa (Vertebrate Secretome Database). This freely available database stores information about proteins that are predicted to be secreted through the classical and non-classical mechanisms, for the wide range of vertebrate species deposited at the NCBI, UCSC and ENSEMBL sites. To our knowledge, VerSeDa is the only state-of-the-art database designed to store secretome data from multiple vertebrate genomes, thus, saving an important amount of time spent in the prediction of protein features that can be retrieved from this repository directly. VerSeDa is freely available at http://genomics.cicbiogune.es/VerSeDa/index.php. © The Author(s) 2017. Published by Oxford University Press.
Identification and correction of abnormal, incomplete and mispredicted proteins in public databases.
Nagy, Alinda; Hegyi, Hédi; Farkas, Krisztina; Tordai, Hedvig; Kozma, Evelin; Bányai, László; Patthy, László
2008-08-27
Despite significant improvements in computational annotation of genomes, sequences of abnormal, incomplete or incorrectly predicted genes and proteins remain abundant in public databases. Since the majority of incomplete, abnormal or mispredicted entries are not annotated as such, these errors seriously affect the reliability of these databases. Here we describe the MisPred approach that may provide an efficient means for the quality control of databases. The current version of the MisPred approach uses five distinct routines for identifying abnormal, incomplete or mispredicted entries based on the principle that a sequence is likely to be incorrect if some of its features conflict with our current knowledge about protein-coding genes and proteins: (i) conflict between the predicted subcellular localization of proteins and the absence of the corresponding sequence signals; (ii) presence of extracellular and cytoplasmic domains and the absence of transmembrane segments; (iii) co-occurrence of extracellular and nuclear domains; (iv) violation of domain integrity; (v) chimeras encoded by two or more genes located on different chromosomes. Analyses of predicted EnsEMBL protein sequences of nine deuterostome (Homo sapiens, Mus musculus, Rattus norvegicus, Monodelphis domestica, Gallus gallus, Xenopus tropicalis, Fugu rubripes, Danio rerio and Ciona intestinalis) and two protostome species (Caenorhabditis elegans and Drosophila melanogaster) have revealed that the absence of expected signal peptides and violation of domain integrity account for the majority of mispredictions. Analyses of sequences predicted by NCBI's GNOMON annotation pipeline show that the rates of mispredictions are comparable to those of EnsEMBL. Interestingly, even the manually curated UniProtKB/Swiss-Prot dataset is contaminated with mispredicted or abnormal proteins, although to a much lesser extent than UniProtKB/TrEMBL or the EnsEMBL or GNOMON-predicted entries. MisPred works efficiently in identifying errors in predictions generated by the most reliable gene prediction tools such as the EnsEMBL and NCBI's GNOMON pipelines and also guides the correction of errors. We suggest that application of the MisPred approach will significantly improve the quality of gene predictions and the associated databases.
GenoMycDB: a database for comparative analysis of mycobacterial genes and genomes.
Catanho, Marcos; Mascarenhas, Daniel; Degrave, Wim; Miranda, Antonio Basílio de
2006-03-31
Several databases and computational tools have been created with the aim of organizing, integrating and analyzing the wealth of information generated by large-scale sequencing projects of mycobacterial genomes and those of other organisms. However, with very few exceptions, these databases and tools do not allow for massive and/or dynamic comparison of these data. GenoMycDB (http://www.dbbm.fiocruz.br/GenoMycDB) is a relational database built for large-scale comparative analyses of completely sequenced mycobacterial genomes, based on their predicted protein content. Its central structure is composed of the results obtained after pair-wise sequence alignments among all the predicted proteins coded by the genomes of six mycobacteria: Mycobacterium tuberculosis (strains H37Rv and CDC1551), M. bovis AF2122/97, M. avium subsp. paratuberculosis K10, M. leprae TN, and M. smegmatis MC2 155. The database stores the computed similarity parameters of every aligned pair, providing for each protein sequence the predicted subcellular localization, the assigned cluster of orthologous groups, the features of the corresponding gene, and links to several important databases. Tables containing pairs or groups of potential homologs between selected species/strains can be produced dynamically by user-defined criteria, based on one or multiple sequence similarity parameters. In addition, searches can be restricted according to the predicted subcellular localization of the protein, the DNA strand of the corresponding gene and/or the description of the protein. Massive data search and/or retrieval are available, and different ways of exporting the result are offered. GenoMycDB provides an on-line resource for the functional classification of mycobacterial proteins as well as for the analysis of genome structure, organization, and evolution.
Real-Time Ligand Binding Pocket Database Search Using Local Surface Descriptors
Chikhi, Rayan; Sael, Lee; Kihara, Daisuke
2010-01-01
Due to the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of a particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two dimensional pseudo-Zernike moments or the 3D Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark study employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed. PMID:20455259
Real-time ligand binding pocket database search using local surface descriptors.
Chikhi, Rayan; Sael, Lee; Kihara, Daisuke
2010-07-01
Because of the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two-dimensional pseudo-Zernike moments or the three-dimensional Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark studies employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed.
Negative Example Selection for Protein Function Prediction: The NoGO Database
Youngs, Noah; Penfold-Brown, Duncan; Bonneau, Richard; Shasha, Dennis
2014-01-01
Negative examples – genes that are known not to carry out a given protein function – are rarely recorded in genome and proteome annotation databases, such as the Gene Ontology database. Negative examples are required, however, for several of the most powerful machine learning methods for integrative protein function prediction. Most protein function prediction efforts have relied on a variety of heuristics for the choice of negative examples. Determining the accuracy of methods for negative example prediction is itself a non-trivial task, given that the Open World Assumption as applied to gene annotations rules out many traditional validation metrics. We present a rigorous comparison of these heuristics, utilizing a temporal holdout, and a novel evaluation strategy for negative examples. We add to this comparison several algorithms adapted from Positive-Unlabeled learning scenarios in text-classification, which are the current state of the art methods for generating negative examples in low-density annotation contexts. Lastly, we present two novel algorithms of our own construction, one based on empirical conditional probability, and the other using topic modeling applied to genes and annotations. We demonstrate that our algorithms achieve significantly fewer incorrect negative example predictions than the current state of the art, using multiple benchmarks covering multiple organisms. Our methods may be applied to generate negative examples for any type of method that deals with protein function, and to this end we provide a database of negative examples in several well-studied organisms, for general use (The NoGO database, available at: bonneaulab.bio.nyu.edu/nogo.html). PMID:24922051
Maurer-Stroh, Sebastian; Gao, He; Han, Hao; Baeten, Lies; Schymkowitz, Joost; Rousseau, Frederic; Zhang, Louxin; Eisenhaber, Frank
2013-02-01
Data mining in protein databases, derivatives from more fundamental protein 3D structure and sequence databases, has considerable unearthed potential for the discovery of sequence motif--structural motif--function relationships as the finding of the U-shape (Huf-Zinc) motif, originally a small student's project, exemplifies. The metal ion zinc is critically involved in universal biological processes, ranging from protein-DNA complexes and transcription regulation to enzymatic catalysis and metabolic pathways. Proteins have evolved a series of motifs to specifically recognize and bind zinc ions. Many of these, so called zinc fingers, are structurally independent globular domains with discontinuous binding motifs made up of residues mostly far apart in sequence. Through a systematic approach starting from the BRIX structure fragment database, we discovered that there exists another predictable subset of zinc-binding motifs that not only have a conserved continuous sequence pattern but also share a characteristic local conformation, despite being included in totally different overall folds. While this does not allow general prediction of all Zn binding motifs, a HMM-based web server, Huf-Zinc, is available for prediction of these novel, as well as conventional, zinc finger motifs in protein sequences. The Huf-Zinc webserver can be freely accessed through this URL (http://mendel.bii.a-star.edu.sg/METHODS/hufzinc/).
Dellaire, G.; Farrall, R.; Bickmore, W.A.
2003-01-01
The Nuclear Protein Database (NPD) is a curated database that contains information on more than 1300 vertebrate proteins that are thought, or are known, to localise to the cell nucleus. Each entry is annotated with information on predicted protein size and isoelectric point, as well as any repeats, motifs or domains within the protein sequence. In addition, information on the sub-nuclear localisation of each protein is provided and the biological and molecular functions are described using Gene Ontology (GO) terms. The database is searchable by keyword, protein name, sub-nuclear compartment and protein domain/motif. Links to other databases are provided (e.g. Entrez, SWISS-PROT, OMIM, PubMed, PubMed Central). Thus, NPD provides a gateway through which the nuclear proteome may be explored. The database can be accessed at http://npd.hgu.mrc.ac.uk and is updated monthly. PMID:12520015
Protein Information Resource: a community resource for expert annotation of protein data
Barker, Winona C.; Garavelli, John S.; Hou, Zhenglin; Huang, Hongzhan; Ledley, Robert S.; McGarvey, Peter B.; Mewes, Hans-Werner; Orcutt, Bruce C.; Pfeiffer, Friedhelm; Tsugita, Akira; Vinayaka, C. R.; Xiao, Chunlin; Yeh, Lai-Su L.; Wu, Cathy
2001-01-01
The Protein Information Resource, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the most comprehensive and expertly annotated protein sequence database in the public domain, the PIR-International Protein Sequence Database. To provide timely and high quality annotation and promote database interoperability, the PIR-International employs rule-based and classification-driven procedures based on controlled vocabulary and standard nomenclature and includes status tags to distinguish experimentally determined from predicted protein features. The database contains about 200 000 non-redundant protein sequences, which are classified into families and superfamilies and their domains and motifs identified. Entries are extensively cross-referenced to other sequence, classification, genome, structure and activity databases. The PIR web site features search engines that use sequence similarity and database annotation to facilitate the analysis and functional identification of proteins. The PIR-International databases and search tools are accessible on the PIR web site at http://pir.georgetown.edu/ and at the MIPS web site at http://www.mips.biochem.mpg.de. The PIR-International Protein Sequence Database and other files are also available by FTP. PMID:11125041
Knowledge-based prediction of protein backbone conformation using a structural alphabet.
Vetrivel, Iyanar; Mahajan, Swapnil; Tyagi, Manoj; Hoffmann, Lionel; Sanejouand, Yves-Henri; Srinivasan, Narayanaswamy; de Brevern, Alexandre G; Cadet, Frédéric; Offmann, Bernard
2017-01-01
Libraries of structural prototypes that abstract protein local structures are known as structural alphabets and have proven to be very useful in various aspects of protein structure analyses and predictions. One such library, Protein Blocks, is composed of 16 standard 5-residues long structural prototypes. This form of analyzing proteins involves drafting its structure as a string of Protein Blocks. Predicting the local structure of a protein in terms of protein blocks is the general objective of this work. A new approach, PB-kPRED is proposed towards this aim. It involves (i) organizing the structural knowledge in the form of a database of pentapeptide fragments extracted from all protein structures in the PDB and (ii) applying a knowledge-based algorithm that does not rely on any secondary structure predictions and/or sequence alignment profiles, to scan this database and predict most probable backbone conformations for the protein local structures. Though PB-kPRED uses the structural information from homologues in preference, if available. The predictions were evaluated rigorously on 15,544 query proteins representing a non-redundant subset of the PDB filtered at 30% sequence identity cut-off. We have shown that the kPRED method was able to achieve mean accuracies ranging from 40.8% to 66.3% depending on the availability of homologues. The impact of the different strategies for scanning the database on the prediction was evaluated and is discussed. Our results highlight the usefulness of the method in the context of proteins without any known structural homologues. A scoring function that gives a good estimate of the accuracy of prediction was further developed. This score estimates very well the accuracy of the algorithm (R2 of 0.82). An online version of the tool is provided freely for non-commercial usage at http://www.bo-protscience.fr/kpred/.
Xia, Kai; Dong, Dong; Han, Jing-Dong J
2006-01-01
Background Although protein-protein interaction (PPI) networks have been explored by various experimental methods, the maps so built are still limited in coverage and accuracy. To further expand the PPI network and to extract more accurate information from existing maps, studies have been carried out to integrate various types of functional relationship data. A frequently updated database of computationally analyzed potential PPIs to provide biological researchers with rapid and easy access to analyze original data as a biological network is still lacking. Results By applying a probabilistic model, we integrated 27 heterogeneous genomic, proteomic and functional annotation datasets to predict PPI networks in human. In addition to previously studied data types, we show that phenotypic distances and genetic interactions can also be integrated to predict PPIs. We further built an easy-to-use, updatable integrated PPI database, the Integrated Network Database (IntNetDB) online, to provide automatic prediction and visualization of PPI network among genes of interest. The networks can be visualized in SVG (Scalable Vector Graphics) format for zooming in or out. IntNetDB also provides a tool to extract topologically highly connected network neighborhoods from a specific network for further exploration and research. Using the MCODE (Molecular Complex Detections) algorithm, 190 such neighborhoods were detected among all the predicted interactions. The predicted PPIs can also be mapped to worm, fly and mouse interologs. Conclusion IntNetDB includes 180,010 predicted protein-protein interactions among 9,901 human proteins and represents a useful resource for the research community. Our study has increased prediction coverage by five-fold. IntNetDB also provides easy-to-use network visualization and analysis tools that allow biological researchers unfamiliar with computational biology to access and analyze data over the internet. The web interface of IntNetDB is freely accessible at . Visualization requires Mozilla version 1.8 (or higher) or Internet Explorer with installation of SVGviewer. PMID:17112386
Konc, Janez; Janežič, Dušanka
2017-09-01
ProBiS (Protein Binding Sites) Tools consist of algorithm, database, and web servers for prediction of binding sites and protein ligands based on the detection of structurally similar binding sites in the Protein Data Bank. In this article, we review the operations that ProBiS Tools perform, provide comments on the evolution of the tools, and give some implementation details. We review some of its applications to biologically interesting proteins. ProBiS Tools are freely available at http://probis.cmm.ki.si and http://probis.nih.gov. Copyright © 2017 Elsevier Ltd. All rights reserved.
Miao, Zhichao; Westhof, Eric
2016-07-08
RBscore&NBench combines a web server, RBscore and a database, NBench. RBscore predicts RNA-/DNA-binding residues in proteins and visualizes the prediction scores and features on protein structures. The scoring scheme of RBscore directly links feature values to nucleic acid binding probabilities and illustrates the nucleic acid binding energy funnel on the protein surface. To avoid dataset, binding site definition and assessment metric biases, we compared RBscore with 18 web servers and 3 stand-alone programs on 41 datasets, which demonstrated the high and stable accuracy of RBscore. A comprehensive comparison led us to develop a benchmark database named NBench. The web server is available on: http://ahsoka.u-strasbg.fr/rbscorenbench/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
MITOPRED: a web server for the prediction of mitochondrial proteins
Guda, Chittibabu; Guda, Purnima; Fahy, Eoin; Subramaniam, Shankar
2004-01-01
MITOPRED web server enables prediction of nucleus-encoded mitochondrial proteins in all eukaryotic species. Predictions are made using a new algorithm based primarily on Pfam domain occurrence patterns in mitochondrial and non-mitochondrial locations. Pre-calculated predictions are instantly accessible for proteomes of Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila, Homo sapiens, Mus musculus and Arabidopsis species as well as all the eukaryotic sequences in the Swiss-Prot and TrEMBL databases. Queries, at different confidence levels, can be made through four distinct options: (i) entering Swiss-Prot/TrEMBL accession numbers; (ii) uploading a local file with such accession numbers; (iii) entering protein sequences; (iv) uploading a local file containing protein sequences in FASTA format. Automated updates are scheduled for the pre-calculated prediction database so as to provide access to the most current data. The server, its documentation and the data are available from http://mitopred.sdsc.edu. PMID:15215413
Phagonaute: A web-based interface for phage synteny browsing and protein function prediction.
Delattre, Hadrien; Souiai, Oussema; Fagoonee, Khema; Guerois, Raphaël; Petit, Marie-Agnès
2016-09-01
Distant homology search tools are of great help to predict viral protein functions. However, due to the lack of profile databases dedicated to viruses, they can lack sensitivity. We constructed HMM profiles for more than 80,000 proteins from both phages and archaeal viruses, and performed all pairwise comparisons with HHsearch program. The whole resulting database can be explored through a user-friendly "Phagonaute" interface to help predict functions. Results are displayed together with their genetic context, to strengthen inferences based on remote homology. Beyond function prediction, this tool permits detections of co-occurrences, often indicative of proteins completing a task together, and observation of conserved patterns across large evolutionary distances. As a test, Herpes simplex virus I was added to Phagonaute, and 25% of its proteome matched to bacterial or archaeal viral protein counterparts. Phagonaute should therefore help virologists in their quest for protein functions and evolutionary relationships. Copyright © 2016 Elsevier Inc. All rights reserved.
dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins.
Huang, Kai-Yao; Su, Min-Gang; Kao, Hui-Ju; Hsieh, Yun-Chung; Jhong, Jhih-Hua; Cheng, Kuang-Hao; Huang, Hsien-Da; Lee, Tzong-Yi
2016-01-04
Owing to the importance of the post-translational modifications (PTMs) of proteins in regulating biological processes, the dbPTM (http://dbPTM.mbc.nctu.edu.tw/) was developed as a comprehensive database of experimentally verified PTMs from several databases with annotations of potential PTMs for all UniProtKB protein entries. For this 10th anniversary of dbPTM, the updated resource provides not only a comprehensive dataset of experimentally verified PTMs, supported by the literature, but also an integrative interface for accessing all available databases and tools that are associated with PTM analysis. As well as collecting experimental PTM data from 14 public databases, this update manually curates over 12 000 modified peptides, including the emerging S-nitrosylation, S-glutathionylation and succinylation, from approximately 500 research articles, which were retrieved by text mining. As the number of available PTM prediction methods increases, this work compiles a non-homologous benchmark dataset to evaluate the predictive power of online PTM prediction tools. An increasing interest in the structural investigation of PTM substrate sites motivated the mapping of all experimental PTM peptides to protein entries of Protein Data Bank (PDB) based on database identifier and sequence identity, which enables users to examine spatially neighboring amino acids, solvent-accessible surface area and side-chain orientations for PTM substrate sites on tertiary structures. Since drug binding in PDB is annotated, this update identified over 1100 PTM sites that are associated with drug binding. The update also integrates metabolic pathways and protein-protein interactions to support the PTM network analysis for a group of proteins. Finally, the web interface is redesigned and enhanced to facilitate access to this resource. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.
El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant
2016-01-01
A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein-DNA interfaces.
Expediting topology data gathering for the TOPDB database.
Dobson, László; Langó, Tamás; Reményi, István; Tusnády, Gábor E
2015-01-01
The Topology Data Bank of Transmembrane Proteins (TOPDB, http://topdb.enzim.ttk.mta.hu) contains experimentally determined topology data of transmembrane proteins. Recently, we have updated TOPDB from several sources and utilized a newly developed topology prediction algorithm to determine the most reliable topology using the results of experiments as constraints. In addition to collecting the experimentally determined topology data published in the last couple of years, we gathered topographies defined by the TMDET algorithm using 3D structures from the PDBTM. Results of global topology analysis of various organisms as well as topology data generated by high throughput techniques, like the sequential positions of N- or O-glycosylations were incorporated into the TOPDB database. Moreover, a new algorithm was developed to integrate scattered topology data from various publicly available databases and a new method was introduced to measure the reliability of predicted topologies. We show that reliability values highly correlate with the per protein topology accuracy of the utilized prediction method. Altogether, more than 52,000 new topology data and more than 2600 new transmembrane proteins have been collected since the last public release of the TOPDB database. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Sixty-five years of the long march in protein secondary structure prediction: the final stretch?
Yang, Yuedong; Gao, Jianzhao; Wang, Jihua; Heffernan, Rhys; Hanson, Jack; Paliwal, Kuldip; Zhou, Yaoqi
2018-01-01
Abstract Protein secondary structure prediction began in 1951 when Pauling and Corey predicted helical and sheet conformations for protein polypeptide backbone even before the first protein structure was determined. Sixty-five years later, powerful new methods breathe new life into this field. The highest three-state accuracy without relying on structure templates is now at 82–84%, a number unthinkable just a few years ago. These improvements came from increasingly larger databases of protein sequences and structures for training, the use of template secondary structure information and more powerful deep learning techniques. As we are approaching to the theoretical limit of three-state prediction (88–90%), alternative to secondary structure prediction (prediction of backbone torsion angles and Cα-atom-based angles and torsion angles) not only has more room for further improvement but also allows direct prediction of three-dimensional fragment structures with constantly improved accuracy. About 20% of all 40-residue fragments in a database of 1199 non-redundant proteins have <6 Å root-mean-squared distance from the native conformations by SPIDER2. More powerful deep learning methods with improved capability of capturing long-range interactions begin to emerge as the next generation of techniques for secondary structure prediction. The time has come to finish off the final stretch of the long march towards protein secondary structure prediction. PMID:28040746
Thermodynamic database for proteins: features and applications.
Gromiha, M Michael; Sarai, Akinori
2010-01-01
We have developed a thermodynamic database for proteins and mutants, ProTherm, which is a collection of a large number of thermodynamic data on protein stability along with the sequence and structure information, experimental methods and conditions, and literature information. This is a valuable resource for understanding/predicting the stability of proteins, and it can be accessible at http://www.gibk26.bse.kyutech.ac.jp/jouhou/Protherm/protherm.html . ProTherm has several features including various search, display, and sorting options and visualization tools. We have analyzed the data in ProTherm to examine the relationship among thermodynamics, structure, and function of proteins. We describe the progress on the development of methods for understanding/predicting protein stability, such as (i) relationship between the stability of protein mutants and amino acid properties, (ii) average assignment method, (iii) empirical energy functions, (iv) torsion, distance, and contact potentials, and (v) machine learning techniques. The list of online resources for predicting protein stability has also been provided.
Navigating through the Jungle of Allergens: Features and Applications of Allergen Databases.
Radauer, Christian
2017-01-01
The increasing number of available data on allergenic proteins demanded the establishment of structured, freely accessible allergen databases. In this review article, features and applications of 6 of the most widely used allergen databases are discussed. The WHO/IUIS Allergen Nomenclature Database is the official resource of allergen designations. Allergome is the most comprehensive collection of data on allergens and allergen sources. AllergenOnline is aimed at providing a peer-reviewed database of allergen sequences for prediction of allergenicity of proteins, such as those planned to be inserted into genetically modified crops. The Structural Database of Allergenic Proteins (SDAP) provides a database of allergen sequences, structures, and epitopes linked to bioinformatics tools for sequence analysis and comparison. The Immune Epitope Database (IEDB) is the largest repository of T-cell, B-cell, and major histocompatibility complex protein epitopes including epitopes of allergens. AllFam classifies allergens into families of evolutionarily related proteins using definitions from the Pfam protein family database. These databases contain mostly overlapping data, but also show differences in terms of their targeted users, the criteria for including allergens, data shown for each allergen, and the availability of bioinformatics tools. © 2017 S. Karger AG, Basel.
From sequence to enzyme mechanism using multi-label machine learning.
De Ferrari, Luna; Mitchell, John B O
2014-05-19
In this work we predict enzyme function at the level of chemical mechanism, providing a finer granularity of annotation than traditional Enzyme Commission (EC) classes. Hence we can predict not only whether a putative enzyme in a newly sequenced organism has the potential to perform a certain reaction, but how the reaction is performed, using which cofactors and with susceptibility to which drugs or inhibitors, details with important consequences for drug and enzyme design. Work that predicts enzyme catalytic activity based on 3D protein structure features limits the prediction of mechanism to proteins already having either a solved structure or a close relative suitable for homology modelling. In this study, we evaluate whether sequence identity, InterPro or Catalytic Site Atlas sequence signatures provide enough information for bulk prediction of enzyme mechanism. By splitting MACiE (Mechanism, Annotation and Classification in Enzymes database) mechanism labels to a finer granularity, which includes the role of the protein chain in the overall enzyme complex, the method can predict at 96% accuracy (and 96% micro-averaged precision, 99.9% macro-averaged recall) the MACiE mechanism definitions of 248 proteins available in the MACiE, EzCatDb (Database of Enzyme Catalytic Mechanisms) and SFLD (Structure Function Linkage Database) databases using an off-the-shelf K-Nearest Neighbours multi-label algorithm. We find that InterPro signatures are critical for accurate prediction of enzyme mechanism. We also find that incorporating Catalytic Site Atlas attributes does not seem to provide additional accuracy. The software code (ml2db), data and results are available online at http://sourceforge.net/projects/ml2db/ and as supplementary files.
ProMateus—an open research approach to protein-binding sites analysis
Neuvirth, Hani; Heinemann, Uri; Birnbaum, David; Tishby, Naftali; Schreiber, Gideon
2007-01-01
The development of bioinformatic tools by individual labs results in the abundance of parallel programs for the same task. For example, identification of binding site regions between interacting proteins is done using: ProMate, WHISCY, PPI-Pred, PINUP and others. All servers first identify unique properties of binding sites and then incorporate them into a predictor. Obviously, the resulting prediction would improve if the most suitable parameters from each of those predictors would be incorporated into one server. However, because of the variation in methods and databases, this is currently not feasible. Here, the protein-binding site prediction server is extended into a general protein-binding sites research tool, ProMateus. This web tool, based on ProMate's infrastructure enables the easy exploration and incorporation of new features and databases by the user, providing an evaluation of the benefit of individual features and their combination within a set framework. This transforms the individual research into a community exercise, bringing out the best from all users for optimized predictions. The analysis is demonstrated on a database of protein protein and protein-DNA interactions. This approach is basically different from that used in generating meta-servers. The implications of the open-research approach are discussed. ProMateus is available at http://bip.weizmann.ac.il/promate. PMID:17488838
Lee, Sunghoon; Lee, Byungwook; Jang, Insoo; Kim, Sangsoo; Bhak, Jong
2006-01-01
The Localizome server predicts the transmembrane (TM) helix number and TM topology of a user-supplied eukaryotic protein and presents the result as an intuitive graphic representation. It utilizes hmmpfam to detect the presence of Pfam domains and a prediction algorithm, Phobius, to predict the TM helices. The results are combined and checked against the TM topology rules stored in a protein domain database called LocaloDom. LocaloDom is a curated database that contains TM topologies and TM helix numbers of known protein domains. It was constructed from Pfam domains combined with Swiss-Prot annotations and Phobius predictions. The Localizome server corrects the combined results of the user sequence to conform to the rules stored in LocaloDom. Compared with other programs, this server showed the highest accuracy for TM topology prediction: for soluble proteins, the accuracy and coverage were 99 and 75%, respectively, while for TM protein domain regions, they were 96 and 68%, respectively. With a graphical representation of TM topology and TM helix positions with the domain units, the Localizome server is a highly accurate and comprehensive information source for subcellular localization for soluble proteins as well as membrane proteins. The Localizome server can be found at . PMID:16845118
Ripoche, Hugues; Laine, Elodie; Ceres, Nicoletta; Carbone, Alessandra
2017-01-04
The database JET2 Viewer, openly accessible at http://www.jet2viewer.upmc.fr/, reports putative protein binding sites for all three-dimensional (3D) structures available in the Protein Data Bank (PDB). This knowledge base was generated by applying the computational method JET 2 at large-scale on more than 20 000 chains. JET 2 strategy yields very precise predictions of interacting surfaces and unravels their evolutionary process and complexity. JET2 Viewer provides an online intelligent display, including interactive 3D visualization of the binding sites mapped onto PDB structures and suitable files recording JET 2 analyses. Predictions were evaluated on more than 15 000 experimentally characterized protein interfaces. This is, to our knowledge, the largest evaluation of a protein binding site prediction method. The overall performance of JET 2 on all interfaces are: Sen = 52.52, PPV = 51.24, Spe = 80.05, Acc = 75.89. The data can be used to foster new strategies for protein-protein interactions modulation and interaction surface redesign. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
TOPDOM: database of conservatively located domains and motifs in proteins.
Varga, Julia; Dobson, László; Tusnády, Gábor E
2016-09-01
The TOPDOM database-originally created as a collection of domains and motifs located consistently on the same side of the membranes in α-helical transmembrane proteins-has been updated and extended by taking into consideration consistently localized domains and motifs in globular proteins, too. By taking advantage of the recently developed CCTOP algorithm to determine the type of a protein and predict topology in case of transmembrane proteins, and by applying a thorough search for domains and motifs as well as utilizing the most up-to-date version of all source databases, we managed to reach a 6-fold increase in the size of the whole database and a 2-fold increase in the number of transmembrane proteins. TOPDOM database is available at http://topdom.enzim.hu The webpage utilizes the common Apache, PHP5 and MySQL software to provide the user interface for accessing and searching the database. The database itself is generated on a high performance computer. tusnady.gabor@ttk.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Protein-protein interaction predictions using text mining methods.
Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Iliopoulos, Ioannis
2015-03-01
It is beyond any doubt that proteins and their interactions play an essential role in most complex biological processes. The understanding of their function individually, but also in the form of protein complexes is of a great importance. Nowadays, despite the plethora of various high-throughput experimental approaches for detecting protein-protein interactions, many computational methods aiming to predict new interactions have appeared and gained interest. In this review, we focus on text-mining based computational methodologies, aiming to extract information for proteins and their interactions from public repositories such as literature and various biological databases. We discuss their strengths, their weaknesses and how they complement existing experimental techniques by simultaneously commenting on the biological databases which hold such information and the benchmark datasets that can be used for evaluating new tools. Copyright © 2014 Elsevier Inc. All rights reserved.
Functional annotation from the genome sequence of the giant panda.
Huo, Tong; Zhang, Yinjie; Lin, Jianping
2012-08-01
The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided into two groups: 20,179 proteins whose functions can be predicted by GeneScan formed the known-function group, whereas 822 proteins whose functions cannot be predicted by GeneScan comprised the unknown-function group. For the known-function group, we further classified the proteins by molecular function, biological process, cellular component, and tissue specificity. For the unknown-function group, we developed a strategy in which the proteins were filtered by cross-Blast to identify panda-specific proteins under the assumption that proteins related to the panda-specific traits in the unknown-function group exist. After this filtering procedure, we identified 32 proteins (2 of which are membrane proteins) specific to the giant panda genome as compared against the dog and horse genomes. Based on their amino acid sequences, these 32 proteins were further analyzed by functional classification using SVM-Prot, motif prediction using MyHits, and interacting protein prediction using the Database of Interacting Proteins. Nineteen proteins were predicted to be zinc-binding proteins, thus affecting the activities of nucleic acids. The 32 panda-specific proteins will be further investigated by structural and functional analysis.
Eronen, Lauri; Toivonen, Hannu
2012-06-06
Biological databases contain large amounts of data concerning the functions and associations of genes and proteins. Integration of data from several such databases into a single repository can aid the discovery of previously unknown connections spanning multiple types of relationships and databases. Biomine is a system that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. We present Biomine and evaluate its performance in link prediction, where the goal is to predict pairs of nodes that will be connected in the future, based on current data. In particular, we formulate protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph. We consider and experiment with several such measures, and perform a parameter optimization procedure where different edge types are weighted to optimize link prediction accuracy. We also propose a novel method for disease-gene prioritization, defined as finding a subset of candidate genes that cluster together in the graph. We experimentally evaluate Biomine by predicting future annotations in the source databases and prioritizing lists of putative disease genes. The experimental results show that Biomine has strong potential for predicting links when a set of selected candidate links is available. The predictions obtained using the entire Biomine dataset are shown to clearly outperform ones obtained using any single source of data alone, when different types of links are suitably weighted. In the gene prioritization task, an established reference set of disease-associated genes is useful, but the results show that under favorable conditions, Biomine can also perform well when no such information is available.The Biomine system is a proof of concept. Its current version contains 1.1 million entities and 8.1 million relations between them, with focus on human genetics. Some of its functionalities are available in a public query interface at http://biomine.cs.helsinki.fi, allowing searching for and visualizing connections between given biological entities.
Rose, Annkatrin; Manikantan, Sankaraganesh; Schraegle, Shannon J.; Maloy, Michael A.; Stahlberg, Eric A.; Meier, Iris
2004-01-01
Increasing evidence demonstrates the importance of long coiled-coil proteins for the spatial organization of cellular processes. Although several protein classes with long coiled-coil domains have been studied in animals and yeast, our knowledge about plant long coiled-coil proteins is very limited. The repeat nature of the coiled-coil sequence motif often prevents the simple identification of homologs of animal coiled-coil proteins by generic sequence similarity searches. As a consequence, counterparts of many animal proteins with long coiled-coil domains, like lamins, golgins, or microtubule organization center components, have not been identified yet in plants. Here, all Arabidopsis proteins predicted to contain long stretches of coiled-coil domains were identified by applying the algorithm MultiCoil to a genome-wide screen. A searchable protein database, ARABI-COIL (http://www.coiled-coil.org/arabidopsis), was established that integrates information on number, size, and position of predicted coiled-coil domains with subcellular localization signals, transmembrane domains, and available functional annotations. ARABI-COIL serves as a tool to sort and browse Arabidopsis long coiled-coil proteins to facilitate the identification and selection of candidate proteins of potential interest for specific research areas. Using the database, candidate proteins were identified for Arabidopsis membrane-bound, nuclear, and organellar long coiled-coil proteins. PMID:15020757
Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely
2013-02-05
The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.
Concomitant prediction of function and fold at the domain level with GO-based profiles.
Lopez, Daniel; Pazos, Florencio
2013-01-01
Predicting the function of newly sequenced proteins is crucial due to the pace at which these raw sequences are being obtained. Almost all resources for predicting protein function assign functional terms to whole chains, and do not distinguish which particular domain is responsible for the allocated function. This is not a limitation of the methodologies themselves but it is due to the fact that in the databases of functional annotations these methods use for transferring functional terms to new proteins, these annotations are done on a whole-chain basis. Nevertheless, domains are the basic evolutionary and often functional units of proteins. In many cases, the domains of a protein chain have distinct molecular functions, independent from each other. For that reason resources with functional annotations at the domain level, as well as methodologies for predicting function for individual domains adapted to these resources are required.We present a methodology for predicting the molecular function of individual domains, based on a previously developed database of functional annotations at the domain level. The approach, which we show outperforms a standard method based on sequence searches in assigning function, concomitantly predicts the structural fold of the domains and can give hints on the functionally important residues associated to the predicted function.
Elguoshy, Amr; Hirao, Yoshitoshi; Xu, Bo; Saito, Suguru; Quadery, Ali F; Yamamoto, Keiko; Mitsui, Toshiaki; Yamamoto, Tadashi
2017-12-01
In an attempt to complete human proteome project (HPP), Chromosome-Centric Human Proteome Project (C-HPP) launched the journey of missing protein (MP) investigation in 2012. However, 2579 and 572 protein entries in the neXtProt (2017-1) are still considered as missing and uncertain proteins, respectively. Thus, in this study, we proposed a pipeline to analyze, identify, and validate human missing and uncertain proteins in open-access transcriptomics and proteomics databases. Analysis of RNA expression pattern for missing proteins in Human protein Atlas showed that 28% of them, such as Olfactory receptor 1I1 ( O60431 ), had no RNA expression, suggesting the necessity to consider uncommon tissues for transcriptomic and proteomic studies. Interestingly, 21% had elevated expression level in a particular tissue (tissue-enriched proteins), indicating the importance of targeting such proteins in their elevated tissues. Additionally, the analysis of RNA expression level for missing proteins showed that 95% had no or low expression level (0-10 transcripts per million), indicating that low abundance is one of the major obstacles facing the detection of missing proteins. Moreover, missing proteins are predicted to generate fewer predicted unique tryptic peptides than the identified proteins. Searching for these predicted unique tryptic peptides that correspond to missing and uncertain proteins in the experimental peptide list of open-access MS-based databases (PA, GPM) resulted in the detection of 402 missing and 19 uncertain proteins with at least two unique peptides (≥9 aa) at <(5 × 10 -4 )% FDR. Finally, matching the native spectra for the experimentally detected peptides with their SRMAtlas synthetic counterparts at three transition sources (QQQ, QTOF, QTRAP) gave us an opportunity to validate 41 missing proteins by ≥2 proteotypic peptides.
Rice proteome database: a step toward functional analysis of the rice genome.
Komatsu, Setsuko
2005-09-01
The technique of proteome analysis using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) has the power to monitor global changes that occur in the protein complement of tissues and subcellular compartments. In this study, the proteins of rice were cataloged, a rice proteome database was constructed, and a functional characterization of some of the identified proteins was undertaken. Proteins extracted from various tissues and subcellular compartments in rice were separated by 2D-PAGE and an image analyzer was used to construct a display of the proteins. The Rice Proteome Database contains 23 reference maps based on 2D-PAGE of proteins from various rice tissues and subcellular compartments. These reference maps comprise 13129 identified proteins, and the amino acid sequences of 5092 proteins are entered in the database. Major proteins involved in growth or stress responses were identified using the proteome approach. Some of these proteins, including a beta-tubulin, calreticulin, and ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice, have unexpected functions. The information obtained from the Rice Proteome Database will aid in cloning the genes for and predicting the function of unknown proteins.
Detection of functionally important regions in "hypothetical proteins" of known structure.
Nimrod, Guy; Schushan, Maya; Steinberg, David M; Ben-Tal, Nir
2008-12-10
Structural genomics initiatives provide ample structures of "hypothetical proteins" (i.e., proteins of unknown function) at an ever increasing rate. However, without function annotation, this structural goldmine is of little use to biologists who are interested in particular molecular systems. To this end, we used (an improved version of) the PatchFinder algorithm for the detection of functional regions on the protein surface, which could mediate its interactions with, e.g., substrates, ligands, and other proteins. Examination, using a data set of annotated proteins, showed that PatchFinder outperforms similar methods. We collected 757 structures of hypothetical proteins and their predicted functional regions in the N-Func database. Inspection of several of these regions demonstrated that they are useful for function prediction. For example, we suggested an interprotein interface and a putative nucleotide-binding site. A web-server implementation of PatchFinder and the N-Func database are available at http://patchfinder.tau.ac.il/.
SinEx DB: a database for single exon coding sequences in mammalian genomes.
Jorquera, Roddy; Ortiz, Rodrigo; Ossandon, F; Cárdenas, Juan Pablo; Sepúlveda, Rene; González, Carolina; Holmes, David S
2016-01-01
Eukaryotic genes are typically interrupted by intragenic, noncoding sequences termed introns. However, some genes lack introns in their coding sequence (CDS) and are generally known as 'single exon genes' (SEGs). In this work, a SEG is defined as a nuclear, protein-coding gene that lacks introns in its CDS. Whereas, many public databases of Eukaryotic multi-exon genes are available, there are only two specialized databases for SEGs. The present work addresses the need for a more extensive and diverse database by creating SinEx DB, a publicly available, searchable database of predicted SEGs from 10 completely sequenced mammalian genomes including human. SinEx DB houses the DNA and protein sequence information of these SEGs and includes their functional predictions (KOG) and the relative distribution of these functions within species. The information is stored in a relational database built with My SQL Server 5.1.33 and the complete dataset of SEG sequences and their functional predictions are available for downloading. SinEx DB can be interrogated by: (i) a browsable phylogenetic schema, (ii) carrying out BLAST searches to the in-house SinEx DB of SEGs and (iii) via an advanced search mode in which the database can be searched by key words and any combination of searches by species and predicted functions. SinEx DB provides a rich source of information for advancing our understanding of the evolution and function of SEGs.Database URL: www.sinex.cl. © The Author(s) 2016. Published by Oxford University Press.
Chen, Mingchen; Lin, Xingcheng; Zheng, Weihua; Onuchic, José N; Wolynes, Peter G
2016-08-25
The associative memory, water mediated, structure and energy model (AWSEM) is a coarse-grained force field with transferable tertiary interactions that incorporates local in sequence energetic biases using bioinformatically derived structural information about peptide fragments with locally similar sequences that we call memories. The memory information from the protein data bank (PDB) database guides proper protein folding. The structural information about available sequences in the database varies in quality and can sometimes lead to frustrated free energy landscapes locally. One way out of this difficulty is to construct the input fragment memory information from all-atom simulations of portions of the complete polypeptide chain. In this paper, we investigate this approach first put forward by Kwac and Wolynes in a more complete way by studying the structure prediction capabilities of this approach for six α-helical proteins. This scheme which we call the atomistic associative memory, water mediated, structure and energy model (AAWSEM) amounts to an ab initio protein structure prediction method that starts from the ground up without using bioinformatic input. The free energy profiles from AAWSEM show that atomistic fragment memories are sufficient to guide the correct folding when tertiary forces are included. AAWSEM combines the efficiency of coarse-grained simulations on the full protein level with the local structural accuracy achievable from all-atom simulations of only parts of a large protein. The results suggest that a hybrid use of atomistic fragment memory and database memory in structural predictions may well be optimal for many practical applications.
ClubSub-P: Cluster-Based Subcellular Localization Prediction for Gram-Negative Bacteria and Archaea
Paramasivam, Nagarajan; Linke, Dirk
2011-01-01
The subcellular localization (SCL) of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned SCLs. This and other problems in SCL prediction, such as the relatively high false-positive and false-negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing SCL prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false-positive and false-negative predictions. ClubSub-P can assign the SCL of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the SCL prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/ PMID:22073040
Exploring Short Linear Motifs Using the ELM Database and Tools.
Gouw, Marc; Sámano-Sánchez, Hugo; Van Roey, Kim; Diella, Francesca; Gibson, Toby J; Dinkel, Holger
2017-06-27
The Eukaryotic Linear Motif (ELM) resource is dedicated to the characterization and prediction of short linear motifs (SLiMs). SLiMs are compact, degenerate peptide segments found in many proteins and essential to almost all cellular processes. However, despite their abundance, SLiMs remain largely uncharacterized. The ELM database is a collection of manually annotated SLiM instances curated from experimental literature. In this article we illustrate how to browse and search the database for curated SLiM data, and cover the different types of data integrated in the resource. We also cover how to use this resource in order to predict SLiMs in known as well as novel proteins, and how to interpret the results generated by the ELM prediction pipeline. The ELM database is a very rich resource, and in the following protocols we give helpful examples to demonstrate how this knowledge can be used to improve your own research. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Detection of alternative splice variants at the proteome level in Aspergillus flavus.
Chang, Kung-Yen; Georgianna, D Ryan; Heber, Steffen; Payne, Gary A; Muddiman, David C
2010-03-05
Identification of proteins from proteolytic peptides or intact proteins plays an essential role in proteomics. Researchers use search engines to match the acquired peptide sequences to the target proteins. However, search engines depend on protein databases to provide candidates for consideration. Alternative splicing (AS), the mechanism where the exon of pre-mRNAs can be spliced and rearranged to generate distinct mRNA and therefore protein variants, enable higher eukaryotic organisms, with only a limited number of genes, to have the requisite complexity and diversity at the proteome level. Multiple alternative isoforms from one gene often share common segments of sequences. However, many protein databases only include a limited number of isoforms to keep minimal redundancy. As a result, the database search might not identify a target protein even with high quality tandem MS data and accurate intact precursor ion mass. We computationally predicted an exhaustive list of putative isoforms of Aspergillus flavus proteins from 20 371 expressed sequence tags to investigate whether an alternative splicing protein database can assign a greater proportion of mass spectrometry data. The newly constructed AS database provided 9807 new alternatively spliced variants in addition to 12 832 previously annotated proteins. The searches of the existing tandem MS spectra data set using the AS database identified 29 new proteins encoded by 26 genes. Nine fungal genes appeared to have multiple protein isoforms. In addition to the discovery of splice variants, AS database also showed potential to improve genome annotation. In summary, the introduction of an alternative splicing database helps identify more proteins and unveils more information about a proteome.
FARME DB: a functional antibiotic resistance element database
Wallace, James C.; Port, Jesse A.; Smith, Marissa N.; Faustman, Elaine M.
2017-01-01
Antibiotic resistance (AR) is a major global public health threat but few resources exist that catalog AR genes outside of a clinical context. Current AR sequence databases are assembled almost exclusively from genomic sequences derived from clinical bacterial isolates and thus do not include many microbial sequences derived from environmental samples that confer resistance in functional metagenomic studies. These environmental metagenomic sequences often show little or no similarity to AR sequences from clinical isolates using standard classification criteria. In addition, existing AR databases provide no information about flanking sequences containing regulatory or mobile genetic elements. To help address this issue, we created an annotated database of DNA and protein sequences derived exclusively from environmental metagenomic sequences showing AR in laboratory experiments. Our Functional Antibiotic Resistant Metagenomic Element (FARME) database is a compilation of publically available DNA sequences and predicted protein sequences conferring AR as well as regulatory elements, mobile genetic elements and predicted proteins flanking antibiotic resistant genes. FARME is the first database to focus on functional metagenomic AR gene elements and provides a resource to better understand AR in the 99% of bacteria which cannot be cultured and the relationship between environmental AR sequences and antibiotic resistant genes derived from cultured isolates. Database URL: http://staff.washington.edu/jwallace/farme PMID:28077567
García-Jiménez, Beatriz; Pons, Tirso; Sanchis, Araceli; Valencia, Alfonso
2014-01-01
Biological pathways are important elements of systems biology and in the past decade, an increasing number of pathway databases have been set up to document the growing understanding of complex cellular processes. Although more genome-sequence data are becoming available, a large fraction of it remains functionally uncharacterized. Thus, it is important to be able to predict the mapping of poorly annotated proteins to original pathway models. We have developed a Relational Learning-based Extension (RLE) system to investigate pathway membership through a function prediction approach that mainly relies on combinations of simple properties attributed to each protein. RLE searches for proteins with molecular similarities to specific pathway components. Using RLE, we associated 383 uncharacterized proteins to 28 pre-defined human Reactome pathways, demonstrating relative confidence after proper evaluation. Indeed, in specific cases manual inspection of the database annotations and the related literature supported the proposed classifications. Examples of possible additional components of the Electron transport system, Telomere maintenance and Integrin cell surface interactions pathways are discussed in detail. All the human predicted proteins in the 2009 and 2012 releases 30 and 40 of Reactome are available at http://rle.bioinfo.cnio.es.
Li, Haiquan; Dai, Xinbin; Zhao, Xuechun
2008-05-01
Membrane transport proteins play a crucial role in the import and export of ions, small molecules or macromolecules across biological membranes. Currently, there are a limited number of published computational tools which enable the systematic discovery and categorization of transporters prior to costly experimental validation. To approach this problem, we utilized a nearest neighbor method which seamlessly integrates homologous search and topological analysis into a machine-learning framework. Our approach satisfactorily distinguished 484 transporter families in the Transporter Classification Database, a curated and representative database for transporters. A five-fold cross-validation on the database achieved a positive classification rate of 72.3% on average. Furthermore, this method successfully detected transporters in seven model and four non-model organisms, ranging from archaean to mammalian species. A preliminary literature-based validation has cross-validated 65.8% of our predictions on the 11 organisms, including 55.9% of our predictions overlapping with 83.6% of the predicted transporters in TransportDB.
Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.
Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ohue, Masahito; Akiyama, Yutaka
Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein-protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein-protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein-protein interactions that form protein complexes.
The Protein-DNA Interface database
2010-01-01
The Protein-DNA Interface database (PDIdb) is a repository containing relevant structural information of Protein-DNA complexes solved by X-ray crystallography and available at the Protein Data Bank. The database includes a simple functional classification of the protein-DNA complexes that consists of three hierarchical levels: Class, Type and Subtype. This classification has been defined and manually curated by humans based on the information gathered from several sources that include PDB, PubMed, CATH, SCOP and COPS. The current version of the database contains only structures with resolution of 2.5 Å or higher, accounting for a total of 922 entries. The major aim of this database is to contribute to the understanding of the main rules that underlie the molecular recognition process between DNA and proteins. To this end, the database is focused on each specific atomic interface rather than on the separated binding partners. Therefore, each entry in this database consists of a single and independent protein-DNA interface. We hope that PDIdb will be useful to many researchers working in fields such as the prediction of transcription factor binding sites in DNA, the study of specificity determinants that mediate enzyme recognition events, engineering and design of new DNA binding proteins with distinct binding specificity and affinity, among others. Finally, due to its friendly and easy-to-use web interface, we hope that PDIdb will also serve educational and teaching purposes. PMID:20482798
The Protein-DNA Interface database.
Norambuena, Tomás; Melo, Francisco
2010-05-18
The Protein-DNA Interface database (PDIdb) is a repository containing relevant structural information of Protein-DNA complexes solved by X-ray crystallography and available at the Protein Data Bank. The database includes a simple functional classification of the protein-DNA complexes that consists of three hierarchical levels: Class, Type and Subtype. This classification has been defined and manually curated by humans based on the information gathered from several sources that include PDB, PubMed, CATH, SCOP and COPS. The current version of the database contains only structures with resolution of 2.5 A or higher, accounting for a total of 922 entries. The major aim of this database is to contribute to the understanding of the main rules that underlie the molecular recognition process between DNA and proteins. To this end, the database is focused on each specific atomic interface rather than on the separated binding partners. Therefore, each entry in this database consists of a single and independent protein-DNA interface.We hope that PDIdb will be useful to many researchers working in fields such as the prediction of transcription factor binding sites in DNA, the study of specificity determinants that mediate enzyme recognition events, engineering and design of new DNA binding proteins with distinct binding specificity and affinity, among others. Finally, due to its friendly and easy-to-use web interface, we hope that PDIdb will also serve educational and teaching purposes.
Rice proteome analysis: a step toward functional analysis of the rice genome.
Komatsu, Setsuko; Tanaka, Naoki
2005-03-01
The technique of proteome analysis using 2-DE has the power to monitor global changes that occur in the protein complement of tissues and subcellular compartments. In this review, we describe construction of the rice proteome database, the cataloging of rice proteins, and the functional characterization of some of the proteins identified. Initially, proteins extracted from various tissues and organelles were separated by 2-DE and an image analyzer was used to construct a display or reference map of the proteins. The rice proteome database currently contains 23 reference maps based on 2-DE of proteins from different rice tissues and subcellular compartments. These reference maps comprise 13 129 rice proteins, and the amino acid sequences of 5092 of these proteins are entered in the database. Major proteins involved in growth or stress responses have been identified by using a proteomics approach and some of these proteins have unique functions. Furthermore, initial work has also begun on analyzing the phosphoproteome and protein-protein interactions in rice. The information obtained from the rice proteome database will aid in the molecular cloning of rice genes and in predicting the function of unknown proteins.
Prediction of beta-turns in proteins using the first-order Markov models.
Lin, Thy-Hou; Wang, Ging-Ming; Wang, Yen-Tseng
2002-01-01
We present a method based on the first-order Markov models for predicting simple beta-turns and loops containing multiple turns in proteins. Sequences of 338 proteins in a database are divided using the published turn criteria into the following three regions, namely, the turn, the boundary, and the nonturn ones. A transition probability matrix is constructed for either the turn or the nonturn region using the weighted transition probabilities computed for dipeptides identified from each region. There are two such matrices constructed for the boundary region since the transition probabilities for dipeptides immediately preceding or following a turn are different. The window used for scanning a protein sequence from amino (N-) to carboxyl (C-) terminal is a hexapeptide since the transition probability computed for a turn tetrapeptide is capped at both the N- and C- termini with a boundary transition probability indexed respectively from the two boundary transition matrices. A sum of the averaged product of the transition probabilities of all the hexapeptides involving each residue is computed. This is then weighted with a probability computed from assuming that all the hexapeptides are from the nonturn region to give the final prediction quantity. Both simple beta-turns and loops containing multiple turns in a protein are then identified by the rising of the prediction quantity computed. The performance of the prediction scheme or the percentage (%) of correct prediction is evaluated through computation of Matthews correlation coefficients for each protein predicted. It is found that the prediction method is capable of giving prediction results with better correlation between the percent of correct prediction and the Matthews correlation coefficients for a group of test proteins as compared with those predicted using some secondary structural prediction methods. The prediction accuracy for about 40% of proteins in the database or 50% of proteins in the test set is better than 70%. Such a percentage for the test set is reduced to 30 if the structures of all the proteins in the set are treated as unknown.
Evaluating Functional Annotations of Enzymes Using the Gene Ontology.
Holliday, Gemma L; Davidson, Rebecca; Akiva, Eyal; Babbitt, Patricia C
2017-01-01
The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.
DIMA 3.0: Domain Interaction Map.
Luo, Qibin; Pagel, Philipp; Vilne, Baiba; Frishman, Dmitrij
2011-01-01
Domain Interaction MAp (DIMA, available at http://webclu.bio.wzw.tum.de/dima) is a database of predicted and known interactions between protein domains. It integrates 5807 structurally known interactions imported from the iPfam and 3did databases and 46,900 domain interactions predicted by four computational methods: domain phylogenetic profiling, domain pair exclusion algorithm correlated mutations and domain interaction prediction in a discriminative way. Additionally predictions are filtered to exclude those domain pairs that are reported as non-interacting by the Negatome database. The DIMA Web site allows to calculate domain interaction networks either for a domain of interest or for entire organisms, and to explore them interactively using the Flash-based Cytoscape Web software.
The Functional Human C-Terminome
Hedden, Michael; Lyon, Kenneth F.; Brooks, Steven B.; David, Roxanne P.; Limtong, Justin; Newsome, Jacklyn M.; Novakovic, Nemanja; Rajasekaran, Sanguthevar; Thapar, Vishal; Williams, Sean R.; Schiller, Martin R.
2016-01-01
All translated proteins end with a carboxylic acid commonly called the C-terminus. Many short functional sequences (minimotifs) are located on or immediately proximal to the C-terminus. However, information about the function of protein C-termini has not been consolidated into a single source. Here, we built a new “C-terminome” database and web system focused on human proteins. Approximately 3,600 C-termini in the human proteome have a minimotif with an established molecular function. To help evaluate the function of the remaining C-termini in the human proteome, we inferred minimotifs identified by experimentation in rodent cells, predicted minimotifs based upon consensus sequence matches, and predicted novel highly repetitive sequences in C-termini. Predictions can be ranked by enrichment scores or Gene Evolutionary Rate Profiling (GERP) scores, a measurement of evolutionary constraint. By searching for new anchored sequences on the last 10 amino acids of proteins in the human proteome with lengths between 3–10 residues and up to 5 degenerate positions in the consensus sequences, we have identified new consensus sequences that predict instances in the majority of human genes. All of this information is consolidated into a database that can be accessed through a C-terminome web system with search and browse functions for minimotifs and human proteins. A known consensus sequence-based predicted function is assigned to nearly half the proteins in the human proteome. Weblink: http://cterminome.bio-toolkit.com. PMID:27050421
Meta4: a web application for sharing and annotating metagenomic gene predictions using web services.
Richardson, Emily J; Escalettes, Franck; Fotheringham, Ian; Wallace, Robert J; Watson, Mick
2013-01-01
Whole-genome shotgun metagenomics experiments produce DNA sequence data from entire ecosystems, and provide a huge amount of novel information. Gene discovery projects require up-to-date information about sequence homology and domain structure for millions of predicted proteins to be presented in a simple, easy-to-use system. There is a lack of simple, open, flexible tools that allow the rapid sharing of metagenomics datasets with collaborators in a format they can easily interrogate. We present Meta4, a flexible and extensible web application that can be used to share and annotate metagenomic gene predictions. Proteins and predicted domains are stored in a simple relational database, with a dynamic front-end which displays the results in an internet browser. Web services are used to provide up-to-date information about the proteins from homology searches against public databases. Information about Meta4 can be found on the project website, code is available on Github, a cloud image is available, and an example implementation can be seen at.
Rebelling for a Reason: Protein Structural “Outliers”
Arumugam, Gandhimathi; Nair, Anu G.; Hariharaputran, Sridhar; Ramanathan, Sowdhamini
2013-01-01
Analysis of structural variation in domain superfamilies can reveal constraints in protein evolution which aids protein structure prediction and classification. Structure-based sequence alignment of distantly related proteins, organized in PASS2 database, provides clues about structurally conserved regions among different functional families. Some superfamily members show large structural differences which are functionally relevant. This paper analyses the impact of structural divergence on function for multi-member superfamilies, selected from the PASS2 superfamily alignment database. Functional annotations within superfamilies, with structural outliers or ‘rebels’, are discussed in the context of structural variations. Overall, these data reinforce the idea that functional similarities cannot be extrapolated from mere structural conservation. The implication for fold-function prediction is that the functional annotations can only be inherited with very careful consideration, especially at low sequence identities. PMID:24073209
Defining and predicting structurally conserved regions in protein superfamilies
Huang, Ivan K.; Grishin, Nick V.
2013-01-01
Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics Online PMID:23193223
FRAGSION: ultra-fast protein fragment library generation by IOHMM sampling.
Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin
2016-07-01
Speed, accuracy and robustness of building protein fragment library have important implications in de novo protein structure prediction since fragment-based methods are one of the most successful approaches in template-free modeling (FM). Majority of the existing fragment detection methods rely on database-driven search strategies to identify candidate fragments, which are inherently time-consuming and often hinder the possibility to locate longer fragments due to the limited sizes of databases. Also, it is difficult to alleviate the effect of noisy sequence-based predicted features such as secondary structures on the quality of fragment. Here, we present FRAGSION, a database-free method to efficiently generate protein fragment library by sampling from an Input-Output Hidden Markov Model. FRAGSION offers some unique features compared to existing approaches in that it (i) is lightning-fast, consuming only few seconds of CPU time to generate fragment library for a protein of typical length (300 residues); (ii) can generate dynamic-size fragments of any length (even for the whole protein sequence) and (iii) offers ways to handle noise in predicted secondary structure during fragment sampling. On a FM dataset from the most recent Critical Assessment of Structure Prediction, we demonstrate that FGRAGSION provides advantages over the state-of-the-art fragment picking protocol of ROSETTA suite by speeding up computation by several orders of magnitude while achieving comparable performance in fragment quality. Source code and executable versions of FRAGSION for Linux and MacOS is freely available to non-commercial users at http://sysbio.rnet.missouri.edu/FRAGSION/ It is bundled with a manual and example data. chengji@missouri.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Protein Function Prediction: Problems and Pitfalls.
