Sample records for predicted tertiary structure

  1. Predicting loop–helix tertiary structural contacts in RNA pseudoknots

    PubMed Central

    Cao, Song; Giedroc, David P.; Chen, Shi-Jie

    2010-01-01

    Tertiary interactions between loops and helical stems play critical roles in the biological function of many RNA pseudoknots. However, quantitative predictions for RNA tertiary interactions remain elusive. Here we report a statistical mechanical model for the prediction of noncanonical loop–stem base-pairing interactions in RNA pseudoknots. Central to the model is the evaluation of the conformational entropy for the pseudoknotted folds with defined loop–stem tertiary structural contacts. We develop an RNA virtual bond-based conformational model (Vfold model), which permits a rigorous computation of the conformational entropy for a given fold that contains loop–stem tertiary contacts. With the entropy parameters predicted from the Vfold model and the energy parameters for the tertiary contacts as inserted parameters, we can then predict the RNA folding thermodynamics, from which we can extract the tertiary contact thermodynamic parameters from theory–experimental comparisons. These comparisons reveal a contact enthalpy (ΔH) of −14 kcal/mol and a contact entropy (ΔS) of −38 cal/mol/K for a protonated C+•(G–C) base triple at pH 7.0, and (ΔH = −7 kcal/mol, ΔS = −19 cal/mol/K) for an unprotonated base triple. Tests of the model for a series of pseudoknots show good theory–experiment agreement. Based on the extracted energy parameters for the tertiary structural contacts, the model enables predictions for the structure, stability, and folding pathways for RNA pseudoknots with known or postulated loop–stem tertiary contacts from the nucleotide sequence alone. PMID:20100813

  2. Automated and fast building of three-dimensional RNA structures.

    PubMed

    Zhao, Yunjie; Huang, Yangyu; Gong, Zhou; Wang, Yanjie; Man, Jianfen; Xiao, Yi

    2012-01-01

    Building tertiary structures of non-coding RNA is required to understand their functions and design new molecules. Current algorithms of RNA tertiary structure prediction give satisfactory accuracy only for small size and simple topology and many of them need manual manipulation. Here, we present an automated and fast program, 3dRNA, for RNA tertiary structure prediction with reasonable accuracy for RNAs of larger size and complex topology.

  3. Computational study of stability of an H-H-type pseudoknot motif.

    PubMed

    Wang, Jun; Zhao, Yunjie; Wang, Jian; Xiao, Yi

    2015-12-01

    Motifs in RNA tertiary structures are important to their structural organizations and biological functions. Here we consider an H-H-type pseudoknot (HHpk) motif that consists of two hairpins connected by a junction loop and with kissing interactions between the two hairpin loops. Such a tertiary structural motif is recurrently found in RNA tertiary structures, but is difficult to predict computationally. So it is important to understand the mechanism of its formation and stability. Here we investigate the stability of the HHpk tertiary structure by using an all-atom molecular dynamics simulation. The results indicate that the HHpk tertiary structure is stable. However, it is found that this stability is not due to the helix-helix packing, as is usually expected, but is maintained by the combined action of the kissing hairpin loops and junctions, although the former plays the main role. Stable HHpk motifs may form structural platforms for the molecules to realize their biological functions. These results are useful for understanding the construction principle of RNA tertiary structures and structure prediction.

  4. Prelude and Fugue, predicting local protein structure, early folding regions and structural weaknesses.

    PubMed

    Kwasigroch, Jean Marc; Rooman, Marianne

    2006-07-15

    Prelude&Fugue are bioinformatics tools aiming at predicting the local 3D structure of a protein from its amino acid sequence in terms of seven backbone torsion angle domains, using database-derived potentials. Prelude(&Fugue) computes all lowest free energy conformations of a protein or protein region, ranked by increasing energy, and possibly satisfying some interresidue distance constraints specified by the user. (Prelude&)Fugue detects sequence regions whose predicted structure is significantly preferred relative to other conformations in the absence of tertiary interactions. These programs can be used for predicting secondary structure, tertiary structure of short peptides, flickering early folding sequences and peptides that adopt a preferred conformation in solution. They can also be used for detecting structural weaknesses, i.e. sequence regions that are not optimal with respect to the tertiary fold. http://babylone.ulb.ac.be/Prelude_and_Fugue.

  5. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs

    PubMed Central

    2017-01-01

    Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package. PMID:29107980

  6. Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.

    PubMed

    Bisaria, Namita; Greenfeld, Max; Limouse, Charles; Mabuchi, Hideo; Herschlag, Daniel

    2017-09-12

    Decades of study of the architecture and function of structured RNAs have led to the perspective that RNA tertiary structure is modular, made of locally stable domains that retain their structure across RNAs. We formalize a hypothesis inspired by this modularity-that RNA folding thermodynamics and kinetics can be quantitatively predicted from separable energetic contributions of the individual components of a complex RNA. This reconstitution hypothesis considers RNA tertiary folding in terms of ΔG align , the probability of aligning tertiary contact partners, and ΔG tert , the favorable energetic contribution from the formation of tertiary contacts in an aligned state. This hypothesis predicts that changes in the alignment of tertiary contacts from different connecting helices and junctions (ΔG HJH ) or from changes in the electrostatic environment (ΔG +/- ) will not affect the energetic perturbation from a mutation in a tertiary contact (ΔΔG tert ). Consistent with these predictions, single-molecule FRET measurements of folding of model RNAs revealed constant ΔΔG tert values for mutations in a tertiary contact embedded in different structural contexts and under different electrostatic conditions. The kinetic effects of these mutations provide further support for modular behavior of RNA elements and suggest that tertiary mutations may be used to identify rate-limiting steps and dissect folding and assembly pathways for complex RNAs. Overall, our model and results are foundational for a predictive understanding of RNA folding that will allow manipulation of RNA folding thermodynamics and kinetics. Conversely, the approaches herein can identify cases where an independent, additive model cannot be applied and so require additional investigation.

  7. A deep learning framework for modeling structural features of RNA-binding protein targets

    PubMed Central

    Zhang, Sai; Zhou, Jingtian; Hu, Hailin; Gong, Haipeng; Chen, Ligong; Cheng, Chao; Zeng, Jianyang

    2016-01-01

    RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three dimensions is still a challenging task. In this paper, we develop a general and flexible deep learning framework for modeling structural binding preferences and predicting binding sites of RBPs, which takes (predicted) RNA tertiary structural information into account for the first time. Our framework constructs a unified representation that characterizes the structural specificities of RBP targets in all three dimensions, which can be further used to predict novel candidate binding sites and discover potential binding motifs. Through testing on the real CLIP-seq datasets, we have demonstrated that our deep learning framework can automatically extract effective hidden structural features from the encoded raw sequence and structural profiles, and predict accurate RBP binding sites. In addition, we have conducted the first study to show that integrating the additional RNA tertiary structural features can improve the model performance in predicting RBP binding sites, especially for the polypyrimidine tract-binding protein (PTB), which also provides a new evidence to support the view that RBPs may own specific tertiary structural binding preferences. In particular, the tests on the internal ribosome entry site (IRES) segments yield satisfiable results with experimental support from the literature and further demonstrate the necessity of incorporating RNA tertiary structural information into the prediction model. The source code of our approach can be found in https://github.com/thucombio/deepnet-rbp. PMID:26467480

  8. Acyl carrier protein structural classification and normal mode analysis

    PubMed Central

    Cantu, David C; Forrester, Michael J; Charov, Katherine; Reilly, Peter J

    2012-01-01

    All acyl carrier protein primary and tertiary structures were gathered into the ThYme database. They are classified into 16 families by amino acid sequence similarity, with members of the different families having sequences with statistically highly significant differences. These classifications are supported by tertiary structure superposition analysis. Tertiary structures from a number of families are very similar, suggesting that these families may come from a single distant ancestor. Normal vibrational mode analysis was conducted on experimentally determined freestanding structures, showing greater fluctuations at chain termini and loops than in most helices. Their modes overlap more so within families than between different families. The tertiary structures of three acyl carrier protein families that lacked any known structures were predicted as well. PMID:22374859

  9. Predicting RNA 3D structure using a coarse-grain helix-centered model

    PubMed Central

    Kerpedjiev, Peter; Höner zu Siederdissen, Christian; Hofacker, Ivo L.

    2015-01-01

    A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures. PMID:25904133

  10. Prediction of protein tertiary structure from sequences using a very large back-propagation neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.; Wilcox, G.L.

    1993-12-31

    We have implemented large scale back-propagation neural networks on a 544 node Connection Machine, CM-5, using the C language in MIMD mode. The program running on 512 processors performs backpropagation learning at 0.53 Gflops, which provides 76 million connection updates per second. We have applied the network to the prediction of protein tertiary structure from sequence information alone. A neural network with one hidden layer and 40 million connections is trained to learn the relationship between sequence and tertiary structure. The trained network yields predicted structures of some proteins on which it has not been trained given only their sequences.more » Presentation of the Fourier transform of the sequences accentuates periodicity in the sequence and yields good generalization with greatly increased training efficiency. Training simulations with a large, heterologous set of protein structures (111 proteins from CM-5 time) to solutions with under 2% RMS residual error within the training set (random responses give an RMS error of about 20%). Presentation of 15 sequences of related proteins in a testing set of 24 proteins yields predicted structures with less than 8% RMS residual error, indicating good apparent generalization.« less

  11. ProTSAV: A protein tertiary structure analysis and validation server.

    PubMed

    Singh, Ankita; Kaushik, Rahul; Mishra, Avinash; Shanker, Asheesh; Jayaram, B

    2016-01-01

    Quality assessment of predicted model structures of proteins is as important as the protein tertiary structure prediction. A highly efficient quality assessment of predicted model structures directs further research on function. Here we present a new server ProTSAV, capable of evaluating predicted model structures based on some popular online servers and standalone tools. ProTSAV furnishes the user with a single quality score in case of individual protein structure along with a graphical representation and ranking in case of multiple protein structure assessment. The server is validated on ~64,446 protein structures including experimental structures from RCSB and predicted model structures for CASP targets and from public decoy sets. ProTSAV succeeds in predicting quality of protein structures with a specificity of 100% and a sensitivity of 98% on experimentally solved structures and achieves a specificity of 88%and a sensitivity of 91% on predicted protein structures of CASP11 targets under 2Å.The server overcomes the limitations of any single server/method and is seen to be robust in helping in quality assessment. ProTSAV is freely available at http://www.scfbio-iitd.res.in/software/proteomics/protsav.jsp. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway

    PubMed Central

    Bisaria, Namita; Greenfeld, Max; Limouse, Charles; Pavlichin, Dmitri S.; Mabuchi, Hideo; Herschlag, Daniel

    2016-01-01

    The past decade has seen a wealth of 3D structural information about complex structured RNAs and identification of functional intermediates. Nevertheless, developing a complete and predictive understanding of the folding and function of these RNAs in biology will require connection of individual rate and equilibrium constants to structural changes that occur in individual folding steps and further relating these steps to the properties and behavior of isolated, simplified systems. To accomplish these goals we used the considerable structural knowledge of the folded, unfolded, and intermediate states of P4-P6 RNA. We enumerated structural states and possible folding transitions and determined rate and equilibrium constants for the transitions between these states using single-molecule FRET with a series of mutant P4-P6 variants. Comparisons with simplified constructs containing an isolated tertiary contact suggest that a given tertiary interaction has a stereotyped rate for breaking that may help identify structural transitions within complex RNAs and simplify the prediction of folding kinetics and thermodynamics for structured RNAs from their parts. The preferred folding pathway involves initial formation of the proximal tertiary contact. However, this preference was only ∼10 fold and could be reversed by a single point mutation, indicating that a model akin to a protein-folding contact order model will not suffice to describe RNA folding. Instead, our results suggest a strong analogy with a modified RNA diffusion-collision model in which tertiary elements within preformed secondary structures collide, with the success of these collisions dependent on whether the tertiary elements are in their rare binding-competent conformations. PMID:27493222

  13. Bhageerath-H: A homology/ab initio hybrid server for predicting tertiary structures of monomeric soluble proteins

    PubMed Central

    2014-01-01

    Background The advent of human genome sequencing project has led to a spurt in the number of protein sequences in the databanks. Success of structure based drug discovery severely hinges on the availability of structures. Despite significant progresses in the area of experimental protein structure determination, the sequence-structure gap is continually widening. Data driven homology based computational methods have proved successful in predicting tertiary structures for sequences sharing medium to high sequence similarities. With dwindling similarities of query sequences, advanced homology/ ab initio hybrid approaches are being explored to solve structure prediction problem. Here we describe Bhageerath-H, a homology/ ab initio hybrid software/server for predicting protein tertiary structures with advancing drug design attempts as one of the goals. Results Bhageerath-H web-server was validated on 75 CASP10 targets which showed TM-scores ≥0.5 in 91% of the cases and Cα RMSDs ≤5Å from the native in 58% of the targets, which is well above the CASP10 water mark. Comparison with some leading servers demonstrated the uniqueness of the hybrid methodology in effectively sampling conformational space, scoring best decoys and refining low resolution models to high and medium resolution. Conclusion Bhageerath-H methodology is web enabled for the scientific community as a freely accessible web server. The methodology is fielded in the on-going CASP11 experiment. PMID:25521245

  14. Tertiary structure-based analysis of microRNA–target interactions

    PubMed Central

    Gan, Hin Hark; Gunsalus, Kristin C.

    2013-01-01

    Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009

  15. Automated extraction and classification of RNA tertiary structure cyclic motifs

    PubMed Central

    Lemieux, Sébastien; Major, François

    2006-01-01

    A minimum cycle basis of the tertiary structure of a large ribosomal subunit (LSU) X-ray crystal structure was analyzed. Most cycles are small, as they are composed of 3- to 5 nt, and repeated across the LSU tertiary structure. We used hierarchical clustering to quantify and classify the 4 nt cycles. One class is defined by the GNRA tetraloop motif. The inspection of the GNRA class revealed peculiar instances in sequence. First is the presence of UA, CA, UC and CC base pairs that substitute the usual sheared GA base pair. Second is the revelation of GNR(Xn)A tetraloops, where Xn is bulged out of the classical GNRA structure, and of GN/RA formed by the two strands of interior-loops. We were able to unambiguously characterize the cycle classes using base stacking and base pairing annotations. The cycles identified correspond to small and cyclic motifs that compose most of the LSU RNA tertiary structure and contribute to its thermodynamic stability. Consequently, the RNA minimum cycles could well be used as the basic elements of RNA tertiary structure prediction methods. PMID:16679452

  16. Tertiary structure prediction and identification of druggable pocket in the cancer biomarker – Osteopontin-c

    PubMed Central

    2014-01-01

    Background Osteopontin (Eta, secreted sialoprotein 1, opn) is secreted from different cell types including cancer cells. Three splice variant forms namely osteopontin-a, osteopontin-b and osteopontin-c have been identified. The main astonishing feature is that osteopontin-c is found to be elevated in almost all types of cancer cells. This was the vital point to consider it for sequence analysis and structure predictions which provide ample chances for prognostic, therapeutic and preventive cancer research. Methods Osteopontin-c gene sequence was determined from Breast Cancer sample and was translated to protein sequence. It was then analyzed using various software and web tools for binding pockets, docking and druggability analysis. Due to the lack of homological templates, tertiary structure was predicted using ab-initio method server – I-TASSER and was evaluated after refinement using web tools. Refined structure was compared with known bone sialoprotein electron microscopic structure and docked with CD44 for binding analysis and binding pockets were identified for drug designing. Results Signal sequence of about sixteen amino acid residues was identified using signal sequence prediction servers. Due to the absence of known structures of similar proteins, three dimensional structure of osteopontin-c was predicted using I-TASSER server. The predicted structure was refined with the help of SUMMA server and was validated using SAVES server. Molecular dynamic analysis was carried out using GROMACS software. The final model was built and was used for docking with CD44. Druggable pockets were identified using pocket energies. Conclusions The tertiary structure of osteopontin-c was predicted successfully using the ab-initio method and the predictions showed that osteopontin-c is of fibrous nature comparable to firbronectin. Docking studies showed the significant similarities of QSAET motif in the interaction of CD44 and osteopontins between the normal and splice variant forms of osteopontins and binding pockets analyses revealed several pockets which paved the way to the identification of a druggable pocket. PMID:24401206

  17. Tertiary alphabet for the observable protein structural universe.

    PubMed

    Mackenzie, Craig O; Zhou, Jianfu; Grigoryan, Gevorg

    2016-11-22

    Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. We go on to show that universal TERMs provide an effective mapping between sequence and structure. We demonstrate that TERM-based statistics alone are sufficient to recapitulate close-to-native sequences given either NMR or X-ray backbones. Furthermore, sequence variability predicted from TERM data agrees closely with evolutionary variation. Finally, locations of TERMs in protein chains can be predicted from sequence alone based on sequence signatures emergent from TERM instances in the PDB. For multisegment motifs, this method identifies spatially adjacent fragments that are not contiguous in sequence-a major bottleneck in structure prediction. Although all TERMs recur in diverse proteins, some appear specialized for certain functions, such as interface formation, metal coordination, or even water binding. Structural biology has benefited greatly from previously observed degeneracies in structure. The decomposition of the known structural universe into a finite set of compact TERMs offers exciting opportunities toward better understanding, design, and prediction of protein structure.

  18. Tertiary alphabet for the observable protein structural universe

    PubMed Central

    Mackenzie, Craig O.; Zhou, Jianfu; Grigoryan, Gevorg

    2016-01-01

    Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. We go on to show that universal TERMs provide an effective mapping between sequence and structure. We demonstrate that TERM-based statistics alone are sufficient to recapitulate close-to-native sequences given either NMR or X-ray backbones. Furthermore, sequence variability predicted from TERM data agrees closely with evolutionary variation. Finally, locations of TERMs in protein chains can be predicted from sequence alone based on sequence signatures emergent from TERM instances in the PDB. For multisegment motifs, this method identifies spatially adjacent fragments that are not contiguous in sequence—a major bottleneck in structure prediction. Although all TERMs recur in diverse proteins, some appear specialized for certain functions, such as interface formation, metal coordination, or even water binding. Structural biology has benefited greatly from previously observed degeneracies in structure. The decomposition of the known structural universe into a finite set of compact TERMs offers exciting opportunities toward better understanding, design, and prediction of protein structure. PMID:27810958

  19. RNA secondary structure prediction with pseudoknots: Contribution of algorithm versus energy model.

    PubMed

    Jabbari, Hosna; Wark, Ian; Montemagno, Carlo

    2018-01-01

    RNA is a biopolymer with various applications inside the cell and in biotechnology. Structure of an RNA molecule mainly determines its function and is essential to guide nanostructure design. Since experimental structure determination is time-consuming and expensive, accurate computational prediction of RNA structure is of great importance. Prediction of RNA secondary structure is relatively simpler than its tertiary structure and provides information about its tertiary structure, therefore, RNA secondary structure prediction has received attention in the past decades. Numerous methods with different folding approaches have been developed for RNA secondary structure prediction. While methods for prediction of RNA pseudoknot-free structure (structures with no crossing base pairs) have greatly improved in terms of their accuracy, methods for prediction of RNA pseudoknotted secondary structure (structures with crossing base pairs) still have room for improvement. A long-standing question for improving the prediction accuracy of RNA pseudoknotted secondary structure is whether to focus on the prediction algorithm or the underlying energy model, as there is a trade-off on computational cost of the prediction algorithm versus the generality of the method. The aim of this work is to argue when comparing different methods for RNA pseudoknotted structure prediction, the combination of algorithm and energy model should be considered and a method should not be considered superior or inferior to others if they do not use the same scoring model. We demonstrate that while the folding approach is important in structure prediction, it is not the only important factor in prediction accuracy of a given method as the underlying energy model is also as of great value. Therefore we encourage researchers to pay particular attention in comparing methods with different energy models.

  20. Protein Tertiary Structure Prediction Based on Main Chain Angle Using a Hybrid Bees Colony Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Mahmood, Zakaria N.; Mahmuddin, Massudi; Mahmood, Mohammed Nooraldeen

    Encoding proteins of amino acid sequence to predict classified into their respective families and subfamilies is important research area. However for a given protein, knowing the exact action whether hormonal, enzymatic, transmembranal or nuclear receptors does not depend solely on amino acid sequence but on the way the amino acid thread folds as well. This study provides a prototype system that able to predict a protein tertiary structure. Several methods are used to develop and evaluate the system to produce better accuracy in protein 3D structure prediction. The Bees Optimization algorithm which inspired from the honey bees food foraging method, is used in the searching phase. In this study, the experiment is conducted on short sequence proteins that have been used by the previous researches using well-known tools. The proposed approach shows a promising result.

  1. Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.

    PubMed

    Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ohue, Masahito; Akiyama, Yutaka

    Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein-protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein-protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein-protein interactions that form protein complexes.

  2. Rapid search for tertiary fragments reveals protein sequence–structure relationships

    PubMed Central

    Zhou, Jianfu; Grigoryan, Gevorg

    2015-01-01

    Finding backbone substructures from the Protein Data Bank that match an arbitrary query structural motif, composed of multiple disjoint segments, is a problem of growing relevance in structure prediction and protein design. Although numerous protein structure search approaches have been proposed, methods that address this specific task without additional restrictions and on practical time scales are generally lacking. Here, we propose a solution, dubbed MASTER, that is both rapid, enabling searches over the Protein Data Bank in a matter of seconds, and provably correct, finding all matches below a user-specified root-mean-square deviation cutoff. We show that despite the potentially exponential time complexity of the problem, running times in practice are modest even for queries with many segments. The ability to explore naturally plausible structural and sequence variations around a given motif has the potential to synthesize its design principles in an automated manner; so we go on to illustrate the utility of MASTER to protein structural biology. We demonstrate its capacity to rapidly establish structure–sequence relationships, uncover the native designability landscapes of tertiary structural motifs, identify structural signatures of binding, and automatically rewire protein topologies. Given the broad utility of protein tertiary fragment searches, we hope that providing MASTER in an open-source format will enable novel advances in understanding, predicting, and designing protein structure. PMID:25420575

  3. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis.

    PubMed

    Houston, Simon; Lithgow, Karen Vivien; Osbak, Kara Krista; Kenyon, Chris Richard; Cameron, Caroline E

    2018-05-16

    Syphilis continues to be a major global health threat with 11 million new infections each year, and a global burden of 36 million cases. The causative agent of syphilis, Treponema pallidum subspecies pallidum, is a highly virulent bacterium, however the molecular mechanisms underlying T. pallidum pathogenesis remain to be definitively identified. This is due to the fact that T. pallidum is currently uncultivatable, inherently fragile and thus difficult to work with, and phylogenetically distinct with no conventional virulence factor homologs found in other pathogens. In fact, approximately 30% of its predicted protein-coding genes have no known orthologs or assigned functions. Here we employed a structural bioinformatics approach using Phyre2-based tertiary structure modeling to improve our understanding of T. pallidum protein function on a proteome-wide scale. Phyre2-based tertiary structure modeling generated high-confidence predictions for 80% of the T. pallidum proteome (780/978 predicted proteins). Tertiary structure modeling also inferred the same function as primary structure-based annotations from genome sequencing pipelines for 525/605 proteins (87%), which represents 54% (525/978) of all T. pallidum proteins. Of the 175 T. pallidum proteins modeled with high confidence that were not assigned functions in the previously annotated published proteome, 167 (95%) were able to be assigned predicted functions. Twenty-one of the 175 hypothetical proteins modeled with high confidence were also predicted to exhibit significant structural similarity with proteins experimentally confirmed to be required for virulence in other pathogens. Phyre2-based structural modeling is a powerful bioinformatics tool that has provided insight into the potential structure and function of the majority of T. pallidum proteins and helped validate the primary structure-based annotation of more than 50% of all T. pallidum proteins with high confidence. This work represents the first T. pallidum proteome-wide structural modeling study and is one of few studies to apply this approach for the functional annotation of a whole proteome.

  4. Prediction of protein tertiary structure to low resolution: performance for a large and structurally diverse test set.

    PubMed

    Eyrich, V A; Standley, D M; Friesner, R A

    1999-05-14

    We report the tertiary structure predictions for 95 proteins ranging in size from 17 to 160 residues starting from known secondary structure. Predictions are obtained from global minimization of an empirical potential function followed by the application of a refined atomic overlap potential. The minimization strategy employed represents a variant of the Monte Carlo plus minimization scheme of Li and Scheraga applied to a reduced model of the protein chain. For all of the cases except beta-proteins larger than 75 residues, a native-like structure, usually 4-6 A root-mean-square deviation from the native, is located. For beta-proteins larger than 75 residues, the energy gap between native-like structures and the lowest energy structures produced in the simulation is large, so that low RMSD structures are not generated starting from an unfolded state. This is attributed to the lack of an explicit hydrogen bond term in the potential function, which we hypothesize is necessary to stabilize large assemblies of beta-strands. Copyright 1999 Academic Press.

  5. Tertiary structural propensities reveal fundamental sequence/structure relationships.

    PubMed

    Zheng, Fan; Zhang, Jian; Grigoryan, Gevorg

    2015-05-05

    Extracting useful generalizations from the continually growing Protein Data Bank (PDB) is of central importance. We hypothesize that the PDB contains valuable quantitative information on the level of local tertiary structural motifs (TERMs). We show that by breaking a protein structure into its constituent TERMs, and querying the PDB to characterize the natural ensemble matching each, we can estimate the compatibility of the structure with a given amino acid sequence through a metric we term "structure score." Considering submissions from recent Critical Assessment of Structure Prediction (CASP) experiments, we found a strong correlation (R = 0.69) between structure score and model accuracy, with poorly predicted regions readily identifiable. This performance exceeds that of leading atomistic statistical energy functions. Furthermore, TERM-based analysis of two prototypical multi-state proteins rapidly produced structural insights fully consistent with prior extensive experimental studies. We thus find that TERM-based analysis should have considerable utility for protein structural biology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A Method to Predict the Structure and Stability of RNA/RNA Complexes.

    PubMed

    Xu, Xiaojun; Chen, Shi-Jie

    2016-01-01

    RNA/RNA interactions are essential for genomic RNA dimerization and regulation of gene expression. Intermolecular loop-loop base pairing is a widespread and functionally important tertiary structure motif in RNA machinery. However, computational prediction of intermolecular loop-loop base pairing is challenged by the entropy and free energy calculation due to the conformational constraint and the intermolecular interactions. In this chapter, we describe a recently developed statistical mechanics-based method for the prediction of RNA/RNA complex structures and stabilities. The method is based on the virtual bond RNA folding model (Vfold). The main emphasis in the method is placed on the evaluation of the entropy and free energy for the loops, especially tertiary kissing loops. The method also uses recursive partition function calculations and two-step screening algorithm for large, complicated structures of RNA/RNA complexes. As case studies, we use the HIV-1 Mal dimer and the siRNA/HIV-1 mutant (T4) to illustrate the method.

  7. A new way to see RNA

    PubMed Central

    Keating, Kevin S.; Humphris, Elisabeth L.; Pyle, Anna Marie

    2015-01-01

    Unlike proteins, the RNA backbone has numerous degrees of freedom (eight, if one counts the sugar pucker), making RNA modeling, structure building and prediction a multidimensional problem of exceptionally high complexity. And yet RNA tertiary structures are not infinite in their structural morphology; rather, they are built from a limited set of discrete units. In order to reduce the dimensionality of the RNA backbone in a physically reasonable way, a shorthand notation was created that reduced the RNA backbone torsion angles to two (η and θ, analogous to ϕ and ψ in proteins). When these torsion angles are calculated for nucleotides in a crystallographic database and plotted against one another, one obtains a plot analogous to a Ramachandran plot (the η/θ plot), with highly populated and unpopulated regions. Nucleotides that occupy proximal positions on the plot have identical structures and are found in the same units of tertiary structure. In this review, we describe the statistical validation of the η/θ formalism and the exploration of features within the η/θ plot. We also describe the application of the η/θ formalism in RNA motif discovery, structural comparison, RNA structure building and tertiary structure prediction. More than a tool, however, the η/θ formalism has provided new insights into RNA structure itself, revealing its fundamental components and the factors underlying RNA architectural form. PMID:21729350

  8. RaptorX server: a resource for template-based protein structure modeling.

    PubMed

    Källberg, Morten; Margaryan, Gohar; Wang, Sheng; Ma, Jianzhu; Xu, Jinbo

    2014-01-01

    Assigning functional properties to a newly discovered protein is a key challenge in modern biology. To this end, computational modeling of the three-dimensional atomic arrangement of the amino acid chain is often crucial in determining the role of the protein in biological processes. We present a community-wide web-based protocol, RaptorX server ( http://raptorx.uchicago.edu ), for automated protein secondary structure prediction, template-based tertiary structure modeling, and probabilistic alignment sampling.Given a target sequence, RaptorX server is able to detect even remotely related template sequences by means of a novel nonlinear context-specific alignment potential and probabilistic consistency algorithm. Using the protocol presented here it is thus possible to obtain high-quality structural models for many target protein sequences when only distantly related protein domains have experimentally solved structures. At present, RaptorX server can perform secondary and tertiary structure prediction of a 200 amino acid target sequence in approximately 30 min.

  9. Contact Prediction for Beta and Alpha-Beta Proteins Using Integer Linear Optimization and its Impact on the First Principles 3D Structure Prediction Method ASTRO-FOLD

    PubMed Central

    Rajgaria, R.; Wei, Y.; Floudas, C. A.

    2010-01-01

    An integer linear optimization model is presented to predict residue contacts in β, α + β, and α/β proteins. The total energy of a protein is expressed as sum of a Cα – Cα distance dependent contact energy contribution and a hydrophobic contribution. The model selects contacts that assign lowest energy to the protein structure while satisfying a set of constraints that are included to enforce certain physically observed topological information. A new method based on hydrophobicity is proposed to find the β-sheet alignments. These β-sheet alignments are used as constraints for contacts between residues of β-sheets. This model was tested on three independent protein test sets and CASP8 test proteins consisting of β, α + β, α/β proteins and was found to perform very well. The average accuracy of the predictions (separated by at least six residues) was approximately 61%. The average true positive and false positive distances were also calculated for each of the test sets and they are 7.58 Å and 15.88 Å, respectively. Residue contact prediction can be directly used to facilitate the protein tertiary structure prediction. This proposed residue contact prediction model is incorporated into the first principles protein tertiary structure prediction approach, ASTRO-FOLD. The effectiveness of the contact prediction model was further demonstrated by the improvement in the quality of the protein structure ensemble generated using the predicted residue contacts for a test set of 10 proteins. PMID:20225257

  10. Immunoinformatic Analysis of Crimean Congo Hemorrhagic Fever Virus Glycoproteins and Epitope Prediction for Synthetic Peptide Vaccine.

    PubMed

    Tipu, Hamid Nawaz

    2016-02-01

    To determine the Crimean Congo Hemorrhagic Fever (CCHF) virus M segement glycoprotein's immunoinformatic parameters, and identify Human Leukocyte Antigen (HLA) class I binders as candidates for synthetic peptide vaccines. Cross-sectional study. Combined Military Hospital, Khuzdar Cantt, in May 2015. Data acquisition, antigenicity prediction, secondary and tertiary structure prediction, residue analysis were done using immunoinformatics tools. HLAclass I binders in glycoprotein's sequence were identified at nanomer length using NetMHC 3.4 and mapped onto tertiary structure. Docking was done for strongest binder against its corresponding allele with CABS-dock. HLAA*0101, 0201, 0301, 2402, 2601 and B*0702, 0801, 2705, 3901, 4001, 5801, 1501 were analyzed against two glycoprotein components of the virus. Atotal of 35 nanomers from GP1, and 3 from GP2 were identified. HLAB*0702 bound maximum number of peptides (6), while HLAB*4001 showed strongest binding affinity. HLAspecific glycoproteins epitope prediction can help identify synthetic peptide vaccine candidates.

  11. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure.

    PubMed

    Meitinger, T; Meindl, A; Bork, P; Rost, B; Sander, C; Haasemann, M; Murken, J

    1993-12-01

    The X-lined gene for Norrie disease, which is characterized by blindness, deafness and mental retardation has been cloned recently. This gene has been thought to code for a putative extracellular factor; its predicted amino acid sequence is homologous to the C-terminal domain of diverse extracellular proteins. Sequence pattern searches and three-dimensional modelling now suggest that the Norrie disease protein (NDP) has a tertiary structure similar to that of transforming growth factor beta (TGF beta). Our model identifies NDP as a member of an emerging family of growth factors containing a cystine knot motif, with direct implications for the physiological role of NDP. The model also sheds light on sequence related domains such as the C-terminal domain of mucins and of von Willebrand factor.

  12. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  13. Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11

    PubMed Central

    Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin

    2015-01-01

    Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. PMID:26369671

  14. Organizational Commitment and Nurses' Characteristics as Predictors of Job Involvement.

    PubMed

    Alammar, Kamila; Alamrani, Mashael; Alqahtani, Sara; Ahmad, Muayyad

    2016-01-01

    To predict nurses' job involvement on the basis of their organizational commitment and personal characteristics at a large tertiary hospital in Saudi Arabia. Data were collected in 2015 from a convenience sample of 558 nurses working at a large tertiary hospital in Riyadh, Saudi Arabia. A cross-sectional correlational design was used in this study. Data were collected using a structured questionnaire. All commitment scales had significant relationships. Multiple linear regression analysis revealed that the model predicted a sizeable proportion of variance in nurses' job involvement (p < 0.001). High organizational commitment enhances job involvement, which may lead to more organizational stability and effectiveness.

  15. Protein Folding and Structure Prediction from the Ground Up: The Atomistic Associative Memory, Water Mediated, Structure and Energy Model.

    PubMed

    Chen, Mingchen; Lin, Xingcheng; Zheng, Weihua; Onuchic, José N; Wolynes, Peter G

    2016-08-25

    The associative memory, water mediated, structure and energy model (AWSEM) is a coarse-grained force field with transferable tertiary interactions that incorporates local in sequence energetic biases using bioinformatically derived structural information about peptide fragments with locally similar sequences that we call memories. The memory information from the protein data bank (PDB) database guides proper protein folding. The structural information about available sequences in the database varies in quality and can sometimes lead to frustrated free energy landscapes locally. One way out of this difficulty is to construct the input fragment memory information from all-atom simulations of portions of the complete polypeptide chain. In this paper, we investigate this approach first put forward by Kwac and Wolynes in a more complete way by studying the structure prediction capabilities of this approach for six α-helical proteins. This scheme which we call the atomistic associative memory, water mediated, structure and energy model (AAWSEM) amounts to an ab initio protein structure prediction method that starts from the ground up without using bioinformatic input. The free energy profiles from AAWSEM show that atomistic fragment memories are sufficient to guide the correct folding when tertiary forces are included. AAWSEM combines the efficiency of coarse-grained simulations on the full protein level with the local structural accuracy achievable from all-atom simulations of only parts of a large protein. The results suggest that a hybrid use of atomistic fragment memory and database memory in structural predictions may well be optimal for many practical applications.