Pearson, William R
2015-09-03
The characterization of new genomes based on their protein sets has been revolutionized by new sequencing technologies, but biologists seeking to exploit new sequence information are often frustrated by the challenges associated with accurately assigning biological functions to newly identified proteins. Here, we highlight some of the challenges in functional inference from sequence similarity. Investigators can improve the accuracy of function prediction by (1) being conservative about the evolutionary distance to a protein of known function; (2) considering the ambiguous meaning of "functional similarity," and (3) being aware of the limitations of annotations in functional databases. Protein function prediction does not offer "one-size-fits-all" solutions. Prediction strategies work better when the idiosyncrasies of function and functional annotation are better understood. Copyright © 2015 John Wiley & Sons, Inc.
von Grotthuss, Marcin; Plewczynski, Dariusz; Ginalski, Krzysztof; Rychlewski, Leszek; Shakhnovich, Eugene I
2006-02-06
The number of protein structures from structural genomics centers dramatically increases in the Protein Data Bank (PDB). Many of these structures are functionally unannotated because they have no sequence similarity to proteins of known function. However, it is possible to successfully infer function using only structural similarity. Here we present the PDB-UF database, a web-accessible collection of predictions of enzymatic properties using structure-function relationship. The assignments were conducted for three-dimensional protein structures of unknown function that come from structural genomics initiatives. We show that 4 hypothetical proteins (with PDB accession codes: 1VH0, 1NS5, 1O6D, and 1TO0), for which standard BLAST tools such as PSI-BLAST or RPS-BLAST failed to assign any function, are probably methyltransferase enzymes. We suggest that the structure-based prediction of an EC number should be conducted having the different similarity score cutoff for different protein folds. Moreover, performing the annotation using two different algorithms can reduce the rate of false positive assignments. We believe, that the presented web-based repository will help to decrease the number of protein structures that have functions marked as "unknown" in the PDB file. http://paradox.harvard.edu/PDB-UF and http://bioinfo.pl/PDB-UF.
Lua, Rhonald C; Wilson, Stephen J; Konecki, Daniel M; Wilkins, Angela D; Venner, Eric; Morgan, Daniel H; Lichtarge, Olivier
2016-01-04
The structure and function of proteins underlie most aspects of biology and their mutational perturbations often cause disease. To identify the molecular determinants of function as well as targets for drugs, it is central to characterize the important residues and how they cluster to form functional sites. The Evolutionary Trace (ET) achieves this by ranking the functional and structural importance of the protein sequence positions. ET uses evolutionary distances to estimate functional distances and correlates genotype variations with those in the fitness phenotype. Thus, ET ranks are worse for sequence positions that vary among evolutionarily closer homologs but better for positions that vary mostly among distant homologs. This approach identifies functional determinants, predicts function, guides the mutational redesign of functional and allosteric specificity, and interprets the action of coding sequence variations in proteins, people and populations. Now, the UET database offers pre-computed ET analyses for the protein structure databank, and on-the-fly analysis of any protein sequence. A web interface retrieves ET rankings of sequence positions and maps results to a structure to identify functionally important regions. This UET database integrates several ways of viewing the results on the protein sequence or structure and can be found at http://mammoth.bcm.tmc.edu/uet/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database
Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan
2009-01-01
In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513. PMID:21347158
LigSearch: a knowledge-based web server to identify likely ligands for a protein target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Tjaart A. P. de; Laskowski, Roman A.; Duban, Mark-Eugene
LigSearch is a web server for identifying ligands likely to bind to a given protein. Identifying which ligands might bind to a protein before crystallization trials could provide a significant saving in time and resources. LigSearch, a web server aimed at predicting ligands that might bind to and stabilize a given protein, has been developed. Using a protein sequence and/or structure, the system searches against a variety of databases, combining available knowledge, and provides a clustered and ranked output of possible ligands. LigSearch can be accessed at http://www.ebi.ac.uk/thornton-srv/databases/LigSearch.
LOCATE: a mouse protein subcellular localization database
Fink, J. Lynn; Aturaliya, Rajith N.; Davis, Melissa J.; Zhang, Fasheng; Hanson, Kelly; Teasdale, Melvena S.; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Teasdale, Rohan D.
2006-01-01
We present here LOCATE, a curated, web-accessible database that houses data describing the membrane organization and subcellular localization of proteins from the FANTOM3 Isoform Protein Sequence set. Membrane organization is predicted by the high-throughput, computational pipeline MemO. The subcellular locations of selected proteins from this set were determined by a high-throughput, immunofluorescence-based assay and by manually reviewing >1700 peer-reviewed publications. LOCATE represents the first effort to catalogue the experimentally verified subcellular location and membrane organization of mammalian proteins using a high-throughput approach and provides localization data for ∼40% of the mouse proteome. It is available at . PMID:16381849
EST-PAC a web package for EST annotation and protein sequence prediction
Strahm, Yvan; Powell, David; Lefèvre, Christophe
2006-01-01
With the decreasing cost of DNA sequencing technology and the vast diversity of biological resources, researchers increasingly face the basic challenge of annotating a larger number of expressed sequences tags (EST) from a variety of species. This typically consists of a series of repetitive tasks, which should be automated and easy to use. The results of these annotation tasks need to be stored and organized in a consistent way. All these operations should be self-installing, platform independent, easy to customize and amenable to using distributed bioinformatics resources available on the Internet. In order to address these issues, we present EST-PAC a web oriented multi-platform software package for expressed sequences tag (EST) annotation. EST-PAC provides a solution for the administration of EST and protein sequence annotations accessible through a web interface. Three aspects of EST annotation are automated: 1) searching local or remote biological databases for sequence similarities using Blast services, 2) predicting protein coding sequence from EST data and, 3) annotating predicted protein sequences with functional domain predictions. In practice, EST-PAC integrates the BLASTALL suite, EST-Scan2 and HMMER in a relational database system accessible through a simple web interface. EST-PAC also takes advantage of the relational database to allow consistent storage, powerful queries of results and, management of the annotation process. The system allows users to customize annotation strategies and provides an open-source data-management environment for research and education in bioinformatics. PMID:17147782
Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi
2017-06-23
The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from genome sequences, though there are over lapped proteins. Based on the demonstrated application of data stored in the database for functional analyses, it is suggested that these data will be useful for analyses of biological mechanisms in soybean. Furthermore, coupled with recent advances in information and communication technology, the usefulness of this database would increase in the analyses of biological mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Viral Genome DataBase: storing and analyzing genes and proteins from complete viral genomes.
Hiscock, D; Upton, C
2000-05-01
The Viral Genome DataBase (VGDB) contains detailed information of the genes and predicted protein sequences from 15 completely sequenced genomes of large (&100 kb) viruses (2847 genes). The data that is stored includes DNA sequence, protein sequence, GenBank and user-entered notes, molecular weight (MW), isoelectric point (pI), amino acid content, A + T%, nucleotide frequency, dinucleotide frequency and codon use. The VGDB is a mySQL database with a user-friendly JAVA GUI. Results of queries can be easily sorted by any of the individual parameters. The software and additional figures and information are available at http://athena.bioc.uvic.ca/genomes/index.html .
MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins.
Necci, Marco; Piovesan, Damiano; Dosztányi, Zsuzsanna; Tosatto, Silvio C E
2017-05-01
Intrinsic disorder (ID) is established as an important feature of protein sequences. Its use in proteome annotation is however hampered by the availability of many methods with similar performance at the single residue level, which have mostly not been optimized to predict long ID regions of size comparable to domains. Here, we have focused on providing a single consensus-based prediction, MobiDB-lite, optimized for highly specific (i.e. few false positive) predictions of long disorder. The method uses eight different predictors to derive a consensus which is then filtered for spurious short predictions. Consensus prediction is shown to outperform the single methods when annotating long ID regions. MobiDB-lite can be useful in large-scale annotation scenarios and has indeed already been integrated in the MobiDB, DisProt and InterPro databases. MobiDB-lite is available as part of the MobiDB database from URL: http://mobidb.bio.unipd.it/. An executable can be downloaded from URL: http://protein.bio.unipd.it/mobidblite/. silvio.tosatto@unipd.it. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
HotRegion: a database of predicted hot spot clusters.
Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem
2012-01-01
Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.
When a domain isn’t a domain, and why it’s important to properly filter proteins in databases
Towse, Clare-Louise; Daggett, Valerie
2013-01-01
Summary Membership in a protein domain database does not a domain make; a feature we realized when generating a consensus view of protein fold space with our Consensus Domain Dictionary (CDD). This dictionary was used to select representative structures for characterization of the protein dynameome: the Dynameomics initiative. Through this endeavor we rejected a surprising 40% of the 1695 folds in the CDD as being non-autonomous folding units. Although some of this was due to the challenges of grouping similar fold topologies, the dissonance between the cataloguing and structural qualification of protein domains remains surprising. Another potential factor is previously overlooked intrinsic disorder; predicted estimates suggest 40% of proteins to have either local or global disorder. One thing is clear, filtering a structural database and ensuring a consistent definition for protein domains is crucial, and caution is prescribed when generalizations of globular domains are drawn from unfiltered protein domain datasets. PMID:23108912
Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei
2016-01-01
Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851
Rattei, Thomas; Tischler, Patrick; Götz, Stefan; Jehl, Marc-André; Hoser, Jonathan; Arnold, Roland; Conesa, Ana; Mewes, Hans-Werner
2010-01-01
The prediction of protein function as well as the reconstruction of evolutionary genesis employing sequence comparison at large is still the most powerful tool in sequence analysis. Due to the exponential growth of the number of known protein sequences and the subsequent quadratic growth of the similarity matrix, the computation of the Similarity Matrix of Proteins (SIMAP) becomes a computational intensive task. The SIMAP database provides a comprehensive and up-to-date pre-calculation of the protein sequence similarity matrix, sequence-based features and sequence clusters. As of September 2009, SIMAP covers 48 million proteins and more than 23 million non-redundant sequences. Novel features of SIMAP include the expansion of the sequence space by including databases such as ENSEMBL as well as the integration of metagenomes based on their consistent processing and annotation. Furthermore, protein function predictions by Blast2GO are pre-calculated for all sequences in SIMAP and the data access and query functions have been improved. SIMAP assists biologists to query the up-to-date sequence space systematically and facilitates large-scale downstream projects in computational biology. Access to SIMAP is freely provided through the web portal for individuals (http://mips.gsf.de/simap/) and for programmatic access through DAS (http://webclu.bio.wzw.tum.de/das/) and Web-Service (http://mips.gsf.de/webservices/services/SimapService2.0?wsdl).
SNPdbe: constructing an nsSNP functional impacts database.
Schaefer, Christian; Meier, Alice; Rost, Burkhard; Bromberg, Yana
2012-02-15
Many existing databases annotate experimentally characterized single nucleotide polymorphisms (SNPs). Each non-synonymous SNP (nsSNP) changes one amino acid in the gene product (single amino acid substitution;SAAS). This change can either affect protein function or be neutral in that respect. Most polymorphisms lack experimental annotation of their functional impact. Here, we introduce SNPdbe-SNP database of effects, with predictions of computationally annotated functional impacts of SNPs. Database entries represent nsSNPs in dbSNP and 1000 Genomes collection, as well as variants from UniProt and PMD. SAASs come from >2600 organisms; 'human' being the most prevalent. The impact of each SAAS on protein function is predicted using the SNAP and SIFT algorithms and augmented with experimentally derived function/structure information and disease associations from PMD, OMIM and UniProt. SNPdbe is consistently updated and easily augmented with new sources of information. The database is available as an MySQL dump and via a web front end that allows searches with any combination of organism names, sequences and mutation IDs. http://www.rostlab.org/services/snpdbe.
Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases.
Berger, Seth I; Posner, Jeremy M; Ma'ayan, Avi
2007-10-04
In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes. Genes2Networks is a software system that integrates the content of ten mammalian interaction network datasets. Filtering techniques to prune low-confidence interactions were implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from "seed" lists of human Entrez gene symbols. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list. Genes2Networks is powerful web-based software that can help experimental biologists to interpret lists of genes and proteins such as those commonly produced through genomic and proteomic experiments, as well as lists of genes and proteins associated with disease processes. This system can be used to find relationships between genes and proteins from seed lists, and predict additional genes or proteins that may play key roles in common pathways or protein complexes.
SGP-1: Prediction and Validation of Homologous Genes Based on Sequence Alignments
Wiehe, Thomas; Gebauer-Jung, Steffi; Mitchell-Olds, Thomas; Guigó, Roderic
2001-01-01
Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors. PMID:11544202
Protein Structure and Function Prediction Using I-TASSER
Yang, Jianyi; Zhang, Yang
2016-01-01
I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386
Proteome-wide Subcellular Topologies of E. coli Polypeptides Database (STEPdb)*
Orfanoudaki, Georgia; Economou, Anastassios
2014-01-01
Cell compartmentalization serves both the isolation and the specialization of cell functions. After synthesis in the cytoplasm, over a third of all proteins are targeted to other subcellular compartments. Knowing how proteins are distributed within the cell and how they interact is a prerequisite for understanding it as a whole. Surface and secreted proteins are important pathogenicity determinants. Here we present the STEP database (STEPdb) that contains a comprehensive characterization of subcellular localization and topology of the complete proteome of Escherichia coli. Two widely used E. coli proteomes (K-12 and BL21) are presented organized into thirteen subcellular classes. STEPdb exploits the wealth of genetic, proteomic, biochemical, and functional information on protein localization, secretion, and targeting in E. coli, one of the best understood model organisms. Subcellular annotations were derived from a combination of bioinformatics prediction, proteomic, biochemical, functional, topological data and extensive literature re-examination that were refined through manual curation. Strong experimental support for the location of 1553 out of 4303 proteins was based on 426 articles and some experimental indications for another 526. Annotations were provided for another 320 proteins based on firm bioinformatic predictions. STEPdb is the first database that contains an extensive set of peripheral IM proteins (PIM proteins) and includes their graphical visualization into complexes, cellular functions, and interactions. It also summarizes all currently known protein export machineries of E. coli K-12 and pairs them, where available, with the secretory proteins that use them. It catalogs the Sec- and TAT-utilizing secretomes and summarizes their topological features such as signal peptides and transmembrane regions, transmembrane topologies and orientations. It also catalogs physicochemical and structural features that influence topology such as abundance, solubility, disorder, heat resistance, and structural domain families. Finally, STEPdb incorporates prediction tools for topology (TMHMM, SignalP, and Phobius) and disorder (IUPred) and implements the BLAST2STEP that performs protein homology searches against the STEPdb. PMID:25210196
A glimpse into the proteome of phototrophic bacterium Rhodobacter capsulatus.
Onder, Ozlem; Aygun-Sunar, Semra; Selamoglu, Nur; Daldal, Fevzi
2010-01-01
A first glimpse into the proteome of Rhodobacter capsulatus revealed more than 450 (with over 210 cytoplasmic and 185 extracytoplasmic known as well as 55 unknown) proteins that are identified with high degree of confidence using nLC-MS/MS analyses. The accumulated data provide a solid platform for ongoing efforts to establish the proteome of this species and the cellular locations of its constituents. They also indicate that at least 40 of the identified proteins, which were annotated in genome databases as unknown hypothetical proteins, correspond to predicted translation products that are indeed present in cells under the growth conditions used in this work. In addition, matching the identification labels of the proteins reported between the two available R. capsulatus genome databases (ERGO-light with RRCxxxxx and NT05 with NT05RCxxxx numbers) indicated that 11 such proteins are listed only in the latter database.
Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks
Reynolds, Sheila M.; Käll, Lukas; Riffle, Michael E.; Bilmes, Jeff A.; Noble, William Stafford
2008-01-01
Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by a previously published HMM, Phobius, and combines a signal peptide submodel with a transmembrane submodel. We introduce a two-stage DBN decoder that combines the power of posterior decoding with the grammar constraints of Viterbi-style decoding. Philius also provides protein type, segment, and topology confidence metrics to aid in the interpretation of the predictions. We report a relative improvement of 13% over Phobius in full-topology prediction accuracy on transmembrane proteins, and a sensitivity and specificity of 0.96 in detecting signal peptides. We also show that our confidence metrics correlate well with the observed precision. In addition, we have made predictions on all 6.3 million proteins in the Yeast Resource Center (YRC) database. This large-scale study provides an overall picture of the relative numbers of proteins that include a signal-peptide and/or one or more transmembrane segments as well as a valuable resource for the scientific community. All DBNs are implemented using the Graphical Models Toolkit. Source code for the models described here is available at http://noble.gs.washington.edu/proj/philius. A Philius Web server is available at http://www.yeastrc.org/philius, and the predictions on the YRC database are available at http://www.yeastrc.org/pdr. PMID:18989393
Drug search for leishmaniasis: a virtual screening approach by grid computing
NASA Astrophysics Data System (ADS)
Ochoa, Rodrigo; Watowich, Stanley J.; Flórez, Andrés; Mesa, Carol V.; Robledo, Sara M.; Muskus, Carlos
2016-07-01
The trypanosomatid protozoa Leishmania is endemic in 100 countries, with infections causing 2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen 2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.
Drug search for leishmaniasis: a virtual screening approach by grid computing.
Ochoa, Rodrigo; Watowich, Stanley J; Flórez, Andrés; Mesa, Carol V; Robledo, Sara M; Muskus, Carlos
2016-07-01
The trypanosomatid protozoa Leishmania is endemic in ~100 countries, with infections causing ~2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen ~2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.
The history of the CATH structural classification of protein domains.
Sillitoe, Ian; Dawson, Natalie; Thornton, Janet; Orengo, Christine
2015-12-01
This article presents a historical review of the protein structure classification database CATH. Together with the SCOP database, CATH remains comprehensive and reasonably up-to-date with the now more than 100,000 protein structures in the PDB. We review the expansion of the CATH and SCOP resources to capture predicted domain structures in the genome sequence data and to provide information on the likely functions of proteins mediated by their constituent domains. The establishment of comprehensive function annotation resources has also meant that domain families can be functionally annotated allowing insights into functional divergence and evolution within protein families. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Exploring Protein Function Using the Saccharomyces Genome Database.
Wong, Edith D
2017-01-01
Elucidating the function of individual proteins will help to create a comprehensive picture of cell biology, as well as shed light on human disease mechanisms, possible treatments, and cures. Due to its compact genome, and extensive history of experimentation and annotation, the budding yeast Saccharomyces cerevisiae is an ideal model organism in which to determine protein function. This information can then be leveraged to infer functions of human homologs. Despite the large amount of research and biological data about S. cerevisiae, many proteins' functions remain unknown. Here, we explore ways to use the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org ) to predict the function of proteins and gain insight into their roles in various cellular processes.
Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress
Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J.; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi
2016-01-01
Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions. PMID:26870056
Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress.
Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi
2016-01-01
Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.
Prediction of plant lncRNA by ensemble machine learning classifiers.
Simopoulos, Caitlin M A; Weretilnyk, Elizabeth A; Golding, G Brian
2018-05-02
In plants, long non-protein coding RNAs are believed to have essential roles in development and stress responses. However, relative to advances on discerning biological roles for long non-protein coding RNAs in animal systems, this RNA class in plants is largely understudied. With comparatively few validated plant long non-coding RNAs, research on this potentially critical class of RNA is hindered by a lack of appropriate prediction tools and databases. Supervised learning models trained on data sets of mostly non-validated, non-coding transcripts have been previously used to identify this enigmatic RNA class with applications largely focused on animal systems. Our approach uses a training set comprised only of empirically validated long non-protein coding RNAs from plant, animal, and viral sources to predict and rank candidate long non-protein coding gene products for future functional validation. Individual stochastic gradient boosting and random forest classifiers trained on only empirically validated long non-protein coding RNAs were constructed. In order to use the strengths of multiple classifiers, we combined multiple models into a single stacking meta-learner. This ensemble approach benefits from the diversity of several learners to effectively identify putative plant long non-coding RNAs from transcript sequence features. When the predicted genes identified by the ensemble classifier were compared to those listed in GreeNC, an established plant long non-coding RNA database, overlap for predicted genes from Arabidopsis thaliana, Oryza sativa and Eutrema salsugineum ranged from 51 to 83% with the highest agreement in Eutrema salsugineum. Most of the highest ranking predictions from Arabidopsis thaliana were annotated as potential natural antisense genes, pseudogenes, transposable elements, or simply computationally predicted hypothetical protein. Due to the nature of this tool, the model can be updated as new long non-protein coding transcripts are identified and functionally verified. This ensemble classifier is an accurate tool that can be used to rank long non-protein coding RNA predictions for use in conjunction with gene expression studies. Selection of plant transcripts with a high potential for regulatory roles as long non-protein coding RNAs will advance research in the elucidation of long non-protein coding RNA function.
PPCM: Combing multiple classifiers to improve protein-protein interaction prediction
Yao, Jianzhuang; Guo, Hong; Yang, Xiaohan
2015-08-01
Determining protein-protein interaction (PPI) in biological systems is of considerable importance, and prediction of PPI has become a popular research area. Although different classifiers have been developed for PPI prediction, no single classifier seems to be able to predict PPI with high confidence. We postulated that by combining individual classifiers the accuracy of PPI prediction could be improved. We developed a method called protein-protein interaction prediction classifiers merger (PPCM), and this method combines output from two PPI prediction tools, GO2PPI and Phyloprof, using Random Forests algorithm. The performance of PPCM was tested by area under the curve (AUC) using anmore » assembled Gold Standard database that contains both positive and negative PPI pairs. Our AUC test showed that PPCM significantly improved the PPI prediction accuracy over the corresponding individual classifiers. We found that additional classifiers incorporated into PPCM could lead to further improvement in the PPI prediction accuracy. Furthermore, cross species PPCM could achieve competitive and even better prediction accuracy compared to the single species PPCM. This study established a robust pipeline for PPI prediction by integrating multiple classifiers using Random Forests algorithm. Ultimately, this pipeline will be useful for predicting PPI in nonmodel species.« less
Faulon, Jean-Loup; Misra, Milind; Martin, Shawn; ...
2007-11-23
Motivation: Identifying protein enzymatic or pharmacological activities are important areas of research in biology and chemistry. Biological and chemical databases are increasingly being populated with linkages between protein sequences and chemical structures. Additionally, there is now sufficient information to apply machine-learning techniques to predict interactions between chemicals and proteins at a genome scale. Current machine-learning techniques use as input either protein sequences and structures or chemical information. We propose here a method to infer protein–chemical interactions using heterogeneous input consisting of both protein sequence and chemical information. Results: Our method relies on expressing proteins and chemicals with a common cheminformaticsmore » representation. We demonstrate our approach by predicting whether proteins can catalyze reactions not present in training sets. We also predict whether a given drug can bind a target, in the absence of prior binding information for that drug and target. Lastly, such predictions cannot be made with current machine-learning techniques requiring binding information for individual reactions or individual targets.« less
AIM: a comprehensive Arabidopsis interactome module database and related interologs in plants.
Wang, Yi; Thilmony, Roger; Zhao, Yunjun; Chen, Guoping; Gu, Yong Q
2014-01-01
Systems biology analysis of protein modules is important for understanding the functional relationships between proteins in the interactome. Here, we present a comprehensive database named AIM for Arabidopsis (Arabidopsis thaliana) interactome modules. The database contains almost 250,000 modules that were generated using multiple analysis methods and integration of microarray expression data. All the modules in AIM are well annotated using multiple gene function knowledge databases. AIM provides a user-friendly interface for different types of searches and offers a powerful graphical viewer for displaying module networks linked to the enrichment annotation terms. Both interactive Venn diagram and power graph viewer are integrated into the database for easy comparison of modules. In addition, predicted interologs from other plant species (homologous proteins from different species that share a conserved interaction module) are available for each Arabidopsis module. AIM is a powerful systems biology platform for obtaining valuable insights into the function of proteins in Arabidopsis and other plants using the modules of the Arabidopsis interactome. Database URL:http://probes.pw.usda.gov/AIM Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.
Floden, Evan W; Tommaso, Paolo D; Chatzou, Maria; Magis, Cedrik; Notredame, Cedric; Chang, Jia-Ming
2016-07-08
The PSI/TM-Coffee web server performs multiple sequence alignment (MSA) of proteins by combining homology extension with a consistency based alignment approach. Homology extension is performed with Position Specific Iterative (PSI) BLAST searches against a choice of redundant and non-redundant databases. The main novelty of this server is to allow databases of reduced complexity to rapidly perform homology extension. This server also gives the possibility to use transmembrane proteins (TMPs) reference databases to allow even faster homology extension on this important category of proteins. Aside from an MSA, the server also outputs topological prediction of TMPs using the HMMTOP algorithm. Previous benchmarking of the method has shown this approach outperforms the most accurate alignment methods such as MSAProbs, Kalign, PROMALS, MAFFT, ProbCons and PRALINE™. The web server is available at http://tcoffee.crg.cat/tmcoffee. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
GWFASTA: server for FASTA search in eukaryotic and microbial genomes.
Issac, Biju; Raghava, G P S
2002-09-01
Similarity searches are a powerful method for solving important biological problems such as database scanning, evolutionary studies, gene prediction, and protein structure prediction. FASTA is a widely used sequence comparison tool for rapid database scanning. Here we describe the GWFASTA server that was developed to assist the FASTA user in similarity searches against partially and/or completely sequenced genomes. GWFASTA consists of more than 60 microbial genomes, eight eukaryote genomes, and proteomes of annotatedgenomes. Infact, it provides the maximum number of databases for similarity searching from a single platform. GWFASTA allows the submission of more than one sequence as a single query for a FASTA search. It also provides integrated post-processing of FASTA output, including compositional analysis of proteins, multiple sequences alignment, and phylogenetic analysis. Furthermore, it summarizes the search results organism-wise for prokaryotes and chromosome-wise for eukaryotes. Thus, the integration of different tools for sequence analyses makes GWFASTA a powerful toolfor biologists.
MODBASE, a database of annotated comparative protein structure models
Pieper, Ursula; Eswar, Narayanan; Stuart, Ashley C.; Ilyin, Valentin A.; Sali, Andrej
2002-01-01
MODBASE (http://guitar.rockefeller.edu/modbase) is a relational database of annotated comparative protein structure models for all available protein sequences matched to at least one known protein structure. The models are calculated by MODPIPE, an automated modeling pipeline that relies on PSI-BLAST, IMPALA and MODELLER. MODBASE uses the MySQL relational database management system for flexible and efficient querying, and the MODVIEW Netscape plugin for viewing and manipulating multiple sequences and structures. It is updated regularly to reflect the growth of the protein sequence and structure databases, as well as improvements in the software for calculating the models. For ease of access, MODBASE is organized into different datasets. The largest dataset contains models for domains in 304 517 out of 539 171 unique protein sequences in the complete TrEMBL database (23 March 2001); only models based on significant alignments (PSI-BLAST E-value < 10–4) and models assessed to have the correct fold are included. Other datasets include models for target selection and structure-based annotation by the New York Structural Genomics Research Consortium, models for prediction of genes in the Drosophila melanogaster genome, models for structure determination of several ribosomal particles and models calculated by the MODWEB comparative modeling web server. PMID:11752309
Chen, Huan-Sheng; Cheng, Chun-Ting; Hou, Chun-Cheng; Liou, Hung-Hsiang; Chang, Cheng-Tsung; Lin, Chun-Ju; Wu, Tsai-Kun; Chen, Chang-Hsu; Lim, Paik-Seong
2017-07-01
Rapid screening and monitoring of nutritional status is mandatory in hemodialysis population because of the increasingly encountered nutritional problems. Considering the limitations of previous composite nutrition scores applied in this population, we tried to develop a standardized composite nutrition score (SCNS) using low lean tissue index as a marker of protein wasting to facilitate clinical screening and monitoring and to predict outcome. This retrospective cohort used 2 databases of dialysis populations from Taiwan between 2011 and 2014. First database consisting of data from 629 maintenance hemodialysis patients was used to develop the SCNS and the second database containing data from 297 maintenance hemodialysis patients was used to validate this developed score. SCNS containing albumin, creatinine, potassium, and body mass index was developed from the first database using low lean tissue index as a marker of protein wasting. When applying this score in the original database, significantly higher risk of developing protein wasting was found for patients with lower SCNS (odds ratio 1.38 [middle tertile vs highest tertile, P < .0001] and 2.40 [lowest tertile vs middle tertile, P < .0001]). The risk of death was also shown to be higher for patients with lower SCNS (hazard ratio 4.45 [below median level vs above median level, P < .0001]). These results were validated in the second database. We developed an SCNS consisting of 4 easily available biochemical parameters. This kind of scoring system can be easily applied in different dialysis facilities for screening and monitoring of protein wasting. The wide application of body composition monitor in dialysis population will also facilitate the development of specific nutrition scoring model for individual facility. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Identifying functionally informative evolutionary sequence profiles.
Gil, Nelson; Fiser, Andras
2018-04-15
Multiple sequence alignments (MSAs) can provide essential input to many bioinformatics applications, including protein structure prediction and functional annotation. However, the optimal selection of sequences to obtain biologically informative MSAs for such purposes is poorly explored, and has traditionally been performed manually. We present Selection of Alignment by Maximal Mutual Information (SAMMI), an automated, sequence-based approach to objectively select an optimal MSA from a large set of alternatives sampled from a general sequence database search. The hypothesis of this approach is that the mutual information among MSA columns will be maximal for those MSAs that contain the most diverse set possible of the most structurally and functionally homogeneous protein sequences. SAMMI was tested to select MSAs for functional site residue prediction by analysis of conservation patterns on a set of 435 proteins obtained from protein-ligand (peptides, nucleic acids and small substrates) and protein-protein interaction databases. Availability and implementation: A freely accessible program, including source code, implementing SAMMI is available at https://github.com/nelsongil92/SAMMI.git. andras.fiser@einstein.yu.edu. Supplementary data are available at Bioinformatics online.
Blind test of physics-based prediction of protein structures.
Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A
2009-02-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.
Blind Test of Physics-Based Prediction of Protein Structures
Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.
2009-01-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130
Chen, Langdong; Cao, Yan; Zhang, Hai; Lv, Diya; Zhao, Yahong; Liu, Yanjun; Ye, Guan; Chai, Yifeng
2018-01-31
Yangxinshi tablet (YXST) is an effective treatment for heart failure and myocardial infarction; it consists of 13 herbal medicines formulated according to traditional Chinese Medicine (TCM) practices. It has been used for the treatment of cardiovascular disease for many years in China. In this study, a network pharmacology-based strategy was used to elucidate the mechanism of action of YXST for the treatment of heart failure. Cardiovascular disease-related protein target and compound databases were constructed for YXST. A molecular docking platform was used to predict the protein targets of YXST. The affinity between proteins and ingredients was determined using surface plasmon resonance (SPR) assays. The action modes between targets and representative ingredients were calculated using Glide docking, and the related pathways were predicted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A protein target database containing 924 proteins was constructed; 179 compounds in YXST were identified, and 48 compounds with high relevance to the proteins were defined as representative ingredients. Thirty-four protein targets of the 48 representative ingredients were analyzed and classified into two categories: immune and cardiovascular systems. The SPR assay and molecular docking partly validated the interplay between protein targets and representative ingredients. Moreover, 28 pathways related to heart failure were identified, which provided directions for further research on YXST. This study demonstrated that the cardiovascular protective effect of YXST mainly involved the immune and cardiovascular systems. Through the research strategy based on network pharmacology, we analysis the complex system of YXST and found 48 representative compounds, 34 proteins and 28 related pathways of YXST, which could help us understand the underlying mechanism of YSXT's anti-heart failure effect. The network-based investigation could help researchers simplify the complex system of YXSY. It may also offer a feasible approach to decipher the chemical and pharmacological bases of other TCM formulas. Copyright © 2018 Elsevier B.V. All rights reserved.
Gorohovski, Alessandro; Tagore, Somnath; Palande, Vikrant; Malka, Assaf; Raviv-Shay, Dorith; Frenkel-Morgenstern, Milana
2017-01-04
Discovery of chimeric RNAs, which are produced by chromosomal translocations as well as the joining of exons from different genes by trans-splicing, has added a new level of complexity to our study and understanding of the transcriptome. The enhanced ChiTaRS-3.1 database (http://chitars.md.biu.ac.il) is designed to make widely accessible a wealth of mined data on chimeric RNAs, with easy-to-use analytical tools built-in. The database comprises 34 922: chimeric transcripts along with 11 714: cancer breakpoints. In this latest version, we have included multiple cross-references to GeneCards, iHop, PubMed, NCBI, Ensembl, OMIM, RefSeq and the Mitelman collection for every entry in the 'Full Collection'. In addition, for every chimera, we have added a predicted Chimeric Protein-Protein Interaction (ChiPPI) network, which allows for easy visualization of protein partners of both parental and fusion proteins for all human chimeras. The database contains a comprehensive annotation for 34 922: chimeric transcripts from eight organisms, and includes the manual annotation of 200 sense-antiSense (SaS) chimeras. The current improvements in the content and functionality to the ChiTaRS database make it a central resource for the study of chimeric transcripts and fusion proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
ChemProt-2.0: visual navigation in a disease chemical biology database
Kim Kjærulff, Sonny; Wich, Louis; Kringelum, Jens; Jacobsen, Ulrik P.; Kouskoumvekaki, Irene; Audouze, Karine; Lund, Ole; Brunak, Søren; Oprea, Tudor I.; Taboureau, Olivier
2013-01-01
ChemProt-2.0 (http://www.cbs.dtu.dk/services/ChemProt-2.0) is a public available compilation of multiple chemical–protein annotation resources integrated with diseases and clinical outcomes information. The database has been updated to >1.15 million compounds with 5.32 millions bioactivity measurements for 15 290 proteins. Each protein is linked to quality-scored human protein–protein interactions data based on more than half a million interactions, for studying diseases and biological outcomes (diseases, pathways and GO terms) through protein complexes. In ChemProt-2.0, therapeutic effects as well as adverse drug reactions have been integrated allowing for suggesting proteins associated to clinical outcomes. New chemical structure fingerprints were computed based on the similarity ensemble approach. Protein sequence similarity search was also integrated to evaluate the promiscuity of proteins, which can help in the prediction of off-target effects. Finally, the database was integrated into a visual interface that enables navigation of the pharmacological space for small molecules. Filtering options were included in order to facilitate and to guide dynamic search of specific queries. PMID:23185041
Amber Vanden Wymelenberg; Patrick Minges; Grzegorz Sabat; Diego Martinez; Andrea Aerts; Asaf Salamov; Igor Grigoriev; Harris Shapiro; Nik Putnam; Paula Belinky; Carlos Dosoretz; Jill Gaskell; Phil Kersten; Dan Cullen
2006-01-01
The white-rot basidiomycete Phanerochaete chrysosporium employs extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose, and lignin. Analysis of a total of 10,048 v2.1 gene models predicts 769 secreted proteins, a substantial increase over the 268 models identified in the earlier database (v1.0). Within the v2.1 âcomputational...
Mining protein database using machine learning techniques.
Camargo, Renata da Silva; Niranjan, Mahesan
2008-08-25
With a large amount of information relating to proteins accumulating in databases widely available online, it is of interest to apply machine learning techniques that, by extracting underlying statistical regularities in the data, make predictions about the functional and evolutionary characteristics of unseen proteins. Such predictions can help in achieving a reduction in the space over which experiment designers need to search in order to improve our understanding of the biochemical properties. Previously it has been suggested that an integration of features computable by comparing a pair of proteins can be achieved by an artificial neural network, hence predicting the degree to which they may be evolutionary related and homologous.
We compiled two datasets of pairs of proteins, each pair being characterised by seven distinct features. We performed an exhaustive search through all possible combinations of features, for the problem of separating remote homologous from analogous pairs, we note that significant performance gain was obtained by the inclusion of sequence and structure information. We find that the use of a linear classifier was enough to discriminate a protein pair at the family level. However, at the superfamily level, to detect remote homologous pairs was a relatively harder problem. We find that the use of nonlinear classifiers achieve significantly higher accuracies.
In this paper, we compare three different pattern classification methods on two problems formulated as detecting evolutionary and functional relationships between pairs of proteins, and from extensive cross validation and feature selection based studies quantify the average limits and uncertainties with which such predictions may be made. Feature selection points to a \\"knowledge gap\\" in currently available functional annotations. We demonstrate how the scheme may be employed in a framework to associate an individual protein with an existing family of evolutionarily related proteins.
Chou, Kuo-Chen; Shen, Hong-Bin
2007-05-01
One of the critical challenges in predicting protein subcellular localization is how to deal with the case of multiple location sites. Unfortunately, so far, no efforts have been made in this regard except for the one focused on the proteins in budding yeast only. For most existing predictors, the multiple-site proteins are either excluded from consideration or assumed even not existing. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. For instance, according to the Swiss-Prot database (version 50.7, released 19-Sept-2006), among the 33,925 eukaryotic protein entries that have experimentally observed subcellular location annotations, 2715 have multiple location sites, meaning about 8% bearing the multiplex feature. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. Meanwhile, according to the same Swiss-Prot database, the number of total eukaryotic protein entries (except those annotated with "fragment" or those with less than 50 amino acids) is 90,909, meaning a gap of (90,909-33,925) = 56,984 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the blank, so far, all the existing methods for predicting eukaryotic protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Euk-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Euk-mPLoc is freely accessible to the public as a Web server at http://202.120.37.186/bioinf/euk-multi. Meanwhile, to support the people working in the relevant areas, Euk-mPLoc has been used to identify all eukaryotic protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited at the same Web site via a downloadable file prepared with Microsoft Excel and named "Tab_Euk-mPLoc.xls". Furthermore, to include new entries of eukaryotic proteins and reflect the continuous development of Euk-mPLoc in both the coverage scope and prediction accuracy, we will timely update the downloadable file as well as the predictor, and keep users informed by publishing a short note in the Journal and making an announcement in the Web Page.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpinets, Tatiana V; Park, Byung; Syed, Mustafa H
2010-01-01
The Carbohydrate-Active Enzyme (CAZy) database provides a rich set of manually annotated enzymes that degrade, modify, or create glycosidic bonds. Despite rich and invaluable information stored in the database, software tools utilizing this information for annotation of newly sequenced genomes by CAZy families are limited. We have employed two annotation approaches to fill the gap between manually curated high-quality protein sequences collected in the CAZy database and the growing number of other protein sequences produced by genome or metagenome sequencing projects. The first approach is based on a similarity search against the entire non-redundant sequences of the CAZy database. Themore » second approach performs annotation using links or correspondences between the CAZy families and protein family domains. The links were discovered using the association rule learning algorithm applied to sequences from the CAZy database. The approaches complement each other and in combination achieved high specificity and sensitivity when cross-evaluated with the manually curated genomes of Clostridium thermocellum ATCC 27405 and Saccharophagus degradans 2-40. The capability of the proposed framework to predict the function of unknown protein domains (DUF) and of hypothetical proteins in the genome of Neurospora crassa is demonstrated. The framework is implemented as a Web service, the CAZymes Analysis Toolkit (CAT), and is available at http://cricket.ornl.gov/cgi-bin/cat.cgi.« less
Park, Byung H; Karpinets, Tatiana V; Syed, Mustafa H; Leuze, Michael R; Uberbacher, Edward C
2010-12-01
The Carbohydrate-Active Enzyme (CAZy) database provides a rich set of manually annotated enzymes that degrade, modify, or create glycosidic bonds. Despite rich and invaluable information stored in the database, software tools utilizing this information for annotation of newly sequenced genomes by CAZy families are limited. We have employed two annotation approaches to fill the gap between manually curated high-quality protein sequences collected in the CAZy database and the growing number of other protein sequences produced by genome or metagenome sequencing projects. The first approach is based on a similarity search against the entire nonredundant sequences of the CAZy database. The second approach performs annotation using links or correspondences between the CAZy families and protein family domains. The links were discovered using the association rule learning algorithm applied to sequences from the CAZy database. The approaches complement each other and in combination achieved high specificity and sensitivity when cross-evaluated with the manually curated genomes of Clostridium thermocellum ATCC 27405 and Saccharophagus degradans 2-40. The capability of the proposed framework to predict the function of unknown protein domains and of hypothetical proteins in the genome of Neurospora crassa is demonstrated. The framework is implemented as a Web service, the CAZymes Analysis Toolkit, and is available at http://cricket.ornl.gov/cgi-bin/cat.cgi.
Shen, Hong-Bin; Chou, Kuo-Chen
2007-04-20
Proteins may simultaneously exist at, or move between, two or more different subcellular locations. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. For instance, among the 6408 human protein entries that have experimentally observed subcellular location annotations in the Swiss-Prot database (version 50.7, released 19-Sept-2006), 973 ( approximately 15%) have multiple location sites. The number of total human protein entries (except those annotated with "fragment" or those with less than 50 amino acids) in the same database is 14,370, meaning a gap of (14,370-6408)=7962 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the gap, so far all the existing methods for predicting human protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Hum-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Hum-mPLoc is freely accessible to the public as a web server at http://202.120.37.186/bioinf/hum-multi. Meanwhile, for the convenience of people working in the relevant areas, Hum-mPLoc has been used to identify all human protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Hum-mPLoc.xls". This file is available at the same website and will be updated twice a year to include new entries of human proteins and reflect the continuous development of Hum-mPLoc.
Syed, Mustafa H; Karpinets, Tatiana V; Leuze, Michael R; Kora, Guruprasad H; Romine, Margaret R; Uberbacher, Edward C
2009-01-01
Shewanella oneidensis MR-1 is an important model organism for environmental research as it has an exceptional metabolic and respiratory versatility regulated by a complex regulatory network. We have developed a database to collect experimental and computational data relating to regulation of gene and protein expression, and, a visualization environment that enables integration of these data types. The regulatory information in the database includes predictions of DNA regulator binding sites, sigma factor binding sites, transcription units, operons, promoters, and RNA regulators including non-coding RNAs, riboswitches, and different types of terminators. Availability http://shewanella-knowledgebase.org:8080/Shewanella/gbrowserLanding.jsp PMID:20198195
RepeatsDB-lite: a web server for unit annotation of tandem repeat proteins.
Hirsh, Layla; Paladin, Lisanna; Piovesan, Damiano; Tosatto, Silvio C E
2018-05-09
RepeatsDB-lite (http://protein.bio.unipd.it/repeatsdb-lite) is a web server for the prediction of repetitive structural elements and units in tandem repeat (TR) proteins. TRs are a widespread but poorly annotated class of non-globular proteins carrying heterogeneous functions. RepeatsDB-lite extends the prediction to all TR types and strongly improves the performance both in terms of computational time and accuracy over previous methods, with precision above 95% for solenoid structures. The algorithm exploits an improved TR unit library derived from the RepeatsDB database to perform an iterative structural search and assignment. The web interface provides tools for analyzing the evolutionary relationships between units and manually refine the prediction by changing unit positions and protein classification. An all-against-all structure-based sequence similarity matrix is calculated and visualized in real-time for every user edit. Reviewed predictions can be submitted to RepeatsDB for review and inclusion.
ReLiance: a machine learning and literature-based prioritization of receptor—ligand pairings
Iacucci, Ernesto; Tranchevent, Léon-Charles; Popovic, Dusan; Pavlopoulos, Georgios A.; De Moor, Bart; Schneider, Reinhard; Moreau, Yves
2012-01-01
Motivation: The prediction of receptor—ligand pairings is an important area of research as intercellular communications are mediated by the successful interaction of these key proteins. As the exhaustive assaying of receptor—ligand pairs is impractical, a computational approach to predict pairings is necessary. We propose a workflow to carry out this interaction prediction task, using a text mining approach in conjunction with a state of the art prediction method, as well as a widely accessible and comprehensive dataset. Among several modern classifiers, random forests have been found to be the best at this prediction task. The training of this classifier was carried out using an experimentally validated dataset of Database of Ligand-Receptor Partners (DLRP) receptor—ligand pairs. New examples, co-cited with the training receptors and ligands, are then classified using the trained classifier. After applying our method, we find that we are able to successfully predict receptor—ligand pairs within the GPCR family with a balanced accuracy of 0.96. Upon further inspection, we find several supported interactions that were not present in the Database of Interacting Proteins (DIPdatabase). We have measured the balanced accuracy of our method resulting in high quality predictions stored in the available database ReLiance. Availability: http://homes.esat.kuleuven.be/~bioiuser/ReLianceDB/index.php Contact: yves.moreau@esat.kuleuven.be; ernesto.iacucci@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22962483
FunSimMat: a comprehensive functional similarity database
Schlicker, Andreas; Albrecht, Mario
2008-01-01
Functional similarity based on Gene Ontology (GO) annotation is used in diverse applications like gene clustering, gene expression data analysis, protein interaction prediction and evaluation. However, there exists no comprehensive resource of functional similarity values although such a database would facilitate the use of functional similarity measures in different applications. Here, we describe FunSimMat (Functional Similarity Matrix, http://funsimmat.bioinf.mpi-inf.mpg.de/), a large new database that provides several different semantic similarity measures for GO terms. It offers various precomputed functional similarity values for proteins contained in UniProtKB and for protein families in Pfam and SMART. The web interface allows users to efficiently perform both semantic similarity searches with GO terms and functional similarity searches with proteins or protein families. All results can be downloaded in tab-delimited files for use with other tools. An additional XML–RPC interface gives automatic online access to FunSimMat for programs and remote services. PMID:17932054
Hidden markov model for the prediction of transmembrane proteins using MATLAB.
Chaturvedi, Navaneet; Shanker, Sudhanshu; Singh, Vinay Kumar; Sinha, Dhiraj; Pandey, Paras Nath
2011-01-01
Since membranous proteins play a key role in drug targeting therefore transmembrane proteins prediction is active and challenging area of biological sciences. Location based prediction of transmembrane proteins are significant for functional annotation of protein sequences. Hidden markov model based method was widely applied for transmembrane topology prediction. Here we have presented a revised and a better understanding model than an existing one for transmembrane protein prediction. Scripting on MATLAB was built and compiled for parameter estimation of model and applied this model on amino acid sequence to know the transmembrane and its adjacent locations. Estimated model of transmembrane topology was based on TMHMM model architecture. Only 7 super states are defined in the given dataset, which were converted to 96 states on the basis of their length in sequence. Accuracy of the prediction of model was observed about 74 %, is a good enough in the area of transmembrane topology prediction. Therefore we have concluded the hidden markov model plays crucial role in transmembrane helices prediction on MATLAB platform and it could also be useful for drug discovery strategy. The database is available for free at bioinfonavneet@gmail.comvinaysingh@bhu.ac.in.
Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin
2018-06-14
Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yu, Yue; Liu, Hongwei; Tu, Maolin; Qiao, Meiling; Wang, Zhenyu; Du, Ming
2017-12-01
Ruditapes philippinarum is nutrient-rich and widely-distributed, but little attention has been paid to the identification and characterization of the bioactive peptides in the bivalve. In the present study, we evaluated the peptides of the R. philippinarum that were enzymolysised by trypsin using a combination of ultra-performance liquid chromatography separation and electrospray ionization quadrupole time-of-flight tandem mass spectrometry, followed by data processing and sequence-similarity database searching. The potential allergenicity of the peptides was assessed in silico. The enzymolysis was performed under the conditions: E:S 3:100 (w/w), pH 9.0, 45 °C for 4 h. After separation and detection, the Swiss-Prot database and a Ruditapes philippinarum sequence database were used: 966 unique peptides were identified by non-error tolerant database searching; 173 peptides matching 55 precursor proteins comprised highly conserved cytoskeleton proteins. The remaining 793 peptides were identified from the R. philippinarum sequence database. The results showed that 510 peptides were labeled as allergens and 31 peptides were potential allergens; 425 peptides were predicted to be nonallergenic. The abundant peptide information contributes to further investigations of the structure and potential function of R. philippinarum. Additional in vitro studies are required to demonstrate and ensure the correct production of the hydrolysates for use in the food industry with respect to R. philippinarum. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Sequence-Based Prediction of RNA-Binding Residues in Proteins.
Walia, Rasna R; El-Manzalawy, Yasser; Honavar, Vasant G; Dobbs, Drena
2017-01-01
Identifying individual residues in the interfaces of protein-RNA complexes is important for understanding the molecular determinants of protein-RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein-RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein-RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner.
Characterization and Prediction of Protein Phosphorylation Hotspots in Arabidopsis thaliana.
Christian, Jan-Ole; Braginets, Rostyslav; Schulze, Waltraud X; Walther, Dirk
2012-01-01
The regulation of protein function by modulating the surface charge status via sequence-locally enriched phosphorylation sites (P-sites) in so called phosphorylation "hotspots" has gained increased attention in recent years. We set out to identify P-hotspots in the model plant Arabidopsis thaliana. We analyzed the spacing of experimentally detected P-sites within peptide-covered regions along Arabidopsis protein sequences as available from the PhosPhAt database. Confirming earlier reports (Schweiger and Linial, 2010), we found that, indeed, P-sites tend to cluster and that distributions between serine and threonine P-sites to their respected closest next P-site differ significantly from those for tyrosine P-sites. The ability to predict P-hotspots by applying available computational P-site prediction programs that focus on identifying single P-sites was observed to be severely compromised by the inevitable interference of nearby P-sites. We devised a new approach, named HotSPotter, for the prediction of phosphorylation hotspots. HotSPotter is based primarily on local amino acid compositional preferences rather than sequence position-specific motifs and uses support vector machines as the underlying classification engine. HotSPotter correctly identified experimentally determined phosphorylation hotspots in A. thaliana with high accuracy. Applied to the Arabidopsis proteome, HotSPotter-predicted 13,677 candidate P-hotspots in 9,599 proteins corresponding to 7,847 unique genes. Hotspot containing proteins are involved predominantly in signaling processes confirming the surmised modulating role of hotspots in signaling and interaction events. Our study provides new bioinformatics means to identify phosphorylation hotspots and lays the basis for further investigating novel candidate P-hotspots. All phosphorylation hotspot annotations and predictions have been made available as part of the PhosPhAt database at http://phosphat.mpimp-golm.mpg.de.
2013-01-01
Background Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. Conclusions We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives. PMID:23889801
PCPPI: a comprehensive database for the prediction of Penicillium-crop protein-protein interactions
USDA-ARS?s Scientific Manuscript database
Penicillium expansum, the causal agent of blue mold, is one of the most prevalent postharvest pathogens infecting a wide range of crops after harvest. In response, crops have evolved various defense systems to protect themselves against this and other pathogens. Penicillium-crop interaction is a m...
Protein structure database search and evolutionary classification.
Yang, Jinn-Moon; Tung, Chi-Hua
2006-01-01
As more protein structures become available and structural genomics efforts provide structural models in a genome-wide strategy, there is a growing need for fast and accurate methods for discovering homologous proteins and evolutionary classifications of newly determined structures. We have developed 3D-BLAST, in part, to address these issues. 3D-BLAST is as fast as BLAST and calculates the statistical significance (E-value) of an alignment to indicate the reliability of the prediction. Using this method, we first identified 23 states of the structural alphabet that represent pattern profiles of the backbone fragments and then used them to represent protein structure databases as structural alphabet sequence databases (SADB). Our method enhanced BLAST as a search method, using a new structural alphabet substitution matrix (SASM) to find the longest common substructures with high-scoring structured segment pairs from an SADB database. Using personal computers with Intel Pentium4 (2.8 GHz) processors, our method searched more than 10 000 protein structures in 1.3 s and achieved a good agreement with search results from detailed structure alignment methods. [3D-BLAST is available at http://3d-blast.life.nctu.edu.tw].
A Novel Method for Sampling Alpha-Helical Protein Backbones
DOE R&D Accomplishments Database
Fain, Boris; Levitt, Michael
2001-01-01
We present a novel technique of sampling the configurations of helical proteins. Assuming knowledge of native secondary structure, we employ assembly rules gathered from a database of existing structures to enumerate the geometrically possible 3-D arrangements of the constituent helices. We produce a library of possible folds for 25 helical protein cores. In each case the method finds significant numbers of conformations close to the native structure. In addition we assign coordinates to all atoms for 4 of the 25 proteins. In the context of database driven exhaustive enumeration our method performs extremely well, yielding significant percentages of structures (0.02%--82%) within 6A of the native structure. The method's speed and efficiency make it a valuable contribution towards the goal of predicting protein structure.
Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae
Reguly, Teresa; Breitkreutz, Ashton; Boucher, Lorrie; Breitkreutz, Bobby-Joe; Hon, Gary C; Myers, Chad L; Parsons, Ainslie; Friesen, Helena; Oughtred, Rose; Tong, Amy; Stark, Chris; Ho, Yuen; Botstein, David; Andrews, Brenda; Boone, Charles; Troyanskya, Olga G; Ideker, Trey; Dolinski, Kara; Batada, Nizar N; Tyers, Mike
2006-01-01
Background The study of complex biological networks and prediction of gene function has been enabled by high-throughput (HTP) methods for detection of genetic and protein interactions. Sparse coverage in HTP datasets may, however, distort network properties and confound predictions. Although a vast number of well substantiated interactions are recorded in the scientific literature, these data have not yet been distilled into networks that enable system-level inference. Results We describe here a comprehensive database of genetic and protein interactions, and associated experimental evidence, for the budding yeast Saccharomyces cerevisiae, as manually curated from over 31,793 abstracts and online publications. This literature-curated (LC) dataset contains 33,311 interactions, on the order of all extant HTP datasets combined. Surprisingly, HTP protein-interaction datasets currently achieve only around 14% coverage of the interactions in the literature. The LC network nevertheless shares attributes with HTP networks, including scale-free connectivity and correlations between interactions, abundance, localization, and expression. We find that essential genes or proteins are enriched for interactions with other essential genes or proteins, suggesting that the global network may be functionally unified. This interconnectivity is supported by a substantial overlap of protein and genetic interactions in the LC dataset. We show that the LC dataset considerably improves the predictive power of network-analysis approaches. The full LC dataset is available at the BioGRID () and SGD () databases. Conclusion Comprehensive datasets of biological interactions derived from the primary literature provide critical benchmarks for HTP methods, augment functional prediction, and reveal system-level attributes of biological networks. PMID:16762047
Optimizing physical energy functions for protein folding.
Fujitsuka, Yoshimi; Takada, Shoji; Luthey-Schulten, Zaida A; Wolynes, Peter G
2004-01-01
We optimize a physical energy function for proteins with the use of the available structural database and perform three benchmark tests of the performance: (1) recognition of native structures in the background of predefined decoy sets of Levitt, (2) de novo structure prediction using fragment assembly sampling, and (3) molecular dynamics simulations. The energy parameter optimization is based on the energy landscape theory and uses a Monte Carlo search to find a set of parameters that seeks the largest ratio deltaE(s)/DeltaE for all proteins in a training set simultaneously. Here, deltaE(s) is the stability gap between the native and the average in the denatured states and DeltaE is the energy fluctuation among these states. Some of the energy parameters optimized are found to show significant correlation with experimentally observed quantities: (1) In the recognition test, the optimized function assigns the lowest energy to either the native or a near-native structure among many decoy structures for all the proteins studied. (2) Structure prediction with the fragment assembly sampling gives structure models with root mean square deviation less than 6 A in one of the top five cluster centers for five of six proteins studied. (3) Structure prediction using molecular dynamics simulation gives poorer performance, implying the importance of having a more precise description of local structures. The physical energy function solely inferred from a structural database neither utilizes sequence information from the family of the target nor the outcome of the secondary structure prediction but can produce the correct native fold for many small proteins. Copyright 2003 Wiley-Liss, Inc.
Kariithi, Henry M; Ince, Ikbal A; Boeren, Sjef; Abd-Alla, Adly M M; Parker, Andrew G; Aksoy, Serap; Vlak, Just M; Oers, Monique M van
2011-11-01
The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (∼1.8%) Glossina and three (∼12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as using SGHV-specific antibodies and phage display-selected gut epithelia-binding peptides.
Comparative Protein Structure Modeling Using MODELLER
Webb, Benjamin; Sali, Andrej
2016-01-01
Comparative protein structure modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. PMID:27322406
VisANT 3.0: new modules for pathway visualization, editing, prediction and construction.
Hu, Zhenjun; Ng, David M; Yamada, Takuji; Chen, Chunnuan; Kawashima, Shuichi; Mellor, Joe; Linghu, Bolan; Kanehisa, Minoru; Stuart, Joshua M; DeLisi, Charles
2007-07-01
With the integration of the KEGG and Predictome databases as well as two search engines for coexpressed genes/proteins using data sets obtained from the Stanford Microarray Database (SMD) and Gene Expression Omnibus (GEO) database, VisANT 3.0 supports exploratory pathway analysis, which includes multi-scale visualization of multiple pathways, editing and annotating pathways using a KEGG compatible visual notation and visualization of expression data in the context of pathways. Expression levels are represented either by color intensity or by nodes with an embedded expression profile. Multiple experiments can be navigated or animated. Known KEGG pathways can be enriched by querying either coexpressed components of known pathway members or proteins with known physical interactions. Predicted pathways for genes/proteins with unknown functions can be inferred from coexpression or physical interaction data. Pathways produced in VisANT can be saved as computer-readable XML format (VisML), graphic images or high-resolution Scalable Vector Graphics (SVG). Pathways in the format of VisML can be securely shared within an interested group or published online using a simple Web link. VisANT is freely available at http://visant.bu.edu.
The SUPERFAMILY database in 2004: additions and improvements.