  16. Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11.

    PubMed

    Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin

    2016-09-01

    Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. Proteins 2016; 84(Suppl 1):247-259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. From Ramachandran Maps to Tertiary Structures of Proteins.

    PubMed

    DasGupta, Debarati; Kaushik, Rahul; Jayaram, B

    2015-08-27

    Sequence to structure of proteins is an unsolved problem. A possible coarse grained resolution to this entails specification of all the torsional (Φ, Ψ) angles along the backbone of the polypeptide chain. The Ramachandran map quite elegantly depicts the allowed conformational (Φ, Ψ) space of proteins which is still very large for the purposes of accurate structure generation. We have divided the allowed (Φ, Ψ) space in Ramachandran maps into 27 distinct conformations sufficient to regenerate a structure to within 5 Å from the native, at least for small proteins, thus reducing the structure prediction problem to a specification of an alphanumeric string, i.e., the amino acid sequence together with one of the 27 conformations preferred by each amino acid residue. This still theoretically results in 27(n) conformations for a protein comprising "n" amino acids. We then investigated the spatial correlations at the two-residue (dipeptide) and three-residue (tripeptide) levels in what may be described as higher order Ramachandran maps, with the premise that the allowed conformational space starts to shrink as we introduce neighborhood effects. We found, for instance, for a tripeptide which potentially can exist in any of the 27(3) "allowed" conformations, three-fourths of these conformations are redundant to the 95% confidence level, suggesting sequence context dependent preferred conformations. We then created a look-up table of preferred conformations at the tripeptide level and correlated them with energetically favorable conformations. We found in particular that Boltzmann probabilities calculated from van der Waals energies for each conformation of tripeptides correlate well with the observed populations in the structural database (the average correlation coefficient is ∼0.8). An alpha-numeric string and hence the tertiary structure can be generated for any sequence from the look-up table within minutes on a single processor and to a higher level of accuracy if secondary structure can be specified. We tested the methodology on 100 small proteins, and in 90% of the cases, a structure within 5 Å is recovered. We thus believe that the method presented here provides the missing link between Ramachandran maps and tertiary structures of proteins. A Web server to convert a tertiary structure to an alphanumeric string and to predict the tertiary structure from the sequence of a protein using the above methodology is created and made freely accessible at http://www.scfbio-iitd.res.in/software/proteomics/rm2ts.jsp.

  18. An Amino Acid Code to Define a Protein’s Tertiary Packing Surface

    PubMed Central

    Fraga, Keith J.; Joo, Hyun; Tsai, Jerry

    2015-01-01

    One difficult aspect of the protein-folding problem is characterizing the non-specific interactions that define packing in protein tertiary structure. To better understand tertiary structure, this work extends the knob-socket model by classifying the interactions of a single knob residue packed into a set of contiguous sockets, or a pocket made up of 4 or more residues. The knob-socket construct allows for a symbolic two-dimensional mapping of pockets. The two-dimensional mapping of pockets provides a simple method to investigate the variety of pocket shapes in order to understand the geometry of protein tertiary surfaces. The diversity of pocket geometries can be organized into groups of pockets that share a common core, which suggests that some interactions in pockets are ancillary to packing. Further analysis of pocket geometries displays a preferred configuration that is right-handed in α-helices and left-handed in β-sheets. The amino acid composition of pockets illustrates the importance of non-polar amino acids in packing as well as position specificity. As expected, all pocket shapes prefer to pack with hydrophobic knobs; however, knobs are not selective for the pockets they pack. Investigating side-chain rotamer preferences for certain pocket shapes uncovers no strong correlations. These findings allow a simple vocabulary based on knobs and sockets to describe protein tertiary packing that supports improved analysis, design and prediction of protein structure. PMID:26575337

  19. Measuring case-mix complexity of tertiary care hospitals using DRGs.

    PubMed

    Park, Hayoung; Shin, Youngsoo

    2004-02-01

    The objectives of the study were to develop a model that measures and evaluates case-mix complexity of tertiary care hospitals, and to examine the characteristics of such a model. Physician panels defined three classes of case complexity and assigned disease categories represented by Adjacent Diagnosis Related Groups (ADRGs) to one of three case complexity classes. Three types of scores, indicating proportions of inpatients in each case complexity class standardized by the proportions at the national level, were defined to measure the case-mix complexity of a hospital. Discharge information for about 10% of inpatient episodes at 85 hospitals with bed size larger than 400 and their input structure and research and education activity were used to evaluate the case-mix complexity model. Results show its power to predict hospitals with the expected functions of tertiary care hospitals, i.e. resource intensive care, expensive input structure, and high levels of research and education activities.

  20. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction.

    PubMed

    Yang, Yuedong; Li, Xiaomei; Zhao, Huiying; Zhan, Jian; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    As most RNA structures are elusive to structure determination, obtaining solvent accessible surface areas (ASAs) of nucleotides in an RNA structure is an important first step to characterize potential functional sites and core structural regions. Here, we developed RNAsnap, the first machine-learning method trained on protein-bound RNA structures for solvent accessibility prediction. Built on sequence profiles from multiple sequence alignment (RNAsnap-prof), the method provided robust prediction in fivefold cross-validation and an independent test (Pearson correlation coefficients, r, between predicted and actual ASA values are 0.66 and 0.63, respectively). Application of the method to 6178 mRNAs revealed its positive correlation to mRNA accessibility by dimethyl sulphate (DMS) experimentally measured in vivo (r = 0.37) but not in vitro (r = 0.07), despite the lack of training on mRNAs and the fact that DMS accessibility is only an approximation to solvent accessibility. We further found strong association across coding and noncoding regions between predicted solvent accessibility of the mutation site of a single nucleotide variant (SNV) and the frequency of that variant in the population for 2.2 million SNVs obtained in the 1000 Genomes Project. Moreover, mapping solvent accessibility of RNAs to the human genome indicated that introns, 5' cap of 5' and 3' cap of 3' untranslated regions, are more solvent accessible, consistent with their respective functional roles. These results support conformational selections as the mechanism for the formation of RNA-protein complexes and highlight the utility of genome-scale characterization of RNA tertiary structures by RNAsnap. The server and its stand-alone downloadable version are available at http://sparks-lab.org. © 2016 Yang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Correlation of RNA secondary structure statistics with thermodynamic stability and applications to folding.

    PubMed

    Wu, Johnny C; Gardner, David P; Ozer, Stuart; Gutell, Robin R; Ren, Pengyu

    2009-08-28

    The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.

  2. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    PubMed

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications.

  3. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design.

    PubMed

    Moghram, Basem Ameen; Nabil, Emad; Badr, Amr

    2018-01-01

    T-cell epitope structure identification is a significant challenging immunoinformatic problem within epitope-based vaccine design. Epitopes or antigenic peptides are a set of amino acids that bind with the Major Histocompatibility Complex (MHC) molecules. The aim of this process is presented by Antigen Presenting Cells to be inspected by T-cells. MHC-molecule-binding epitopes are responsible for triggering the immune response to antigens. The epitope's three-dimensional (3D) molecular structure (i.e., tertiary structure) reflects its proper function. Therefore, the identification of MHC class-II epitopes structure is a significant step towards epitope-based vaccine design and understanding of the immune system. In this paper, we propose a new technique using a Genetic Algorithm for Predicting the Epitope Structure (GAPES), to predict the structure of MHC class-II epitopes based on their sequence. The proposed Elitist-based genetic algorithm for predicting the epitope's tertiary structure is based on Ab-Initio Empirical Conformational Energy Program for Peptides (ECEPP) Force Field Model. The developed secondary structure prediction technique relies on Ramachandran Plot. We used two alignment algorithms: the ROSS alignment and TM-Score alignment. We applied four different alignment approaches to calculate the similarity scores of the dataset under test. We utilized the support vector machine (SVM) classifier as an evaluation of the prediction performance. The prediction accuracy and the Area Under Receiver Operating Characteristic (ROC) Curve (AUC) were calculated as measures of performance. The calculations are performed on twelve similarity-reduced datasets of the Immune Epitope Data Base (IEDB) and a large dataset of peptide-binding affinities to HLA-DRB1*0101. The results showed that GAPES was reliable and very accurate. We achieved an average prediction accuracy of 93.50% and an average AUC of 0.974 in the IEDB dataset. Also, we achieved an accuracy of 95.125% and an AUC of 0.987 on the HLA-DRB1*0101 allele of the Wang benchmark dataset. The results indicate that the proposed prediction technique "GAPES" is a promising technique that will help researchers and scientists to predict the protein structure and it will assist them in the intelligent design of new epitope-based vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. CONFOLD2: improved contact-driven ab initio protein structure modeling.

    PubMed

    Adhikari, Badri; Cheng, Jianlin

    2018-01-25

    Contact-guided protein structure prediction methods are becoming more and more successful because of the latest advances in residue-residue contact prediction. To support contact-driven structure prediction, effective tools that can quickly build tertiary structural models of good quality from predicted contacts need to be developed. We develop an improved contact-driven protein modelling method, CONFOLD2, and study how it may be effectively used for ab initio protein structure prediction with predicted contacts as input. It builds models using various subsets of input contacts to explore the fold space under the guidance of a soft square energy function, and then clusters the models to obtain the top five models. CONFOLD2 obtains an average reconstruction accuracy of 0.57 TM-score for the 150 proteins in the PSICOV contact prediction dataset. When benchmarked on the CASP11 contacts predicted using CONSIP2 and CASP12 contacts predicted using Raptor-X, CONFOLD2 achieves a mean TM-score of 0.41 on both datasets. CONFOLD2 allows to quickly generate top five structural models for a protein sequence when its secondary structures and contacts predictions at hand. The source code of CONFOLD2 is publicly available at https://github.com/multicom-toolbox/CONFOLD2/ .

  5. RaptorX-Angle: real-value prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning.

    PubMed

    Gao, Yujuan; Wang, Sheng; Deng, Minghua; Xu, Jinbo

    2018-05-08

    Protein dihedral angles provide a detailed description of protein local conformation. Predicted dihedral angles can be used to narrow down the conformational space of the whole polypeptide chain significantly, thus aiding protein tertiary structure prediction. However, direct angle prediction from sequence alone is challenging. In this article, we present a novel method (named RaptorX-Angle) to predict real-valued angles by combining clustering and deep learning. Tested on a subset of PDB25 and the targets in the latest two Critical Assessment of protein Structure Prediction (CASP), our method outperforms the existing state-of-art method SPIDER2 in terms of Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE). Our result also shows approximately linear relationship between the real prediction errors and our estimated bounds. That is, the real prediction error can be well approximated by our estimated bounds. Our study provides an alternative and more accurate prediction of dihedral angles, which may facilitate protein structure prediction and functional study.

  6. Formation mechanism of NDMA from ranitidine, trimethylamine, and other tertiary amines during chloramination: a computational study.

    PubMed

    Liu, Yong Dong; Selbes, Meric; Zeng, Chengchu; Zhong, Rugang; Karanfil, Tanju

    2014-01-01

    Chloramination of drinking waters has been associated with N-nitrosodimethylamine (NDMA) formation as a disinfection byproduct. NDMA is classified as a probable carcinogen and thus its formation during chloramination has recently become the focus of considerable research interest. In this study, the formation mechanisms of NDMA from ranitidine and trimethylamine (TMA), as models of tertiary amines, during chloramination were investigated by using density functional theory (DFT). A new four-step formation pathway of NDMA was proposed involving nucleophilic substitution by chloramine, oxidation, and dehydration followed by nitrosation. The results suggested that nitrosation reaction is the rate-limiting step and determines the NDMA yield for tertiary amines. When 45 other tertiary amines were examined, the proposed mechanism was found to be more applicable to aromatic tertiary amines, and there may be still some additional factors or pathways that need to be considered for aliphatic tertiary amines. The heterolytic ONN(Me)2-R(+) bond dissociation energy to release NDMA and carbocation R(+) was found to be a criterion for evaluating the reactivity of aromatic tertiary amines. A structure-activity study indicates that tertiary amines with benzyl, aromatic heterocyclic ring, and diene-substituted methenyl adjacent to the DMA moiety are potentially significant NDMA precursors. The findings of this study are helpful for understanding NDMA formation mechanism and predicting NDMA yield of a precursor.

  7. Coevolutionary modeling of protein sequences: Predicting structure, function, and mutational landscapes

    NASA Astrophysics Data System (ADS)

    Weigt, Martin

    Over the last years, biological research has been revolutionized by experimental high-throughput techniques, in particular by next-generation sequencing technology. Unprecedented amounts of data are accumulating, and there is a growing request for computational methods unveiling the information hidden in raw data, thereby increasing our understanding of complex biological systems. Statistical-physics models based on the maximum-entropy principle have, in the last few years, played an important role in this context. To give a specific example, proteins and many non-coding RNA show a remarkable degree of structural and functional conservation in the course of evolution, despite a large variability in amino acid sequences. We have developed a statistical-mechanics inspired inference approach - called Direct-Coupling Analysis - to link this sequence variability (easy to observe in sequence alignments, which are available in public sequence databases) to bio-molecular structure and function. In my presentation I will show, how this methodology can be used (i) to infer contacts between residues and thus to guide tertiary and quaternary protein structure prediction and RNA structure prediction, (ii) to discriminate interacting from non-interacting protein families, and thus to infer conserved protein-protein interaction networks, and (iii) to reconstruct mutational landscapes and thus to predict the phenotypic effect of mutations. References [1] M. Figliuzzi, H. Jacquier, A. Schug, O. Tenaillon and M. Weigt ''Coevolutionary landscape inference and the context-dependence of mutations in beta-lactamase TEM-1'', Mol. Biol. Evol. (2015), doi: 10.1093/molbev/msv211 [2] E. De Leonardis, B. Lutz, S. Ratz, S. Cocco, R. Monasson, A. Schug, M. Weigt ''Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction'', Nucleic Acids Research (2015), doi: 10.1093/nar/gkv932 [3] F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. Marks, C. Sander, R. Zecchina, J.N. Onuchic, T. Hwa, M. Weigt, ''Direct-coupling analysis of residue co-evolution captures native contacts across many protein families'', Proc. Natl. Acad. Sci. 108, E1293-E1301 (2011).

  8. Blocking Protein kinase C signaling pathway: mechanistic insights into the anti-leishmanial activity of prospective herbal drugs from Withania somnifera

    PubMed Central

    2012-01-01

    Background Leishmaniasis is caused by several species of leishmania protozoan and is one of the major vector-born diseases after malaria and sleeping sickness. Toxicity of available drugs and drug resistance development by protozoa in recent years has made Leishmaniasis cure difficult and challenging. This urges the need to discover new antileishmanial-drug targets and antileishmanial-drug development. Results Tertiary structure of leishmanial protein kinase C was predicted and found stable with a RMSD of 5.8Å during MD simulations. Natural compound withaferin A inhibited the predicted protein at its active site with -28.47 kcal/mol binding free energy. Withanone was also found to inhibit LPKC with good binding affinity of -22.57 kcal/mol. Both withaferin A and withanone were found stable within the binding pocket of predicted protein when MD simulations of ligand-bound protein complexes were carried out to examine the consistency of interactions between the two. Conclusions Leishmanial protein kinase C (LPKC) has been identified as a potential target to develop drugs against Leishmaniasis. We modelled and refined the tertiary structure of LPKC using computational methods such as homology modelling and molecular dynamics simulations. This structure of LPKC was used to reveal mode of inhibition of two previous experimentally reported natural compounds from Withania somnifera - withaferin A and withanone. PMID:23281834

  9. Shaping up the protein folding funnel by local interaction: lesson from a structure prediction study.

    PubMed

    Chikenji, George; Fujitsuka, Yoshimi; Takada, Shoji

    2006-02-28

    Predicting protein tertiary structure by folding-like simulations is one of the most stringent tests of how much we understand the principle of protein folding. Currently, the most successful method for folding-based structure prediction is the fragment assembly (FA) method. Here, we address why the FA method is so successful and its lesson for the folding problem. To do so, using the FA method, we designed a structure prediction test of "chimera proteins." In the chimera proteins, local structural preference is specific to the target sequences, whereas nonlocal interactions are only sequence-independent compaction forces. We find that these chimera proteins can find the native folds of the intact sequences with high probability indicating dominant roles of the local interactions. We further explore roles of local structural preference by exact calculation of the HP lattice model of proteins. From these results, we suggest principles of protein folding: For small proteins, compact structures that are fully compatible with local structural preference are few, one of which is the native fold. These local biases shape up the funnel-like energy landscape.

  10. Shaping up the protein folding funnel by local interaction: Lesson from a structure prediction study

    PubMed Central

    Chikenji, George; Fujitsuka, Yoshimi; Takada, Shoji

    2006-01-01

    Predicting protein tertiary structure by folding-like simulations is one of the most stringent tests of how much we understand the principle of protein folding. Currently, the most successful method for folding-based structure prediction is the fragment assembly (FA) method. Here, we address why the FA method is so successful and its lesson for the folding problem. To do so, using the FA method, we designed a structure prediction test of “chimera proteins.” In the chimera proteins, local structural preference is specific to the target sequences, whereas nonlocal interactions are only sequence-independent compaction forces. We find that these chimera proteins can find the native folds of the intact sequences with high probability indicating dominant roles of the local interactions. We further explore roles of local structural preference by exact calculation of the HP lattice model of proteins. From these results, we suggest principles of protein folding: For small proteins, compact structures that are fully compatible with local structural preference are few, one of which is the native fold. These local biases shape up the funnel-like energy landscape. PMID:16488978

  11. Genome-Wide Prediction of Intrinsic Disorder; Sequence Alignment of Intrinsically Disordered Proteins

    ERIC Educational Resources Information Center

    Midic, Uros

    2012-01-01

    Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…

  12. Amino acid sequence analysis of the annexin super-gene family of proteins.

    PubMed

    Barton, G J; Newman, R H; Freemont, P S; Crumpton, M J

    1991-06-15

    The annexins are a widespread family of calcium-dependent membrane-binding proteins. No common function has been identified for the family and, until recently, no crystallographic data existed for an annexin. In this paper we draw together 22 available annexin sequences consisting of 88 similar repeat units, and apply the techniques of multiple sequence alignment, pattern matching, secondary structure prediction and conservation analysis to the characterisation of the molecules. The analysis clearly shows that the repeats cluster into four distinct families and that greatest variation occurs within the repeat 3 units. Multiple alignment of the 88 repeats shows amino acids with conserved physicochemical properties at 22 positions, with only Gly at position 23 being absolutely conserved in all repeats. Secondary structure prediction techniques identify five conserved helices in each repeat unit and patterns of conserved hydrophobic amino acids are consistent with one face of a helix packing against the protein core in predicted helices a, c, d, e. Helix b is generally hydrophobic in all repeats, but contains a striking pattern of repeat-specific residue conservation at position 31, with Arg in repeats 4 and Glu in repeats 2, but unconserved amino acids in repeats 1 and 3. This suggests repeats 2 and 4 may interact via a buried saltbridge. The loop between predicted helices a and b of repeat 3 shows features distinct from the equivalent loop in repeats 1, 2 and 4, suggesting an important structural and/or functional role for this region. No compelling evidence emerges from this study for uteroglobin and the annexins sharing similar tertiary structures, or for uteroglobin representing a derivative of a primordial one-repeat structure that underwent duplication to give the present day annexins. The analyses performed in this paper are re-evaluated in the Appendix, in the light of the recently published X-ray structure for human annexin V. The structure confirms most of the predictions and shows the power of techniques for the determination of tertiary structural information from the amino acid sequences of an aligned protein family.

  13. Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement

    PubMed Central

    Xu, Dong; Zhang, Jian; Roy, Ambrish; Zhang, Yang

    2011-01-01

    I-TASSER is an automated pipeline for protein tertiary structure prediction using multiple threading alignments and iterative structure assembly simulations. In CASP9 experiments, two new algorithms, QUARK and FG-MD, were added to the I-TASSER pipeline for improving the structural modeling accuracy. QUARK is a de novo structure prediction algorithm used for structure modeling of proteins that lack detectable template structures. For distantly homologous targets, QUARK models are found useful as a reference structure for selecting good threading alignments and guiding the I-TASSER structure assembly simulations. FG-MD is an atomic-level structural refinement program that uses structural fragments collected from the PDB structures to guide molecular dynamics simulation and improve the local structure of predicted model, including hydrogen-bonding networks, torsion angles and steric clashes. Despite considerable progress in both the template-based and template-free structure modeling, significant improvements on protein target classification, domain parsing, model selection, and ab initio folding of beta-proteins are still needed to further improve the I-TASSER pipeline. PMID:22069036

  14. GeneSilico protein structure prediction meta-server.

    PubMed

    Kurowski, Michal A; Bujnicki, Janusz M

    2003-07-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.

  15. GeneSilico protein structure prediction meta-server

    PubMed Central

    Kurowski, Michal A.; Bujnicki, Janusz M.

    2003-01-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta. PMID:12824313

  16. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions.

    PubMed

    Shi, Ya-Zhou; Jin, Lei; Feng, Chen-Jie; Tan, Ya-Lan; Tan, Zhi-Jie

    2018-06-01

    RNA pseudoknots are a kind of minimal RNA tertiary structural motifs, and their three-dimensional (3D) structures and stability play essential roles in a variety of biological functions. Therefore, to predict 3D structures and stability of RNA pseudoknots is essential for understanding their functions. In the work, we employed our previously developed coarse-grained model with implicit salt to make extensive predictions and comprehensive analyses on the 3D structures and stability for RNA pseudoknots in monovalent/divalent ion solutions. The comparisons with available experimental data show that our model can successfully predict the 3D structures of RNA pseudoknots from their sequences, and can also make reliable predictions for the stability of RNA pseudoknots with different lengths and sequences over a wide range of monovalent/divalent ion concentrations. Furthermore, we made comprehensive analyses on the unfolding pathway for various RNA pseudoknots in ion solutions. Our analyses for extensive pseudokonts and the wide range of monovalent/divalent ion concentrations verify that the unfolding pathway of RNA pseudoknots is mainly dependent on the relative stability of unfolded intermediate states, and show that the unfolding pathway of RNA pseudoknots can be significantly modulated by their sequences and solution ion conditions.

  17. Physiologically based pharmacokinetic model for ethyl tertiary-butyl ether and tertiary-butyl alcohol in rats: Contribution of binding to α2u-globulin in male rats and high-exposure nonlinear kinetics to toxicity and cancer outcomes.

    PubMed

    Borghoff, Susan J; Ring, Caroline; Banton, Marcy I; Leavens, Teresa L

    2017-05-01

    In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary-butyl ether (ETBE), caused liver tumors in male rats, while tertiary-butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary-butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat-specific protein α2u-globulin, which plays a role in the ETBE and TBA kidney response observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted similar kidney AUC 0-∞ for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male-rat-specific mode of action for TBA-induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure concentrations above ~2000 ppm, based on blood AUC 0-∞ for ETBE and TBA. The shift from linear to nonlinear kinetics at exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.

  18. Stratigraphy and structure of coalbed methane reservoirs in the United States: an overview

    USGS Publications Warehouse

    Pashin, J.C.

    1998-01-01

    Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United states is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compression and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.Stratigraphy and geologic structure determine the shape, continuity and permeability of coal and are therefore critical considerations for designing exploration and production strategies for coalbed methane. Coal in the United States is dominantly of Pennsylvanian, Cretaceous and Tertiary age, and to date, more than 90% of the coalbed methane produced is from Pennsylvanian and Cretaceous strata of the Black Warrior and San Juan Basins. Investigations of these basins establish that sequence stratigraphy is a promising approach for regional characterization of coalbed methane reservoirs. Local stratigraphic variation within these strata is the product of sedimentologic and tectonic processes and is a consideration for selecting completion zones. Coalbed methane production in the United States is mainly from foreland and intermontane basins containing diverse compressional and extensional structures. Balanced structural models can be used to construct and validate cross sections as well as to quantify layer-parallel strain and predict the distribution of fractures. Folds and faults influence gas and water production in diverse ways. However, interwell heterogeneity related to fractures and shear structures makes the performance of individual wells difficult to predict.

  19. A sampling-based method for ranking protein structural models by integrating multiple scores and features.

    PubMed

    Shi, Xiaohu; Zhang, Jingfen; He, Zhiquan; Shang, Yi; Xu, Dong

    2011-09-01

    One of the major challenges in protein tertiary structure prediction is structure quality assessment. In many cases, protein structure prediction tools generate good structural models, but fail to select the best models from a huge number of candidates as the final output. In this study, we developed a sampling-based machine-learning method to rank protein structural models by integrating multiple scores and features. First, features such as predicted secondary structure, solvent accessibility and residue-residue contact information are integrated by two Radial Basis Function (RBF) models trained from different datasets. Then, the two RBF scores and five selected scoring functions developed by others, i.e., Opus-CA, Opus-PSP, DFIRE, RAPDF, and Cheng Score are synthesized by a sampling method. At last, another integrated RBF model ranks the structural models according to the features of sampling distribution. We tested the proposed method by using two different datasets, including the CASP server prediction models of all CASP8 targets and a set of models generated by our in-house software MUFOLD. The test result shows that our method outperforms any individual scoring function on both best model selection, and overall correlation between the predicted ranking and the actual ranking of structural quality.

  20. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  1. Analysis of Management Practices in Lagos State Tertiary Institutions through Total Quality Management Structural Framework

    ERIC Educational Resources Information Center

    AbdulAzeez, Abbas Tunde

    2016-01-01

    This research investigated total quality management practices and quality teacher education in public tertiary institutions in Lagos State. The study was therefore designed to analyse management practices in Lagos state tertiary institutions through total quality management structural framework. The selected public tertiary institutions in Lagos…

  2. Fluorescence Competition Assay Measurements of Free Energy Changes for RNA Pseudoknots†

    PubMed Central

    2009-01-01

    RNA pseudoknots have important functions, and thermodynamic stability is a key to predicting pseudoknots in RNA sequences and to understanding their functions. Traditional methods, such as UV melting and differential scanning calorimetry, for measuring RNA thermodynamics are restricted to temperature ranges around the melting temperature for a pseudoknot. Here, we report RNA pseudoknot free energy changes at 37 °C measured by fluorescence competition assays. Sequence-dependent studies for the loop 1−stem 2 region reveal (1) the individual nearest-neighbor hydrogen bonding (INN-HB) model provides a reasonable estimate for the free energy change when a Watson−Crick base pair in stem 2 is changed, (2) the loop entropy can be estimated by a statistical polymer model, although some penalty for certain loop sequences is necessary, and (3) tertiary interactions can significantly stabilize pseudoknots and extending the length of stem 2 may alter tertiary interactions such that the INN-HB model does not predict the net effect of adding a base pair. The results can inform writing of algorithms for predicting and/or designing RNA secondary structures. PMID:19921809

  3. Principles of protein folding--a perspective from simple exact models.

    PubMed Central

    Dill, K. A.; Bromberg, S.; Yue, K.; Fiebig, K. M.; Yee, D. P.; Thomas, P. D.; Chan, H. S.

    1995-01-01

    General principles of protein structure, stability, and folding kinetics have recently been explored in computer simulations of simple exact lattice models. These models represent protein chains at a rudimentary level, but they involve few parameters, approximations, or implicit biases, and they allow complete explorations of conformational and sequence spaces. Such simulations have resulted in testable predictions that are sometimes unanticipated: The folding code is mainly binary and delocalized throughout the amino acid sequence. The secondary and tertiary structures of a protein are specified mainly by the sequence of polar and nonpolar monomers. More specific interactions may refine the structure, rather than dominate the folding code. Simple exact models can account for the properties that characterize protein folding: two-state cooperativity, secondary and tertiary structures, and multistage folding kinetics--fast hydrophobic collapse followed by slower annealing. These studies suggest the possibility of creating "foldable" chain molecules other than proteins. The encoding of a unique compact chain conformation may not require amino acids; it may require only the ability to synthesize specific monomer sequences in which at least one monomer type is solvent-averse. PMID:7613459

  4. Using RNA Sequence and Structure for the Prediction of Riboswitch Aptamer: A Comprehensive Review of Available Software and Tools

    PubMed Central

    Antunes, Deborah; Jorge, Natasha A. N.; Caffarena, Ernesto R.; Passetti, Fabio

    2018-01-01

    RNA molecules are essential players in many fundamental biological processes. Prokaryotes and eukaryotes have distinct RNA classes with specific structural features and functional roles. Computational prediction of protein structures is a research field in which high confidence three-dimensional protein models can be proposed based on the sequence alignment between target and templates. However, to date, only a few approaches have been developed for the computational prediction of RNA structures. Similar to proteins, RNA structures may be altered due to the interaction with various ligands, including proteins, other RNAs, and metabolites. A riboswitch is a molecular mechanism, found in the three kingdoms of life, in which the RNA structure is modified by the binding of a metabolite. It can regulate multiple gene expression mechanisms, such as transcription, translation initiation, and mRNA splicing and processing. Due to their nature, these entities also act on the regulation of gene expression and detection of small metabolites and have the potential to helping in the discovery of new classes of antimicrobial agents. In this review, we describe software and web servers currently available for riboswitch aptamer identification and secondary and tertiary structure prediction, including applications. PMID:29403526

  5. The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction.

    PubMed

    Roche, Daniel B; Buenavista, Maria T; Tetchner, Stuart J; McGuffin, Liam J

    2011-07-01

    The IntFOLD server is a novel independent server that integrates several cutting edge methods for the prediction of structure and function from sequence. Our guiding principles behind the server development were as follows: (i) to provide a simple unified resource that makes our prediction software accessible to all and (ii) to produce integrated output for predictions that can be easily interpreted. The output for predictions is presented as a simple table that summarizes all results graphically via plots and annotated 3D models. The raw machine readable data files for each set of predictions are also provided for developers, which comply with the Critical Assessment of Methods for Protein Structure Prediction (CASP) data standards. The server comprises an integrated suite of five novel methods: nFOLD4, for tertiary structure prediction; ModFOLD 3.0, for model quality assessment; DISOclust 2.0, for disorder prediction; DomFOLD 2.0 for domain prediction; and FunFOLD 1.0, for ligand binding site prediction. Predictions from the IntFOLD server were found to be competitive in several categories in the recent CASP9 experiment. The IntFOLD server is available at the following web site: http://www.reading.ac.uk/bioinf/IntFOLD/.

  6. Automated 3D structure composition for large RNAs

    PubMed Central

    Popenda, Mariusz; Szachniuk, Marta; Antczak, Maciej; Purzycka, Katarzyna J.; Lukasiak, Piotr; Bartol, Natalia; Blazewicz, Jacek; Adamiak, Ryszard W.

    2012-01-01

    Understanding the numerous functions that RNAs play in living cells depends critically on knowledge of their three-dimensional structure. Due to the difficulties in experimentally assessing structures of large RNAs, there is currently great demand for new high-resolution structure prediction methods. We present the novel method for the fully automated prediction of RNA 3D structures from a user-defined secondary structure. The concept is founded on the machine translation system. The translation engine operates on the RNA FRABASE database tailored to the dictionary relating the RNA secondary structure and tertiary structure elements. The translation algorithm is very fast. Initial 3D structure is composed in a range of seconds on a single processor. The method assures the prediction of large RNA 3D structures of high quality. Our approach needs neither structural templates nor RNA sequence alignment, required for comparative methods. This enables the building of unresolved yet native and artificial RNA structures. The method is implemented in a publicly available, user-friendly server RNAComposer. It works in an interactive mode and a batch mode. The batch mode is designed for large-scale modelling and accepts atomic distance restraints. Presently, the server is set to build RNA structures of up to 500 residues. PMID:22539264

  7. FuncPatch: a web server for the fast Bayesian inference of conserved functional patches in protein 3D structures.

    PubMed

    Huang, Yi-Fei; Golding, G Brian

    2015-02-15

    A number of statistical phylogenetic methods have been developed to infer conserved functional sites or regions in proteins. Many methods, e.g. Rate4Site, apply the standard phylogenetic models to infer site-specific substitution rates and totally ignore the spatial correlation of substitution rates in protein tertiary structures, which may reduce their power to identify conserved functional patches in protein tertiary structures when the sequences used in the analysis are highly similar. The 3D sliding window method has been proposed to infer conserved functional patches in protein tertiary structures, but the window size, which reflects the strength of the spatial correlation, must be predefined and is not inferred from data. We recently developed GP4Rate to solve these problems under the Bayesian framework. Unfortunately, GP4Rate is computationally slow. Here, we present an intuitive web server, FuncPatch, to perform a fast approximate Bayesian inference of conserved functional patches in protein tertiary structures. Both simulations and four case studies based on empirical data suggest that FuncPatch is a good approximation to GP4Rate. However, FuncPatch is orders of magnitudes faster than GP4Rate. In addition, simulations suggest that FuncPatch is potentially a useful tool complementary to Rate4Site, but the 3D sliding window method is less powerful than FuncPatch and Rate4Site. The functional patches predicted by FuncPatch in the four case studies are supported by experimental evidence, which corroborates the usefulness of FuncPatch. The software FuncPatch is freely available at the web site, http://info.mcmaster.ca/yifei/FuncPatch golding@mcmaster.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Towards Long-Range RNA Structure Prediction in Eukaryotic Genes.

    PubMed

    Pervouchine, Dmitri D

    2018-06-15

    The ability to form an intramolecular structure plays a fundamental role in eukaryotic RNA biogenesis. Proximate regions in the primary transcripts fold into a local secondary structure, which is then hierarchically assembled into a tertiary structure that is stabilized by RNA-binding proteins and long-range intramolecular base pairings. While the local RNA structure can be predicted reasonably well for short sequences, long-range structure at the scale of eukaryotic genes remains problematic from the computational standpoint. The aim of this review is to list functional examples of long-range RNA structures, to summarize current comparative methods of structure prediction, and to highlight their advances and limitations in the context of long-range RNA structures. Most comparative methods implement the “first-align-then-fold” principle, i.e., they operate on multiple sequence alignments, while functional RNA structures often reside in non-conserved parts of the primary transcripts. The opposite “first-fold-then-align” approach is currently explored to a much lesser extent. Developing novel methods in both directions will improve the performance of comparative RNA structure analysis and help discover novel long-range structures, their higher-order organization, and RNA⁻RNA interactions across the transcriptome.

  9. Ab initio/GIAO-CCSD(T) (13)C NMR study of the rearrangement and dynamic aspects of rapidly equilibrating tertiary carbocations, C6H13(+) and C7H15(+).