Madera, Martin; Vogel, Christine; Kummerfeld, Sarah K; Chothia, Cyrus; Gough, Julian
2004-01-01
The SUPERFAMILY database provides structural assignments to protein sequences and a framework for analysis of the results. At the core of the database is a library of profile Hidden Markov Models that represent all proteins of known structure. The library is based on the SCOP classification of proteins: each model corresponds to a SCOP domain and aims to represent an entire superfamily. We have applied the library to predicted proteins from all completely sequenced genomes (currently 154), the Swiss-Prot and TrEMBL databases and other sequence collections. Close to 60% of all proteins have at least one match, and one half of all residues are covered by assignments. All models and full results are available for download and online browsing at http://supfam.org. Users can study the distribution of their superfamily of interest across all completely sequenced genomes, investigate with which other superfamilies it combines and retrieve proteins in which it occurs. Alternatively, concentrating on a particular genome as a whole, it is possible first, to find out its superfamily composition, and secondly, to compare it with that of other genomes to detect superfamilies that are over- or under-represented. In addition, the webserver provides the following standard services: sequence search; keyword search for genomes, superfamilies and sequence identifiers; and multiple alignment of genomic, PDB and custom sequences.
Prediction of hot spots in protein interfaces using a random forest model with hybrid features.
Wang, Lin; Liu, Zhi-Ping; Zhang, Xiang-Sun; Chen, Luonan
2012-03-01
Prediction of hot spots in protein interfaces provides crucial information for the research on protein-protein interaction and drug design. Existing machine learning methods generally judge whether a given residue is likely to be a hot spot by extracting features only from the target residue. However, hot spots usually form a small cluster of residues which are tightly packed together at the center of protein interface. With this in mind, we present a novel method to extract hybrid features which incorporate a wide range of information of the target residue and its spatially neighboring residues, i.e. the nearest contact residue in the other face (mirror-contact residue) and the nearest contact residue in the same face (intra-contact residue). We provide a novel random forest (RF) model to effectively integrate these hybrid features for predicting hot spots in protein interfaces. Our method can achieve accuracy (ACC) of 82.4% and Matthew's correlation coefficient (MCC) of 0.482 in Alanine Scanning Energetics Database, and ACC of 77.6% and MCC of 0.429 in Binding Interface Database. In a comparison study, performance of our RF model exceeds other existing methods, such as Robetta, FOLDEF, KFC, KFC2, MINERVA and HotPoint. Of our hybrid features, three physicochemical features of target residues (mass, polarizability and isoelectric point), the relative side-chain accessible surface area and the average depth index of mirror-contact residues are found to be the main discriminative features in hot spots prediction. We also confirm that hot spots tend to form large contact surface areas between two interacting proteins. Source data and code are available at: http://www.aporc.org/doc/wiki/HotSpot.
PaperBLAST: Text Mining Papers for Information about Homologs.
Price, Morgan N; Arkin, Adam P
2017-01-01
Large-scale genome sequencing has identified millions of protein-coding genes whose function is unknown. Many of these proteins are similar to characterized proteins from other organisms, but much of this information is missing from annotation databases and is hidden in the scientific literature. To make this information accessible, PaperBLAST uses EuropePMC to search the full text of scientific articles for references to genes. PaperBLAST also takes advantage of curated resources (Swiss-Prot, GeneRIF, and EcoCyc) that link protein sequences to scientific articles. PaperBLAST's database includes over 700,000 scientific articles that mention over 400,000 different proteins. Given a protein of interest, PaperBLAST quickly finds similar proteins that are discussed in the literature and presents snippets of text from relevant articles or from the curators. PaperBLAST is available at http://papers.genomics.lbl.gov/. IMPORTANCE With the recent explosion of genome sequencing data, there are now millions of uncharacterized proteins. If a scientist becomes interested in one of these proteins, it can be very difficult to find information as to its likely function. Often a protein whose sequence is similar, and which is likely to have a similar function, has been studied already, but this information is not available in any database. To help find articles about similar proteins, PaperBLAST searches the full text of scientific articles for protein identifiers or gene identifiers, and it links these articles to protein sequences. Then, given a protein of interest, it can quickly find similar proteins in its database by using standard software (BLAST), and it can show snippets of text from relevant papers. We hope that PaperBLAST will make it easier for biologists to predict proteins' functions.
Kwasigroch, Jean Marc; Rooman, Marianne
2006-07-15
Prelude&Fugue are bioinformatics tools aiming at predicting the local 3D structure of a protein from its amino acid sequence in terms of seven backbone torsion angle domains, using database-derived potentials. Prelude(&Fugue) computes all lowest free energy conformations of a protein or protein region, ranked by increasing energy, and possibly satisfying some interresidue distance constraints specified by the user. (Prelude&)Fugue detects sequence regions whose predicted structure is significantly preferred relative to other conformations in the absence of tertiary interactions. These programs can be used for predicting secondary structure, tertiary structure of short peptides, flickering early folding sequences and peptides that adopt a preferred conformation in solution. They can also be used for detecting structural weaknesses, i.e. sequence regions that are not optimal with respect to the tertiary fold. http://babylone.ulb.ac.be/Prelude_and_Fugue.
ProtaBank: A repository for protein design and engineering data.
Wang, Connie Y; Chang, Paul M; Ary, Marie L; Allen, Benjamin D; Chica, Roberto A; Mayo, Stephen L; Olafson, Barry D
2018-03-25
We present ProtaBank, a repository for storing, querying, analyzing, and sharing protein design and engineering data in an actively maintained and updated database. ProtaBank provides a format to describe and compare all types of protein mutational data, spanning a wide range of properties and techniques. It features a user-friendly web interface and programming layer that streamlines data deposition and allows for batch input and queries. The database schema design incorporates a standard format for reporting protein sequences and experimental data that facilitates comparison of results across different data sets. A suite of analysis and visualization tools are provided to facilitate discovery, to guide future designs, and to benchmark and train new predictive tools and algorithms. ProtaBank will provide a valuable resource to the protein engineering community by storing and safeguarding newly generated data, allowing for fast searching and identification of relevant data from the existing literature, and exploring correlations between disparate data sets. ProtaBank invites researchers to contribute data to the database to make it accessible for search and analysis. ProtaBank is available at https://protabank.org. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
GDAP: a web tool for genome-wide protein disulfide bond prediction.
O'Connor, Brian D; Yeates, Todd O
2004-07-01
The Genomic Disulfide Analysis Program (GDAP) provides web access to computationally predicted protein disulfide bonds for over one hundred microbial genomes, including both bacterial and achaeal species. In the GDAP process, sequences of unknown structure are mapped, when possible, to known homologous Protein Data Bank (PDB) structures, after which specific distance criteria are applied to predict disulfide bonds. GDAP also accepts user-supplied protein sequences and subsequently queries the PDB sequence database for the best matches, scans for possible disulfide bonds and returns the results to the client. These predictions are useful for a variety of applications and have previously been used to show a dramatic preference in certain thermophilic archaea and bacteria for disulfide bonds within intracellular proteins. Given the central role these stabilizing, covalent bonds play in such organisms, the predictions available from GDAP provide a rich data source for designing site-directed mutants with more stable thermal profiles. The GDAP web application is a gateway to this information and can be used to understand the role disulfide bonds play in protein stability both in these unusual organisms and in sequences of interest to the individual researcher. The prediction server can be accessed at http://www.doe-mbi.ucla.edu/Services/GDAP.
PaperBLAST: Text Mining Papers for Information about Homologs
Price, Morgan N.; Arkin, Adam P.
2017-08-15
Large-scale genome sequencing has identified millions of protein-coding genes whose function is unknown. Many of these proteins are similar to characterized proteins from other organisms, but much of this information is missing from annotation databases and is hidden in the scientific literature. To make this information accessible, PaperBLAST uses EuropePMC to search the full text of scientific articles for references to genes. PaperBLAST also takes advantage of curated resources (Swiss-Prot, GeneRIF, and EcoCyc) that link protein sequences to scientific articles. PaperBLAST’s database includes over 700,000 scientific articles that mention over 400,000 different proteins. Given a protein of interest, PaperBLAST quicklymore » finds similar proteins that are discussed in the literature and presents snippets of text from relevant articles or from the curators. With the recent explosion of genome sequencing data, there are now millions of uncharacterized proteins. If a scientist becomes interested in one of these proteins, it can be very difficult to find information as to its likely function. Often a protein whose sequence is similar, and which is likely to have a similar function, has been studied already, but this information is not available in any database. To help find articles about similar proteins, PaperBLAST searches the full text of scientific articles for protein identifiers or gene identifiers, and it links these articles to protein sequences. Then, given a protein of interest, it can quickly find similar proteins in its database by using standard software (BLAST), and it can show snippets of text from relevant papers. We hope that PaperBLAST will make it easier for biologists to predict proteins’ functions.« less
PaperBLAST: Text Mining Papers for Information about Homologs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Morgan N.; Arkin, Adam P.
Large-scale genome sequencing has identified millions of protein-coding genes whose function is unknown. Many of these proteins are similar to characterized proteins from other organisms, but much of this information is missing from annotation databases and is hidden in the scientific literature. To make this information accessible, PaperBLAST uses EuropePMC to search the full text of scientific articles for references to genes. PaperBLAST also takes advantage of curated resources (Swiss-Prot, GeneRIF, and EcoCyc) that link protein sequences to scientific articles. PaperBLAST’s database includes over 700,000 scientific articles that mention over 400,000 different proteins. Given a protein of interest, PaperBLAST quicklymore » finds similar proteins that are discussed in the literature and presents snippets of text from relevant articles or from the curators. With the recent explosion of genome sequencing data, there are now millions of uncharacterized proteins. If a scientist becomes interested in one of these proteins, it can be very difficult to find information as to its likely function. Often a protein whose sequence is similar, and which is likely to have a similar function, has been studied already, but this information is not available in any database. To help find articles about similar proteins, PaperBLAST searches the full text of scientific articles for protein identifiers or gene identifiers, and it links these articles to protein sequences. Then, given a protein of interest, it can quickly find similar proteins in its database by using standard software (BLAST), and it can show snippets of text from relevant papers. We hope that PaperBLAST will make it easier for biologists to predict proteins’ functions.« less
PaperBLAST: Text Mining Papers for Information about Homologs
Arkin, Adam P.
2017-01-01
ABSTRACT Large-scale genome sequencing has identified millions of protein-coding genes whose function is unknown. Many of these proteins are similar to characterized proteins from other organisms, but much of this information is missing from annotation databases and is hidden in the scientific literature. To make this information accessible, PaperBLAST uses EuropePMC to search the full text of scientific articles for references to genes. PaperBLAST also takes advantage of curated resources (Swiss-Prot, GeneRIF, and EcoCyc) that link protein sequences to scientific articles. PaperBLAST’s database includes over 700,000 scientific articles that mention over 400,000 different proteins. Given a protein of interest, PaperBLAST quickly finds similar proteins that are discussed in the literature and presents snippets of text from relevant articles or from the curators. PaperBLAST is available at http://papers.genomics.lbl.gov/. IMPORTANCE With the recent explosion of genome sequencing data, there are now millions of uncharacterized proteins. If a scientist becomes interested in one of these proteins, it can be very difficult to find information as to its likely function. Often a protein whose sequence is similar, and which is likely to have a similar function, has been studied already, but this information is not available in any database. To help find articles about similar proteins, PaperBLAST searches the full text of scientific articles for protein identifiers or gene identifiers, and it links these articles to protein sequences. Then, given a protein of interest, it can quickly find similar proteins in its database by using standard software (BLAST), and it can show snippets of text from relevant papers. We hope that PaperBLAST will make it easier for biologists to predict proteins’ functions. PMID:28845458
PCPPI: a comprehensive database for the prediction of Penicillium-crop protein-protein interactions.
Yue, Junyang; Zhang, Danfeng; Ban, Rongjun; Ma, Xiaojing; Chen, Danyang; Li, Guangwei; Liu, Jia; Wisniewski, Michael; Droby, Samir; Liu, Yongsheng
2017-01-01
Penicillium expansum , the causal agent of blue mold, is one of the most prevalent post-harvest pathogens, infecting a wide range of crops after harvest. In response, crops have evolved various defense systems to protect themselves against this and other pathogens. Penicillium -crop interaction is a multifaceted process and mediated by pathogen- and host-derived proteins. Identification and characterization of the inter-species protein-protein interactions (PPIs) are fundamental to elucidating the molecular mechanisms underlying infection processes between P. expansum and plant crops. Here, we have developed PCPPI, the Penicillium -Crop Protein-Protein Interactions database, which is constructed based on the experimentally determined orthologous interactions in pathogen-plant systems and available domain-domain interactions (DDIs) in each PPI. Thus far, it stores information on 9911 proteins, 439 904 interactions and seven host species, including apple, kiwifruit, maize, pear, rice, strawberry and tomato. Further analysis through the gene ontology (GO) annotation indicated that proteins with more interacting partners tend to execute the essential function. Significantly, semantic statistics of the GO terms also provided strong support for the accuracy of our predicted interactions in PCPPI. We believe that all the PCPPI datasets are helpful to facilitate the study of pathogen-crop interactions and freely available to the research community. : http://bdg.hfut.edu.cn/pcppi/index.html. © The Author(s) 2017. Published by Oxford University Press.
2008-01-25
limitations and plans for improvement Perhaps, one of PIPA’s main limitations is that all of its currently integrated resources to predict protein function...are planning on expending PIPA’s function prediction capabilities by incorporating comparative analysis approaches, e.g., phy- logenetic tree analysis...tools and services. Nucleic Acids Res 2005/12/31 edition. 2006, 34(Database issue):D247-51. 6. Bru C, Courcelle E, Carrere S, Beausse Y, Dalmar S
A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics
Tang, Haixu; Li, Sujun; Ye, Yuzhen
2016-01-01
Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro. PMID:27918579
Odronitz, Florian; Kollmar, Martin
2006-11-29
Annotation of protein sequences of eukaryotic organisms is crucial for the understanding of their function in the cell. Manual annotation is still by far the most accurate way to correctly predict genes. The classification of protein sequences, their phylogenetic relation and the assignment of function involves information from various sources. This often leads to a collection of heterogeneous data, which is hard to track. Cytoskeletal and motor proteins consist of large and diverse superfamilies comprising up to several dozen members per organism. Up to date there is no integrated tool available to assist in the manual large-scale comparative genomic analysis of protein families. Pfarao (Protein Family Application for Retrieval, Analysis and Organisation) is a database driven online working environment for the analysis of manually annotated protein sequences and their relationship. Currently, the system can store and interrelate a wide range of information about protein sequences, species, phylogenetic relations and sequencing projects as well as links to literature and domain predictions. Sequences can be imported from multiple sequence alignments that are generated during the annotation process. A web interface allows to conveniently browse the database and to compile tabular and graphical summaries of its content. We implemented a protein sequence-centric web application to store, organize, interrelate, and present heterogeneous data that is generated in manual genome annotation and comparative genomics. The application has been developed for the analysis of cytoskeletal and motor proteins (CyMoBase) but can easily be adapted for any protein.
Pandey, Bharati; Gupta, Om Prakash; Pandey, Dev Mani; Sharma, Indu; Sharma, Pradeep
2013-05-01
MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNA molecules of about 18-22 nucleotides in length. Their main function is to downregulate gene expression in different manners like translational repression, mRNA cleavage and epigenetic modification. Computational predictions have raised the number of miRNAs in wheat significantly using an EST based approach. Hence, a combinatorial approach which is amalgamation of bioinformatics software and perl script was used to identify new miRNA to add to the growing database of wheat miRNA. Identification of miRNAs was initiated by mining the EST (Expressed Sequence Tags) database available at National Center for Biotechnology Information. In this investigation, 4677 mature microRNA sequences belonging to 50 miRNA families from different plant species were used to predict miRNA in wheat. A total of five abiotic stress-responsive new miRNAs were predicted and named Ta-miR5653, Ta-miR855, Ta-miR819k, Ta-miR3708 and Ta-miR5156. In addition, four previously identified miRNA, i.e., Ta-miR1122, miR1117, Ta-miR1134 and Ta-miR1133 were predicted in newly identified EST sequence and 14 potential target genes were subsequently predicted, most of which seems to encode ubiquitin carrier protein, serine/threonine protein kinase, 40S ribosomal protein, F-box/kelch-repeat protein, BTB/POZ domain-containing protein, transcription factors which are involved in growth, development, metabolism and stress response. Our result has increased the number of miRNAs in wheat, which should be useful for further investigation into the biological functions and evolution of miRNAs in wheat and other plant species.
iDBPs: a web server for the identification of DNA binding proteins.
Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir
2010-03-01
The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. http://idbps.tau.ac.il/
Intrinsic and extrinsic approaches for detecting genes in a bacterial genome.
Borodovsky, M; Rudd, K E; Koonin, E V
1994-01-01
The unannotated regions of the Escherichia coli genome DNA sequence from the EcoSeq6 database, totaling 1,278 'intergenic' sequences of the combined length of 359,279 basepairs, were analyzed using computer-assisted methods with the aim of identifying putative unknown genes. The proposed strategy for finding new genes includes two key elements: i) prediction of expressed open reading frames (ORFs) using the GeneMark method based on Markov chain models for coding and non-coding regions of Escherichia coli DNA, and ii) search for protein sequence similarities using programs based on the BLAST algorithm and programs for motif identification. A total of 354 putative expressed ORFs were predicted by GeneMark. Using the BLASTX and TBLASTN programs, it was shown that 208 ORFs located in the unannotated regions of the E. coli chromosome are significantly similar to other protein sequences. Identification of 182 ORFs as probable genes was supported by GeneMark and BLAST, comprising 51.4% of the GeneMark 'hits' and 87.5% of the BLAST 'hits'. 73 putative new genes, comprising 20.6% of the GeneMark predictions, belong to ancient conserved protein families that include both eubacterial and eukaryotic members. This value is close to the overall proportion of highly conserved sequences among eubacterial proteins, indicating that the majority of the putative expressed ORFs that are predicted by GeneMark, but have no significant BLAST hits, nevertheless are likely to be real genes. The majority of the putative genes identified by BLAST search have been described since the release of the EcoSeq6 database, but about 70 genes have not been detected so far. Among these new identifications are genes encoding proteins with a variety of predicted functions including dehydrogenases, kinases, several other metabolic enzymes, ATPases, rRNA methyltransferases, membrane proteins, and different types of regulatory proteins. Images PMID:7984428
Ghosh, Pritha; Mathew, Oommen K; Sowdhamini, Ramanathan
2016-10-07
RNA-binding proteins (RBPs) interact with their cognate RNA(s) to form large biomolecular assemblies. They are versatile in their functionality and are involved in a myriad of processes inside the cell. RBPs with similar structural features and common biological functions are grouped together into families and superfamilies. It will be useful to obtain an early understanding and association of RNA-binding property of sequences of gene products. Here, we report a web server, RStrucFam, to predict the structure, type of cognate RNA(s) and function(s) of proteins, where possible, from mere sequence information. The web server employs Hidden Markov Model scan (hmmscan) to enable association to a back-end database of structural and sequence families. The database (HMMRBP) comprises of 437 HMMs of RBP families of known structure that have been generated using structure-based sequence alignments and 746 sequence-centric RBP family HMMs. The input protein sequence is associated with structural or sequence domain families, if structure or sequence signatures exist. In case of association of the protein with a family of known structures, output features like, multiple structure-based sequence alignment (MSSA) of the query with all others members of that family is provided. Further, cognate RNA partner(s) for that protein, Gene Ontology (GO) annotations, if any and a homology model of the protein can be obtained. The users can also browse through the database for details pertaining to each family, protein or RNA and their related information based on keyword search or RNA motif search. RStrucFam is a web server that exploits structurally conserved features of RBPs, derived from known family members and imprinted in mathematical profiles, to predict putative RBPs from sequence information. Proteins that fail to associate with such structure-centric families are further queried against the sequence-centric RBP family HMMs in the HMMRBP database. Further, all other essential information pertaining to an RBP, like overall function annotations, are provided. The web server can be accessed at the following link: http://caps.ncbs.res.in/rstrucfam .
DBSecSys: a database of Burkholderia mallei secretion systems.
Memišević, Vesna; Kumar, Kamal; Cheng, Li; Zavaljevski, Nela; DeShazer, David; Wallqvist, Anders; Reifman, Jaques
2014-07-16
Bacterial pathogenicity represents a major public health concern worldwide. Secretion systems are a key component of bacterial pathogenicity, as they provide the means for bacterial proteins to penetrate host-cell membranes and insert themselves directly into the host cells' cytosol. Burkholderia mallei is a Gram-negative bacterium that uses multiple secretion systems during its host infection life cycle. To date, the identities of secretion system proteins for B. mallei are not well known, and their pathogenic mechanisms of action and host factors are largely uncharacterized. We present the Database of Burkholderia malleiSecretion Systems (DBSecSys), a compilation of manually curated and computationally predicted bacterial secretion system proteins and their host factors. Currently, DBSecSys contains comprehensive experimentally and computationally derived information about B. mallei strain ATCC 23344. The database includes 143 B. mallei proteins associated with five secretion systems, their 1,635 human and murine interacting targets, and the corresponding 2,400 host-B. mallei interactions. The database also includes information about 10 pathogenic mechanisms of action for B. mallei secretion system proteins inferred from the available literature. Additionally, DBSecSys provides details about 42 virulence attenuation experiments for 27 B. mallei secretion system proteins. Users interact with DBSecSys through a Web interface that allows for data browsing, querying, visualizing, and downloading. DBSecSys provides a comprehensive, systematically organized resource of experimental and computational data associated with B. mallei secretion systems. It provides the unique ability to study secretion systems not only through characterization of their corresponding pathogen proteins, but also through characterization of their host-interacting partners.The database is available at https://applications.bhsai.org/dbsecsys.
Rule Mining Techniques to Predict Prokaryotic Metabolic Pathways.
Saidi, Rabie; Boudellioua, Imane; Martin, Maria J; Solovyev, Victor
2017-01-01
It is becoming more evident that computational methods are needed for the identification and the mapping of pathways in new genomes. We introduce an automatic annotation system (ARBA4Path Association Rule-Based Annotator for Pathways) that utilizes rule mining techniques to predict metabolic pathways across wide range of prokaryotes. It was demonstrated that specific combinations of protein domains (recorded in our rules) strongly determine pathways in which proteins are involved and thus provide information that let us very accurately assign pathway membership (with precision of 0.999 and recall of 0.966) to proteins of a given prokaryotic taxon. Our system can be used to enhance the quality of automatically generated annotations as well as annotating proteins with unknown function. The prediction models are represented in the form of human-readable rules, and they can be used effectively to add absent pathway information to many proteins in UniProtKB/TrEMBL database.
Trezza, Alfonso; Bernini, Andrea; Langella, Andrea; Ascher, David B; Pires, Douglas E V; Sodi, Andrea; Passerini, Ilaria; Pelo, Elisabetta; Rizzo, Stanislao; Niccolai, Neri; Spiga, Ottavia
2017-10-01
The aim of this article is to report the investigation of the structural features of ABCA4, a protein associated with a genetic retinal disease. A new database collecting knowledge of ABCA4 structure may facilitate predictions about the possible functional consequences of gene mutations observed in clinical practice. In order to correlate structural and functional effects of the observed mutations, the structure of mouse P-glycoprotein was used as a template for homology modeling. The obtained structural information and genetic data are the basis of our relational database (ABCA4Database). Sequence variability among all ABCA4-deposited entries was calculated and reported as Shannon entropy score at the residue level. The three-dimensional model of ABCA4 structure was used to locate the spatial distribution of the observed variable regions. Our predictions from structural in silico tools were able to accurately link the functional effects of mutations to phenotype. The development of the ABCA4Database gathers all the available genetic and structural information, yielding a global view of the molecular basis of some retinal diseases. ABCA4 modeled structure provides a molecular basis on which to analyze protein sequence mutations related to genetic retinal disease in order to predict the risk of retinal disease across all possible ABCA4 mutations. Additionally, our ABCA4 predicted structure is a good starting point for the creation of a new data analysis model, appropriate for precision medicine, in order to develop a deeper knowledge network of the disease and to improve the management of patients.
Hooper, Cornelia M; Castleden, Ian R; Aryamanesh, Nader; Jacoby, Richard P; Millar, A Harvey
2016-01-01
Barley, wheat, rice and maize provide the bulk of human nutrition and have extensive industrial use as agricultural products. The genomes of these crops each contains >40,000 genes encoding proteins; however, the major genome databases for these species lack annotation information of protein subcellular location for >80% of these gene products. We address this gap, by constructing the compendium of crop protein subcellular locations called crop Proteins with Annotated Locations (cropPAL). Subcellular location is most commonly determined by fluorescent protein tagging of live cells or mass spectrometry detection in subcellular purifications, but can also be predicted from amino acid sequence or protein expression patterns. The cropPAL database collates 556 published studies, from >300 research institutes in >30 countries that have been previously published, as well as compiling eight pre-computed subcellular predictions for all Hordeum vulgare, Triticum aestivum, Oryza sativa and Zea mays protein sequences. The data collection including metadata for proteins and published studies can be accessed through a search portal http://crop-PAL.org. The subcellular localization information housed in cropPAL helps to depict plant cells as compartmentalized protein networks that can be investigated for improving crop yield and quality, and developing new biotechnological solutions to agricultural challenges. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ruan, Peiying; Hayashida, Morihiro; Maruyama, Osamu; Akutsu, Tatsuya
2013-01-01
Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes. PMID:23776458
Accounting for host cell protein behavior in anion-exchange chromatography.
Swanson, Ryan K; Xu, Ruo; Nettleton, Daniel S; Glatz, Charles E
2016-11-01
Host cell proteins (HCP) are a problematic set of impurities in downstream processing (DSP) as they behave most similarly to the target protein during separation. Approaching DSP with the knowledge of HCP separation behavior would be beneficial for the production of high purity recombinant biologics. Therefore, this work was aimed at characterizing the separation behavior of complex mixtures of HCP during a commonly used method: anion-exchange chromatography (AEX). An additional goal was to evaluate the performance of a statistical methodology, based on the characterization data, as a tool for predicting protein separation behavior. Aqueous two-phase partitioning followed by two-dimensional electrophoresis provided data on the three physicochemical properties most commonly exploited during DSP for each HCP: pI (isoelectric point), molecular weight, and surface hydrophobicity. The protein separation behaviors of two alternative expression host extracts (corn germ and E. coli) were characterized. A multivariate random forest (MVRF) statistical methodology was then applied to the database of characterized proteins creating a tool for predicting the AEX behavior of a mixture of proteins. The accuracy of the MVRF method was determined by calculating a root mean squared error value for each database. This measure never exceeded a value of 0.045 (fraction of protein populating each of the multiple separation fractions) for AEX. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1453-1463, 2016. © 2016 American Institute of Chemical Engineers.
Distribution and cluster analysis of predicted intrinsically disordered protein Pfam domains
Williams, Robert W; Xue, Bin; Uversky, Vladimir N; Dunker, A Keith
2013-01-01
The Pfam database groups regions of proteins by how well hidden Markov models (HMMs) can be trained to recognize similarities among them. Conservation pressure is probably in play here. The Pfam seed training set includes sequence and structure information, being drawn largely from the PDB. A long standing hypothesis among intrinsically disordered protein (IDP) investigators has held that conservation pressures are also at play in the evolution of different kinds of intrinsic disorder, but we find that predicted intrinsic disorder (PID) is not always conserved across Pfam domains. Here we analyze distributions and clusters of PID regions in 193024 members of the version 23.0 Pfam seed database. To include the maximum information available for proteins that remain unfolded in solution, we employ the 10 linearly independent Kidera factors1–3 for the amino acids, combined with PONDR4 predictions of disorder tendency, to transform the sequences of these Pfam members into an 11 column matrix where the number of rows is the length of each Pfam region. Cluster analyses of the set of all regions, including those that are folded, show 6 groupings of domains. Cluster analyses of domains with mean VSL2b scores greater than 0.5 (half predicted disorder or more) show at least 3 separated groups. It is hypothesized that grouping sets into shorter sequences with more uniform length will reveal more information about intrinsic disorder and lead to more finely structured and perhaps more accurate predictions. HMMs could be trained to include this information. PMID:28516017
Protein binding hot spots prediction from sequence only by a new ensemble learning method.
Hu, Shan-Shan; Chen, Peng; Wang, Bing; Li, Jinyan
2017-10-01
Hot spots are interfacial core areas of binding proteins, which have been applied as targets in drug design. Experimental methods are costly in both time and expense to locate hot spot areas. Recently, in-silicon computational methods have been widely used for hot spot prediction through sequence or structure characterization. As the structural information of proteins is not always solved, and thus hot spot identification from amino acid sequences only is more useful for real-life applications. This work proposes a new sequence-based model that combines physicochemical features with the relative accessible surface area of amino acid sequences for hot spot prediction. The model consists of 83 classifiers involving the IBk (Instance-based k means) algorithm, where instances are encoded by important properties extracted from a total of 544 properties in the AAindex1 (Amino Acid Index) database. Then top-performance classifiers are selected to form an ensemble by a majority voting technique. The ensemble classifier outperforms the state-of-the-art computational methods, yielding an F1 score of 0.80 on the benchmark binding interface database (BID) test set. http://www2.ahu.edu.cn/pchen/web/HotspotEC.htm .
In silico re-identification of properties of drug target proteins.
Kim, Baeksoo; Jo, Jihoon; Han, Jonghyun; Park, Chungoo; Lee, Hyunju
2017-05-31
Computational approaches in the identification of drug targets are expected to reduce time and effort in drug development. Advances in genomics and proteomics provide the opportunity to uncover properties of druggable genomes. Although several studies have been conducted for distinguishing drug targets from non-drug targets, they mainly focus on the sequences and functional roles of proteins. Many other properties of proteins have not been fully investigated. Using the DrugBank (version 3.0) database containing nearly 6,816 drug entries including 760 FDA-approved drugs and 1822 of their targets and human UniProt/Swiss-Prot databases, we defined 1578 non-redundant drug target and 17,575 non-drug target proteins. To select these non-redundant protein datasets, we built four datasets (A, B, C, and D) by considering clustering of paralogous proteins. We first reassessed the widely used properties of drug target proteins. We confirmed and extended that drug target proteins (1) are likely to have more hydrophobic, less polar, less PEST sequences, and more signal peptide sequences higher and (2) are more involved in enzyme catalysis, oxidation and reduction in cellular respiration, and operational genes. In this study, we proposed new properties (essentiality, expression pattern, PTMs, and solvent accessibility) for effectively identifying drug target proteins. We found that (1) drug targetability and protein essentiality are decoupled, (2) druggability of proteins has high expression level and tissue specificity, and (3) functional post-translational modification residues are enriched in drug target proteins. In addition, to predict the drug targetability of proteins, we exploited two machine learning methods (Support Vector Machine and Random Forest). When we predicted drug targets by combining previously known protein properties and proposed new properties, an F-score of 0.8307 was obtained. When the newly proposed properties are integrated, the prediction performance is improved and these properties are related to drug targets. We believe that our study will provide a new aspect in inferring drug-target interactions.
GeneBuilder: interactive in silico prediction of gene structure.
Milanesi, L; D'Angelo, D; Rogozin, I B
1999-01-01
Prediction of gene structure in newly sequenced DNA becomes very important in large genome sequencing projects. This problem is complicated due to the exon-intron structure of eukaryotic genes and because gene expression is regulated by many different short nucleotide domains. In order to be able to analyse the full gene structure in different organisms, it is necessary to combine information about potential functional signals (promoter region, splice sites, start and stop codons, 3' untranslated region) together with the statistical properties of coding sequences (coding potential), information about homologous proteins, ESTs and repeated elements. We have developed the GeneBuilder system which is based on prediction of functional signals and coding regions by different approaches in combination with similarity searches in proteins and EST databases. The potential gene structure models are obtained by using a dynamic programming method. The program permits the use of several parameters for gene structure prediction and refinement. During gene model construction, selecting different exon homology levels with a protein sequence selected from a list of homologous proteins can improve the accuracy of the gene structure prediction. In the case of low homology, GeneBuilder is still able to predict the gene structure. The GeneBuilder system has been tested by using the standard set (Burset and Guigo, Genomics, 34, 353-367, 1996) and the performances are: 0.89 sensitivity and 0.91 specificity at the nucleotide level. The total correlation coefficient is 0.88. The GeneBuilder system is implemented as a part of the WebGene a the URL: http://www.itba.mi. cnr.it/webgene and TRADAT (TRAncription Database and Analysis Tools) launcher URL: http://www.itba.mi.cnr.it/tradat.
Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S
2018-05-01
We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.
Histoplasma capsulatum proteome response to decreased iron availability
Winters, Michael S; Spellman, Daniel S; Chan, Qilin; Gomez, Francisco J; Hernandez, Margarita; Catron, Brittany; Smulian, Alan G; Neubert, Thomas A; Deepe, George S
2008-01-01
Background A fundamental pathogenic feature of the fungus Histoplasma capsulatum is its ability to evade innate and adaptive immune defenses. Once ingested by macrophages the organism is faced with several hostile environmental conditions including iron limitation. H. capsulatum can establish a persistent state within the macrophage. A gap in knowledge exists because the identities and number of proteins regulated by the organism under host conditions has yet to be defined. Lack of such knowledge is an important problem because until these proteins are identified it is unlikely that they can be targeted as new and innovative treatment for histoplasmosis. Results To investigate the proteomic response by H. capsulatum to decreasing iron availability we have created H. capsulatum protein/genomic databases compatible with current mass spectrometric (MS) search engines. Databases were assembled from the H. capsulatum G217B strain genome using gene prediction programs and expressed sequence tag (EST) libraries. Searching these databases with MS data generated from two dimensional (2D) in-gel digestions of proteins resulted in over 50% more proteins identified compared to searching the publicly available fungal databases alone. Using 2D gel electrophoresis combined with statistical analysis we discovered 42 H. capsulatum proteins whose abundance was significantly modulated when iron concentrations were lowered. Altered proteins were identified by mass spectrometry and database searching to be involved in glycolysis, the tricarboxylic acid cycle, lysine metabolism, protein synthesis, and one protein sequence whose function was unknown. Conclusion We have created a bioinformatics platform for H. capsulatum and demonstrated the utility of a proteomic approach by identifying a shift in metabolism the organism utilizes to cope with the hostile conditions provided by the host. We have shown that enzyme transcripts regulated by other fungal pathogens in response to lowering iron availability are also regulated in H. capsulatum at the protein level. We also identified H. capsulatum proteins sensitive to iron level reductions which have yet to be connected to iron availability in other pathogens. These data also indicate the complexity of the response by H. capsulatum to nutritional deprivation. Finally, we demonstrate the importance of a strain specific gene/protein database for H. capsulatum proteomic analysis. PMID:19108728
Kumar, Amit; Thotakura, Pragna Lakshmi; Tiwary, Basant Kumar; Krishna, Ramadas
2016-05-12
Fusobacterium nucleatum, a well studied bacterium in periodontal diseases, appendicitis, gingivitis, osteomyelitis and pregnancy complications has recently gained attention due to its association with colorectal cancer (CRC) progression. Treatment with berberine was shown to reverse F. nucleatum-induced CRC progression in mice by balancing the growth of opportunistic pathogens in tumor microenvironment. Intestinal microbiota imbalance and the infections caused by F. nucleatum might be regulated by therapeutic intervention. Hence, we aimed to predict drug target proteins in F. nucleatum, through subtractive genomics approach and host-pathogen protein-protein interactions (HP-PPIs). We also carried out enrichment analysis of host interacting partners to hypothesize the possible mechanisms involved in CRC progression due to F. nucleatum. In subtractive genomics approach, the essential, virulence and resistance related proteins were retrieved from RefSeq proteome of F. nucleatum by searching against Database of Essential Genes (DEG), Virulence Factor Database (VFDB) and Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) tool respectively. A subsequent hierarchical screening to identify non-human homologous, metabolic pathway-independent/pathway-specific and druggable proteins resulted in eight pathway-independent and 27 pathway-specific druggable targets. Co-aggregation of F. nucleatum with host induces proinflammatory gene expression thereby potentiates tumorigenesis. Hence, proteins from IBDsite, a database for inflammatory bowel disease (IBD) research and those involved in colorectal adenocarcinoma as interpreted from The Cancer Genome Atlas (TCGA) were retrieved to predict drug targets based on HP-PPIs with F. nucleatum proteome. Prediction of HP-PPIs exhibited 186 interactions contributed by 103 host and 76 bacterial proteins. Bacterial interacting partners were accounted as putative targets. And enrichment analysis of host interacting partners showed statistically enriched terms that were in positive correlation with CRC, atherosclerosis, cardiovascular, osteoporosis, Alzheimer's and other diseases. Subtractive genomics analysis provided a set of target proteins suggested to be indispensable for survival and pathogenicity of F. nucleatum. These target proteins might be considered for designing potent inhibitors to abrogate F. nucleatum infections. From enrichment analysis, it was hypothesized that F. nucleatum infection might enhance CRC progression by simultaneously regulating multiple signaling cascades which could lead to up-regulation of proinflammatory responses, oncogenes, modulation of host immune defense mechanism and suppression of DNA repair system.
Busk, P K; Pilgaard, B; Lezyk, M J; Meyer, A S; Lange, L
2017-04-12
Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.
Wallace, A. C.; Borkakoti, N.; Thornton, J. M.
1997-01-01
It is well established that sequence templates such as those in the PROSITE and PRINTS databases are powerful tools for predicting the biological function and tertiary structure for newly derived protein sequences. The number of X-ray and NMR protein structures is increasing rapidly and it is apparent that a 3D equivalent of the sequence templates is needed. Here, we describe an algorithm called TESS that automatically derives 3D templates from structures deposited in the Brookhaven Protein Data Bank. While a new sequence can be searched for sequence patterns, a new structure can be scanned against these 3D templates to identify functional sites. As examples, 3D templates are derived for enzymes with an O-His-O "catalytic triad" and for the ribonucleases and lysozymes. When these 3D templates are applied to a large data set of nonidentical proteins, several interesting hits are located. This suggests that the development of a 3D template database may help to identify the function of new protein structures, if unknown, as well as to design proteins with specific functions. PMID:9385633
Jarecki, Jessica L.; Frey, Brian L.; Smith, Lloyd M.; Stretton, Antony O.
2011-01-01
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to discover peptides in extracts of the large parasitic nematode Ascaris suum. This required the assembly of a new database of known and predicted peptides. In addition to those already sequenced, peptides were either previously predicted to be processed from precursor proteins identified in an A. suum library of expressed sequence tags (ESTs), or newly predicted from a library of A. suum genome survey sequences (GSSs). The predicted MS/MS fragmentation patterns of this collection of real and putative peptides were compared with the actual fragmentation patterns found in the MS/MS spectra of peptides fractionated by MS; this enabled individual peptides to be sequenced. Many previously identified peptides were found, and 21 novel peptides were discovered. Thus, this approach is very useful, despite the fact that the available GSS database is still preliminary, having only 1X coverage. PMID:21524146
Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.
2004-01-01
The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406
Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R
2004-01-01
The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.
Lepoivre, Cyrille; Bergon, Aurélie; Lopez, Fabrice; Perumal, Narayanan B; Nguyen, Catherine; Imbert, Jean; Puthier, Denis
2012-01-31
Deciphering gene regulatory networks by in silico approaches is a crucial step in the study of the molecular perturbations that occur in diseases. The development of regulatory maps is a tedious process requiring the comprehensive integration of various evidences scattered over biological databases. Thus, the research community would greatly benefit from having a unified database storing known and predicted molecular interactions. Furthermore, given the intrinsic complexity of the data, the development of new tools offering integrated and meaningful visualizations of molecular interactions is necessary to help users drawing new hypotheses without being overwhelmed by the density of the subsequent graph. We extend the previously developed TranscriptomeBrowser database with a set of tables containing 1,594,978 human and mouse molecular interactions. The database includes: (i) predicted regulatory interactions (computed by scanning vertebrate alignments with a set of 1,213 position weight matrices), (ii) potential regulatory interactions inferred from systematic analysis of ChIP-seq experiments, (iii) regulatory interactions curated from the literature, (iv) predicted post-transcriptional regulation by micro-RNA, (v) protein kinase-substrate interactions and (vi) physical protein-protein interactions. In order to easily retrieve and efficiently analyze these interactions, we developed In-teractomeBrowser, a graph-based knowledge browser that comes as a plug-in for Transcriptome-Browser. The first objective of InteractomeBrowser is to provide a user-friendly tool to get new insight into any gene list by providing a context-specific display of putative regulatory and physical interactions. To achieve this, InteractomeBrowser relies on a "cell compartments-based layout" that makes use of a subset of the Gene Ontology to map gene products onto relevant cell compartments. This layout is particularly powerful for visual integration of heterogeneous biological information and is a productive avenue in generating new hypotheses. The second objective of InteractomeBrowser is to fill the gap between interaction databases and dynamic modeling. It is thus compatible with the network analysis software Cytoscape and with the Gene Interaction Network simulation software (GINsim). We provide examples underlying the benefits of this visualization tool for large gene set analysis related to thymocyte differentiation. The InteractomeBrowser plugin is a powerful tool to get quick access to a knowledge database that includes both predicted and validated molecular interactions. InteractomeBrowser is available through the TranscriptomeBrowser framework and can be found at: http://tagc.univ-mrs.fr/tbrowser/. Our database is updated on a regular basis.
McDermott, Jason E.; Bruillard, Paul; Overall, Christopher C.; ...
2015-03-09
There are many examples of groups of proteins that have similar function, but the determinants of functional specificity may be hidden by lack of sequencesimilarity, or by large groups of similar sequences with different functions. Transporters are one such protein group in that the general function, transport, can be easily inferred from the sequence, but the substrate specificity can be impossible to predict from sequence with current methods. In this paper we describe a linguistic-based approach to identify functional patterns from groups of unaligned protein sequences and its application to predict multi-drug resistance transporters (MDRs) from bacteria. We first showmore » that our method can recreate known patterns from PROSITE for several motifs from unaligned sequences. We then show that the method, MDRpred, can predict MDRs with greater accuracy and positive predictive value than a collection of currently available family-based models from the Pfam database. Finally, we apply MDRpred to a large collection of protein sequences from an environmental microbiome study to make novel predictions about drug resistance in a potential environmental reservoir.« less
Yamaguchi, Akihiro; Go, Mitiko
2006-01-01
We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics. PMID:17146617
Protein function prediction--the power of multiplicity.
Rentzsch, Robert; Orengo, Christine A
2009-04-01
Advances in experimental and computational methods have quietly ushered in a new era in protein function annotation. This 'age of multiplicity' is marked by the notion that only the use of multiple tools, multiple evidence and considering the multiple aspects of function can give us the broad picture that 21st century biology will need to link and alter micro- and macroscopic phenotypes. It might also help us to undo past mistakes by removing errors from our databases and prevent us from producing more. On the downside, multiplicity is often confusing. We therefore systematically review methods and resources for automated protein function prediction, looking at individual (biochemical) and contextual (network) functions, respectively.
Virtual Interactomics of Proteins from Biochemical Standpoint
Kubrycht, Jaroslav; Sigler, Karel; Souček, Pavel
2012-01-01
Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics. Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they frequently also mediate variously important in silico simulations. PMID:22928109
Sequence-Based Prediction of RNA-Binding Residues in Proteins
Walia, Rasna R.; EL-Manzalawy, Yasser; Honavar, Vasant G.; Dobbs, Drena
2017-01-01
Identifying individual residues in the interfaces of protein–RNA complexes is important for understanding the molecular determinants of protein–RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein–RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein–RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner. PMID:27787829
Integrated web visualizations for protein-protein interaction databases.
Jeanquartier, Fleur; Jean-Quartier, Claire; Holzinger, Andreas
2015-06-16
Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. We selected M=10 out of N=53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015. Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.
Amber J. Vanden Wymelenberg; Grzegorz Sabat; Diego Martinez; Alex S. Rajangam; Tuula T. Teeri; Jill A. Gaskell; Philip J. Kersten; Daniel Cullen
2005-01-01
The white rot basidiomycete, Phanerochaete chrysosporium, employs an array of extracellular enzymes to completely degrade the major polymers of wood : cellulose, hemicellulose and lignin. Towards the identification of participating enzymes, 268 likely secreted proteins were predicted using SignalP and TargetP algorithms. To assess the reliability of secretome...
DeepLoc: prediction of protein subcellular localization using deep learning.
Almagro Armenteros, José Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae; Nielsen, Henrik; Winther, Ole
2017-11-01
The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict protein subcellular localization relying only on sequence information. At its core, the prediction model uses a recurrent neural network that processes the entire protein sequence and an attention mechanism identifying protein regions important for the subcellular localization. The model was trained and tested on a protein dataset extracted from one of the latest UniProt releases, in which experimentally annotated proteins follow more stringent criteria than previously. We demonstrate that our model achieves a good accuracy (78% for 10 categories; 92% for membrane-bound or soluble), outperforming current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc. Example code is available at https://github.com/JJAlmagro/subcellular_localization. The dataset is available at http://www.cbs.dtu.dk/services/DeepLoc/data.php. jjalma@dtu.dk. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Kariithi, Henry M.; Ince, Ikbal A.; Boeren, Sjef; Abd-Alla, Adly M. M.; Parker, Andrew G.; Aksoy, Serap; Vlak, Just M.; van Oers, Monique M.
2011-01-01
Background The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. Methodology/Principal Findings After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (∼1.8%) Glossina and three (∼12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. Conclusions/Significance SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as using SGHV-specific antibodies and phage display-selected gut epithelia-binding peptides. PMID:22132244
Odronitz, Florian; Kollmar, Martin
2006-01-01
Background Annotation of protein sequences of eukaryotic organisms is crucial for the understanding of their function in the cell. Manual annotation is still by far the most accurate way to correctly predict genes. The classification of protein sequences, their phylogenetic relation and the assignment of function involves information from various sources. This often leads to a collection of heterogeneous data, which is hard to track. Cytoskeletal and motor proteins consist of large and diverse superfamilies comprising up to several dozen members per organism. Up to date there is no integrated tool available to assist in the manual large-scale comparative genomic analysis of protein families. Description Pfarao (Protein Family Application for Retrieval, Analysis and Organisation) is a database driven online working environment for the analysis of manually annotated protein sequences and their relationship. Currently, the system can store and interrelate a wide range of information about protein sequences, species, phylogenetic relations and sequencing projects as well as links to literature and domain predictions. Sequences can be imported from multiple sequence alignments that are generated during the annotation process. A web interface allows to conveniently browse the database and to compile tabular and graphical summaries of its content. Conclusion We implemented a protein sequence-centric web application to store, organize, interrelate, and present heterogeneous data that is generated in manual genome annotation and comparative genomics. The application has been developed for the analysis of cytoskeletal and motor proteins (CyMoBase) but can easily be adapted for any protein. PMID:17134497
Türei, Dénes; Papp, Diána; Fazekas, Dávid; Földvári-Nagy, László; Módos, Dezső; Lenti, Katalin; Csermely, Péter; Korcsmáros, Tamás
2013-01-01
NRF2 is the master transcriptional regulator of oxidative and xenobiotic stress responses. NRF2 has important roles in carcinogenesis, inflammation, and neurodegenerative diseases. We developed an online resource, NRF2-ome, to provide an integrated and systems-level database for NRF2. The database contains manually curated and predicted interactions of NRF2 as well as data from external interaction databases. We integrated NRF2 interactome with NRF2 target genes, NRF2 regulating TFs, and miRNAs. We connected NRF2-ome to signaling pathways to allow mapping upstream NRF2 regulatory components that could directly or indirectly influence NRF2 activity totaling 35,967 protein-protein and signaling interactions. The user-friendly website allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. We illustrated the applicability of the website by suggesting a posttranscriptional negative feedback of NRF2 by MAFG protein and raised the possibility of a connection between NRF2 and the JAK/STAT pathway through STAT1 and STAT3. NRF2-ome can also be used as an evaluation tool to help researchers and drug developers to understand the hidden regulatory mechanisms in the complex network of NRF2.
iDBPs: a web server for the identification of DNA binding proteins
Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir
2010-01-01
Summary: The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. Availability: http://idbps.tau.ac.il/ Contact: NirB@tauex.tau.ac.il Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20089514
Czaplewski, Cezary; Karczynska, Agnieszka; Sieradzan, Adam K; Liwo, Adam
2018-04-30
A server implementation of the UNRES package (http://www.unres.pl) for coarse-grained simulations of protein structures with the physics-based UNRES model, coined a name UNRES server, is presented. In contrast to most of the protein coarse-grained models, owing to its physics-based origin, the UNRES force field can be used in simulations, including those aimed at protein-structure prediction, without ancillary information from structural databases; however, the implementation includes the possibility of using restraints. Local energy minimization, canonical molecular dynamics simulations, replica exchange and multiplexed replica exchange molecular dynamics simulations can be run with the current UNRES server; the latter are suitable for protein-structure prediction. The user-supplied input includes protein sequence and, optionally, restraints from secondary-structure prediction or small x-ray scattering data, and simulation type and parameters which are selected or typed in. Oligomeric proteins, as well as those containing D-amino-acid residues and disulfide links can be treated. The output is displayed graphically (minimized structures, trajectories, final models, analysis of trajectory/ensembles); however, all output files can be downloaded by the user. The UNRES server can be freely accessed at http://unres-server.chem.ug.edu.pl.
Huo, Tong; Liu, Wei; Guo, Yu; Yang, Cheng; Lin, Jianping; Rao, Zihe
2015-03-26
Emergence of multiple drug resistant strains of M. tuberculosis (MDR-TB) threatens to derail global efforts aimed at reigning in the pathogen. Co-infections of M. tuberculosis with HIV are difficult to treat. To counter these new challenges, it is essential to study the interactions between M. tuberculosis and the host to learn how these bacteria cause disease. We report a systematic flow to predict the host pathogen interactions (HPIs) between M. tuberculosis and Homo sapiens based on sequence motifs. First, protein sequences were used as initial input for identifying the HPIs by 'interolog' method. HPIs were further filtered by prediction of domain-domain interactions (DDIs). Functional annotations of protein and publicly available experimental results were applied to filter the remaining HPIs. Using such a strategy, 118 pairs of HPIs were identified, which involve 43 proteins from M. tuberculosis and 48 proteins from Homo sapiens. A biological interaction network between M. tuberculosis and Homo sapiens was then constructed using the predicted inter- and intra-species interactions based on the 118 pairs of HPIs. Finally, a web accessible database named PATH (Protein interactions of M. tuberculosis and Human) was constructed to store these predicted interactions and proteins. This interaction network will facilitate the research on host-pathogen protein-protein interactions, and may throw light on how M. tuberculosis interacts with its host.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denef, Vincent; Shah, Manesh B; Verberkmoes, Nathan C
The recent surge in microbial genomic sequencing, combined with the development of high-throughput liquid chromatography-mass-spectrometry-based (LC/LC-MS/MS) proteomics, has raised the question of the extent to which genomic information of one strain or environmental sample can be used to profile proteomes of related strains or samples. Even with decreasing sequencing costs, it remains impractical to obtain genomic sequence for every strain or sample analyzed. Here, we evaluate how shotgun proteomics is affected by amino acid divergence between the sample and the genomic database using a probability-based model and a random mutation simulation model constrained by experimental data. To assess the effectsmore » of nonrandom distribution of mutations, we also evaluated identification levels using in silico peptide data from sequenced isolates with average amino acid identities (AAI) varying between 76 and 98%. We compared the predictions to experimental protein identification levels for a sample that was evaluated using a database that included genomic information for the dominant organism and for a closely related variant (95% AAI). The range of models set the boundaries at which half of the proteins in a proteomic experiment can be identified to be 77-92% AAI between orthologs in the sample and database. Consistent with this prediction, experimental data indicated loss of half the identifiable proteins at 90% AAI. Additional analysis indicated a 6.4% reduction of the initial protein coverage per 1% amino acid divergence and total identification loss at 86% AAI. Consequently, shotgun proteomics is capable of cross-strain identifications but avoids most crossspecies false positives.« less
Michael, Sushama; Travé, Gilles; Ramu, Chenna; Chica, Claudia; Gibson, Toby J
2008-02-15
KEN-box-mediated target selection is one of the mechanisms used in the proteasomal destruction of mitotic cell cycle proteins via the APC/C complex. While annotating the Eukaryotic Linear Motif resource (ELM, http://elm.eu.org/), we found that KEN motifs were significantly enriched in human protein entries with cell cycle keywords in the UniProt/Swiss-Prot database-implying that KEN-boxes might be more common than reported. Matches to short linear motifs in protein database searches are not, per se, significant. KEN-box enrichment with cell cycle Gene Ontology terms suggests that collectively these motifs are functional but does not prove that any given instance is so. Candidates were surveyed for native disorder prediction using GlobPlot and IUPred and for motif conservation in homologues. Among >25 strong new candidates, the most notable are human HIPK2, CHFR, CDC27, Dab2, Upf2, kinesin Eg5, DNA Topoisomerase 1 and yeast Cdc5 and Swi5. A similar number of weaker candidates were present. These proteins have yet to be tested for APC/C targeted destruction, providing potential new avenues of research.
PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations
Bendl, Jaroslav; Stourac, Jan; Salanda, Ondrej; Pavelka, Antonin; Wieben, Eric D.; Zendulka, Jaroslav; Brezovsky, Jan; Damborsky, Jiri
2014-01-01
Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp. PMID:24453961
Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan
2015-03-15
Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.
Computational prediction of protein-protein interactions in Leishmania predicted proteomes.
Rezende, Antonio M; Folador, Edson L; Resende, Daniela de M; Ruiz, Jeronimo C
2012-01-01
The Trypanosomatids parasites Leishmania braziliensis, Leishmania major and Leishmania infantum are important human pathogens. Despite of years of study and genome availability, effective vaccine has not been developed yet, and the chemotherapy is highly toxic. Therefore, it is clear just interdisciplinary integrated studies will have success in trying to search new targets for developing of vaccines and drugs. An essential part of this rationale is related to protein-protein interaction network (PPI) study which can provide a better understanding of complex protein interactions in biological system. Thus, we modeled PPIs for Trypanosomatids through computational methods using sequence comparison against public database of protein or domain interaction for interaction prediction (Interolog Mapping) and developed a dedicated combined system score to address the predictions robustness. The confidence evaluation of network prediction approach was addressed using gold standard positive and negative datasets and the AUC value obtained was 0.94. As result, 39,420, 43,531 and 45,235 interactions were predicted for L. braziliensis, L. major and L. infantum respectively. For each predicted network the top 20 proteins were ranked by MCC topological index. In addition, information related with immunological potential, degree of protein sequence conservation among orthologs and degree of identity compared to proteins of potential parasite hosts was integrated. This information integration provides a better understanding and usefulness of the predicted networks that can be valuable to select new potential biological targets for drug and vaccine development. Network modularity which is a key when one is interested in destabilizing the PPIs for drug or vaccine purposes along with multiple alignments of the predicted PPIs were performed revealing patterns associated with protein turnover. In addition, around 50% of hypothetical protein present in the networks received some degree of functional annotation which represents an important contribution since approximately 60% of Leishmania predicted proteomes has no predicted function.
Friso, Giulia; Giacomelli, Lisa; Ytterberg, A Jimmy; Peltier, Jean-Benoit; Rudella, Andrea; Sun, Qi; Wijk, Klaas J van
2004-02-01
An extensive analysis of the Arabidopsis thaliana peripheral and integral thylakoid membrane proteome was performed by sequential extractions with salt, detergent, and organic solvents, followed by multidimensional protein separation steps (reverse-phase HPLC and one- and two-dimensional electrophoresis gels), different enzymatic and nonenzymatic protein cleavage techniques, mass spectrometry, and bioinformatics. Altogether, 154 proteins were identified, of which 76 (49%) were alpha-helical integral membrane proteins. Twenty-seven new proteins without known function but with predicted chloroplast transit peptides were identified, of which 17 (63%) are integral membrane proteins. These new proteins, likely important in thylakoid biogenesis, include two rubredoxins, a potential metallochaperone, and a new DnaJ-like protein. The data were integrated with our analysis of the lumenal-enriched proteome. We identified 83 out of 100 known proteins of the thylakoid localized photosynthetic apparatus, including several new paralogues and some 20 proteins involved in protein insertion, assembly, folding, or proteolysis. An additional 16 proteins are involved in translation, demonstrating that the thylakoid membrane surface is an important site for protein synthesis. The high coverage of the photosynthetic apparatus and the identification of known hydrophobic proteins with low expression levels, such as cpSecE, Ohp1, and Ohp2, indicate an excellent dynamic resolution of the analysis. The sequential extraction process proved very helpful to validate transmembrane prediction. Our data also were cross-correlated to chloroplast subproteome analyses by other laboratories. All data are deposited in a new curated plastid proteome database (PPDB) with multiple search functions (http://cbsusrv01.tc.cornell.edu/users/ppdb/). This PPDB will serve as an expandable resource for the plant community.
Identification of helix capping and β-turn motifs from NMR chemical shifts
Shen, Yang; Bax, Ad
2012-01-01
We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13Cβ chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed that attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures. PMID:22314702
Kumar, Ravindra; Kumari, Bandana; Srivastava, Abhishikha; Kumar, Manish
2014-10-29
Nuclear receptor proteins (NRP) are transcription factor that regulate many vital cellular processes in animal cells. NRPs form a super-family of phylogenetically related proteins and divided into different sub-families on the basis of ligand characteristics and their functions. In the post-genomic era, when new proteins are being added to the database in a high-throughput mode, it becomes imperative to identify new NRPs using information from amino acid sequence alone. In this study we report a SVM based two level prediction systems, NRfamPred, using dipeptide composition of proteins as input. At the 1st level, NRfamPred screens whether the query protein is NRP or non-NRP; if the query protein belongs to NRP class, prediction moves to 2nd level and predicts the sub-family. Using leave-one-out cross-validation, we were able to achieve an overall accuracy of 97.88% at the 1st level and an overall accuracy of 98.11% at the 2nd level with dipeptide composition. Benchmarking on independent datasets showed that NRfamPred had comparable accuracy to other existing methods, developed on the same dataset. Our method predicted the existence of 76 NRPs in the human proteome, out of which 14 are novel NRPs. NRfamPred also predicted the sub-families of these 14 NRPs.
A scoring function based on solvation thermodynamics for protein structure prediction
Du, Shiqiao; Harano, Yuichi; Kinoshita, Masahiro; Sakurai, Minoru
2012-01-01
We predict protein structure using our recently developed free energy function for describing protein stability, which is focused on solvation thermodynamics. The function is combined with the current most reliable sampling methods, i.e., fragment assembly (FA) and comparative modeling (CM). The prediction is tested using 11 small proteins for which high-resolution crystal structures are available. For 8 of these proteins, sequence similarities are found in the database, and the prediction is performed with CM. Fairly accurate models with average Cα root mean square deviation (RMSD) ∼ 2.0 Å are successfully obtained for all cases. For the rest of the target proteins, we perform the prediction following FA protocols. For 2 cases, we obtain predicted models with an RMSD ∼ 3.0 Å as the best-scored structures. For the other case, the RMSD remains larger than 7 Å. For all the 11 target proteins, our scoring function identifies the experimentally determined native structure as the best structure. Starting from the predicted structure, replica exchange molecular dynamics is performed to further refine the structures. However, we are unable to improve its RMSD toward the experimental structure. The exhaustive sampling by coarse-grained normal mode analysis around the native structures reveals that our function has a linear correlation with RMSDs < 3.0 Å. These results suggest that the function is quite reliable for the protein structure prediction while the sampling method remains one of the major limiting factors in it. The aspects through which the methodology could further be improved are discussed. PMID:27493529
BIPS: BIANA Interolog Prediction Server. A tool for protein-protein interaction inference.
Garcia-Garcia, Javier; Schleker, Sylvia; Klein-Seetharaman, Judith; Oliva, Baldo
2012-07-01
Protein-protein interactions (PPIs) play a crucial role in biology, and high-throughput experiments have greatly increased the coverage of known interactions. Still, identification of complete inter- and intraspecies interactomes is far from being complete. Experimental data can be complemented by the prediction of PPIs within an organism or between two organisms based on the known interactions of the orthologous genes of other organisms (interologs). Here, we present the BIANA (Biologic Interactions and Network Analysis) Interolog Prediction Server (BIPS), which offers a web-based interface to facilitate PPI predictions based on interolog information. BIPS benefits from the capabilities of the framework BIANA to integrate the several PPI-related databases. Additional metadata can be used to improve the reliability of the predicted interactions. Sensitivity and specificity of the server have been calculated using known PPIs from different interactomes using a leave-one-out approach. The specificity is between 72 and 98%, whereas sensitivity varies between 1 and 59%, depending on the sequence identity cut-off used to calculate similarities between sequences. BIPS is freely accessible at http://sbi.imim.es/BIPS.php.
Automated prediction of protein function and detection of functional sites from structure.
Pazos, Florencio; Sternberg, Michael J E
2004-10-12
Current structural genomics projects are yielding structures for proteins whose functions are unknown. Accordingly, there is a pressing requirement for computational methods for function prediction. Here we present PHUNCTIONER, an automatic method for structure-based function prediction using automatically extracted functional sites (residues associated to functions). The method relates proteins with the same function through structural alignments and extracts 3D profiles of conserved residues. Functional features to train the method are extracted from the Gene Ontology (GO) database. The method extracts these features from the entire GO hierarchy and hence is applicable across the whole range of function specificity. 3D profiles associated with 121 GO annotations were extracted. We tested the power of the method both for the prediction of function and for the extraction of functional sites. The success of function prediction by our method was compared with the standard homology-based method. In the zone of low sequence similarity (approximately 15%), our method assigns the correct GO annotation in 90% of the protein structures considered, approximately 20% higher than inheritance of function from the closest homologue.
Resource for structure related information on transmembrane proteins
NASA Astrophysics Data System (ADS)
Tusnády, Gábor E.; Simon, István
Transmembrane proteins are involved in a wide variety of vital biological processes including transport of water-soluble molecules, flow of information and energy production. Despite significant efforts to determine the structures of these proteins, only a few thousand solved structures are known so far. Here, we review the various resources for structure-related information on these types of proteins ranging from the 3D structure to the topology and from the up-to-date databases to the various Internet sites and servers dealing with structure prediction and structure analysis. Abbreviations: 3D, three dimensional; PDB, Protein Data Bank; TMP, transmembrane protein.
The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families.
Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B; Halpern, Aaron L; Williamson, Shannon J; Remington, Karin; Eisen, Jonathan A; Heidelberg, Karla B; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S; Li, Huiying; Mashiyama, Susan T; Joachimiak, Marcin P; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael, Benjamin J; Bafna, Vineet; Friedman, Robert; Brenner, Steven E; Godzik, Adam; Eisenberg, David; Dixon, Jack E; Taylor, Susan S; Strausberg, Robert L; Frazier, Marvin; Venter, J Craig
2007-03-01
Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.
Shen, Hong-Bin; Chou, Kuo-Chen
2007-02-15
Viruses can reproduce their progenies only within a host cell, and their actions depend both on its destructive tendencies toward a specific host cell and on environmental conditions. Therefore, knowledge of the subcellular localization of viral proteins in a host cell or virus-infected cell is very useful for in-depth studying of their functions and mechanisms as well as designing antiviral drugs. An analysis on the Swiss-Prot database (version 50.0, released on May 30, 2006) indicates that only 23.5% of viral protein entries are annotated for their subcellular locations in this regard. As for the gene ontology database, the corresponding percentage is 23.8%. Such a gap calls for the development of high throughput tools for timely annotating the localization of viral proteins within host and virus-infected cells. In this article, a predictor called "Virus-PLoc" has been developed that is featured by fusing many basic classifiers with each engineered according to the K-nearest neighbor rule. The overall jackknife success rate obtained by Virus-PLoc in identifying the subcellular compartments of viral proteins was 80% for a benchmark dataset in which none of proteins has more than 25% sequence identity to any other in a same location site. Virus-PLoc will be freely available as a web-server at http://202.120.37.186/bioinf/virus for the public usage. Furthermore, Virus-PLoc has been used to provide large-scale predictions of all viral protein entries in Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Virus-PLoc.xls." This file is available at the same website and will be updated twice a year to include the new entries of viral proteins and reflect the continuous development of Virus-PLoc. 2006 Wiley Periodicals, Inc.
Multi-level machine learning prediction of protein-protein interactions in Saccharomyces cerevisiae.
Zubek, Julian; Tatjewski, Marcin; Boniecki, Adam; Mnich, Maciej; Basu, Subhadip; Plewczynski, Dariusz
2015-01-01
Accurate identification of protein-protein interactions (PPI) is the key step in understanding proteins' biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein-protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB) database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein-protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC). Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent).
Knowledge Discovery in Variant Databases Using Inductive Logic Programming
Nguyen, Hoan; Luu, Tien-Dao; Poch, Olivier; Thompson, Julie D.
2013-01-01
Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, especially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D protein structure. In this study, we identified 8,117 mutations in 805 proteins with known three-dimensional structures that were known to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/. PMID:23589683
Knowledge discovery in variant databases using inductive logic programming.
Nguyen, Hoan; Luu, Tien-Dao; Poch, Olivier; Thompson, Julie D
2013-01-01
Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, especially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D protein structure. In this study, we identified 8,117 mutations in 805 proteins with known three-dimensional structures that were known to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/.
RAID v2.0: an updated resource of RNA-associated interactions across organisms
Yi, Ying; Zhao, Yue; Li, Chunhua; Zhang, Lin; Huang, Huiying; Li, Yana; Liu, Lanlan; Hou, Ping; Cui, Tianyu; Tan, Puwen; Hu, Yongfei; Zhang, Ting; Huang, Yan; Li, Xiaobo; Yu, Jia; Wang, Dong
2017-01-01
With the development of biotechnologies and computational prediction algorithms, the number of experimental and computational prediction RNA-associated interactions has grown rapidly in recent years. However, diverse RNA-associated interactions are scattered over a wide variety of resources and organisms, whereas a fully comprehensive view of diverse RNA-associated interactions is still not available for any species. Hence, we have updated the RAID database to version 2.0 (RAID v2.0, www.rna-society.org/raid/) by integrating experimental and computational prediction interactions from manually reading literature and other database resources under one common framework. The new developments in RAID v2.0 include (i) over 850-fold RNA-associated interactions, an enhancement compared to the previous version; (ii) numerous resources integrated with experimental or computational prediction evidence for each RNA-associated interaction; (iii) a reliability assessment for each RNA-associated interaction based on an integrative confidence score; and (iv) an increase of species coverage to 60. Consequently, RAID v2.0 recruits more than 5.27 million RNA-associated interactions, including more than 4 million RNA–RNA interactions and more than 1.2 million RNA–protein interactions, referring to nearly 130 000 RNA/protein symbols across 60 species. PMID:27899615
ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites.
Konc, Janez; Miller, Benjamin T; Štular, Tanja; Lešnik, Samo; Woodcock, H Lee; Brooks, Bernard R; Janežič, Dušanka
2015-11-23
Proteins often exist only as apo structures (unligated) in the Protein Data Bank, with their corresponding holo structures (with ligands) unavailable. However, apoproteins may not represent the amino-acid residue arrangement upon ligand binding well, which is especially problematic for molecular docking. We developed the ProBiS-CHARMMing web interface by connecting the ProBiS ( http://probis.cmm.ki.si ) and CHARMMing ( http://www.charmming.org ) web servers into one functional unit that enables prediction of protein-ligand complexes and allows for their geometry optimization and interaction energy calculation. The ProBiS web server predicts ligands (small compounds, proteins, nucleic acids, and single-atom ligands) that may bind to a query protein. This is achieved by comparing its surface structure against a nonredundant database of protein structures and finding those that have binding sites similar to that of the query protein. Existing ligands found in the similar binding sites are then transposed to the query according to predictions from ProBiS. The CHARMMing web server enables, among other things, minimization and potential energy calculation for a wide variety of biomolecular systems, and it is used here to optimize the geometry of the predicted protein-ligand complex structures using the CHARMM force field and to calculate their interaction energies with the corresponding query proteins. We show how ProBiS-CHARMMing can be used to predict ligands and their poses for a particular binding site, and minimize the predicted protein-ligand complexes to obtain representations of holoproteins. The ProBiS-CHARMMing web interface is freely available for academic users at http://probis.nih.gov.
Lingner, Thomas; Kataya, Amr R; Antonicelli, Gerardo E; Benichou, Aline; Nilssen, Kjersti; Chen, Xiong-Yan; Siemsen, Tanja; Morgenstern, Burkhard; Meinicke, Peter; Reumann, Sigrun
2011-04-01
In the postgenomic era, accurate prediction tools are essential for identification of the proteomes of cell organelles. Prediction methods have been developed for peroxisome-targeted proteins in animals and fungi but are missing specifically for plants. For development of a predictor for plant proteins carrying peroxisome targeting signals type 1 (PTS1), we assembled more than 2500 homologous plant sequences, mainly from EST databases. We applied a discriminative machine learning approach to derive two different prediction methods, both of which showed high prediction accuracy and recognized specific targeting-enhancing patterns in the regions upstream of the PTS1 tripeptides. Upon application of these methods to the Arabidopsis thaliana genome, 392 gene models were predicted to be peroxisome targeted. These predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal. The prediction methods were able to correctly infer novel PTS1 tripeptides, which even included novel residues. Twenty-three newly predicted PTS1 tripeptides were experimentally confirmed, and a high variability of the plant PTS1 motif was discovered. These prediction methods will be instrumental in identifying low-abundance and stress-inducible peroxisomal proteins and defining the entire peroxisomal proteome of Arabidopsis and agronomically important crop plants.
Randhawa, Gurinder Jit; Singh, Monika; Grover, Monendra
2011-02-01
The novel proteins introduced into the genetically modified (GM) crops need to be evaluated for the potential allergenicity before their introduction into the food chain to address the safety concerns of consumers. At present, there is no single definitive test that can be relied upon to predict allergic response in humans to a new protein; hence a composite approach to allergic response prediction is described in this study. The present study reports on the evaluation of the Cry proteins, encoded by cry1Ac, cry1Ab, cry2Ab, cry1Ca, cry1Fa/cry1Ca hybrid, being expressed in Bt food crops that are under field trials in India, for potential allergenic cross-reactivity using bioinformatics search tools. The sequence identity of amino acids was analyzed using FASTA3 of AllergenOnline version 10.0 and BLASTX of NCBI Entrez to identify any potential sequence matches to allergen proteins. As a step further in the detection of allergens, an independent database of domains in the allergens available in the AllergenOnline database was also developed. The results indicated no significant alignment and similarity of Cry proteins at domain level with any of the known allergens revealing that there is no potential risk of allergenic cross-reactivity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Uversky, Vladimir N.; Obradovic, Zoran
2008-01-01
Identifying relationships between function, amino acid sequence and protein structure represents a major challenge. In this study we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical approach, outlines the major findings and provides illustrative examples of biological processes and functions positively and negatively correlated with intrinsic disorder. PMID:17391014
Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Uversky, Vladimir N; Obradovic, Zoran
2007-05-01
Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical approach, outlines the major findings, and provides illustrative examples of biological processes and functions positively and negatively correlated with intrinsic disorder.
Wang, Edina; Chinni, Suresh; Bhore, Subhash Janardhan
2014-01-01
Background: The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. Objective: The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. Materials and Methods: The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. Results: The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. Conclusion: The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates. PMID:24748752
Wang, Edina; Chinni, Suresh; Bhore, Subhash Janardhan
2014-01-01
The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates.
PCoM-DB Update: A Protein Co-Migration Database for Photosynthetic Organisms.
Takabayashi, Atsushi; Takabayashi, Saeka; Takahashi, Kaori; Watanabe, Mai; Uchida, Hiroko; Murakami, Akio; Fujita, Tomomichi; Ikeuchi, Masahiko; Tanaka, Ayumi
2017-01-01
The identification of protein complexes is important for the understanding of protein structure and function and the regulation of cellular processes. We used blue-native PAGE and tandem mass spectrometry to identify protein complexes systematically, and built a web database, the protein co-migration database (PCoM-DB, http://pcomdb.lowtem.hokudai.ac.jp/proteins/top), to provide prediction tools for protein complexes. PCoM-DB provides migration profiles for any given protein of interest, and allows users to compare them with migration profiles of other proteins, showing the oligomeric states of proteins and thus identifying potential interaction partners. The initial version of PCoM-DB (launched in January 2013) included protein complex data for Synechocystis whole cells and Arabidopsis thaliana thylakoid membranes. Here we report PCoM-DB version 2.0, which includes new data sets and analytical tools. Additional data are included from whole cells of the pelagic marine picocyanobacterium Prochlorococcus marinus, the thermophilic cyanobacterium Thermosynechococcus elongatus, the unicellular green alga Chlamydomonas reinhardtii and the bryophyte Physcomitrella patens. The Arabidopsis protein data now include data for intact mitochondria, intact chloroplasts, chloroplast stroma and chloroplast envelopes. The new tools comprise a multiple-protein search form and a heat map viewer for protein migration profiles. Users can compare migration profiles of a protein of interest among different organelles or compare migration profiles among different proteins within the same sample. For Arabidopsis proteins, users can compare migration profiles of a protein of interest with putative homologous proteins from non-Arabidopsis organisms. The updated PCoM-DB will help researchers find novel protein complexes and estimate their evolutionary changes in the green lineage. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Klein, Julie; Eales, James; Zürbig, Petra; Vlahou, Antonia; Mischak, Harald; Stevens, Robert
2013-04-01
In this study, we have developed Proteasix, an open-source peptide-centric tool that can be used to predict in silico the proteases involved in naturally occurring peptide generation. We developed a curated cleavage site (CS) database, containing 3500 entries about human protease/CS combinations. On top of this database, we built a tool, Proteasix, which allows CS retrieval and protease associations from a list of peptides. To establish the proof of concept of the approach, we used a list of 1388 peptides identified from human urine samples, and compared the prediction to the analysis of 1003 randomly generated amino acid sequences. Metalloprotease activity was predominantly involved in urinary peptide generation, and more particularly to peptides associated with extracellular matrix remodelling, compared to proteins from other origins. In comparison, random sequences returned almost no results, highlighting the specificity of the prediction. This study provides a tool that can facilitate linking of identified protein fragments to predicted protease activity, and therefore into presumed mechanisms of disease. Experiments are needed to confirm the in silico hypotheses; nevertheless, this approach may be of great help to better understand molecular mechanisms of disease, and define new biomarkers, and therapeutic targets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Disease gene classification with metagraph representations.
Kircali Ata, Sezin; Fang, Yuan; Wu, Min; Li, Xiao-Li; Xiao, Xiaokui
2017-12-01
Protein-protein interaction (PPI) networks play an important role in studying the functional roles of proteins, including their association with diseases. However, protein interaction networks are not sufficient without the support of additional biological knowledge for proteins such as their molecular functions and biological processes. To complement and enrich PPI networks, we propose to exploit biological properties of individual proteins. More specifically, we integrate keywords describing protein properties into the PPI network, and construct a novel PPI-Keywords (PPIK) network consisting of both proteins and keywords as two different types of nodes. As disease proteins tend to have a similar topological characteristics on the PPIK network, we further propose to represent proteins with metagraphs. Different from a traditional network motif or subgraph, a metagraph can capture a particular topological arrangement involving the interactions/associations between both proteins and keywords. Based on the novel metagraph representations for proteins, we further build classifiers for disease protein classification through supervised learning. Our experiments on three different PPI databases demonstrate that the proposed method consistently improves disease protein prediction across various classifiers, by 15.3% in AUC on average. It outperforms the baselines including the diffusion-based methods (e.g., RWR) and the module-based methods by 13.8-32.9% for overall disease protein prediction. For predicting breast cancer genes, it outperforms RWR, PRINCE and the module-based baselines by 6.6-14.2%. Finally, our predictions also turn out to have better correlations with literature findings from PubMed. Copyright © 2017 Elsevier Inc. All rights reserved.
The Proteome Folding Project: Proteome-scale prediction of structure and function
Drew, Kevin; Winters, Patrick; Butterfoss, Glenn L.; Berstis, Viktors; Uplinger, Keith; Armstrong, Jonathan; Riffle, Michael; Schweighofer, Erik; Bovermann, Bill; Goodlett, David R.; Davis, Trisha N.; Shasha, Dennis; Malmström, Lars; Bonneau, Richard
2011-01-01
The incompleteness of proteome structure and function annotation is a critical problem for biologists and, in particular, severely limits interpretation of high-throughput and next-generation experiments. We have developed a proteome annotation pipeline based on structure prediction, where function and structure annotations are generated using an integration of sequence comparison, fold recognition, and grid-computing-enabled de novo structure prediction. We predict protein domain boundaries and three-dimensional (3D) structures for protein domains from 94 genomes (including human, Arabidopsis, rice, mouse, fly, yeast, Escherichia coli, and worm). De novo structure predictions were distributed on a grid of more than 1.5 million CPUs worldwide (World Community Grid). We generated significant numbers of new confident fold annotations (9% of domains that are otherwise unannotated in these genomes). We demonstrate that predicted structures can be combined with annotations from the Gene Ontology database to predict new and more specific molecular functions. PMID:21824995
dbPAF: an integrative database of protein phosphorylation in animals and fungi.
Ullah, Shahid; Lin, Shaofeng; Xu, Yang; Deng, Wankun; Ma, Lili; Zhang, Ying; Liu, Zexian; Xue, Yu
2016-03-24
Protein phosphorylation is one of the most important post-translational modifications (PTMs) and regulates a broad spectrum of biological processes. Recent progresses in phosphoproteomic identifications have generated a flood of phosphorylation sites, while the integration of these sites is an urgent need. In this work, we developed a curated database of dbPAF, containing known phosphorylation sites in H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. pombe and S. cerevisiae. From the scientific literature and public databases, we totally collected and integrated 54,148 phosphoproteins with 483,001 phosphorylation sites. Multiple options were provided for accessing the data, while original references and other annotations were also present for each phosphoprotein. Based on the new data set, we computationally detected significantly over-represented sequence motifs around phosphorylation sites, predicted potential kinases that are responsible for the modification of collected phospho-sites, and evolutionarily analyzed phosphorylation conservation states across different species. Besides to be largely consistent with previous reports, our results also proposed new features of phospho-regulation. Taken together, our database can be useful for further analyses of protein phosphorylation in human and other model organisms. The dbPAF database was implemented in PHP + MySQL and freely available at http://dbpaf.biocuckoo.org.
Kurotani, Atsushi; Yamada, Yutaka
2017-01-01
Algae are smaller organisms than land plants and offer clear advantages in research over terrestrial species in terms of rapid production, short generation time and varied commercial applications. Thus, studies investigating the practical development of effective algal production are important and will improve our understanding of both aquatic and terrestrial plants. In this study we estimated multiple physicochemical and secondary structural properties of protein sequences, the predicted presence of post-translational modification (PTM) sites, and subcellular localization using a total of 510,123 protein sequences from the proteomes of 31 algal and three plant species. Algal species were broadly selected from green and red algae, glaucophytes, oomycetes, diatoms and other microalgal groups. The results were deposited in the Algal Protein Annotation Suite database (Alga-PrAS; http://alga-pras.riken.jp/), which can be freely accessed online. PMID:28069893
Experimentally observed conformation-dependent geometry and hidden strain in proteins.
Karplus, P. A.
1996-01-01
A database has been compiled documenting the peptide conformations and geometries from 70 diverse proteins refined at 1.75 A or better. Analysis of the well-ordered residues within the database shows phi, psi-distributions that have more fine structure than is generally observed. Also, clear evidence is presented that the peptide covalent geometry depends on conformation, with the interpeptide N-C alpha-C bond angle varying by nearly +/-5 degrees from its standard value. The observed deviations from standard peptide geometry are greatest near the edges of well-populated regions, consistent with strain occurring in these conformations. Minimization of such hidden strain could be an important factor in thermostability of proteins. These empirical data describing how equilibrium peptide geometry varies as a function of conformation confirm and extend quantum mechanics calculations, and have predictive value that will aid both theoretical and experimental analyses of protein structure. PMID:8819173
Jahandideh, Samad; Srinivasasainagendra, Vinodh; Zhi, Degui
2012-11-07
RNA-protein interaction plays an important role in various cellular processes, such as protein synthesis, gene regulation, post-transcriptional gene regulation, alternative splicing, and infections by RNA viruses. In this study, using Gene Ontology Annotated (GOA) and Structural Classification of Proteins (SCOP) databases an automatic procedure was designed to capture structurally solved RNA-binding protein domains in different subclasses. Subsequently, we applied tuned multi-class SVM (TMCSVM), Random Forest (RF), and multi-class ℓ1/ℓq-regularized logistic regression (MCRLR) for analysis and classifying RNA-binding protein domains based on a comprehensive set of sequence and structural features. In this study, we compared prediction accuracy of three different state-of-the-art predictor methods. From our results, TMCSVM outperforms the other methods and suggests the potential of TMCSVM as a useful tool for facilitating the multi-class prediction of RNA-binding protein domains. On the other hand, MCRLR by elucidating importance of features for their contribution in predictive accuracy of RNA-binding protein domains subclasses, helps us to provide some biological insights into the roles of sequences and structures in protein-RNA interactions.
Andreeva, Antonina
2016-06-15
The Structural Classification of Proteins (SCOP) database has facilitated the development of many tools and algorithms and it has been successfully used in protein structure prediction and large-scale genome annotations. During the development of SCOP, numerous exceptions were found to topological rules, along with complex evolutionary scenarios and peculiarities in proteins including the ability to fold into alternative structures. This article reviews cases of structural variations observed for individual proteins and among groups of homologues, knowledge of which is essential for protein structure modelling. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Protein annotation from protein interaction networks and Gene Ontology.
Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J
2011-10-01
We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.
Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics.
Deutsch, Eric W; Sun, Zhi; Campbell, David S; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S; Moritz, Robert L
2016-11-04
The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances-a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ∼20,000 primary isoforms plus contaminants to a very large database that includes almost all nonredundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/ .
Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics
Deutsch, Eric W.; Sun, Zhi; Campbell, David S.; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S.; Moritz, Robert L.
2016-01-01
The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances – a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ~20,000 primary isoforms plus contaminants to a very large database that includes almost all non-redundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/. PMID:27577934
Lingner, Thomas; Kataya, Amr R. A.; Reumann, Sigrun
2012-01-01
We recently developed the first algorithms specifically for plants to predict proteins carrying peroxisome targeting signals type 1 (PTS1) from genome sequences.1 As validated experimentally, the prediction methods are able to correctly predict unknown peroxisomal Arabidopsis proteins and to infer novel PTS1 tripeptides. The high prediction performance is primarily determined by the large number and sequence diversity of the underlying positive example sequences, which mainly derived from EST databases. However, a few constructs remained cytosolic in experimental validation studies, indicating sequencing errors in some ESTs. To identify erroneous sequences, we validated subcellular targeting of additional positive example sequences in the present study. Moreover, we analyzed the distribution of prediction scores separately for each orthologous group of PTS1 proteins, which generally resembled normal distributions with group-specific mean values. The cytosolic sequences commonly represented outliers of low prediction scores and were located at the very tail of a fitted normal distribution. Three statistical methods for identifying outliers were compared in terms of sensitivity and specificity.” Their combined application allows elimination of erroneous ESTs from positive example data sets. This new post-validation method will further improve the prediction accuracy of both PTS1 and PTS2 protein prediction models for plants, fungi, and mammals. PMID:22415050
Lingner, Thomas; Kataya, Amr R A; Reumann, Sigrun
2012-02-01
We recently developed the first algorithms specifically for plants to predict proteins carrying peroxisome targeting signals type 1 (PTS1) from genome sequences. As validated experimentally, the prediction methods are able to correctly predict unknown peroxisomal Arabidopsis proteins and to infer novel PTS1 tripeptides. The high prediction performance is primarily determined by the large number and sequence diversity of the underlying positive example sequences, which mainly derived from EST databases. However, a few constructs remained cytosolic in experimental validation studies, indicating sequencing errors in some ESTs. To identify erroneous sequences, we validated subcellular targeting of additional positive example sequences in the present study. Moreover, we analyzed the distribution of prediction scores separately for each orthologous group of PTS1 proteins, which generally resembled normal distributions with group-specific mean values. The cytosolic sequences commonly represented outliers of low prediction scores and were located at the very tail of a fitted normal distribution. Three statistical methods for identifying outliers were compared in terms of sensitivity and specificity." Their combined application allows elimination of erroneous ESTs from positive example data sets. This new post-validation method will further improve the prediction accuracy of both PTS1 and PTS2 protein prediction models for plants, fungi, and mammals.
Saha, Chayan Kumar; Mahbub Hasan, Md; Saddam Hossain, Md; Asraful Jahan, Md; Azad, Abul Kalam
2017-06-01
To explore a common B- and T-cell epitope-based vaccine that can elicit an immune response against encephalitis causing genus Henipaviruses, Hendra virus (HeV) and Nipah virus (NiV). Membrane proteins F, G and M of HeV and NiV were retrieved from the protein database and subjected to different bioinformatics tools to predict antigenic B-cell epitopes. Best B-cell epitopes were then analyzed to predict their T-cell antigenic potentiality. Antigenic B- and T-cell epitopes that shared maximum identity with HeV and NiV were selected. Stability of the selected epitopes was predicted. Finally, the selected epitopes were subjected to molecular docking simulation with HLA-DR to confirm their antigenic potentiality in silico. One epitope from G proteins, one from M proteins and none from F proteins were selected based on their antigenic potentiality. The epitope from the G proteins was stable whereas that from M was unstable. The M-epitope was made stable by adding flanking dipeptides. The 15-mer G-epitope (VDPLRVQWRNNSVIS) showed at least 66% identity with all NiV and HeV G protein sequences, while the 15-mer M-epitope (GKLEFRRNNAIAFKG) with the dipeptide flanking residues showed 73% identity with all NiV and HeV M protein sequences available in the database. Molecular docking simulation with most frequent MHC class-II (MHC II) and class-I (MHC I) molecules showed that these epitopes could bind within HLA binding grooves to elicit an immune response. Data in our present study revealed the notion that the epitopes from G and M proteins might be the target for peptide-based subunit vaccine design against HeV and NiV. However, the biochemical analysis is necessary to experimentally validate the interaction of epitopes individually with the MHC molecules through elucidation of immunity induction. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
EcoCyc: a comprehensive database resource for Escherichia coli
Keseler, Ingrid M.; Collado-Vides, Julio; Gama-Castro, Socorro; Ingraham, John; Paley, Suzanne; Paulsen, Ian T.; Peralta-Gil, Martín; Karp, Peter D.
2005-01-01
The EcoCyc database (http://EcoCyc.org/) is a comprehensive source of information on the biology of the prototypical model organism Escherichia coli K12. The mission for EcoCyc is to contain both computable descriptions of, and detailed comments describing, all genes, proteins, pathways and molecular interactions in E.coli. Through ongoing manual curation, extensive information such as summary comments, regulatory information, literature citations and evidence types has been extracted from 8862 publications and added to Version 8.5 of the EcoCyc database. The EcoCyc database can be accessed through a World Wide Web interface, while the downloadable Pathway Tools software and data files enable computational exploration of the data and provide enhanced querying capabilities that web interfaces cannot support. For example, EcoCyc contains carefully curated information that can be used as training sets for bioinformatics prediction of entities such as promoters, operons, genetic networks, transcription factor binding sites, metabolic pathways, functionally related genes, protein complexes and protein–ligand interactions. PMID:15608210
DWARF – a data warehouse system for analyzing protein families
Fischer, Markus; Thai, Quan K; Grieb, Melanie; Pleiss, Jürgen
2006-01-01
Background The emerging field of integrative bioinformatics provides the tools to organize and systematically analyze vast amounts of highly diverse biological data and thus allows to gain a novel understanding of complex biological systems. The data warehouse DWARF applies integrative bioinformatics approaches to the analysis of large protein families. Description The data warehouse system DWARF integrates data on sequence, structure, and functional annotation for protein fold families. The underlying relational data model consists of three major sections representing entities related to the protein (biochemical function, source organism, classification to homologous families and superfamilies), the protein sequence (position-specific annotation, mutant information), and the protein structure (secondary structure information, superimposed tertiary structure). Tools for extracting, transforming and loading data from public available resources (ExPDB, GenBank, DSSP) are provided to populate the database. The data can be accessed by an interface for searching and browsing, and by analysis tools that operate on annotation, sequence, or structure. We applied DWARF to the family of α/β-hydrolases to host the Lipase Engineering database. Release 2.3 contains 6138 sequences and 167 experimentally determined protein structures, which are assigned to 37 superfamilies 103 homologous families. Conclusion DWARF has been designed for constructing databases of large structurally related protein families and for evaluating their sequence-structure-function relationships by a systematic analysis of sequence, structure and functional annotation. It has been applied to predict biochemical properties from sequence, and serves as a valuable tool for protein engineering. PMID:17094801
Transmembrane protein topology prediction using support vector machines.
Nugent, Timothy; Jones, David T
2009-05-26
Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated. We present a support vector machine-based (SVM) TM protein topology predictor that integrates both signal peptide and re-entrant helix prediction, benchmarked with full cross-validation on a novel data set of 131 sequences with known crystal structures. The method achieves topology prediction accuracy of 89%, while signal peptides and re-entrant helices are predicted with 93% and 44% accuracy respectively. An additional SVM trained to discriminate between globular and TM proteins detected zero false positives, with a low false negative rate of 0.4%. We present the results of applying these tools to a number of complete genomes. Source code, data sets and a web server are freely available from http://bioinf.cs.ucl.ac.uk/psipred/. The high accuracy of TM topology prediction which includes detection of both signal peptides and re-entrant helices, combined with the ability to effectively discriminate between TM and globular proteins, make this method ideally suited to whole genome annotation of alpha-helical transmembrane proteins.
firestar--advances in the prediction of functionally important residues.
Lopez, Gonzalo; Maietta, Paolo; Rodriguez, Jose Manuel; Valencia, Alfonso; Tress, Michael L
2011-07-01
firestar is a server for predicting catalytic and ligand-binding residues in protein sequences. Here, we present the important developments since the first release of firestar. Previous versions of the server required human interpretation of the results; the server is now fully automatized. firestar has been implemented as a web service and can now be run in high-throughput mode. Prediction coverage has been greatly improved with the extension of the FireDB database and the addition of alignments generated by HHsearch. Ligands in FireDB are now classified for biological relevance. Many of the changes have been motivated by the critical assessment of techniques for protein structure prediction (CASP) ligand-binding prediction experiment, which provided us with a framework to test the performance of firestar. URL: http://firedb.bioinfo.cnio.es/Php/FireStar.php.
firestar—advances in the prediction of functionally important residues
Lopez, Gonzalo; Maietta, Paolo; Rodriguez, Jose Manuel; Valencia, Alfonso; Tress, Michael L.
2011-01-01
firestar is a server for predicting catalytic and ligand-binding residues in protein sequences. Here, we present the important developments since the first release of firestar. Previous versions of the server required human interpretation of the results; the server is now fully automatized. firestar has been implemented as a web service and can now be run in high-throughput mode. Prediction coverage has been greatly improved with the extension of the FireDB database and the addition of alignments generated by HHsearch. Ligands in FireDB are now classified for biological relevance. Many of the changes have been motivated by the critical assessment of techniques for protein structure prediction (CASP) ligand-binding prediction experiment, which provided us with a framework to test the performance of firestar. URL: http://firedb.bioinfo.cnio.es/Php/FireStar.php. PMID:21672959
Natale, D A; Shankavaram, U T; Galperin, M Y; Wolf, Y I; Aravind, L; Koonin, E V
2000-01-01
Standard archival sequence databases have not been designed as tools for genome annotation and are far from being optimal for this purpose. We used the database of Clusters of Orthologous Groups of proteins (COGs) to reannotate the genomes of two archaea, Aeropyrum pernix, the first member of the Crenarchaea to be sequenced, and Pyrococcus abyssi. A. pernix and P. abyssi proteins were assigned to COGs using the COGNITOR program; the results were verified on a case-by-case basis and augmented by additional database searches using the PSI-BLAST and TBLASTN programs. Functions were predicted for over 300 proteins from A. pernix, which could not be assigned a function using conventional methods with a conservative sequence similarity threshold, an approximately 50% increase compared to the original annotation. A. pernix shares most of the conserved core of proteins that were previously identified in the Euryarchaeota. Cluster analysis or distance matrix tree construction based on the co-occurrence of genomes in COGs showed that A. pernix forms a distinct group within the archaea, although grouping with the two species of Pyrococci, indicative of similar repertoires of conserved genes, was observed. No indication of a specific relationship between Crenarchaeota and eukaryotes was obtained in these analyses. Several proteins that are conserved in Euryarchaeota and most bacteria are unexpectedly missing in A. pernix, including the entire set of de novo purine biosynthesis enzymes, the GTPase FtsZ (a key component of the bacterial and euryarchaeal cell-division machinery), and the tRNA-specific pseudouridine synthase, previously considered universal. A. pernix is represented in 48 COGs that do not contain any euryarchaeal members. Many of these proteins are TCA cycle and electron transport chain enzymes, reflecting the aerobic lifestyle of A. pernix. Special-purpose databases organized on the basis of phylogenetic analysis and carefully curated with respect to known and predicted protein functions provide for a significant improvement in genome annotation. A differential genome display approach helps in a systematic investigation of common and distinct features of gene repertoires and in some cases reveals unexpected connections that may be indicative of functional similarities between phylogenetically distant organisms and of lateral gene exchange.
Natale, Darren A; Shankavaram, Uma T; Galperin, Michael Y; Wolf, Yuri I; Aravind, L; Koonin, Eugene V
2000-01-01
Background: Standard archival sequence databases have not been designed as tools for genome annotation and are far from being optimal for this purpose. We used the database of Clusters of Orthologous Groups of proteins (COGs) to reannotate the genomes of two archaea, Aeropyrum pernix, the first member of the Crenarchaea to be sequenced, and Pyrococcus abyssi. Results: A. pernix and P. abyssi proteins were assigned to COGs using the COGNITOR program; the results were verified on a case-by-case basis and augmented by additional database searches using the PSI-BLAST and TBLASTN programs. Functions were predicted for over 300 proteins from A. pernix, which could not be assigned a function using conventional methods with a conservative sequence similarity threshold, an approximately 50% increase compared to the original annotation. A. pernix shares most of the conserved core of proteins that were previously identified in the Euryarchaeota. Cluster analysis or distance matrix tree construction based on the co-occurrence of genomes in COGs showed that A. pernix forms a distinct group within the archaea, although grouping with the two species of Pyrococci, indicative of similar repertoires of conserved genes, was observed. No indication of a specific relationship between Crenarchaeota and eukaryotes was obtained in these analyses. Several proteins that are conserved in Euryarchaeota and most bacteria are unexpectedly missing in A. pernix, including the entire set of de novo purine biosynthesis enzymes, the GTPase FtsZ (a key component of the bacterial and euryarchaeal cell-division machinery), and the tRNA-specific pseudouridine synthase, previously considered universal. A. pernix is represented in 48 COGs that do not contain any euryarchaeal members. Many of these proteins are TCA cycle and electron transport chain enzymes, reflecting the aerobic lifestyle of A. pernix. Conclusions: Special-purpose databases organized on the basis of phylogenetic analysis and carefully curated with respect to known and predicted protein functions provide for a significant improvement in genome annotation. A differential genome display approach helps in a systematic investigation of common and distinct features of gene repertoires and in some cases reveals unexpected connections that may be indicative of functional similarities between phylogenetically distant organisms and of lateral gene exchange. PMID:11178258
Deciu, Cosmin; Sun, Jun; Wall, Mark A
2007-09-01
We discuss several aspects related to load balancing of database search jobs in a distributed computing environment, such as Linux cluster. Load balancing is a technique for making the most of multiple computational resources, which is particularly relevant in environments in which the usage of such resources is very high. The particular case of the Sequest program is considered here, but the general methodology should apply to any similar database search program. We show how the runtimes for Sequest searches of tandem mass spectral data can be predicted from profiles of previous representative searches, and how this information can be used for better load balancing of novel data. A well-known heuristic load balancing method is shown to be applicable to this problem, and its performance is analyzed for a variety of search parameters.
Sugita, Chieko; Ogata, Koretsugu; Shikata, Masamitsu; Jikuya, Hiroyuki; Takano, Jun; Furumichi, Miho; Kanehisa, Minoru; Omata, Tatsuo; Sugiura, Masahiro; Sugita, Mamoru
2007-01-01
The entire genome of the unicellular cyanobacterium Synechococcus elongatus PCC 6301 (formerly Anacystis nidulans Berkeley strain 6301) was sequenced. The genome consisted of a circular chromosome 2,696,255 bp long. A total of 2,525 potential protein-coding genes, two sets of rRNA genes, 45 tRNA genes representing 42 tRNA species, and several genes for small stable RNAs were assigned to the chromosome by similarity searches and computer predictions. The translated products of 56% of the potential protein-coding genes showed sequence similarities to experimentally identified and predicted proteins of known function, and the products of 35% of the genes showed sequence similarities to the translated products of hypothetical genes. The remaining 9% of genes lacked significant similarities to genes for predicted proteins in the public DNA databases. Some 139 genes coding for photosynthesis-related components were identified. Thirty-seven genes for two-component signal transduction systems were also identified. This is the smallest number of such genes identified in cyanobacteria, except for marine cyanobacteria, suggesting that only simple signal transduction systems are found in this strain. The gene arrangement and nucleotide sequence of Synechococcus elongatus PCC 6301 were nearly identical to those of a closely related strain Synechococcus elongatus PCC 7942, except for the presence of a 188.6 kb inversion. The sequences as well as the gene information shown in this paper are available in the Web database, CYORF (http://www.cyano.genome.jp/).
Ghorab, Hamida; Lammi, Carmen; Arnoldi, Anna; Kabouche, Zahia; Aiello, Gilda
2018-01-15
An investigation on the proteome of the sweet kernel of apricot, based on equalisation with combinatorial peptide ligand libraries (CPLLs), SDS-PAGE, nLC-ESI-MS/MS, and database search, permitted identifying 175 proteins. Gene ontology analysis indicated that their main molecular functions are in nucleotide binding (20.9%), hydrolase activities (10.6%), kinase activities (7%), and catalytic activity (5.6%). A protein-protein association network analysis using STRING software permitted to build an interactomic map of all detected proteins, characterised by 34 interactions. In order to forecast the potential health benefits deriving from the consumption of these proteins, the two most abundant, i.e. Prunin 1 and 2, were enzymatically digested in silico predicting 10 and 14 peptides, respectively. Searching their sequences in the database BIOPEP, it was possible to suggest a variety of bioactivities, including dipeptidyl peptidase-IV (DPP-IV) and angiotensin converting enzyme I (ACE) inhibition, glucose uptake stimulation and antioxidant properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Protein-protein interface analysis and hot spots identification for chemical ligand design.
Chen, Jing; Ma, Xiaomin; Yuan, Yaxia; Pei, Jianfeng; Lai, Luhua
2014-01-01
Rational design for chemical compounds targeting protein-protein interactions has grown from a dream to reality after a decade of efforts. There are an increasing number of successful examples, though major challenges remain in the field. In this paper, we will first give a brief review of the available methods that can be used to analyze protein-protein interface and predict hot spots for chemical ligand design. New developments of binding sites detection, ligandability and hot spots prediction from the author's group will also be described. Pocket V.3 is an improved program for identifying hot spots in protein-protein interface using only an apo protein structure. It has been developed based on Pocket V.2 that can derive receptor-based pharmacophore model for ligand binding cavity. Given similarities and differences between the essence of pharmacophore and hot spots for guiding design of chemical compounds, not only energetic but also spatial properties of protein-protein interface are used in Pocket V.3 for dealing with protein-protein interface. In order to illustrate the capability of Pocket V.3, two datasets have been used. One is taken from ASEdb and BID having experimental alanine scanning results for testing hot spots prediction. The other is taken from the 2P2I database containing complex structures of protein-ligand binding at the original protein-protein interface for testing hot spots application in ligand design.
MSD-MAP: A Network-Based Systems Biology Platform for Predicting Disease-Metabolite Links.
Wathieu, Henri; Issa, Naiem T; Mohandoss, Manisha; Byers, Stephen W; Dakshanamurthy, Sivanesan
2017-01-01
Cancer-associated metabolites result from cell-wide mechanisms of dysregulation. The field of metabolomics has sought to identify these aberrant metabolites as disease biomarkers, clues to understanding disease mechanisms, or even as therapeutic agents. This study was undertaken to reliably predict metabolites associated with colorectal, esophageal, and prostate cancers. Metabolite and disease biological action networks were compared in a computational platform called MSD-MAP (Multi Scale Disease-Metabolite Association Platform). Using differential gene expression analysis with patient-based RNAseq data from The Cancer Genome Atlas, genes up- or down-regulated in cancer compared to normal tissue were identified. Relational databases were used to map biological entities including pathways, functions, and interacting proteins, to those differential disease genes. Similar relational maps were built for metabolites, stemming from known and in silico predicted metabolite-protein associations. The hypergeometric test was used to find statistically significant relationships between disease and metabolite biological signatures at each tier, and metabolites were assessed for multi-scale association with each cancer. Metabolite networks were also directly associated with various other diseases using a disease functional perturbation database. Our platform recapitulated metabolite-disease links that have been empirically verified in the scientific literature, with network-based mapping of jointly-associated biological activity also matching known disease mechanisms. This was true for colorectal, esophageal, and prostate cancers, using metabolite action networks stemming from both predicted and known functional protein associations. By employing systems biology concepts, MSD-MAP reliably predicted known cancermetabolite links, and may serve as a predictive tool to streamline conventional metabolomic profiling methodologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Protein subcellular localization prediction using artificial intelligence technology.
Nair, Rajesh; Rost, Burkhard
2008-01-01
Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with high-throughput methods for predicting localization, and they are beginning to play an important role in directing experimental research. In this chapter, we review some of the most important methods for the prediction of subcellular localization.
Siew, Joyce Phui Yee; Khan, Asif M; Tan, Paul T J; Koh, Judice L Y; Seah, Seng Hong; Koo, Chuay Yeng; Chai, Siaw Ching; Armugam, Arunmozhiarasi; Brusic, Vladimir; Jeyaseelan, Kandiah
2004-12-12
Sequence annotations, functional and structural data on snake venom neurotoxins (svNTXs) are scattered across multiple databases and literature sources. Sequence annotations and structural data are available in the public molecular databases, while functional data are almost exclusively available in the published articles. There is a need for a specialized svNTXs database that contains NTX entries, which are organized, well annotated and classified in a systematic manner. We have systematically analyzed svNTXs and classified them using structure-function groups based on their structural, functional and phylogenetic properties. Using conserved motifs in each phylogenetic group, we built an intelligent module for the prediction of structural and functional properties of unknown NTXs. We also developed an annotation tool to aid the functional prediction of newly identified NTXs as an additional resource for the venom research community. We created a searchable online database of NTX proteins sequences (http://research.i2r.a-star.edu.sg/Templar/DB/snake_neurotoxin). This database can also be found under Swiss-Prot Toxin Annotation Project website (http://www.expasy.org/sprot/).
sc-PDB: an annotated database of druggable binding sites from the Protein Data Bank.
Kellenberger, Esther; Muller, Pascal; Schalon, Claire; Bret, Guillaume; Foata, Nicolas; Rognan, Didier
2006-01-01
The sc-PDB is a collection of 6 415 three-dimensional structures of binding sites found in the Protein Data Bank (PDB). Binding sites were extracted from all high-resolution crystal structures in which a complex between a protein cavity and a small-molecular-weight ligand could be identified. Importantly, ligands are considered from a pharmacological and not a structural point of view. Therefore, solvents, detergents, and most metal ions are not stored in the sc-PDB. Ligands are classified into four main categories: nucleotides (< 4-mer), peptides (< 9-mer), cofactors, and organic compounds. The corresponding binding site is formed by all protein residues (including amino acids, cofactors, and important metal ions) with at least one atom within 6.5 angstroms of any ligand atom. The database was carefully annotated by browsing several protein databases (PDB, UniProt, and GO) and storing, for every sc-PDB entry, the following features: protein name, function, source, domain and mutations, ligand name, and structure. The repository of ligands has also been archived by diversity analysis of molecular scaffolds, and several chemoinformatics descriptors were computed to better understand the chemical space covered by stored ligands. The sc-PDB may be used for several purposes: (i) screening a collection of binding sites for predicting the most likely target(s) of any ligand, (ii) analyzing the molecular similarity between different cavities, and (iii) deriving rules that describe the relationship between ligand pharmacophoric points and active-site properties. The database is periodically updated and accessible on the web at http://bioinfo-pharma.u-strasbg.fr/scPDB/.
Efficient use of unlabeled data for protein sequence classification: a comparative study.
Kuksa, Pavel; Huang, Pai-Hsi; Pavlovic, Vladimir
2009-04-29
Recent studies in computational primary protein sequence analysis have leveraged the power of unlabeled data. For example, predictive models based on string kernels trained on sequences known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly improved accuracy if this data is supplemented with protein sequences that lack any class tags-the unlabeled data. In this study, we present a principled and biologically motivated computational framework that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated databases may bias the estimation of computational models that rely on unlabeled data, we also propose a method to remove this bias and improve performance of the resulting classifiers. Combined with state-of-the-art string kernels, our proposed computational framework achieves very accurate semi-supervised protein remote fold and homology detection on three large unlabeled databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running time. The unlabeled sequences used under the semi-supervised setting resemble the unpolished gemstones; when used as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and polished, they improve the accuracy of the classifiers considerably.
DomSign: a top-down annotation pipeline to enlarge enzyme space in the protein universe.
Wang, Tianmin; Mori, Hiroshi; Zhang, Chong; Kurokawa, Ken; Xing, Xin-Hui; Yamada, Takuji
2015-03-21
Computational predictions of catalytic function are vital for in-depth understanding of enzymes. Because several novel approaches performing better than the common BLAST tool are rarely applied in research, we hypothesized that there is a large gap between the number of known annotated enzymes and the actual number in the protein universe, which significantly limits our ability to extract additional biologically relevant functional information from the available sequencing data. To reliably expand the enzyme space, we developed DomSign, a highly accurate domain signature-based enzyme functional prediction tool to assign Enzyme Commission (EC) digits. DomSign is a top-down prediction engine that yields results comparable, or superior, to those from many benchmark EC number prediction tools, including BLASTP, when a homolog with an identity >30% is not available in the database. Performance tests showed that DomSign is a highly reliable enzyme EC number annotation tool. After multiple tests, the accuracy is thought to be greater than 90%. Thus, DomSign can be applied to large-scale datasets, with the goal of expanding the enzyme space with high fidelity. Using DomSign, we successfully increased the percentage of EC-tagged enzymes from 12% to 30% in UniProt-TrEMBL. In the Kyoto Encyclopedia of Genes and Genomes bacterial database, the percentage of EC-tagged enzymes for each bacterial genome could be increased from 26.0% to 33.2% on average. Metagenomic mining was also efficient, as exemplified by the application of DomSign to the Human Microbiome Project dataset, recovering nearly one million new EC-labeled enzymes. Our results offer preliminarily confirmation of the existence of the hypothesized huge number of "hidden enzymes" in the protein universe, the identification of which could substantially further our understanding of the metabolisms of diverse organisms and also facilitate bioengineering by providing a richer enzyme resource. Furthermore, our results highlight the necessity of using more advanced computational tools than BLAST in protein database annotations to extract additional biologically relevant functional information from the available biological sequences.
LenVarDB: database of length-variant protein domains.
Mutt, Eshita; Mathew, Oommen K; Sowdhamini, Ramanathan
2014-01-01
Protein domains are functionally and structurally independent modules, which add to the functional variety of proteins. This array of functional diversity has been enabled by evolutionary changes, such as amino acid substitutions or insertions or deletions, occurring in these protein domains. Length variations (indels) can introduce changes at structural, functional and interaction levels. LenVarDB (freely available at http://caps.ncbs.res.in/lenvardb/) traces these length variations, starting from structure-based sequence alignments in our Protein Alignments organized as Structural Superfamilies (PASS2) database, across 731 structural classification of proteins (SCOP)-based protein domain superfamilies connected to 2 730 625 sequence homologues. Alignment of sequence homologues corresponding to a structural domain is available, starting from a structure-based sequence alignment of the superfamily. Orientation of the length-variant (indel) regions in protein domains can be visualized by mapping them on the structure and on the alignment. Knowledge about location of length variations within protein domains and their visual representation will be useful in predicting changes within structurally or functionally relevant sites, which may ultimately regulate protein function. Non-technical summary: Evolutionary changes bring about natural changes to proteins that may be found in many organisms. Such changes could be reflected as amino acid substitutions or insertions-deletions (indels) in protein sequences. LenVarDB is a database that provides an early overview of observed length variations that were set among 731 protein families and after examining >2 million sequences. Indels are followed up to observe if they are close to the active site such that they can affect the activity of proteins. Inclusion of such information can aid the design of bioengineering experiments.
2012-01-01
Background To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. Results We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. Conclusions SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery. PMID:23281852
Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon
2012-01-01
To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.
Rational assignment of key motifs for function guides in silico enzyme identification.
Höhne, Matthias; Schätzle, Sebastian; Jochens, Helge; Robins, Karen; Bornscheuer, Uwe T
2010-11-01
Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an in silico strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this in silico approach, we have discovered 17 (R)-selective amine transaminases, which catalyzed the synthesis of several (R)-amines with excellent optical purity up to >99% enantiomeric excess.
Tandem Repeats in Proteins: Prediction Algorithms and Biological Role.
Pellegrini, Marco
2015-01-01
Tandem repetitions in protein sequence and structure is a fascinating subject of research which has been a focus of study since the late 1990s. In this survey, we give an overview on the multi-faceted aspects of research on protein tandem repeats (PTR for short), including prediction algorithms, databases, early classification efforts, mechanisms of PTR formation and evolution, and synthetic PTR design. We also touch on the rather open issue of the relationship between PTR and flexibility (or disorder) in proteins. Detection of PTR either from protein sequence or structure data is challenging due to inherent high (biological) signal-to-noise ratio that is a key feature of this problem. As early in silico analytic tools have been key enablers for starting this field of study, we expect that current and future algorithmic and statistical breakthroughs will have a high impact on the investigations of the biological role of PTR.
FunShift: a database of function shift analysis on protein subfamilies
Abhiman, Saraswathi; Sonnhammer, Erik L. L.
2005-01-01
Members of a protein family normally have a general biochemical function in common, but frequently one or more subgroups have evolved a slightly different function, such as different substrate specificity. It is important to detect such function shifts for a more accurate functional annotation. The FunShift database described here is a compilation of function shift analysis performed between subfamilies in protein families. It consists of two main components: (i) subfamilies derived from protein domain families and (ii) pairwise subfamily comparisons analyzed for function shift. The present release, FunShift 12, was derived from Pfam 12 and consists of 151 934 subfamilies derived from 7300 families. We carried out function shift analysis by two complementary methods on families with up to 500 members. From a total of 179 210 subfamily pairs, 62 384 were predicted to be functionally shifted in 2881 families. Each subfamily pair is provided with a markup of probable functional specificity-determining sites. Tools for searching and exploring the data are provided to make this database a valuable resource for protein function annotation. Knowledge of these functionally important sites will be useful for experimental biologists performing functional mutation studies. FunShift is available at http://FunShift.cgb.ki.se. PMID:15608176
Krassowski, Michal; Paczkowska, Marta; Cullion, Kim; Huang, Tina; Dzneladze, Irakli; Ouellette, B F Francis; Yamada, Joseph T; Fradet-Turcotte, Amelie
2018-01-01
Abstract Interpretation of genetic variation is needed for deciphering genotype-phenotype associations, mechanisms of inherited disease, and cancer driver mutations. Millions of single nucleotide variants (SNVs) in human genomes are known and thousands are associated with disease. An estimated 21% of disease-associated amino acid substitutions corresponding to missense SNVs are located in protein sites of post-translational modifications (PTMs), chemical modifications of amino acids that extend protein function. ActiveDriverDB is a comprehensive human proteo-genomics database that annotates disease mutations and population variants through the lens of PTMs. We integrated >385,000 published PTM sites with ∼3.6 million substitutions from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and human genome sequencing projects. The database includes site-specific interaction networks of proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying PTM-associated mutations. Users can upload mutation datasets interactively and use our application programming interface in pipelines. Integrative analysis of mutations and PTMs may help decipher molecular mechanisms of phenotypes and disease, as exemplified by case studies of TP53, BRCA2 and VHL. The open-source database is available at https://www.ActiveDriverDB.org. PMID:29126202
Naqvi, Ahmad Abu Turab; Shahbaaz, Mohd; Ahmad, Faizan; Hassan, Md Imtaiyaz
2015-01-01
Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions.
Bandyopadhyay, Deepak; Huan, Jun; Prins, Jan; Snoeyink, Jack; Wang, Wei; Tropsha, Alexander
2009-11-01
Protein function prediction is one of the central problems in computational biology. We present a novel automated protein structure-based function prediction method using libraries of local residue packing patterns that are common to most proteins in a known functional family. Critical to this approach is the representation of a protein structure as a graph where residue vertices (residue name used as a vertex label) are connected by geometrical proximity edges. The approach employs two steps. First, it uses a fast subgraph mining algorithm to find all occurrences of family-specific labeled subgraphs for all well characterized protein structural and functional families. Second, it queries a new structure for occurrences of a set of motifs characteristic of a known family, using a graph index to speed up Ullman's subgraph isomorphism algorithm. The confidence of function inference from structure depends on the number of family-specific motifs found in the query structure compared with their distribution in a large non-redundant database of proteins. This method can assign a new structure to a specific functional family in cases where sequence alignments, sequence patterns, structural superposition and active site templates fail to provide accurate annotation.
Protein classification using probabilistic chain graphs and the Gene Ontology structure.
Carroll, Steven; Pavlovic, Vladimir
2006-08-01
Probabilistic graphical models have been developed in the past for the task of protein classification. In many cases, classifications obtained from the Gene Ontology have been used to validate these models. In this work we directly incorporate the structure of the Gene Ontology into the graphical representation for protein classification. We present a method in which each protein is represented by a replicate of the Gene Ontology structure, effectively modeling each protein in its own 'annotation space'. Proteins are also connected to one another according to different measures of functional similarity, after which belief propagation is run to make predictions at all ontology terms. The proposed method was evaluated on a set of 4879 proteins from the Saccharomyces Genome Database whose interactions were also recorded in the GRID project. Results indicate that direct utilization of the Gene Ontology improves predictive ability, outperforming traditional models that do not take advantage of dependencies among functional terms. Average increase in accuracy (precision) of positive and negative term predictions of 27.8% (2.0%) over three different similarity measures and three subontologies was observed. C/C++/Perl implementation is available from authors upon request.
RAID v2.0: an updated resource of RNA-associated interactions across organisms.
Yi, Ying; Zhao, Yue; Li, Chunhua; Zhang, Lin; Huang, Huiying; Li, Yana; Liu, Lanlan; Hou, Ping; Cui, Tianyu; Tan, Puwen; Hu, Yongfei; Zhang, Ting; Huang, Yan; Li, Xiaobo; Yu, Jia; Wang, Dong
2017-01-04
With the development of biotechnologies and computational prediction algorithms, the number of experimental and computational prediction RNA-associated interactions has grown rapidly in recent years. However, diverse RNA-associated interactions are scattered over a wide variety of resources and organisms, whereas a fully comprehensive view of diverse RNA-associated interactions is still not available for any species. Hence, we have updated the RAID database to version 2.0 (RAID v2.0, www.rna-society.org/raid/) by integrating experimental and computational prediction interactions from manually reading literature and other database resources under one common framework. The new developments in RAID v2.0 include (i) over 850-fold RNA-associated interactions, an enhancement compared to the previous version; (ii) numerous resources integrated with experimental or computational prediction evidence for each RNA-associated interaction; (iii) a reliability assessment for each RNA-associated interaction based on an integrative confidence score; and (iv) an increase of species coverage to 60. Consequently, RAID v2.0 recruits more than 5.27 million RNA-associated interactions, including more than 4 million RNA-RNA interactions and more than 1.2 million RNA-protein interactions, referring to nearly 130 000 RNA/protein symbols across 60 species. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
ACLAME: a CLAssification of Mobile genetic Elements, update 2010.