    PubMed

    Olah, George A; Prakash, G K Surya; Rasul, Golam

    2016-01-05

    The rearrangement pathways of the equilibrating tertiary carbocations, 2,3-dimethyl-2-butyl cation (C6H13(+), 1), 2,3,3-trimethyl-2-butyl cation (C7H15(+), 5) and 2,3-dimethyl-2-pentyl cation (C7H15(+), 8 and 9) were investigated using the ab initio/GIAO-CCSD(T) (13)C NMR method. Comparing the calculated and experimental (13)C NMR chemical shifts of a series of carbocations indicates that excellent prediction of δ(13)C could be achieved through scaling. In the case of symmetrical equilibrating cations (1 and 5) the Wagner-Meerwein 1,2-hydride and 1,2-methide shifts, respectively, produce the same structure. This indicates that the overall (13)C NMR chemical shifts are conserved and independent of temperature. However, in the case of unsymmetrical equilibrating cations (8 and 9) the Wagner-Meerwein shift produces different tertiary structures, which have slightly different thermodynamic stabilities and, thus, different spectra. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level structure 8 is only 90 calories/mol more stable than structure 9. Based on computed (13)C NMR chemical shift calculations, mole fractions of these isomers were determined by assuming the observed chemical shifts are due to the weighted average of the chemical shifts of the static ions. © 2015 Wiley Periodicals, Inc.

  10. The complex folding pathways of protein A suggest a multiple-funnelled energy landscape

    NASA Astrophysics Data System (ADS)

    St-Pierre, Jean-Francois; Mousseau, Normand; Derreumaux, Philippe

    2008-01-01

    Folding proteins into their native states requires the formation of both secondary and tertiary structures. Many questions remain, however, as to whether these form into a precise order, and various pictures have been proposed that place the emphasis on the first or the second level of structure in describing folding. One of the favorite test models for studying this question is the B domain of protein A, which has been characterized by numerous experiments and simulations. Using the activation-relaxation technique coupled with a generic energy model (optimized potential for efficient peptide structure prediction), we generate more than 50 folding trajectories for this 60-residue protein. While the folding pathways to the native state are fully consistent with the funnel-like description of the free energy landscape, we find a wide range of mechanisms in which secondary and tertiary structures form in various orders. Our nonbiased simulations also reveal the presence of a significant number of non-native β and α conformations both on and off pathway, including the visit, for a non-negligible fraction of trajectories, of fully ordered structures resembling the native state of nonhomologous proteins.

  11. Examination of Factors Predicting Secondary Students' Interest in Tertiary STEM Education

    ERIC Educational Resources Information Center

    Chachashvili-Bolotin, Svetlana; Milner-Bolotin, Marina; Lissitsa, Sabina

    2016-01-01

    Based on the Social Cognitive Career Theory (SCCT), the study aims to investigate factors that predict students' interest in pursuing science, technology, engineering, and mathematics (STEM) fields in tertiary education both in general and in relation to their gender and socio-economic background. The results of the analysis of survey responses of…

  12. Quantitative Protein Topography Analysis and High-Resolution Structure Prediction Using Hydroxyl Radical Labeling and Tandem-Ion Mass Spectrometry (MS)*

    PubMed Central

    Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.

    2015-01-01

    Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570

  13. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme

    PubMed Central

    Mustoe, Anthony M.; Al-Hashimi, Hashim M.; Brooks, Charles L.

    2016-01-01

    A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding. PMID:26481360

  14. Thioesterases: A new perspective based on their primary and tertiary structures

    PubMed Central

    Cantu, David C; Chen, Yingfei; Reilly, Peter J

    2010-01-01

    Thioesterases (TEs) are classified into EC 3.1.2.1 through EC 3.1.2.27 based on their activities on different substrates, with many remaining unclassified (EC 3.1.2.–). Analysis of primary and tertiary structures of known TEs casts a new light on this enzyme group. We used strong primary sequence conservation based on experimentally proved proteins as the main criterion, followed by verification with tertiary structure superpositions, mechanisms, and catalytic residue positions, to accurately define TE families. At present, TEs fall into 23 families almost completely unrelated to each other by primary structure. It is assumed that all members of the same family have essentially the same tertiary structure; however, TEs in different families can have markedly different folds and mechanisms. Conversely, the latter sometimes have very similar tertiary structures and catalytic mechanisms despite being only slightly or not at all related by primary structure, indicating that they have common distant ancestors and can be grouped into clans. At present, four clans encompass 12 TE families. The new constantly updated ThYme (Thioester-active enzYmes) database contains TE primary and tertiary structures, classified into families and clans that are different from those currently found in the literature or in other databases. We review all types of TEs, including those cleaving CoA, ACP, glutathione, and other protein molecules, and we discuss their structures, functions, and mechanisms. PMID:20506386

  15. Evaluation of the Special Tertiary Admissions Test (STAT)

    ERIC Educational Resources Information Center

    Coates, Hamish; Friedman, Tim

    2010-01-01

    This paper reports findings from the first national Australian study of the predictive validity of the Special Tertiary Admissions Test (STAT). Background on tertiary admissions procedures in Australia is presented, followed by information on STAT and the research methods. The results affirm that STAT, through the provision of baseline and…

  16. Predicting Academic Success of Health Science Students for First Year Anatomy and Physiology

    ERIC Educational Resources Information Center

    Anderton, Ryan S.; Evans, Tess; Chivers, Paola T.

    2016-01-01

    Students commencing tertiary education enter through a number of traditional and alternative academic pathways. As a result, tertiary institutions encounter a broad range of students, varying in demographic, previous education, characteristics and academic achievement. In recent years, the relatively constant increase in tertiary applications in…

  17. Large-scale model quality assessment for improving protein tertiary structure prediction.

    PubMed

    Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin

    2015-06-15

    Sampling structural models and ranking them are the two major challenges of protein structure prediction. Traditional protein structure prediction methods generally use one or a few quality assessment (QA) methods to select the best-predicted models, which cannot consistently select relatively better models and rank a large number of models well. Here, we develop a novel large-scale model QA method in conjunction with model clustering to rank and select protein structural models. It unprecedentedly applied 14 model QA methods to generate consensus model rankings, followed by model refinement based on model combination (i.e. averaging). Our experiment demonstrates that the large-scale model QA approach is more consistent and robust in selecting models of better quality than any individual QA method. Our method was blindly tested during the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM group. It was officially ranked third out of all 143 human and server predictors according to the total scores of the first models predicted for 78 CASP11 protein domains and second according to the total scores of the best of the five models predicted for these domains. MULTICOM's outstanding performance in the extremely competitive 2014 CASP11 experiment proves that our large-scale QA approach together with model clustering is a promising solution to one of the two major problems in protein structure modeling. The web server is available at: http://sysbio.rnet.missouri.edu/multicom_cluster/human/. © The Author 2015. Published by Oxford University Press.

  18. Tertiary Gleason patterns and biochemical recurrence after prostatectomy: proposal for a modified Gleason scoring system.

    PubMed

    Trock, Bruce J; Guo, Charles C; Gonzalgo, Mark L; Magheli, Ahmed; Loeb, Stacy; Epstein, Jonathan I

    2009-10-01

    We investigated the relationship between the tertiary Gleason component in radical prostatectomy specimens and biochemical recurrence in what is to our knowledge the largest single institution cohort to date. We evaluated data on 3,230 men who underwent radical prostatectomy at our institution from 2000 to 2005. Tertiary Gleason component was defined as Gleason grade pattern 4 or greater for Gleason score 6 and Gleason grade pattern 5 for Gleason score 7 or 8. Biochemical recurrence curves for cancer with tertiary Gleason component were intermediate between those of cancer without a tertiary Gleason component in the same Gleason score category and cancer in the next higher Gleason score category. The only exception was that Gleason score 4 + 3 = 7 with a tertiary Gleason component behaved like Gleason score 8. The tertiary Gleason component independently predicted recurrence when factoring in radical prostatectomy Gleason score, radical prostatectomy stage and prostate specific antigen (HR 1.45, p = 0.029). Furthermore, the magnitude of the tertiary Gleason component effect on recurrence did not differ by Gleason score category (p = 0.593). Although the tertiary Gleason component is frequently included in pathology reports, it is routinely omitted in other situations, such as predictive nomograms, research studies and patient counseling. The current study adds to a growing body of evidence highlighting the importance of the tertiary Gleason component in radical prostatectomy specimens. Accordingly consideration should be given to a modified radical prostatectomy Gleason scoring system that incorporates tertiary Gleason component in intuitive fashion, including Gleason score 6, 6.5 (Gleason score 6 with tertiary Gleason component), 7 (Gleason score 3 + 4 = 7), 7.25 (Gleason score 3 + 4 = 7 with tertiary Gleason component), 7.5 (Gleason score 4 + 3), 8 (Gleason score 4 + 3 with tertiary Gleason component or Gleason score 8), 8.5 (Gleason score 8 with tertiary Gleason component), 9 (Gleason score 4 + 5 or 5 + 4) and 10.

  19. Parallel protein secondary structure prediction based on neural networks.

    PubMed

    Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2004-01-01

    Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.

  20. Structural Prediction and In Silico Physicochemical Characterization for Mouse Caltrin I and Bovine Caltrin Proteins

    PubMed Central

    Grasso, Ernesto J.; Sottile, Adolfo E.; Coronel, Carlos E.

    2016-01-01

    It is known that caltrin (calcium transport inhibitor) protein binds to sperm cells during ejaculation and inhibits extracellular Ca2+ uptake. Although the sequence and some biological features of mouse caltrin I and bovine caltrin are known, their physicochemical properties and tertiary structure are mainly unknown. We predicted the 3D structures of mouse caltrin I and bovine caltrin by molecular homology modeling and threading. Surface electrostatic potentials and electric fields were calculated using the Poisson–Boltzmann equation. Several different bioinformatics tools and available web servers were used to thoroughly analyze the physicochemical characteristics of both proteins, such as their Kyte and Doolittle hydropathy scores and helical wheel projections. The results presented in this work significantly aid further understanding of the molecular mechanisms of caltrin proteins modulating physiological processes associated with fertilization. PMID:27812283

  1. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction

    PubMed Central

    Spencer, Matt; Eickholt, Jesse; Cheng, Jianlin

    2014-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80% and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test data set of 198 proteins, achieving a Q3 accuracy of 80.7% and a Sov accuracy of 74.2%. PMID:25750595

  2. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    PubMed

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

  3. [Decomposition model of energy-related carbon emissions in tertiary industry for China].

    PubMed

    Lu, Yuan-Qing; Shi, Jun

    2012-07-01

    Tertiary industry has been developed in recent years. And it is very important to find the factors influenced the energy-related carbon emissions in tertiary industry. A decomposition model of energy-related carbon emissions for China is set up by adopting logarithmic mean weight Divisia method based on the identity of carbon emissions. The model is adopted to analyze the influence of energy structure, energy efficiency, tertiary industry structure and economic output to energy-related carbon emissions in China from 2000 to 2009. Results show that the contribution rate of economic output and energy structure to energy-related carbon emissions increases year by year. Either is the contribution rate of energy efficiency or the tertiary industry restraining to energy-related carbon emissions. However, the restrain effect is weakening.

  4. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution

    NASA Astrophysics Data System (ADS)

    Schur, Florian K. M.; Hagen, Wim J. H.; Rumlová, Michaela; Ruml, Tomáš; Müller, Barbara; Kräusslich, Hans-Georg; Briggs, John A. G.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.

  5. Who Has to Pay for Their Education? Evidence from European Tertiary Education

    ERIC Educational Resources Information Center

    Lim, Gieyoung; Kim, Chong-Uk

    2013-01-01

    In this article, we investigate a positive tertiary education externality in 18 European countries. Using a simple Cobb-Douglas-type production function with constant returns to scale, we find that there are positive spillover effects from tertiary education in European countries. According to our model prediction, on average, 72,000 new employed…

  6. Application of Tryptophan Fluorescence Bandwidth-Maximum Plot in Analysis of Monoclonal Antibody Structure.

    PubMed

    Huang, Cheng-Yen; Hsieh, Ming-Ching; Zhou, Qinwei

    2017-04-01

    Monoclonal antibodies have become the fastest growing protein therapeutics in recent years. The stability and heterogeneity pertaining to its physical and chemical structures remain a big challenge. Tryptophan fluorescence has been proven to be a versatile tool to monitor protein tertiary structure. By modeling the tryptophan fluorescence emission envelope with log-normal distribution curves, the quantitative measure can be exercised for the routine characterization of monoclonal antibody overall tertiary structure. Furthermore, the log-normal deconvolution results can be presented as a two-dimensional plot with tryptophan emission bandwidth vs. emission maximum to enhance the resolution when comparing samples or as a function of applied perturbations. We demonstrate this by studying four different monoclonal antibodies, which show the distinction on emission bandwidth-maximum plot despite their similarity in overall amino acid sequences and tertiary structures. This strategy is also used to demonstrate the tertiary structure comparability between different lots manufactured for one of the monoclonal antibodies (mAb2). In addition, in the unfolding transition studies of mAb2 as a function of guanidine hydrochloride concentration, the evolution of the tertiary structure can be clearly traced in the emission bandwidth-maximum plot.

  7. Quantitative structure-activity relationships for predicting potential ecological hazard of organic chemicals for use in regulatory risk assessments.

    PubMed

    Comber, Mike H I; Walker, John D; Watts, Chris; Hermens, Joop

    2003-08-01

    The use of quantitative structure-activity relationships (QSARs) for deriving the predicted no-effect concentration of discrete organic chemicals for the purposes of conducting a regulatory risk assessment in Europe and the United States is described. In the United States, under the Toxic Substances Control Act (TSCA), the TSCA Interagency Testing Committee and the U.S. Environmental Protection Agency (U.S. EPA) use SARs to estimate the hazards of existing and new chemicals. Within the Existing Substances Regulation in Europe, QSARs may be used for data evaluation, test strategy indications, and the identification and filling of data gaps. To illustrate where and when QSARs may be useful and when their use is more problematic, an example, methyl tertiary-butyl ether (MTBE), is given and the predicted and experimental data are compared. Improvements needed for new QSARs and tools for developing and using QSARs are discussed.

  8. [Changes in the secondary and tertiary structure of serum albumin in interactions with ligands of various structures].

    PubMed

    Trinus, F P; Braver-Chernobul'skaia, B S; Luĭk, A I; Boldeskul, A E; Velichko, A N

    1984-01-01

    High affinity interactions between blood serum albumin and five substances of various chemical structure, exhibiting distinct physiological activity, were accompanied by alterations in the protein tertiary structure, while the albumin secondary structure was involved in conformational transformation after less effective affinity binding.

  9. Characterization of protein-folding pathways by reduced-space modeling.

    PubMed

    Kmiecik, Sebastian; Kolinski, Andrzej

    2007-07-24

    Ab initio simulations of the folding pathways are currently limited to very small proteins. For larger proteins, some approximations or simplifications in protein models need to be introduced. Protein folding and unfolding are among the basic processes in the cell and are very difficult to characterize in detail by experiment or simulation. Chymotrypsin inhibitor 2 (CI2) and barnase are probably the best characterized experimentally in this respect. For these model systems, initial folding stages were simulated by using CA-CB-side chain (CABS), a reduced-space protein-modeling tool. CABS employs knowledge-based potentials that proved to be very successful in protein structure prediction. With the use of isothermal Monte Carlo (MC) dynamics, initiation sites with a residual structure and weak tertiary interactions were identified. Such structures are essential for the initiation of the folding process through a sequential reduction of the protein conformational space, overcoming the Levinthal paradox in this manner. Furthermore, nucleation sites that initiate a tertiary interactions network were located. The MC simulations correspond perfectly to the results of experimental and theoretical research and bring insights into CI2 folding mechanism: unambiguous sequence of folding events was reported as well as cooperative substructures compatible with those obtained in recent molecular dynamics unfolding studies. The correspondence between the simulation and experiment shows that knowledge-based potentials are not only useful in protein structure predictions but are also capable of reproducing the folding pathways. Thus, the results of this work significantly extend the applicability range of reduced models in the theoretical study of proteins.

  10. A constraint logic programming approach to associate 1D and 3D structural components for large protein complexes.

    PubMed

    Dal Palù, Alessandro; Pontelli, Enrico; He, Jing; Lu, Yonggang

    2007-01-01

    The paper describes a novel framework, constructed using Constraint Logic Programming (CLP) and parallelism, to determine the association between parts of the primary sequence of a protein and alpha-helices extracted from 3D low-resolution descriptions of large protein complexes. The association is determined by extracting constraints from the 3D information, regarding length, relative position and connectivity of helices, and solving these constraints with the guidance of a secondary structure prediction algorithm. Parallelism is employed to enhance performance on large proteins. The framework provides a fast, inexpensive alternative to determine the exact tertiary structure of unknown proteins.

  11. Kinact: a computational approach for predicting activating missense mutations in protein kinases.

    PubMed

    Rodrigues, Carlos H M; Ascher, David B; Pires, Douglas E V

    2018-05-21

    Protein phosphorylation is tightly regulated due to its vital role in many cellular processes. While gain of function mutations leading to constitutive activation of protein kinases are known to be driver events of many cancers, the identification of these mutations has proven challenging. Here we present Kinact, a novel machine learning approach for predicting kinase activating missense mutations using information from sequence and structure. By adapting our graph-based signatures, Kinact represents both structural and sequence information, which are used as evidence to train predictive models. We show the combination of structural and sequence features significantly improved the overall accuracy compared to considering either primary or tertiary structure alone, highlighting their complementarity. Kinact achieved a precision of 87% and 94% and Area Under ROC Curve of 0.89 and 0.92 on 10-fold cross-validation, and on blind tests, respectively, outperforming well established tools (P < 0.01). We further show that Kinact performs equally well on homology models built using templates with sequence identity as low as 33%. Kinact is freely available as a user-friendly web server at http://biosig.unimelb.edu.au/kinact/.

  12. Quantitative theory of hydrophobic effect as a driving force of protein structure

    PubMed Central

    Perunov, Nikolay; England, Jeremy L

    2014-01-01

    Various studies suggest that the hydrophobic effect plays a major role in driving the folding of proteins. In the past, however, it has been challenging to translate this understanding into a predictive, quantitative theory of how the full pattern of sequence hydrophobicity in a protein shapes functionally important features of its tertiary structure. Here, we extend and apply such a phenomenological theory of the sequence-structure relationship in globular protein domains, which had previously been applied to the study of allosteric motion. In an effort to optimize parameters for the model, we first analyze the patterns of backbone burial found in single-domain crystal structures, and discover that classic hydrophobicity scales derived from bulk physicochemical properties of amino acids are already nearly optimal for prediction of burial using the model. Subsequently, we apply the model to studying structural fluctuations in proteins and establish a means of identifying ligand-binding and protein–protein interaction sites using this approach. PMID:24408023

  13. Generic Features of Tertiary Chromatin Structure as Detected in Natural Chromosomes

    PubMed Central

    Müller, Waltraud G.; Rieder, Dietmar; Kreth, Gregor; Cremer, Christoph; Trajanoski, Zlatko; McNally, James G.

    2004-01-01

    Knowledge of tertiary chromatin structure in mammalian interphase chromosomes is largely derived from artificial tandem arrays. In these model systems, light microscope images reveal fibers or beaded fibers after high-density targeting of transactivators to insertional domains spanning several megabases. These images of fibers have lent support to chromonema fiber models of tertiary structure. To assess the relevance of these studies to natural mammalian chromatin, we identified two different ∼400-kb regions on human chromosomes 6 and 22 and then examined light microscope images of interphase tertiary chromatin structure when the regions were transcriptionally active and inactive. When transcriptionally active, these natural chromosomal regions elongated, yielding images characterized by a series of adjacent puncta or “beads”, referred to hereafter as beaded images. These elongated structures required transcription for their maintenance. Thus, despite marked differences in the density and the mode of transactivation, the natural and artificial systems showed similarities, suggesting that beaded images are generic features of transcriptionally active tertiary chromatin. We show here, however, that these images do not necessarily favor chromonema fiber models but can also be explained by a radial-loop model or even a simple nucleosome affinity, random-chain model. Thus, light microscope images of tertiary structure cannot distinguish among competing models, although they do impose key constraints: chromatin must be clustered to yield beaded images and then packaged within each cluster to enable decondensation into adjacent clusters. PMID:15485905

  14. The Effect of Tertiary Teachers' Goal Orientations for Teaching on Their Commitment: The Mediating Role of Teacher Engagement

    ERIC Educational Resources Information Center

    Han, Jiying; Yin, Hongbiao; Wang, Wenlan

    2016-01-01

    This study explored the effect of tertiary teachers' goal orientations for teaching on their commitment, with a particular focus on the mediating role of teacher engagement. The results of a survey of 597 Chinese tertiary teachers indicated that teacher commitment was positively predicted by ability approach, mastery and relational goals, but was…

  15. Prediction of conformational changes by single mutation in the hepatitis B virus surface antigen (HBsAg) identified in HBsAg-negative blood donors.

    PubMed

    Ie, Susan I; Thedja, Meta D; Roni, Martono; Muljono, David H

    2010-11-18

    Selection of hepatitis B virus (HBV) by host immunity has been suggested to give rise to variants with amino acid substitutions at or around the 'a' determinant of the surface antigen (HBsAg), the main target of antibody neutralization and diagnostic assays. However, there have never been successful attempts to provide evidence for this hypothesis, partly because the 3 D structure of HBsAg molecules has not been determined. Tertiary structure prediction of HBsAg solely from its primary amino acid sequence may reveal the molecular energetic of the mutated proteins. We carried out this preliminary study to analyze the predicted HBsAg conformation changes of HBV variants isolated from Indonesian blood donors undetectable by HBsAg assays and its significance, compared to other previously-reported variants that were associated with diagnostic failure. Three HBV variants (T123A, M133L and T143M) and a wild type sequence were analyzed together with frequently emerged variants T123N, M133I, M133T, M133V, and T143L. Based on the Jameson-Wolf algorithm for calculating antigenic index, the first two amino acid substitutions resulted in slight changes in the antigenicity of the 'a' determinant, while all four of the comparative variants showed relatively more significant changes. In the pattern T143M, changes in antigenic index were more significant, both in its coverage and magnitude, even when compared to variant T143L. These data were also partially supported by the tertiary structure prediction, in which the pattern T143M showed larger shift in the HBsAg second loop structure compared to the others. Single amino acid substitutions within or near the 'a' determinant of HBsAg may alter antigenicity properties of variant HBsAg, which can be shown by both its antigenic index and predicted 3 D conformation. Findings in this study emphasize the significance of variant T143M, the prevalent isolate with highest degree of antigenicity changes found in Indonesian blood donors. This highlights the importance of evaluating the effects of protein structure alterations on the sensitivity of screening methods being used in detection of ongoing HBV infection, as well as the use of vaccines and immunoglobulin therapy in contributing to the selection of HBV variants.

  16. Electronic polarization stabilizes tertiary structure prediction of HP-36.

    PubMed

    Duan, Li L; Zhu, Tong; Zhang, Qing G; Tang, Bo; Zhang, John Z H

    2014-04-01

    Molecular dynamic (MD) simulations with both implicit and explicit solvent models have been carried out to study the folding dynamics of HP-36 protein. Starting from the extended conformation, the secondary structure of all three helices in HP-36 was formed in about 50 ns and remained stable in the remaining simulation. However, the formation of the tertiary structure was difficult. Although some intermediates were close to the native structure, the overall conformation was not stable. Further analysis revealed that the large structure fluctuation of loop and hydrophobic core regions was devoted mostly to the instability of the structure during MD simulation. The backbone root-mean-square deviation (RMSD) of the loop and hydrophobic core regions showed strong correlation with the backbone RMSD of the whole protein. The free energy landscape indicated that the distribution of main chain torsions in loop and turn regions was far away from the native state. Starting from an intermediate structure extracted from the initial AMBER simulation, HP-36 was found to generally fold to the native state under the dynamically adjusted polarized protein-specific charge (DPPC) simulation, while the peptide did not fold into the native structure when AMBER force filed was used. The two best folded structures were extracted and taken into further simulations in water employing AMBER03 charge and DPPC for 25 ns. Result showed that introducing polarization effect into interacting potential could stabilize the near-native protein structure.

  17. Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy

    PubMed Central

    Garmann, Rees F.; Gopal, Ajaykumar; Athavale, Shreyas S.; Knobler, Charles M.; Gelbart, William M.; Harvey, Stephen C.

    2015-01-01

    The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures. PMID:25752599

  18. Tb3+-cleavage assays reveal specific Mg2+ binding sites necessary to pre-fold the btuB riboswitch for AdoCbl binding

    NASA Astrophysics Data System (ADS)

    Choudhary, Pallavi K.; Gallo, Sofia; Sigel, Roland K. O.

    2017-03-01

    Riboswitches are RNA elements that bind specific metabolites in order to regulate the gene expression involved in controlling the cellular concentration of the respective molecule or ion. Ligand recognition is mostly facilitated by Mg2+ mediated pre-organization of the riboswitch to an active tertiary fold. To predict these specific Mg2+ induced tertiary interactions of the btuB riboswitch from E. coli, we here report Mg2+ binding pockets in its aptameric part in both, the ligand-free and the ligand-bound form. An ensemble of weak and strong metal ion binding sites distributed over the entire aptamer was detected by terbium(III) cleavage assays, Tb3+ being an established Mg2+ mimic. Interestingly many of the Mn+ (n = 2 or 3) binding sites involve conserved bases within the class of coenzyme B12-binding riboswitches. Comparison with the published crystal structure of the coenzyme B12 riboswitch of S. thermophilum aided in identifying a common set of Mn+ binding sites that might be crucial for tertiary interactions involved in the organization of the aptamer. Our results suggest that Mn+ binding at strategic locations of the btuB riboswitch indeed facilitates the assembly of the binding pocket needed for ligand recognition. Binding of the specific ligand, coenzyme B12 (AdoCbl), to the btuB aptamer does however not lead to drastic alterations of these Mn+ binding cores, indicating the lack of a major rearrangement within the three-dimensional structure of the RNA. This finding is strengthened by Tb3+ mediated footprints of the riboswitch's structure in its ligand-free and ligand-bound state indicating that AdoCbl indeed induces local changes rather than a global structural rearrangement.

  19. Protein single-model quality assessment by feature-based probability density functions.

    PubMed

    Cao, Renzhi; Cheng, Jianlin

    2016-04-04

    Protein quality assessment (QA) has played an important role in protein structure prediction. We developed a novel single-model quality assessment method-Qprob. Qprob calculates the absolute error for each protein feature value against the true quality scores (i.e. GDT-TS scores) of protein structural models, and uses them to estimate its probability density distribution for quality assessment. Qprob has been blindly tested on the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM-NOVEL server. The official CASP result shows that Qprob ranks as one of the top single-model QA methods. In addition, Qprob makes contributions to our protein tertiary structure predictor MULTICOM, which is officially ranked 3rd out of 143 predictors. The good performance shows that Qprob is good at assessing the quality of models of hard targets. These results demonstrate that this new probability density distribution based method is effective for protein single-model quality assessment and is useful for protein structure prediction. The webserver of Qprob is available at: http://calla.rnet.missouri.edu/qprob/. The software is now freely available in the web server of Qprob.

  20. Tertiary structure-related activity of tick defensin (persulcatusin) in the taiga tick, Ixodes persulcatus.

    PubMed

    Isogai, Emiko; Isogai, Hiroshi; Okumura, Kazuhiko; Hori, Hatsuhiro; Tsuruta, Hiroki; Kurebayashi, Yoichi

    2011-01-01

    Defensins are small cysteine-rich cationic proteins found in both vertebrates and invertebrates constituting the front line of host innate immunity. To examine the importance of the tertiary structure of tick defensin in its antimicrobial activity, we synthesized two types of the peptides with tertiary structure or primary one on basis of the information of the sequence in the defensin originated from the taiga tick, Ixodes persulcatus. Chemically synthesized peptides were used to investigate the activity spectrum against Staphylococcus aureus, Borrelia garinii and flora-associated bacteria. Both synthetic peptides showed antimicrobial activity against S. aureus in short-time killing within 1 h, but they do not show the activity against B. garinii, Stenotrophomonas maltophila and Bacillus spp., which were frequently isolated from the midgut of I. persulcatus. The teriary structure brought more potent activity to S. aureus than primary one in short-time killing. We also examined its antimicrobial activity by evaluation of growth inhibition in the presence of the synthetic peptides. Minimum inhibitory concentration (MIC) was ranged from 1.2 to 5.0 μg/ml in tertiary peptide and from 10 to 40 μg/ml in primary peptide, when 10 strains of S. aureus were used. From the curve of cumulative inhibition rates, MIC50 (MIC which half of the strains showed) to S. aureus is about 1.2 μg/ml in the peptide with tertiary structure and about 10 μg/ml in the linear one. Corynebacterium renale is 10 times or more sensitive to tertiary peptide than primary one. In conclusion, the presence of 3 disulfide bridges, which stabilize the molecule and maintain the tertiary structure, is considered to have an effect on their antimicrobial activities against Gram-positive bacteria such as S. aureus.

  1. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme.

    PubMed

    White, Neil A; Hoogstraten, Charles G

    2017-09-01

    The hairpin ribozyme consists of two RNA internal loops that interact to form the catalytically active structure. This docking transition is a rare example of intermolecular formation of RNA tertiary structure without coupling to helix annealing. We have used temperature-dependent surface plasmon resonance (SPR) to characterize the thermodynamics and kinetics of RNA tertiary structure formation for the junctionless form of the ribozyme, in which loops A and B reside on separate molecules. We find docking to be strongly enthalpy-driven and to be accompanied by substantial activation barriers for association and dissociation, consistent with the structural reorganization of both internal loops upon complex formation. Comparisons with the parallel analysis of a ribozyme variant carrying a 2'-O-methyl modification at the self-cleavage site and with published data in other systems reveal a surprising diversity of thermodynamic signatures, emphasizing the delicate balance of contributions to the free energy of formation of RNA tertiary structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Structural alignment of protein descriptors - a combinatorial model.

    PubMed

    Antczak, Maciej; Kasprzak, Marta; Lukasiak, Piotr; Blazewicz, Jacek

    2016-09-17

    Structural alignment of proteins is one of the most challenging problems in molecular biology. The tertiary structure of a protein strictly correlates with its function and computationally predicted structures are nowadays a main premise for understanding the latter. However, computationally derived 3D models often exhibit deviations from the native structure. A way to confirm a model is a comparison with other structures. The structural alignment of a pair of proteins can be defined with the use of a concept of protein descriptors. The protein descriptors are local substructures of protein molecules, which allow us to divide the original problem into a set of subproblems and, consequently, to propose a more efficient algorithmic solution. In the literature, one can find many applications of the descriptors concept that prove its usefulness for insight into protein 3D structures, but the proposed approaches are presented rather from the biological perspective than from the computational or algorithmic point of view. Efficient algorithms for identification and structural comparison of descriptors can become crucial components of methods for structural quality assessment as well as tertiary structure prediction. In this paper, we propose a new combinatorial model and new polynomial-time algorithms for the structural alignment of descriptors. The model is based on the maximum-size assignment problem, which we define here and prove that it can be solved in polynomial time. We demonstrate suitability of this approach by comparison with an exact backtracking algorithm. Besides a simplification coming from the combinatorial modeling, both on the conceptual and complexity level, we gain with this approach high quality of obtained results, in terms of 3D alignment accuracy and processing efficiency. All the proposed algorithms were developed and integrated in a computationally efficient tool descs-standalone, which allows the user to identify and structurally compare descriptors of biological molecules, such as proteins and RNAs. Both PDB (Protein Data Bank) and mmCIF (macromolecular Crystallographic Information File) formats are supported. The proposed tool is available as an open source project stored on GitHub ( https://github.com/mantczak/descs-standalone ).

  3. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-05-26

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes.

  4. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  5. Adaptive firefly algorithm: parameter analysis and its application.

    PubMed

    Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin

    2014-01-01

    As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.

  6. Adaptive Firefly Algorithm: Parameter Analysis and its Application

    PubMed Central

    Shen, Hong-Bin

    2014-01-01

    As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm — adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem — protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812

  7. Freezing-Induced Perturbation of Tertiary Structure of a Monoclonal Antibody

    PubMed Central

    LIU, LU; BRAUN, LATOYA JONES; WANG, WEI; RANDOLPH, THEODORE W.; CARPENTER, JOHN F.

    2014-01-01

    We studied the effects of pH and solution additives on freezing-induced perturbations in the tertiary structure of a monoclonal antibody (mAb) by intrinsic tryptophan fluorescence spectroscopy. In general, freezing caused perturbations in the tertiary structure of the mAb, which were reversible or irreversible depending on the pH or excipients present in the formulation. Protein aggregation occurred in freeze–thawed samples in which perturbations of the tertiary structure were observed, but the levels of protein aggregates formed were not proportional to the degree of structural perturbation. Protein aggregation also occurred in freeze–thawed samples without obvious structural perturbations, most likely because of freeze concentration of protein and salts, and thus reduced protein colloidal stability. Therefore, freezing-induced protein aggregation may or may not first involve the perturbation of its native structure, followed by the assembly processes to form aggregates. Depending on the solution conditions, either step can be rate limiting. Finally, this study demonstrates the potential of fluorescence spectroscopy as a valuable tool for screening therapeutic protein formulations subjected to freeze–thaw stress. PMID:24832730

  8. Topological constraints are major determinants of tRNA tertiary structure and dynamics and provide basis for tertiary folding cooperativity

    PubMed Central

    Mustoe, Anthony M.; Brooks, Charles L.; Al-Hashimi, Hashim M.