Leplae, Raphaël; Lima-Mendez, Gipsi; Toussaint, Ariane
2010-01-01
The ACLAME database is dedicated to the collection, analysis and classification of sequenced mobile genetic elements (MGEs, in particular phages and plasmids). In addition to providing information on the MGEs content, classifications are available at various levels of organization. At the gene/protein level, families group similar sequences that are expected to share the same function. Families of four or more proteins are manually assigned with a functional annotation using the GeneOntology and the locally developed ontology MeGO dedicated to MGEs. At the genome level, evolutionary cohesive modules group sets of protein families shared among MGEs. At the population level, networks display the reticulate evolutionary relationships among MGEs. To increase the coverage of the phage sequence space, ACLAME version 0.4 incorporates 760 high-quality predicted prophages selected from the Prophinder database. Most of the data can be downloaded from the freely accessible ACLAME web site (http://aclame.ulb.ac.be). The BLAST interface for querying the database has been extended and numerous tools for in-depth analysis of the results have been added.
Genome-Wide SNP Genotyping to Infer the Effects on Gene Functions in Tomato
Hirakawa, Hideki; Shirasawa, Kenta; Ohyama, Akio; Fukuoka, Hiroyuki; Aoki, Koh; Rothan, Christophe; Sato, Shusei; Isobe, Sachiko; Tabata, Satoshi
2013-01-01
The genotype data of 7054 single nucleotide polymorphism (SNP) loci in 40 tomato lines, including inbred lines, F1 hybrids, and wild relatives, were collected using Illumina's Infinium and GoldenGate assay platforms, the latter of which was utilized in our previous study. The dendrogram based on the genotype data corresponded well to the breeding types of tomato and wild relatives. The SNPs were classified into six categories according to their positions in the genes predicted on the tomato genome sequence. The genes with SNPs were annotated by homology searches against the nucleotide and protein databases, as well as by domain searches, and they were classified into the functional categories defined by the NCBI's eukaryotic orthologous groups (KOG). To infer the SNPs' effects on the gene functions, the three-dimensional structures of the 843 proteins that were encoded by the genes with SNPs causing missense mutations were constructed by homology modelling, and 200 of these proteins were considered to carry non-synonymous amino acid substitutions in the predicted functional sites. The SNP information obtained in this study is available at the Kazusa Tomato Genomics Database (http://plant1.kazusa.or.jp/tomato/). PMID:23482505
TrypsNetDB: An integrated framework for the functional characterization of trypanosomatid proteins
Gazestani, Vahid H.; Yip, Chun Wai; Nikpour, Najmeh; Berghuis, Natasha
2017-01-01
Trypanosomatid parasites cause serious infections in humans and production losses in livestock. Due to the high divergence from other eukaryotes, such as humans and model organisms, the functional roles of many trypanosomatid proteins cannot be predicted by homology-based methods, rendering a significant portion of their proteins as uncharacterized. Recent technological advances have led to the availability of multiple systematic and genome-wide datasets on trypanosomatid parasites that are informative regarding the biological role(s) of their proteins. Here, we report TrypsNetDB (http://trypsNetDB.org), a web-based resource for the functional annotation of 16 different species/strains of trypanosomatid parasites. The database not only visualizes the network context of the queried protein(s) in an intuitive way but also examines the response of the represented network in more than 50 different biological contexts and its enrichment for various biological terms and pathways, protein sequence signatures, and potential RNA regulatory elements. The interactome core of the database, as of Jan 23, 2017, contains 101,187 interactions among 13,395 trypanosomatid proteins inferred from 97 genome-wide and focused studies on the interactome of these organisms. PMID:28158179
You, Zhu-Hong; Lei, Ying-Ke; Zhu, Lin; Xia, Junfeng; Wang, Bing
2013-01-01
Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time.
Luo, Jie; Shi, Ke; Yin, Shu-Ya; Tang, Rui-Xue; Chen, Wen-Jie; Huang, Lin-Zhen; Gan, Ting-Qing; Cai, Zheng-Wen; Chen, Gang
2018-04-10
MiR-182-5p, as a member of miRNA family, can be detected in lung cancer and plays an important role in lung cancer. To explore the clinical value of miR-182-5p in lung squamous cell carcinoma (LUSC) and to unveil the molecular mechanism of LUSC. The clinical value of miR-182-5p in LUSC was investigated by collecting and calculating data from The Cancer Genome Atlas (TCGA) database, the Gene Expression Omnibus (GEO) database, and real-time quantitative polymerase chain reaction (RT-qPCR). Twelve prediction platforms were used to predict the target genes of miR-182-5p. Protein-protein interaction (PPI) networks and gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to explore the molecular mechanism of LUSC. The expression of miR-182-5p was significantly over-expressed in LUSC than in non-cancerous tissues, as evidenced by various approaches, including the TCGA database, GEO microarrays, RT-qPCR, and a comprehensive meta-analysis of 501 LUSC cases and 148 non-cancerous cases. Furthermore, a total of 81 potential target genes were chosen from the union of predicted genes and the TCGA database. GO and KEGG analyses demonstrated that the target genes are involved in pathways related to biological processes. PPIs revealed the relationships between these genes, with EPAS1, PRKCE, NR3C1, and RHOB being located in the center of the PPI network. MiR-182-5p upregulation greatly contributes to LUSC and may serve as a biomarker in LUSC.
Significance of aquaporins’ expression in the prognosis of gastric cancer
Thapa, Saroj; Chetry, Mandika; Huang, Kaiyu; Peng, Yangpei; Wang, Jinsheng; Wang, Jiaoni; Zhou, Yingying; Shen, Yigen; Xue, Yangjing; Ji, Kangting
2018-01-01
Gastric carcinoma is one of the most lethal malignancy at present with leading cause of cancer-related deaths worldwide. Aquaporins (AQPs) are a family of small, integral membrane proteins, which have been evidenced to play a crucial role in cell migration and proliferation of different cancer cells including gastric cancers. However, the aberrant expression of specific AQPs and its correlation to detect predictive and prognostic significance in gastric cancer remains elusive. In the present study, we comprehensively explored immunohistochemistry based map of protein expression profiles in normal tissues, cancer and cell lines from publicly available Human Protein Atlas (HPA) database. Moreover, to improve our understanding of general gastric biology and guide to find novel predictive prognostic gastric cancer biomarker, we also retrieved ‘The Kaplan–Meier plotter’ (KM plotter) online database with specific AQPs mRNA to overall survival (OS) in different clinicopathological features. We revealed that ubiquitous expression of AQPs protein can be effective tools to generate gastric cancer biomarker. Furthermore, high level AQP3, AQP9, and AQP11 mRNA expression were correlated with better OS in all gastric patients, whereas AQP0, AQP1, AQP4, AQP5, AQP6, AQP8, and AQP10 mRNA expression were associated with poor OS. With regard to the clinicopathological features including Laurens classification, clinical stage, human epidermal growth factor receptor 2 (HER2) status, and different treatment strategy, we could illustrate significant role of individual AQP mRNA expression in the prognosis of gastric cancer patients. Thus, our results indicated that AQP’s protein and mRNA expression in gastric cancer patients provide effective role to predict prognosis and act as an essential agent to therapeutic strategy. PMID:29678898
High accuracy operon prediction method based on STRING database scores.
Taboada, Blanca; Verde, Cristina; Merino, Enrique
2010-07-01
We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/.
Bioinformatics Approaches to Classifying Allergens and Predicting Cross-Reactivity
Schein, Catherine H.; Ivanciuc, Ovidiu; Braun, Werner
2007-01-01
The major advances in understanding why patients respond to several seemingly different stimuli have been through the isolation, sequencing and structural analysis of proteins that induce an IgE response. The most significant finding is that allergenic proteins from very different sources can have nearly identical sequences and structures, and that this similarity can account for clinically observed cross-reactivity. The increasing amount of information on the sequence, structure and IgE epitopes of allergens is now available in several databases and powerful bioinformatics search tools allow user access to relevant information. Here, we provide an overview of these databases and describe state-of-the art bioinformatics tools to identify the common proteins that may be at the root of multiple allergy syndromes. Progress has also been made in quantitatively defining characteristics that discriminate allergens from non-allergens. Search and software tools for this purpose have been developed and implemented in the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/). SDAP contains information for over 800 allergens and extensive bibliographic references in a relational database with links to other publicly available databases. SDAP is freely available on the Web to clinicians and patients, and can be used to find structural and functional relations among known allergens and to identify potentially cross-reacting antigens. Here we illustrate how these bioinformatics tools can be used to group allergens, and to detect areas that may account for common patterns of IgE binding and cross-reactivity. Such results can be used to guide treatment regimens for allergy sufferers. PMID:17276876
An HMM model for coiled-coil domains and a comparison with PSSM-based predictions.
Delorenzi, Mauro; Speed, Terry
2002-04-01
Large-scale sequence data require methods for the automated annotation of protein domains. Many of the predictive methods are based either on a Position Specific Scoring Matrix (PSSM) of fixed length or on a window-less Hidden Markov Model (HMM). The performance of the two approaches is tested for Coiled-Coil Domains (CCDs). The prediction of CCDs is used frequently, and its optimization seems worthwhile. We have conceived MARCOIL, an HMM for the recognition of proteins with a CCD on a genomic scale. A cross-validated study suggests that MARCOIL improves predictions compared to the traditional PSSM algorithm, especially for some protein families and for short CCDs. The study was designed to reveal differences inherent in the two methods. Potential confounding factors such as differences in the dimension of parameter space and in the parameter values were avoided by using the same amino acid propensities and by keeping the transition probabilities of the HMM constant during cross-validation. The prediction program and the databases are available at http://www.wehi.edu.au/bioweb/Mauro/Marcoil
Rose, Annkatrin; Schraegle, Shannon J; Stahlberg, Eric A; Meier, Iris
2005-11-16
Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids) to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell.
Rose, Annkatrin; Schraegle, Shannon J; Stahlberg, Eric A; Meier, Iris
2005-01-01
Background Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Results Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. Conclusion MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids) to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell. PMID:16288662
Structure and function of seed storage proteins in faba bean (Vicia faba L.).
Liu, Yujiao; Wu, Xuexia; Hou, Wanwei; Li, Ping; Sha, Weichao; Tian, Yingying
2017-05-01
The protein subunit is the most important basic unit of protein, and its study can unravel the structure and function of seed storage proteins in faba bean. In this study, we identified six specific protein subunits in Faba bean (cv. Qinghai 13) combining liquid chromatography (LC), liquid chromatography-electronic spray ionization mass (LC-ESI-MS/MS) and bio-information technology. The results suggested a diversity of seed storage proteins in faba bean, and a total of 16 proteins (four GroEL molecular chaperones and 12 plant-specific proteins) were identified from 97-, 96-, 64-, 47-, 42-, and 38-kD-specific protein subunits in faba bean based on the peptide sequence. We also analyzed the composition and abundance of the amino acids, the physicochemical characteristics, secondary structure, three-dimensional structure, transmembrane domain, and possible subcellular localization of these identified proteins in faba bean seed, and finally predicted function and structure. The three-dimensional structures were generated based on homologous modeling, and the protein function was analyzed based on the annotation from the non-redundant protein database (NR database, NCBI) and function analysis of optimal modeling. The objective of this study was to identify the seed storage proteins in faba bean and confirm the structure and function of these proteins. Our results can be useful for the study of protein nutrition and achieve breeding goals for optimal protein quality in faba bean.
Construction and Screening of a Lentiviral Secretome Library.
Liu, Tao; Jia, Panpan; Ma, Huailei; Reed, Sean A; Luo, Xiaozhou; Larman, H Benjamin; Schultz, Peter G
2017-06-22
Over 2,000 human proteins are predicted to be secreted, but the biological function of the many of these proteins is still unknown. Moreover, a number of these proteins may act as new therapeutic agents or be targets for the development of therapeutic antibodies. To further explore the extracellular proteome, we have developed a secretome-enriched open reading frame (ORF) library that can be readily screened for autocrine activity in cell-based phenotypic or reporter assays. Next-generation sequencing (NGS) and database analysis predict that the library contains approximately 900 ORFs encoding known secreted proteins (accounting for 77.8% of the library), as well as genes encoding potentially unknown secreted proteins. In a proof-of-principle study, human TF-1 cells were screened for proliferative factors, and the known cytokine GMCSF was identified as a dominant hit. This library offers a relatively low-cost and straightforward approach for functional autocrine screens of secreted proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recent progress and future directions in protein-protein docking.
Ritchie, David W
2008-02-01
This article gives an overview of recent progress in protein-protein docking and it identifies several directions for future research. Recent results from the CAPRI blind docking experiments show that docking algorithms are steadily improving in both reliability and accuracy. Current docking algorithms employ a range of efficient search and scoring strategies, including e.g. fast Fourier transform correlations, geometric hashing, and Monte Carlo techniques. These approaches can often produce a relatively small list of up to a few thousand orientations, amongst which a near-native binding mode is often observed. However, despite the use of improved scoring functions which typically include models of desolvation, hydrophobicity, and electrostatics, current algorithms still have difficulty in identifying the correct solution from the list of false positives, or decoys. Nonetheless, significant progress is being made through better use of bioinformatics, biochemical, and biophysical information such as e.g. sequence conservation analysis, protein interaction databases, alanine scanning, and NMR residual dipolar coupling restraints to help identify key binding residues. Promising new approaches to incorporate models of protein flexibility during docking are being developed, including the use of molecular dynamics snapshots, rotameric and off-rotamer searches, internal coordinate mechanics, and principal component analysis based techniques. Some investigators now use explicit solvent models in their docking protocols. Many of these approaches can be computationally intensive, although new silicon chip technologies such as programmable graphics processor units are beginning to offer competitive alternatives to conventional high performance computer systems. As cryo-EM techniques improve apace, docking NMR and X-ray protein structures into low resolution EM density maps is helping to bridge the resolution gap between these complementary techniques. The use of symmetry and fragment assembly constraints are also helping to make possible docking-based predictions of large multimeric protein complexes. In the near future, the closer integration of docking algorithms with protein interface prediction software, structural databases, and sequence analysis techniques should help produce better predictions of protein interaction networks and more accurate structural models of the fundamental molecular interactions within the cell.
Databases in the Area of Pharmacogenetics
Sim, Sarah C.; Altman, Russ B.; Ingelman-Sundberg, Magnus
2012-01-01
In the area of pharmacogenetics and personalized health care it is obvious that databases, providing important information of the occurrence and consequences of variant genes encoding drug metabolizing enzymes, drug transporters, drug targets, and other proteins of importance for drug response or toxicity, are of critical value for scientists, physicians, and industry. The primary outcome of the pharmacogenomic field is the identification of biomarkers that can predict drug toxicity and drug response, thereby individualizing and improving drug treatment of patients. The drug in question and the polymorphic gene exerting the impact are the main issues to be searched for in the databases. Here, we review the databases that provide useful information in this respect, of benefit for the development of the pharmacogenomic field. PMID:21309040
Neural/Bayes network predictor for inheritable cardiac disease pathogenicity and phenotype.
Burghardt, Thomas P; Ajtai, Katalin
2018-04-11
The cardiac muscle sarcomere contains multiple proteins contributing to contraction energy transduction and its regulation during a heartbeat. Inheritable heart disease mutants affect most of them but none more frequently than the ventricular myosin motor and cardiac myosin binding protein c (mybpc3). These co-localizing proteins have mybpc3 playing a regulatory role to the energy transducing motor. Residue substitution and functional domain assignment of each mutation in the protein sequence decides, under the direction of a sensible disease model, phenotype and pathogenicity. The unknown model mechanism is decided here using a method combing neural and Bayes networks. Missense single nucleotide polymorphisms (SNPs) are clues for the disease mechanism summarized in an extensive database collecting mutant sequence location and residue substitution as independent variables that imply the dependent disease phenotype and pathogenicity characteristics in 4 dimensional data points (4ddps). The SNP database contains entries with the majority having one or both dependent data entries unfulfilled. A neural network relating causes (mutant residue location and substitution) and effects (phenotype and pathogenicity) is trained, validated, and optimized using fulfilled 4ddps. It then predicts unfulfilled 4ddps providing the implicit disease model. A discrete Bayes network interprets fulfilled and predicted 4ddps with conditional probabilities for phenotype and pathogenicity given mutation location and residue substitution thus relating the neural network implicit model to explicit features of the motor and mybpc3 sequence and structural domains. Neural/Bayes network forecasting automates disease mechanism modeling by leveraging the world wide human missense SNP database that is in place and expanding. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kin-Driver: a database of driver mutations in protein kinases.
Simonetti, Franco L; Tornador, Cristian; Nabau-Moretó, Nuria; Molina-Vila, Miguel A; Marino-Buslje, Cristina
2014-01-01
Somatic mutations in protein kinases (PKs) are frequent driver events in many human tumors, while germ-line mutations are associated with hereditary diseases. Here we present Kin-driver, the first database that compiles driver mutations in PKs with experimental evidence demonstrating their functional role. Kin-driver is a manual expert-curated database that pays special attention to activating mutations (AMs) and can serve as a validation set to develop new generation tools focused on the prediction of gain-of-function driver mutations. It also offers an easy and intuitive environment to facilitate the visualization and analysis of mutations in PKs. Because all mutations are mapped onto a multiple sequence alignment, analogue positions between kinases can be identified and tentative new mutations can be proposed for studying by transferring annotation. Finally, our database can also be of use to clinical and translational laboratories, helping them to identify uncommon AMs that can correlate with response to new antitumor drugs. The website was developed using PHP and JavaScript, which are supported by all major browsers; the database was built using MySQL server. Kin-driver is available at: http://kin-driver.leloir.org.ar/ © The Author(s) 2014. Published by Oxford University Press.
Singh, Raghvendra Pratap; Singh, Ram Nageena; Srivastava, Manish K; Srivastava, Alok Kumar; Kumar, Sudheer; Dubey, Ramesh Chandra; Sharma, Arun Kumar
2012-01-01
Methylobacteria are ubiquitous in the biosphere which are capable of growing on C1 compounds such as formate, formaldehyde, methanol and methylamine as well as on a wide range of multi-carbon growth substrates such as C2, C3 and C4 compounds due to the methylotrophic enzymes methanol dehydrogenase (MDH). MDH is performing these functions with the help of a key protein mxaF. Unfortunately, detailed structural analysis and homology modeling of mxaF is remains undefined. Hence, the objective of this research is the characterization and three dimensional modeling of mxaF protein from three different methylotrophs by using I-TASSER server. The predicted model were further optimize and validate by Profile 3D, Errat, Verifiy3-D and PROCHECK server. Predicted and best evaluated models have been successfully deposited to PMDB database with PMDB ID PM0077505, PM0077506 and PM0077507. Active site identification revealed 11, 13 and 14 putative functional site residues in respected models. It may play a major role during protein-protein, and protein-cofactor interactions. This study can provide us an ab-initio and detail information to understand the structure, mechanism of action and regulation of mxaF protein.
Singh, Raghvendra Pratap; Singh, Ram Nageena; Srivastava, Manish K; Srivastava, Alok Kumar; Kumar, Sudheer; Dubey, Ramesh Chandra; Sharma, Arun Kumar
2012-01-01
Methylobacteria are ubiquitous in the biosphere which are capable of growing on C1 compounds such as formate, formaldehyde, methanol and methylamine as well as on a wide range of multi-carbon growth substrates such as C2, C3 and C4 compounds due to the methylotrophic enzymes methanol dehydrogenase (MDH). MDH is performing these functions with the help of a key protein mxaF. Unfortunately, detailed structural analysis and homology modeling of mxaF is remains undefined. Hence, the objective of this research is the characterization and three dimensional modeling of mxaF protein from three different methylotrophs by using I-TASSER server. The predicted model were further optimize and validate by Profile 3D, Errat, Verifiy3-D and PROCHECK server. Predicted and best evaluated models have been successfully deposited to PMDB database with PMDB ID PM0077505, PM0077506 and PM0077507. Active site identification revealed 11, 13 and 14 putative functional site residues in respected models. It may play a major role during protein-protein, and protein-cofactor interactions. This study can provide us an ab-initio and detail information to understand the structure, mechanism of action and regulation of mxaF protein. PMID:23275704
BioWarehouse: a bioinformatics database warehouse toolkit
Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David WJ; Tenenbaum, Jessica D; Karp, Peter D
2006-01-01
Background This article addresses the problem of interoperation of heterogeneous bioinformatics databases. Results We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. Conclusion BioWarehouse embodies significant progress on the database integration problem for bioinformatics. PMID:16556315
BioWarehouse: a bioinformatics database warehouse toolkit.
Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David W J; Tenenbaum, Jessica D; Karp, Peter D
2006-03-23
This article addresses the problem of interoperation of heterogeneous bioinformatics databases. We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. BioWarehouse embodies significant progress on the database integration problem for bioinformatics.
CCTOP: a Consensus Constrained TOPology prediction web server.
Dobson, László; Reményi, István; Tusnády, Gábor E
2015-07-01
The Consensus Constrained TOPology prediction (CCTOP; http://cctop.enzim.ttk.mta.hu) server is a web-based application providing transmembrane topology prediction. In addition to utilizing 10 different state-of-the-art topology prediction methods, the CCTOP server incorporates topology information from existing experimental and computational sources available in the PDBTM, TOPDB and TOPDOM databases using the probabilistic framework of hidden Markov model. The server provides the option to precede the topology prediction with signal peptide prediction and transmembrane-globular protein discrimination. The initial result can be recalculated by (de)selecting any of the prediction methods or mapped experiments or by adding user specified constraints. CCTOP showed superior performance to existing approaches. The reliability of each prediction is also calculated, which correlates with the accuracy of the per protein topology prediction. The prediction results and the collected experimental information are visualized on the CCTOP home page and can be downloaded in XML format. Programmable access of the CCTOP server is also available, and an example of client-side script is provided. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
TIM Barrel Protein Structure Classification Using Alignment Approach and Best Hit Strategy
NASA Astrophysics Data System (ADS)
Chu, Jia-Han; Lin, Chun Yuan; Chang, Cheng-Wen; Lee, Chihan; Yang, Yuh-Shyong; Tang, Chuan Yi
2007-11-01
The classification of protein structures is essential for their function determination in bioinformatics. It has been estimated that around 10% of all known enzymes have TIM barrel domains from the Structural Classification of Proteins (SCOP) database. With its high sequence variation and diverse functionalities, TIM barrel protein becomes to be an attractive target for protein engineering and for the evolution study. Hence, in this paper, an alignment approach with the best hit strategy is proposed to classify the TIM barrel protein structure in terms of superfamily and family levels in the SCOP. This work is also used to do the classification for class level in the Enzyme nomenclature (ENZYME) database. Two testing data sets, TIM40D and TIM95D, both are used to evaluate this approach. The resulting classification has an overall prediction accuracy rate of 90.3% for the superfamily level in the SCOP, 89.5% for the family level in the SCOP and 70.1% for the class level in the ENZYME. These results demonstrate that the alignment approach with the best hit strategy is a simple and viable method for the TIM barrel protein structure classification, even only has the amino acid sequences information.
There is Diversity in Disorder-"In all Chaos there is a Cosmos, in all Disorder a Secret Order".
Nielsen, Jakob T; Mulder, Frans A A
2016-01-01
The protein universe consists of a continuum of structures ranging from full order to complete disorder. As the structured part of the proteome has been intensively studied, stably folded proteins are increasingly well documented and understood. However, proteins that are fully, or in large part, disordered are much less well characterized. Here we collected NMR chemical shifts in a small database for 117 protein sequences that are known to contain disorder. We demonstrate that NMR chemical shift data can be brought to bear as an exquisite judge of protein disorder at the residue level, and help in validation. With the help of secondary chemical shift analysis we demonstrate that the proteins in the database span the full spectrum of disorder, but still, largely segregate into two classes; disordered with small segments of order scattered along the sequence, and structured with small segments of disorder inserted between the different structured regions. A detailed analysis reveals that the distribution of order/disorder along the sequence shows a complex and asymmetric distribution, that is highly protein-dependent. Access to ratified training data further suggests an avenue to improving prediction of disorder from sequence.
Bordner, Andrew J; Gorin, Andrey A
2008-05-12
Protein-protein interactions are ubiquitous and essential for all cellular processes. High-resolution X-ray crystallographic structures of protein complexes can reveal the details of their function and provide a basis for many computational and experimental approaches. Differentiation between biological and non-biological contacts and reconstruction of the intact complex is a challenging computational problem. A successful solution can provide additional insights into the fundamental principles of biological recognition and reduce errors in many algorithms and databases utilizing interaction information extracted from the Protein Data Bank (PDB). We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster is relevant based on a diverse set of properties; and (4) combining these scores for each PDB entry in order to predict the complex structure. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions. These interfaces, as well as the predicted protein complexes, are available from the Protein Interface Server (PInS) website (see Availability and requirements section). Our method demonstrates an almost two-fold reduction of the annotation error rate as evaluated on a large benchmark set of complexes validated from the literature. We also estimate relative contributions of each interface property to the accurate discrimination of biologically relevant interfaces and discuss possible directions for further improving the prediction method.
Prediction of type III secretion signals in genomes of gram-negative bacteria.
Löwer, Martin; Schneider, Gisbert
2009-06-15
Pathogenic bacteria infecting both animals as well as plants use various mechanisms to transport virulence factors across their cell membranes and channel these proteins into the infected host cell. The type III secretion system represents such a mechanism. Proteins transported via this pathway ("effector proteins") have to be distinguished from all other proteins that are not exported from the bacterial cell. Although a special targeting signal at the N-terminal end of effector proteins has been proposed in literature its exact characteristics remain unknown. In this study, we demonstrate that the signals encoded in the sequences of type III secretion system effectors can be consistently recognized and predicted by machine learning techniques. Known protein effectors were compiled from the literature and sequence databases, and served as training data for artificial neural networks and support vector machine classifiers. Common sequence features were most pronounced in the first 30 amino acids of the effector sequences. Classification accuracy yielded a cross-validated Matthews correlation of 0.63 and allowed for genome-wide prediction of potential type III secretion system effectors in 705 proteobacterial genomes (12% predicted candidates protein), their chromosomes (11%) and plasmids (13%), as well as 213 Firmicute genomes (7%). We present a signal prediction method together with comprehensive survey of potential type III secretion system effectors extracted from 918 published bacterial genomes. Our study demonstrates that the analyzed signal features are common across a wide range of species, and provides a substantial basis for the identification of exported pathogenic proteins as targets for future therapeutic intervention. The prediction software is publicly accessible from our web server (www.modlab.org).
Rysavy, Steven J; Beck, David A C; Daggett, Valerie
2014-11-01
Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼ 25-75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. © 2014 The Protein Society.
Raghav, Pawan Kumar; Verma, Yogesh Kumar; Gangenahalli, Gurudutta U
2012-05-01
B-cell lymphoma (Bcl-2) protein is an anti-apoptotic member of the Bcl-2 family. It is functionally demarcated into four Bcl-2 homology (BH) domains: BH1, BH2, BH3, BH4, one flexible loop domain (FLD), a transmembrane domain (TM), and an X domain. Bcl-2's BH domains have clearly been elucidated from a structural perspective, whereas the conformation of FLD has not yet been predicted, despite its important role in regulating apoptosis through its interactions with JNK-1, PKC, PP2A phosphatase, caspase 3, MAP kinase, ubiquitin, PS1, and FKBP38. Many important residues that regulate Bcl-2 anti-apoptotic activity are present in this domain, for example Asp34, Thr56, Thr69, Ser70, Thr74, and Ser87. The structural elucidation of the FLD would likely help in attempts to accurately predict the effect of mutating these residues on the overall structure of the protein and the interactions of other proteins in this domain. Therefore, we have generated an increased quality model of the Bcl-2 protein including the FLD through modeling. Further, molecular dynamics (MD) simulations were used for FLD optimization, to predict the flexibility, and to determine the stability of the folded FLD. In addition, essential dynamics (ED) was used to predict the collective motions and the essential subspace relevant to Bcl-2 protein function. The predicted average structure and ensemble of MD-simulated structures were submitted to the Protein Model Database (PMDB), and the Bcl-2 structures obtained exhibited enhanced quality. This study should help to elucidate the structural basis for Bcl-2 anti-apoptotic activity regulation through its binding to other proteins via the FLD.
PharmDB-K: Integrated Bio-Pharmacological Network Database for Traditional Korean Medicine
Lee, Ji-Hyun; Park, Kyoung Mii; Han, Dong-Jin; Bang, Nam Young; Kim, Do-Hee; Na, Hyeongjin; Lim, Semi; Kim, Tae Bum; Kim, Dae Gyu; Kim, Hyun-Jung; Chung, Yeonseok; Sung, Sang Hyun; Surh, Young-Joon; Kim, Sunghoon; Han, Byung Woo
2015-01-01
Despite the growing attention given to Traditional Medicine (TM) worldwide, there is no well-known, publicly available, integrated bio-pharmacological Traditional Korean Medicine (TKM) database for researchers in drug discovery. In this study, we have constructed PharmDB-K, which offers comprehensive information relating to TKM-associated drugs (compound), disease indication, and protein relationships. To explore the underlying molecular interaction of TKM, we integrated fourteen different databases, six Pharmacopoeias, and literature, and established a massive bio-pharmacological network for TKM and experimentally validated some cases predicted from the PharmDB-K analyses. Currently, PharmDB-K contains information about 262 TKMs, 7,815 drugs, 3,721 diseases, 32,373 proteins, and 1,887 side effects. One of the unique sets of information in PharmDB-K includes 400 indicator compounds used for standardization of herbal medicine. Furthermore, we are operating PharmDB-K via phExplorer (a network visualization software) and BioMart (a data federation framework) for convenient search and analysis of the TKM network. Database URL: http://pharmdb-k.org, http://biomart.i-pharm.org. PMID:26555441
Gacesa, Ranko; Zucko, Jurica; Petursdottir, Solveig K; Gudmundsdottir, Elisabet Eik; Fridjonsson, Olafur H; Diminic, Janko; Long, Paul F; Cullum, John; Hranueli, Daslav; Hreggvidsson, Gudmundur O; Starcevic, Antonio
2017-06-01
The MEGGASENSE platform constructs relational databases of DNA or protein sequences. The default functional analysis uses 14 106 hidden Markov model (HMM) profiles based on sequences in the KEGG database. The Solr search engine allows sophisticated queries and a BLAST search function is also incorporated. These standard capabilities were used to generate the SCATT database from the predicted proteome of Streptomyces cattleya . The implementation of a specialised metagenome database (AMYLOMICS) for bioprospecting of carbohydrate-modifying enzymes is described. In addition to standard assembly of reads, a novel 'functional' assembly was developed, in which screening of reads with the HMM profiles occurs before the assembly. The AMYLOMICS database incorporates additional HMM profiles for carbohydrate-modifying enzymes and it is illustrated how the combination of HMM and BLAST analyses helps identify interesting genes. A variety of different proteome and metagenome databases have been generated by MEGGASENSE.
Muley, Vijaykumar Yogesh; Ranjan, Akash
2012-01-01
Recent progress in computational methods for predicting physical and functional protein-protein interactions has provided new insights into the complexity of biological processes. Most of these methods assume that functionally interacting proteins are likely to have a shared evolutionary history. This history can be traced out for the protein pairs of a query genome by correlating different evolutionary aspects of their homologs in multiple genomes known as the reference genomes. These methods include phylogenetic profiling, gene neighborhood and co-occurrence of the orthologous protein coding genes in the same cluster or operon. These are collectively known as genomic context methods. On the other hand a method called mirrortree is based on the similarity of phylogenetic trees between two interacting proteins. Comprehensive performance analyses of these methods have been frequently reported in literature. However, very few studies provide insight into the effect of reference genome selection on detection of meaningful protein interactions. We analyzed the performance of four methods and their variants to understand the effect of reference genome selection on prediction efficacy. We used six sets of reference genomes, sampled in accordance with phylogenetic diversity and relationship between organisms from 565 bacteria. We used Escherichia coli as a model organism and the gold standard datasets of interacting proteins reported in DIP, EcoCyc and KEGG databases to compare the performance of the prediction methods. Higher performance for predicting protein-protein interactions was achievable even with 100-150 bacterial genomes out of 565 genomes. Inclusion of archaeal genomes in the reference genome set improves performance. We find that in order to obtain a good performance, it is better to sample few genomes of related genera of prokaryotes from the large number of available genomes. Moreover, such a sampling allows for selecting 50-100 genomes for comparable accuracy of predictions when computational resources are limited.
Adhikari, Utpal Kumar; Rahman, M Mizanur
2017-04-01
The nirk gene encoding the copper-containing nitrite reductase (CuNiR), a key catalytic enzyme in the environmental denitrification process that helps to produce nitric oxide from nitrite. The molecular mechanism of denitrification process is definitely complex and in this case a theoretical investigation has been conducted to know the sequence information and amino acid composition of the active site of CuNiR enzyme using various Bioinformatics tools. 10 Fasta formatted sequences were retrieved from the NCBI database and the domain and disordered regions identification and phylogenetic analyses were done on these sequences. The comparative modeling of protein was performed through Modeller 9v14 program and visualized by PyMOL tools. Validated protein models were deposited in the Protein Model Database (PMDB) (PMDB id: PM0080150 to PM0080159). Active sites of nirk encoding CuNiR enzyme were identified by Castp server. The PROCHECK showed significant scores for four protein models in the most favored regions of the Ramachandran plot. Active sites and cavities prediction exhibited that the amino acid, namely Glycine, Alanine, Histidine, Aspartic acid, Glutamic acid, Threonine, and Glutamine were common in four predicted protein models. The present in silico study anticipates that active site analyses result will pave the way for further research on the complex denitrification mechanism of the selected species in the experimental laboratory. Copyright © 2016. Published by Elsevier Ltd.
The construction and assessment of a statistical model for the prediction of protein assay data.
Pittman, J; Sacks, J; Young, S Stanley
2002-01-01
The focus of this work is the development of a statistical model for a bioinformatics database whose distinctive structure makes model assessment an interesting and challenging problem. The key components of the statistical methodology, including a fast approximation to the singular value decomposition and the use of adaptive spline modeling and tree-based methods, are described, and preliminary results are presented. These results are shown to compare favorably to selected results achieved using comparitive methods. An attempt to determine the predictive ability of the model through the use of cross-validation experiments is discussed. In conclusion a synopsis of the results of these experiments and their implications for the analysis of bioinformatic databases in general is presented.
The chordate proteome history database.
Levasseur, Anthony; Paganini, Julien; Dainat, Jacques; Thompson, Julie D; Poch, Olivier; Pontarotti, Pierre; Gouret, Philippe
2012-01-01
The chordate proteome history database (http://ioda.univ-provence.fr) comprises some 20,000 evolutionary analyses of proteins from chordate species. Our main objective was to characterize and study the evolutionary histories of the chordate proteome, and in particular to detect genomic events and automatic functional searches. Firstly, phylogenetic analyses based on high quality multiple sequence alignments and a robust phylogenetic pipeline were performed for the whole protein and for each individual domain. Novel approaches were developed to identify orthologs/paralogs, and predict gene duplication/gain/loss events and the occurrence of new protein architectures (domain gains, losses and shuffling). These important genetic events were localized on the phylogenetic trees and on the genomic sequence. Secondly, the phylogenetic trees were enhanced by the creation of phylogroups, whereby groups of orthologous sequences created using OrthoMCL were corrected based on the phylogenetic trees; gene family size and gene gain/loss in a given lineage could be deduced from the phylogroups. For each ortholog group obtained from the phylogenetic or the phylogroup analysis, functional information and expression data can be retrieved. Database searches can be performed easily using biological objects: protein identifier, keyword or domain, but can also be based on events, eg, domain exchange events can be retrieved. To our knowledge, this is the first database that links group clustering, phylogeny and automatic functional searches along with the detection of important events occurring during genome evolution, such as the appearance of a new domain architecture.
Garrido-Martín, Diego; Pazos, Florencio
2018-02-27
The exponential accumulation of new sequences in public databases is expected to improve the performance of all the approaches for predicting protein structural and functional features. Nevertheless, this was never assessed or quantified for some widely used methodologies, such as those aimed at detecting functional sites and functional subfamilies in protein multiple sequence alignments. Using raw protein sequences as only input, these approaches can detect fully conserved positions, as well as those with a family-dependent conservation pattern. Both types of residues are routinely used as predictors of functional sites and, consequently, understanding how the sequence content of the databases affects them is relevant and timely. In this work we evaluate how the growth and change with time in the content of sequence databases affect five sequence-based approaches for detecting functional sites and subfamilies. We do that by recreating historical versions of the multiple sequence alignments that would have been obtained in the past based on the database contents at different time points, covering a period of 20 years. Applying the methods to these historical alignments allows quantifying the temporal variation in their performance. Our results show that the number of families to which these methods can be applied sharply increases with time, while their ability to detect potentially functional residues remains almost constant. These results are informative for the methods' developers and final users, and may have implications in the design of new sequencing initiatives.
Efficient use of unlabeled data for protein sequence classification: a comparative study
Kuksa, Pavel; Huang, Pai-Hsi; Pavlovic, Vladimir
2009-01-01
Background Recent studies in computational primary protein sequence analysis have leveraged the power of unlabeled data. For example, predictive models based on string kernels trained on sequences known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly improved accuracy if this data is supplemented with protein sequences that lack any class tags–the unlabeled data. In this study, we present a principled and biologically motivated computational framework that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated databases may bias the estimation of computational models that rely on unlabeled data, we also propose a method to remove this bias and improve performance of the resulting classifiers. Results Combined with state-of-the-art string kernels, our proposed computational framework achieves very accurate semi-supervised protein remote fold and homology detection on three large unlabeled databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running time. Conclusion The unlabeled sequences used under the semi-supervised setting resemble the unpolished gemstones; when used as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and polished, they improve the accuracy of the classifiers considerably. PMID:19426450
RECOVIR Software for Identifying Viruses
NASA Technical Reports Server (NTRS)
Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui
2013-01-01
Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.
Getov, Ivan; Petukh, Marharyta; Alexov, Emil
2016-04-07
Folding free energy is an important biophysical characteristic of proteins that reflects the overall stability of the 3D structure of macromolecules. Changes in the amino acid sequence, naturally occurring or made in vitro, may affect the stability of the corresponding protein and thus could be associated with disease. Several approaches that predict the changes of the folding free energy caused by mutations have been proposed, but there is no method that is clearly superior to the others. The optimal goal is not only to accurately predict the folding free energy changes, but also to characterize the structural changes induced by mutations and the physical nature of the predicted folding free energy changes. Here we report a new method to predict the Single Amino Acid Folding free Energy Changes (SAAFEC) based on a knowledge-modified Molecular Mechanics Poisson-Boltzmann (MM/PBSA) approach. The method is comprised of two main components: a MM/PBSA component and a set of knowledge based terms delivered from a statistical study of the biophysical characteristics of proteins. The predictor utilizes a multiple linear regression model with weighted coefficients of various terms optimized against a set of experimental data. The aforementioned approach yields a correlation coefficient of 0.65 when benchmarked against 983 cases from 42 proteins in the ProTherm database. the webserver can be accessed via http://compbio.clemson.edu/SAAFEC/.
SubCellProt: predicting protein subcellular localization using machine learning approaches.
Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan
2009-01-01
High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt.
Predicting Protein-Protein Interaction Sites with a Novel Membership Based Fuzzy SVM Classifier.
Sriwastava, Brijesh K; Basu, Subhadip; Maulik, Ujjwal
2015-01-01
Predicting residues that participate in protein-protein interactions (PPI) helps to identify, which amino acids are located at the interface. In this paper, we show that the performance of the classical support vector machine (SVM) algorithm can further be improved with the use of a custom-designed fuzzy membership function, for the partner-specific PPI interface prediction problem. We evaluated the performances of both classical SVM and fuzzy SVM (F-SVM) on the PPI databases of three different model proteomes of Homo sapiens, Escherichia coli and Saccharomyces Cerevisiae and calculated the statistical significance of the developed F-SVM over classical SVM algorithm. We also compared our performance with the available state-of-the-art fuzzy methods in this domain and observed significant performance improvements. To predict interaction sites in protein complexes, local composition of amino acids together with their physico-chemical characteristics are used, where the F-SVM based prediction method exploits the membership function for each pair of sequence fragments. The average F-SVM performance (area under ROC curve) on the test samples in 10-fold cross validation experiment are measured as 77.07, 78.39, and 74.91 percent for the aforementioned organisms respectively. Performances on independent test sets are obtained as 72.09, 73.24 and 82.74 percent respectively. The software is available for free download from http://code.google.com/p/cmater-bioinfo.
The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides
Tsirigos, Konstantinos D.; Peters, Christoph; Shu, Nanjiang; Käll, Lukas; Elofsson, Arne
2015-01-01
TOPCONS (http://topcons.net/) is a widely used web server for consensus prediction of membrane protein topology. We hereby present a major update to the server, with some substantial improvements, including the following: (i) TOPCONS can now efficiently separate signal peptides from transmembrane regions. (ii) The server can now differentiate more successfully between globular and membrane proteins. (iii) The server now is even slightly faster, although a much larger database is used to generate the multiple sequence alignments. For most proteins, the final prediction is produced in a matter of seconds. (iv) The user-friendly interface is retained, with the additional feature of submitting batch files and accessing the server programmatically using standard interfaces, making it thus ideal for proteome-wide analyses. Indicatively, the user can now scan the entire human proteome in a few days. (v) For proteins with homology to a known 3D structure, the homology-inferred topology is also displayed. (vi) Finally, the combination of methods currently implemented achieves an overall increase in performance by 4% as compared to the currently available best-scoring methods and TOPCONS is the only method that can identify signal peptides and still maintain a state-of-the-art performance in topology predictions. PMID:25969446
SIBIS: a Bayesian model for inconsistent protein sequence estimation.
Khenoussi, Walyd; Vanhoutrève, Renaud; Poch, Olivier; Thompson, Julie D
2014-09-01
The prediction of protein coding genes is a major challenge that depends on the quality of genome sequencing, the accuracy of the model used to elucidate the exonic structure of the genes and the complexity of the gene splicing process leading to different protein variants. As a consequence, today's protein databases contain a huge amount of inconsistency, due to both natural variants and sequence prediction errors. We have developed a new method, called SIBIS, to detect such inconsistencies based on the evolutionary information in multiple sequence alignments. A Bayesian framework, combined with Dirichlet mixture models, is used to estimate the probability of observing specific amino acids and to detect inconsistent or erroneous sequence segments. We evaluated the performance of SIBIS on a reference set of protein sequences with experimentally validated errors and showed that the sensitivity is significantly higher than previous methods, with only a small loss of specificity. We also assessed a large set of human sequences from the UniProt database and found evidence of inconsistency in 48% of the previously uncharacterized sequences. We conclude that the integration of quality control methods like SIBIS in automatic analysis pipelines will be critical for the robust inference of structural, functional and phylogenetic information from these sequences. Source code, implemented in C on a linux system, and the datasets of protein sequences are freely available for download at http://www.lbgi.fr/∼julie/SIBIS. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P
2016-08-05
Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database. Copyright © 2016 Elsevier Ltd. All rights reserved.
Uddin, Reaz; Tariq, Syeda Sumayya; Azam, Syed Sikander; Wadood, Abdul; Moin, Syed Tarique
2017-08-30
Patently, Protein-Protein Interactions (PPIs) lie at the core of significant biological functions and make the foundation of host-pathogen relationships. Hence, the current study is aimed to use computational biology techniques to predict host-pathogen Protein-Protein Interactions (HP-PPIs) between MRSA and Humans as potential drug targets ultimately proposing new possible inhibitors against them. As a matter of fact this study is based on the Interolog method which implies that homologous proteins retain their ability to interact. A distant homolog approach based on Interolog method was employed to speculate MRSA protein homologs in Humans using PSI-BLAST. In addition the protein interaction partners of these homologs as listed in Database of Interacting Proteins (DIP) were predicted to interact with MRSA as well. Moreover, a direct approach using BLAST was also applied so as to attain further confidence in the strategy. Consequently, the common HP-PPIs predicted by both approaches are suggested as potential drug targets (22%) whereas, the unique HP-PPIs estimated only through distant homolog approach are presented as novel drug targets (12%). Furthermore, the most repeated entry in our results was found to be MRSA Histone Deacetylase (HDAC) which was then modeled using SWISS-MODEL. Eventually, small molecules from ZINC, selected randomly, were docked against HDAC using Auto Dock and are suggested as potential binders (inhibitors) based on their energetic profiles. Thus the current study provides basis for further in-depth analysis of such data which not only include MRSA but other deadly pathogens as well. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Jianhua; Osman, Kim; Iqbal, Mudassar; Stekel, Dov J.; Luo, Zewei; Armstrong, Susan J.; Franklin, F. Chris H.
2013-01-01
Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein–protein interaction (PPI) data are available from the major PPI databases (DBs). It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa interactome that is based on the A. thaliana PPI data from two resources: (i) A. thaliana PPI data from three major DBs, BioGRID, IntAct, and TAIR. (ii) ortholog-based A. thaliana PPI predictions. Linking between B. rapa and A. thaliana was accomplished in three complementary ways: (i) ortholog predictions, (ii) identification of gene duplication based on synteny and collinearity, and (iii) BLAST sequence similarity search. A complementary approach was also applied, which used known/predicted domain–domain interaction data. Specifically, since the two species are closely related, we used PPI data from A. thaliana to predict interacting domains that might be conserved between the two species. The predicted interactome was investigated for the component that contains known A. thaliana meiotic proteins to demonstrate its usability. PMID:23293649
Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G.; Gelly, Jean-Christophe
2016-01-01
Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation —with Protein Blocks—, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the ‘Hard’ category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/. PMID:27319297
Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G; Gelly, Jean-Christophe
2016-06-20
Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation -with Protein Blocks-, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the 'Hard' category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/.
Human Mitochondrial Protein Database
National Institute of Standards and Technology Data Gateway
SRD 131 Human Mitochondrial Protein Database (Web, free access) The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.
Gurung, Ratna B.; Purdie, Auriol C.; Begg, Douglas J.
2012-01-01
Johne's disease in ruminants is caused by Mycobacterium avium subsp. paratuberculosis. Diagnosis of M. avium subsp. paratuberculosis infection is difficult, especially in the early stages. To date, ideal antigen candidates are not available for efficient immunization or immunodiagnosis. This study reports the in silico selection and subsequent analysis of epitopes of M. avium subsp. paratuberculosis proteins that were found to be upregulated under stress conditions as a means to identify immunogenic candidate proteins. Previous studies have reported differential regulation of proteins when M. avium subsp. paratuberculosis is exposed to stressors which induce a response similar to dormancy. Dormancy may be involved in evading host defense mechanisms, and the host may also mount an immune response against these proteins. Twenty-five M. avium subsp. paratuberculosis proteins that were previously identified as being upregulated under in vitro stress conditions were analyzed for B and T cell epitopes by use of the prediction tools at the Immune Epitope Database and Analysis Resource. Major histocompatibility complex class I T cell epitopes were predicted using an artificial neural network method, and class II T cell epitopes were predicted using the consensus method. Conformational B cell epitopes were predicted from the relevant three-dimensional structure template for each protein. Based on the greatest number of predicted epitopes, eight proteins (MAP2698c [encoded by desA2], MAP2312c [encoded by fadE19], MAP3651c [encoded by fadE3_2], MAP2872c [encoded by fabG5_2], MAP3523c [encoded by oxcA], MAP0187c [encoded by sodA], and the hypothetical proteins MAP3567 and MAP1168c) were identified as potential candidates for study of antibody- and cell-mediated immune responses within infected hosts. PMID:22496492
Protein interactions in 3D: from interface evolution to drug discovery.
Winter, Christof; Henschel, Andreas; Tuukkanen, Anne; Schroeder, Michael
2012-09-01
Over the past 10years, much research has been dedicated to the understanding of protein interactions. Large-scale experiments to elucidate the global structure of protein interaction networks have been complemented by detailed studies of protein interaction interfaces. Understanding the evolution of interfaces allows one to identify convergently evolved interfaces which are evolutionary unrelated but share a few key residues and hence have common binding partners. Understanding interaction interfaces and their evolution is an important basis for pharmaceutical applications in drug discovery. Here, we review the algorithms and databases on 3D protein interactions and discuss in detail applications in interface evolution, drug discovery, and interface prediction. Copyright © 2012 Elsevier Inc. All rights reserved.
The Protein Information Resource: an integrated public resource of functional annotation of proteins
Wu, Cathy H.; Huang, Hongzhan; Arminski, Leslie; Castro-Alvear, Jorge; Chen, Yongxing; Hu, Zhang-Zhi; Ledley, Robert S.; Lewis, Kali C.; Mewes, Hans-Werner; Orcutt, Bruce C.; Suzek, Baris E.; Tsugita, Akira; Vinayaka, C. R.; Yeh, Lai-Su L.; Zhang, Jian; Barker, Winona C.
2002-01-01
The Protein Information Resource (PIR) serves as an integrated public resource of functional annotation of protein data to support genomic/proteomic research and scientific discovery. The PIR, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the PIR-International Protein Sequence Database (PSD), the major annotated protein sequence database in the public domain, containing about 250 000 proteins. To improve protein annotation and the coverage of experimentally validated data, a bibliography submission system is developed for scientists to submit, categorize and retrieve literature information. Comprehensive protein information is available from iProClass, which includes family classification at the superfamily, domain and motif levels, structural and functional features of proteins, as well as cross-references to over 40 biological databases. To provide timely and comprehensive protein data with source attribution, we have introduced a non-redundant reference protein database, PIR-NREF. The database consists of about 800 000 proteins collected from PIR-PSD, SWISS-PROT, TrEMBL, GenPept, RefSeq and PDB, with composite protein names and literature data. To promote database interoperability, we provide XML data distribution and open database schema, and adopt common ontologies. The PIR web site (http://pir.georgetown.edu/) features data mining and sequence analysis tools for information retrieval and functional identification of proteins based on both sequence and annotation information. The PIR databases and other files are also available by FTP (ftp://nbrfa.georgetown.edu/pir_databases). PMID:11752247
Chen, Ruoying; Zhang, Zhiwang; Wu, Di; Zhang, Peng; Zhang, Xinyang; Wang, Yong; Shi, Yong
2011-01-21
Protein-protein interactions are fundamentally important in many biological processes and it is in pressing need to understand the principles of protein-protein interactions. Mutagenesis studies have found that only a small fraction of surface residues, known as hot spots, are responsible for the physical binding in protein complexes. However, revealing hot spots by mutagenesis experiments are usually time consuming and expensive. In order to complement the experimental efforts, we propose a new computational approach in this paper to predict hot spots. Our method, Rough Set-based Multiple Criteria Linear Programming (RS-MCLP), integrates rough sets theory and multiple criteria linear programming to choose dominant features and computationally predict hot spots. Our approach is benchmarked by a dataset of 904 alanine-mutated residues and the results show that our RS-MCLP method performs better than other methods, e.g., MCLP, Decision Tree, Bayes Net, and the existing HotSprint database. In addition, we reveal several biological insights based on our analysis. We find that four features (the change of accessible surface area, percentage of the change of accessible surface area, size of a residue, and atomic contacts) are critical in predicting hot spots. Furthermore, we find that three residues (Tyr, Trp, and Phe) are abundant in hot spots through analyzing the distribution of amino acids. Copyright © 2010 Elsevier Ltd. All rights reserved.
BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation.
Dudek, Christian-Alexander; Dannheim, Henning; Schomburg, Dietmar
2017-01-01
The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de.
BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation
Schomburg, Dietmar
2017-01-01
The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de. PMID:28750104
Naqvi, Ahmad Abu Turab; Shahbaaz, Mohd; Ahmad, Faizan; Hassan, Md. Imtaiyaz
2015-01-01
Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions. PMID:25894582
MannDB: A microbial annotation database for protein characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, C; Lam, M; Smith, J
2006-05-19
MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-sourcemore » tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. MannDB comprises a large number of genomes and comprehensive protein sequence analyses representing organisms listed as high-priority agents on the websites of several governmental organizations concerned with bio-terrorism. MannDB provides the user with a BLAST interface for comparison of native and non-native sequences and a query tool for conveniently selecting proteins of interest. In addition, the user has access to a web-based browser that compiles comprehensive and extensive reports.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umar, Arzu; Kang, Hyuk; Timmermans, A. M.
2009-06-01
Tamoxifen-resistance is a major cause of death in patients with recurrent breast cancer. Current clinical factors can correctly predict therapy response in only half of the treated patients. Identification of proteins that associate with tamoxifen-resistance is a first step towards better response prediction and tailored treatment of patients. In the present study we intended to identify putative protein biomarkers indicative of tamoxifen therapy-resistance in breast cancer, using nanoLC coupled with FTICR MS. Comparative proteome analysis was performed on ~5,500 pooled tumor cells (corresponding to ~550 ng protein lysate/analysis) obtained through laser capture microdissection (LCM) from two independently processed data setsmore » (n=24 and n=27) containing both tamoxifen therapy-sensitive and therapy-resistant tumors. Peptides and proteins were identified by matching mass and elution time of newly acquired LC-MS features to information in previously generated accurate mass and time tag (AMT) reference databases.« less
LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources.
Karchin, Rachel; Diekhans, Mark; Kelly, Libusha; Thomas, Daryl J; Pieper, Ursula; Eswar, Narayanan; Haussler, David; Sali, Andrej
2005-06-15
The NCBI dbSNP database lists over 9 million single nucleotide polymorphisms (SNPs) in the human genome, but currently contains limited annotation information. SNPs that result in amino acid residue changes (nsSNPs) are of critical importance in variation between individuals, including disease and drug sensitivity. We have developed LS-SNP, a genomic scale software pipeline to annotate nsSNPs. LS-SNP comprehensively maps nsSNPs onto protein sequences, functional pathways and comparative protein structure models, and predicts positions where nsSNPs destabilize proteins, interfere with the formation of domain-domain interfaces, have an effect on protein-ligand binding or severely impact human health. It currently annotates 28,043 validated SNPs that produce amino acid residue substitutions in human proteins from the SwissProt/TrEMBL database. Annotations can be viewed via a web interface either in the context of a genomic region or by selecting sets of SNPs, genes, proteins or pathways. These results are useful for identifying candidate functional SNPs within a gene, haplotype or pathway and in probing molecular mechanisms responsible for functional impacts of nsSNPs. http://www.salilab.org/LS-SNP CONTACT: rachelk@salilab.org http://salilab.org/LS-SNP/supp-info.pdf.
Coram, Nicolette J; van Zyl, Leonardo J; Rawlings, Douglas E
2005-11-01
Two plasmids, of 28,878 bp and 28,012 bp, were isolated from Leptospirillum ferrooxidans ATCC 49879. Altogether, a total of 67 open reading frames (ORFs) were identified on both plasmids, of which 32 had predicted products with high homology to proteins of known function, while 11 ORFs had predicted products with homology to previously identified proteins of unknown function. Twenty-four ORFs had products with no homologues in the GenBank/NCBI database. An analysis of the ORFs and other features of the two plasmids, the first to be isolated from a bacterium of the genus Leptospirillum, is presented.
Tamura, Takeyuki; Akutsu, Tatsuya
2007-11-30
Subcellular location prediction of proteins is an important and well-studied problem in bioinformatics. This is a problem of predicting which part in a cell a given protein is transported to, where an amino acid sequence of the protein is given as an input. This problem is becoming more important since information on subcellular location is helpful for annotation of proteins and genes and the number of complete genomes is rapidly increasing. Since existing predictors are based on various heuristics, it is important to develop a simple method with high prediction accuracies. In this paper, we propose a novel and general predicting method by combining techniques for sequence alignment and feature vectors based on amino acid composition. We implemented this method with support vector machines on plant data sets extracted from the TargetP database. Through fivefold cross validation tests, the obtained overall accuracies and average MCC were 0.9096 and 0.8655 respectively. We also applied our method to other datasets including that of WoLF PSORT. Although there is a predictor which uses the information of gene ontology and yields higher accuracy than ours, our accuracies are higher than existing predictors which use only sequence information. Since such information as gene ontology can be obtained only for known proteins, our predictor is considered to be useful for subcellular location prediction of newly-discovered proteins. Furthermore, the idea of combination of alignment and amino acid frequency is novel and general so that it may be applied to other problems in bioinformatics. Our method for plant is also implemented as a web-system and available on http://sunflower.kuicr.kyoto-u.ac.jp/~tamura/slpfa.html.
Rysavy, Steven J; Beck, David AC; Daggett, Valerie
2014-01-01
Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. PMID:25142412
Pal, Debojyoti; Sharma, Deepak; Kumar, Mukesh; Sandur, Santosh K
2016-09-01
S-glutathionylation of proteins plays an important role in various biological processes and is known to be protective modification during oxidative stress. Since, experimental detection of S-glutathionylation is labor intensive and time consuming, bioinformatics based approach is a viable alternative. Available methods require relatively longer sequence information, which may prevent prediction if sequence information is incomplete. Here, we present a model to predict glutathionylation sites from pentapeptide sequences. It is based upon differential association of amino acids with glutathionylated and non-glutathionylated cysteines from a database of experimentally verified sequences. This data was used to calculate position dependent F-scores, which measure how a particular amino acid at a particular position may affect the likelihood of glutathionylation event. Glutathionylation-score (G-score), indicating propensity of a sequence to undergo glutathionylation, was calculated using position-dependent F-scores for each amino-acid. Cut-off values were used for prediction. Our model returned an accuracy of 58% with Matthew's correlation-coefficient (MCC) value of 0.165. On an independent dataset, our model outperformed the currently available model, in spite of needing much less sequence information. Pentapeptide motifs having high abundance among glutathionylated proteins were identified. A list of potential glutathionylation hotspot sequences were obtained by assigning G-scores and subsequent Protein-BLAST analysis revealed a total of 254 putative glutathionable proteins, a number of which were already known to be glutathionylated. Our model predicted glutathionylation sites in 93.93% of experimentally verified glutathionylated proteins. Outcome of this study may assist in discovering novel glutathionylation sites and finding candidate proteins for glutathionylation.
Identifying the missing proteins in human proteome by biological language model.
Dong, Qiwen; Wang, Kai; Liu, Xuan
2016-12-23
With the rapid development of high-throughput sequencing technology, the proteomics research becomes a trendy field in the post genomics era. It is necessary to identify all the native-encoding protein sequences for further function and pathway analysis. Toward that end, the Human Proteome Organization lunched the Human Protein Project in 2011. However many proteins are hard to be detected by experiment methods, which becomes one of the bottleneck in Human Proteome Project. In consideration of the complicatedness of detecting these missing proteins by using wet-experiment approach, here we use bioinformatics method to pre-filter the missing proteins. Since there are analogy between the biological sequences and natural language, the n-gram models from Natural Language Processing field has been used to filter the missing proteins. The dataset used in this study contains 616 missing proteins from the "uncertain" category of the neXtProt database. There are 102 proteins deduced by the n-gram model, which have high probability to be native human proteins. We perform a detail analysis on the predicted structure and function of these missing proteins and also compare the high probability proteins with other mass spectrum datasets. The evaluation shows that the results reported here are in good agreement with those obtained by other well-established databases. The analysis shows that 102 proteins may be native gene-coding proteins and some of the missing proteins are membrane or natively disordered proteins which are hard to be detected by experiment methods.
Tissue Molecular Anatomy Project (TMAP): an expression database for comparative cancer proteomics.
Medjahed, Djamel; Luke, Brian T; Tontesh, Tawady S; Smythers, Gary W; Munroe, David J; Lemkin, Peter F
2003-08-01
By mining publicly accessible databases, we have developed a collection of tissue-specific predictive protein expression maps as a function of cancer histological state. Data analysis is applied to the differential expression of gene products in pooled libraries from the normal to the altered state(s). We wish to report the initial results of our survey across different tissues and explore the extent to which this comparative approach may help uncover panels of potential biomarkers of tumorigenesis which would warrant further examination in the laboratory.
Bulashevska, Alla; Stein, Martin; Jackson, David; Eils, Roland
2009-12-01
Accurate computational methods that can help to predict biological function of a protein from its sequence are of great interest to research biologists and pharmaceutical companies. One approach to assume the function of proteins is to predict the interactions between proteins and other molecules. In this work, we propose a machine learning method that uses a primary sequence of a domain to predict its propensity for interaction with small molecules. By curating the Pfam database with respect to the small molecule binding ability of its component domains, we have constructed a dataset of small molecule binding and non-binding domains. This dataset was then used as training set to learn a Bayesian classifier, which should distinguish members of each class. The domain sequences of both classes are modelled with Markov chains. In a Jack-knife test, our classification procedure achieved the predictive accuracies of 77.2% and 66.7% for binding and non-binding classes respectively. We demonstrate the applicability of our classifier by using it to identify previously unknown small molecule binding domains. Our predictions are available as supplementary material and can provide very useful information to drug discovery specialists. Given the ubiquitous and essential role small molecules play in biological processes, our method is important for identifying pharmaceutically relevant components of complete proteomes. The software is available from the author upon request.
Automatic prediction of protein domains from sequence information using a hybrid learning system.
Nagarajan, Niranjan; Yona, Golan
2004-06-12
We describe a novel method for detecting the domain structure of a protein from sequence information alone. The method is based on analyzing multiple sequence alignments that are derived from a database search. Multiple measures are defined to quantify the domain information content of each position along the sequence and are combined into a single predictor using a neural network. The output is further smoothed and post-processed using a probabilistic model to predict the most likely transition positions between domains. The method was assessed using the domain definitions in SCOP and CATH for proteins of known structure and was compared with several other existing methods. Our method performs well both in terms of accuracy and sensitivity. It improves significantly over the best methods available, even some of the semi-manual ones, while being fully automatic. Our method can also be used to suggest and verify domain partitions based on structural data. A few examples of predicted domain definitions and alternative partitions, as suggested by our method, are also discussed. An online domain-prediction server is available at http://biozon.org/tools/domains/
The feeding tube of cyst nematodes: characterisation of protein exclusion.
Eves-van den Akker, Sebastian; Lilley, Catherine J; Ault, James R; Ashcroft, Alison E; Jones, John T; Urwin, Peter E
2014-01-01
Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.
The Feeding Tube of Cyst Nematodes: Characterisation of Protein Exclusion
Eves-van den Akker, Sebastian; Lilley, Catherine J.; Ault, James R.; Ashcroft, Alison E.; Jones, John T.; Urwin, Peter E.
2014-01-01
Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry – mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins. PMID:24489891
USDA-ARS?s Scientific Manuscript database
Cross reactivity between peanuts and tree nuts implies that similar IgE epitopes are present in their proteins. To determine whether walnut sequences similar to known peanut IgE binding sequences, according to the property distance (PD) scale implemented in the Structural Database of Allergenic Prot...
Mu, Lin
2018-01-01
This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination. PMID:29309403
Hung, Tzu-Chieh; Lee, Wen-Yuan; Chen, Kuen-Bao; Chan, Yueh-Chiu; Lee, Cheng-Chun
2014-01-01
Human histone deacetylase 2 (HDAC2) has been identified as being associated with Alzheimer's disease (AD), a neuropathic degenerative disease. In this study, we screen the world's largest Traditional Chinese Medicine (TCM) database for natural compounds that may be useful as lead compounds in the search for inhibitors of HDAC2 function. The technique of molecular docking was employed to select the ten top TCM candidates. We used three prediction models, multiple linear regression (MLR), support vector machine (SVM), and the Bayes network toolbox (BNT), to predict the bioactivity of the TCM candidates. Molecular dynamics simulation provides the protein-ligand interactions of compounds. The bioactivity predictions of pIC50 values suggest that the TCM candidatesm, (−)-Bontl ferulate, monomethylcurcumin, and ningposides C, have a greater effect on HDAC2 inhibition. The structure variation caused by the hydrogen bonds and hydrophobic interactions between protein-ligand interactions indicates that these compounds have an inhibitory effect on the protein. PMID:25045700
APADB: a database for alternative polyadenylation and microRNA regulation events
Müller, Sören; Rycak, Lukas; Afonso-Grunz, Fabian; Winter, Peter; Zawada, Adam M.; Damrath, Ewa; Scheider, Jessica; Schmäh, Juliane; Koch, Ina; Kahl, Günter; Rotter, Björn
2014-01-01
Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3′ untranslated region (3′UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3′UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3′ end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3′ end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3′UTR lengths, especially for chicken, and APADB provides necessary information to close this gap. Database URL: http://tools.genxpro.net/apadb/ PMID:25052703
Shirdel, Elize A.; Xie, Wing; Mak, Tak W.; Jurisica, Igor
2011-01-01
Background MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP). Results mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs. Conclusions Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level. PMID:21364759
Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming
2016-01-01
Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar "Zenith" root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected "Zenith" roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of "Zenith" root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of "Zenith" root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain.
Ponting, C P; Mott, R; Bork, P; Copley, R R
2001-12-01
Sequence database searching methods such as BLAST, are invaluable for predicting molecular function on the basis of sequence similarities among single regions of proteins. Searches of whole databases however, are not optimized to detect multiple homologous regions within a single polypeptide. Here we have used the prospero algorithm to perform self-comparisons of all predicted Drosophila melanogaster gene products. Predicted repeats, and their homologs from all species, were analyzed further to detect hitherto unappreciated evolutionary relationships. Results included the identification of novel tandem repeats in the human X-linked retinitis pigmentosa type-2 gene product, repeated segments in cystinosin, associated with a defect in cystine transport, and 'nested' homologous domains in dysferlin, whose gene is mutated in limb girdle muscular dystrophy. Novel signaling domain families were found that may regulate the microtubule-based cytoskeleton and ubiquitin-mediated proteolysis, respectively. Two families of glycosyl hydrolases were shown to contain internal repetitions that hint at their evolution via a piecemeal, modular approach. In addition, three examples of fruit fly genes were detected with tandem exons that appear to have arisen via internal duplication. These findings demonstrate how completely sequenced genomes can be exploited to further understand the relationships between molecular structure, function, and evolution.
Baek, Minkyung; Park, Taeyong; Heo, Lim; Park, Chiwook; Seok, Chaok
2017-07-03
Homo-oligomerization of proteins is abundant in nature, and is often intimately related with the physiological functions of proteins, such as in metabolism, signal transduction or immunity. Information on the homo-oligomer structure is therefore important to obtain a molecular-level understanding of protein functions and their regulation. Currently available web servers predict protein homo-oligomer structures either by template-based modeling using homo-oligomer templates selected from the protein structure database or by ab initio docking of monomer structures resolved by experiment or predicted by computation. The GalaxyHomomer server, freely accessible at http://galaxy.seoklab.org/homomer, carries out template-based modeling, ab initio docking or both depending on the availability of proper oligomer templates. It also incorporates recently developed model refinement methods that can consistently improve model quality. Moreover, the server provides additional options that can be chosen by the user depending on the availability of information on the monomer structure, oligomeric state and locations of unreliable/flexible loops or termini. The performance of the server was better than or comparable to that of other available methods when tested on benchmark sets and in a recent CASP performed in a blind fashion. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.
Shazman, Shula; Lee, Hunjoong; Socol, Yakov; Mann, Richard S; Honig, Barry
2014-01-01
We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein-DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.
Computational tools for exploring sequence databases as a resource for antimicrobial peptides.
Porto, W F; Pires, A S; Franco, O L
Data mining has been recognized by many researchers as a hot topic in different areas. In the post-genomic era, the growing number of sequences deposited in databases has been the reason why these databases have become a resource for novel biological information. In recent years, the identification of antimicrobial peptides (AMPs) in databases has gained attention. The identification of unannotated AMPs has shed some light on the distribution and evolution of AMPs and, in some cases, indicated suitable candidates for developing novel antimicrobial agents. The data mining process has been performed mainly by local alignments and/or regular expressions. Nevertheless, for the identification of distant homologous sequences, other techniques such as antimicrobial activity prediction and molecular modelling are required. In this context, this review addresses the tools and techniques, and also their limitations, for mining AMPs from databases. These methods could be helpful not only for the development of novel AMPs, but also for other kinds of proteins, at a higher level of structural genomics. Moreover, solving the problem of unannotated proteins could bring immeasurable benefits to society, especially in the case of AMPs, which could be helpful for developing novel antimicrobial agents and combating resistant bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.
Konc, Janez; Cesnik, Tomo; Konc, Joanna Trykowska; Penca, Matej; Janežič, Dušanka
2012-02-27
ProBiS-Database is a searchable repository of precalculated local structural alignments in proteins detected by the ProBiS algorithm in the Protein Data Bank. Identification of functionally important binding regions of the protein is facilitated by structural similarity scores mapped to the query protein structure. PDB structures that have been aligned with a query protein may be rapidly retrieved from the ProBiS-Database, which is thus able to generate hypotheses concerning the roles of uncharacterized proteins. Presented with uncharacterized protein structure, ProBiS-Database can discern relationships between such a query protein and other better known proteins in the PDB. Fast access and a user-friendly graphical interface promote easy exploration of this database of over 420 million local structural alignments. The ProBiS-Database is updated weekly and is freely available online at http://probis.cmm.ki.si/database.
2013-01-01
Background Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. Results We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. Conclusions When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time. PMID:23815620
Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H
2005-01-01
Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476
Boutet, Emmanuel; Lieberherr, Damien; Tognolli, Michael; Schneider, Michel; Bansal, Parit; Bridge, Alan J; Poux, Sylvain; Bougueleret, Lydie; Xenarios, Ioannis
2016-01-01
The Universal Protein Resource (UniProt, http://www.uniprot.org ) consortium is an initiative of the SIB Swiss Institute of Bioinformatics (SIB), the European Bioinformatics Institute (EBI) and the Protein Information Resource (PIR) to provide the scientific community with a central resource for protein sequences and functional information. The UniProt consortium maintains the UniProt KnowledgeBase (UniProtKB), updated every 4 weeks, and several supplementary databases including the UniProt Reference Clusters (UniRef) and the UniProt Archive (UniParc).The Swiss-Prot section of the UniProt KnowledgeBase (UniProtKB/Swiss-Prot) contains publicly available expertly manually annotated protein sequences obtained from a broad spectrum of organisms. Plant protein entries are produced in the frame of the Plant Proteome Annotation Program (PPAP), with an emphasis on characterized proteins of Arabidopsis thaliana and Oryza sativa. High level annotations provided by UniProtKB/Swiss-Prot are widely used to predict annotation of newly available proteins through automatic pipelines.The purpose of this chapter is to present a guided tour of a UniProtKB/Swiss-Prot entry. We will also present some of the tools and databases that are linked to each entry.
Türei, Dénes; Földvári-Nagy, László; Fazekas, Dávid; Módos, Dezső; Kubisch, János; Kadlecsik, Tamás; Demeter, Amanda; Lenti, Katalin; Csermely, Péter; Vellai, Tibor; Korcsmáros, Tamás
2015-01-01
Autophagy is a complex cellular process having multiple roles, depending on tissue, physiological, or pathological conditions. Major post-translational regulators of autophagy are well known, however, they have not yet been collected comprehensively. The precise and context-dependent regulation of autophagy necessitates additional regulators, including transcriptional and post-transcriptional components that are listed in various datasets. Prompted by the lack of systems-level autophagy-related information, we manually collected the literature and integrated external resources to gain a high coverage autophagy database. We developed an online resource, Autophagy Regulatory Network (ARN; http://autophagy-regulation.org), to provide an integrated and systems-level database for autophagy research. ARN contains manually curated, imported, and predicted interactions of autophagy components (1,485 proteins with 4,013 interactions) in humans. We listed 413 transcription factors and 386 miRNAs that could regulate autophagy components or their protein regulators. We also connected the above-mentioned autophagy components and regulators with signaling pathways from the SignaLink 2 resource. The user-friendly website of ARN allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. ARN has the potential to facilitate the experimental validation of novel autophagy components and regulators. In addition, ARN helps the investigation of transcription factors, miRNAs and signaling pathways implicated in the control of the autophagic pathway. The list of such known and predicted regulators could be important in pharmacological attempts against cancer and neurodegenerative diseases.
Constraint Logic Programming approach to protein structure prediction.
Dal Palù, Alessandro; Dovier, Agostino; Fogolari, Federico
2004-11-30
The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.
FPGA accelerator for protein secondary structure prediction based on the GOR algorithm
2011-01-01
Background Protein is an important molecule that performs a wide range of functions in biological systems. Recently, the protein folding attracts much more attention since the function of protein can be generally derived from its molecular structure. The GOR algorithm is one of the most successful computational methods and has been widely used as an efficient analysis tool to predict secondary structure from protein sequence. However, the execution time is still intolerable with the steep growth in protein database. Recently, FPGA chips have emerged as one promising application accelerator to accelerate bioinformatics algorithms by exploiting fine-grained custom design. Results In this paper, we propose a complete fine-grained parallel hardware implementation on FPGA to accelerate the GOR-IV package for 2D protein structure prediction. To improve computing efficiency, we partition the parameter table into small segments and access them in parallel. We aggressively exploit data reuse schemes to minimize the need for loading data from external memory. The whole computation structure is carefully pipelined to overlap the sequence loading, computing and back-writing operations as much as possible. We implemented a complete GOR desktop system based on an FPGA chip XC5VLX330. Conclusions The experimental results show a speedup factor of more than 430x over the original GOR-IV version and 110x speedup over the optimized version with multi-thread SIMD implementation running on a PC platform with AMD Phenom 9650 Quad CPU for 2D protein structure prediction. However, the power consumption is only about 30% of that of current general-propose CPUs. PMID:21342582
De novo RNA-seq and functional annotation of Ornithonyssus bacoti.
Niu, DongLing; Wang, RuiLing; Zhao, YaE; Yang, Rui; Hu, Li
2018-06-01
Ornithonyssus bacoti (Hirst) (Acari: Macronyssidae) is a vector and reservoir of pathogens causing serious infectious diseases, such as epidemic hemorrhagic fever, endemic typhus, tularemia, and leptospirosis. Its genome and transcriptome data are lacking in public databases. In this study, total RNA was extracted from live O. bacoti to conduct RNA-seq, functional annotation, coding domain sequence (CDS) prediction and simple sequence repeats (SSRs) detection. The results showed that 65.8 million clean reads were generated and assembled into 72,185 unigenes, of which 49.4% were annotated by seven functional databases. 23,121 unigenes were annotated and assigned to 457 species by non-redundant protein sequence database. The BLAST top-two hit species were Metaseiulus occidentalis and Ixodes scapularis. The procedure detected 12,426 SSRs, of which tri- and di-nucleotides were the most abundant types and the representative motifs were AAT/ATT and AC/GT. 26,936 CDS were predicted with a mean length of 711 bp. 87 unigenes of 30 functional genes, which are usually involved in stress responses, drug resistance, movement, metabolism and allergy, were further identified by bioinformatics methods. The unigenes putatively encoding cytochrome P450 proteins were further analyzed phylogenetically. In conclusion, this study completed the RNA-seq and functional annotation of O. bacoti successfully, which provides reliable molecular data for its future studies of gene function and molecular markers.
Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads
Baruah, Anupaul; Rani, Pooja; Biswas, Parbati
2015-01-01
This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206
Choosing an Optimal Database for Protein Identification from Tandem Mass Spectrometry Data.
Kumar, Dhirendra; Yadav, Amit Kumar; Dash, Debasis
2017-01-01
Database searching is the preferred method for protein identification from digital spectra of mass to charge ratios (m/z) detected for protein samples through mass spectrometers. The search database is one of the major influencing factors in discovering proteins present in the sample and thus in deriving biological conclusions. In most cases the choice of search database is arbitrary. Here we describe common search databases used in proteomic studies and their impact on final list of identified proteins. We also elaborate upon factors like composition and size of the search database that can influence the protein identification process. In conclusion, we suggest that choice of the database depends on the type of inferences to be derived from proteomics data. However, making additional efforts to build a compact and concise database for a targeted question should generally be rewarding in achieving confident protein identifications.
De novo transcriptome assembly databases for the butterfly orchid Phalaenopsis equestris
Niu, Shan-Ce; Xu, Qing; Zhang, Guo-Qiang; Zhang, Yong-Qiang; Tsai, Wen-Chieh; Hsu, Jui-Ling; Liang, Chieh-Kai; Luo, Yi-Bo; Liu, Zhong-Jian
2016-01-01
Orchids are renowned for their spectacular flowers and ecological adaptations. After the sequencing of the genome of the tropical epiphytic orchid Phalaenopsis equestris, we combined Illumina HiSeq2000 for RNA-Seq and Trinity for de novo assembly to characterize the transcriptomes for 11 diverse P. equestris tissues representing the root, stem, leaf, flower buds, column, lip, petal, sepal and three developmental stages of seeds. Our aims were to contribute to a better understanding of the molecular mechanisms driving the analysed tissue characteristics and to enrich the available data for P. equestris. Here, we present three databases. The first dataset is the RNA-Seq raw reads, which can be used to execute new experiments with different analysis approaches. The other two datasets allow different types of searches for candidate homologues. The second dataset includes the sets of assembled unigenes and predicted coding sequences and proteins, enabling a sequence-based search. The third dataset consists of the annotation results of the aligned unigenes versus the Nonredundant (Nr) protein database, Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) databases with low e-values, enabling a name-based search. PMID:27673730
Huang, Yu-An; You, Zhu-Hong; Chen, Xing
2018-01-01
Drug-Target Interactions (DTI) play a crucial role in discovering new drug candidates and finding new proteins to target for drug development. Although the number of detected DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still limited. On the other hand, the experimental methods for detecting the interactions among drugs and proteins are costly and inefficient. Therefore, computational approaches for predicting DTI are drawing increasing attention in recent years. In this paper, we report a novel computational model for predicting the DTI using extremely randomized trees model and protein amino acids information. More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Representation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to describe its substructure information. Then the DTI pair is characterized by concatenating the two vector spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predicting the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor. The experimental results demonstrate that this method achieves promising prediction accuracies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector Machine classifier. And we also compared the proposed model with existing computational models, and confirmed 15 potential drug-target interactions by looking for existing databases. The experiment results show that the proposed method is feasible and promising for predicting drug-target interactions for new drug candidate screening based on sizeable features. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides.
Tsirigos, Konstantinos D; Peters, Christoph; Shu, Nanjiang; Käll, Lukas; Elofsson, Arne
2015-07-01
TOPCONS (http://topcons.net/) is a widely used web server for consensus prediction of membrane protein topology. We hereby present a major update to the server, with some substantial improvements, including the following: (i) TOPCONS can now efficiently separate signal peptides from transmembrane regions. (ii) The server can now differentiate more successfully between globular and membrane proteins. (iii) The server now is even slightly faster, although a much larger database is used to generate the multiple sequence alignments. For most proteins, the final prediction is produced in a matter of seconds. (iv) The user-friendly interface is retained, with the additional feature of submitting batch files and accessing the server programmatically using standard interfaces, making it thus ideal for proteome-wide analyses. Indicatively, the user can now scan the entire human proteome in a few days. (v) For proteins with homology to a known 3D structure, the homology-inferred topology is also displayed. (vi) Finally, the combination of methods currently implemented achieves an overall increase in performance by 4% as compared to the currently available best-scoring methods and TOPCONS is the only method that can identify signal peptides and still maintain a state-of-the-art performance in topology predictions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Hanson, Andrew D; Pribat, Anne; Waller, Jeffrey C; de Crécy-Lagard, Valérie
2009-12-14
Like other forms of engineering, metabolic engineering requires knowledge of the components (the 'parts list') of the target system. Lack of such knowledge impairs both rational engineering design and diagnosis of the reasons for failures; it also poses problems for the related field of metabolic reconstruction, which uses a cell's parts list to recreate its metabolic activities in silico. Despite spectacular progress in genome sequencing, the parts lists for most organisms that we seek to manipulate remain highly incomplete, due to the dual problem of 'unknown' proteins and 'orphan' enzymes. The former are all the proteins deduced from genome sequence that have no known function, and the latter are all the enzymes described in the literature (and often catalogued in the EC database) for which no corresponding gene has been reported. Unknown proteins constitute up to about half of the proteins in prokaryotic genomes, and much more than this in higher plants and animals. Orphan enzymes make up more than a third of the EC database. Attacking the 'missing parts list' problem is accordingly one of the great challenges for post-genomic biology, and a tremendous opportunity to discover new facets of life's machinery. Success will require a co-ordinated community-wide attack, sustained over years. In this attack, comparative genomics is probably the single most effective strategy, for it can reliably predict functions for unknown proteins and genes for orphan enzymes. Furthermore, it is cost-efficient and increasingly straightforward to deploy owing to a proliferation of databases and associated tools.
AFAL: a web service for profiling amino acids surrounding ligands in proteins
NASA Astrophysics Data System (ADS)
Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S.; Quatrini, Raquel
2014-11-01
With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.
AFAL: a web service for profiling amino acids surrounding ligands in proteins.
Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S; Quatrini, Raquel
2014-11-01
With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html ). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.
de Moraes, Fábio R; Neshich, Izabella A P; Mazoni, Ivan; Yano, Inácio H; Pereira, José G C; Salim, José A; Jardine, José G; Neshich, Goran
2014-01-01
Protein-protein interactions are involved in nearly all regulatory processes in the cell and are considered one of the most important issues in molecular biology and pharmaceutical sciences but are still not fully understood. Structural and computational biology contributed greatly to the elucidation of the mechanism of protein interactions. In this paper, we present a collection of the physicochemical and structural characteristics that distinguish interface-forming residues (IFR) from free surface residues (FSR). We formulated a linear discriminative analysis (LDA) classifier to assess whether chosen descriptors from the BlueStar STING database (http://www.cbi.cnptia.embrapa.br/SMS/) are suitable for such a task. Receiver operating characteristic (ROC) analysis indicates that the particular physicochemical and structural descriptors used for building the linear classifier perform much better than a random classifier and in fact, successfully outperform some of the previously published procedures, whose performance indicators were recently compared by other research groups. The results presented here show that the selected set of descriptors can be utilized to predict IFRs, even when homologue proteins are missing (particularly important for orphan proteins where no homologue is available for comparative analysis/indication) or, when certain conformational changes accompany interface formation. The development of amino acid type specific classifiers is shown to increase IFR classification performance. Also, we found that the addition of an amino acid conservation attribute did not improve the classification prediction. This result indicates that the increase in predictive power associated with amino acid conservation is exhausted by adequate use of an extensive list of independent physicochemical and structural parameters that, by themselves, fully describe the nano-environment at protein-protein interfaces. The IFR classifier developed in this study is now integrated into the BlueStar STING suite of programs. Consequently, the prediction of protein-protein interfaces for all proteins available in the PDB is possible through STING_interfaces module, accessible at the following website: (http://www.cbi.cnptia.embrapa.br/SMS/predictions/index.html).
de Moraes, Fábio R.; Neshich, Izabella A. P.; Mazoni, Ivan; Yano, Inácio H.; Pereira, José G. C.; Salim, José A.; Jardine, José G.; Neshich, Goran
2014-01-01
Protein-protein interactions are involved in nearly all regulatory processes in the cell and are considered one of the most important issues in molecular biology and pharmaceutical sciences but are still not fully understood. Structural and computational biology contributed greatly to the elucidation of the mechanism of protein interactions. In this paper, we present a collection of the physicochemical and structural characteristics that distinguish interface-forming residues (IFR) from free surface residues (FSR). We formulated a linear discriminative analysis (LDA) classifier to assess whether chosen descriptors from the BlueStar STING database (http://www.cbi.cnptia.embrapa.br/SMS/) are suitable for such a task. Receiver operating characteristic (ROC) analysis indicates that the particular physicochemical and structural descriptors used for building the linear classifier perform much better than a random classifier and in fact, successfully outperform some of the previously published procedures, whose performance indicators were recently compared by other research groups. The results presented here show that the selected set of descriptors can be utilized to predict IFRs, even when homologue proteins are missing (particularly important for orphan proteins where no homologue is available for comparative analysis/indication) or, when certain conformational changes accompany interface formation. The development of amino acid type specific classifiers is shown to increase IFR classification performance. Also, we found that the addition of an amino acid conservation attribute did not improve the classification prediction. This result indicates that the increase in predictive power associated with amino acid conservation is exhausted by adequate use of an extensive list of independent physicochemical and structural parameters that, by themselves, fully describe the nano-environment at protein-protein interfaces. The IFR classifier developed in this study is now integrated into the BlueStar STING suite of programs. Consequently, the prediction of protein-protein interfaces for all proteins available in the PDB is possible through STING_interfaces module, accessible at the following website: (http://www.cbi.cnptia.embrapa.br/SMS/predictions/index.html). PMID:24489849
MIPS: analysis and annotation of proteins from whole genomes.
Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A
2004-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).
Li, Fuyi; Li, Chen; Marquez-Lago, Tatiana T; Leier, André; Akutsu, Tatsuya; Purcell, Anthony W; Smith, A Ian; Lithgow, Trevor; Daly, Roger J; Song, Jiangning; Chou, Kuo-Chen
2018-06-27
Kinase-regulated phosphorylation is a ubiquitous type of post-translational modification (PTM) in both eukaryotic and prokaryotic cells. Phosphorylation plays fundamental roles in many signalling pathways and biological processes, such as protein degradation and protein-protein interactions. Experimental studies have revealed that signalling defects caused by aberrant phosphorylation are highly associated with a variety of human diseases, especially cancers. In light of this, a number of computational methods aiming to accurately predict protein kinase family-specific or kinase-specific phosphorylation sites have been established, thereby facilitating phosphoproteomic data analysis. In this work, we present Quokka, a novel bioinformatics tool that allows users to rapidly and accurately identify human kinase family-regulated phosphorylation sites. Quokka was developed by using a variety of sequence scoring functions combined with an optimized logistic regression algorithm. We evaluated Quokka based on well-prepared up-to-date benchmark and independent test datasets, curated from the Phospho.ELM and UniProt databases, respectively. The independent test demonstrates that Quokka improves the prediction performance compared with state-of-the-art computational tools for phosphorylation prediction. In summary, our tool provides users with high-quality predicted human phosphorylation sites for hypothesis generation and biological validation. The Quokka webserver and datasets are freely available at http://quokka.erc.monash.edu/. Supplementary data are available at Bioinformatics online.
Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent Neural Network.
Zhang, Buzhong; Li, Linqing; Lü, Qiang
2018-05-25
Residue solvent accessibility is closely related to the spatial arrangement and packing of residues. Predicting the solvent accessibility of a protein is an important step to understand its structure and function. In this work, we present a deep learning method to predict residue solvent accessibility, which is based on a stacked deep bidirectional recurrent neural network applied to sequence profiles. To capture more long-range sequence information, a merging operator was proposed when bidirectional information from hidden nodes was merged for outputs. Three types of merging operators were used in our improved model, with a long short-term memory network performing as a hidden computing node. The trained database was constructed from 7361 proteins extracted from the PISCES server using a cut-off of 25% sequence identity. Sequence-derived features including position-specific scoring matrix, physical properties, physicochemical characteristics, conservation score and protein coding were used to represent a residue. Using this method, predictive values of continuous relative solvent-accessible area were obtained, and then, these values were transformed into binary states with predefined thresholds. Our experimental results showed that our deep learning method improved prediction quality relative to current methods, with mean absolute error and Pearson's correlation coefficient values of 8.8% and 74.8%, respectively, on the CB502 dataset and 8.2% and 78%, respectively, on the Manesh215 dataset.
Proteomics reveals novel components of the Anopheles gambiae eggshell
Amenya, Dolphine A.; Chou, Wayne; Li, Jianyong; Yan, Guiyun; Gershon, Paul D.; James, Anthony A.; Marinotti, Osvaldo
2010-01-01
While genome and transcriptome sequencing has revealed a large number and diversity of Anopheles gambiae predicted proteins, identifying their functions and biosynthetic pathways remains challenging. Applied mass spectrometry based proteomics in conjunction with mosquito genome and transcriptome databases were used to identify 44 proteins as putative components of the eggshell. Among the identified molecules are two vitelline membrane proteins and a group of seven putative chorion proteins. Enzymes with peroxidase, laccase and phenoloxidase activities, likely involved in cross-linking reactions that stabilize the eggshell structure, also were identified. Seven odorant binding proteins were found in association with the mosquito eggshell, although their role has yet to be demonstrated. This analysis fills a considerable gap of knowledge about proteins that build the eggshell of anopheline mosquitoes. PMID:20433845
Overlooked Short Toxin-Like Proteins: A Shortcut to Drug Design
Linial, Michal
2017-01-01
Short stable peptides have huge potential for novel therapies and biosimilars. Cysteine-rich short proteins are characterized by multiple disulfide bridges in a compact structure. Many of these metazoan proteins are processed, folded, and secreted as soluble stable folds. These properties are shared by both marine and terrestrial animal toxins. These stable short proteins are promising sources for new drug development. We developed ClanTox (classifier of animal toxins) to identify toxin-like proteins (TOLIPs) using machine learning models trained on a large-scale proteomic database. Insects proteomes provide a rich source for protein innovations. Therefore, we seek overlooked toxin-like proteins from insects (coined iTOLIPs). Out of 4180 short (<75 amino acids) secreted proteins, 379 were predicted as iTOLIPs with high confidence, with as many as 30% of the genes marked as uncharacterized. Based on bioinformatics, structure modeling, and data-mining methods, we found that the most significant group of predicted iTOLIPs carry antimicrobial activity. Among the top predicted sequences were 120 termicin genes from termites with antifungal properties. Structural variations of insect antimicrobial peptides illustrate the similarity to a short version of the defensin fold with antifungal specificity. We also identified 9 proteins that strongly resemble ion channel inhibitors from scorpion and conus toxins. Furthermore, we assigned functional fold to numerous uncharacterized iTOLIPs. We conclude that a systematic approach for finding iTOLIPs provides a rich source of peptides for drug design and innovative therapeutic discoveries. PMID:29109389
Computational-based structural, functional and phylogenetic analysis of Enterobacter phytases.
Pramanik, Krishnendu; Kundu, Shreyasi; Banerjee, Sandipan; Ghosh, Pallab Kumar; Maiti, Tushar Kanti
2018-06-01
Myo-inositol hexakisphosphate phosphohydrolases (i.e., phytases) are known to be a very important enzyme responsible for solubilization of insoluble phosphates. In the present study, Enterobacter phytases have characterized by different phylogenetic, structural and functional parameters using some standard bio-computational tools. Results showed that majority of the Enterobacter phytases are acidic in nature as most of the isoelectric points were under 7.0. The aliphatic indices predicted for the selected proteins were below 40 indicating their thermostable nature. The average molecular weight of the proteins was 48 kDa. The lower values of GRAVY of the said proteins implied that they have better interactions with water. Secondary structure prediction revealed that alpha-helical content was highest among the other forms such as sheets, coils, etc. Moreover, the predicted 3D structure of Enterobacter phytases divulged that the proteins consisted of four monomeric polypeptide chains i.e., it was a tetrameric protein. The predicted tertiary model of E. aerogenes (A0A0M3HCJ2) was deposited in Protein Model Database (Acc. No.: PM0080561) for further utilization after a thorough quality check from QMEAN and SAVES server. Functional analysis supported their classification as histidine acid phosphatases. Besides, multiple sequence alignment revealed that "DG-DP-LG" was the most highly conserved residues within the Enterobacter phytases. Thus, the present study will be useful in selecting suitable phytase-producing microbe exclusively for using in the animal food industry as a food additive.
Comparative Bacterial Proteomics: Analysis of the Core Genome Concept
Callister, Stephen J.; McCue, Lee Ann; Turse, Joshua E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.
2008-01-01
While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. PMID:18253490
Bradshaw, Charles Richard; Surendranath, Vineeth; Henschel, Robert; Mueller, Matthias Stefan; Habermann, Bianca Hermine
2011-03-10
Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de.
Bradshaw, Charles Richard; Surendranath, Vineeth; Henschel, Robert; Mueller, Matthias Stefan; Habermann, Bianca Hermine
2011-01-01
Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de. PMID:21423752
Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan
2014-01-01
Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.
Exploiting protein flexibility to predict the location of allosteric sites
2012-01-01
Background Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. Conclusions We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors. PMID:23095452
Exploiting protein flexibility to predict the location of allosteric sites.
Panjkovich, Alejandro; Daura, Xavier
2012-10-25
Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors.
A Viral-Human Interactome Based on Structural Motif-Domain Interactions Captures the Human Infectome
Guo, Xianwu; Rodríguez-Pérez, Mario A.
2013-01-01
Protein interactions between a pathogen and its host are fundamental in the establishment of the pathogen and underline the infection mechanism. In the present work, we developed a single predictive model for building a host-viral interactome based on the identification of structural descriptors from motif-domain interactions of protein complexes deposited in the Protein Data Bank (PDB). The structural descriptors were used for searching, in a database of protein sequences of human and five clinically important viruses; therefore, viral and human proteins sharing a descriptor were predicted as interacting proteins. The analysis of the host-viral interactome allowed to identify a set of new interactions that further explain molecular mechanism associated with viral infections and showed that it was able to capture human proteins already associated to viral infections (human infectome) and non-infectious diseases (human diseasome). The analysis of human proteins targeted by viral proteins in the context of a human interactome showed that their neighbors are enriched in proteins reported with differential expression under infection and disease conditions. It is expected that the findings of this work will contribute to the development of systems biology for infectious diseases, and help guide the rational identification and prioritization of novel drug targets. PMID:23951184
Reverse screening methods to search for the protein targets of chemopreventive compounds
NASA Astrophysics Data System (ADS)
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-05-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds.
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-01-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds
Huang, Hongbin; Zhang, Guigui; Zhou, Yuquan; Lin, Chenru; Chen, Suling; Lin, Yutong; Mai, Shangkang; Huang, Zunnan
2018-01-01
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction. PMID:29868550
High precision multi-genome scale reannotation of enzyme function by EFICAz
Arakaki, Adrian K; Tian, Weidong; Skolnick, Jeffrey
2006-01-01
Background The functional annotation of most genes in newly sequenced genomes is inferred from similarity to previously characterized sequences, an annotation strategy that often leads to erroneous assignments. We have performed a reannotation of 245 genomes using an updated version of EFICAz, a highly precise method for enzyme function prediction. Results Based on our three-field EC number predictions, we have obtained lower-bound estimates for the average enzyme content in Archaea (29%), Bacteria (30%) and Eukarya (18%). Most annotations added in KEGG from 2005 to 2006 agree with EFICAz predictions made in 2005. The coverage of EFICAz predictions is significantly higher than that of KEGG, especially for eukaryotes. Thousands of our novel predictions correspond to hypothetical proteins. We have identified a subset of 64 hypothetical proteins with low sequence identity to EFICAz training enzymes, whose biochemical functions have been recently characterized and find that in 96% (84%) of the cases we correctly identified their three-field (four-field) EC numbers. For two of the 64 hypothetical proteins: PA1167 from Pseudomonas aeruginosa, an alginate lyase (EC 4.2.2.3) and Rv1700 of Mycobacterium tuberculosis H37Rv, an ADP-ribose diphosphatase (EC 3.6.1.13), we have detected annotation lag of more than two years in databases. Two examples are presented where EFICAz predictions act as hypothesis generators for understanding the functional roles of hypothetical proteins: FLJ11151, a human protein overexpressed in cancer that EFICAz identifies as an endopolyphosphatase (EC 3.6.1.10), and MW0119, a protein of Staphylococcus aureus strain MW2 that we propose as candidate virulence factor based on its EFICAz predicted activity, sphingomyelin phosphodiesterase (EC 3.1.4.12). Conclusion Our results suggest that we have generated enzyme function annotations of high precision and recall. These predictions can be mined and correlated with other information sources to generate biologically significant hypotheses and can be useful for comparative genome analysis and automated metabolic pathway reconstruction. PMID:17166279
Vukovic, Sinisa; Brennan, Paul E; Huggins, David J
2016-09-01
The interaction between any two biological molecules must compete with their interaction with water molecules. This makes water the most important molecule in medicine, as it controls the interactions of every therapeutic with its target. A small molecule binding to a protein is able to recognize a unique binding site on a protein by displacing bound water molecules from specific hydration sites. Quantifying the interactions of these water molecules allows us to estimate the potential of the protein to bind a small molecule. This is referred to as ligandability. In the study, we describe a method to predict ligandability by performing a search of all possible combinations of hydration sites on protein surfaces. We predict ligandability as the summed binding free energy for each of the constituent hydration sites, computed using inhomogeneous fluid solvation theory. We compared the predicted ligandability with the maximum observed binding affinity for 20 proteins in the human bromodomain family. Based on this comparison, it was determined that effective inhibitors have been developed for the majority of bromodomains, in the range from 10 to 100 nM. However, we predict that more potent inhibitors can be developed for the bromodomains BPTF and BRD7 with relative ease, but that further efforts to develop inhibitors for ATAD2 will be extremely challenging. We have also made predictions for the 14 bromodomains with no reported small molecule K d values by isothermal titration calorimetry. The calculations predict that PBRM1(1) will be a challenging target, while others such as TAF1L(2), PBRM1(4) and TAF1(2), should be highly ligandable. As an outcome of this work, we assembled a database of experimental maximal K d that can serve as a community resource assisting medicinal chemistry efforts focused on BRDs. Effective prediction of ligandability would be a very useful tool in the drug discovery process.
NASA Astrophysics Data System (ADS)
Vukovic, Sinisa; Brennan, Paul E.; Huggins, David J.
2016-09-01
The interaction between any two biological molecules must compete with their interaction with water molecules. This makes water the most important molecule in medicine, as it controls the interactions of every therapeutic with its target. A small molecule binding to a protein is able to recognize a unique binding site on a protein by displacing bound water molecules from specific hydration sites. Quantifying the interactions of these water molecules allows us to estimate the potential of the protein to bind a small molecule. This is referred to as ligandability. In the study, we describe a method to predict ligandability by performing a search of all possible combinations of hydration sites on protein surfaces. We predict ligandability as the summed binding free energy for each of the constituent hydration sites, computed using inhomogeneous fluid solvation theory. We compared the predicted ligandability with the maximum observed binding affinity for 20 proteins in the human bromodomain family. Based on this comparison, it was determined that effective inhibitors have been developed for the majority of bromodomains, in the range from 10 to 100 nM. However, we predict that more potent inhibitors can be developed for the bromodomains BPTF and BRD7 with relative ease, but that further efforts to develop inhibitors for ATAD2 will be extremely challenging. We have also made predictions for the 14 bromodomains with no reported small molecule K d values by isothermal titration calorimetry. The calculations predict that PBRM1(1) will be a challenging target, while others such as TAF1L(2), PBRM1(4) and TAF1(2), should be highly ligandable. As an outcome of this work, we assembled a database of experimental maximal K d that can serve as a community resource assisting medicinal chemistry efforts focused on BRDs. Effective prediction of ligandability would be a very useful tool in the drug discovery process.
BioSpider: a web server for automating metabolome annotations.
Knox, Craig; Shrivastava, Savita; Stothard, Paul; Eisner, Roman; Wishart, David S
2007-01-01
One of the growing challenges in life science research lies in finding useful, descriptive or quantitative data about newly reported biomolecules (genes, proteins, metabolites and drugs). An even greater challenge is finding information that connects these genes, proteins, drugs or metabolites to each other. Much of this information is scattered through hundreds of different databases, abstracts or books and almost none of it is particularly well integrated. While some efforts are being undertaken at the NCBI and EBI to integrate many different databases together, this still falls short of the goal of having some kind of human-readable synopsis that summarizes the state of knowledge about a given biomolecule - especially small molecules. To address this shortfall, we have developed BioSpider. BioSpider is essentially an automated report generator designed specifically to tabulate and summarize data on biomolecules - both large and small. Specifically, BioSpider allows users to type in almost any kind of biological or chemical identifier (protein/gene name, sequence, accession number, chemical name, brand name, SMILES string, InCHI string, CAS number, etc.) and it returns an in-depth synoptic report (approximately 3-30 pages in length) about that biomolecule and any other biomolecule it may target. This summary includes physico-chemical parameters, images, models, data files, descriptions and predictions concerning the query molecule. BioSpider uses a web-crawler to scan through dozens of public databases and employs a variety of specially developed text mining tools and locally developed prediction tools to find, extract and assemble data for its reports. Because of its breadth, depth and comprehensiveness, we believe BioSpider will prove to be a particularly valuable tool for researchers in metabolomics. BioSpider is available at: www.biospider.ca
MIPS: a database for genomes and protein sequences.
Mewes, H W; Heumann, K; Kaps, A; Mayer, K; Pfeiffer, F; Stocker, S; Frishman, D
1999-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF), Martinsried near Munich, Germany, develops and maintains genome oriented databases. It is commonplace that the amount of sequence data available increases rapidly, but not the capacity of qualified manual annotation at the sequence databases. Therefore, our strategy aims to cope with the data stream by the comprehensive application of analysis tools to sequences of complete genomes, the systematic classification of protein sequences and the active support of sequence analysis and functional genomics projects. This report describes the systematic and up-to-date analysis of genomes (PEDANT), a comprehensive database of the yeast genome (MYGD), a database reflecting the progress in sequencing the Arabidopsis thaliana genome (MATD), the database of assembled, annotated human EST clusters (MEST), and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). MIPS provides access through its WWW server (http://www.mips.biochem.mpg.de) to a spectrum of generic databases, including the above mentioned as well as a database of protein families (PROTFAM), the MITOP database, and the all-against-all FASTA database. PMID:9847138
Zhao, Mingzhu; Wei, Dong-Qing
2013-01-01
The traditional Chinese medicine (TCM), which has thousands of years of clinical application among China and other Asian countries, is the pioneer of the “multicomponent-multitarget” and network pharmacology. Although there is no doubt of the efficacy, it is difficult to elucidate convincing underlying mechanism of TCM due to its complex composition and unclear pharmacology. The use of ligand-protein networks has been gaining significant value in the history of drug discovery while its application in TCM is still in its early stage. This paper firstly surveys TCM databases for virtual screening that have been greatly expanded in size and data diversity in recent years. On that basis, different screening methods and strategies for identifying active ingredients and targets of TCM are outlined based on the amount of network information available, both on sides of ligand bioactivity and the protein structures. Furthermore, applications of successful in silico target identification attempts are discussed in detail along with experiments in exploring the ligand-protein networks of TCM. Finally, it will be concluded that the prospective application of ligand-protein networks can be used not only to predict protein targets of a small molecule, but also to explore the mode of action of TCM. PMID:23818932
Exploring the Universe of Protein Structures beyond the Protein Data Bank
Cossio, Pilar; Trovato, Antonio; Pietrucci, Fabio; Seno, Flavio; Maritan, Amos; Laio, Alessandro
2010-01-01
It is currently believed that the atlas of existing protein structures is faithfully represented in the Protein Data Bank. However, whether this atlas covers the full universe of all possible protein structures is still a highly debated issue. By using a sophisticated numerical approach, we performed an exhaustive exploration of the conformational space of a 60 amino acid polypeptide chain described with an accurate all-atom interaction potential. We generated a database of around 30,000 compact folds with at least of secondary structure corresponding to local minima of the potential energy. This ensemble plausibly represents the universe of protein folds of similar length; indeed, all the known folds are represented in the set with good accuracy. However, we discover that the known folds form a rather small subset, which cannot be reproduced by choosing random structures in the database. Rather, natural and possible folds differ by the contact order, on average significantly smaller in the former. This suggests the presence of an evolutionary bias, possibly related to kinetic accessibility, towards structures with shorter loops between contacting residues. Beside their conceptual relevance, the new structures open a range of practical applications such as the development of accurate structure prediction strategies, the optimization of force fields, and the identification and design of novel folds. PMID:21079678
ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species.
Zeng, Victor; Extavour, Cassandra G
2012-01-01
The increased throughput and decreased cost of next-generation sequencing (NGS) have shifted the bottleneck genomic research from sequencing to annotation, analysis and accessibility. This is particularly challenging for research communities working on organisms that lack the basic infrastructure of a sequenced genome, or an efficient way to utilize whatever sequence data may be available. Here we present a new database, the Assembled Searchable Giant Arthropod Read Database (ASGARD). This database is a repository and search engine for transcriptomic data from arthropods that are of high interest to multiple research communities but currently lack sequenced genomes. We demonstrate the functionality and utility of ASGARD using de novo assembled transcriptomes from the milkweed bug Oncopeltus fasciatus, the cricket Gryllus bimaculatus and the amphipod crustacean Parhyale hawaiensis. We have annotated these transcriptomes to assign putative orthology, coding region determination, protein domain identification and Gene Ontology (GO) term annotation to all possible assembly products. ASGARD allows users to search all assemblies by orthology annotation, GO term annotation or Basic Local Alignment Search Tool. User-friendly features of ASGARD include search term auto-completion suggestions based on database content, the ability to download assembly product sequences in FASTA format, direct links to NCBI data for predicted orthologs and graphical representation of the location of protein domains and matches to similar sequences from the NCBI non-redundant database. ASGARD will be a useful repository for transcriptome data from future NGS studies on these and other emerging model arthropods, regardless of sequencing platform, assembly or annotation status. This database thus provides easy, one-stop access to multi-species annotated transcriptome information. We anticipate that this database will be useful for members of multiple research communities, including developmental biology, physiology, evolutionary biology, ecology, comparative genomics and phylogenomics. Database URL: asgard.rc.fas.harvard.edu.
The Halophile protein database.
Sharma, Naveen; Farooqi, Mohammad Samir; Chaturvedi, Krishna Kumar; Lal, Shashi Bhushan; Grover, Monendra; Rai, Anil; Pandey, Pankaj
2014-01-01
Halophilic archaea/bacteria adapt to different salt concentration, namely extreme, moderate and low. These type of adaptations may occur as a result of modification of protein structure and other changes in different cell organelles. Thus proteins may play an important role in the adaptation of halophilic archaea/bacteria to saline conditions. The Halophile protein database (HProtDB) is a systematic attempt to document the biochemical and biophysical properties of proteins from halophilic archaea/bacteria which may be involved in adaptation of these organisms to saline conditions. In this database, various physicochemical properties such as molecular weight, theoretical pI, amino acid composition, atomic composition, estimated half-life, instability index, aliphatic index and grand average of hydropathicity (Gravy) have been listed. These physicochemical properties play an important role in identifying the protein structure, bonding pattern and function of the specific proteins. This database is comprehensive, manually curated, non-redundant catalogue of proteins. The database currently contains 59 897 proteins properties extracted from 21 different strains of halophilic archaea/bacteria. The database can be accessed through link. Database URL: http://webapp.cabgrid.res.in/protein/ © The Author(s) 2014. Published by Oxford University Press.
Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors.
Martin, Shawn; Pratt, Harry D; Anderson, Travis M
2017-07-01
We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18 th , 2014. The dataset consists of 4,329 measurements taken from 165 ILs made up of 72 cations and 34 anions. We benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors
Martin, Shawn; Pratt, III, Harry D.; Anderson, Travis M.
2017-02-21
We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18th, 2014. The dataset consists of 4,329 measurements taken from 165 ILs made upmore » of 72 cations and 34 anions. In conclusion, we benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset.« less
Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Shawn; Pratt, III, Harry D.; Anderson, Travis M.
We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18th, 2014. The dataset consists of 4,329 measurements taken from 165 ILs made upmore » of 72 cations and 34 anions. In conclusion, we benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset.« less
High accuracy prediction of beta-turns and their types using propensities and multiple alignments.
Fuchs, Patrick F J; Alix, Alain J P
2005-06-01
We have developed a method that predicts both the presence and the type of beta-turns, using a straightforward approach based on propensities and multiple alignments. The propensities were calculated classically, but the way to use them for prediction was completely new: starting from a tetrapeptide sequence on which one wants to evaluate the presence of a beta-turn, the propensity for a given residue is modified by taking into account all the residues present in the multiple alignment at this position. The evaluation of a score is then done by weighting these propensities by the use of Position-specific score matrices generated by PSI-BLAST. The introduction of secondary structure information predicted by PSIPRED or SSPRO2 as well as taking into account the flanking residues around the tetrapeptide improved the accuracy greatly. This latter evaluated on a database of 426 reference proteins (previously used on other studies) by a sevenfold crossvalidation gave very good results with a Matthews Correlation Coefficient (MCC) of 0.42 and an overall prediction accuracy of 74.8%; this places our method among the best ones. A jackknife test was also done, which gave results within the same range. This shows that it is possible to reach neural networks accuracy with considerably less computional cost and complexity. Furthermore, propensities remain excellent descriptors of amino acid tendencies to belong to beta-turns, which can be useful for peptide or protein engineering and design. For beta-turn type prediction, we reached the best accuracy ever published in terms of MCC (except for the irregular type IV) in the range of 0.25-0.30 for types I, II, and I' and 0.13-0.15 for types VIII, II', and IV. To our knowledge, our method is the only one available on the Web that predicts types I' and II'. The accuracy evaluated on two larger databases of 547 and 823 proteins was not improved significantly. All of this was implemented into a Web server called COUDES (French acronym for: Chercher Ou Une Deviation Existe Surement), which is available at the following URL: http://bioserv.rpbs.jussieu.fr/Coudes/index.html within the new bioinformatics platform RPBS.
Compound activity prediction using models of binding pockets or ligand properties in 3D
Kufareva, Irina; Chen, Yu-Chen; Ilatovskiy, Andrey V.; Abagyan, Ruben
2014-01-01
Transient interactions of endogenous and exogenous small molecules with flexible binding sites in proteins or macromolecular assemblies play a critical role in all biological processes. Current advances in high-resolution protein structure determination, database development, and docking methodology make it possible to design three-dimensional models for prediction of such interactions with increasing accuracy and specificity. Using the data collected in the Pocketome encyclopedia, we here provide an overview of two types of the three-dimensional ligand activity models, pocket-based and ligand property-based, for two important classes of proteins, nuclear and G-protein coupled receptors. For half the targets, the pocket models discriminate actives from property matched decoys with acceptable accuracy (the area under ROC curve, AUC, exceeding 84%) and for about one fifth of the targets with high accuracy (AUC > 95%). The 3D ligand property field models performed better than 95% in half of the cases. The high performance models can already become a basis of activity predictions for new chemicals. Family-wide benchmarking of the models highlights strengths of both approaches and helps identify their inherent bottlenecks and challenges. PMID:23116466
A General Method for Predicting Amino Acid Residues Experiencing Hydrogen Exchange
Wang, Boshen; Perez-Rathke, Alan; Li, Renhao; Liang, Jie
2018-01-01
Information on protein hydrogen exchange can help delineate key regions involved in protein-protein interactions and provides important insight towards determining functional roles of genetic variants and their possible mechanisms in disease processes. Previous studies have shown that the degree of hydrogen exchange is affected by hydrogen bond formations, solvent accessibility, proximity to other residues, and experimental conditions. However, a general predictive method for identifying residues capable of hydrogen exchange transferable to a broad set of proteins is lacking. We have developed a machine learning method based on random forest that can predict whether a residue experiences hydrogen exchange. Using data from the Start2Fold database, which contains information on 13,306 residues (3,790 of which experience hydrogen exchange and 9,516 which do not exchange), our method achieves good performance. Specifically, we achieve an overall out-of-bag (OOB) error, an unbiased estimate of the test set error, of 20.3 percent. Using a randomly selected test data set consisting of 500 residues experiencing hydrogen exchange and 500 which do not, our method achieves an accuracy of 0.79, a recall of 0.74, a precision of 0.82, and an F1 score of 0.78.
Bhardwaj, Jyoti; Gangwar, Indu; Panzade, Ganesh; Shankar, Ravi; Yadav, Sudesh Kumar
2016-06-03
Inspired by the availability of de novo transcriptome of horse gram (Macrotyloma uniflorum) and recent developments in systems biology studies, the first ever global protein-protein interactome (PPI) map was constructed for this highly drought-tolerant legume. Large-scale studies of PPIs and the constructed database would provide rationale behind the interplay at cascading translational levels for drought stress-adaptive mechanisms in horse gram. Using a bidirectional approach (interolog and domain-based), a high-confidence interactome map and database for horse gram was constructed. Available transcriptomic information for shoot and root tissues of a sensitive (M-191; genotype 1) and a drought-tolerant (M-249; genotype 2) genotype of horse gram was utilized to draw comparative PPI subnetworks under drought stress. High-confidence 6804 interactions were predicted among 1812 proteins covering about one-fourth of the horse gram proteome. The highest number of interactions (33.86%) in horse gram interactome matched with Arabidopsis PPI data. The top five hub nodes mostly included ubiquitin and heat-shock-related proteins. Higher numbers of PPIs were found to be responsive in shoot tissue (416) and root tissue (2228) of genotype 2 compared with shoot tissue (136) and root tissue (579) of genotype 1. Characterization of PPIs using gene ontology analysis revealed that kinase and transferase activities involved in signal transduction, cellular processes, nucleocytoplasmic transport, protein ubiquitination, and localization of molecules were most responsive to drought stress. Hence, these could be framed in stress adaptive mechanisms of horse gram. Being the first legume global PPI map, it would provide new insights into gene and protein regulatory networks for drought stress tolerance mechanisms in horse gram. Information compiled in the form of database (MauPIR) will provide the much needed high-confidence systems biology information for horse gram genes, proteins, and involved processes. This information would ease the effort and increase the efficacy for similar studies on other legumes. Public access is available at http://14.139.59.221/MauPIR/ .
PANNZER2: a rapid functional annotation web server.
Törönen, Petri; Medlar, Alan; Holm, Liisa
2018-05-08
The unprecedented growth of high-throughput sequencing has led to an ever-widening annotation gap in protein databases. While computational prediction methods are available to make up the shortfall, a majority of public web servers are hindered by practical limitations and poor performance. Here, we introduce PANNZER2 (Protein ANNotation with Z-scoRE), a fast functional annotation web server that provides both Gene Ontology (GO) annotations and free text description predictions. PANNZER2 uses SANSparallel to perform high-performance homology searches, making bulk annotation based on sequence similarity practical. PANNZER2 can output GO annotations from multiple scoring functions, enabling users to see which predictions are robust across predictors. Finally, PANNZER2 predictions scored within the top 10 methods for molecular function and biological process in the CAFA2 NK-full benchmark. The PANNZER2 web server is updated on a monthly schedule and is accessible at http://ekhidna2.biocenter.helsinki.fi/sanspanz/. The source code is available under the GNU Public Licence v3.
MIPS: analysis and annotation of proteins from whole genomes
Mewes, H. W.; Amid, C.; Arnold, R.; Frishman, D.; Güldener, U.; Mannhaupt, G.; Münsterkötter, M.; Pagel, P.; Strack, N.; Stümpflen, V.; Warfsmann, J.; Ruepp, A.
2004-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein–protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de). PMID:14681354
FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.
Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri
2015-11-01
There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.
Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0
Zhu, Xiaolei; Xiong, Yi; Kihara, Daisuke
2015-01-01
Motivation: Ligand binding is a key aspect of the function of many proteins. Thus, binding ligand prediction provides important insight in understanding the biological function of proteins. Binding ligand prediction is also useful for drug design and examining potential drug side effects. Results: We present a computational method named Patch-Surfer2.0, which predicts binding ligands for a protein pocket. By representing and comparing pockets at the level of small local surface patches that characterize physicochemical properties of the local regions, the method can identify binding pockets of the same ligand even if they do not share globally similar shapes. Properties of local patches are represented by an efficient mathematical representation, 3D Zernike Descriptor. Patch-Surfer2.0 has significant technical improvements over our previous prototype, which includes a new feature that captures approximate patch position with a geodesic distance histogram. Moreover, we constructed a large comprehensive database of ligand binding pockets that will be searched against by a query. The benchmark shows better performance of Patch-Surfer2.0 over existing methods. Availability and implementation: http://kiharalab.org/patchsurfer2.0/ Contact: dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25359888
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weckwerth, Wolfram; Baginsky, Sacha; Van Wijk, Klass
2009-12-01
In the past 10 years, we have witnessed remarkable advances in the field of plant molecular biology. The rapid development of proteomic technologies and the speed with which these techniques have been applied to the field have altered our perception of how we can analyze proteins in complex systems. At nearly the same time, the availability of the complete genome for the model plant Arabidopsis thaliana was released; this effort provides an unsurpassed resource for the identification of proteins when researchers use MS to analyze plant samples. Recognizing the growth in this area, the Multinational Arabidopsis Steering Committee (MASC) establishedmore » a subcommittee for A. thaliana proteomics in 2006 with the objective of consolidating databases, technique standards, and experimentally validated candidate genes and functions. Since the establishment of the Multinational Arabidopsis Steering Subcommittee for Proteomics (MASCP), many new approaches and resources have become available. Recently, the subcommittee established a webpage to consolidate this information (www.masc-proteomics.org). It includes links to plant proteomic databases, general information about proteomic techniques, meeting information, a summary of proteomic standards, and other relevant resources. Altogether, this website provides a useful resource for the Arabidopsis proteomics community. In the future, the website will host discussions and investigate the cross-linking of databases. The subcommittee members have extensive experience in arabidopsis proteomics and collectively have produced some of the most extensive proteomics data sets for this model plant (Table S1 in the Supporting Information has a list of resources). The largest collection of proteomics data from a single study in A. thaliana was assembled into an accessible database (AtProteome; http://fgcz-atproteome.unizh.ch/index.php) and was recently published by the Baginsky lab.1 The database provides links to major Arabidopsis online resources, and raw data have been deposited in PRIDE and PRIDE BioMart. Included in this database is an Arabidopsis proteome map that provides evidence for the expression of {approx}50% of all predicted gene models, including several alternative gene models that are not represented in The Arabidopsis Information Resource (TAIR) protein database. A set of organ-specific biomarkers is provided, as well as organ-specific proteotypic peptides for 4105 proteins that can be used to facilitate targeted quantitative proteomic surveys. In the future, the AtProteome database will be linked to additional existing resources developed by MASCP members, such as PPDB, ProMEX, and SUBA. The most comprehensive study on the Arabidopsis chloroplast proteome, which includes information on chloroplast sorting signals, posttranslational modifications (PTMs), and protein abundances (analyzed by high-accuracy MS [Orbitrap]), was recently published by the van Wijk lab.2 These and previous data are available via the plant proteome database (PPDB; http://ppdb.tc.cornell.edu) for A. thaliana and maize. PPDB provides genome-wide experimental and functional characterization of the A. thaliana and maize proteomes, including PTMs and subcellular localization information, with an emphasis on leaf and plastid proteins. Maize and Arabidopsis proteome entries are directly linked via internal BLAST alignments within PPDB. Direct links for each protein to TAIR, SUBA, ProMEX, and other resources are also provided.« less
Chen, Lei; Zhang, Yu-Hang; Zheng, Mingyue; Huang, Tao; Cai, Yu-Dong
2016-12-01
Compound-protein interactions play important roles in every cell via the recognition and regulation of specific functional proteins. The correct identification of compound-protein interactions can lead to a good comprehension of this complicated system and provide useful input for the investigation of various attributes of compounds and proteins. In this study, we attempted to understand this system by extracting properties from both proteins and compounds, in which proteins were represented by gene ontology and KEGG pathway enrichment scores and compounds were represented by molecular fragments. Advanced feature selection methods, including minimum redundancy maximum relevance, incremental feature selection, and the basic machine learning algorithm random forest, were used to analyze these properties and extract core factors for the determination of actual compound-protein interactions. Compound-protein interactions reported in The Binding Databases were used as positive samples. To improve the reliability of the results, the analytic procedure was executed five times using different negative samples. Simultaneously, five optimal prediction methods based on a random forest and yielding maximum MCCs of approximately 77.55 % were constructed and may be useful tools for the prediction of compound-protein interactions. This work provides new clues to understanding the system of compound-protein interactions by analyzing extracted core features. Our results indicate that compound-protein interactions are related to biological processes involving immune, developmental and hormone-associated pathways.
A PDB-wide, evolution-based assessment of protein-protein interfaces.
Baskaran, Kumaran; Duarte, Jose M; Biyani, Nikhil; Bliven, Spencer; Capitani, Guido
2014-10-18
Thanks to the growth in sequence and structure databases, more than 50 million sequences are now available in UniProt and 100,000 structures in the PDB. Rich information about protein-protein interfaces can be obtained by a comprehensive study of protein contacts in the PDB, their sequence conservation and geometric features. An automated computational pipeline was developed to run our Evolutionary Protein-Protein Interface Classifier (EPPIC) software on the entire PDB and store the results in a relational database, currently containing > 800,000 interfaces. This allows the analysis of interface data on a PDB-wide scale. Two large benchmark datasets of biological interfaces and crystal contacts, each containing about 3000 entries, were automatically generated based on criteria thought to be strong indicators of interface type. The BioMany set of biological interfaces includes NMR dimers solved as crystal structures and interfaces that are preserved across diverse crystal forms, as catalogued by the Protein Common Interface Database (ProtCID) from Xu and Dunbrack. The second dataset, XtalMany, is derived from interfaces that would lead to infinite assemblies and are therefore crystal contacts. BioMany and XtalMany were used to benchmark the EPPIC approach. The performance of EPPIC was also compared to classifications from the Protein Interfaces, Surfaces, and Assemblies (PISA) program on a PDB-wide scale, finding that the two approaches give the same call in about 88% of PDB interfaces. By comparing our safest predictions to the PDB author annotations, we provide a lower-bound estimate of the error rate of biological unit annotations in the PDB. Additionally, we developed a PyMOL plugin for direct download and easy visualization of EPPIC interfaces for any PDB entry. Both the datasets and the PyMOL plugin are available at http://www.eppic-web.org/ewui/\\#downloads. Our computational pipeline allows us to analyze protein-protein contacts and their sequence conservation across the entire PDB. Two new benchmark datasets are provided, which are over an order of magnitude larger than existing manually curated ones. These tools enable the comprehensive study of several aspects of protein-protein contacts in the PDB and represent a basis for future, even larger scale studies of protein-protein interactions.
The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST)
Overbeek, Ross; Olson, Robert; Pusch, Gordon D.; Olsen, Gary J.; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Parrello, Bruce; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang; Stevens, Rick
2014-01-01
In 2004, the SEED (http://pubseed.theseed.org/) was created to provide consistent and accurate genome annotations across thousands of genomes and as a platform for discovering and developing de novo annotations. The SEED is a constantly updated integration of genomic data with a genome database, web front end, API and server scripts. It is used by many scientists for predicting gene functions and discovering new pathways. In addition to being a powerful database for bioinformatics research, the SEED also houses subsystems (collections of functionally related protein families) and their derived FIGfams (protein families), which represent the core of the RAST annotation engine (http://rast.nmpdr.org/). When a new genome is submitted to RAST, genes are called and their annotations are made by comparison to the FIGfam collection. If the genome is made public, it is then housed within the SEED and its proteins populate the FIGfam collection. This annotation cycle has proven to be a robust and scalable solution to the problem of annotating the exponentially increasing number of genomes. To date, >12 000 users worldwide have annotated >60 000 distinct genomes using RAST. Here we describe the interconnectedness of the SEED database and RAST, the RAST annotation pipeline and updates to both resources. PMID:24293654
The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST).
Overbeek, Ross; Olson, Robert; Pusch, Gordon D; Olsen, Gary J; Davis, James J; Disz, Terry; Edwards, Robert A; Gerdes, Svetlana; Parrello, Bruce; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R; Xia, Fangfang; Stevens, Rick
2014-01-01
In 2004, the SEED (http://pubseed.theseed.org/) was created to provide consistent and accurate genome annotations across thousands of genomes and as a platform for discovering and developing de novo annotations. The SEED is a constantly updated integration of genomic data with a genome database, web front end, API and server scripts. It is used by many scientists for predicting gene functions and discovering new pathways. In addition to being a powerful database for bioinformatics research, the SEED also houses subsystems (collections of functionally related protein families) and their derived FIGfams (protein families), which represent the core of the RAST annotation engine (http://rast.nmpdr.org/). When a new genome is submitted to RAST, genes are called and their annotations are made by comparison to the FIGfam collection. If the genome is made public, it is then housed within the SEED and its proteins populate the FIGfam collection. This annotation cycle has proven to be a robust and scalable solution to the problem of annotating the exponentially increasing number of genomes. To date, >12 000 users worldwide have annotated >60 000 distinct genomes using RAST. Here we describe the interconnectedness of the SEED database and RAST, the RAST annotation pipeline and updates to both resources.
Functional Interaction Network Construction and Analysis for Disease Discovery.
Wu, Guanming; Haw, Robin
2017-01-01
Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.
CoSMoS: Conserved Sequence Motif Search in the proteome
Liu, Xiao I; Korde, Neeraj; Jakob, Ursula; Leichert, Lars I
2006-01-01
Background With the ever-increasing number of gene sequences in the public databases, generating and analyzing multiple sequence alignments becomes increasingly time consuming. Nevertheless it is a task performed on a regular basis by researchers in many labs. Results We have now created a database called CoSMoS to find the occurrences and at the same time evaluate the significance of sequence motifs and amino acids encoded in the whole genome of the model organism Escherichia coli K12. We provide a precomputed set of multiple sequence alignments for each individual E. coli protein with all of its homologues in the RefSeq database. The alignments themselves, information about the occurrence of sequence motifs together with information on the conservation of each of the more than 1.3 million amino acids encoded in the E. coli genome can be accessed via the web interface of CoSMoS. Conclusion CoSMoS is a valuable tool to identify highly conserved sequence motifs, to find regions suitable for mutational studies in functional analyses and to predict important structural features in E. coli proteins. PMID:16433915
Agustini, Bruna Carla; Silva, Luciano Paulino; Bloch, Carlos; Bonfim, Tania M B; da Silva, Gildo Almeida
2014-06-01
Yeast identification using traditional methods which employ morphological, physiological, and biochemical characteristics can be considered a hard task as it requires experienced microbiologists and a rigorous control in culture conditions that could implicate in different outcomes. Considering clinical or industrial applications, the fast and accurate identification of microorganisms is a crescent demand. Hence, molecular biology approaches has been extensively used and, more recently, protein profiling using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has proved to be an even more efficient tool for taxonomic purposes. Nonetheless, concerning to mass spectrometry, data available for the differentiation of yeast species for industrial purpose is limited and reference databases commercially available comprise almost exclusively clinical microorganisms. In this context, studies focusing on environmental isolates are required to extend the existing databases. The development of a supplementary database and the assessment of a commercial database for taxonomic identifications of environmental yeast are the aims of this study. We challenge MALDI-TOF MS to create protein profiles for 845 yeast strains isolated from grape must and 67.7 % of the strains were successfully identified according to previously available manufacturer database. The remaining 32.3 % strains were not identified due to the absence of a reference spectrum. After matching the correct taxon for these strains by using molecular biology approaches, the spectra concerning the missing species were added in a supplementary database. This new library was able to accurately predict unidentified species at first instance by MALDI-TOF MS, proving it is a powerful tool for the identification of environmental yeasts.
de Souza, Gustavo A.; Arntzen, Magnus Ø.; Fortuin, Suereta; Schürch, Anita C.; Målen, Hiwa; McEvoy, Christopher R. E.; van Soolingen, Dick; Thiede, Bernd; Warren, Robin M.; Wiker, Harald G.
2011-01-01
Precise annotation of genes or open reading frames is still a difficult task that results in divergence even for data generated from the same genomic sequence. This has an impact in further proteomic studies, and also compromises the characterization of clinical isolates with many specific genetic variations that may not be represented in the selected database. We recently developed software called multistrain mass spectrometry prokaryotic database builder (MSMSpdbb) that can merge protein databases from several sources and be applied on any prokaryotic organism, in a proteomic-friendly approach. We generated a database for the Mycobacterium tuberculosis complex (using three strains of Mycobacterium bovis and five of M. tuberculosis), and analyzed data collected from two laboratory strains and two clinical isolates of M. tuberculosis. We identified 2561 proteins, of which 24 were present in M. tuberculosis H37Rv samples, but not annotated in the M. tuberculosis H37Rv genome. We were also able to identify 280 nonsynonymous single amino acid polymorphisms and confirm 367 translational start sites. As a proof of concept we applied the database to whole-genome DNA sequencing data of one of the clinical isolates, which allowed the validation of 116 predicted single amino acid polymorphisms and the annotation of 131 N-terminal start sites. Moreover we identified regions not present in the original M. tuberculosis H37Rv sequence, indicating strain divergence or errors in the reference sequence. In conclusion, we demonstrated the potential of using a merged database to better characterize laboratory or clinical bacterial strains. PMID:21030493
Prediction of Ras-effector interactions using position energy matrices.
Kiel, Christina; Serrano, Luis
2007-09-01
One of the more challenging problems in biology is to determine the cellular protein interaction network. Progress has been made to predict protein-protein interactions based on structural information, assuming that structural similar proteins interact in a similar way. In a previous publication, we have determined a genome-wide Ras-effector interaction network based on homology models, with a high accuracy of predicting binding and non-binding domains. However, for a prediction on a genome-wide scale, homology modelling is a time-consuming process. Therefore, we here successfully developed a faster method using position energy matrices, where based on different Ras-effector X-ray template structures, all amino acids in the effector binding domain are sequentially mutated to all other amino acid residues and the effect on binding energy is calculated. Those pre-calculated matrices can then be used to score for binding any Ras or effector sequences. Based on position energy matrices, the sequences of putative Ras-binding domains can be scanned quickly to calculate an energy sum value. By calibrating energy sum values using quantitative experimental binding data, thresholds can be defined and thus non-binding domains can be excluded quickly. Sequences which have energy sum values above this threshold are considered to be potential binding domains, and could be further analysed using homology modelling. This prediction method could be applied to other protein families sharing conserved interaction types, in order to determine in a fast way large scale cellular protein interaction networks. Thus, it could have an important impact on future in silico structural genomics approaches, in particular with regard to increasing structural proteomics efforts, aiming to determine all possible domain folds and interaction types. All matrices are deposited in the ADAN database (http://adan-embl.ibmc.umh.es/). Supplementary data are available at Bioinformatics online.
Senatore, Adriano; Edirisinghe, Neranjan; Katz, Paul S.
2015-01-01
Background The sea slug Tritonia diomedea (Mollusca, Gastropoda, Nudibranchia), has a simple and highly accessible nervous system, making it useful for studying neuronal and synaptic mechanisms underlying behavior. Although many important contributions have been made using Tritonia, until now, a lack of genetic information has impeded exploration at the molecular level. Results We performed Illumina sequencing of central nervous system mRNAs from Tritonia, generating 133.1 million 100 base pair, paired-end reads. De novo reconstruction of the RNA-Seq data yielded a total of 185,546 contigs, which partitioned into 123,154 non-redundant gene clusters (unigenes). BLAST comparison with RefSeq and Swiss-Prot protein databases, as well as mRNA data from other invertebrates (gastropod molluscs: Aplysia californica, Lymnaea stagnalis and Biomphalaria glabrata; cnidarian: Nematostella vectensis) revealed that up to 76,292 unigenes in the Tritonia transcriptome have putative homologues in other databases, 18,246 of which are below a more stringent E-value cut-off of 1x10-6. In silico prediction of secreted proteins from the Tritonia transcriptome shotgun assembly (TSA) produced a database of 579 unique sequences of secreted proteins, which also exhibited markedly higher expression levels compared to other genes in the TSA. Conclusions Our efforts greatly expand the availability of gene sequences available for Tritonia diomedea. We were able to extract full length protein sequences for most queried genes, including those involved in electrical excitability, synaptic vesicle release and neurotransmission, thus confirming that the transcriptome will serve as a useful tool for probing the molecular correlates of behavior in this species. We also generated a neurosecretome database that will serve as a useful tool for probing peptidergic signalling systems in the Tritonia brain. PMID:25719197
Prediction of protein mutant stability using classification and regression tool.
Huang, Liang-Tsung; Saraboji, K; Ho, Shinn-Ying; Hwang, Shiow-Fen; Ponnuswamy, M N; Gromiha, M Michael
2007-02-01
Prediction of protein stability upon amino acid substitutions is an important problem in molecular biology and the solving of which would help for designing stable mutants. In this work, we have analyzed the stability of protein mutants using two different datasets of 1396 and 2204 mutants obtained from ProTherm database, respectively for free energy change due to thermal (DeltaDeltaG) and denaturant denaturations (DeltaDeltaG(H(2)O)). We have used a set of 48 physical, chemical energetic and conformational properties of amino acid residues and computed the difference of amino acid properties for each mutant in both sets of data. These differences in amino acid properties have been related to protein stability (DeltaDeltaG and DeltaDeltaG(H(2)O)) and are used to train with classification and regression tool for predicting the stability of protein mutants. Further, we have tested the method with 4 fold, 5 fold and 10 fold cross validation procedures. We found that the physical properties, shape and flexibility are important determinants of protein stability. The classification of mutants based on secondary structure (helix, strand, turn and coil) and solvent accessibility (buried, partially buried, partially exposed and exposed) distinguished the stabilizing/destabilizing mutants at an average accuracy of 81% and 80%, respectively for DeltaDeltaG and DeltaDeltaG(H(2)O). The correlation between the experimental and predicted stability change is 0.61 for DeltaDeltaG and 0.44 for DeltaDeltaG(H(2)O). Further, the free energy change due to the replacement of amino acid residue has been predicted within an average error of 1.08 kcal/mol and 1.37 kcal/mol for thermal and chemical denaturation, respectively. The relative importance of secondary structure and solvent accessibility, and the influence of the dataset on prediction of protein mutant stability have been discussed.
Kamstra, Rhiannon L; Floriano, Wely B
2014-11-01
Carbonic anhydrase IX (CAIX) is a biomarker for tumor hypoxia. Fluorescent inhibitors of CAIX have been used to study hypoxic tumor cell lines. However, these inhibitor-based fluorescent probes may have a therapeutic effect that is not appropriate for monitoring treatment efficacy. In the search for novel fluorescent probes that are not based on known inhibitors, a database of 20,860 fluorescent compounds was virtually screened against CAIX using hierarchical virtual ligand screening (HierVLS). The screening database contained 14,862 compounds tagged with the ATTO680 fluorophore plus an additional 5998 intrinsically fluorescent compounds. Overall ranking of compounds to identify hit molecular probe candidates utilized a principal component analysis (PCA) approach. Four potential binding sites, including the catalytic site, were identified within the structure of the protein and targeted for virtual screening. Available sequence information for 23 carbonic anhydrase isoforms was used to prioritize the four sites based on the estimated "uniqueness" of each site in CAIX relative to the other isoforms. A database of 32 known inhibitors and 478 decoy compounds was used to validate the methodology. A receiver-operating characteristic (ROC) analysis using the first principal component (PC1) as predictive score for the validation database yielded an area under the curve (AUC) of 0.92. AUC is interpreted as the probability that a binder will have a better score than a non-binder. The use of first component analysis of binding energies for multiple sites is a novel approach for hit selection. The very high prediction power for this approach increases confidence in the outcome from the fluorescent library screening. Ten of the top scoring candidates for isoform-selective putative binding sites are suggested for future testing as fluorescent molecular probe candidates. Copyright © 2014 Elsevier Inc. All rights reserved.
Tang, Haiming; Thomas, Paul D
2016-07-15
PANTHER-PSEP is a new software tool for predicting non-synonymous genetic variants that may play a causal role in human disease. Several previous variant pathogenicity prediction methods have been proposed that quantify evolutionary conservation among homologous proteins from different organisms. PANTHER-PSEP employs a related but distinct metric based on 'evolutionary preservation': homologous proteins are used to reconstruct the likely sequences of ancestral proteins at nodes in a phylogenetic tree, and the history of each amino acid can be traced back in time from its current state to estimate how long that state has been preserved in its ancestors. Here, we describe the PSEP tool, and assess its performance on standard benchmarks for distinguishing disease-associated from neutral variation in humans. On these benchmarks, PSEP outperforms not only previous tools that utilize evolutionary conservation, but also several highly used tools that include multiple other sources of information as well. For predicting pathogenic human variants, the trace back of course starts with a human 'reference' protein sequence, but the PSEP tool can also be applied to predicting deleterious or pathogenic variants in reference proteins from any of the ∼100 other species in the PANTHER database. PANTHER-PSEP is freely available on the web at http://pantherdb.org/tools/csnpScoreForm.jsp Users can also download the command-line based tool at ftp://ftp.pantherdb.org/cSNP_analysis/PSEP/ CONTACT: pdthomas@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Koehl, Patrice; Orland, Henri; Delarue, Marc
2011-08-01
We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.
2010-01-01
Background Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs), based on domains represented as interaction profile hidden Markov models (ipHMM) where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB). Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD). Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure), an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on the web at http://liao.cis.udel.edu/pub/svdsvm. Implemented in Matlab and supported on Linux and MS Windows. PMID:21034480
Protein structure based prediction of catalytic residues.
Fajardo, J Eduardo; Fiser, Andras
2013-02-22
Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.
Omasits, Ulrich; Varadarajan, Adithi R; Schmid, Michael; Goetze, Sandra; Melidis, Damianos; Bourqui, Marc; Nikolayeva, Olga; Québatte, Maxime; Patrignani, Andrea; Dehio, Christoph; Frey, Juerg E; Robinson, Mark D; Wollscheid, Bernd; Ahrens, Christian H
2017-12-01
Accurate annotation of all protein-coding sequences (CDSs) is an essential prerequisite to fully exploit the rapidly growing repertoire of completely sequenced prokaryotic genomes. However, large discrepancies among the number of CDSs annotated by different resources, missed functional short open reading frames (sORFs), and overprediction of spurious ORFs represent serious limitations. Our strategy toward accurate and complete genome annotation consolidates CDSs from multiple reference annotation resources, ab initio gene prediction algorithms and in silico ORFs (a modified six-frame translation considering alternative start codons) in an integrated proteogenomics database (iPtgxDB) that covers the entire protein-coding potential of a prokaryotic genome. By extending the PeptideClassifier concept of unambiguous peptides for prokaryotes, close to 95% of the identifiable peptides imply one distinct protein, largely simplifying downstream analysis. Searching a comprehensive Bartonella henselae proteomics data set against such an iPtgxDB allowed us to unambiguously identify novel ORFs uniquely predicted by each resource, including lipoproteins, differentially expressed and membrane-localized proteins, novel start sites and wrongly annotated pseudogenes. Most novelties were confirmed by targeted, parallel reaction monitoring mass spectrometry, including unique ORFs and single amino acid variations (SAAVs) identified in a re-sequenced laboratory strain that are not present in its reference genome. We demonstrate the general applicability of our strategy for genomes with varying GC content and distinct taxonomic origin. We release iPtgxDBs for B. henselae , Bradyrhizobium diazoefficiens and Escherichia coli and the software to generate both proteogenomics search databases and integrated annotation files that can be viewed in a genome browser for any prokaryote. © 2017 Omasits et al.; Published by Cold Spring Harbor Laboratory Press.
2013-01-01
Background Subunit vaccines based on recombinant proteins have been effective in preventing infectious diseases and are expected to meet the demands of future vaccine development. Computational approach, especially reverse vaccinology (RV) method has enormous potential for identification of protein vaccine candidates (PVCs) from a proteome. The existing protective antigen prediction software and web servers have low prediction accuracy leading to limited applications for vaccine development. Besides machine learning techniques, those software and web servers have considered only protein’s adhesin-likeliness as criterion for identification of PVCs. Several non-adhesin functional classes of proteins involved in host-pathogen interactions and pathogenesis are known to provide protection against bacterial infections. Therefore, knowledge of bacterial pathogenesis has potential to identify PVCs. Results A web server, Jenner-Predict, has been developed for prediction of PVCs from proteomes of bacterial pathogens. The web server targets host-pathogen interactions and pathogenesis by considering known functional domains from protein classes such as adhesin, virulence, invasin, porin, flagellin, colonization, toxin, choline-binding, penicillin-binding, transferring-binding, fibronectin-binding and solute-binding. It predicts non-cytosolic proteins containing above domains as PVCs. It also provides vaccine potential of PVCs in terms of their possible immunogenicity by comparing with experimentally known IEDB epitopes, absence of autoimmunity and conservation in different strains. Predicted PVCs are prioritized so that only few prospective PVCs could be validated experimentally. The performance of web server was evaluated against known protective antigens from diverse classes of bacteria reported in Protegen database and datasets used for VaxiJen server development. The web server efficiently predicted known vaccine candidates reported from Streptococcus pneumoniae and Escherichia coli proteomes. The Jenner-Predict server outperformed NERVE, Vaxign and VaxiJen methods. It has sensitivity of 0.774 and 0.711 for Protegen and VaxiJen dataset, respectively while specificity of 0.940 has been obtained for the latter dataset. Conclusions Better prediction accuracy of Jenner-Predict web server signifies that domains involved in host-pathogen interactions and pathogenesis are better criteria for prediction of PVCs. The web server has successfully predicted maximum known PVCs belonging to different functional classes. Jenner-Predict server is freely accessible at http://117.211.115.67/vaccine/home.html PMID:23815072
SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition
Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina
2007-01-01
Background Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. Results We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at . Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach significantly improves on the standard one-vs-all method for both the superfamily and fold prediction in the remote homology setting and on the fold recognition problem. Moreover, our code weight learning algorithm strongly outperforms nearest-neighbor methods based on PSI-BLAST in terms of prediction accuracy on every structure classification problem we consider. Conclusion By combining state-of-the-art SVM kernel methods with a novel multi-class algorithm, the SVM-Fold system delivers efficient and accurate protein fold and superfamily recognition. PMID:17570145
Cornette, Richard; Kanamori, Yasushi; Watanabe, Masahiko; Nakahara, Yuichi; Gusev, Oleg; Mitsumasu, Kanako; Kadono-Okuda, Keiko; Shimomura, Michihiko; Mita, Kazuei; Kikawada, Takahiro; Okuda, Takashi
2010-01-01
Some organisms are able to survive the loss of almost all their body water content, entering a latent state known as anhydrobiosis. The sleeping chironomid (Polypedilum vanderplanki) lives in the semi-arid regions of Africa, and its larvae can survive desiccation in an anhydrobiotic form during the dry season. To unveil the molecular mechanisms of this resistance to desiccation, an anhydrobiosis-related Expressed Sequence Tag (EST) database was obtained from the sequences of three cDNA libraries constructed from P. vanderplanki larvae after 0, 12, and 36 h of desiccation. The database contained 15,056 ESTs distributed into 4,807 UniGene clusters. ESTs were classified according to gene ontology categories, and putative expression patterns were deduced for all clusters on the basis of the number of clones in each library; expression patterns were confirmed by real-time PCR for selected genes. Among up-regulated genes, antioxidants, late embryogenesis abundant (LEA) proteins, and heat shock proteins (Hsps) were identified as important groups for anhydrobiosis. Genes related to trehalose metabolism and various transporters were also strongly induced by desiccation. Those results suggest that the oxidative stress response plays a central role in successful anhydrobiosis. Similarly, protein denaturation and aggregation may be prevented by marked up-regulation of Hsps and the anhydrobiosis-specific LEA proteins. A third major feature is the predicted increase in trehalose synthesis and in the expression of various transporter proteins allowing the distribution of trehalose and other solutes to all tissues. PMID:20833722
Physical–chemical determinants of coil conformations in globular proteins
Perskie, Lauren L; Rose, George D
2010-01-01
We present a method with the potential to generate a library of coil segments from first principles. Proteins are built from α-helices and/or β-strands interconnected by these coil segments. Here, we investigate the conformational determinants of short coil segments, with particular emphasis on chain turns. Toward this goal, we extracted a comprehensive set of two-, three-, and four-residue turns from X-ray–elucidated proteins and classified them by conformation. A remarkably small number of unique conformers account for most of this experimentally determined set, whereas remaining members span a large number of rare conformers, many occurring only once in the entire protein database. Factors determining conformation were identified via Metropolis Monte Carlo simulations devised to test the effectiveness of various energy terms. Simulated structures were validated by comparison to experimental counterparts. After filtering rare conformers, we found that 98% of the remaining experimentally determined turn population could be reproduced by applying a hydrogen bond energy term to an exhaustively generated ensemble of clash-free conformers in which no backbone polar group lacks a hydrogen-bond partner. Further, at least 90% of longer coil segments, ranging from 5- to 20 residues, were found to be structural composites of these shorter primitives. These results are pertinent to protein structure prediction, where approaches can be divided into either empirical or ab initio methods. Empirical methods use database-derived information; ab initio methods rely on physical–chemical principles exclusively. Replacing the database-derived coil library with one generated from first principles would transform any empirically based method into its corresponding ab initio homologue. PMID:20512968
Improving compound-protein interaction prediction by building up highly credible negative samples.
Liu, Hui; Sun, Jianjiang; Guan, Jihong; Zheng, Jie; Zhou, Shuigeng
2015-06-15
Computational prediction of compound-protein interactions (CPIs) is of great importance for drug design and development, as genome-scale experimental validation of CPIs is not only time-consuming but also prohibitively expensive. With the availability of an increasing number of validated interactions, the performance of computational prediction approaches is severely impended by the lack of reliable negative CPI samples. A systematic method of screening reliable negative sample becomes critical to improving the performance of in silico prediction methods. This article aims at building up a set of highly credible negative samples of CPIs via an in silico screening method. As most existing computational models assume that similar compounds are likely to interact with similar target proteins and achieve remarkable performance, it is rational to identify potential negative samples based on the converse negative proposition that the proteins dissimilar to every known/predicted target of a compound are not much likely to be targeted by the compound and vice versa. We integrated various resources, including chemical structures, chemical expression profiles and side effects of compounds, amino acid sequences, protein-protein interaction network and functional annotations of proteins, into a systematic screening framework. We first tested the screened negative samples on six classical classifiers, and all these classifiers achieved remarkably higher performance on our negative samples than on randomly generated negative samples for both human and Caenorhabditis elegans. We then verified the negative samples on three existing prediction models, including bipartite local model, Gaussian kernel profile and Bayesian matrix factorization, and found that the performances of these models are also significantly improved on the screened negative samples. Moreover, we validated the screened negative samples on a drug bioactivity dataset. Finally, we derived two sets of new interactions by training an support vector machine classifier on the positive interactions annotated in DrugBank and our screened negative interactions. The screened negative samples and the predicted interactions provide the research community with a useful resource for identifying new drug targets and a helpful supplement to the current curated compound-protein databases. Supplementary files are available at: http://admis.fudan.edu.cn/negative-cpi/. © The Author 2015. Published by Oxford University Press.
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
2015-11-19
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.
Computational approaches for de novo design and redesign of metal-binding sites on proteins.
Akcapinar, Gunseli Bayram; Sezerman, Osman Ugur
2017-04-28
Metal ions play pivotal roles in protein structure, function and stability. The functional and structural diversity of proteins in nature expanded with the incorporation of metal ions or clusters in proteins. Approximately one-third of these proteins in the databases contain metal ions. Many biological and chemical processes in nature involve metal ion-binding proteins, aka metalloproteins. Many cellular reactions that underpin life require metalloproteins. Most of the remarkable, complex chemical transformations are catalysed by metalloenzymes. Realization of the importance of metal-binding sites in a variety of cellular events led to the advancement of various computational methods for their prediction and characterization. Furthermore, as structural and functional knowledgebase about metalloproteins is expanding with advances in computational and experimental fields, the focus of the research is now shifting towards de novo design and redesign of metalloproteins to extend nature's own diversity beyond its limits. In this review, we will focus on the computational toolbox for prediction of metal ion-binding sites, de novo metalloprotein design and redesign. We will also give examples of tailor-made artificial metalloproteins designed with the computational toolbox. © 2017 The Author(s).
MIPS: a database for genomes and protein sequences
Mewes, H. W.; Frishman, D.; Güldener, U.; Mannhaupt, G.; Mayer, K.; Mokrejs, M.; Morgenstern, B.; Münsterkötter, M.; Rudd, S.; Weil, B.
2002-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz–Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91–93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155–158; Barker et al. (2001) Nucleic Acids Res., 29, 29–32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de). PMID:11752246
MIPS: a database for genomes and protein sequences.
Mewes, H W; Frishman, D; Güldener, U; Mannhaupt, G; Mayer, K; Mokrejs, M; Morgenstern, B; Münsterkötter, M; Rudd, S; Weil, B
2002-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz-Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91-93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155-158; Barker et al. (2001) Nucleic Acids Res., 29, 29-32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de).
Lieutaud, Philippe; Uversky, Alexey V.; Uversky, Vladimir N.; Longhi, Sonia
2016-01-01
ABSTRACT In the last 2 decades it has become increasingly evident that a large number of proteins are either fully or partially disordered. Intrinsically disordered proteins lack a stable 3D structure, are ubiquitous and fulfill essential biological functions. Their conformational heterogeneity is encoded in their amino acid sequences, thereby allowing intrinsically disordered proteins or regions to be recognized based on properties of these sequences. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to structural determination with X-ray crystallization. This article discusses a comprehensive selection of databases and methods currently employed to disseminate experimental and putative annotations of disorder, predict disorder and identify regions involved in induced folding. It also provides a set of detailed instructions that should be followed to perform computational analysis of disorder. PMID:28232901
Global, quantitative and dynamic mapping of protein subcellular localization.
Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg Hh
2016-06-09
Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology.
TMFoldWeb: a web server for predicting transmembrane protein fold class.
Kozma, Dániel; Tusnády, Gábor E
2015-09-17
Here we present TMFoldWeb, the web server implementation of TMFoldRec, a transmembrane protein fold recognition algorithm. TMFoldRec uses statistical potentials and utilizes topology filtering and a gapless threading algorithm. It ranks template structures and selects the most likely candidates and estimates the reliability of the obtained lowest energy model. The statistical potential was developed in a maximum likelihood framework on a representative set of the PDBTM database. According to the benchmark test the performance of TMFoldRec is about 77 % in correctly predicting fold class for a given transmembrane protein sequence. An intuitive web interface has been developed for the recently published TMFoldRec algorithm. The query sequence goes through a pipeline of topology prediction and a systematic sequence to structure alignment (threading). Resulting templates are ordered by energy and reliability values and are colored according to their significance level. Besides the graphical interface, a programmatic access is available as well, via a direct interface for developers or for submitting genome-wide data sets. The TMFoldWeb web server is unique and currently the only web server that is able to predict the fold class of transmembrane proteins while assigning reliability scores for the prediction. This method is prepared for genome-wide analysis with its easy-to-use interface, informative result page and programmatic access. Considering the info-communication evolution in the last few years, the developed web server, as well as the molecule viewer, is responsive and fully compatible with the prevalent tablets and mobile devices.
PlaMoM: a comprehensive database compiles plant mobile macromolecules.
Guan, Daogang; Yan, Bin; Thieme, Christoph; Hua, Jingmin; Zhu, Hailong; Boheler, Kenneth R; Zhao, Zhongying; Kragler, Friedrich; Xia, Yiji; Zhang, Shoudong
2017-01-04
In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein-protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Nor, Nooraisyah Mohamad; Bakar, Farah Diba Abu; Mahadi, Nor Muhammad; Murad, Abdul Munir Abdul
2015-09-01
A beta-1,3-xylanase (EC 3.2.1.32) gene from psychrophilic yeast, Glaciozyma antarctica has been identified via genome data mining. The enzyme was grouped into GH26 family based on Carbohydrate Active Enzyme (CaZY) database. The molecular weight of this protein was predicted to be 42 kDa and is expected to be soluble for expression. The presence of signal peptide suggested that this enzyme may be released extracellularly into the marine environment of the host's habitat. This supports the theory that such enzymatic activity is required for degradation of nutrients of polysaccharide origins into simpler carbohydrates outside the environment before it could be taken up inside the cell. The sequence for this protein showed very little conservation (< 30%) with other beta-1,3-xylanases from available databases. Based on the phylogenetic analysis, this protein also showed distant relationship to other xylanases from eukaryotic origin. The protein may have undergone major substitution in its gene sequence order to adapt to the cold climate. This is the first report of beta-1,3-xylanase gene isolated from a psychrophilic yeast.
The Yak genome database: an integrative database for studying yak biology and high-altitude adaption
2012-01-01
Background The yak (Bos grunniens) is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. Description The Yak Genome Database (YGD) is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. Conclusions A new yak genome database (YGD) has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak. PMID:23134687
GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database.
Kleinboelting, Nils; Huep, Gunnar; Kloetgen, Andreas; Viehoever, Prisca; Weisshaar, Bernd
2012-01-01
T-DNA insertion mutants are very valuable for reverse genetics in Arabidopsis thaliana. Several projects have generated large sequence-indexed collections of T-DNA insertion lines, of which GABI-Kat is the second largest resource worldwide. User access to the collection and its Flanking Sequence Tags (FSTs) is provided by the front end SimpleSearch (http://www.GABI-Kat.de). Several significant improvements have been implemented recently. The database now relies on the TAIRv10 genome sequence and annotation dataset. All FSTs have been newly mapped using an optimized procedure that leads to improved accuracy of insertion site predictions. A fraction of the collection with weak FST yield was re-analysed by generating new FSTs. Along with newly found predictions for older sequences about 20,000 new FSTs were included in the database. Information about groups of FSTs pointing to the same insertion site that is found in several lines but is real only in a single line are included, and many problematic FST-to-line links have been corrected using new wet-lab data. SimpleSearch currently contains data from ~71,000 lines with predicted insertions covering 62.5% of the 27,206 nuclear protein coding genes, and offers insertion allele-specific data from 9545 confirmed lines that are available from the Nottingham Arabidopsis Stock Centre.
Network-based function prediction and interactomics: the case for metabolic enzymes.
Janga, S C; Díaz-Mejía, J Javier; Moreno-Hagelsieb, G
2011-01-01
As sequencing technologies increase in power, determining the functions of unknown proteins encoded by the DNA sequences so produced becomes a major challenge. Functional annotation is commonly done on the basis of amino-acid sequence similarity alone. Long after sequence similarity becomes undetectable by pair-wise comparison, profile-based identification of homologs can often succeed due to the conservation of position-specific patterns, important for a protein's three dimensional folding and function. Nevertheless, prediction of protein function from homology-driven approaches is not without problems. Homologous proteins might evolve different functions and the power of homology detection has already started to reach its maximum. Computational methods for inferring protein function, which exploit the context of a protein in cellular networks, have come to be built on top of homology-based approaches. These network-based functional inference techniques provide both a first hand hint into a proteins' functional role and offer complementary insights to traditional methods for understanding the function of uncharacterized proteins. Most recent network-based approaches aim to integrate diverse kinds of functional interactions to boost both coverage and confidence level. These techniques not only promise to solve the moonlighting aspect of proteins by annotating proteins with multiple functions, but also increase our understanding on the interplay between different functional classes in a cell. In this article we review the state of the art in network-based function prediction and describe some of the underlying difficulties and successes. Given the volume of high-throughput data that is being reported the time is ripe to employ these network-based approaches, which can be used to unravel the functions of the uncharacterized proteins accumulating in the genomic databases. © 2010 Elsevier Inc. All rights reserved.
Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning
2007-10-18
Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and code examples are available at http://www.ebi.ac.uk/Tools/picr.
Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning
2007-01-01
Background Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. Results We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. Conclusion We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and code examples are available at . PMID:17945017
Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong
2013-01-01
Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318
Database on pharmacophore analysis of active principles, from medicinal plants
Pitchai, Daisy; Manikkam, Rajalakshmi; Rajendran, Sasikala R; Pitchai, Gnanamani
2010-01-01
Plants continue to be a major source of medicines, as they have been throughout human history. In the present days, drug discovery from plants involves a multidisciplinary approach combining ethnobotanical, phytochemical and biological techniques to provide us new chemical compounds (lead molecules) for the development of drugs against various pharmacological targets, including cancer, diabetes and its secondary complications. In view of this need in current drug discovery from medicinal plants, here we describe another web database containing the information of pharmacophore analysis of active principles possessing antidiabetic, antimicrobial, anticancerous and antioxidant properties from medicinal plants. The database provides the botanical, taxonomic classification, biochemical as well as pharmacological properties of medicinal plants. Data on antidiabetic, antimicrobial, anti oxidative, anti tumor and anti inflammatory compounds, and their physicochemical properties, SMILES Notation, Lipinski's properties are included in our database. One of the proposed features in the database is the predicted ADMET values and the interaction of bioactive compounds to the target protein. The database alphabetically lists the compound name and also provides tabs separating for anti microbial, antitumor, antidiabetic, and antioxidative compounds. Availability http://www.hccbif.info / PMID:21346859
Zou, Lingyun; Wang, Zhengzhi; Huang, Jiaomin
2007-12-01
Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain position-specific profiles, the Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) has been used to search for protein sequences in a database. Position-specific scoring matrices are extracted from the profiles as one class of characteristics. Four-part amino acid compositions and 1st-7th order dipeptide compositions have also been calculated as the other two classes of characteristics. Therefore, twelve characteristic vectors are extracted from each of the protein sequences. Next, the characteristic vectors are weighed by a simple weighing function and inputted into a BP neural network predictor named PSP-Weighted Neural Network (PSP-WNN). The Levenberg-Marquardt algorithm is employed to adjust the weight matrices and thresholds during the network training instead of the error back propagation algorithm. With a jackknife test on the RH2427 dataset, PSP-WNN has achieved a higher overall prediction accuracy of 88.4% rather than the prediction results by the general BP neural network, Markov model, and fuzzy k-nearest neighbors algorithm on this dataset. In addition, the prediction performance of PSP-WNN has been evaluated with a five-fold cross validation test on the PK7579 dataset and the prediction results have been consistently better than those of the previous method on the basis of several support vector machines, using compositions of both amino acids and amino acid pairs. These results indicate that PSP-WNN is a powerful tool for subcellular localization prediction. At the end of the article, influences on prediction accuracy using different weighting proportions among three characteristic vector categories have been discussed. An appropriate proportion is considered by increasing the prediction accuracy.
Robasky, Kimberly; Bulyk, Martha L
2011-01-01
The Universal PBM Resource for Oligonucleotide-Binding Evaluation (UniPROBE) database is a centralized repository of information on the DNA-binding preferences of proteins as determined by universal protein-binding microarray (PBM) technology. Each entry for a protein (or protein complex) in UniPROBE provides the quantitative preferences for all possible nucleotide sequence variants ('words') of length k ('k-mers'), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. In this update, we describe >130% expansion of the database content, incorporation of a protein BLAST (blastp) tool for finding protein sequence matches in UniPROBE, the introduction of UniPROBE accession numbers and additional database enhancements. The UniPROBE database is available at http://uniprobe.org.
ENFIN--A European network for integrative systems biology.
Kahlem, Pascal; Clegg, Andrew; Reisinger, Florian; Xenarios, Ioannis; Hermjakob, Henning; Orengo, Christine; Birney, Ewan
2009-11-01
Integration of biological data of various types and the development of adapted bioinformatics tools represent critical objectives to enable research at the systems level. The European Network of Excellence ENFIN is engaged in developing an adapted infrastructure to connect databases, and platforms to enable both the generation of new bioinformatics tools and the experimental validation of computational predictions. With the aim of bridging the gap existing between standard wet laboratories and bioinformatics, the ENFIN Network runs integrative research projects to bring the latest computational techniques to bear directly on questions dedicated to systems biology in the wet laboratory environment. The Network maintains internally close collaboration between experimental and computational research, enabling a permanent cycling of experimental validation and improvement of computational prediction methods. The computational work includes the development of a database infrastructure (EnCORE), bioinformatics analysis methods and a novel platform for protein function analysis FuncNet.
Survey of Natural Language Processing Techniques in Bioinformatics.
Zeng, Zhiqiang; Shi, Hua; Wu, Yun; Hong, Zhiling
2015-01-01
Informatics methods, such as text mining and natural language processing, are always involved in bioinformatics research. In this study, we discuss text mining and natural language processing methods in bioinformatics from two perspectives. First, we aim to search for knowledge on biology, retrieve references using text mining methods, and reconstruct databases. For example, protein-protein interactions and gene-disease relationship can be mined from PubMed. Then, we analyze the applications of text mining and natural language processing techniques in bioinformatics, including predicting protein structure and function, detecting noncoding RNA. Finally, numerous methods and applications, as well as their contributions to bioinformatics, are discussed for future use by text mining and natural language processing researchers.
Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods.
Tuo, Youlin; An, Ning; Zhang, Ming
2018-03-01
The aim of the present study was to investigate the feature genes in metastatic breast cancer samples. A total of 5 expression profiles of metastatic breast cancer samples were downloaded from the Gene Expression Omnibus database, which were then analyzed using the MetaQC and MetaDE packages in R language. The feature genes between metastasis and non‑metastasis samples were screened under the threshold of P<0.05. Based on the protein‑protein interactions (PPIs) in the Biological General Repository for Interaction Datasets, Human Protein Reference Database and Biomolecular Interaction Network Database, the PPI network of the feature genes was constructed. The feature genes identified by topological characteristics were then used for support vector machine (SVM) classifier training and verification. The accuracy of the SVM classifier was then evaluated using another independent dataset from The Cancer Genome Atlas database. Finally, function and pathway enrichment analyses for genes in the SVM classifier were performed. A total of 541 feature genes were identified between metastatic and non‑metastatic samples. The top 10 genes with the highest betweenness centrality values in the PPI network of feature genes were Nuclear RNA Export Factor 1, cyclin‑dependent kinase 2 (CDK2), myelocytomatosis proto‑oncogene protein (MYC), Cullin 5, SHC Adaptor Protein 1, Clathrin heavy chain, Nucleolin, WD repeat domain 1, proteasome 26S subunit non‑ATPase 2 and telomeric repeat binding factor 2. The cyclin‑dependent kinase inhibitor 1A (CDKN1A), E2F transcription factor 1 (E2F1), and MYC interacted with CDK2. The SVM classifier constructed by the top 30 feature genes was able to distinguish metastatic samples from non‑metastatic samples [correct rate, specificity, positive predictive value and negative predictive value >0.89; sensitivity >0.84; area under the receiver operating characteristic curve (AUROC) >0.96]. The verification of the SVM classifier in an independent dataset (35 metastatic samples and 143 non‑metastatic samples) revealed an accuracy of 94.38% and AUROC of 0.958. Cell cycle associated functions and pathways were the most significant terms of the 30 feature genes. A SVM classifier was constructed to assess the possibility of breast cancer metastasis, which presented high accuracy in several independent datasets. CDK2, CDKN1A, E2F1 and MYC were indicated as the potential feature genes in metastatic breast cancer.
Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
Wani, Revati; Murray, Brion W
2017-01-01
Reversible cysteine oxidation is an emerging class of protein post-translational modification (PTM) that regulates catalytic activity, modulates conformation, impacts protein-protein interactions, and affects subcellular trafficking of numerous proteins. Redox PTMs encompass a broad array of cysteine oxidation reactions with different half-lives, topographies, and reactivities such as S-glutathionylation and sulfoxidation. Recent studies from our group underscore the lesser known effect of redox protein modifications on drug binding. To date, biological studies to understand mechanistic and functional aspects of redox regulation are technically challenging. A prominent issue is the lack of tools for labeling proteins oxidized to select chemotype/oxidant species in cells. Predictive computational tools and curated databases of oxidized proteins are facilitating structural and functional insights into regulation of the network of oxidized proteins or redox proteome. In this chapter, we discuss analytical platforms for studying protein oxidation, suggest computational tools currently available in the field to determine redox sensitive proteins, and begin to illuminate roles of cysteine redox PTMs in drug pharmacology.
Delcourt, Vivian; Lucier, Jean-François; Gagnon, Jules; Beaudoin, Maxime C; Vanderperre, Benoît; Breton, Marc-André; Motard, Julie; Jacques, Jean-François; Brunelle, Mylène; Gagnon-Arsenault, Isabelle; Fournier, Isabelle; Ouangraoua, Aida; Hunting, Darel J; Cohen, Alan A; Landry, Christian R; Scott, Michelle S
2017-01-01
Recent functional, proteomic and ribosome profiling studies in eukaryotes have concurrently demonstrated the translation of alternative open-reading frames (altORFs) in addition to annotated protein coding sequences (CDSs). We show that a large number of small proteins could in fact be coded by these altORFs. The putative alternative proteins translated from altORFs have orthologs in many species and contain functional domains. Evolutionary analyses indicate that altORFs often show more extreme conservation patterns than their CDSs. Thousands of alternative proteins are detected in proteomic datasets by reanalysis using a database containing predicted alternative proteins. This is illustrated with specific examples, including altMiD51, a 70 amino acid mitochondrial fission-promoting protein encoded in MiD51/Mief1/SMCR7L, a gene encoding an annotated protein promoting mitochondrial fission. Our results suggest that many genes are multicoding genes and code for a large protein and one or several small proteins. PMID:29083303
Yan, Hong-Bin; Lou, Zhong-Zi; Li, Li; Brindley, Paul J; Zheng, Yadong; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Jia, Wan-Zhong; Cai, Xuepeng
2014-06-04
Cysticercosis remains a major neglected tropical disease of humanity in many regions, especially in sub-Saharan Africa, Central America and elsewhere. Owing to the emerging drug resistance and the inability of current drugs to prevent re-infection, identification of novel vaccines and chemotherapeutic agents against Taenia solium and related helminth pathogens is a public health priority. The T. solium genome and the predicted proteome were reported recently, providing a wealth of information from which new interventional targets might be identified. In order to characterize and classify the entire repertoire of protease-encoding genes of T. solium, which act fundamental biological roles in all life processes, we analyzed the predicted proteins of this cestode through a combination of bioinformatics tools. Functional annotation was performed to yield insights into the signaling processes relevant to the complex developmental cycle of this tapeworm and to highlight a suite of the proteases as potential intervention targets. Within the genome of this helminth parasite, we identified 200 open reading frames encoding proteases from five clans, which correspond to 1.68% of the 11,902 protein-encoding genes predicted to be present in its genome. These proteases include calpains, cytosolic, mitochondrial signal peptidases, ubiquitylation related proteins, and others. Many not only show significant similarity to proteases in the Conserved Domain Database but have conserved active sites and catalytic domains. KEGG Automatic Annotation Server (KAAS) analysis indicated that ~60% of these proteases share strong sequence identities with proteins of the KEGG database, which are involved in human disease, metabolic pathways, genetic information processes, cellular processes, environmental information processes and organismal systems. Also, we identified signal peptides and transmembrane helices through comparative analysis with classes of important regulatory proteases. Phylogenetic analysis using Bayes approach provided support for inferring functional divergence among regulatory cysteine and serine proteases. Numerous putative proteases were identified for the first time in T. solium, and important regulatory proteases have been predicted. This comprehensive analysis not only complements the growing knowledge base of proteolytic enzymes, but also provides a platform from which to expand knowledge of cestode proteases and to explore their biochemistry and potential as intervention targets.
MIPS: a database for protein sequences, homology data and yeast genome information.
Mewes, H W; Albermann, K; Heumann, K; Liebl, S; Pfeiffer, F
1997-01-01
The MIPS group (Martinsried Institute for Protein Sequences) at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, collects, processes and distributes protein sequence data within the framework of the tripartite association of the PIR-International Protein Sequence Database (,). MIPS contributes nearly 50% of the data input to the PIR-International Protein Sequence Database. The database is distributed on CD-ROM together with PATCHX, an exhaustive supplement of unique, unverified protein sequences from external sources compiled by MIPS. Through its WWW server (http://www.mips.biochem.mpg.de/ ) MIPS permits internet access to sequence databases, homology data and to yeast genome information. (i) Sequence similarity results from the FASTA program () are stored in the FASTA database for all proteins from PIR-International and PATCHX. The database is dynamically maintained and permits instant access to FASTA results. (ii) Starting with FASTA database queries, proteins have been classified into families and superfamilies (PROT-FAM). (iii) The HPT (hashed position tree) data structure () developed at MIPS is a new approach for rapid sequence and pattern searching. (iv) MIPS provides access to the sequence and annotation of the complete yeast genome (), the functional classification of yeast genes (FunCat) and its graphical display, the 'Genome Browser' (). A CD-ROM based on the JAVA programming language providing dynamic interactive access to the yeast genome and the related protein sequences has been compiled and is available on request. PMID:9016498
Predicting human protein function with multi-task deep neural networks.
Fa, Rui; Cozzetto, Domenico; Wan, Cen; Jones, David T
2018-01-01
Machine learning methods for protein function prediction are urgently needed, especially now that a substantial fraction of known sequences remains unannotated despite the extensive use of functional assignments based on sequence similarity. One major bottleneck supervised learning faces in protein function prediction is the structured, multi-label nature of the problem, because biological roles are represented by lists of terms from hierarchically organised controlled vocabularies such as the Gene Ontology. In this work, we build on recent developments in the area of deep learning and investigate the usefulness of multi-task deep neural networks (MTDNN), which consist of upstream shared layers upon which are stacked in parallel as many independent modules (additional hidden layers with their own output units) as the number of output GO terms (the tasks). MTDNN learns individual tasks partially using shared representations and partially from task-specific characteristics. When no close homologues with experimentally validated functions can be identified, MTDNN gives more accurate predictions than baseline methods based on annotation frequencies in public databases or homology transfers. More importantly, the results show that MTDNN binary classification accuracy is higher than alternative machine learning-based methods that do not exploit commonalities and differences among prediction tasks. Interestingly, compared with a single-task predictor, the performance improvement is not linearly correlated with the number of tasks in MTDNN, but medium size models provide more improvement in our case. One of advantages of MTDNN is that given a set of features, there is no requirement for MTDNN to have a bootstrap feature selection procedure as what traditional machine learning algorithms do. Overall, the results indicate that the proposed MTDNN algorithm improves the performance of protein function prediction. On the other hand, there is still large room for deep learning techniques to further enhance prediction ability.
Venselaar, Hanka; Te Beek, Tim A H; Kuipers, Remko K P; Hekkelman, Maarten L; Vriend, Gert
2010-11-08
Many newly detected point mutations are located in protein-coding regions of the human genome. Knowledge of their effects on the protein's 3D structure provides insight into the protein's mechanism, can aid the design of further experiments, and eventually can lead to the development of new medicines and diagnostic tools. In this article we describe HOPE, a fully automatic program that analyzes the structural and functional effects of point mutations. HOPE collects information from a wide range of information sources including calculations on the 3D coordinates of the protein by using WHAT IF Web services, sequence annotations from the UniProt database, and predictions by DAS services. Homology models are built with YASARA. Data is stored in a database and used in a decision scheme to identify the effects of a mutation on the protein's 3D structure and function. HOPE builds a report with text, figures, and animations that is easy to use and understandable for (bio)medical researchers. We tested HOPE by comparing its output to the results of manually performed projects. In all straightforward cases HOPE performed similar to a trained bioinformatician. The use of 3D structures helps optimize the results in terms of reliability and details. HOPE's results are easy to understand and are presented in a way that is attractive for researchers without an extensive bioinformatics background.
NPIDB: Nucleic acid-Protein Interaction DataBase.
Kirsanov, Dmitry D; Zanegina, Olga N; Aksianov, Evgeniy A; Spirin, Sergei A; Karyagina, Anna S; Alexeevski, Andrei V
2013-01-01
The Nucleic acid-Protein Interaction DataBase (http://npidb.belozersky.msu.ru/) contains information derived from structures of DNA-protein and RNA-protein complexes extracted from the Protein Data Bank (3846 complexes in October 2012). It provides a web interface and a set of tools for extracting biologically meaningful characteristics of nucleoprotein complexes. The content of the database is updated weekly. The current version of the Nucleic acid-Protein Interaction DataBase is an upgrade of the version published in 2007. The improvements include a new web interface, new tools for calculation of intermolecular interactions, a classification of SCOP families that contains DNA-binding protein domains and data on conserved water molecules on the DNA-protein interface.