    2014-01-01

    Recent studies have shown that basic steric and connectivity constraints encoded at the secondary structure level are key determinants of 3D structure and dynamics in simple two-way RNA junctions. However, the role of these topological constraints in higher order RNA junctions remains poorly understood. Here, we use a specialized coarse-grained molecular dynamics model to directly probe the thermodynamic contributions of topological constraints in defining the 3D architecture and dynamics of transfer RNA (tRNA). Topological constraints alone restrict tRNA's allowed conformational space by over an order of magnitude and strongly discriminate against formation of non-native tertiary contacts, providing a sequence independent source of folding specificity. Topological constraints also give rise to long-range correlations between the relative orientation of tRNA's helices, which in turn provides a mechanism for encoding thermodynamic cooperativity between distinct tertiary interactions. These aspects of topological constraints make it such that only several tertiary interactions are needed to confine tRNA to its native global structure and specify functionally important 3D dynamics. We further show that topological constraints are conserved across tRNA's different naturally occurring secondary structures. Taken together, our results emphasize the central role of secondary-structure-encoded topological constraints in defining RNA 3D structure, dynamics and folding. PMID:25217593

  9. The Phyre2 web portal for protein modelling, prediction and analysis

    PubMed Central

    Kelley, Lawrence A; Mezulis, Stefans; Yates, Christopher M; Wass, Mark N; Sternberg, Michael JE

    2017-01-01

    Summary Phyre2 is a suite of tools available on the web to predict and analyse protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a protocol. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites, and analyse the effect of amino-acid variants (e.g. nsSNPs) for a user’s protein sequence. Users are guided through results by a simple interface at a level of detail determined by them. This protocol will guide a user from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30mins and 2 hours after submission. PMID:25950237

  10. In silico structural analysis of group 3, 6 and 9 allergens from Dermatophagoides farinae.

    PubMed

    Teng, Feixiang; Yu, Lili; Bian, Yonghua; Sun, Jinxia; Wu, Juansong; Ling, Cunbao; Yang, Li; Wang, Yungang; Cui, Yubao

    2015-05-01

    Dermatophagoides farinae (Hughes; Acari: Pyroglyphidae) are the predominant source of dust mite allergens, which provoke allergic diseases, such as rhinitis, asthma and eczema. Of the 30 allergen groups produced by D. farinae, the Der f 3, Der f 6 and Der f 9 allergens are all trypsin‑associated proteins, however little else is currently known about them. The present study used in silico tools to compare the amino acid sequences, and predict the secondary and tertiary structures of Der f 3, Der f 6 and Der f 9 allergens. Protein sequence alignment detected ~46% identity between Der f 3, Der f 6 and Der f 9. Furthermore, each protein was shown to contain three active sites and two highly conserved trypsin functional domains. Predictions of the secondary and tertiary structure identified α‑helices, β‑sheets and random coils. The active sites of the three proteins appeared to fold onto each other in a three‑dimensional model, constituting the active site of the enzyme. Epitope analysis demonstrated that Der f 3, Der f 6 and Der f 9 have 4‑5 potential epitopes located in random coils, and the epitope sequences of Der f 3, Der f 6 and Der f 9 were shown to overlap in two domains (at amino acids 83‑87 and 179‑180); however the residues in these two domains were not identical. The present study aimed to conduct a biochemical and genetic analysis of these three allergens, and to potentially contribute to the development of vaccines for allergen‑specific immunotherapy.

  11. The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation.

    PubMed

    Selbes, Meric; Kim, Daekyun; Ates, Nuray; Karanfil, Tanju

    2013-02-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated and chlorinated drinking waters and wastewaters. Formation mechanisms and precursors of NDMA are still not well understood. The main objectives of this study were to systematically investigate (i) the effect of tertiary amine structure, (ii) the effect of background natural organic matter (NOM), and (iii) the roles of mono vs. dichloramine species on the NDMA formation. Dimethylamine (DMA) and 20 different tertiary aliphatic and aromatic amines were carefully examined based on their functional groups attached to the basic DMA structure. The wide range (0.02-83.9%) of observed NDMA yields indicated the importance of the structure of tertiary amines, and both stability and electron distribution of the leaving group of tertiary amines on NDMA formation. DMA associated with branched alkyl groups or benzyl like structures having only one carbon between the ring and DMA structure consistently gave higher NDMA yields. Compounds with electron withdrawing groups (EWG) reacted preferentially with monochloramine, whereas compounds with electron donating group (EDG) showed tendency to react with dichloramine to form NDMA. When the selected amines were present in NOM solutions, NDMA formation increased for compounds with EWG while decreased for compounds with EDG. This impact was attributed to the competitions between NOM and amines for chloramine species. The results provided additional information to the commonly accepted mechanism for NDMA formation including chloramine species reacting with tertiary amines and the role of the leaving group on overall NDMA conversion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Use of read-across and computer-based predictive analysis for the safety assessment of PEG cocamines.

    PubMed

    Skare, Julie A; Blackburn, Karen; Wu, Shengde; Re, Thomas A; Duche, Daniel; Ringeissen, Stephanie; Bjerke, Donald L; Srinivasan, Viny; Eisenmann, Carol

    2015-04-01

    In the European Union animal testing has been eliminated for cosmetic ingredients while the US Cosmetic Ingredient Review Expert Panel may request data from animal studies. The use of read-across and predictive toxicology provides a path for filling data gaps without additional animal testing. The PEG cocamines are tertiary amines with an alkyl group derived from coconut fatty acids and two PEG chains of varying length. Toxicology data gaps for the PEG cocamines can be addressed by read-across based on structure-activity relationship using the framework described by Wu et al. (2010) for identifying suitable structural analogs. Data for structural analogs supports the conclusion that the PEG cocamines are non-genotoxic and not expected to exhibit systemic or developmental/reproductive toxicity with use in cosmetics. Due to lack of reliable dermal sensitization data for suitable analogs, this endpoint was addressed using predictive software (TIMES SS) as a first step (Laboratory of Mathematical Chemistry). The prediction for PEG cocamines was the same as that for PEGs, which have been concluded to not present a significant concern for dermal sensitization. This evaluation for PEG cocamines demonstrates the utility of read-across and predictive toxicology tools to assess the safety of cosmetic ingredients. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.

    PubMed

    Zheng, Wenjun

    2017-02-01

    In the adaptive immune systems of many bacteria and archaea, the Cas9 endonuclease forms a complex with specific guide/scaffold RNA to identify and cleave complementary target sequences in foreign DNA. This DNA targeting machinery has been exploited in numerous applications of genome editing and transcription control. However, the molecular mechanism of the Cas9 system is still obscure. Recently, high-resolution structures have been solved for Cas9 in different structural forms (e.g., unbound forms, RNA-bound binary complexes, and RNA-DNA-bound tertiary complexes, corresponding to an inactive state, a pre-target-bound state, and a cleavage-competent or product state), which offered key structural insights to the Cas9 mechanism. To further probe the structural dynamics of Cas9 interacting with RNA and DNA at the amino-acid level of details, we have performed systematic coarse-grained modeling using an elastic network model and related analyses. Our normal mode analysis predicted a few key modes of collective motions that capture the observed conformational changes featuring large domain motions triggered by binding of RNA and DNA. Our flexibility analysis identified specific regions with high or low flexibility that coincide with key functional sites (such as DNA/RNA-binding sites, nuclease cleavage sites, and key hinges). We also identified a small set of hotspot residues that control the energetics of functional motions, which overlap with known functional sites and offer promising targets for future mutagenesis efforts to improve the specificity of Cas9. Finally, we modeled the conformational transitions of Cas9 from the unbound form to the binary complex and then the tertiary complex, and predicted a distinct sequence of domain motions. In sum, our findings have offered rich structural and dynamic details relevant to the Cas9 machinery, and will guide future investigation and engineering of the Cas9 systems. Proteins 2017; 85:342-353. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Correlation between the radiological observation of isolated tertiary waves on an esophagram and findings on high-resolution esophageal manometry.

    PubMed

    Halland, M; Ravi, K; Barlow, J; Arora, A

    2016-01-01

    Barium esophagrams are a frequently performed test, and radiological observations about potential abnormal esophageal motility, such as tertiary contractions, are commonly reported. We sought to assess the correlation between tertiary waves, and in particular isolated tertiary waves, on esophagrams and findings on non-synchronous high-resolution esophageal manometry. We retrospectively reviewed reports of esophagrams performed at a tertiary referral center and identified patients in whom tertiary waves were observed and a high-resolution esophageal manometry had been performed. We defined two groups; group 1 was defined as patients with isolated tertiary waves, whereas group 2 had tertiary waves and evidence of achalasia or an obstructing structural abnormality on the esophagram. We collected data on demographics, dysphagia score, associated findings on esophagram, and need for intervention. We reviewed the reports of 2100 esophagrams of which tertiary waves were noted as an isolated abnormality in 92, and in association with achalasia or a structural obstruction in 61. High-resolution manometry was performed in 17 patients in group 1, and five had evidence of a significant esophageal motility disorder and 4 required any intervention. Twenty-one patients in group 2 underwent manometry, and 18 had a significant esophageal motility disorder. An isolated finding of tertiary waves on an esophagram is rarely associated with a significant esophageal motility disorder that requires intervention. All patients with isolated tertiary waves who required intervention had a dysphagia to liquids. Tertiary contractions, in the absence of dysphagia to liquids, indicate no significant esophageal motility disorder. © 2014 International Society for Diseases of the Esophagus.

  15. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    USGS Publications Warehouse

    Cole, James C.; Harris, Anita G.; Wahl, Ronald R.

    1997-01-01

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site.All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre- Tertiary structure there should also be relatively simple and not affected by thrusting.This new interpretation has implications for ground water flow through pre-Tertiary rocks beneath the Yucca Flat and northern Frenchman Flat areas, and has consequences for ground water modeling and model validation. Our data indicate that the Mississippian Chainman Shale is not a laterally extensive confining unit in the western part of the basin because it is folded back onto itself by the convergent structures of the Belted Range and CP thrust systems. Early and Middle Paleozoic limestone and dolomite are present beneath most of both basins and, regardless of structural complications, are interpreted to form a laterally continuous and extensive carbonate aquifer. Structural culmination that marks the French Peak accommodation zone along the topographic divide between the two basins provides a lateral pathway through highly fractured rock between the volcanic aquifers of Yucca Flat and the regional carbonate aquifer. This pathway may accelerate the migration of ground-water contaminants introduced by underground nuclear testing toward discharge areas beyond the Nevada Test Site boundaries. Predictive three-dimensional models of hydrostratigraphic units and ground-water flow in the pre-Tertiary rocks of subsurface Yucca Flat are likely to be unrealistic due to the extreme structural complexities. The interpretation of hydrologic and geochemical data obtained from monitoring wells will be difficult to extrapolate through the flow system until more is known about the continuity of hydrostratigraphic units.

  16. Protein backbone engineering as a strategy to advance foldamers toward the frontier of protein-like tertiary structure.

    PubMed

    Reinert, Zachary E; Horne, W Seth

    2014-11-28

    A variety of non-biological structural motifs have been incorporated into the backbone of natural protein sequences. In parallel work, diverse unnatural oligomers of de novo design (termed "foldamers") have been developed that fold in defined ways. In this Perspective article, we survey foundational studies on protein backbone engineering, with a focus on alterations made in the context of complex tertiary folds. We go on to summarize recent work illustrating the potential promise of these methods to provide a general framework for the construction of foldamer mimics of protein tertiary structures.

  17. Is the Conformational Ensemble of Alzheimer’s Aβ10-40 Peptide Force Field Dependent?

    PubMed Central

    Siwy, Christopher M.

    2017-01-01

    By applying REMD simulations we have performed comparative analysis of the conformational ensembles of amino-truncated Aβ10-40 peptide produced with five force fields, which combine four protein parameterizations (CHARMM36, CHARMM22*, CHARMM22/cmap, and OPLS-AA) and two water models (standard and modified TIP3P). Aβ10-40 conformations were analyzed by computing secondary structure, backbone fluctuations, tertiary interactions, and radius of gyration. We have also calculated Aβ10-40 3JHNHα-coupling and RDC constants and compared them with their experimental counterparts obtained for the full-length Aβ1-40 peptide. Our study led us to several conclusions. First, all force fields predict that Aβ adopts unfolded structure dominated by turn and random coil conformations. Second, specific TIP3P water model does not dramatically affect secondary or tertiary Aβ10-40 structure, albeit standard TIP3P model favors slightly more compact states. Third, although the secondary structures observed in CHARMM36 and CHARMM22/cmap simulations are qualitatively similar, their tertiary interactions show little consistency. Fourth, two force fields, OPLS-AA and CHARMM22* have unique features setting them apart from CHARMM36 or CHARMM22/cmap. OPLS-AA reveals moderate β-structure propensity coupled with extensive, but weak long-range tertiary interactions leading to Aβ collapsed conformations. CHARMM22* exhibits moderate helix propensity and generates multiple exceptionally stable long- and short-range interactions. Our investigation suggests that among all force fields CHARMM22* differs the most from CHARMM36. Fifth, the analysis of 3JHNHα-coupling and RDC constants based on CHARMM36 force field with standard TIP3P model led us to an unexpected finding that in silico Aβ10-40 and experimental Aβ1-40 constants are generally in better agreement than these quantities computed and measured for identical peptides, such as Aβ1-40 or Aβ1-42. This observation suggests that the differences in the conformational ensembles of Aβ10-40 and Aβ1-40 are small and the former can be used as proxy of the full-length peptide. Based on this argument, we concluded that CHARMM36 force field with standard TIP3P model produces the most accurate representation of Aβ10-40 conformational ensemble. PMID:28085875

  18. Examination of factors predicting secondary students' interest in tertiary STEM education

    NASA Astrophysics Data System (ADS)

    Chachashvili-Bolotin, Svetlana; Milner-Bolotin, Marina; Lissitsa, Sabina

    2016-02-01

    Based on the Social Cognitive Career Theory (SCCT), the study aims to investigate factors that predict students' interest in pursuing science, technology, engineering, and mathematics (STEM) fields in tertiary education both in general and in relation to their gender and socio-economic background. The results of the analysis of survey responses of 2458 secondary public school students in the fifth-largest Israeli city indicate that STEM learning experience positively associates with students' interest in pursuing STEM fields in tertiary education as opposed to non-STEM fields. Moreover, studying advanced science courses at the secondary school level decreases (but does not eliminate) the gender gap and eliminates the effect of family background on students' interest in pursuing STEM fields in the future. Findings regarding outcome expectations and self-efficacy beliefs only partially support the SCCT model. Outcome expectations and self-efficacy beliefs positively correlate with students' entering tertiary education but did not differentiate between their interests in the fields of study.

  19. Quantification of the Thermodynamically Linked Quaternary and Tertiary Structural Stabilities of Transthyretin and its Disease-Associated Variants–the Relationship between Stability and Amyloidosis†

    PubMed Central

    Hurshman Babbes, Amy R.; Powers, Evan T.; Kelly, Jeffery W.

    2009-01-01

    Urea denaturation studies were carried out as a function of transthyretin (TTR) concentration to quantify the thermodynamically linked quaternary and tertiary structural stability and to better understand the relationship between mutant folding energetics and amyloid disease phenotype. Urea denaturation of TTR involves at least two equilibria—dissociation of tetramers into folded monomers, and monomer unfolding. To deal with the thermodynamic linkage of these equilibria, we analyzed concentration-dependent denaturation data by global fitting to an equation that simultaneously accounts for the two-step denaturation process. Using this method, the quaternary and tertiary structural stabilities of well-behaved TTR sequences, wild type (WT) TTR and the disease-associated variant V122I, were scrutinized. The V122I variant is linked to late onset familial amyloid cardiomyopathy, the most common familial TTR amyloid disease. V122I TTR exhibits a destabilized quaternary structure and a stable tertiary structure relative to WT TTR. Three other variants of TTR were also examined, L55P, V30M, and A25T TTR. The L55P mutation is associated with the most aggressive familial TTR amyloid disease. L55P TTR has a complicated denaturation pathway that includes dimers and trimers, and so globally fitting its concentration-dependent urea denaturation data yielded error-laden estimates of stability parameters. Nevertheless, it is clear that L55P TTR is substantially less stable than WT TTR, primarily because its tertiary structure is unstable, although its quaternary structure is destabilized as well. V30M is the most common mutation associated with neuropathic forms of TTR amyloid disease. V30M TTR is certainly destabilized relative to WT TTR, but like L55P TTR it has a complex denaturation pathway that cannot be fit to the aforementioned two-step denaturation model. Literature data suggest that V30M TTR has stable quaternary structure but unstable tertiary structure. The A25T mutant, associated with central nervous system amyloidosis, is highly aggregation-prone and exhibits drastically reduced quaternary and tertiary structural stability. The observed differences in stability amongst the disease-associated TTR variants highlight the complexity and the heterogeneity of TTR amyloid disease, an observation having important implications for the treatment of these diseases. PMID:18537267

  20. Predictive Value of Tertiary Lymphoid Structures Assessed by High Endothelial Venule Counts in the Neoadjuvant Setting of Triple-Negative Breast Cancer

    PubMed Central

    Song, In Hye; Heo, Sun-Hee; Bang, Won Seon; Park, Hye Seon; Park, In Ah; Kim, Young-Ae; Park, Suk Young; Roh, Jin; Gong, Gyungyub; Lee, Hee Jin

    2017-01-01

    Purpose The tertiary lymphoid structure (TLS) is an important source of tumor-infiltrating lymphocytes (TILs), which have a strong prognostic and predictive value in triple-negative breast cancer (TNBC). A previous study reported that the levels of CXCL13 mRNA expression were associated with TLSs, but measuring the gene expression is challenging in routine practice. Therefore, this study evaluated the MECA79-positive high endothelial venule (HEV) densities and their association with the histopathologically assessed TLSs in biopsy samples. In addition, the relationship of TLSs with the CXCL13 transcript levels and clinical outcomes were examined. Materials and Methods A total of 108 TNBC patients treated with neoadjuvant chemotherapy (NAC) were studied. The amounts of TILs and TLSs were measured histopathologically using hematoxylin and eosin–stained slides. The HEV densities and TIL subpopulations were measured by immunohistochemistry for MECA79, CD3, CD8, and CD20. CXCL13mRNA expression levels using a NanoString assay (NanoString Technologies). Results The mean number of HEVs in pre-NAC biopsies was 12 (range, 0 to 72). The amounts of TILs and TLSs, HEV density, and CXCL13 expression showed robust correlations with each other. A lower pre-NAC clinical T stage, higher TIL and TLS levels, a higher HEV density, CD20-positive cell density, and CXCL13 expression were significant predictors of a pathologic complete response (pCR). Higher CD8-positive cell density and levels of CXCL13 expression were significantly associated with a better disease-free survival rate. Conclusion MECA79-positive HEV density in pre-NAC biopsies is an objective and quantitative surrogate marker of TLS and might be a valuable tool for predicting pCR of TNBC in routine pathology practice. PMID:27488875

  1. Diversification of Tertiary Education in Switzerland.

    ERIC Educational Resources Information Center

    Crausaz, Roselyne

    The structure of Switzerland's educational system is described including the types of secondary schools and/or courses and the system of tertiary education. Fields of study, types of institutions, and characteristics of tertiary education in Switzerland are discussed. The chapter on students covers admission procedures, trends in enrollment,…

  2. CNNH_PSS: protein 8-class secondary structure prediction by convolutional neural network with highway.

    PubMed

    Zhou, Jiyun; Wang, Hongpeng; Zhao, Zhishan; Xu, Ruifeng; Lu, Qin

    2018-05-08

    Protein secondary structure is the three dimensional form of local segments of proteins and its prediction is an important problem in protein tertiary structure prediction. Developing computational approaches for protein secondary structure prediction is becoming increasingly urgent. We present a novel deep learning based model, referred to as CNNH_PSS, by using multi-scale CNN with highway. In CNNH_PSS, any two neighbor convolutional layers have a highway to deliver information from current layer to the output of the next one to keep local contexts. As lower layers extract local context while higher layers extract long-range interdependencies, the highways between neighbor layers allow CNNH_PSS to have ability to extract both local contexts and long-range interdependencies. We evaluate CNNH_PSS on two commonly used datasets: CB6133 and CB513. CNNH_PSS outperforms the multi-scale CNN without highway by at least 0.010 Q8 accuracy and also performs better than CNF, DeepCNF and SSpro8, which cannot extract long-range interdependencies, by at least 0.020 Q8 accuracy, demonstrating that both local contexts and long-range interdependencies are indeed useful for prediction. Furthermore, CNNH_PSS also performs better than GSM and DCRNN which need extra complex model to extract long-range interdependencies. It demonstrates that CNNH_PSS not only cost less computer resource, but also achieves better predicting performance. CNNH_PSS have ability to extracts both local contexts and long-range interdependencies by combing multi-scale CNN and highway network. The evaluations on common datasets and comparisons with state-of-the-art methods indicate that CNNH_PSS is an useful and efficient tool for protein secondary structure prediction.

  3. Cooperative Tertiary Interaction Network Guides RNA Folding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Reza; Roh, Joon Ho; Kilburn, Duncan

    2013-04-08

    Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends onmore » the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.« less

  4. Tertiary Education in Britian. National Report.

    ERIC Educational Resources Information Center

    Eggleston, J.

    Some of the major trends in British Tertiary education are reviewed. Types of schools and/or courses in British secondary education are examined in relation to student preparation for tertiary education. The present system of higher Education in Britian is described including types of institutions and academic structures, admission requirements,…

  5. A combination of feature extraction methods with an ensemble of different classifiers for protein structural class prediction problem.

    PubMed

    Dehzangi, Abdollah; Paliwal, Kuldip; Sharma, Alok; Dehzangi, Omid; Sattar, Abdul

    2013-01-01

    Better understanding of structural class of a given protein reveals important information about its overall folding type and its domain. It can also be directly used to provide critical information on general tertiary structure of a protein which has a profound impact on protein function determination and drug design. Despite tremendous enhancements made by pattern recognition-based approaches to solve this problem, it still remains as an unsolved issue for bioinformatics that demands more attention and exploration. In this study, we propose a novel feature extraction model that incorporates physicochemical and evolutionary-based information simultaneously. We also propose overlapped segmented distribution and autocorrelation-based feature extraction methods to provide more local and global discriminatory information. The proposed feature extraction methods are explored for 15 most promising attributes that are selected from a wide range of physicochemical-based attributes. Finally, by applying an ensemble of different classifiers namely, Adaboost.M1, LogitBoost, naive Bayes, multilayer perceptron (MLP), and support vector machine (SVM) we show enhancement of the protein structural class prediction accuracy for four popular benchmarks.

  6. Clustering and visualizing similarity networks of membrane proteins.

    PubMed

    Hu, Geng-Ming; Mai, Te-Lun; Chen, Chi-Ming

    2015-08-01

    We proposed a fast and unsupervised clustering method, minimum span clustering (MSC), for analyzing the sequence-structure-function relationship of biological networks, and demonstrated its validity in clustering the sequence/structure similarity networks (SSN) of 682 membrane protein (MP) chains. The MSC clustering of MPs based on their sequence information was found to be consistent with their tertiary structures and functions. For the largest seven clusters predicted by MSC, the consistency in chain function within the same cluster is found to be 100%. From analyzing the edge distribution of SSN for MPs, we found a characteristic threshold distance for the boundary between clusters, over which SSN of MPs could be properly clustered by an unsupervised sparsification of the network distance matrix. The clustering results of MPs from both MSC and the unsupervised sparsification methods are consistent with each other, and have high intracluster similarity and low intercluster similarity in sequence, structure, and function. Our study showed a strong sequence-structure-function relationship of MPs. We discussed evidence of convergent evolution of MPs and suggested applications in finding structural similarities and predicting biological functions of MP chains based on their sequence information. © 2015 Wiley Periodicals, Inc.

  7. TBI server: a web server for predicting ion effects in RNA folding.

    PubMed

    Zhu, Yuhong; He, Zhaojian; Chen, Shi-Jie

    2015-01-01

    Metal ions play a critical role in the stabilization of RNA structures. Therefore, accurate prediction of the ion effects in RNA folding can have a far-reaching impact on our understanding of RNA structure and function. Multivalent ions, especially Mg²⁺, are essential for RNA tertiary structure formation. These ions can possibly become strongly correlated in the close vicinity of RNA surface. Most of the currently available software packages, which have widespread success in predicting ion effects in biomolecular systems, however, do not explicitly account for the ion correlation effect. Therefore, it is important to develop a software package/web server for the prediction of ion electrostatics in RNA folding by including ion correlation effects. The TBI web server http://rna.physics.missouri.edu/tbi_index.html provides predictions for the total electrostatic free energy, the different free energy components, and the mean number and the most probable distributions of the bound ions. A novel feature of the TBI server is its ability to account for ion correlation and ion distribution fluctuation effects. By accounting for the ion correlation and fluctuation effects, the TBI server is a unique online tool for computing ion-mediated electrostatic properties for given RNA structures. The results can provide important data for in-depth analysis for ion effects in RNA folding including the ion-dependence of folding stability, ion uptake in the folding process, and the interplay between the different energetic components.

  8. SeqRate: sequence-based protein folding type classification and rates prediction

    PubMed Central

    2010-01-01

    Background Protein folding rate is an important property of a protein. Predicting protein folding rate is useful for understanding protein folding process and guiding protein design. Most previous methods of predicting protein folding rate require the tertiary structure of a protein as an input. And most methods do not distinguish the different kinetic nature (two-state folding or multi-state folding) of the proteins. Here we developed a method, SeqRate, to predict both protein folding kinetic type (two-state versus multi-state) and real-value folding rate using sequence length, amino acid composition, contact order, contact number, and secondary structure information predicted from only protein sequence with support vector machines. Results We systematically studied the contributions of individual features to folding rate prediction. On a standard benchmark dataset, the accuracy of folding kinetic type classification is 80%. The Pearson correlation coefficient and the mean absolute difference between predicted and experimental folding rates (sec-1) in the base-10 logarithmic scale are 0.81 and 0.79 for two-state protein folders, and 0.80 and 0.68 for three-state protein folders. SeqRate is the first sequence-based method for protein folding type classification and its accuracy of fold rate prediction is improved over previous sequence-based methods. Its performance can be further enhanced with additional information, such as structure-based geometric contacts, as inputs. Conclusions Both the web server and software of predicting folding rate are publicly available at http://casp.rnet.missouri.edu/fold_rate/index.html. PMID:20438647

  9. Definition and classification of evaluation units for tertiary structure prediction in CASP12 facilitated through semi-automated metrics.

    PubMed

    Abriata, Luciano A; Kinch, Lisa N; Tamò, Giorgio E; Monastyrskyy, Bohdan; Kryshtafovych, Andriy; Dal Peraro, Matteo

    2018-03-01

    For assessment purposes, CASP targets are split into evaluation units. We herein present the official definition of CASP12 evaluation units (EUs) and their classification into difficulty categories. Each target can be evaluated as one EU (the whole target) or/and several EUs (separate structural domains or groups of structural domains). The specific scenario for a target split is determined by the domain organization of available templates, the difference in server performance on separate domains versus combination of the domains, and visual inspection. In the end, 71 targets were split into 96 EUs. Classification of the EUs into difficulty categories was done semi-automatically with the assistance of metrics provided by the Prediction Center. These metrics account for sequence and structural similarities of the EUs to potential structural templates from the Protein Data Bank, and for the baseline performance of automated server predictions. The metrics readily separate the 96 EUs into 38 EUs that should be straightforward for template-based modeling (TBM) and 39 that are expected to be hard for homology modeling and are thus left for free modeling (FM). The remaining 19 borderline evaluation units were dubbed FM/TBM, and were inspected case by case. The article also overviews structural and evolutionary features of selected targets relevant to our accompanying article presenting the assessment of FM and FM/TBM predictions, and overviews structural features of the hardest evaluation units from the FM category. We finally suggest improvements for the EU definition and classification procedures. © 2017 Wiley Periodicals, Inc.

  10. Real-Time Ligand Binding Pocket Database Search Using Local Surface Descriptors

    PubMed Central

    Chikhi, Rayan; Sael, Lee; Kihara, Daisuke

    2010-01-01

    Due to the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of a particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two dimensional pseudo-Zernike moments or the 3D Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark study employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed. PMID:20455259

  11. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    PubMed

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  12. Real-time ligand binding pocket database search using local surface descriptors.

    PubMed

    Chikhi, Rayan; Sael, Lee; Kihara, Daisuke

    2010-07-01

    Because of the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two-dimensional pseudo-Zernike moments or the three-dimensional Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark studies employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed.

  13. Mapping the Typology of Transition Systems in a Liberal Market Economy: The Case of Canada

    ERIC Educational Resources Information Center

    Arnold, Christine Helen; Wheelahan, Leesa; Moodie, Gavin; Beaulieu, Jacqueline; Taylor-Cline, Jean-Claude

    2018-01-01

    This research explores links between tertiary education institutions and between tertiary education and the labour market as determinants of provincial and national transition patterns in Canada. The study consists of a provincial analysis that maps the typology of transition systems across Canada's devolved federated tertiary education structure.…

  14. The Missing Link in Australian Tertiary Education: Short-Cycle Higher Education

    ERIC Educational Resources Information Center

    Moodie, Gavin

    2003-01-01

    The blurring of the boundary between Australian vocational education and training and higher education is leading to a reconsideration of the current structure of Australian tertiary education. This paper starts with the main overlap of the Australian tertiary education sectors, diplomas and advanced diplomas. The ambiguous treatment of these…

  15. Maximizing RNA folding rates: a balancing act.

    PubMed Central

    Thirumalai, D; Woodson, S A

    2000-01-01

    Large ribozymes typically require very long times to refold into their active conformation in vitro, because the RNA is easily trapped in metastable misfolded structures. Theoretical models show that the probability of misfolding is reduced when local and long-range interactions in the RNA are balanced. Using the folding kinetics of the Tetrahymena ribozyme as an example, we propose that folding rates are maximized when the free energies of forming independent domains are similar to each other. A prediction is that the folding pathway of the ribozyme can be reversed by inverting the relative stability of the tertiary domains. This result suggests strategies for optimizing ribozyme sequences for therapeutics and structural studies. PMID:10864039

  16. Does gynecologic malignancy predict likelihood of a tertiary palliative care unit hospital admission? A comparison of local, provincial and national death rates.

    PubMed

    Pilkey, Jana; Demers, Chantale; Chochinov, Harvey; Venkatesan, Nithya

    2012-12-01

    The purpose of this study was to determine whether the presence of gynecologic malignancies predicts the likelihood of a tertiary palliative care unit hospital admission. In this study, patients admitted to a specialized tertiary palliative care unit (TPCU) with gynecologic malignancies were compared to national and provincial death rates to determine if gynecologic malignancy predicts admission, and subsequent death, in a TPCU. Eighty-two gynecologic cancer patients were admitted to our TPCU over the 5- year study period. Out of all cancer deaths in the TPCU, death from ovarian cancer was 3.7% compared with 2.4% (p = 0.0068) of all cancer deaths in Manitoba and 2.3% (p = 0.0043) of all cancer deaths in Canada. Cervical cancer accounted for 1.7% of all our patients deaths compared with 0.7% (p = 0.0001) provincially and 0.6% (p = 0.0001) nationally. Uterine cancer deaths were not significantly different from the provincial and national death rates, whereas vulvar and fallopian cancers were too rare to allow for statistical analysis. Gynecologic cancers may be predictive of admission to a palliative care unit.

  17. Rational truncation of an RNA aptamer to prostate-specific membrane antigen using computational structural modeling.

    PubMed

    Rockey, William M; Hernandez, Frank J; Huang, Sheng-You; Cao, Song; Howell, Craig A; Thomas, Gregory S; Liu, Xiu Ying; Lapteva, Natalia; Spencer, David M; McNamara, James O; Zou, Xiaoqin; Chen, Shi-Jie; Giangrande, Paloma H

    2011-10-01

    RNA aptamers represent an emerging class of pharmaceuticals with great potential for targeted cancer diagnostics and therapy. Several RNA aptamers that bind cancer cell-surface antigens with high affinity and specificity have been described. However, their clinical potential has yet to be realized. A significant obstacle to the clinical adoption of RNA aptamers is the high cost of manufacturing long RNA sequences through chemical synthesis. Therapeutic aptamers are often truncated postselection by using a trial-and-error process, which is time consuming and inefficient. Here, we used a "rational truncation" approach guided by RNA structural prediction and protein/RNA docking algorithms that enabled us to substantially truncateA9, an RNA aptamer to prostate-specific membrane antigen (PSMA),with great potential for targeted therapeutics. This truncated PSMA aptamer (A9L; 41mer) retains binding activity, functionality, and is amenable to large-scale chemical synthesis for future clinical applications. In addition, the modeled RNA tertiary structure and protein/RNA docking predictions revealed key nucleotides within the aptamer critical for binding to PSMA and inhibiting its enzymatic activity. Finally, this work highlights the utility of existing RNA structural prediction and protein docking techniques that may be generally applicable to developing RNA aptamers optimized for therapeutic use.

  18. GeneBee-net: Internet-based server for analyzing biopolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, L.I.; Ivanov, V.V.; Nikolaev, V.K.

    This work describes a network server for searching databanks of biopolymer structures and performing other biocomputing procedures; it is available via direct Internet connection. Basic server procedures are dedicated to homology (similarity) search of sequence and 3D structure of proteins. The homologies found could be used to build multiple alignments, predict protein and RNA secondary structure, and construct phylogenetic trees. In addition to traditional methods of sequence similarity search, the authors propose {open_quotes}non-matrix{close_quotes} (correlational) search. An analogous approach is used to identify regions of similar tertiary structure of proteins. Algorithm concepts and usage examples are presented for new methods. Servicemore » logic is based upon interaction of a client program and server procedures. The client program allows the compilation of queries and the processing of results of an analysis.« less

  19. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGES

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  20. RAG-3D: a search tool for RNA 3D substructures

    PubMed Central

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  1. RAG-3D: A search tool for RNA 3D substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  2. Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics.

    PubMed

    Fang, Jing; Nevin, Philip; Kairys, Visvaldas; Venclovas, Česlovas; Engen, John R; Beuning, Penny J

    2014-04-08

    The relationship between protein sequence, structure, and dynamics has been elusive. Here, we report a comprehensive analysis using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. RNA 3D Structural Motifs: Definition, Identification, Annotation, and Database Searching

    NASA Astrophysics Data System (ADS)

    Nasalean, Lorena; Stombaugh, Jesse; Zirbel, Craig L.; Leontis, Neocles B.

    Structured RNA molecules resemble proteins in the hierarchical organization of their global structures, folding and broad range of functions. Structured RNAs are composed of recurrent modular motifs that play specific functional roles. Some motifs direct the folding of the RNA or stabilize the folded structure through tertiary interactions. Others bind ligands or proteins or catalyze chemical reactions. Therefore, it is desirable, starting from the RNA sequence, to be able to predict the locations of recurrent motifs in RNA molecules. Conversely, the potential occurrence of one or more known 3D RNA motifs may indicate that a genomic sequence codes for a structured RNA molecule. To identify known RNA structural motifs in new RNA sequences, precise structure-based definitions are needed that specify the core nucleotides of each motif and their conserved interactions. By comparing instances of each recurrent motif and applying base pair isosteriCity relations, one can identify neutral mutations that preserve its structure and function in the contexts in which it occurs.

  4. An Investigation of G-Quadruplex Structural Polymorphism in the Human Telomere Using a Combined Approach of Hydrodynamic Bead Modeling and Molecular Dynamics Simulation

    PubMed Central

    2015-01-01

    Guanine-rich oligonucleotides can adopt noncanonical tertiary structures known as G-quadruplexes, which can exist in different forms depending on experimental conditions. High-resolution structural methods, such as X-ray crystallography and NMR spectroscopy, have been of limited usefulness in resolving the inherent structural polymorphism associated with G-quadruplex formation. The lack of, or the ambiguous nature of, currently available high-resolution structural data, in turn, has severely hindered investigations into the nature of these structures and their interactions with small-molecule inhibitors. We have used molecular dynamics in conjunction with hydrodynamic bead modeling to study the structures of the human telomeric G-quadruplex-forming sequences at the atomic level. We demonstrated that molecular dynamics can reproduce experimental hydrodynamic measurements and thus can be a powerful tool in the structural study of existing G-quadruplex sequences or in the prediction of new G-quadruplex structures. PMID:24779348

  5. Pushing the size limit of de novo structure ensemble prediction guided by sparse SDSL-EPR restraints to 200 residues: The monomeric and homodimeric forms of BAX

    PubMed Central

    Fischer, Axel W.; Bordignon, Enrica; Bleicken, Stephanie; García-Sáez, Ana J.; Jeschke, Gunnar; Meiler, Jens

    2016-01-01

    Structure determination remains a challenge for many biologically important proteins. In particular, proteins that adopt multiple conformations often evade crystallization in all biologically relevant states. Although computational de novo protein folding approaches often sample biologically relevant conformations, the selection of the most accurate model for different functional states remains a formidable challenge, in particular, for proteins with more than about 150 residues. Electron paramagnetic resonance (EPR) spectroscopy can obtain limited structural information for proteins in well-defined biological states and thereby assist in selecting biologically relevant conformations. The present study demonstrates that de novo folding methods are able to accurately sample the folds of 192-residue long soluble monomeric Bcl-2-associated X protein (BAX). The tertiary structures of the monomeric and homodimeric forms of BAX were predicted using the primary structure as well as 25 and 11 EPR distance restraints, respectively. The predicted models were subsequently compared to respective NMR/X-ray structures of BAX. EPR restraints improve the protein-size normalized root-mean-square-deviation (RMSD100) of the most accurate models with respect to the NMR/crystal structure from 5.9 Å to 3.9 Å and from 5.7 Å to 3.3 Å, respectively. Additionally, the model discrimination is improved, which is demonstrated by an improvement of the enrichment from 5% to 15% and from 13% to 21%, respectively. PMID:27129417

  6. Structural variant of the intergenic internal ribosome entry site elements in dicistroviruses and computational search for their counterparts

    PubMed Central

    HATAKEYAMA, YOSHINORI; SHIBUYA, NORIHIRO; NISHIYAMA, TAKASHI; NAKASHIMA, NOBUHIKO

    2004-01-01

    The intergenic region (IGR) located upstream of the capsid protein gene in dicistroviruses contains an internal ribosome entry site (IRES). Translation initiation mediated by the IRES does not require initiator methionine tRNA. Comparison of the IGRs among dicistroviruses suggested that Taura syndrome virus (TSV) and acute bee paralysis virus have an extra side stem loop in the predicted IRES. We examined whether the side stem is responsible for translation activity mediated by the IGR using constructs with compensatory mutations. In vitro translation analysis showed that TSV has an IGR-IRES that is structurally distinct from those previously described. Because IGR-IRES elements determine the translation initiation site by virtue of their own tertiary structure formation, the discovery of this initiation mechanism suggests the possibility that eukaryotic mRNAs might have more extensive coding regions than previously predicted. To test this hypothesis, we searched full-length cDNA databases and whole genome sequences of eukaryotes using the pattern matching program, Scan For Matches, with parameters that can extract sequences containing secondary structure elements resembling those of IGR-IRES. Our search yielded several sequences, but their predicted secondary structures were suggested to be unstable in comparison to those of dicistroviruses. These results suggest that RNAs structurally similar to dicistroviruses are not common. If some eukaryotic mRNAs are translated independently of an initiator methionine tRNA, their structures are likely to be significantly distinct from those of dicistroviruses. PMID:15100433

  7. Discrete Molecular Dynamics Can Predict Helical Prestructured Motifs in Disordered Proteins

    PubMed Central

    Han, Kyou-Hoon; Dokholyan, Nikolay V.; Tompa, Péter; Kalmár, Lajos; Hegedűs, Tamás

    2014-01-01

    Intrinsically disordered proteins (IDPs) lack a stable tertiary structure, but their short binding regions termed Pre-Structured Motifs (PreSMo) can form transient secondary structure elements in solution. Although disordered proteins are crucial in many biological processes and designing strategies to modulate their function is highly important, both experimental and computational tools to describe their conformational ensembles and the initial steps of folding are sparse. Here we report that discrete molecular dynamics (DMD) simulations combined with replica exchange (RX) method efficiently samples the conformational space and detects regions populating α-helical conformational states in disordered protein regions. While the available computational methods predict secondary structural propensities in IDPs based on the observation of protein-protein interactions, our ab initio method rests on physical principles of protein folding and dynamics. We show that RX-DMD predicts α-PreSMos with high confidence confirmed by comparison to experimental NMR data. Moreover, the method also can dissect α-PreSMos in close vicinity to each other and indicate helix stability. Importantly, simulations with disordered regions forming helices in X-ray structures of complexes indicate that a preformed helix is frequently the binding element itself, while in other cases it may have a role in initiating the binding process. Our results indicate that RX-DMD provides a breakthrough in the structural and dynamical characterization of disordered proteins by generating the structural ensembles of IDPs even when experimental data are not available. PMID:24763499

  8. A Model to Predict Educators' Attitudes towards Technology and Thus Technology Adoption

    ERIC Educational Resources Information Center

    Govender, D. W.

    2012-01-01

    "Technology," the buzz word for the last ten to fifteen years in South Africa. Technology availability is quite often mistaken for technology adoption and use. Technology has been made available to almost all tertiary institutions and at least some public schools. However, in most tertiary institutions many professors still refuse to use…

  9. Predictors of Attrition and Achievement in a Tertiary Bridging Program

    ERIC Educational Resources Information Center

    Whannell, Robert

    2013-01-01

    This study examines the attrition and achievement of a sample of 295 students in an on-campus tertiary bridging program at a regional university. A logistic regression analysis using enrolment status, age and the number of absences from scheduled classes at week three of the semester as predictor variables correctly predicted 92.8 percent of…

  10. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    DOE PAGES

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; ...

    2016-09-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecularmore » interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. Finally, the in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.« less

  11. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecularmore » interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. Finally, the in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.« less

  12. Proposed structure of putative glucose channel in GLUT1 facilitative glucose transporter.

    PubMed Central

    Zeng, H; Parthasarathy, R; Rampal, A L; Jung, C Y

    1996-01-01

    A family of structurally related intrinsic membrane proteins (facilitative glucose transporters) catalyzes the movement of glucose across the plasma membrane of animal cells. Evidence indicates that these proteins show a common structural motif where approximately 50% of the mass is embedded in lipid bilayer (transmembrane domain) in 12 alpha-helices (transmembrane helices; TMHs) and accommodates a water-filled channel for substrate passage (glucose channel) whose tertiary structure is currently unknown. Using recent advances in protein structure prediction algorithms we proposed here two three-dimensional structural models for the transmembrane glucose channel of GLUT1 glucose transporter. Our models emphasize the physical dimension and water accessibility of the channel, loop lengths between TMHs, the macrodipole orientation in four-helix bundle motif, and helix packing energy. Our models predict that five TMHs, either TMHs 3, 4, 7, 8, 11 (Model 1) or TMHs 2, 5, 11, 8, 7 (Model 2), line the channel, and the remaining TMHs surround these channel-lining TMHs. We discuss how our models are compatible with the experimental data obtained with this protein, and how they can be used in designing new biochemical and molecular biological experiments in elucidation of the structural basis of this important protein function. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:8770183

  13. Metamorphic Proteins: Emergence of Dual Protein Folds from One Primary Sequence.

    PubMed

    Lella, Muralikrishna; Mahalakshmi, Radhakrishnan

    2017-06-20

    Every amino acid exhibits a different propensity for distinct structural conformations. Hence, decoding how the primary amino acid sequence undergoes the transition to a defined secondary structure and its final three-dimensional fold is presently considered predictable with reasonable certainty. However, protein sequences that defy the first principles of secondary structure prediction (they attain two different folds) have recently been discovered. Such proteins, aptly named metamorphic proteins, decrease the conformational constraint by increasing flexibility in the secondary structure and thereby result in efficient functionality. In this review, we discuss the major factors driving the conformational switch related both to protein sequence and to structure using illustrative examples. We discuss the concept of an evolutionary transition in sequence and structure, the functional impact of the tertiary fold, and the pressure of intrinsic and external factors that give rise to metamorphic proteins. We mainly focus on the major components of protein architecture, namely, the α-helix and β-sheet segments, which are involved in conformational switching within the same or highly similar sequences. These chameleonic sequences are widespread in both cytosolic and membrane proteins, and these folds are equally important for protein structure and function. We discuss the implications of metamorphic proteins and chameleonic peptide sequences in de novo peptide design.

  14. Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny

    PubMed Central

    Messmer, Marie; Pütz, Joern; Suzuki, Takeo; Suzuki, Tsutomu; Sauter, Claude; Sissler, Marie; Catherine, Florentz

    2009-01-01

    Primary and secondary structures of mammalian mitochondrial (mt) tRNAs are divergent from canonical tRNA structures due to highly skewed nucleotide content and large size variability of D- and T-loops. The nonconservation of nucleotides involved in the expected network of tertiary interactions calls into question the rules governing a functional L-shaped three-dimensional (3D) structure. Here, we report the solution structure of human mt-tRNAAsp in its native post-transcriptionally modified form and as an in vitro transcript. Probing performed with nuclease S1, ribonuclease V1, dimethylsulfate, diethylpyrocarbonate and lead, revealed several secondary structures for the in vitro transcribed mt-tRNAAsp including predominantly the cloverleaf. On the contrary, the native tRNAAsp folds into a single cloverleaf structure, highlighting the contribution of the four newly identified post-transcriptional modifications to correct folding. Reactivities of nucleotides and phosphodiester bonds in the native tRNA favor existence of a full set of six classical tertiary interactions between the D-domain and the variable region, forming the core of the 3D structure. Reactivities of D- and T-loop nucleotides support an absence of interactions between these domains. According to multiple sequence alignments and search for conservation of Leontis–Westhof interactions, the tertiary network core building rules apply to all tRNAAsp from mammalian mitochondria. PMID:19767615

  15. TOUCHSTONE II: a new approach to ab initio protein structure prediction.

    PubMed

    Zhang, Yang; Kolinski, Andrzej; Skolnick, Jeffrey

    2003-08-01

    We have developed a new combined approach for ab initio protein structure prediction. The protein conformation is described as a lattice chain connecting C(alpha) atoms, with attached C(beta) atoms and side-chain centers of mass. The model force field includes various short-range and long-range knowledge-based potentials derived from a statistical analysis of the regularities of protein structures. The combination of these energy terms is optimized through the maximization of correlation for 30 x 60,000 decoys between the root mean square deviation (RMSD) to native and energies, as well as the energy gap between native and the decoy ensemble. To accelerate the conformational search, a newly developed parallel hyperbolic sampling algorithm with a composite movement set is used in the Monte Carlo simulation processes. We exploit this strategy to successfully fold 41/100 small proteins (36 approximately 120 residues) with predicted structures having a RMSD from native below 6.5 A in the top five cluster centroids. To fold larger-size proteins as well as to improve the folding yield of small proteins, we incorporate into the basic force field side-chain contact predictions from our threading program PROSPECTOR where homologous proteins were excluded from the data base. With these threading-based restraints, the program can fold 83/125 test proteins (36 approximately 174 residues) with structures having a RMSD to native below 6.5 A in the top five cluster centroids. This shows the significant improvement of folding by using predicted tertiary restraints, especially when the accuracy of side-chain contact prediction is >20%. For native fold selection, we introduce quantities dependent on the cluster density and the combination of energy and free energy, which show a higher discriminative power to select the native structure than the previously used cluster energy or cluster size, and which can be used in native structure identification in blind simulations. These procedures are readily automated and are being implemented on a genomic scale.

  16. Why Do Tertiary Education Graduates Regret Their Study Program? A Comparison between Spain and the Netherlands

    ERIC Educational Resources Information Center

    Kucel, Aleksander; Vilalta-Bufi, Montserrat

    2013-01-01

    In this paper we investigate the determinants of regret of study program for tertiary education graduates in Spain and the Netherlands. These two countries differ in their educational system in terms of the tracking structure in their secondary education and the strength of their education-labor market linkages in tertiary education. Therefore, by…

  17. RNA Tertiary Interactions in a Riboswitch Stabilize the Structure of a Kink Turn

    PubMed Central

    Schroeder, Kersten T.; Daldrop, Peter; Lilley, David M.J.

    2011-01-01

    Summary The kink turn is a widespread RNA motif that introduces an acute kink into the axis of duplex RNA, typically comprising a bulge followed by a G⋅A and A⋅G pairs. The kinked conformation is stabilized by metal ions, or the binding of proteins including L7Ae. We now demonstrate a third mechanism for the stabilization of k-turn structure, involving tertiary interactions within a larger RNA structure. The SAM-I riboswitch contains an essential standard k-turn sequence that kinks a helix so that its terminal loop can make a long-range interaction. We find that some sequence variations in the k-turn within the riboswitch do not prevent SAM binding, despite preventing the folding of the k-turn in isolation. Furthermore, two crystal structures show that the sequence-variant k-turns are conventionally folded within the riboswitch. This study shows that the folded structure of the k-turn can be stabilized by tertiary interactions within a larger RNA structure. PMID:21893284

  18. A survey-based study of factors that motivate nurses to protect the privacy of electronic medical records.

    PubMed

    Ma, Chen-Chung; Kuo, Kuang-Ming; Alexander, Judith W

    2016-02-02

    The purpose of this study is to investigate factors that motivate nurses to protect privacy in electronic medical records, based on the Decomposed Theory of Planned Behavior. This cross-sectional study used questionnaires to collect data from nurses in a large tertiary care military hospital in Taiwan. The three hundred two (302) valid questionnaires returned resulted in a response rate of 63.7 %. Structural equation modeling identified that the factors of attitude, subjective norm, and perceived behavioral control of the nurses significantly predicted the nurses' intention to protect the privacy of electronic medical records. Further, perceived usefulness and compatibility, peer and superior influence, self-efficacy and facilitating conditions, respectively predicted these three factors. The results of our study may provide valuable information for education and practice in predicting nurses' intention to protect privacy of electronic medical records.

  19. Exploring GPCR-Lipid Interactions by Molecular Dynamics Simulations: Excitements, Challenges, and the Way Forward.

    PubMed

    Sengupta, Durba; Prasanna, Xavier; Mohole, Madhura; Chattopadhyay, Amitabha

    2018-06-07

    Gprotein-coupled receptors (GPCRs) are seven transmembrane receptors that mediate a large number of cellular responses and are important drug targets. One of the current challenges in GPCR biology is to analyze the molecular signatures of receptor-lipid interactions and their subsequent effects on GPCR structure, organization, and function. Molecular dynamics simulation studies have been successful in predicting molecular determinants of receptor-lipid interactions. In particular, predicted cholesterol interaction sites appear to correspond well with experimentally determined binding sites and estimated time scales of association. In spite of several success stories, the methodologies in molecular dynamics simulations are still emerging. In this Feature Article, we provide a comprehensive overview of coarse-grain and atomistic molecular dynamics simulations of GPCR-lipid interaction in the context of experimental observations. In addition, we discuss the effect of secondary and tertiary structural constraints in coarse-grain simulations in the context of functional dynamics and structural plasticity of GPCRs. We envision that this comprehensive overview will help resolve differences in computational studies and provide a way forward.

  20. New Mexico structural zone - An analogue of the Colorado mineral belt

    USGS Publications Warehouse

    Sims, P.K.; Stein, H.J.; Finn, C.A.

    2002-01-01

    Updated aeromagnetic maps of New Mexico together with current knowledge of the basement geology in the northern part of the state (Sangre de Cristo and Sandia-Manzano Mountains)-where basement rocks were exposed in Precambrian-cored uplifts-indicate that the northeast-trending Proterozoic shear zones that controlled localization of ore deposits in the Colorado mineral belt extend laterally into New Mexico. The shear zones in New Mexico coincide spatially with known epigenetic precious- and base-metal ore deposits; thus, the mineralized belts in the two states share a common inherited basement tectonic setting. Reactivation of the basement structures in Late Cretaceous-Eocene and Mid-Tertiary times provided zones of weakness for emplacement of magmas and conduits for ore-forming solutions. Ore deposits in the Colorado mineral belt are of both Late Cretaceous-Eocene and Mid-Tertiary age; those in New Mexico are predominantly Mid-Tertiary in age, but include Late Cretaceous porphyry-copper deposits in southwestern New Mexico. The mineralized belt in New Mexico, named the New Mexico structural zone, is 250-km wide. The northwest boundary is the Jemez subzone (or the approximately equivalent Globe belt), and the southeastern boundary was approximately marked by the Santa Rita belt. Three groups (subzones) of mineral deposits characterize the structural zone: (1) Mid-Tertiary porphyry molybdenite and alkaline-precious-metal deposits, in the northeast segment of the Jemez zone; (2) Mid-Tertiary epithermal precious-metal deposits in the Tijeras (intermediate) zone; and (3) Late Cretaceous porphyry-copper deposits in the Santa Rita zone. The structural zone was inferred to extend from New Mexico into adjacent Arizona. The structural zone provides favorable sites for exploration, particularly those parts of the Jemez subzone covered by Neogene volcanic and sedimentary rocks. ?? 2002 Published by Elsevier Science B.V.

  1. Computational-based structural, functional and phylogenetic analysis of Enterobacter phytases.

    PubMed

    Pramanik, Krishnendu; Kundu, Shreyasi; Banerjee, Sandipan; Ghosh, Pallab Kumar; Maiti, Tushar Kanti

    2018-06-01

    Myo-inositol hexakisphosphate phosphohydrolases (i.e., phytases) are known to be a very important enzyme responsible for solubilization of insoluble phosphates. In the present study, Enterobacter phytases have characterized by different phylogenetic, structural and functional parameters using some standard bio-computational tools. Results showed that majority of the Enterobacter phytases are acidic in nature as most of the isoelectric points were under 7.0. The aliphatic indices predicted for the selected proteins were below 40 indicating their thermostable nature. The average molecular weight of the proteins was 48 kDa. The lower values of GRAVY of the said proteins implied that they have better interactions with water. Secondary structure prediction revealed that alpha-helical content was highest among the other forms such as sheets, coils, etc. Moreover, the predicted 3D structure of Enterobacter phytases divulged that the proteins consisted of four monomeric polypeptide chains i.e., it was a tetrameric protein. The predicted tertiary model of E. aerogenes (A0A0M3HCJ2) was deposited in Protein Model Database (Acc. No.: PM0080561) for further utilization after a thorough quality check from QMEAN and SAVES server. Functional analysis supported their classification as histidine acid phosphatases. Besides, multiple sequence alignment revealed that "DG-DP-LG" was the most highly conserved residues within the Enterobacter phytases. Thus, the present study will be useful in selecting suitable phytase-producing microbe exclusively for using in the animal food industry as a food additive.

  2. Immunological Characterization of Intraocular Lymphoid Follicles in a Spontaneous Recurrent Uveitis Model.

    PubMed

    Kleinwort, Kristina J H; Amann, Barbara; Hauck, Stefanie M; Feederle, Regina; Sekundo, Walter; Deeg, Cornelia A

    2016-08-01

    Recently, formation of tertiary lymphoid structures was demonstrated and further characterized in the R161H mouse model of spontaneous autoimmune uveitis. In the horse model of spontaneous recurrent uveitis, intraocular lymphoid follicle formation is highly characteristic, and found in all stages and scores of disease, but in depth analyses of immunologic features of these structures are lacking to date. Paraffin-embedded eye sections of cases with equine spontaneous recurrent uveitis (ERU) were characterized with immunohistochemistry to gain insight into the distribution, localization, and signaling of immune cells in intraocular tertiary lymphoid tissues. Ectopic lymphoid tissues were located preferentially in the iris, ciliary body, and retina at the ora serrata of horses with naturally-occurring ERU. The majority of cells in the tertiary lymphoid follicles were T cells with a scattered distribution of B cells and PNA+ cells interspersed. A fraction of T cells was additionally positive for memory cell marker CD45RO. Almost all cells coexpressed CD166, a molecule associated with activation and transmigration of T cells into inflamed tissues. Several transcription factors that govern immune cell responses were detectable in the tertiary lymphoid follicles, among them Zap70, TFIIB, GATA3, and IRF4. A high expression of the phosphorylated signal transducers and activators of transcription (STAT) proteins 1 and 5 were found at the margin of the structures. Cellular composition and structural organization of these inflammation-associated tertiary lymphoid tissue structures and the expression of markers of matured T and B cells point to highly organized adaptive immune responses in these follicles in spontaneous recurrent uveitis.

  3. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo

    PubMed Central

    Waldsich, Christina; Grossberger, Rupert; Schroeder, Renée

    2002-01-01

    Efficient splicing of the td group I intron in vivo is dependent on the ribosome. In the absence of translation, the pre-mRNA is trapped in nonnative-splicing-incompetent conformations. Alternatively, folding of the pre-mRNA can be promoted by the RNA chaperone StpA or by the group I intron-specific splicing factor Cyt-18. To understand the mechanism of action of RNA chaperones, we probed the impact of StpA on the structure of the td intron in vivo. Our data suggest that StpA loosens tertiary interactions. The most prominent structural change was the opening of the base triples, which are involved in the correct orientation of the two major intron core domains. In line with the destabilizing activity of StpA, splicing of mutant introns with a reduced structural stability is sensitive to StpA. In contrast, Cyt-18 strengthens tertiary contacts, thereby rescuing splicing of structurally compromised td mutants in vivo. Our data provide direct evidence for protein-induced conformational changes within catalytic RNA in vivo. Whereas StpA resolves tertiary contacts enabling the RNA to refold, Cyt-18 contributes to the overall compactness of the td intron in vivo. PMID:12208852

  4. Computational approach to analyze isolated ssDNA aptamers against angiotensin II.

    PubMed

    Heiat, Mohammad; Najafi, Ali; Ranjbar, Reza; Latifi, Ali Mohammad; Rasaee, Mohammad Javad

    2016-07-20

    Aptamers are oligonucleotides with highly structured molecules that can bind to their targets through specific 3-D conformation. Commonly, not all the nucleotides such as primer binding fixed region and some other sequences are vital for aptamers folding and interaction. Elimination of unnecessary regions needs trustworthy prediction tools to reduce experimental efforts and errors. Here we introduced a manipulated in-silico approach to predict the 3-D structure of aptamers and their target interactions. To design an approach for computational analysis of isolated ssDNA aptamers (FLC112, FLC125 and their truncated core region including CRC112 and CRC125), their secondary and tertiary structures were modeled by Mfold and RNA composer respectively. Output PDB files were modified from RNA to DNA in the discovery studio visualizer software. Using ZDOCK server, the aptamer-target interactions were predicted. Finally, the interaction scores were compared with the experimental results. In-silico interaction scores and the experimental outcomes were in the same descending arrangement of FLC112>CRC125>CRC112>FLC125 with similar intensity. The consistent results of innovative in-silico method with experimental outputs, affirmed that the present method may be a reliable approach. Also, it showed that the exact in-silico predictions can be utilized as a credible reference to find aptameric fragments binding potency. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. General mechanism of two-state protein folding kinetics.

    PubMed

    Rollins, Geoffrey C; Dill, Ken A

    2014-08-13

    We describe here a general model of the kinetic mechanism of protein folding. In the Foldon Funnel Model, proteins fold in units of secondary structures, which form sequentially along the folding pathway, stabilized by tertiary interactions. The model predicts that the free energy landscape has a volcano shape, rather than a simple funnel, that folding is two-state (single-exponential) when secondary structures are intrinsically unstable, and that each structure along the folding path is a transition state for the previous structure. It shows how sequential pathways are consistent with multiple stochastic routes on funnel landscapes, and it gives good agreement with the 9 order of magnitude dependence of folding rates on protein size for a set of 93 proteins, at the same time it is consistent with the near independence of folding equilibrium constant on size. This model gives estimates of folding rates of proteomes, leading to a median folding time in Escherichia coli of about 5 s.

  6. Detection of groundwater conduits in limestones with gravity surveys: data from the area of the Chicxulub Impact crater, Yucatan Peninsula, Mexico.

    PubMed

    Kinsland, G L; Hurtado, M; Pope, K O

    2000-04-15

    Small negative gravity anomalies are found in gravity data from along the northwestern shoreline of the Yucatan Peninsula. These anomalies are shown to be due to elongate, shallow anomalous porosity zones in the Tertiary carbonates. These zones are caused primarily by groundwater solution and are presently active conduits for groundwater flow. The association of these small gravity anomalies with known topographic and structural features of the area, which partially overlies the Chicxulub Impact crater, indicates their development was influenced by structures, faults and/or fractures, within the Tertiary and pre-Tertiary carbonates.

  7. Detection of groundwater conduits in limestones with gravity surveys: data from the area of the Chicxulub Impact crater, Yucatan Peninsula, Mexico

    NASA Technical Reports Server (NTRS)

    Kinsland, G. L.; Hurtado, M.; Pope, K. O.; Ocampo, A. C. (Principal Investigator)

    2000-01-01

    Small negative gravity anomalies are found in gravity data from along the northwestern shoreline of the Yucatan Peninsula. These anomalies are shown to be due to elongate, shallow anomalous porosity zones in the Tertiary carbonates. These zones are caused primarily by groundwater solution and are presently active conduits for groundwater flow. The association of these small gravity anomalies with known topographic and structural features of the area, which partially overlies the Chicxulub Impact crater, indicates their development was influenced by structures, faults and/or fractures, within the Tertiary and pre-Tertiary carbonates.

  8. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines

    PubMed Central

    2010-01-01

    Background Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs), based on domains represented as interaction profile hidden Markov models (ipHMM) where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB). Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD). Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure), an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on the web at http://liao.cis.udel.edu/pub/svdsvm. Implemented in Matlab and supported on Linux and MS Windows. PMID:21034480

  9. Structure and Location of the Regulatory β Subunits in the (αβγδ)4 Phosphorylase Kinase Complex* ♦

    PubMed Central

    Nadeau, Owen W.; Lane, Laura A.; Xu, Dong; Sage, Jessica; Priddy, Timothy S.; Artigues, Antonio; Villar, Maria T.; Yang, Qing; Robinson, Carol V.; Zhang, Yang; Carlson, Gerald M.

    2012-01-01

    Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)4 complex that regulates glycogenolysis in skeletal muscle. Activity of the catalytic γ subunit is regulated by allosteric activators targeting the regulatory α, β, and δ subunits. Three-dimensional EM reconstructions of PhK show it to be two large (αβγδ)2 lobes joined with D2 symmetry through interconnecting bridges. The subunit composition of these bridges was unknown, although indirect evidence suggested the β subunits may be involved in their formation. We have used biochemical, biophysical, and computational approaches to not only address the quaternary structure of the β subunits within the PhK complex, i.e. whether they compose the bridges, but also their secondary and tertiary structures. The secondary structure of β was determined to be predominantly helical by comparing the CD spectrum of an αγδ subcomplex with that of the native (αβγδ)4 complex. An atomic model displaying tertiary structure for the entire β subunit was constructed using chemical cross-linking, MS, threading, and ab initio approaches. Nearly all this model is covered by two templates corresponding to glycosyl hydrolase 15 family members and the A subunit of protein phosphatase 2A. Regarding the quaternary structure of the β subunits, they were directly determined to compose the four interconnecting bridges in the (αβγδ)4 kinase core, because a β4 subcomplex was observed through both chemical cross-linking and top-down MS of PhK. The predicted model of the β subunit was docked within the bridges of a cryoelectron microscopic density envelope of PhK utilizing known surface features of the subunit. PMID:22969083

  10. Structure-Function Study of Tertiary Amines as Switchable Polarity Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaron D. Wilson; Frederick F. Stewart

    2014-02-01

    A series of tertiary amines have been screened for their function as switchable polarity solvents (SPS). The relative ratios of tertiary amine and carbonate species as well as maximum possible concentration were determined through quantitative 1H and 13C NMR spectroscopy. The viscosities of the polar SPS solutions were measured and ranged from near water in dilute systems through to gel formation at high concentrations. The van't Hoff indices for SPS solutions were measured through freezing point depression studies as a proxy for osmotic pressures. A new form of SPS with an amine : carbonate ratio significantly greater than unity hasmore » been identified. Tertiary amines that function as SPS at ambient pressures appear to be limited to molecules with fewer than 12 carbons. The N,N-dimethyl-n-alkylamine structure has been identified as important to the function of an SPS.« less

  11. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Sussman, J. L.; Suddath, F. L.; Quigley, G. J.; Mcpherson, A.; Wang, A. H. J.; Seeman, N. C.; Rich, A.

    1974-01-01

    Results of an analysis and interpretation of a 3-A electron density map of yeast phenylalanine transfer RNA. Some earlier detailed assignments of nucleotide residues to electron density peaks are found to be in error, even though the overall tracing of the backbone conformation of yeast phenylalanine transfer RNA was generally correct. A new, more comprehensive interpretation is made which makes it possible to define the tertiary interactions in the molecule. The new interpretation makes it possible to visualize a number of tertiary interactions which not only explain the structural role of most of the bases which are constant in transfer RNAs, but also makes it possible to understand in a direct and simple fashion the chemical modification data on transfer RNA. In addition, this pattern of tertiary interactions provides a basis for understanding the general three-dimensional folding of all transfer RNA molecules.

  12. Risk of malignancy index used as a diagnostic tool in a tertiary centre for patients with a pelvic mass.

    PubMed

    Håkansson, Fanny; Høgdall, Estrid V S; Nedergaard, Lotte; Lundvall, Lene; Engelholm, Svend A; Pedersen, Anette T; Hartwell, Dorthe; Høgdall, Claus

    2012-04-01

    Risk of malignancy index (RMI), based on a serum cancer antigen 125 level, ultrasound findings and menopausal status, is used to discriminate ovarian cancer from benign pelvic mass. In Denmark, patients with pelvic mass and RMI ≥200 are referred to tertiary gynecologic oncology centers according to the national guidelines for ovarian cancer treatment. The guidelines include recalculation of RMI at the tertiary center and, if indicated, positron emission tomography/computed tomography and fast-track surgery by specialists in cancer surgery. The aim of this study was to validate the use of RMI ≥200 as a tool for preoperative identification of ovarian cancer at a tertiary center. Prospective observational study. A tertiary center in Copenhagen, Denmark. One thousand one hundred and fifty-nine women with pelvic mass. The RMI was calculated after ultrasound examination and blood sampling for serum cancer antigen 125 analysis within two weeks before surgery. Sensitivity, specificity, positive and negative predictive values were calculated to evaluate the ability of RMI to distinguish between ovarian cancer and benign pelvic mass. There were 778 women diagnosed with benign pelvic mass, while 251 had ovarian cancer and 74 had borderline ovarian tumor. Fifty-six women were diagnosed with other forms of cancer. Sensitivity and specificity for ovarian cancer vs. benign pelvic mass for RMI ≥200 were 92 and 82%, respectively. Corresponding positive and negative predictive values were 62 and 97%. Risk of malignancy index ≥200 is a reliable tool for identifying patients with ovarian cancer pelvic masses at a tertiary centre to select patients for further preoperative examinations. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  13. An Amino Acid Code for Irregular and Mixed Protein Packing

    PubMed Central

    Joo, Hyun; Chavan, Archana; Fraga, Keith; Tsai, Jerry

    2015-01-01

    To advance our understanding of protein tertiary structure, the development of the knob-socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob-socket model simplifies packing based on repeated patterns of 2 motifs: a 3 residue socket for packing within 2° structure and a 4 residue knob-socket for 3° packing. For coil and turn secondary structure, knob-sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α-helices to tertiary packing. Irregular secondary structure involves 3 residue cliques of consecutive contacting residues or XYZ sockets. In irregular sockets, Gly, Pro, Asp and Ser are favored, while Cys, His, Met and Trp are not. For irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly, while Cys, His, Met and Trp are not. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β-sheet socket may potentially function to inhibit β-sheet extension. In addition, analysis of the preferred crossing angles for strands within a β-sheet and mixed α-helices/β-sheets identifies canonical packing patterns useful in protein design. Lastly, the knob-socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map. PMID:26370334

  14. Smart Utilization of Tertiary Instructional Modes

    ERIC Educational Resources Information Center

    Hamilton, John; Tee, Singwhat

    2010-01-01

    This empirical research surveys first year tertiary business students across different campuses regarding their perceived views concerning traditional, blended and flexible instructional approaches. A structural equation modeling approach shows traditional instructional modes deliver lower levels of student-perceived learning quality, learning…

  15. Formation Mechanism of NDMA from Ranitidine, Trimethylamine, and Other Tertiary Amines during Chloramination: A Computational Study

    PubMed Central

    2015-01-01

    Chloramination of drinking waters has been associated with N-nitrosodimethylamine (NDMA) formation as a disinfection byproduct. NDMA is classified as a probable carcinogen and thus its formation during chloramination has recently become the focus of considerable research interest. In this study, the formation mechanisms of NDMA from ranitidine and trimethylamine (TMA), as models of tertiary amines, during chloramination were investigated by using density functional theory (DFT). A new four-step formation pathway of NDMA was proposed involving nucleophilic substitution by chloramine, oxidation, and dehydration followed by nitrosation. The results suggested that nitrosation reaction is the rate-limiting step and determines the NDMA yield for tertiary amines. When 45 other tertiary amines were examined, the proposed mechanism was found to be more applicable to aromatic tertiary amines, and there may be still some additional factors or pathways that need to be considered for aliphatic tertiary amines. The heterolytic ONN(Me)2–R+ bond dissociation energy to release NDMA and carbocation R+ was found to be a criterion for evaluating the reactivity of aromatic tertiary amines. A structure–activity study indicates that tertiary amines with benzyl, aromatic heterocyclic ring, and diene-substituted methenyl adjacent to the DMA moiety are potentially significant NDMA precursors. The findings of this study are helpful for understanding NDMA formation mechanism and predicting NDMA yield of a precursor. PMID:24968236

  16. Structural characterization of the α-mating factor prepro-peptide for secretion of recombinant proteins in Pichia pastoris.