Jaspard, Emmanuel; Macherel, David; Hunault, Gilles
2012-01-01
Late Embryogenesis Abundant Proteins (LEAPs) are ubiquitous proteins expected to play major roles in desiccation tolerance. Little is known about their structure - function relationships because of the scarcity of 3-D structures for LEAPs. The previous building of LEAPdb, a database dedicated to LEAPs from plants and other organisms, led to the classification of 710 LEAPs into 12 non-overlapping classes with distinct properties. Using this resource, numerous physico-chemical properties of LEAPs and amino acid usage by LEAPs have been computed and statistically analyzed, revealing distinctive features for each class. This unprecedented analysis allowed a rigorous characterization of the 12 LEAP classes, which differed also in multiple structural and physico-chemical features. Although most LEAPs can be predicted as intrinsically disordered proteins, the analysis indicates that LEAP class 7 (PF03168) and probably LEAP class 11 (PF04927) are natively folded proteins. This study thus provides a detailed description of the structural properties of this protein family opening the path toward further LEAP structure - function analysis. Finally, since each LEAP class can be clearly characterized by a unique set of physico-chemical properties, this will allow development of software to predict proteins as LEAPs. PMID:22615859
Mazandu, Gaston K; Mulder, Nicola J
2012-07-01
Despite ever-increasing amounts of sequence and functional genomics data, there is still a deficiency of functional annotation for many newly sequenced proteins. For Mycobacterium tuberculosis (MTB), more than half of its genome is still uncharacterized, which hampers the search for new drug targets within the bacterial pathogen and limits our understanding of its pathogenicity. As for many other genomes, the annotations of proteins in the MTB proteome were generally inferred from sequence homology, which is effective but its applicability has limitations. We have carried out large-scale biological data integration to produce an MTB protein functional interaction network. Protein functional relationships were extracted from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and additional functional interactions from microarray, sequence and protein signature data. The confidence level of protein relationships in the additional functional interaction data was evaluated using a dynamic data-driven scoring system. This functional network has been used to predict functions of uncharacterized proteins using Gene Ontology (GO) terms, and the semantic similarity between these terms measured using a state-of-the-art GO similarity metric. To achieve better trade-off between improvement of quality, genomic coverage and scalability, this prediction is done by observing the key principles driving the biological organization of the functional network. This study yields a new functionally characterized MTB strain CDC1551 proteome, consisting of 3804 and 3698 proteins out of 4195 with annotations in terms of the biological process and molecular function ontologies, respectively. These data can contribute to research into the Development of effective anti-tubercular drugs with novel biological mechanisms of action. Copyright © 2011 Elsevier B.V. All rights reserved.
The PMDB Protein Model Database
Castrignanò, Tiziana; De Meo, Paolo D'Onorio; Cozzetto, Domenico; Talamo, Ivano Giuseppe; Tramontano, Anna
2006-01-01
The Protein Model Database (PMDB) is a public resource aimed at storing manually built 3D models of proteins. The database is designed to provide access to models published in the scientific literature, together with validating experimental data. It is a relational database and it currently contains >74 000 models for ∼240 proteins. The system is accessible at and allows predictors to submit models along with related supporting evidence and users to download them through a simple and intuitive interface. Users can navigate in the database and retrieve models referring to the same target protein or to different regions of the same protein. Each model is assigned a unique identifier that allows interested users to directly access the data. PMID:16381873
PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank.
Tusnády, Gábor E; Dosztányi, Zsuzsanna; Simon, István
2005-01-01
PDB_TM is a database for transmembrane proteins with known structures. It aims to collect all transmembrane proteins that are deposited in the protein structure database (PDB) and to determine their membrane-spanning regions. These assignments are based on the TMDET algorithm, which uses only structural information to locate the most likely position of the lipid bilayer and to distinguish between transmembrane and globular proteins. This algorithm was applied to all PDB entries and the results were collected in the PDB_TM database. By using TMDET algorithm, the PDB_TM database can be automatically updated every week, keeping it synchronized with the latest PDB updates. The PDB_TM database is available at http://www.enzim.hu/PDB_TM.
Kinase Pathway Database: An Integrated Protein-Kinase and NLP-Based Protein-Interaction Resource
Koike, Asako; Kobayashi, Yoshiyuki; Takagi, Toshihisa
2003-01-01
Protein kinases play a crucial role in the regulation of cellular functions. Various kinds of information about these molecules are important for understanding signaling pathways and organism characteristics. We have developed the Kinase Pathway Database, an integrated database involving major completely sequenced eukaryotes. It contains the classification of protein kinases and their functional conservation, ortholog tables among species, protein–protein, protein–gene, and protein–compound interaction data, domain information, and structural information. It also provides an automatic pathway graphic image interface. The protein, gene, and compound interactions are automatically extracted from abstracts for all genes and proteins by natural-language processing (NLP).The method of automatic extraction uses phrase patterns and the GENA protein, gene, and compound name dictionary, which was developed by our group. With this database, pathways are easily compared among species using data with more than 47,000 protein interactions and protein kinase ortholog tables. The database is available for querying and browsing at http://kinasedb.ontology.ims.u-tokyo.ac.jp/. PMID:12799355
Sankari, E Siva; Manimegalai, D
2017-12-21
Predicting membrane protein types is an important and challenging research area in bioinformatics and proteomics. Traditional biophysical methods are used to classify membrane protein types. Due to large exploration of uncharacterized protein sequences in databases, traditional methods are very time consuming, expensive and susceptible to errors. Hence, it is highly desirable to develop a robust, reliable, and efficient method to predict membrane protein types. Imbalanced datasets and large datasets are often handled well by decision tree classifiers. Since imbalanced datasets are taken, the performance of various decision tree classifiers such as Decision Tree (DT), Classification And Regression Tree (CART), C4.5, Random tree, REP (Reduced Error Pruning) tree, ensemble methods such as Adaboost, RUS (Random Under Sampling) boost, Rotation forest and Random forest are analysed. Among the various decision tree classifiers Random forest performs well in less time with good accuracy of 96.35%. Another inference is RUS boost decision tree classifier is able to classify one or two samples in the class with very less samples while the other classifiers such as DT, Adaboost, Rotation forest and Random forest are not sensitive for the classes with fewer samples. Also the performance of decision tree classifiers is compared with SVM (Support Vector Machine) and Naive Bayes classifier. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rigoutsos, Isidore; Riek, Peter; Graham, Robert M.; Novotny, Jiri
2003-01-01
One of the promising methods of protein structure prediction involves the use of amino acid sequence-derived patterns. Here we report on the creation of non-degenerate motif descriptors derived through data mining of training sets of residues taken from the transmembrane-spanning segments of polytopic proteins. These residues correspond to short regions in which there is a deviation from the regular α-helical character (i.e. π-helices, 310-helices and kinks). A ‘search engine’ derived from these motif descriptors correctly identifies, and discriminates amongst instances of the above ‘non-canonical’ helical motifs contained in the SwissProt/TrEMBL database of protein primary structures. Our results suggest that deviations from α-helicity are encoded locally in sequence patterns only about 7–9 residues long and can be determined in silico directly from the amino acid sequence. Delineation of such variations in helical habit is critical to understanding the complex structure–function relationships of polytopic proteins and for drug discovery. The success of our current methodology foretells development of similar prediction tools capable of identifying other structural motifs from sequence alone. The method described here has been implemented and is available on the World Wide Web at http://cbcsrv.watson.ibm.com/Ttkw.html. PMID:12888523
Rigoutsos, Isidore; Riek, Peter; Graham, Robert M; Novotny, Jiri
2003-08-01
One of the promising methods of protein structure prediction involves the use of amino acid sequence-derived patterns. Here we report on the creation of non-degenerate motif descriptors derived through data mining of training sets of residues taken from the transmembrane-spanning segments of polytopic proteins. These residues correspond to short regions in which there is a deviation from the regular alpha-helical character (i.e. pi-helices, 3(10)-helices and kinks). A 'search engine' derived from these motif descriptors correctly identifies, and discriminates amongst instances of the above 'non-canonical' helical motifs contained in the SwissProt/TrEMBL database of protein primary structures. Our results suggest that deviations from alpha-helicity are encoded locally in sequence patterns only about 7-9 residues long and can be determined in silico directly from the amino acid sequence. Delineation of such variations in helical habit is critical to understanding the complex structure-function relationships of polytopic proteins and for drug discovery. The success of our current methodology foretells development of similar prediction tools capable of identifying other structural motifs from sequence alone. The method described here has been implemented and is available on the World Wide Web at http://cbcsrv.watson.ibm.com/Ttkw.html.
Sequence similarity is more relevant than species specificity in probabilistic backtranslation.
Ferro, Alfredo; Giugno, Rosalba; Pigola, Giuseppe; Pulvirenti, Alfredo; Di Pietro, Cinzia; Purrello, Michele; Ragusa, Marco
2007-02-21
Backtranslation is the process of decoding a sequence of amino acids into the corresponding codons. All synthetic gene design systems include a backtranslation module. The degeneracy of the genetic code makes backtranslation potentially ambiguous since most amino acids are encoded by multiple codons. The common approach to overcome this difficulty is based on imitation of codon usage within the target species. This paper describes EasyBack, a new parameter-free, fully-automated software for backtranslation using Hidden Markov Models. EasyBack is not based on imitation of codon usage within the target species, but instead uses a sequence-similarity criterion. The model is trained with a set of proteins with known cDNA coding sequences, constructed from the input protein by querying the NCBI databases with BLAST. Unlike existing software, the proposed method allows the quality of prediction to be estimated. When tested on a group of proteins that show different degrees of sequence conservation, EasyBack outperforms other published methods in terms of precision. The prediction quality of a protein backtranslation methis markedly increased by replacing the criterion of most used codon in the same species with a Hidden Markov Model trained with a set of most similar sequences from all species. Moreover, the proposed method allows the quality of prediction to be estimated probabilistically.
An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system
DOE Office of Scientific and Technical Information (OSTI.GOV)
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less
An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
2015-11-19
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less
Savidor, Alon; Barzilay, Rotem; Elinger, Dalia; Yarden, Yosef; Lindzen, Moshit; Gabashvili, Alexandra; Adiv Tal, Ophir; Levin, Yishai
2017-06-01
Traditional "bottom-up" proteomic approaches use proteolytic digestion, LC-MS/MS, and database searching to elucidate peptide identities and their parent proteins. Protein sequences absent from the database cannot be identified, and even if present in the database, complete sequence coverage is rarely achieved even for the most abundant proteins in the sample. Thus, sequencing of unknown proteins such as antibodies or constituents of metaproteomes remains a challenging problem. To date, there is no available method for full-length protein sequencing, independent of a reference database, in high throughput. Here, we present Database-independent Protein Sequencing, a method for unambiguous, rapid, database-independent, full-length protein sequencing. The method is a novel combination of non-enzymatic, semi-random cleavage of the protein, LC-MS/MS analysis, peptide de novo sequencing, extraction of peptide tags, and their assembly into a consensus sequence using an algorithm named "Peptide Tag Assembler." As proof-of-concept, the method was applied to samples of three known proteins representing three size classes and to a previously un-sequenced, clinically relevant monoclonal antibody. Excluding leucine/isoleucine and glutamic acid/deamidated glutamine ambiguities, end-to-end full-length de novo sequencing was achieved with 99-100% accuracy for all benchmarking proteins and the antibody light chain. Accuracy of the sequenced antibody heavy chain, including the entire variable region, was also 100%, but there was a 23-residue gap in the constant region sequence. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Omnipresence of the polyproline II helix in fibrous and globular proteins.
Esipova, Natalia G; Tumanyan, Vladimir G
2017-02-01
Left-handed helical conformation of a polypeptide chain (PPII) is the third type of the protein backbone structure. This conformation universally exists in fibrous, globular proteins, and biologically active peptides. It has unique physical and chemical properties determining a wide range of biological functions, from the protein folding to the tissue differentiation. New examples of the structure have been appearing in spite of difficulties in their detection and investigation. The annotation and prediction of the PPII was also a challenging task. Recently, many PPII motifs with new and/or unexpected functions are being accumulated in databases. In this review we describe the major structural and dynamic forms of PPII, the diversity of its functions, and the role in different biological processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Metagenomic Taxonomy-Guided Database-Searching Strategy for Improving Metaproteomic Analysis.
Xiao, Jinqiu; Tanca, Alessandro; Jia, Ben; Yang, Runqing; Wang, Bo; Zhang, Yu; Li, Jing
2018-04-06
Metaproteomics provides a direct measure of the functional information by investigating all proteins expressed by a microbiota. However, due to the complexity and heterogeneity of microbial communities, it is very hard to construct a sequence database suitable for a metaproteomic study. Using a public database, researchers might not be able to identify proteins from poorly characterized microbial species, while a sequencing-based metagenomic database may not provide adequate coverage for all potentially expressed protein sequences. To address this challenge, we propose a metagenomic taxonomy-guided database-search strategy (MT), in which a merged database is employed, consisting of both taxonomy-guided reference protein sequences from public databases and proteins from metagenome assembly. By applying our MT strategy to a mock microbial mixture, about two times as many peptides were detected as with the metagenomic database only. According to the evaluation of the reliability of taxonomic attribution, the rate of misassignments was comparable to that obtained using an a priori matched database. We also evaluated the MT strategy with a human gut microbial sample, and we found 1.7 times as many peptides as using a standard metagenomic database. In conclusion, our MT strategy allows the construction of databases able to provide high sensitivity and precision in peptide identification in metaproteomic studies, enabling the detection of proteins from poorly characterized species within the microbiota.
NASA Astrophysics Data System (ADS)
Weigt, Martin
Over the last years, biological research has been revolutionized by experimental high-throughput techniques, in particular by next-generation sequencing technology. Unprecedented amounts of data are accumulating, and there is a growing request for computational methods unveiling the information hidden in raw data, thereby increasing our understanding of complex biological systems. Statistical-physics models based on the maximum-entropy principle have, in the last few years, played an important role in this context. To give a specific example, proteins and many non-coding RNA show a remarkable degree of structural and functional conservation in the course of evolution, despite a large variability in amino acid sequences. We have developed a statistical-mechanics inspired inference approach - called Direct-Coupling Analysis - to link this sequence variability (easy to observe in sequence alignments, which are available in public sequence databases) to bio-molecular structure and function. In my presentation I will show, how this methodology can be used (i) to infer contacts between residues and thus to guide tertiary and quaternary protein structure prediction and RNA structure prediction, (ii) to discriminate interacting from non-interacting protein families, and thus to infer conserved protein-protein interaction networks, and (iii) to reconstruct mutational landscapes and thus to predict the phenotypic effect of mutations. References [1] M. Figliuzzi, H. Jacquier, A. Schug, O. Tenaillon and M. Weigt ''Coevolutionary landscape inference and the context-dependence of mutations in beta-lactamase TEM-1'', Mol. Biol. Evol. (2015), doi: 10.1093/molbev/msv211 [2] E. De Leonardis, B. Lutz, S. Ratz, S. Cocco, R. Monasson, A. Schug, M. Weigt ''Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction'', Nucleic Acids Research (2015), doi: 10.1093/nar/gkv932 [3] F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. Marks, C. Sander, R. Zecchina, J.N. Onuchic, T. Hwa, M. Weigt, ''Direct-coupling analysis of residue co-evolution captures native contacts across many protein families'', Proc. Natl. Acad. Sci. 108, E1293-E1301 (2011).
A systematic study of chemogenomics of carbohydrates.
Gu, Jiangyong; Luo, Fang; Chen, Lirong; Yuan, Gu; Xu, Xiaojie
2014-03-04
Chemogenomics focuses on the interactions between biologically active molecules and protein targets for drug discovery. Carbohydrates are the most abundant compounds in natural products. Compared with other drugs, the carbohydrate drugs show weaker side effects. Searching for multi-target carbohydrate drugs can be regarded as a solution to improve therapeutic efficacy and safety. In this work, we collected 60 344 carbohydrates from the Universal Natural Products Database (UNPD) and explored the chemical space of carbohydrates by principal component analysis. We found that there is a large quantity of potential lead compounds among carbohydrates. Then we explored the potential of carbohydrates in drug discovery by using a network-based multi-target computational approach. All carbohydrates were docked to 2389 target proteins. The most potential carbohydrates for drug discovery and their indications were predicted based on a docking score-weighted prediction model. We also explored the interactions between carbohydrates and target proteins to find the pathological networks, potential drug candidates and new indications.
Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0.
Zhu, Xiaolei; Xiong, Yi; Kihara, Daisuke
2015-03-01
Ligand binding is a key aspect of the function of many proteins. Thus, binding ligand prediction provides important insight in understanding the biological function of proteins. Binding ligand prediction is also useful for drug design and examining potential drug side effects. We present a computational method named Patch-Surfer2.0, which predicts binding ligands for a protein pocket. By representing and comparing pockets at the level of small local surface patches that characterize physicochemical properties of the local regions, the method can identify binding pockets of the same ligand even if they do not share globally similar shapes. Properties of local patches are represented by an efficient mathematical representation, 3D Zernike Descriptor. Patch-Surfer2.0 has significant technical improvements over our previous prototype, which includes a new feature that captures approximate patch position with a geodesic distance histogram. Moreover, we constructed a large comprehensive database of ligand binding pockets that will be searched against by a query. The benchmark shows better performance of Patch-Surfer2.0 over existing methods. http://kiharalab.org/patchsurfer2.0/ CONTACT: dkihara@purdue.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao
2005-01-01
We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.
PlaMoM: a comprehensive database compiles plant mobile macromolecules
Guan, Daogang; Yan, Bin; Thieme, Christoph; Hua, Jingmin; Zhu, Hailong; Boheler, Kenneth R.; Zhao, Zhongying; Kragler, Friedrich; Xia, Yiji; Zhang, Shoudong
2017-01-01
In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein–protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/. PMID:27924044
Zuo, Lugen; Li, Yi; Wang, Honggang; Zhu, Weiming; Zhang, Wei; Gong, Jianfeng; Li, Ning; Li, Jieshou
2015-08-01
Postoperative intra-abdominal septic complications are difficult to manage in Crohn's disease, which makes prevention especially important. The purpose of this study was to examine the risk factors for intra-abdominal septic complications after primary anastomosis for Crohn's disease and to seek a practical predictive index for intra-abdominal septic complications. This was a retrospective study. The study was conducted in a tertiary referral hospital. Based on a computerized database of 344 patients with Crohn's disease who underwent primary anastomosis between 2004 and 2013, the patients were placed into an intra-abdominal septic complications group and a group without intra-abdominal septic complications. Univariate and multivariate analyses were performed to identify risk factors, and the predictive accuracy of possible predictors was assessed using receiver operating characteristic curves. Overall, 39 patients (11.34%) developed intra-abdominal septic complications. Preoperative C-reactive protein level >10 mg/L was found to be an independent risk factor (p < 0.01) for intra-abdominal septic complications. For prediction of intra-abdominal septic complications, receiver operating characteristic curve analysis showed that a C-reactive protein cutoff of 14.50 mg/L provided negative and positive predictive values of 96.84% and 34.07%. In addition, the change in C-reactive protein levels over the 2 weeks before surgery was greater in the intra-abdominal septic complications group than the group with no intra-abdominal septic complications (p < 0.01), and the directions of change were opposite, upward in the former and downward in the latter. Apart from being a risk factor for intra-abdominal septic complications (p < 0.01), receiver operating characteristic curve analysis showed that the change in C-reactive protein levels before surgery had a negative predictive value for intra-abdominal septic complications of 98.66% and a positive predictive value of 76.09%. This was a retrospective study. Changes in C-reactive protein before surgical treatment of Crohn's disease could serve as a practical predictive index for postoperative intra-abdominal septic complications.
Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins.
Firman, Taylor; Ghosh, Kingshuk
2018-03-28
We present an analytical theory to compute conformations of heteropolymers-applicable to describe disordered proteins-as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence-while maintaining the same charge composition-can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at a high-throughput level can provide valuable insights into the different mechanisms by which phosphorylation/charge mutation controls IDP function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uehara, Takeki, E-mail: takeki.uehara@shionogi.co.jp; Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, 7-6-8 Asagi, Ibaraki, Osaka 567-0085; Minowa, Yohsuke
2011-09-15
The present study was performed to develop a robust gene-based prediction model for early assessment of potential hepatocarcinogenicity of chemicals in rats by using our toxicogenomics database, TG-GATEs (Genomics-Assisted Toxicity Evaluation System developed by the Toxicogenomics Project in Japan). The positive training set consisted of high- or middle-dose groups that received 6 different non-genotoxic hepatocarcinogens during a 28-day period. The negative training set consisted of high- or middle-dose groups of 54 non-carcinogens. Support vector machine combined with wrapper-type gene selection algorithms was used for modeling. Consequently, our best classifier yielded prediction accuracies for hepatocarcinogenicity of 99% sensitivity and 97% specificitymore » in the training data set, and false positive prediction was almost completely eliminated. Pathway analysis of feature genes revealed that the mitogen-activated protein kinase p38- and phosphatidylinositol-3-kinase-centered interactome and the v-myc myelocytomatosis viral oncogene homolog-centered interactome were the 2 most significant networks. The usefulness and robustness of our predictor were further confirmed in an independent validation data set obtained from the public database. Interestingly, similar positive predictions were obtained in several genotoxic hepatocarcinogens as well as non-genotoxic hepatocarcinogens. These results indicate that the expression profiles of our newly selected candidate biomarker genes might be common characteristics in the early stage of carcinogenesis for both genotoxic and non-genotoxic carcinogens in the rat liver. Our toxicogenomic model might be useful for the prospective screening of hepatocarcinogenicity of compounds and prioritization of compounds for carcinogenicity testing. - Highlights: >We developed a toxicogenomic model to predict hepatocarcinogenicity of chemicals. >The optimized model consisting of 9 probes had 99% sensitivity and 97% specificity. >This model enables us to detect genotoxic as well as non-genotoxic hepatocarcinogens.« less
Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha
2015-01-01
Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis. PMID:25834405
Pan, Weiran; Li, Gang; Yang, Xiaoxiao; Miao, Jinming
2015-04-01
This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What' more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61% of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.
Mining proteomic data to expose protein modifications in Methanosarcina mazei strain Gö1
Leon, Deborah R.; Ytterberg, A. Jimmy; Boontheung, Pinmanee; ...
2015-03-05
Proteomic tools identify constituents of complex mixtures, often delivering long lists of identified proteins. The high-throughput methods excel at matching tandem mass spectrometry data to spectra predicted from sequence databases. Unassigned mass spectra are ignored, but could, in principle, provide valuable information on unanticipated modifications and improve protein annotations while consuming limited quantities of material. Strategies to “mine” information from these discards are presented, along with discussion of features that, when present, provide strong support for modifications. In this study we mined LC-MS/MS datasets of proteolytically-digested concanavalin A pull down fractions from Methanosarcina mazei Gö1 cell lysates. Analyses identified 154more » proteins. Many of the observed proteins displayed post-translationally modified forms, including O-formylated and methyl-esterified segments that appear biologically relevant (i.e., not artifacts of sample handling). Interesting cleavages and modifications (e.g., S-cyanylation and trimethylation) were observed near catalytic sites of methanogenesis enzymes. Of 31 Methanosarcina protein N-termini recovered by concanavalin A binding or from a previous study, only M. mazei S-layer protein MM1976 and its M. acetivorans C2A orthologue, MA0829, underwent signal peptide excision. Experimental results contrast with predictions from algorithms SignalP 3.0 and Exprot, which were found to over-predict the presence of signal peptides. Proteins MM0002, MM0716, MM1364, and MM1976 were found to be glycosylated, and employing chromatography tailored specifically for glycopeptides will likely reveal more. This study supplements limited, existing experimental datasets of mature archaeal N-termini, including presence or absence of signal peptides, translation initiation sites, and other processing. Methanosarcina surface and membrane proteins are richly modified.« less
Basal metabolic rate studies in humans: measurement and development of new equations.
Henry, C J K
2005-10-01
To facilitate the Food and Agriculture Organization/World Health Organization/United Nations University Joint (FAO/WHO/UNU) Expert Consultation on Energy and Protein Requirements which met in Rome in 1981, Schofield et al. reviewed the literature and produced predictive equations for both sexes for the following ages: 0-3, 3-10, 10-18, 18-30, 30-60 and >60 years. These formed the basis for the equations used in 1985 FAO/WHO/UNU document, Energy and Protein Requirements. While Schofield's analysis has served a significant role in re-establishing the importance of using basal metabolic rate (BMR) to predict human energy requirements, recent workers have subsequently queried the universal validity and application of these equations. A survey of the most recent studies (1980-2000) in BMR suggests that in most cases the current FAO/WHO/UNU predictive equations overestimate BMR in many communities. The FAO/WHO/UNU equations to predict BMR were developed using a database that contained a disproportionate number--3388 out of 7173 (47%)--of Italian subjects. The Schofield database contained relatively few subjects from the tropical region. The objective here is to review the historical development in the measurement and application of BMR and to critically review the Schofield et al. BMR database presenting a series of new equations to predict BMR. This division, while arbitrary, will enable readers who wish to omit the historical review of BMR to concentrate on the evolution of the new BMR equations. BMR data collected from published and measured values. A series of new equations (Oxford equations) have been developed using a data set of 10,552 BMR values that (1) excluded all the Italian subjects and (2) included a much larger number (4018) of people from the tropics. In general, the Oxford equations tend to produce lower BMR values than the current FAO/WHO/UNU equations in 18-30 and 30-60 year old males and in all females over 18 years of age. This is an opportune moment to re-examine the role and place of BMR measurements in estimating total energy requirements today. The Oxford equations' future use and application will surely depend on their ability to predict more accurately the BMR in contemporary populations.
2014-01-01
Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614
Zhang, Zhi-Guo; Song, Chang-Heng; Zhang, Fang-Zhen; Chen, Yan-Jing; Xiang, Li-Hua; Xiao, Gary Guishan; Ju, Da-Hong
2016-06-01
Rhizoma Dioscoreae extract (RDE) exhibits a protective effect on alveolar bone loss in ovariectomized (OVX) rats. The aim of this study was to predict the pathways or targets that are regulated by RDE, by re‑assessing our previously reported data and conducting a protein‑protein interaction (PPI) network analysis. In total, 383 differentially expressed genes (≥3‑fold) between alveolar bone samples from the RDE and OVX group rats were identified, and a PPI network was constructed based on these genes. Furthermore, four molecular clusters (A‑D) in the PPI network with the smallest P‑values were detected by molecular complex detection (MCODE) algorithm. Using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA) tools, two molecular clusters (A and B) were enriched for biological process in Gene Ontology (GO). Only cluster A was associated with biological pathways in the IPA database. GO and pathway analysis results showed that cluster A, associated with cell cycle regulation, was the most important molecular cluster in the PPI network. In addition, cyclin‑dependent kinase 1 (CDK1) may be a key molecule achieving the cell‑cycle‑regulatory function of cluster A. From the PPI network analysis, it was predicted that delayed cell cycle progression in excessive alveolar bone remodeling via downregulation of CDK1 may be another mechanism underling the anti‑osteopenic effect of RDE on alveolar bone.
FunCoup 3.0: database of genome-wide functional coupling networks
Schmitt, Thomas; Ogris, Christoph; Sonnhammer, Erik L. L.
2014-01-01
We present an update of the FunCoup database (http://FunCoup.sbc.su.se) of functional couplings, or functional associations, between genes and gene products. Identifying these functional couplings is an important step in the understanding of higher level mechanisms performed by complex cellular processes. FunCoup distinguishes between four classes of couplings: participation in the same signaling cascade, participation in the same metabolic process, co-membership in a protein complex and physical interaction. For each of these four classes, several types of experimental and statistical evidence are combined by Bayesian integration to predict genome-wide functional coupling networks. The FunCoup framework has been completely re-implemented to allow for more frequent future updates. It contains many improvements, such as a regularization procedure to automatically downweight redundant evidences and a novel method to incorporate phylogenetic profile similarity. Several datasets have been updated and new data have been added in FunCoup 3.0. Furthermore, we have developed a new Web site, which provides powerful tools to explore the predicted networks and to retrieve detailed information about the data underlying each prediction. PMID:24185702
Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology
Paley, Suzanne M.; Krummenacker, Markus; Latendresse, Mario; Dale, Joseph M.; Lee, Thomas J.; Kaipa, Pallavi; Gilham, Fred; Spaulding, Aaron; Popescu, Liviu; Altman, Tomer; Paulsen, Ian; Keseler, Ingrid M.; Caspi, Ron
2010-01-01
Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry. PMID:19955237
FunCoup 3.0: database of genome-wide functional coupling networks.
Schmitt, Thomas; Ogris, Christoph; Sonnhammer, Erik L L
2014-01-01
We present an update of the FunCoup database (http://FunCoup.sbc.su.se) of functional couplings, or functional associations, between genes and gene products. Identifying these functional couplings is an important step in the understanding of higher level mechanisms performed by complex cellular processes. FunCoup distinguishes between four classes of couplings: participation in the same signaling cascade, participation in the same metabolic process, co-membership in a protein complex and physical interaction. For each of these four classes, several types of experimental and statistical evidence are combined by Bayesian integration to predict genome-wide functional coupling networks. The FunCoup framework has been completely re-implemented to allow for more frequent future updates. It contains many improvements, such as a regularization procedure to automatically downweight redundant evidences and a novel method to incorporate phylogenetic profile similarity. Several datasets have been updated and new data have been added in FunCoup 3.0. Furthermore, we have developed a new Web site, which provides powerful tools to explore the predicted networks and to retrieve detailed information about the data underlying each prediction.
Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.
2011-01-01
Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212
Khachane, Amit; Kumar, Ranjit; Jain, Sanyam; Jain, Samta; Banumathy, Gowrishankar; Singh, Varsha; Nagpal, Saurabh; Tatu, Utpal
2005-01-01
Bioinformatics tools to aid gene and protein sequence analysis have become an integral part of biology in the post-genomic era. Release of the Plasmodium falciparum genome sequence has allowed biologists to define the gene and the predicted protein content as well as their sequences in the parasite. Using pI and molecular weight as characteristics unique to each protein, we have developed a bioinformatics tool to aid identification of proteins from Plasmodium falciparum. The tool makes use of a Virtual 2-DE generated by plotting all of the proteins from the Plasmodium database on a pI versus molecular weight scale. Proteins are identified by comparing the position of migration of desired protein spots from an experimental 2-DE and that on a virtual 2-DE. The procedure has been automated in the form of user-friendly software called "Plasmo2D". The tool can be downloaded from http://144.16.89.25/Plasmo2D.zip.
Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach
NASA Astrophysics Data System (ADS)
Kotaru, Appala Raju; Joshi, Ramesh C.
Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.
The Protein Disease Database of human body fluids: II. Computer methods and data issues.
Lemkin, P F; Orr, G A; Goldstein, M P; Creed, G J; Myrick, J E; Merril, C R
1995-01-01
The Protein Disease Database (PDD) is a relational database of proteins and diseases. With this database it is possible to screen for quantitative protein abnormalities associated with disease states. These quantitative relationships use data drawn from the peer-reviewed biomedical literature. Assays may also include those observed in high-resolution electrophoretic gels that offer the potential to quantitate many proteins in a single test as well as data gathered by enzymatic or immunologic assays. We are using the Internet World Wide Web (WWW) and the Web browser paradigm as an access method for wide distribution and querying of the Protein Disease Database. The WWW hypertext transfer protocol and its Common Gateway Interface make it possible to build powerful graphical user interfaces that can support easy-to-use data retrieval using query specification forms or images. The details of these interactions are totally transparent to the users of these forms. Using a client-server SQL relational database, user query access, initial data entry and database maintenance are all performed over the Internet with a Web browser. We discuss the underlying design issues, mapping mechanisms and assumptions that we used in constructing the system, data entry, access to the database server, security, and synthesis of derived two-dimensional gel image maps and hypertext documents resulting from SQL database searches.
Bueno, Marta; Camacho, Carlos J; Sancho, Javier
2007-09-01
The bioinformatics revolution of the last decade has been instrumental in the development of empirical potentials to quantitatively estimate protein interactions for modeling and design. Although computationally efficient, these potentials hide most of the relevant thermodynamics in 5-to-40 parameters that are fitted against a large experimental database. Here, we revisit this longstanding problem and show that a careful consideration of the change in hydrophobicity, electrostatics, and configurational entropy between the folded and unfolded state of aliphatic point mutations predicts 20-30% less false positives and yields more accurate predictions than any published empirical energy function. This significant improvement is achieved with essentially no free parameters, validating past theoretical and experimental efforts to understand the thermodynamics of protein folding. Our first principle analysis strongly suggests that both the solute-solute van der Waals interactions in the folded state and the electrostatics free energy change of exposed aliphatic mutations are almost completely compensated by similar interactions operating in the unfolded ensemble. Not surprisingly, the problem of properly accounting for the solvent contribution to the free energy of polar and charged group mutations, as well as of mutations that disrupt the protein backbone remains open. 2007 Wiley-Liss, Inc.
Discovery and study of novel protein tyrosine phosphatase 1B inhibitors
NASA Astrophysics Data System (ADS)
Zhang, Qian; Chen, Xi; Feng, Changgen
2017-10-01
Protein tyrosine phosphatase 1B (PTP1B) is considered to be a target for therapy of type II diabetes and obesity. So it is of great significance to take advantage of a computer aided drug design protocol involving the structured-based virtual screening with docking simulations for fast searching small molecule PTP1B inhibitors. Based on optimized complex structure of PTP1B bound with specific inhibitor of IX1, structured-based virtual screening against a library of natural products containing 35308 molecules, which was constructed based on Traditional Chinese Medicine database@ Taiwan (TCM database@ Taiwan), was conducted to determine the occurrence of PTP1B inhibitors using the Lubbock module and CDOCKER module from Discovery Studio 3.1 software package. The results were further filtered by predictive ADME simulation and predictive toxic simulation. As a result, 2 good drug-like molecules, namely para-benzoquinone compound 1 and Clavepictine analogue 2 were identified ultimately with the dock score of original inhibitor (IX1) and the receptor as a threshold. Binding model analyses revealed that these two candidate compounds have good interactions with PTP1B. The PTP1B inhibitory activity of compound 2 hasn't been reported before. The optimized compound 2 has higher scores and deserves further study.
Zhang, Peifen; Dreher, Kate; Karthikeyan, A.; Chi, Anjo; Pujar, Anuradha; Caspi, Ron; Karp, Peter; Kirkup, Vanessa; Latendresse, Mario; Lee, Cynthia; Mueller, Lukas A.; Muller, Robert; Rhee, Seung Yon
2010-01-01
Metabolic networks reconstructed from sequenced genomes or transcriptomes can help visualize and analyze large-scale experimental data, predict metabolic phenotypes, discover enzymes, engineer metabolic pathways, and study metabolic pathway evolution. We developed a general approach for reconstructing metabolic pathway complements of plant genomes. Two new reference databases were created and added to the core of the infrastructure: a comprehensive, all-plant reference pathway database, PlantCyc, and a reference enzyme sequence database, RESD, for annotating metabolic functions of protein sequences. PlantCyc (version 3.0) includes 714 metabolic pathways and 2,619 reactions from over 300 species. RESD (version 1.0) contains 14,187 literature-supported enzyme sequences from across all kingdoms. We used RESD, PlantCyc, and MetaCyc (an all-species reference metabolic pathway database), in conjunction with the pathway prediction software Pathway Tools, to reconstruct a metabolic pathway database, PoplarCyc, from the recently sequenced genome of Populus trichocarpa. PoplarCyc (version 1.0) contains 321 pathways with 1,807 assigned enzymes. Comparing PoplarCyc (version 1.0) with AraCyc (version 6.0, Arabidopsis [Arabidopsis thaliana]) showed comparable numbers of pathways distributed across all domains of metabolism in both databases, except for a higher number of AraCyc pathways in secondary metabolism and a 1.5-fold increase in carbohydrate metabolic enzymes in PoplarCyc. Here, we introduce these new resources and demonstrate the feasibility of using them to identify candidate enzymes for specific pathways and to analyze metabolite profiling data through concrete examples. These resources can be searched by text or BLAST, browsed, and downloaded from our project Web site (http://plantcyc.org). PMID:20522724
Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; Yano, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko
2015-01-01
To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources.
Takamitsu, Emi; Otsuka, Motoaki; Haebara, Tatsuki; Yano, Manami; Matsuzaki, Kanako; Kobuchi, Hirotsugu; Moriya, Koko; Utsumi, Toshihiko
2015-01-01
To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources. PMID:26308446
Hermjakob, Henning; Montecchi-Palazzi, Luisa; Bader, Gary; Wojcik, Jérôme; Salwinski, Lukasz; Ceol, Arnaud; Moore, Susan; Orchard, Sandra; Sarkans, Ugis; von Mering, Christian; Roechert, Bernd; Poux, Sylvain; Jung, Eva; Mersch, Henning; Kersey, Paul; Lappe, Michael; Li, Yixue; Zeng, Rong; Rana, Debashis; Nikolski, Macha; Husi, Holger; Brun, Christine; Shanker, K; Grant, Seth G N; Sander, Chris; Bork, Peer; Zhu, Weimin; Pandey, Akhilesh; Brazma, Alvis; Jacq, Bernard; Vidal, Marc; Sherman, David; Legrain, Pierre; Cesareni, Gianni; Xenarios, Ioannis; Eisenberg, David; Steipe, Boris; Hogue, Chris; Apweiler, Rolf
2004-02-01
A major goal of proteomics is the complete description of the protein interaction network underlying cell physiology. A large number of small scale and, more recently, large-scale experiments have contributed to expanding our understanding of the nature of the interaction network. However, the necessary data integration across experiments is currently hampered by the fragmentation of publicly available protein interaction data, which exists in different formats in databases, on authors' websites or sometimes only in print publications. Here, we propose a community standard data model for the representation and exchange of protein interaction data. This data model has been jointly developed by members of the Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organization (HUPO), and is supported by major protein interaction data providers, in particular the Biomolecular Interaction Network Database (BIND), Cellzome (Heidelberg, Germany), the Database of Interacting Proteins (DIP), Dana Farber Cancer Institute (Boston, MA, USA), the Human Protein Reference Database (HPRD), Hybrigenics (Paris, France), the European Bioinformatics Institute's (EMBL-EBI, Hinxton, UK) IntAct, the Molecular Interactions (MINT, Rome, Italy) database, the Protein-Protein Interaction Database (PPID, Edinburgh, UK) and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, EMBL, Heidelberg, Germany).
Suzuki, Nao; Zara, Jane; Sato, Takaaki; Ong, Edgar; Bakhiet, Nouna; Oshima, Robert G.; Watson, Kellie L.; Fukuda, Michiko N.
1998-01-01
Trophinin and tastin form a cell adhesion molecule complex that potentially mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of implantation. Trophinin and tastin, however, do not directly bind to each other, suggesting the presence of an intermediary protein. The present study identifies a cytoplasmic protein, named bystin, that directly binds trophinin and tastin. Bystin consists of 306 amino acid residues and is predicted to contain tyrosine, serine, and threonine residues in contexts conforming to motifs for phosphorylation by protein kinases. Database searches revealed a 53% identity of the predicted peptide sequence with the Drosophila bys (mrr) gene. Direct protein–protein interactions of trophinin, tastin, and bystin analyzed by yeast two-hybrid assays and by in vitro protein binding assays indicated that binding between bystin and trophinin and between bystin and tastin is enhanced when cytokeratin 8 and 18 are present as the third molecule. Immunocytochemistry of bystin showed that bystin colocalizes with trophinin, tastin, and cytokeratins in a human trophoblastic teratocarcinoma cell, HT-H. It is therefore possible that these molecules form a complex and thus are involved in the process of embryo implantation. PMID:9560222
Hidalgo-Cantabrana, Claudio; Moro-García, Marco A.; Blanco-Míguez, Aitor; Fdez-Riverola, Florentino; Lourenço, Anália; Alonso-Arias, Rebeca; Sánchez, Borja
2017-01-01
Scientific studies focused on the role of the human microbiome over human health have generated billions of gigabits of genetic information during the last decade. Nowadays integration of all this information in public databases and development of pipelines allowing us to biotechnologically exploit this information are urgently needed. Prediction of the potential bioactivity of the products encoded by the human gut microbiome, or metaproteome, is the first step for identifying proteins responsible for the molecular interaction between microorganisms and the immune system. We have recently published the Mechanism of Action of the Human Microbiome (MAHMI) database (http://www.mahmi.org), conceived as a resource compiling peptide sequences with a potential immunomodulatory activity. Fifteen out of the 300 hundred million peptides contained in the MAHMI database were synthesized. These peptides were identified as being encrypted in proteins produced by gut microbiota members, they do not contain cleavage points for the major intestinal endoproteases and displayed high probability to have immunomodulatory bioactivity. The bacterial peptides FR-16 and LR-17 encrypted in proteins from Bifidobacterium longum DJ010A and Bifidobacterium fragilis YCH46 respectively, showed the higher immune modulation capability over human peripheral blood mononuclear cells. Both peptides modulated the immune response toward increases in the Th17 and decreases in the Th1 cell response, together with an induction of IL-22 production. These results strongly suggest the combined use of bioinformatics and in vitro tools as a first stage in the screening of bioactive peptides encrypted in the human gut metaproteome. PMID:28943872
Regenbogen, Sam; Wilkins, Angela D; Lichtarge, Olivier
2016-01-01
Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to integrate knowledge from disparate studies to discover connections across domains. Here, we used a Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise information about their interactions. Our approach, applied to matrices derived from the Comparative Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions of STRING, an independent, external network of protein-protein interactions. Finally, this approach could integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using only data prior to that date. We conclude that collaborative filtering can integrate information across multiple types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing hypotheses.
REGENBOGEN, SAM; WILKINS, ANGELA D.; LICHTARGE, OLIVIER
2015-01-01
Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to integrate knowledge from disparate studies to discover connections across domains. Here, we used a Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise information about their interactions. Our approach, applied to matrices derived from the Comparative Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions of STRING, an independent, external network of protein-protein interactions. Finally, this approach could integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using only data prior to that date. We conclude that collaborative filtering can integrate information across multiple types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing hypotheses. PMID:26776170
Acyl carrier protein structural classification and normal mode analysis
Cantu, David C; Forrester, Michael J; Charov, Katherine; Reilly, Peter J
2012-01-01
All acyl carrier protein primary and tertiary structures were gathered into the ThYme database. They are classified into 16 families by amino acid sequence similarity, with members of the different families having sequences with statistically highly significant differences. These classifications are supported by tertiary structure superposition analysis. Tertiary structures from a number of families are very similar, suggesting that these families may come from a single distant ancestor. Normal vibrational mode analysis was conducted on experimentally determined freestanding structures, showing greater fluctuations at chain termini and loops than in most helices. Their modes overlap more so within families than between different families. The tertiary structures of three acyl carrier protein families that lacked any known structures were predicted as well. PMID:22374859
A Circular Dichroism Reference Database for Membrane Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace,B.; Wien, F.; Stone, T.
2006-01-01
Membrane proteins are a major product of most genomes and the target of a large number of current pharmaceuticals, yet little information exists on their structures because of the difficulty of crystallising them; hence for the most part they have been excluded from structural genomics programme targets. Furthermore, even methods such as circular dichroism (CD) spectroscopy which seek to define secondary structure have not been fully exploited because of technical limitations to their interpretation for membrane embedded proteins. Empirical analyses of circular dichroism (CD) spectra are valuable for providing information on secondary structures of proteins. However, the accuracy of themore » results depends on the appropriateness of the reference databases used in the analyses. Membrane proteins have different spectral characteristics than do soluble proteins as a result of the low dielectric constants of membrane bilayers relative to those of aqueous solutions (Chen & Wallace (1997) Biophys. Chem. 65:65-74). To date, no CD reference database exists exclusively for the analysis of membrane proteins, and hence empirical analyses based on current reference databases derived from soluble proteins are not adequate for accurate analyses of membrane protein secondary structures (Wallace et al (2003) Prot. Sci. 12:875-884). We have therefore created a new reference database of CD spectra of integral membrane proteins whose crystal structures have been determined. To date it contains more than 20 proteins, and spans the range of secondary structures from mostly helical to mostly sheet proteins. This reference database should enable more accurate secondary structure determinations of membrane embedded proteins and will become one of the reference database options in the CD calculation server DICHROWEB (Whitmore & Wallace (2004) NAR 32:W668-673).« less
Padliya, Neerav D; Garrett, Wesley M; Campbell, Kimberly B; Tabb, David L; Cooper, Bret
2007-11-01
LC-MS/MS has demonstrated potential for detecting plant pathogens. Unlike PCR or ELISA, LC-MS/MS does not require pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the MS/MS approach we and others have explored does require a protein sequence reference database and database-search software to interpret tandem mass spectra. To evaluate the limitations of database composition on pathogen identification, we analyzed proteins from cultured Ustilago maydis, Phytophthora sojae, Fusarium graminearum, and Rhizoctonia solani by LC-MS/MS. When the search database did not contain sequences for a target pathogen, or contained sequences to related pathogens, target pathogen spectra were reliably matched to protein sequences from nontarget organisms, giving an illusion that proteins from nontarget organisms were identified. Our analysis demonstrates that when database-search software is used as part of the identification process, a paradox exists whereby additional sequences needed to detect a wide variety of possible organisms may lead to more cross-species protein matches and misidentification of pathogens.
SATPdb: a database of structurally annotated therapeutic peptides
Singh, Sandeep; Chaudhary, Kumardeep; Dhanda, Sandeep Kumar; Bhalla, Sherry; Usmani, Salman Sadullah; Gautam, Ankur; Tuknait, Abhishek; Agrawal, Piyush; Mathur, Deepika; Raghava, Gajendra P.S.
2016-01-01
SATPdb (http://crdd.osdd.net/raghava/satpdb/) is a database of structurally annotated therapeutic peptides, curated from 22 public domain peptide databases/datasets including 9 of our own. The current version holds 19192 unique experimentally validated therapeutic peptide sequences having length between 2 and 50 amino acids. It covers peptides having natural, non-natural and modified residues. These peptides were systematically grouped into 10 categories based on their major function or therapeutic property like 1099 anticancer, 10585 antimicrobial, 1642 drug delivery and 1698 antihypertensive peptides. We assigned or annotated structure of these therapeutic peptides using structural databases (Protein Data Bank) and state-of-the-art structure prediction methods like I-TASSER, HHsearch and PEPstrMOD. In addition, SATPdb facilitates users in performing various tasks that include: (i) structure and sequence similarity search, (ii) peptide browsing based on their function and properties, (iii) identification of moonlighting peptides and (iv) searching of peptides having desired structure and therapeutic activities. We hope this database will be useful for researchers working in the field of peptide-based therapeutics. PMID:26527728
PROFESS: a PROtein Function, Evolution, Structure and Sequence database
Triplet, Thomas; Shortridge, Matthew D.; Griep, Mark A.; Stark, Jaime L.; Powers, Robert; Revesz, Peter
2010-01-01
The proliferation of biological databases and the easy access enabled by the Internet is having a beneficial impact on biological sciences and transforming the way research is conducted. There are ∼1100 molecular biology databases dispersed throughout the Internet. To assist in the functional, structural and evolutionary analysis of the abundant number of novel proteins continually identified from whole-genome sequencing, we introduce the PROFESS (PROtein Function, Evolution, Structure and Sequence) database. Our database is designed to be versatile and expandable and will not confine analysis to a pre-existing set of data relationships. A fundamental component of this approach is the development of an intuitive query system that incorporates a variety of similarity functions capable of generating data relationships not conceived during the creation of the database. The utility of PROFESS is demonstrated by the analysis of the structural drift of homologous proteins and the identification of potential pancreatic cancer therapeutic targets based on the observation of protein–protein interaction networks. Database URL: http://cse.unl.edu/∼profess/ PMID:20624718
MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution
Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian
2015-01-01
Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. PMID:26286928
MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution.
Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian
2015-01-01
Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. © The Author(s) 2015. Published by Oxford University Press.
Chan, Wen-Ling; Yang, Wen-Kuang; Huang, Hsien-Da; Chang, Jan-Gowth
2013-01-01
RNA interference (RNAi) is a gene silencing process within living cells, which is controlled by the RNA-induced silencing complex with a sequence-specific manner. In flies and mice, the pseudogene transcripts can be processed into short interfering RNAs (siRNAs) that regulate protein-coding genes through the RNAi pathway. Following these findings, we construct an innovative and comprehensive database to elucidate siRNA-mediated mechanism in human transcribed pseudogenes (TPGs). To investigate TPG producing siRNAs that regulate protein-coding genes, we mapped the TPGs to small RNAs (sRNAs) that were supported by publicly deep sequencing data from various sRNA libraries and constructed the TPG-derived siRNA-target interactions. In addition, we also presented that TPGs can act as a target for miRNAs that actually regulate the parental gene. To enable the systematic compilation and updating of these results and additional information, we have developed a database, pseudoMap, capturing various types of information, including sequence data, TPG and cognate annotation, deep sequencing data, RNA-folding structure, gene expression profiles, miRNA annotation and target prediction. As our knowledge, pseudoMap is the first database to demonstrate two mechanisms of human TPGs: encoding siRNAs and decoying miRNAs that target the parental gene. pseudoMap is freely accessible at http://pseudomap.mbc.nctu.edu.tw/. Database URL: http://pseudomap.mbc.nctu.edu.tw/
Computing Prediction and Functional Analysis of Prokaryotic Propionylation.
Wang, Li-Na; Shi, Shao-Ping; Wen, Ping-Ping; Zhou, Zhi-You; Qiu, Jian-Ding
2017-11-27
Identification and systematic analysis of candidates for protein propionylation are crucial steps for understanding its molecular mechanisms and biological functions. Although several proteome-scale methods have been performed to delineate potential propionylated proteins, the majority of lysine-propionylated substrates and their role in pathological physiology still remain largely unknown. By gathering various databases and literatures, experimental prokaryotic propionylation data were collated to be trained in a support vector machine with various features via a three-step feature selection method. A novel online tool for seeking potential lysine-propionylated sites (PropSeek) ( http://bioinfo.ncu.edu.cn/PropSeek.aspx ) was built. Independent test results of leave-one-out and n-fold cross-validation were similar to each other, showing that PropSeek is a stable and robust predictor with satisfying performance. Meanwhile, analyses of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathways, and protein-protein interactions implied a potential role of prokaryotic propionylation in protein synthesis and metabolism.
Wuchty, Stefan
2006-05-23
While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. We consider a web of interactions between protein domains of the Protein Family database (PFAM), which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we show a simple way to predict potential protein interactions by utilizing expectation scores of single domain interactions.
Combining Evidence of Preferential Gene-Tissue Relationships from Multiple Sources
Guo, Jing; Hammar, Mårten; Öberg, Lisa; Padmanabhuni, Shanmukha S.; Bjäreland, Marcus; Dalevi, Daniel
2013-01-01
An important challenge in drug discovery and disease prognosis is to predict genes that are preferentially expressed in one or a few tissues, i.e. showing a considerably higher expression in one tissue(s) compared to the others. Although several data sources and methods have been published explicitly for this purpose, they often disagree and it is not evident how to retrieve these genes and how to distinguish true biological findings from those that are due to choice-of-method and/or experimental settings. In this work we have developed a computational approach that combines results from multiple methods and datasets with the aim to eliminate method/study-specific biases and to improve the predictability of preferentially expressed human genes. A rule-based score is used to merge and assign support to the results. Five sets of genes with known tissue specificity were used for parameter pruning and cross-validation. In total we identify 3434 tissue-specific genes. We compare the genes of highest scores with the public databases: PaGenBase (microarray), TiGER (EST) and HPA (protein expression data). The results have 85% overlap to PaGenBase, 71% to TiGER and only 28% to HPA. 99% of our predictions have support from at least one of these databases. Our approach also performs better than any of the databases on identifying drug targets and biomarkers with known tissue-specificity. PMID:23950964
PACSY, a relational database management system for protein structure and chemical shift analysis.
Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L
2012-10-01
PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.
MIPS: a database for protein sequences and complete genomes.
Mewes, H W; Hani, J; Pfeiffer, F; Frishman, D
1998-01-01
The MIPS group [Munich Information Center for Protein Sequences of the German National Center for Environment and Health (GSF)] at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, is involved in a number of data collection activities, including a comprehensive database of the yeast genome, a database reflecting the progress in sequencing the Arabidopsis thaliana genome, the systematic analysis of other small genomes and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). Through its WWW server (http://www.mips.biochem.mpg.de ) MIPS provides access to a variety of generic databases, including a database of protein families as well as automatically generated data by the systematic application of sequence analysis algorithms. The yeast genome sequence and its related information was also compiled on CD-ROM to provide dynamic interactive access to the 16 chromosomes of the first eukaryotic genome unraveled. PMID:9399795
Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.
Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long
2012-01-01
Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site prediction tools. In the independent testing, the high sensitivity and specificity of the proposed method demonstrate the predictive effectiveness of the identified substrate motifs and the importance of investigating potential kinases for viral protein phosphorylation sites.
HypoxiaDB: a database of hypoxia-regulated proteins
Khurana, Pankaj; Sugadev, Ragumani; Jain, Jaspreet; Singh, Shashi Bala
2013-01-01
There has been intense interest in the cellular response to hypoxia, and a large number of differentially expressed proteins have been identified through various high-throughput experiments. These valuable data are scattered, and there have been no systematic attempts to document the various proteins regulated by hypoxia. Compilation, curation and annotation of these data are important in deciphering their role in hypoxia and hypoxia-related disorders. Therefore, we have compiled HypoxiaDB, a database of hypoxia-regulated proteins. It is a comprehensive, manually-curated, non-redundant catalog of proteins whose expressions are shown experimentally to be altered at different levels and durations of hypoxia. The database currently contains 72 000 manually curated entries taken on 3500 proteins extracted from 73 peer-reviewed publications selected from PubMed. HypoxiaDB is distinctive from other generalized databases: (i) it compiles tissue-specific protein expression changes under different levels and duration of hypoxia. Also, it provides manually curated literature references to support the inclusion of the protein in the database and establish its association with hypoxia. (ii) For each protein, HypoxiaDB integrates data on gene ontology, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway, protein–protein interactions, protein family (Pfam), OMIM (Online Mendelian Inheritance in Man), PDB (Protein Data Bank) structures and homology to other sequenced genomes. (iii) It also provides pre-compiled information on hypoxia-proteins, which otherwise requires tedious computational analysis. This includes information like chromosomal location, identifiers like Entrez, HGNC, Unigene, Uniprot, Ensembl, Vega, GI numbers and Genbank accession numbers associated with the protein. These are further cross-linked to respective public databases augmenting HypoxiaDB to the external repositories. (iv) In addition, HypoxiaDB provides an online sequence-similarity search tool for users to compare their protein sequences with HypoxiaDB protein database. We hope that HypoxiaDB will enrich our knowledge about hypoxia-related biology and eventually will lead to the development of novel hypothesis and advancements in diagnostic and therapeutic activities. HypoxiaDB is freely accessible for academic and non-profit users via http://www.hypoxiadb.com. Database URL: http://www.hypoxiadb.com PMID:24178989
BitterDB: a database of bitter compounds
Wiener, Ayana; Shudler, Marina; Levit, Anat; Niv, Masha Y.
2012-01-01
Basic taste qualities like sour, salty, sweet, bitter and umami serve specific functions in identifying food components found in the diet of humans and animals, and are recognized by proteins in the oral cavity. Recognition of bitter taste and aversion to it are thought to protect the organism against the ingestion of poisonous food compounds, which are often bitter. Interestingly, bitter taste receptors are expressed not only in the mouth but also in extraoral tissues, such as the gastrointestinal tract, indicating that they may play a role in digestive and metabolic processes. BitterDB database, available at http://bitterdb.agri.huji.ac.il/bitterdb/, includes over 550 compounds that were reported to taste bitter to humans. The compounds can be searched by name, chemical structure, similarity to other bitter compounds, association with a particular human bitter taste receptor, and so on. The database also contains information on mutations in bitter taste receptors that were shown to influence receptor activation by bitter compounds. The aim of BitterDB is to facilitate studying the chemical features associated with bitterness. These studies may contribute to predicting bitterness of unknown compounds, predicting ligands for bitter receptors from different species and rational design of bitterness modulators. PMID:21940398
Wang, Nanyi; Wang, Lirong; Xie, Xiang-Qun
2017-11-27
Molecular docking is widely applied to computer-aided drug design and has become relatively mature in the recent decades. Application of docking in modeling varies from single lead compound optimization to large-scale virtual screening. The performance of molecular docking is highly dependent on the protein structures selected. It is especially challenging for large-scale target prediction research when multiple structures are available for a single target. Therefore, we have established ProSelection, a docking preferred-protein selection algorithm, in order to generate the proper structure subset(s). By the ProSelection algorithm, protein structures of "weak selectors" are filtered out whereas structures of "strong selectors" are kept. Specifically, the structure which has a good statistical performance of distinguishing active ligands from inactive ligands is defined as a strong selector. In this study, 249 protein structures of 14 autophagy-related targets are investigated. Surflex-dock was used as the docking engine to distinguish active and inactive compounds against these protein structures. Both t test and Mann-Whitney U test were used to distinguish the strong from the weak selectors based on the normality of the docking score distribution. The suggested docking score threshold for active ligands (SDA) was generated for each strong selector structure according to the receiver operating characteristic (ROC) curve. The performance of ProSelection was further validated by predicting the potential off-targets of 43 U.S. Federal Drug Administration approved small molecule antineoplastic drugs. Overall, ProSelection will accelerate the computational work in protein structure selection and could be a useful tool for molecular docking, target prediction, and protein-chemical database establishment research.
ARCPHdb: A comprehensive protein database for SF1 and SF2 helicase from archaea.
Moukhtar, Mirna; Chaar, Wafi; Abdel-Razzak, Ziad; Khalil, Mohamad; Taha, Samir; Chamieh, Hala
2017-01-01
Superfamily 1 and Superfamily 2 helicases, two of the largest helicase protein families, play vital roles in many biological processes including replication, transcription and translation. Study of helicase proteins in the model microorganisms of archaea have largely contributed to the understanding of their function, architecture and assembly. Based on a large phylogenomics approach, we have identified and classified all SF1 and SF2 protein families in ninety five sequenced archaea genomes. Here we developed an online webserver linked to a specialized protein database named ARCPHdb to provide access for SF1 and SF2 helicase families from archaea. ARCPHdb was implemented using MySQL relational database. Web interfaces were developed using Netbeans. Data were stored according to UniProt accession numbers, NCBI Ref Seq ID, PDB IDs and Entrez Databases. A user-friendly interactive web interface has been developed to browse, search and download archaeal helicase protein sequences, their available 3D structure models, and related documentation available in the literature provided by ARCPHdb. The database provides direct links to matching external databases. The ARCPHdb is the first online database to compile all protein information on SF1 and SF2 helicase from archaea in one platform. This database provides essential resource information for all researchers interested in the field. Copyright © 2016 Elsevier Ltd. All rights reserved.