    PubMed

    Chahal, Sabreen; Wei, Peter; Moua, Pachai; Park, Sung Pil James; Kwon, Janet; Patel, Arth; Vu, Anthony T; Catolico, Jason A; Tsai, Yu Fang Tina; Shaheen, Nadia; Chu, Tiffany T; Tam, Vivian; Khan, Zill-E-Huma; Joo, Hyun Henry; Xue, Liang; Lin-Cereghino, Joan; Tsai, Jerry W; Lin-Cereghino, Geoff P

    2017-01-20

    The methylotrophic yeast Pichia pastoris has been used extensively for expressing recombinant proteins because it combines the ease of genetic manipulation, the ability to provide complex posttranslational modifications and the capacity for efficient protein secretion. The most successful and commonly used secretion signal leader in Pichia pastoris has been the alpha mating factor (MATα) prepro secretion signal. However, limitations exist as some proteins cannot be secreted efficiently, leading to strategies to enhance secretion efficiency by modifying the secretion signal leader. Based on a Jpred secondary structure prediction and knob-socket modeling of tertiary structure, numerous deletions and duplications of the MATα prepro leader were engineered to evaluate the correlation between predicted secondary structure and the secretion level of the reporters horseradish peroxidase (HRP) and Candida antarctica lipase B. In addition, circular dichroism analyses were completed for the wild type and several mutant pro-peptides to evaluate actual differences in secondary structure. The results lead to a new model of MATα pro-peptide signal leader, which suggests that the N and C-termini of MATα pro-peptide need to be presented in a specific orientation for proper interaction with the cellular secretion machinery and for efficient protein secretion. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Clinical course of a cohort of children with non-neurogenic daytime urinary incontinence symptoms followed at a tertiary center.

    PubMed

    Lebl, Adrienne; Fagundes, Simone Nascimento; Koch, Vera Hermina Kalika

    2016-01-01

    To characterize a cohort of children with non-neurogenic daytime urinary incontinence followed-up in a tertiary center. Retrospective analysis of 50 medical records of children who had attained bladder control or minimum age of 5 years, using a structured protocol that included lower urinary tract dysfunction symptoms, comorbidities, associated manifestations, physical examination, voiding diary, complementary tests, therapeutic options, and clinical outcome, in accordance with the 2006 and 2014 International Children's Continence Society standardizations. Female patients represented 86.0% of this sample. Mean age was 7.9 years and mean follow-up was 4.7 years. Urgency (56.0%), urgency incontinence (56.0%), urinary retention (8.0%), nocturnal enuresis (70.0%), urinary tract infections (62.0%), constipation (62.0%), and fecal incontinence (16.0%) were the most prevalent symptoms and comorbidities. Ultrasound examinations showed alterations in 53.0% of the cases; the urodynamic study showed alterations in 94.7%. At the last follow-up, 32.0% of patients persisted with urinary incontinence. When assessing the diagnostic methods, 85% concordance was observed between the predictive diagnosis of overactive bladder attained through medical history plus non-invasive exams and the diagnosis of detrusor overactivity achieved through the invasive urodynamic study. This subgroup of patients with clinical characteristics of an overactive bladder, with no history of urinary tract infection, and normal urinary tract ultrasound and uroflowmetry, could start treatment without invasive studies even at a tertiary center. Approximately one-third of the patients treated at the tertiary level remained refractory to treatment. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  18. Measurements and Predictions of the Noise from Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.

    2015-01-01

    An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary-to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with increasing polar angle is over-predicted. For an offset third stream with a heated core, it is shown that including the enthalpy-flux source terms in the acoustic analogy model improves predictions compared with those obtained using only the momentum flux.

  19. Measurements and Predictions of the Noise from Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.

    2015-01-01

    An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary- to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with increasing polar angle is over-predicted. For an offset third stream with a heated core, it is shown that including the enthalpy-flux source terms in the acoustic analogy model improves predictions compared with those obtained using only the momentum- flux.

  20. Patients' assessment of quality of care in public tertiary hospitals with and without accreditation: comparative cross-sectional study.

    PubMed

    Aboshaiqah, Ahmad E; Alonazi, Wadi B; Patalagsa, Joel Gonzales

    2016-11-01

    To compare patients' assessment of quality of care provided by public tertiary hospitals grouped according to accreditation status. Healthcare institutions worldwide are increasingly adopting accreditation as continuing initiative aimed at improving structures, processes and outcomes associated with quality of care. Patients being recipients of health care need to participate in assessing the quality of care they experienced while confined for therapeutic management. Comparative, cross-sectional. Data were collected from patients confined in public tertiary hospitals (n = 517 in four with accreditation and n = 542 in four without accreditation) in Riyadh, Saudi Arabia between February 2011-June 2011. Patients rated key performance indicators grouped under the dimensions of structure, process and outcome. Mann-Whitney U-test, Spearman Correlation Coefficient and coefficient of determination were used in analysing data. Patients in accredited public tertiary hospitals perceived structure, outcome and overall quality of care statistically higher than patients in non-accredited hospitals. No statistical differences were found in process (access and communication) indicators. Accreditation status is marginally associated with structure; outcome; and overall quality of care. The proportion of variance in the ranks of accreditation status explained the proportion of variance in the ranks of structure; outcome; and overall quality of care. The results apparently showed better structure, outcome and overall quality of care in accredited hospitals. Accreditation's association in the overall quality of care apparently remained unclear. Further studies are needed to appreciate the contribution of accreditation. © 2016 John Wiley & Sons Ltd.

  1. Unraveling the meaning of chemical shifts in protein NMR.

    PubMed

    Berjanskii, Mark V; Wishart, David S

    2017-11-01

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Halogen dependent symmetry change in two series of wheel cluster organic frameworks built from La18 tertiary building units.

    PubMed

    Fang, Wei-Hui; Zhang, Lei; Zhang, Jian; Yang, Guo-Yu

    2016-01-25

    Two series of wheel cluster organic frameworks (WCOFs) built from La18 tertiary building units are hydrothermally made, which show halogen-dependent structural symmetry, and demonstrate different chiral performances.

  3. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure

    PubMed Central

    1994-01-01

    Here, we describe the cloning and characterization of ScII, the second most abundant protein after topoisomerase II, of the chromosome scaffold fraction to be identified. ScII is structurally related to a protein, Smc1p, previously found to be required for accurate chromosome segregation in Saccharomyces cerevisiae. ScII and the other members of the emerging family of SMC1-like proteins are likely to be novel ATPases, with NTP-binding A and B sites separated by two lengthy regions predicted to form an alpha-helical coiled-coil. Analysis of the ScII B site predicted that ScII might use ATP by a mechanism similar to the bacterial recN DNA repair and recombination enzyme. ScII is a mitosis-specific scaffold protein that colocalizes with topoisomerase II in mitotic chromosomes. However, ScII appears not to be associated with the interphase nuclear matrix. ScII might thus play a role in mitotic processes such as chromosome condensation or sister chromatid disjunction, both of which have been previously shown to involve topoisomerase II. PMID:7929577

  4. Parameterization of an empirical model for the prediction of n-octanol, alkane and cyclohexane/water as well as brain/blood partition coefficients.

    PubMed

    Zerara, Mohamed; Brickmann, Jürgen; Kretschmer, Robert; Exner, Thomas E

    2009-02-01

    Quantitative information of solvation and transfer free energies is often needed for the understanding of many physicochemical processes, e.g the molecular recognition phenomena, the transport and diffusion processes through biological membranes and the tertiary structure of proteins. Recently, a concept for the localization and quantification of hydrophobicity has been introduced (Jäger et al. J Chem Inf Comput Sci 43:237-247, 2003). This model is based on the assumptions that the overall hydrophobicity can be obtained as a superposition of fragment contributions. To date, all predictive models for the logP have been parameterized for n-octanol/water (logP(oct)) solvent while very few models with poor predictive abilities are available for other solvents. In this work, we propose a parameterization of an empirical model for n-octanol/water, alkane/water (logP(alk)) and cyclohexane/water (logP(cyc)) systems. Comparison of both logP(alk) and logP(cyc) with the logarithms of brain/blood ratios (logBB) for a set of structurally diverse compounds revealed a high correlation showing their superiority over the logP(oct) measure in this context.

  5. Functional interactions between arginine-133 and aspartate-88 in the human reduced folate carrier: evidence for a charge-pair association.

    PubMed Central

    Liu, X Y; Matherly, L H

    2001-01-01

    The human reduced folate carrier (hRFC) is an integral membrane protein that mediates cellular uptake of reduced folates and antifolates. hRFC contains several highly conserved charged residues predicted to lie in the transmembrane domains (TMDs). To explore the possible roles of the conserved arginine-133, located in TMD 4, in hRFC structure and function, this residue was systematically mutagenized to histidine, leucine, lysine and glutamate. When transfected into transport-impaired K562 cells, the mutant hRFC constructs were expressed at high levels; however, only lysine-133 hRFC was able to transport methotrexate and (6S)-5-formyl tetrahydrofolate. Substitution of aspartate-453 (in hRFC TMD 12) by valine largely preserved transport activity for both substrates. Although mutagenesis of aspartate-88 (in TMD 2) to leucine completely abolished transport activity in transfected cells, substitution with a glutamate preserved low levels ( approximately 12%) of transport. To assess the possibility that arginine-133 and aspartate-88 may form a charge-pair to stabilize hRFC tertiary structure, both charges were neutralized (by substituting leucine and valine, respectively) in the same construct. In contrast to the singly mutated hRFCs, the double mutant exhibited high levels of transport with both methotrexate and 5-formyl tetrahydrofolate. These results strongly suggest that arginine-133 and aspartate-88 form a charge-pair and that TMD 4 lies next to TMD 2 in the hRFC tertiary structure. PMID:11513752

  6. Probing RNA tertiary structure: interhelical crosslinking of the hammerhead ribozyme.

    PubMed Central

    Sigurdsson, S T; Tuschl, T; Eckstein, F

    1995-01-01

    Distinct structural models for the hammerhead ribozyme derived from single-crystal X-ray diffraction and fluorescence resonance energy transfer (FRET) measurements have been compared. Both models predict the same overall geometry, a wishbone shape with helices II and III nearly colinear and helix I positioned close to helix II. However, the relative orientations of helices I and II are different. To establish whether one of the models represents a kinetically active structure, a new crosslinking procedure was developed in which helices I and II of hammerhead ribozymes were disulfide-crosslinked via the 2' positions of specific sugar residues. Crosslinking residues on helices I and II that are close according to the X-ray structure did not appreciably reduce the catalytic efficiency. In contrast, crosslinking residues closely situated according to the FRET model dramatically reduced the cleavage rate by at least three orders of magnitude. These correlations between catalytic efficiencies and spatial proximities are consistent with the X-ray structure. PMID:7489517

  7. Macromolecular ab initio phasing enforcing secondary and tertiary structure.

    PubMed

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases.

  8. Application of Landsat imagery to problems of petroleum exploration in Qaidam Basin, China

    USGS Publications Warehouse

    Bailey, G.B.; Anderson, P.D.

    1982-01-01

    Tertiary and Quaternary nonmarine, petroleum-bearing sedimentary rocks have been extensively deformed by compressive forces. These forces created many folds which are current targets of Chinese exploration programs. Image-derived interpretations of folds, strike-slip faults, thrust faults, normal or reverse faults, and fractures compared very favorably, in terms of locations and numbers mapped, with Chinese data compiled from years of extensive field mapping. Many potential hydrocarbon trapping structures were precisely located. Orientations of major structural trends defined from Landsat imagery correlate well with those predicted for the area based on global tectonic theory. These correlations suggest that similar orientations exist in the eastern half of the basin where folded rocks are mostly obscured by unconsolidated surface sediments and where limited exploration has occurred.--Modified journal abstract.

  9. Stereoinversion of tertiary alcohols to tertiary-alkyl isonitriles and amines.

    PubMed

    Pronin, Sergey V; Reiher, Christopher A; Shenvi, Ryan A

    2013-09-12

    The SN2 reaction (bimolecular nucleophilic substitution) is a well-known chemical transformation that can be used to join two smaller molecules together into a larger molecule or to exchange one functional group for another. The SN2 reaction proceeds in a very predictable manner: substitution occurs with inversion of stereochemistry, resulting from the 'backside attack' of the electrophilic carbon by the nucleophile. A significant limitation of the SN2 reaction is its intolerance for tertiary carbon atoms: whereas primary and secondary alcohols are viable precursor substrates, tertiary alcohols and their derivatives usually either fail to react or produce stereochemical mixtures of products. Here we report the stereochemical inversion of chiral tertiary alcohols with a nitrogenous nucleophile facilitated by a Lewis-acid-catalysed solvolysis. The method is chemoselective against secondary and primary alcohols, thereby complementing the selectivity of the SN2 reaction. Furthermore, this method for carbon-nitrogen bond formation mimics a putative biosynthetic step in the synthesis of marine terpenoids and enables their preparation from the corresponding terrestrial terpenes. We expect that the general attributes of the methodology will allow chiral tertiary alcohols to be considered viable substrates for stereoinversion reactions.

  10. Structural relationships of pre-Tertiary rocks in the Nevada Test Site region, southern Nevada

    USGS Publications Warehouse

    Cole, James C.; Cashman, Patricia Hughes

    1999-01-01

    This report contains a synthesis and interpretation of structural and stratigraphic data for pre-Tertiary rocks in a large area of southern Nevada within and near the Nevada Test Site. Its presents descriptive and interpretive information from discontinuously exposed localities in the context of a regional model that integrates stratigraphy, sedimentology, crustal structure, and deformational style and timing. Evidence is given for substantial strike-slip faults, for modest excursion on low-angle faults, and for pre-Oligocene formation of the regional oroclinal flexure in neighboring mountain ranges.

  11. Geophysical Investigation of Avon Valley, West-Central Montana, using Gravity and Seismic Reflection Profiling

    NASA Astrophysics Data System (ADS)

    Knatterud, L.; Mosolf, J.; Speece, M. A.; Zhou, X.

    2014-12-01

    The Avon Valley and adjacent mountains in west-central Montana lie within the Lewis and Clark Line, a major system of WNW-striking faults and folds that transect the more northerly structural grain of the northern Rockies and represent alternating episodes of transtensional and transpressional deformation. The northwest-trending valley has been previously interpreted as an extensional half graben filled with Tertiary sedimentary and volcanic deposits; however, little-to-no geophysical constraints on basin architecture or the thickness of Tertiary fill have been reported. A major northwest-striking fault with significant normal displacement clearly bounds the valley to the northeast, juxtaposing Tertiary sedimentary deposits against Proterozoic-Mesozoic units deformed by shortening structures and crosscut by Cretaceous granitic intrusions. Tertiary volcanic deposits unconformably overlying faulted and folded Phanerozoic-Proterozoic sequences in the eastern Garnet Range bound the valley to the southwest, but in the past no faults had been mapped along this margin. New mapping by the Montana Bureau of Mines and Geology (MBMG) has identified a system of high-angle, northwest- and northeast-striking, oblique-slip faults along the southwest border of the Avon calling into question if the valley is a half, full, or asymmetrical graben. Geophysical data has recently been acquired by Montana Tech to help define the structural architecture of the Avon Valley and the thickness of its Tertiary fill. Gravity data and a short seismic reflection profile have been collected and a preliminary interpretation of these data indicates a half graben with a series of normal faults bounding the western side of the valley. Ongoing gravity data collection throughout 2014 should refine this interpretation by better defining the bedrock-Tertiary interface at depth.

  12. Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners

    PubMed Central

    Feinauer, Christoph; Procaccini, Andrea; Zecchina, Riccardo; Weigt, Martin; Pagnani, Andrea

    2014-01-01

    In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis, sparse inverse covariance estimation) have achieved a breakthrough towards this aim, and their predictions have been successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete nature of the underlying variable (amino-acids), exact inference requires exponential time in the protein length, and efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete variables, as done by direct-coupling analysis. This is true for (i) the prediction of residue-residue contacts in proteins, and (ii) the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code. PMID:24663061

  13. Architecture of a Diels-Alderase ribozyme with a preformed catalytic pocket.

    PubMed

    Keiper, Sonja; Bebenroth, Dirk; Seelig, Burckhard; Westhof, Eric; Jäschke, Andres

    2004-09-01

    Artificial ribozymes catalyze a variety of chemical reactions. Their structures and reaction mechanisms are largely unknown. We have analyzed a ribozyme catalyzing Diels-Alder cycloaddition reactions by comprehensive mutation analysis and a variety of probing techniques. New tertiary interactions involving base pairs between nucleotides of the 5' terminus and a large internal loop forming a pseudoknot fold were identified. The probing data indicate a preformed tertiary structure that shows no major changes on substrate or product binding. Based on these observations, a molecular architecture featuring a Y-shaped arrangement is proposed. The tertiary structure is formed in a rather unusual way; that is, the opposite sides of the asymmetric internal loop are clamped by the four 5'-terminal nucleotides, forming two adjacent two base-pair helices. It is proposed that the catalytic pocket is formed by a wedge within one of these helices.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, J.-P.; Stehle, T.; Zhang, R.

    The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. Themore » tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.« less

  15. Distinct Tertiary Lymphoid Structure Associations and Their Prognostic Relevance in HER2 Positive and Negative Breast Cancers.

    PubMed

    Liu, Xia; Tsang, Julia Y S; Hlaing, Thazin; Hu, Jintao; Ni, Yun-Bi; Chan, Siu Ki; Cheung, Sai Yin; Tse, Gary M

    2017-11-01

    The presence of tumor infiltrating lymphocytes (TIL) is associated with favorable prognosis. Recent evidence suggested that not only their density, but also the spatial organization as tertiary lymphoid structures (TLS), play a key role in determining patient survival. In a cohort of 248 breast cancers, the clinicopathologic association and prognostic role of TLS was examined. Tertiary lymphoid structures were associated with higher tumor grade, apocrine phenotype, necrosis, extensive in situ component, lymphovascular invasion (LVI), and high TIL. For biomarkers, TLS were associated with hormone receptors negativity, HER2 positivity, and c-kit expression. Tertiary lymphoid structures were significantly related to better disease-free survival (DFS) in HER2 positive (HER2+) breast cancers (log-rank = 4.054), which was not dependent on high TIL status. The combined TLS and TIL status was an independent favorable factor associated with DFS in those cases. Interestingly, tumor cell infiltration into the TLS was found in 41.9% of TLS positive cases. It was associated with LVI in HER2 negative (HER2-) TLS positive (particularly estrogen receptor positive [ER+] HER2-) cases. In the ER+ HER2- cases, tumor cell infiltration into TLS was also associated with increased pathologic nodal stage (pN) stage and nodal involvement. Tertiary lymphoid structures showed a similar relationship with clinicopathologic features and biomarkers as TIL. The presence of TLS, irrespective of TIL level, could be an important favorable prognostic indicator in HER2+ breast cancer patients. Given the significance of TLS in promoting effective antitumor immunity, further understanding of its organization and induction may provide new opportunities to improve the current immunotherapy strategies. Despite recent interest on the clinical value of tumor infiltrating lymphocyte (TIL), little was known on the clinical significance on their spatial organization as tertiary lymphoid structures (TLS). Although TLS showed similar relationships with clinicopathologic features and biomarkers as TIL, the prognostic value of TLS, particularly in HER2 positive cancers, was independent of TIL. Moreover, tumor infiltration could be present in TLS which appears to be related to tumor invasion in HER2 negative cancers. Overall, the results demonstrated the additional value for TLS in HER2 cancer subtypes. Further investigations and its standardized evaluation will enhance its use as standard practice. © AlphaMed Press 2017.

  16. Comprehensive comparison of two protein family of P-ATPases (13A1 and 13A3) in insects.

    PubMed

    Seddigh, Samin

    2017-06-01

    The P-type ATPases (P-ATPases) are present in all living cells where they mediate ion transport across membranes on the expense of ATP hydrolysis. Different ions which are transported by these pumps are protons like calcium, sodium, potassium, and heavy metals such as manganese, iron, copper, and zinc. Maintenance of the proper gradients for essential ions across cellular membranes makes P-ATPases crucial for cell survival. In this study, characterization of two families of P-ATPases including P-ATPase 13A1 and P-ATPase 13A3 protein was compared in two different insect species from different orders. According to the conserved motifs found with MEME, nine motifs were shared by insects of 13A1 family but eight in 13A3 family. Seven different insect species from 13A1 and five samples from 13A3 family were selected as the representative samples for functional and structural analyses. The structural and functional analyses were performed with ProtParam, SOPMA, SignalP 4.1, TMHMM 2.0, ProtScale and ProDom tools in the ExPASy database. The tertiary structure of Bombus terrestris as a sample of each family of insects were predicted by the Phyre2 and TM-score servers and their similarities were verified by SuperPose server. The tertiary structures were predicted via the "c3b9bA" model (PDB Accession Code: 3B9B) in P-ATPase 13A1 family and "c2zxeA" model (PDB Accession Code: 2ZXE) in P-ATPase 13A3 family. A phylogenetic tree was constructed with MEGA 6.06 software using the Neighbor-joining method. According to the results, there was a high identity of P-ATPase families so that they should be derived from a common ancestor however they belonged to separate groups. In protein-protein interaction analysis by STRING 10.0, six common enriched pathways of KEGG were identified in B. terrestris in both families. The obtained data provide a background for bioinformatic studies of the function and evolution of other insects and organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Identifying intrinsically disordered protein regions likely to undergo binding-induced helical transitions.

    PubMed

    Glover, Karen; Mei, Yang; Sinha, Sangita C

    2016-10-01

    Many proteins contain intrinsically disordered regions (IDRs) lacking stable secondary and ordered tertiary structure. IDRs are often implicated in macromolecular interactions, and may undergo structural transitions upon binding to interaction partners. However, as binding partners of many protein IDRs are unknown, these structural transitions are difficult to verify and often are poorly understood. In this study we describe a method to identify IDRs that are likely to undergo helical transitions upon binding. This method combines bioinformatics analyses followed by circular dichroism spectroscopy to monitor 2,2,2-trifluoroethanol (TFE)-induced changes in secondary structure content of these IDRs. Our results demonstrate that there is no significant change in the helicity of IDRs that are not predicted to fold upon binding. IDRs that are predicted to fold fall into two groups: one group does not become helical in the presence of TFE and includes examples of IDRs that form β-strands upon binding, while the other group becomes more helical and includes examples that are known to fold into helices upon binding. Therefore, we propose that bioinformatics analyses combined with experimental evaluation using TFE may provide a general method to identify IDRs that undergo binding-induced disorder-to-helix transitions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Secondary and tertiary isoquinoline alkaloids from Xylopia parviflora.

    PubMed

    Nishiyama, Yumi; Moriyasu, Masataka; Ichimaru, Momoyo; Iwasa, Kinuko; Kato, Atsushi; Mathenge, Simon G; Chalo Mutiso, Patrick B; Juma, Francis D

    2006-12-01

    From the secondary and tertiary alkaloidal fractions of the root and the bark of Xylopia parviflora (Annonaceae), the isoquinoline alkaloids, 10,11-dihydroxy-1,2-dimethoxynoraporphine and parvinine were isolated, along with 39 known alkaloids. Their structures were determined on the basis of analysis of spectroscopic data.

  19. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.

    PubMed

    Song, Jiangning; Li, Fuyi; Takemoto, Kazuhiro; Haffari, Gholamreza; Akutsu, Tatsuya; Chou, Kuo-Chen; Webb, Geoffrey I

    2018-04-14

    Determining the catalytic residues in an enzyme is critical to our understanding the relationship between protein sequence, structure, function, and enhancing our ability to design novel enzymes and their inhibitors. Although many enzymes have been sequenced, and their primary and tertiary structures determined, experimental methods for enzyme functional characterization lag behind. Because experimental methods used for identifying catalytic residues are resource- and labor-intensive, computational approaches have considerable value and are highly desirable for their ability to complement experimental studies in identifying catalytic residues and helping to bridge the sequence-structure-function gap. In this study, we describe a new computational method called PREvaIL for predicting enzyme catalytic residues. This method was developed by leveraging a comprehensive set of informative features extracted from multiple levels, including sequence, structure, and residue-contact network, in a random forest machine-learning framework. Extensive benchmarking experiments on eight different datasets based on 10-fold cross-validation and independent tests, as well as side-by-side performance comparisons with seven modern sequence- and structure-based methods, showed that PREvaIL achieved competitive predictive performance, with an area under the receiver operating characteristic curve and area under the precision-recall curve ranging from 0.896 to 0.973 and from 0.294 to 0.523, respectively. We demonstrated that this method was able to capture useful signals arising from different levels, leveraging such differential but useful types of features and allowing us to significantly improve the performance of catalytic residue prediction. We believe that this new method can be utilized as a valuable tool for both understanding the complex sequence-structure-function relationships of proteins and facilitating the characterization of novel enzymes lacking functional annotations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. ProDaMa: an open source Python library to generate protein structure datasets.

    PubMed

    Armano, Giuliano; Manconi, Andrea

    2009-10-02

    The huge difference between the number of known sequences and known tertiary structures has justified the use of automated methods for protein analysis. Although a general methodology to solve these problems has not been yet devised, researchers are engaged in developing more accurate techniques and algorithms whose training plays a relevant role in determining their performance. From this perspective, particular importance is given to the training data used in experiments, and researchers are often engaged in the generation of specialized datasets that meet their requirements. To facilitate the task of generating specialized datasets we devised and implemented ProDaMa, an open source Python library than provides classes for retrieving, organizing, updating, analyzing, and filtering protein data. ProDaMa has been used to generate specialized datasets useful for secondary structure prediction and to develop a collaborative web application aimed at generating and sharing protein structure datasets. The library, the related database, and the documentation are freely available at the URL http://iasc.diee.unica.it/prodama.

  1. General Mechanism of Two-State Protein Folding Kinetics

    PubMed Central

    Rollins, Geoffrey C.; Dill, Ken A.

    2016-01-01

    We describe here a general model of the kinetic mechanism of protein folding. In the Foldon Funnel Model, proteins fold in units of secondary structures, which form sequentially along the folding pathway, stabilized by tertiary interactions. The model predicts that the free energy landscape has a volcano shape, rather than a simple funnel, that folding is two-state (single-exponential) when secondary structures are intrinsically unstable, and that each structure along the folding path is a transition state for the previous structure. It shows how sequential pathways are consistent with multiple stochastic routes on funnel landscapes, and it gives good agreement with the 9 order of magnitude dependence of folding rates on protein size for a set of 93 proteins, at the same time it is consistent with the near independence of folding equilibrium constant on size. This model gives estimates of folding rates of proteomes, leading to a median folding time in Escherichia coli of about 5 s. PMID:25056406

  2. Template-based protein structure modeling using the RaptorX web server.

    PubMed

    Källberg, Morten; Wang, Haipeng; Wang, Sheng; Peng, Jian; Wang, Zhiyong; Lu, Hui; Xu, Jinbo

    2012-07-19

    A key challenge of modern biology is to uncover the functional role of the protein entities that compose cellular proteomes. To this end, the availability of reliable three-dimensional atomic models of proteins is often crucial. This protocol presents a community-wide web-based method using RaptorX (http://raptorx.uchicago.edu/) for protein secondary structure prediction, template-based tertiary structure modeling, alignment quality assessment and sophisticated probabilistic alignment sampling. RaptorX distinguishes itself from other servers by the quality of the alignment between a target sequence and one or multiple distantly related template proteins (especially those with sparse sequence profiles) and by a novel nonlinear scoring function and a probabilistic-consistency algorithm. Consequently, RaptorX delivers high-quality structural models for many targets with only remote templates. At present, it takes RaptorX ~35 min to finish processing a sequence of 200 amino acids. Since its official release in August 2011, RaptorX has processed ~6,000 sequences submitted by ~1,600 users from around the world.

  3. Template-based protein structure modeling using the RaptorX web server

    PubMed Central

    Källberg, Morten; Wang, Haipeng; Wang, Sheng; Peng, Jian; Wang, Zhiyong; Lu, Hui; Xu, Jinbo

    2016-01-01

    A key challenge of modern biology is to uncover the functional role of the protein entities that compose cellular proteomes. To this end, the availability of reliable three-dimensional atomic models of proteins is often crucial. This protocol presents a community-wide web-based method using RaptorX (http://raptorx.uchicago.edu/) for protein secondary structure prediction, template-based tertiary structure modeling, alignment quality assessment and sophisticated probabilistic alignment sampling. RaptorX distinguishes itself from other servers by the quality of the alignment between a target sequence and one or multiple distantly related template proteins (especially those with sparse sequence profiles) and by a novel nonlinear scoring function and a probabilistic-consistency algorithm. Consequently, RaptorX delivers high-quality structural models for many targets with only remote templates. At present, it takes RaptorX ~35 min to finish processing a sequence of 200 amino acids. Since its official release in August 2011, RaptorX has processed ~6,000 sequences submitted by ~1,600 users from around the world. PMID:22814390

  4. Identification of residue pairing in interacting β-strands from a predicted residue contact map.

    PubMed

    Mao, Wenzhi; Wang, Tong; Zhang, Wenxuan; Gong, Haipeng

    2018-04-19

    Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in β strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in β-β interactions. This information may benefit the tertiary structure prediction of mainly β proteins. In this work, we propose a novel ridge-detection-based β-β contact predictor to identify residue pairing in β strands from any predicted residue contact map. Our algorithm RDb 2 C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb 2 C remarkably outperforms all state-of-the-art methods on two conventional test sets of β proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb 2 C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly β proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb 2 C. Our method can significantly improve the prediction of β-β contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly β proteins. All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C .

  5. The growth pattern of the human intestine and its mesentery.

    PubMed

    Soffers, Jelly H M; Hikspoors, Jill P J M; Mekonen, Hayelom K; Koehler, S Eleonore; Lamers, Wouter H

    2015-08-22

    It remains unclear to what extent midgut rotation determines human intestinal topography and pathology. We reinvestigated the midgut during its looping and herniation phases of development, using novel 3D visualization techniques. We distinguished 3 generations of midgut loops. The topography of primary and secondary loops was constant, but that of tertiary loops not. The orientation of the primary loop changed from sagittal to transverse due to the descent of ventral structures in a body with a still helical body axis. The 1st secondary loop (duodenum, proximal jejunum) developed intraabdominally towards a left-sided position. The 2nd secondary loop (distal jejunum) assumed a left-sided position inside the hernia before returning, while the 3rd and 4th secondary loops retained near-midline positions. Intestinal return into the abdomen resembled a backward sliding movement. Only after return, the 4th secondary loop (distal ileum, cecum) rapidly "slid" into the right lower abdomen. The seemingly random position of the tertiary small-intestinal loops may have a biomechanical origin. The interpretation of "intestinal rotation" as a mechanistic rather than a descriptive concept underlies much of the confusion accompanying the physiological herniation. We argue, instead, that the concept of "en-bloc rotation" of the developing midgut is a fallacy of schematic drawings. Primary, secondary and tertiary loops arise in a hierarchical fashion. The predictable position and growth of secondary loops is pre-patterned and determines adult intestinal topography. We hypothesize based on published accounts that malrotations result from stunted development of secondary loops.

  6. Towards the Improved Discovery and Design of Functional Peptides: Common Features of Diverse Classes Permit Generalized Prediction of Bioactivity

    PubMed Central

    Mooney, Catherine; Haslam, Niall J.; Pollastri, Gianluca; Shields, Denis C.

    2012-01-01

    The conventional wisdom is that certain classes of bioactive peptides have specific structural features that endow their particular functions. Accordingly, predictions of bioactivity have focused on particular subgroups, such as antimicrobial peptides. We hypothesized that bioactive peptides may share more general features, and assessed this by contrasting the predictive power of existing antimicrobial predictors as well as a novel general predictor, PeptideRanker, across different classes of peptides. We observed that existing antimicrobial predictors had reasonable predictive power to identify peptides of certain other classes i.e. toxin and venom peptides. We trained two general predictors of peptide bioactivity, one focused on short peptides (4–20 amino acids) and one focused on long peptides ( amino acids). These general predictors had performance that was typically as good as, or better than, that of specific predictors. We noted some striking differences in the features of short peptide and long peptide predictions, in particular, high scoring short peptides favour phenylalanine. This is consistent with the hypothesis that short and long peptides have different functional constraints, perhaps reflecting the difficulty for typical short peptides in supporting independent tertiary structure. We conclude that there are general shared features of bioactive peptides across different functional classes, indicating that computational prediction may accelerate the discovery of novel bioactive peptides and aid in the improved design of existing peptides, across many functional classes. An implementation of the predictive method, PeptideRanker, may be used to identify among a set of peptides those that may be more likely to be bioactive. PMID:23056189

  7. Chilean Universities in the Transition to a Market-Driven Policy Regime

    ERIC Educational Resources Information Center

    Katz, Jorge; Spence, Randy

    2009-01-01

    This paper briefly reviews the historical development of the university system in Chile, and describes the current structure of funding, supply and demand for tertiary education, research and university services. Both public and private universities in Chile have expanded and restructured, access to tertiary education has improved, and…

  8. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.

    PubMed

    Lin, C H; Patel, D J

    1997-11-01

    Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.

  9. Conformational changes of a chemically modified HRP: formation of a molten globule like structure at pH 5

    PubMed Central

    Bamdad, Kourosh; Ranjbar, Bijan; Naderi-Manesh, Hossein; Sadeghi, Mehdi

    2014-01-01

    Horseradish peroxidase is an all alpha-helical enzyme, which widely used in biochemistry applications mainly because of its ability to enhance the weak signals of target molecules. This monomeric heme-containing plant peroxidase is also used as a reagent for the organic synthesis, biotransformation, chemiluminescent assays, immunoassays, bioremediation, and treatment of wastewaters as well. Accordingly, enhancing stability and catalytic activity of this protein for biotechnological uses has been one of the important issues in the field of biological investigations in recent years. In this study, pH-induced structural alterations of native (HRP), and modified (MHRP) forms of Horseradish peroxidase have been investigated. Based on the results, dramatic loss of the tertiary structure and also the enzymatic activity for both forms of enzymes recorded at pH values lower than 6 and higher than 8. Ellipticiy measurements, however, indicated very slight variations in the secondary structure for MHRP at pH 5. Spectroscopic analysis also indicated that melting of the tertiary structure of MHRP at pH 5 starts at around 45 °C, which is associated to the pKa of His 42 that has a serious role in keeping of the heme prostethic group in its native position through natural hydrogen bond network in the enzyme structure. According to our data, a molten globule like structure of a chemically modified form of Horseradish peroxidase at pH 5 with initial steps of conformational transition in tertiary structure with almost no changes in the secondary structure has been detected. Despite of some conformational changes in the tertiary structure of MHRP at pH 5, this modified form still keeps its catalytic activity to some extent besides enhanced thermal stability. These findings also indicated that a molten globular state does not necessarily preclude efficient catalytic activity. PMID:26417287

  10. Modeling Current-Voltage Charateristics of Proteorhodopsin and Bacteriorhodopsin: Towards an Optoelectronics Based on Proteins.

    PubMed

    Alfinito, Eleonora; Reggiani, Lino

    2016-10-01

    Current-voltage characteristics of metal-protein-metal structures made of proteorhodopsin and bacteriorhodopsin are modeled by using a percolation-like approach. Starting from the tertiary structure pertaining to the single protein, an analogous resistance network is created. Charge transfer inside the network is described as a sequential tunneling mechanism and the current is calculated for each value of the given voltage. The theory is validated with available experiments, in dark and light. The role of the tertiary structure of the single protein and of the mechanisms responsible for the photo-activity is discussed.

  11. Solution Patterns Predicting Pythagorean Triples

    ERIC Educational Resources Information Center

    Ezenweani, Ugwunna Louis

    2013-01-01

    Pythagoras Theorem is an old mathematical treatise that has traversed the school curricula from secondary to tertiary levels. The patterns it produced are quite interesting that many researchers have tried to generate a kind of predictive approach to identifying triples. Two attempts, namely Diophantine equation and Brahmagupta trapezium presented…

  12. Nanomanipulation of Single RNA Molecules by Optical Tweezers

    PubMed Central

    Stephenson, William; Wan, Gorby; Tenenbaum, Scott A.; Li, Pan T. X.

    2014-01-01

    A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed. PMID:25177917

  13. Effects of a high-pressure treatment on the wheat alpha-amylase inhibitor and its relationship to elimination of allergenicity

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Takanohashi, K.; Hara, T.; Odani, S.; Suzuki, A.; Nishiumi, T.

    2010-03-01

    In this study, the effects of high-pressure treatment on structure and allergeincity of alpha amylase inhibitor (a-AI) were investigated. The pressure-induced structural changes of α-AI were estimated by fluorescence spectra and by fourth derivative UV-spectroscopy for probed tyrosine residues and by circular dichroism (CD) spectroscopy. The changes in the tertiary structure detected by fluorescence spectra and by fourth derivative UV-spectroscopy under high pressure were indicated at over 300 MPa. Measurements of CD spectroscopy suggested that the effects of a high-pressure treatment on changes in the secondary structure of α-AI were little. From our results, pressure-induced changes of the α-AI structure were not apparent. On the other hands, the IgE-specific binding activities of pressurized α-AI to sera from allergic patients against wheat, which is estimated by observations of dot-blotting, were decreased by high-pressure treatment. It is known that the pressure-induced elimination of allergenicity is related to the tertiary structural changes of allergen molecules. This study are suspected that the epitopes of α-AI do not contain tyrosine residues, and thus the decrease of IgE-specific binding activities is probably caused by the tertiary structural changes of these parts of α-AI.

  14. An Evolution-Based Approach to De Novo Protein Design and Case Study on Mycobacterium tuberculosis

    PubMed Central

    Brender, Jeffrey R.; Czajka, Jeff; Marsh, David; Gray, Felicia; Cierpicki, Tomasz; Zhang, Yang

    2013-01-01

    Computational protein design is a reverse procedure of protein folding and structure prediction, where constructing structures from evolutionarily related proteins has been demonstrated to be the most reliable method for protein 3-dimensional structure prediction. Following this spirit, we developed a novel method to design new protein sequences based on evolutionarily related protein families. For a given target structure, a set of proteins having similar fold are identified from the PDB library by structural alignments. A structural profile is then constructed from the protein templates and used to guide the conformational search of amino acid sequence space, where physicochemical packing is accommodated by single-sequence based solvation, torsion angle, and secondary structure predictions. The method was tested on a computational folding experiment based on a large set of 87 protein structures covering different fold classes, which showed that the evolution-based design significantly enhances the foldability and biological functionality of the designed sequences compared to the traditional physics-based force field methods. Without using homologous proteins, the designed sequences can be folded with an average root-mean-square-deviation of 2.1 Å to the target. As a case study, the method is extended to redesign all 243 structurally resolved proteins in the pathogenic bacteria Mycobacterium tuberculosis, which is the second leading cause of death from infectious disease. On a smaller scale, five sequences were randomly selected from the design pool and subjected to experimental validation. The results showed that all the designed proteins are soluble with distinct secondary structure and three have well ordered tertiary structure, as demonstrated by circular dichroism and NMR spectroscopy. Together, these results demonstrate a new avenue in computational protein design that uses knowledge of evolutionary conservation from protein structural families to engineer new protein molecules of improved fold stability and biological functionality. PMID:24204234

  15. Sequencing proteins with transverse ionic transport in nanochannels.

    PubMed

    Boynton, Paul; Di Ventra, Massimiliano

    2016-05-03

    De novo protein sequencing is essential for understanding cellular processes that govern the function of living organisms and all sequence modifications that occur after a protein has been constructed from its corresponding DNA code. By obtaining the order of the amino acids that compose a given protein one can then determine both its secondary and tertiary structures through structure prediction, which is used to create models for protein aggregation diseases such as Alzheimer's Disease. Here, we propose a new technique for de novo protein sequencing that involves translocating a polypeptide through a synthetic nanochannel and measuring the ionic current of each amino acid through an intersecting perpendicular nanochannel. We find that the distribution of ionic currents for each of the 20 proteinogenic amino acids encoded by eukaryotic genes is statistically distinct, showing this technique's potential for de novo protein sequencing.

  16. Use of terbium as a probe of tRNA tertiary structure and folding.

    PubMed Central

    Hargittai, M R; Musier-Forsyth, K

    2000-01-01

    Lanthanide metals such as terbium have previously been shown to be useful for mapping metal-binding sites in RNA. Terbium binds to the same sites on RNA as magnesium, however, with a much higher affinity. Thus, low concentrations of terbium ions can easily displace magnesium and promote phosphodiester backbone scission. At higher concentrations, terbium cleaves RNA in a sequence-independent manner, with a preference for single-stranded, non-Watson-Crick base-paired regions. Here, we show that terbium is a sensitive probe of human tRNALys,3 tertiary structure and folding. When 1 microM tRNA is used, the optimal terbium ion concentration for detecting Mg2+-induced tertiary structural changes is 50-60 microM. Using these concentrations of RNA and terbium, a magnesium-dependent folding transition with a midpoint (KMg) of 2.6 mM is observed for unmodified human tRNALys,3. At lower Tb3+ concentrations, cleavage is restricted to nucleotides that constitute specific metal-binding pockets. This small chemical probe should also be useful for detecting protein induced structural changes in RNA. PMID:11105765

  17. Predicting stability of alpha-helical, orthogonal-bundle proteins on surfaces

    NASA Astrophysics Data System (ADS)

    Wei, Shuai; Knotts, Thomas A.

    2010-09-01

    The interaction of proteins with surfaces is a key phenomenon in many applications, but current understanding of the biophysics involved is lacking. At present, rational design of such emerging technologies is difficult as no methods or theories exist that correctly predict how surfaces influence protein behavior. Using molecular simulation and a coarse-grain model, this study illustrates for the first time that stability of proteins on surfaces can be correlated with tertiary structural elements for alpha-helical, orthogonal-bundle proteins. Results show that several factors contribute to stability on surfaces including the nature of the loop region where the tether is placed and the ability of the protein to freely rotate on the surface. A thermodynamic analysis demonstrates that surfaces stabilize proteins entropically and that any destabilization is an enthalpic effect. Moreover, the entropic effects are concentrated on the unfolded state of the protein while the ethalpic effects are focused on the folded state.

  18. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information

    PubMed Central

    2013-01-01

    Background The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. Results In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL). It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i) vitamin interacting residues (VIRs), (ii) vitamin-A interacting residues (VAIRs), (iii) vitamin-B interacting residues (VBIRs) and (iv) pyridoxal-5-phosphate (vitamin B6) interacting residues (PLPIRs) have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM) features of protein sequences. Finally, we selected best performing SVM modules and obtained highest MCC of 0.53, 0.48, 0.61, 0.81 for VIRs, VAIRs, VBIRs, PLPIRs respectively, using PSSM-based evolutionary information. All the modules developed in this study have been trained and tested on non-redundant datasets and evaluated using five-fold cross-validation technique. The performances were also evaluated on the balanced and different independent datasets. Conclusions This study demonstrates that it is possible to predict VIRs, VAIRs, VBIRs and PLPIRs from evolutionary information of protein sequence. In order to provide service to the scientific community, we have developed web-server and standalone software VitaPred (http://crdd.osdd.net/raghava/vitapred/). PMID:23387468

  19. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information.

    PubMed

    Panwar, Bharat; Gupta, Sudheer; Raghava, Gajendra P S

    2013-02-07

    The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL). It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i) vitamin interacting residues (VIRs), (ii) vitamin-A interacting residues (VAIRs), (iii) vitamin-B interacting residues (VBIRs) and (iv) pyridoxal-5-phosphate (vitamin B6) interacting residues (PLPIRs) have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM) features of protein sequences. Finally, we selected best performing SVM modules and obtained highest MCC of 0.53, 0.48, 0.61, 0.81 for VIRs, VAIRs, VBIRs, PLPIRs respectively, using PSSM-based evolutionary information. All the modules developed in this study have been trained and tested on non-redundant datasets and evaluated using five-fold cross-validation technique. The performances were also evaluated on the balanced and different independent datasets. This study demonstrates that it is possible to predict VIRs, VAIRs, VBIRs and PLPIRs from evolutionary information of protein sequence. In order to provide service to the scientific community, we have developed web-server and standalone software VitaPred (http://crdd.osdd.net/raghava/vitapred/).

  20. Predicting Academic Success Using Admission Profiles

    ERIC Educational Resources Information Center

    Davidovitch, Nitza; Soen, Dan

    2015-01-01

    This study, conducted at a tertiary education institution in Israel, following two previous studies, was designed to deal again with a question that is a topic of debate in Israel and worldwide: Is there justification for the approach that considers restrictive university admission policies an efficient tool for predicting students' success at the…

  1. High-Throughput, Data-Rich Cellular RNA Device Engineering

    PubMed Central

    Townshend, Brent; Kennedy, Andrew B.; Xiang, Joy S.; Smolke, Christina D.

    2015-01-01

    Methods for rapidly assessing sequence-structure-function landscapes and developing conditional gene-regulatory devices are critical to our ability to manipulate and interface with biology. We describe a framework for engineering RNA devices from preexisting aptamers that exhibit ligand-responsive ribozyme tertiary interactions. Our methodology utilizes cell sorting, high-throughput sequencing, and statistical data analyses to enable parallel measurements of the activities of hundreds of thousands of sequences from RNA device libraries in the absence and presence of ligands. Our tertiary interaction RNA devices exhibit improved performance in terms of gene silencing, activation ratio, and ligand sensitivity as compared to optimized RNA devices that rely on secondary structure changes. We apply our method to building biosensors for diverse ligands and determine consensus sequences that enable ligand-responsive tertiary interactions. These methods advance our ability to develop broadly applicable genetic tools and to elucidate understanding of the underlying sequence-structure-function relationships that empower rational design of complex biomolecules. PMID:26258292

  2. The Development of Adult and Community Education Policy in New Zealand: Insights from Popper

    ERIC Educational Resources Information Center

    Slater, Gloria

    2009-01-01

    This paper examines the process by which all post-compulsory education in New Zealand has become integrated under one administrative structure, the Tertiary Education Commission (TEC), with the intention of developing a single coordinated system of tertiary education. In particular, adult and community education (ACE), the least formal and…

  3. PASS Student Leader and Mentor Roles: A Tertiary Leadership Pathway

    ERIC Educational Resources Information Center

    Skalicky, Jane; Caney, Annaliese

    2010-01-01

    In relation to developing leadership skills during tertiary studies, this paper considers the leadership pathway afforded by a Peer Assisted Study Sessions (PASS) program which includes the traditional PASS Leader role and a more senior PASS Mentor role. Data was collected using a structured survey with open-ended questions designed to capture the…

  4. Medium-term electric power demand forecasting based on economic-electricity transmission model

    NASA Astrophysics Data System (ADS)

    Li, Wenfeng; Bao, Fangmin; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Mao, Yubin; Wang, Jiangbo; Liu, Junhui

    2018-06-01

    Electric demand forecasting is a basic work to ensure the safe operation of power system. Based on the theories of experimental economics and econometrics, this paper introduces Prognoz Platform 7.2 intelligent adaptive modeling platform, and constructs the economic electricity transmission model that considers the economic development scenarios and the dynamic adjustment of industrial structure to predict the region's annual electricity demand, and the accurate prediction of the whole society's electricity consumption is realized. Firstly, based on the theories of experimental economics and econometrics, this dissertation attempts to find the economic indicator variables that drive the most economical growth of electricity consumption and availability, and build an annual regional macroeconomic forecast model that takes into account the dynamic adjustment of industrial structure. Secondly, it innovatively put forward the economic electricity directed conduction theory and constructed the economic power transfer function to realize the group forecast of the primary industry + rural residents living electricity consumption, urban residents living electricity, the second industry electricity consumption, the tertiary industry electricity consumption; By comparing with the actual value of economy and electricity in Henan province in 2016, the validity of EETM model is proved, and the electricity consumption of the whole province from 2017 to 2018 is predicted finally.

  5. IPMP Global Fit - A one-step direct data analysis tool for predictive microbiology.

    PubMed

    Huang, Lihan

    2017-12-04

    The objective of this work is to develop and validate a unified optimization algorithm for performing one-step global regression analysis of isothermal growth and survival curves for determination of kinetic parameters in predictive microbiology. The algorithm is incorporated with user-friendly graphical interfaces (GUIs) to develop a data analysis tool, the USDA IPMP-Global Fit. The GUIs are designed to guide the users to easily navigate through the data analysis process and properly select the initial parameters for different combinations of mathematical models. The software is developed for one-step kinetic analysis to directly construct tertiary models by minimizing the global error between the experimental observations and mathematical models. The current version of the software is specifically designed for constructing tertiary models with time and temperature as the independent model parameters in the package. The software is tested with a total of 9 different combinations of primary and secondary models for growth and survival of various microorganisms. The results of data analysis show that this software provides accurate estimates of kinetic parameters. In addition, it can be used to improve the experimental design and data collection for more accurate estimation of kinetic parameters. IPMP-Global Fit can be used in combination with the regular USDA-IPMP for solving the inverse problems and developing tertiary models in predictive microbiology. Published by Elsevier B.V.

  6. Minor Structural Change to Tertiary Sulfonamide RORc Ligands Led to Opposite Mechanisms of Action

    PubMed Central

    2014-01-01

    A minor structural change to tertiary sulfonamide RORc ligands led to distinct mechanisms of action. Co-crystal structures of two compounds revealed mechanistically consistent protein conformational changes. Optimized phenylsulfonamides were identified as RORc agonists while benzylsulfonamides exhibited potent inverse agonist activity. Compounds behaving as agonists in our biochemical assay also gave rise to an increased production of IL-17 in human PBMCs whereas inverse agonists led to significant suppression of IL-17 under the same assay conditions. The most potent inverse agonist compound showed >180-fold selectivity over the ROR isoforms as well as all other nuclear receptors that were profiled. PMID:25815138

  7. DeepQA: improving the estimation of single protein model quality with deep belief networks.

    PubMed

    Cao, Renzhi; Bhattacharya, Debswapna; Hou, Jie; Cheng, Jianlin

    2016-12-05

    Protein quality assessment (QA) useful for ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models out of a large model pool consisting of mostly low-quality models, is still a largely unsolved problem. We introduce a novel single-model quality assessment method DeepQA based on deep belief network that utilizes a number of selected features describing the quality of a model from different perspectives, such as energy, physio-chemical characteristics, and structural information. The deep belief network is trained on several large datasets consisting of models from the Critical Assessment of Protein Structure Prediction (CASP) experiments, several publicly available datasets, and models generated by our in-house ab initio method. Our experiments demonstrate that deep belief network has better performance compared to Support Vector Machines and Neural Networks on the protein model quality assessment problem, and our method DeepQA achieves the state-of-the-art performance on CASP11 dataset. It also outperformed two well-established methods in selecting good outlier models from a large set of models of mostly low quality generated by ab initio modeling methods. DeepQA is a useful deep learning tool for protein single model quality assessment and protein structure prediction. The source code, executable, document and training/test datasets of DeepQA for Linux is freely available to non-commercial users at http://cactus.rnet.missouri.edu/DeepQA/ .

  8. Initial and hourly headloss modelling on a tertiary nitrifying wastewater biofiltration plant.

    PubMed

    Bernier, Jean; Rocher, Vincent; Lessard, Paul

    2016-01-01

    The headloss prediction capability of a wastewater biofiltration model is evaluated on data from a full-scale tertiary nitrifying biofilter unit located in the Paris conurbation (Achères, France; 6,000,000 population equivalent). The model has been previously calibrated on nutrient conversion and TSS filtration observations. In this paper the mass of extracted biofilm during biofilter backwash and the headloss value at the start of an operation cycle are first calibrated on sludge production estimations and relative pressure measurements over the year 2009. The calibrated model is then used on two one-month periods in 2012 for which hourly headloss measurements were acquired. The observed trends are correctly predicted for 2009 but the model exhibits some heavy daily variation that is not found in measurements. Hourly predictions stay close to observations, although the model error rises slightly when the headloss does not vary much. The global model shows that both nutrient conversion and headloss build-up can be reasonably well predicted at the same time on a full-scale plant.

  9. Flow Field and Acoustic Predictions for Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  10. Curriculum Development in Outdoor Education: Tasmanian Teachers' Perspectives on the New Pre-Tertiary Outdoor Leadership Course

    ERIC Educational Resources Information Center

    Dyment, Janet; Morse, Marcus; Shaw, Simon; Smith, Heidi

    2014-01-01

    The paper examines how outdoor education teachers in Tasmania, Australia have implemented and perceive a new pre-tertiary Outdoor Leadership curriculum document. It draws on an analysis of in-depth semi-structured interviews with 11 outdoor education teachers. The results revealed that teachers were generally welcoming of the new higher-order…

  11. Asian Students' Perceptions of Group Work and Group Assignments in a New Zealand Tertiary Institution

    ERIC Educational Resources Information Center

    Li, Mingsheng; Campbell, Jacqui

    2008-01-01

    This study, conducted in 2005 in a New Zealand tertiary institution, examines Asian students' perceptions of the much-promulgated cooperative learning concepts in the form of group work and group assignments. Twenty-two Asian students participated in one-hour individual face-to-face semi-structured interviews. The study found that Asian students…

  12. Predicting change in epistemological beliefs, reflective thinking and learning styles: a longitudinal study.

    PubMed

    Phan, Huy P

    2008-03-01

    Although extensive research has examined epistemological beliefs, reflective thinking and learning approaches, very few studies have looked at these three theoretical frameworks in their totality. This research tested two separate structural models of epistemological beliefs, learning approaches, reflective thinking and academic performance among tertiary students over a period of 12 months. Participants were first-year Arts (N=616; 271 females, 345 males) and second-year Mathematics (N=581; 241 females, 341 males) university students. Students' epistemological beliefs were measured with the Schommer epistemological questionnaire (EQ, Schommer, 1990). Reflective thinking was measured with the reflective thinking questionnaire (RTQ, Kember et al., 2000). Student learning approaches were measured with the revised study process questionnaire (R-SPQ-2F, Biggs, Kember, & Leung, 2001). LISREL 8 was used to test two structural equation models - the cross-lag model and the causal-mediating model. In the cross-lag model involving Arts students, structural equation modelling showed that epistemological beliefs influenced student learning approaches rather than the contrary. In the causal-mediating model involving Mathematics students, the results indicate that both epistemological beliefs and learning approaches predicted reflective thinking and academic performance. Furthermore, learning approaches mediated the effect of epistemological beliefs on reflective thinking and academic performance. Results of this study are significant as they integrated the three theoretical frameworks within the one study.

  13. Role of extensional structures on the location of folds and thrusts during tectonic inversion (northern Iberian Chain, Spain)

    NASA Astrophysics Data System (ADS)

    Cortés, Angel L.; Liesa, Carlos L.; Soria, Ana R.; Meléndez, Alfonso

    1999-03-01

    The Aguilón Subbasin (NE Spain) was originated daring the Late Jurassic-Early Cretaceous rifting due to the action of large normal faults, probably inherited from Late Variscan fracturing. WNW-ESE normal faults limit two major troughs filled by continental deposits (Valanginian to Early Barremian). NE-SW faults control the location of subsidiary depocenters within these troughs. These basins were weakly inverted during the Tertiary with folds and thrusts striking E-W to WNW-ESE involving the Mesozoic-Tertiary cover with a maximum estimated shortening of about 12 %. Tertiary compression did not produce the total inversion of the Mesozoic basin but extensional structures are responsible for the location of major Tertiary folds. Shortening of the cover during the Tertiary involved both reactivation of some normal faults and development of folds and thrusts nucleated on basement extensional steps. The inversion style depends mainly on the occurrence and geometry of normal faults limiting the basin. Steep normal faults were not reactivated but acted as buttresses to the cover translation. Around these faults, affecting both basement and cover, folds and thrusts were nucleated due to the stress rise in front of major faults. Within the cover, the buttressing against normal faults consists of folding and faulting implying little shortening without development of ceavage or other evidence of internal deformation.

  14. About the structural role of disulfide bridges in serum albumins: evidence from protein simulated unfolding.

    PubMed

    Paris, Guillaume; Kraszewski, Sebastian; Ramseyer, Christophe; Enescu, Mironel

    2012-11-01

    The role of the 17 disulfide (S-S) bridges in preserving the native conformation of human serum albumin (HSA) is investigated by performing classical molecular dynamics (MD) simulations on protein structures with intact and, respectively, reduced S-S bridges. The thermal unfolding simulations predict a clear destabilization of the protein secondary structure upon reduction of the S-S bridges as well as a significant distortion of the tertiary structure that is revealed by the changes in the protein native contacts fraction. The effect of the S-S bridges reduction on the protein compactness was tested by calculating Gibbs free energy profiles with respect to the protein gyration radius. The theoretical results obtained using the OPLS-AA and the AMBER ff03 force fields are in agreement with the available experimental data. Beyond the validation of the simulation method, the results here reported provide new insights into the mechanism of the protein reductive/oxidative unfolding/folding processes. It is predicted that in the native conformation of the protein, the thiol (-SH) groups belonging to the same reduced S-S bridge are located in potential wells that maintain them in contact. The -SH pairs can be dispatched by specific conformational transitions of the peptide chain located in the neighborhood of the cysteine residues. Copyright © 2012 Wiley Periodicals, Inc.

  15. RNAmutants: a web server to explore the mutational landscape of RNA secondary structures

    PubMed Central

    Waldispühl, Jerome; Devadas, Srinivas; Berger, Bonnie; Clote, Peter

    2009-01-01

    The history and mechanism of molecular evolution in DNA have been greatly elucidated by contributions from genetics, probability theory and bioinformatics—indeed, mathematical developments such as Kimura's neutral theory, Kingman's coalescent theory and efficient software such as BLAST, ClustalW, Phylip, etc., provide the foundation for modern population genetics. In contrast to DNA, the function of most noncoding RNA depends on tertiary structure, experimentally known to be largely determined by secondary structure, for which dynamic programming can efficiently compute the minimum free energy secondary structure. For this reason, understanding the effect of pointwise mutations in RNA secondary structure could reveal fundamental properties of structural RNA molecules and improve our understanding of molecular evolution of RNA. The web server RNAmutants provides several efficient tools to compute the ensemble of low-energy secondary structures for all k-mutants of a given RNA sequence, where k is bounded by a user-specified upper bound. As we have previously shown, these tools can be used to predict putative deleterious mutations and to analyze regulatory sequences from the hepatitis C and human immunodeficiency genomes. Web server is available at http://bioinformatics.bc.edu/clotelab/RNAmutants/, and downloadable binaries at http://rnamutants.csail.mit.edu/. PMID:19531740

  16. Structural controls on Carlin-type gold mineralization in the gold bar district, Eureka County, Nevada

    USGS Publications Warehouse

    Yigit, O.; Nelson, E.P.; Hitzman, M.W.; Hofstra, A.H.

    2003-01-01

    The Gold Bar district in the southern Roberts Mountains, 48 km northwest of Eureka, Nevada, contains one main deposit (Gold Bar), five satellite deposits, and other resources. Approximately 0.5 Moz of gold have been recovered from a resource of 1,639,000 oz of gold in Carlin-type gold deposits in lower plate, miogeoclinal carbonate rocks below the Roberts Mountains thrust. Host rocks are unit 2 of the Upper Member of the Devonian Denay Formation and the Bartine Member of the McColley Canyon Formation. Spatial and temporal relations between structures and gold mineralization indicate that both pre-Tertiary and Tertiary structures were important controls on gold mineralization. Gold mineralization occurs primarily along high-angle Tertiary normal faults, some of which are reactivated reverse faults of Paleozoic or Mesozoic age. Most deposits are localized at the intersection of northwest- and northeast-striking faults. Alteration includes decalcification, and to a lesser extent, silicification along high-angle faults. Jasperoid (pervasive silicification), which formed along most faults and in some strata-bound zones, accounts for a small portion of the ore in every deposit. In the Gold Canyon deposit, a high-grade jasperoid pipe formed along a Tertiary normal fault which was localized along a zone of overturned fault-propagation folds and thrust faults of Paleozoic or Mesozoic age.

  17. Geology and tectonic development of the continental margin north of Alaska

    USGS Publications Warehouse

    Grantz, A.; Eittreim, S.; Dinter, D.A.

    1979-01-01

    The continental margin north of Alaska, as interpreted from seismic reflection profiles, is of the Atlantic type and consists of three sectors of contrasting structure and stratigraphy. The Chukchi sector, on the west, is characterized by the deep late Mesozoic and Tertiary North Chukchi basin and the Chukchi Continental Borderland. The Barrow sector of central northern Alaska is characterized by the Barrow arch and a moderately thick continental terrace build of Albian to Tertiary clastic sediment. The terrace sedimentary prism is underlain by lower Paleozoic metasedimentary rocks. The Barter Island sector of northeastern Alaska and Yukon Territory is inferred to contain a very thick prism of Jurassic, Cretaceous and Tertiary marine and nonmarine clastic sediment. Its structure is dominated by a local deep Tertiary depocenter and two regional structural arches. We postulate that the distinguishing characteristics of the three sectors are inherited from the configuration of the rift that separated arctic Alaska from the Canadian Arctic Archipelago relative to old pre-rift highlands, which were clastic sediment sources. Where the rift lay relatively close to northern Alaska, in the Chukchi and Barter Island sectors, and locally separated Alaska from the old source terranes, thick late Mesozoic and Tertiary sedimentary prisms extend farther south beneath the continental shelf than in the intervening Barrow sector. The boundary between the Chukchi and Barrow sectors is relatively well defined by geophysical data, but the boundary between the Barrow and Barter Island sectors can only be inferred from the distribution and thickness of Jurassic and Cretaceous sedimentary rocks. These boundaries may be extensions of oceanic fracture zones related to the rifting that is postulated to have opened the Canada Basin, probably beginning during the Early Jurassic. ?? 1979.

  18. Evaporite geometries and diagenetic traps, lower San Andres, Northwest shelf, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, D.R.

    An east-west-trending belt of lower San Andres oil fields extends 80 mi across southeastern New Mexico from the Pecos River near Roswell to the Texas-New Mexico border. These fields are along a porosity pinch-out zone where porous carbonates grade laterally into bedded anhydrite and halite. The lower San Andres traps are associated with pre-Tertiary structural or stratigraphic traps. Oil and water production relationships from these fields are not consistent with present-day structure. These fields have been commonly interpreted to be hydrodynamic traps created by the eastern flow of fresh surface water that enters the lower San Andres outcrops west ofmore » Pecos River. There is no evidence, however, that surface water has moved through the lower San Andres in this area. This conclusion is supported by the fact that formation-water resistivities are uniform throughout the producing trend, no significant dissolution of carbonates or evaporites has occurred, and there has been no increase in biogradation of oils adjacent to the lower San Andres outcrops. These fields actually are diagenetic traps created by porosity occlusion in the water column beneath the oil accumulations. Hydrocarbons originally were trapped in pre-Tertiary structural and structural-stratigraphic traps. Bedded evaporites were effective barriers to vertical and lateral hydrocarbon migration. Eastward tilting of the Northwest shelf during the Tertiary opened these traps, but the oil remained in these structurally unfavorable positions because of the diagenetic sealing. The gas-solution drive in these reservoirs is a result of this sealing. The sequence of events leading to diagenetic entrapment include (1) Triassic and Jurassic migration of hydrocarbons into broad, low-relief post-San Andres structural and structural-stratigraphic traps; (2) rapid occlusion of porosity in the water column beneath oil reservoirs, and (3) Tertiary tilt-out traps.« less

  19. Functional region prediction with a set of appropriate homologous sequences-an index for sequence selection by integrating structure and sequence information with spatial statistics

    PubMed Central

    2012-01-01

    Background The detection of conserved residue clusters on a protein structure is one of the effective strategies for the prediction of functional protein regions. Various methods, such as Evolutionary Trace, have been developed based on this strategy. In such approaches, the conserved residues are identified through comparisons of homologous amino acid sequences. Therefore, the selection of homologous sequences is a critical step. It is empirically known that a certain degree of sequence divergence in the set of homologous sequences is required for the identification of conserved residues. However, the development of a method to select homologous sequences appropriate for the identification of conserved residues has not been sufficiently addressed. An objective and general method to select appropriate homologous sequences is desired for the efficient prediction of functional regions. Results We have developed a novel index to select the sequences appropriate for the identification of conserved residues, and implemented the index within our method to predict the functional regions of a protein. The implementation of the index improved the performance of the functional region prediction. The index represents the degree of conserved residue clustering on the tertiary structure of the protein. For this purpose, the structure and sequence information were integrated within the index by the application of spatial statistics. Spatial statistics is a field of statistics in which not only the attributes but also the geometrical coordinates of the data are considered simultaneously. Higher degrees of clustering generate larger index scores. We adopted the set of homologous sequences with the highest index score, under the assumption that the best prediction accuracy is obtained when the degree of clustering is the maximum. The set of sequences selected by the index led to higher functional region prediction performance than the sets of sequences selected by other sequence-based methods. Conclusions Appropriate homologous sequences are selected automatically and objectively by the index. Such sequence selection improved the performance of functional region prediction. As far as we know, this is the first approach in which spatial statistics have been applied to protein analyses. Such integration of structure and sequence information would be useful for other bioinformatics problems. PMID:22643026

  20. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  1. Discovery of tertiary sulfonamides as potent liver X receptor antagonists.

    PubMed

    Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M

    2010-04-22

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  2. Topological Constraints and Their Conformational Entropic Penalties on RNA Folds.

    PubMed

    Mak, Chi H; Phan, Ethan N H

    2018-05-08

    Functional RNAs can fold into intricate structures using a number of different secondary and tertiary structural motifs. Many factors contribute to the overall free energy of the target fold. This study aims at quantifying the entropic costs coming from the loss of conformational freedom when the sugar-phosphate backbone is subjected to constraints imposed by secondary and tertiary contacts. Motivated by insights from topology theory, we design a diagrammatic scheme to represent different types of RNA structures so that constraints associated with a folded structure may be segregated into mutually independent subsets, enabling the total conformational entropy loss to be easily calculated as a sum of independent terms. We used high-throughput Monte Carlo simulations to simulate large ensembles of single-stranded RNA sequences in solution to validate the assumptions behind our diagrammatic scheme, examining the entropic costs for hairpin initiation and formation of many multiway junctions. Our diagrammatic scheme aids in the factorization of secondary/tertiary constraints into distinct topological classes and facilitates the discovery of interrelationships among multiple constraints on RNA folds. This perspective, which to our knowledge is novel, leads to useful insights into the inner workings of some functional RNA sequences, demonstrating how they might operate by transforming their structures among different topological classes. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Szkudlarek, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.; Sułkowska, A.

    2016-01-01

    The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by 1H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation.

  4. Prediction of RNA secondary structures: from theory to models and real molecules

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    2006-05-01

    RNA secondary structures are derived from RNA sequences, which are strings built form the natural four letter nucleotide alphabet, {AUGC}. These coarse-grained structures, in turn, are tantamount to constrained strings over a three letter alphabet. Hence, the secondary structures are discrete objects and the number of sequences always exceeds the number of structures. The sequences built from two letter alphabets form perfect structures when the nucleotides can form a base pair, as is the case with {GC} or {AU}, but the relation between the sequences and structures differs strongly from the four letter alphabet. A comprehensive theory of RNA structure is presented, which is based on the concepts of sequence space and shape space, being a space of structures. It sets the stage for modelling processes in ensembles of RNA molecules like evolutionary optimization or kinetic folding as dynamical phenomena guided by mappings between the two spaces. The number of minimum free energy (mfe) structures is always smaller than the number of sequences, even for two letter alphabets. Folding of RNA molecules into mfe energy structures constitutes a non-invertible mapping from sequence space onto shape space. The preimage of a structure in sequence space is defined as its neutral network. Similarly the set of suboptimal structures is the preimage of a sequence in shape space. This set represents the conformation space of a given sequence. The evolutionary optimization of structures in populations is a process taking place in sequence space, whereas kinetic folding occurs in molecular ensembles that optimize free energy in conformation space. Efficient folding algorithms based on dynamic programming are available for the prediction of secondary structures for given sequences. The inverse problem, the computation of sequences for predefined structures, is an important tool for the design of RNA molecules with tailored properties. Simultaneous folding or cofolding of two or more RNA molecules can be modelled readily at the secondary structure level and allows prediction of the most stable (mfe) conformations of complexes together with suboptimal states. Cofolding algorithms are important tools for efficient and highly specific primer design in the polymerase chain reaction (PCR) and help to explain the mechanisms of small interference RNA (si-RNA) molecules in gene regulation. The evolutionary optimization of RNA structures is illustrated by the search for a target structure and mimics aptamer selection in evolutionary biotechnology. It occurs typically in steps consisting of short adaptive phases interrupted by long epochs of little or no obvious progress in optimization. During these quasi-stationary epochs the populations are essentially confined to neutral networks where they search for sequences that allow a continuation of the adaptive process. Modelling RNA evolution as a simultaneous process in sequence and shape space provides answers to questions of the optimal population size and mutation rates. Kinetic folding is a stochastic process in conformation space. Exact solutions are derived by direct simulation in the form of trajectory sampling or by solving the master equation. The exact solutions can be approximated straightforwardly by Arrhenius kinetics on barrier trees, which represent simplified versions of conformational energy landscapes. The existence of at least one sequence forming any arbitrarily chosen pair of structures is granted by the intersection theorem. Folding kinetics is the key to understanding and designing multistable RNA molecules or RNA switches. These RNAs form two or more long lived conformations, and conformational changes occur either spontaneously or are induced through binding of small molecules or other biopolymers. RNA switches are found in nature where they act as elements in genetic and metabolic regulation. The reliability of RNA secondary structure prediction is limited by the accuracy with which the empirical parameters can be determined and by principal deficiencies, for example by the lack of energy contributions resulting from tertiary interactions. In addition, native structures may be determined by folding kinetics rather than by thermodynamics. We address the first problem by considering base pair probabilities or base pairing entropies, which are derived from the partition function of conformations. A high base pair probability corresponding to a low pairing entropy is taken as an indicator of a high reliability of prediction. Pseudoknots are discussed as an example of a tertiary interaction that is highly important for RNA function. Moreover, pseudoknot formation is readily incorporated into structure prediction algorithms. Some examples of experimental data on RNA secondary structures that are readily explained using the landscape concept are presented. They deal with (i) properties of RNA molecules with random sequences, (ii) RNA molecules from restricted alphabets, (iii) existence of neutral networks, (iv) shape space covering, (v) riboswitches and (vi) evolution of non-coding RNAs as an example of evolution restricted to neutral networks.

  5. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    PubMed

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  6. Ketene reactions with tertiary amines.

    PubMed

    Allen, Annette D; Andraos, John; Tidwell, Thomas T; Vukovic, Sinisa

    2014-01-17

    Tertiary amines react rapidly and reversibly with arylketenes in acetonitrile forming observable zwitterions, and these undergo amine catalyzed dealkylation forming N,N-disubstituted amides. Reactions of N-methyldialkylamines show a strong preference for methyl group loss by displacement, as predicted by computational studies. Loss of ethyl groups in reactions with triethylamine also occur by displacement, but preferential loss of isopropyl groups in the phenylketene reaction with diisopropylethylamine evidently involves elimination. Quinuclidine rapidly forms long-lived zwitterions with arylketenes, providing a model for catalysis by cinchona and related alkaloids in stereoselective additions to ketenes.

  7. The Relevance of English Language Instruction in a Changing Linguistic Environment in Iceland: The L2 Self of Young Icelanders

    ERIC Educational Resources Information Center

    Jeeves, Anna

    2014-01-01

    In this study perceptions of post-compulsory school studies in Iceland were investigated through semi-structured interviews. While colloquial English suffices for entertainment, hobbies and Internet use in Iceland, a high level of proficiency is required for employment and tertiary study. School learners and young people in tertiary study and…

  8. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.

    1986-12-31

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). Thesemore » formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression.« less

  9. Protein sectors: evolutionary units of three-dimensional structure

    PubMed Central

    Halabi, Najeeb; Rivoire, Olivier; Leibler, Stanislas; Ranganathan, Rama

    2011-01-01

    Proteins display a hierarchy of structural features at primary, secondary, tertiary, and higher-order levels, an organization that guides our current understanding of their biological properties and evolutionary origins. Here, we reveal a structural organization distinct from this traditional hierarchy by statistical analysis of correlated evolution between amino acids. Applied to the S1A serine proteases, the analysis indicates a decomposition of the protein into three quasi-independent groups of correlated amino acids that we term “protein sectors”. Each sector is physically connected in the tertiary structure, has a distinct functional role, and constitutes an independent mode of sequence divergence in the protein family. Functionally relevant sectors are evident in other protein families as well, suggesting that they may be general features of proteins. We propose that sectors represent a structural organization of proteins that reflects their evolutionary histories. PMID:19703402

  10. In silico modeling techniques for predicting the tertiary structure of human H4 receptor.

    PubMed

    Zaid, Hilal; Raiyn, Jamal; Osman, Midhat; Falah, Mizied; Srouji, Samer; Rayan, Anwar

    2016-01-01

    First cloned in 2000, the human Histamine H4 Receptor (hH4R) is the last member of the histamine receptors family discovered so far, it belongs to the GPCR super-family and is involved in a wide variety of immunological and inflammatory responses. Potential hH4R antagonists are proposed to have therapeutic potential for the treatment of allergies, inflammation, asthma and colitis. So far, no hH4R ligands have been successfully introduced to the pharmaceutical market, which creates a strong demand for new selective ligands to be developed. in silico techniques and structural based modeling are likely to facilitate the achievement of this goal. In this review paper we attempt to cover the fundamental concepts of hH4R structure modeling and its implementations in drug discovery and development, especially those that have been experimentally tested and to highlight some ideas that are currently being discussed on the dynamic nature of hH4R and GPCRs, in regards to computerized techniques for 3-D structure modeling.

  11. Integrated use of remotely sensed imagery and other data sets to infer the tectonics, structural style, and hydrocarbon habitats of the basins of the Tien Shan orogenic belt, Western China: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, J.L.; Nishidai, T.

    1996-08-01

    Remotely sensed imagery and various other published regional data sets (gravity, magnetics, earthquake data) were integrated in order to interpret the structural style, both at deep crustal levels and at the relatively shallow levels of interest to explorationists, of the Tien Shan. Cross-sections through the range were systematically prepared, and then palinspastically restored, constrained by the remote sensing interpretation, potential fields data, and published microplate movement vectors. Since large portions of the area are covered by late Tertiary orogenic sediments, the resulting interpretation focused on these areas, and what and how much geology lies concealed beneath them. We were ablemore » to demonstrate the likely consumption in the late Tertiary of over 100 km of Tarim Basin west along a broad front south of the Tien Shan, as well as within the Kuruktag area, where basins are compressional rather than extensional. There are also local areas of extension within the orogenic zone, and these can be explained using the known microplate boundaries, backward extrapolation of present microplate motions, and the type and extent of late Tertiary deformation within the plates as constraints. Relative and absolute microplate motions have to change greatly through Tertiary time in order to comply with these constraints. The results of this work allow one to infer the affinities, and hence something of the hydrocarbon potential, of fragmentary plates by reconstructing their motions. They also allow one to infer the nature of the stratigraphy, the likely depth of burial, and something of the maturation history of pre-Tertiary rocks buried by Tertiary sediments deposited in both compressional and extensional regimes.« less

  12. Macrodamage Accumulation Model for a Human Femur

    PubMed Central

    2017-01-01

    The objective of this study was to more fully understand the mechanical behavior of bone tissue that is important to find an alternative material to be used as an implant and to develop an accurate model to predict the fracture of the bone. Predicting and preventing bone failure is an important area in orthopaedics. In this paper, the macrodamage accumulation models in the bone tissue have been investigated. Phenomenological models for bone damage have been discussed in detail. In addition, 3D finite element model of the femur prepared from imaging data with both cortical and trabecular structures is delineated using MIMICS and ANSYS® and simulated as a composite structure. The damage accumulation occurring during cyclic loading was analyzed for fatigue scenario. We found that the damage accumulates sooner in the multiaxial than in the uniaxial loading condition for the same number of cycles, and the failure starts in the cortical bone. The damage accumulation behavior seems to follow a three-stage growth: a primary phase, a secondary phase of damage growth marked by linear damage growth, and a tertiary phase that leads to failure. Finally, the stiffness of the composite bone comprising the cortical and trabecular bone was significantly different as expected. PMID:28951659

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  14. TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites.

    PubMed Central

    Wallace, A. C.; Borkakoti, N.; Thornton, J. M.

    1997-01-01

    It is well established that sequence templates such as those in the PROSITE and PRINTS databases are powerful tools for predicting the biological function and tertiary structure for newly derived protein sequences. The number of X-ray and NMR protein structures is increasing rapidly and it is apparent that a 3D equivalent of the sequence templates is needed. Here, we describe an algorithm called TESS that automatically derives 3D templates from structures deposited in the Brookhaven Protein Data Bank. While a new sequence can be searched for sequence patterns, a new structure can be scanned against these 3D templates to identify functional sites. As examples, 3D templates are derived for enzymes with an O-His-O "catalytic triad" and for the ribonucleases and lysozymes. When these 3D templates are applied to a large data set of nonidentical proteins, several interesting hits are located. This suggests that the development of a 3D template database may help to identify the function of new protein structures, if unknown, as well as to design proteins with specific functions. PMID:9385633

  15. An intercalation-locked parallel-stranded DNA tetraplex

    DOE PAGES

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    2015-01-27

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  16. Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters

    PubMed Central

    Andreoletti, Pierre; Raas, Quentin; Gondcaille, Catherine; Cherkaoui-Malki, Mustapha; Trompier, Doriane; Savary, Stéphane

    2017-01-01

    The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues. PMID:28737695

  17. Virtual Screening of Phytochemicals to Novel Target (HAT) Rtt109 in Pneumocystis Jirovecii using Bioinformatics Tools.

    PubMed

    Sugumar, Ramya; Adithavarman, Abhinand Ponneri; Dakshinamoorthi, Anusha; David, Darling Chellathai; Ragunath, Padmavathi Kannan

    2016-03-01

    Pneumocystis jirovecii is a fungus that causes Pneumocystis pneumonia in HIV and other immunosuppressed patients. Treatment of Pneumocystis pneumonia with the currently available antifungals is challenging and associated with considerable adverse effects. There is a need to develop drugs against novel targets with minimal human toxicities. Histone Acetyl Transferase (HAT) Rtt109 is a potential therapeutic target in Pneumocystis jirovecii species. HAT is linked to transcription and is required to acetylate conserved lysine residues on histone proteins by transferring an acetyl group from acetyl CoA to form e-N-acetyl lysine. Therefore, inhibitors of HAT can be useful therapeutic options in Pneumocystis pneumonia. To screen phytochemicals against (HAT) Rtt109 using bioinformatics tool. The tertiary structure of Pneumocystis jirovecii (HAT) Rtt109 was modeled by Homology Modeling. The ideal template for modeling was obtained by performing Psi BLAST of the protein sequence. Rtt109-AcCoA/Vps75 protein from Saccharomyces cerevisiae (PDB structure 3Q35) was chosen as the template. The target protein was modeled using Swiss Modeler and validated using Ramachandran plot and Errat 2. Comprehensive text mining was performed to identify phytochemical compounds with antipneumonia and fungicidal properties and these compounds were filtered based on Lipinski's Rule of 5. The chosen compounds were subjected to virtual screening against the target protein (HAT) Rtt109 using Molegro Virtual Docker 4.5. Osiris Property Explorer and Open Tox Server were used to predict ADME-T properties of the chosen phytochemicals. Tertiary structure model of HAT Rtt 109 had a ProSA score of -6.57 and Errat 2 score of 87.34. Structure validation analysis by Ramachandran plot for the model revealed 97% of amino acids were in the favoured region. Of all the phytochemicals subjected to virtual screening against the target protein (HAT) Rtt109, baicalin exhibited highest binding affinity towards the target protein as indicated by the Molegro score of 130.68 and formed 16 H-bonds. The ADME-T property prediction revealed that baicalin was non-mutagenic, non-tumorigenic and had a drug likeness score of 0.87. Baicalin has good binding with Rtt 109 in Pneumocystis jirovecii and can be considered as a novel and valuable treatment option for Pneumocystis pneumonia patients after subjecting it to invivo and invitro studies.

  18. Virtual Screening of Phytochemicals to Novel Target (HAT) Rtt109 in Pneumocystis Jirovecii using Bioinformatics Tools

    PubMed Central

    Adithavarman, Abhinand Ponneri; Dakshinamoorthi, Anusha; David, Darling Chellathai; Ragunath, Padmavathi Kannan

    2016-01-01

    Introduction Pneumocystis jirovecii is a fungus that causes Pneumocystis pneumonia in HIV and other immunosuppressed patients. Treatment of Pneumocystis pneumonia with the currently available antifungals is challenging and associated with considerable adverse effects. There is a need to develop drugs against novel targets with minimal human toxicities. Histone Acetyl Transferase (HAT) Rtt109 is a potential therapeutic target in Pneumocystis jirovecii species. HAT is linked to transcription and is required to acetylate conserved lysine residues on histone proteins by transferring an acetyl group from acetyl CoA to form e-N-acetyl lysine. Therefore, inhibitors of HAT can be useful therapeutic options in Pneumocystis pneumonia. Aim To screen phytochemicals against (HAT) Rtt109 using bioinformatics tool. Materials and Methods The tertiary structure of Pneumocystis jirovecii (HAT) Rtt109 was modeled by Homology Modeling. The ideal template for modeling was obtained by performing Psi BLAST of the protein sequence. Rtt109-AcCoA/Vps75 protein from Saccharomyces cerevisiae (PDB structure 3Q35) was chosen as the template. The target protein was modeled using Swiss Modeler and validated using Ramachandran plot and Errat 2. Comprehensive text mining was performed to identify phytochemical compounds with antipneumonia and fungicidal properties and these compounds were filtered based on Lipinski’s Rule of 5. The chosen compounds were subjected to virtual screening against the target protein (HAT) Rtt109 using Molegro Virtual Docker 4.5. Osiris Property Explorer and Open Tox Server were used to predict ADME-T properties of the chosen phytochemicals. Results Tertiary structure model of HAT Rtt 109 had a ProSA score of -6.57 and Errat 2 score of 87.34. Structure validation analysis by Ramachandran plot for the model revealed 97% of amino acids were in the favoured region. Of all the phytochemicals subjected to virtual screening against the target protein (HAT) Rtt109, baicalin exhibited highest binding affinity towards the target protein as indicated by the Molegro score of 130.68 and formed 16 H-bonds. The ADME-T property prediction revealed that baicalin was non-mutagenic, non-tumorigenic and had a drug likeness score of 0.87. Conclusion Baicalin has good binding with Rtt 109 in Pneumocystis jirovecii and can be considered as a novel and valuable treatment option for Pneumocystis pneumonia patients after subjecting it to invivo and invitro studies. PMID:27134887

  19. Major structural controls on the distribution of pre-Tertiary rocks, Nevada Test Site vicinity, southern Nevada

    USGS Publications Warehouse

    Cole, James C.

    1997-01-01

    The lateral and vertical distributions of Proterozoic and Paleozoic sedimentary rocks in southern Nevada are the combined products of original stratigraphic relationships and post-depositional faults and folds. This map compilation shows the distribution of these pre-Tertiary rocks in the region including and surrounding the Nevada Test Site. It is based on considerable new evidence from detailed geologic mapping, biostratigraphic control, sedimentological analysis, and a review of regional map relationships.Proterozoic and Paleozoic rocks of the region record paleogeographic transitions between continental shelf depositional environments on the east and deeper-water slopefacies depositional environments on the west. Middle Devonian and Mississippian sequences, in particular, show strong lateral facies variations caused by contemporaneous changes in the western margin of North America during the Antler orogeny. Sections of rock that were originally deposited in widely separated facies localities presently lie in close proximity. These spatial relationships chiefly result from major east- and southeastdirected thrusts that deformed the region in Permian or later time.Somewhat younger contractional structures are identified within two irregular zones that traverse the region. These folds and thrusts typically verge toward the west and northwest and overprint the relatively simple pattern of the older contractional terranes. Local structural complications are significant near these younger structures due to the opposing vergence and due to irregularities in the previously folded and faulted crustal section.Structural and stratigraphic discontinuities are identified on opposing sides of two north-trending fault zones in the central part of the compilation region north of Yucca Flat. The origin and significance of these zones are enigmatic because they are largely covered by Tertiary and younger deposits. These faults most likely result from significant lateral offset, most likely in the sinistral sense.Low-angle normal faults that are at least older than Oligocene, and may pre-date Late Cretaceous time, are also present in the region. These faults are shown to locally displace blocks of pre-Tertiary rock by several kilometers. However, none of these structures can be traced for significant distances beyond its outcrop extent, and the inference is made that they do not exert regional influence on the distribution of pre-Tertiary rocks. The extensional strain accommodated by these low-angle normal faults appears to be local and highly irregular.

  20. Tectonic history of Sweetgrass Arch, Montana and Alberta-key to finding new hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, W. Shepard, B.

    1985-05-01

    The Sweetgrass arch of northwestern Montana and southern Alberta is a major ancient structural feature. Initial anticlinal emplacement occurred during the early Paleozoic and was parallel with the cratonic margin. Strong uplift followed by peneplanation occurred during the Late Jurassic and basal Cretaceous during the westward drifting of the North American plate following the breakup of Pangea. During Cretaceous and early Tertiary times, the Sweetgrass arch was quiescent, but was rejuvenated in mid to late Tertiary, upwarped by a basement flexure to its present structural configuration: a 200 mi (322 km) long, north-plunging anticline showing 10,000 ft (350 m) ofmore » structural relief. Midway down its plunge, the anticline is offset 30 mi (48 km) by a right-lateral transcurrent fault. During Late Cretaceous and early Tertiary, plutonic uplifts were emplaced on the east flank, forming traps for oil then migrating updip from the Williston and Alberta basins. Oil and gas accumulated in Mississippian, Jurassic, and basal Cretaceous reservoirs in structural and stratigraphic traps around these plutonic uplifts. Subsequent late Tertiary doming of the Sweetgrass arch tilted the earlier structural traps and drained them, resulting in remigration of much of the oil and gas to the crest of the arch. The tilting failed to destroy many of the stratigraphic traps. As a result, down the flanks of the Sweetgrass arch are many frozen stratigraphic traps including Cut Bank field, the largest single-pay stratigraphic trap in the north Rockies. On the crest are large structure accumulations of remigrated oil at Kevin Sunburst and Pondera. Evidence of remigration is recorded by live oil show tracks in the reservoirs and remnant gas caps throughout the area of earlier accumulations. A potential exists for finding new frozen traps on the flanks and remigrated oil accumulations on or near the crest of the Sweetgrass arch.« less

  1. Understanding the General Packing Rearrangements Required for Successful Template Based Modeling of Protein Structure from a CASP Experiment

    PubMed Central

    Day, Ryan; Joo, Hyun; Chavan, Archana; Lennox, Kristin P.; Chen, Ann; Dahl, David B.; Vannucci, Marina; Tsai, Jerry W.

    2012-01-01

    As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. PMID:23266765

  2. Understanding the general packing rearrangements required for successful template based modeling of protein structure from a CASP experiment.

    PubMed

    Day, Ryan; Joo, Hyun; Chavan, Archana C; Lennox, Kristin P; Chen, Y Ann; Dahl, David B; Vannucci, Marina; Tsai, Jerry W

    2013-02-01

    As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Concentration Dependent Speciation and Mass Transport Properties of Switchable Polarity Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaron D. Wilson; Christopher J. Orme

    2014-12-01

    Tertiary amine switchable polarity solvents (SPS) consisting of predominantly water, tertiary amine, and tertiary ammonium and bicarbonate ions were produced at various concentrations for three different amines: N,N-dimethylcyclohexylamine, N,N-dimethyloctylamine, and 1 cyclohexylpiperidine. For all concentrations, physical properties were measured including viscosity, molecular diffusion coefficients, freezing point depression, and density. Based on these measurements a variation on the Mark Houwink equation was developed to predict the viscosity of any tertiary amine SPS as a function of concentration using the amine’s molecular mass. The observed physical properties allowed the identification of solution state speciation of non-osmotic SPS, where the amine to carbonicmore » acid ratio is significantly greater than one. These results indicate that at most concentrations the stoichiometric excess amine is involved in solvating a proton with two amines. The physical properties of osmotic SPS have consistent concentration dependence behavior over a wide range of concentrations; this consistence suggests osmotic pressures based on low concentrations freezing point studies can be reliably extrapolated to higher concentrations.« less

  4. Do health complaints in adolescence negatively predict the chance of entering tertiary education in young adulthood?

    PubMed

    Låftman, Sara B; Magnusson, Charlotta

    2017-12-01

    Self-reported psychological and psychosomatic health complaints, such as nervousness, sadness, headache and stomach-ache, are common among adolescents, particularly among girls, and studies suggest that the prevalence has risen among adolescent girls during the last few decades. However, only a limited number of studies have investigated the potential long-term consequences of such health complaints. The aim of the current study was to assess whether psychological and psychosomatic health complaints in adolescence predict the chance of entering tertiary education in young adulthood among women and men. The data used are from the Swedish Young-LNU, which is based on a nationally representative sample with self-reported survey information from adolescents aged 10-18 years in 2000 and from the same individuals at ages 20-28 in 2010 ( n=783). Information was also collected from parents and from official registers. Linear probability models showed that self-reported psychological complaints in adolescence were associated with a lower chance of having entered tertiary education 10 years later. This association was accounted for by differences in grade point average (GPA), suggesting that GPA may mediate the association between psychological complaints and later education. The pattern was similar for both genders. Furthermore, among men, psychosomatic complaints in adolescence were significantly associated with a lower likelihood of having entered tertiary education 10 years later when adjusting for GPA and social class in adolescence. A similar but non-significant tendency was found among women. The findings suggest that health complaints in adolescence may have long-term consequences in terms of lower educational attainment.

  5. Pain symptoms and stooling patterns do not drive diagnostic costs for children with functional abdominal pain and irritable bowel syndrome in primary or tertiary care.

    PubMed

    Lane, Mariella M; Weidler, Erica M; Czyzewski, Danita I; Shulman, Robert J

    2009-03-01

    The objectives of this study were to (1) compare the cost of medical evaluation for children with functional abdominal pain or irritable bowel syndrome brought to a pediatric gastroenterologist versus children who remained in the care of their pediatrician, (2) compare symptom characteristics for the children in primary versus tertiary care, and (3) examine if symptom characteristics predicted the cost of medical evaluation. Eighty-nine children aged 7 to 10 years with functional abdominal pain or irritable bowel syndrome seen by a gastroenterologist (n = 46) or seen only by a pediatrician (n = 43) completed daily pain and stool diaries for 2 weeks. Mothers provided retrospective reports of their children's symptoms in the previous year. Cost of medical evaluation was calculated via chart review of diagnostic tests and application of prices as if the patients were self-pay. Child-reported diary data reflected no significant group differences with respect to pain, interference with activities, or stool characteristics. In contrast, mothers of children evaluated by a gastroenterologist viewed their children as having higher maximum pain intensity in the previous year. Excluding endoscopy costs, cost of medical evaluation was fivefold higher for children evaluated by a gastroenterologist, with higher cost across blood work, stool studies, breath testing, and diagnostic imaging. Symptom characteristics did not predict cost of care for either group. Despite the lack of difference in symptom characteristics between children in primary and tertiary care, a notable differential in cost of evaluation exists in accordance with level of care. Symptom characteristics do not seem to drive diagnostic evaluation in either primary or tertiary care. Given the lack of differences in child-reported symptoms and the maternal perspective that children evaluated by a gastroenterologist had more severe pain, we speculate that parent perception of child symptoms may be a primary factor in seeking tertiary care.

  6. Upgrading and Downgrading of Prostate Cancer from Biopsy to Radical Prostatectomy: Incidence and Predictive Factors Using the Modified Gleason Grading System and Factoring in Tertiary Grades

    PubMed Central

    Epstein, Jonathan I.; Feng, Zhaoyong; Trock, Bruce J.; Pierorazio, Phillip M.

    2015-01-01

    Background Prior studies assessing the correlation of Gleason score (GS) at needle biopsy and corresponding radical prostatectomy (RP) predated the use of the modified Gleason scoring system and did not factor in tertiary grade patterns. Objective To assess the relation of biopsy and RP grade in the largest study to date. Design, setting, and participants A total of 7643 totally embedded RP and corresponding needle biopsies (2004–2010) were analyzed according to the updated Gleason system. Interventions All patients underwent prostate biopsy prior to RP. Measurements The relation of upgrading or downgrading to patient and cancer characteristics was compared using the chi-square test, Student t test, and multivariable logistic regression. Results and limitations A total of 36.3% of cases were upgraded from a needle biopsy GS 5–6 to a higher grade at RP (11.2% with GS 6 plus tertiary). Half of the cases had matching GS 3 + 4 = 7 at biopsy and RP with an approximately equal number of cases downgraded and upgraded at RP. With biopsy GS 4 + 3 = 7, RP GS was almost equally 3 + 4 = 7 and 4 + 3 = 7. Biopsy GS 8 led to an almost equal distribution between RP GS 4 + 3 = 7, 8, and 9–10. A total of 58% of the cases had matching GS 9–10 at biopsy and RP. In multivariable analysis, increasing age (p < 0.0001), increasing serum prostate-specific antigen level (p < 0.0001), decreasing RP weight (p < 0.0001), and increasing maximum percentage cancer/core (p < 0.0001) predicted the upgrade from biopsy GS 5–6 to higher at RP. Despite factoring in multiple variables including the number of positive cores and the maximum percentage of cancer per core, the concordance indexes were not sufficiently high to justify the use of nomograms for predicting upgrading and downgrading for the individual patient. Conclusions Almost 20% of RP cases have tertiary patterns. A needle biopsy can sample a tertiary higher Gleason pattern in the RP, which is then not recorded in the standard GS reporting, resulting in an apparent overgrading on the needle biopsy. PMID:22336380

  7. Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: incidence and predictive factors using the modified Gleason grading system and factoring in tertiary grades.

    PubMed

    Epstein, Jonathan I; Feng, Zhaoyong; Trock, Bruce J; Pierorazio, Phillip M

    2012-05-01

    Prior studies assessing the correlation of Gleason score (GS) at needle biopsy and corresponding radical prostatectomy (RP) predated the use of the modified Gleason scoring system and did not factor in tertiary grade patterns. To assess the relation of biopsy and RP grade in the largest study to date. A total of 7643 totally embedded RP and corresponding needle biopsies (2004-2010) were analyzed according to the updated Gleason system. All patients underwent prostate biopsy prior to RP. The relation of upgrading or downgrading to patient and cancer characteristics was compared using the chi-square test, Student t test, and multivariable logistic regression. A total of 36.3% of cases were upgraded from a needle biopsy GS 5-6 to a higher grade at RP (11.2% with GS 6 plus tertiary). Half of the cases had matching GS 3+4=7 at biopsy and RP with an approximately equal number of cases downgraded and upgraded at RP. With biopsy GS 4+3=7, RP GS was almost equally 3+4=7 and 4+3=7. Biopsy GS 8 led to an almost equal distribution between RP GS 4+3=7, 8, and 9-10. A total of 58% of the cases had matching GS 9-10 at biopsy and RP. In multivariable analysis, increasing age (p<0.0001), increasing serum prostate-specific antigen level (p<0.0001), decreasing RP weight (p<0.0001), and increasing maximum percentage cancer/core (p<0.0001) predicted the upgrade from biopsy GS 5-6 to higher at RP. Despite factoring in multiple variables including the number of positive cores and the maximum percentage of cancer per core, the concordance indexes were not sufficiently high to justify the use of nomograms for predicting upgrading and downgrading for the individual patient. Almost 20% of RP cases have tertiary patterns. A needle biopsy can sample a tertiary higher Gleason pattern in the RP, which is then not recorded in the standard GS reporting, resulting in an apparent overgrading on the needle biopsy. Copyright © 2012 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  8. About Student's Media Use for Learning in Tertiary Education Influence Factors and Structures of Usage Behavior

    ERIC Educational Resources Information Center

    Grosch, Michael

    2014-01-01

    The rise of the web 2.0 led to dramatic changes in media usage behavior of students in tertiary education. Services such as Google and Facebook are most accepted amongst students not only in pastime but also for learning. A representative survey was made at Karlsruhe Institute of Technology (KIT). About 1,400 students were asked 150 questions to…

  9. Genetic diversity, genetic structure, and mating system of brewer spruce (Pinaceae), a relict of the acto-tertiary forest

    Treesearch

    F. Thomas Ledig; Paul D. Hodgskiss; David R. Johnson

    2005-01-01

    Brewer spruce (Picea breweriana), a relict of the widespread Arcto-Tertiary forests, is now restricted to a highly fragmented range in the Klamath Region of California and Oregon. Expected heterozygosity for 26 isozyme loci, averaged over 10 populations, was 0.121. More notable than the relatively high level of diversity when compared to other woody...

  10. Lithospheric mantle structure beneath Northern Scotland: Pre-plume remnant or syn-plume signature?

    NASA Astrophysics Data System (ADS)

    Knapp, J.

    2003-04-01

    Upper mantle reflectors (Flannan and W) beneath the northwestern British Isles are some of the best-known and most-studied examples of preserved structure within the continental mantle lithosphere, and are spatially coincident with the surface location of early Iceland plume volcanism in the British Tertiary Province. First observed on BIRPS (British Institutions Reflection Profiling Syndicate) marine deep seismic reflection profiles in the early 1980's, these reflectors have subsequently been imaged and correlated on additional reflection and refraction profiles in the offshore area of northern and western Scotland. The age and tectonic significance of these reflectors remains a subject of wide debate, due in part to the absence of robust characterization of the upper mantle velocity structure in this tectonically complex area. Interpretations advanced over the past two decades for the dipping Flannan reflector range from fossilized subduction complex to large-scale extensional shear zone, and span ages from Proterozoic to early Mesozoic. Crustal geology of the region records early Paleozoic continental collision and late Paleozoic to Mesozoic extension. Significant modification of the British lithosphere in early Tertiary time, including dramatic thinning and extensive basaltic intrusion associated with initiation and development of the Iceland plume, suggests either (1) an early Tertiary age for the Flannan reflector or (2) preservation of ancient features within the mantle lithosphere despite such pervasive modification. Exisitng constraints are consistent with a model for early Tertiary origin of the Flannan reflector as the downdip continuation of the Rockall Trough extensional system of latest Cretaceous to earliest Tertiary age during opening of the northern Atlantic Ocean and initiation of the Iceland plume. Lithopsheric thinning beneath present-day northern Scotland could have served to focus the early expression of plume volcanism (British Tertiary Province), despite the inferred distant locus of the initial plume head. Alternatively, preservation of large-scale pre-plume fabric in the Scottish mantle would imply long-lived tectonic heredity in the continental lithospheric mantle, and place important constraints on the plume-related effects (or lack thereof) in the mantle lithosphere.

  11. Algeria: structural evolution and hydrocarbon potential of a complicated Tectonic province

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, H.W.

    1985-02-01

    During most of the pre-Carboniferous, Algeria was part of a stable foreland platform on which a thick clastic sequence was deposited. Caledonian tectonics were primarily epeirogenic, but they established structural alignments that were further reinforced by the much stronger movements of the Carboniferous Hercynian orogeny. In northern and eastern Algeria, a variable basal sandstone and a thick sequence of Triassic and Lower Jurassic evaporites were deposited over the eroded Hercynian surface. This provided a seal for subsequent hydrocarbon migration from the underlying Silurian and Devonian source rocks. Important epeirogenic events and tensional faulting occurred during the Jurassic and Cretaceous. Compressionalmore » forces in the tertiary culminated in the Alpine orogeny. A broad zone of uplift and southward-directed imbricate thrusting formed along the northern margins of Algeria obscuring much of the sub-Tertiary depositional and structural features. Hydrocarbon accumulation in Algeria has been predominantly controlled by the relationships among the Silurian-Devonian source rocks, the Hercynian unconformity, and the distribution of the overlying Triassic clastic and evaporite sequence. More than 65% of the recoverable oil reserves and 90% of the gas reserves are trapped immediately below or above the Hercynian unconformity, with the evaporites providing the seal. Heretofore, the complex geology of the Tertiary overthrust zone has been a deterrent to exploration in both the autochthonous Miocene basins and the sub-Tertiary sequence. However, improved seismic techniques and renewed interest in the potential of overthrust provinces point to increased activity in this area.« less

  12. The tolerance to exchanges of the Watson–Crick base pair in the hammerhead ribozyme core is determined by surrounding elements

    PubMed Central

    Przybilski, Rita; Hammann, Christian

    2007-01-01

    Tertiary interacting elements are important features of functional RNA molecules, for example, in all small nucleolytic ribozymes. The recent crystal structure of a tertiary stabilized type I hammerhead ribozyme revealed a conventional Watson–Crick base pair in the catalytic core, formed between nucleotides C3 and G8. We show that any Watson–Crick base pair between these positions retains cleavage competence in two type III ribozymes. In the Arabidopsis thaliana sequence, only moderate differences in cleavage rates are observed for the different base pairs, while the peach latent mosaic viroid (PLMVd) ribozyme exhibits a preference for a pyrimidine at position 3 and a purine at position 8. To understand these differences, we created a series of chimeric ribozymes in which we swapped sequence elements that surround the catalytic core. The kinetic characterization of the resulting ribozymes revealed that the tertiary interacting loop sequences of the PLMVd ribozyme are sufficient to induce the preference for Y3–R8 base pairs in the A. thaliana hammerhead ribozyme. In contrast to this, only when the entire stem–loops I and II of the A. thaliana sequences are grafted on the PLMVd ribozyme is any Watson–Crick base pair similarly tolerated. The data provide evidence for a complex interplay of secondary and tertiary structure elements that lead, mediated by long-range effects, to an individual modulation of the local structure in the catalytic core of different hammerhead ribozymes. PMID:17666711

  13. Spatio-temporal observations of tertiary ozone maximum

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Kyrölä, E.; Verronen, P. T.; Seppälä, A.; Tamminen, J.; Marsh, D. R.; Smith, A. K.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton D'Andon, O.; Barrot, G.; Guirlet, M.; Fehr, T.; Saavedra, L.

    2009-03-01

    We present spatio-temporal distributions of tertiary ozone maximum (TOM), based on GOMOS (Global Ozone Monitoring by Occultation of Stars) ozone measurements in 2002-2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at altitude ~72 km. Although the explanation for this phenomenon has been found recently - low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses - models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time obtaining spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere. The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory), TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model) and found that the specific features are reproduced satisfactorily by the model. Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  14. Spatio-temporal observations of the tertiary ozone maximum

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Kyrölä, E.; Verronen, P. T.; Seppälä, A.; Tamminen, J.; Marsh, D. R.; Smith, A. K.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton D'Andon, O.; Barrot, G.; Guirlet, M.; Fehr, T.; Saavedra, L.

    2009-07-01

    We present spatio-temporal distributions of the tertiary ozone maximum (TOM), based on GOMOS (Global Ozone Monitoring by Occultation of Stars) ozone measurements in 2002-2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ~72 km. Although the explanation for this phenomenon has been found recently - low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses - models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere. The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory), TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model) and found that the specific features are reproduced satisfactorily by the model. Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  15. Intra-Operative Frozen Sections for Ovarian Tumors – A Tertiary Center Experience

    PubMed Central

    Arshad, Nur Zaiti Md; Ng, Beng Kwang; Paiman, Noor Asmaliza Md; Mahdy, Zaleha Abdullah; Noor, Rushdan Mohd

    2018-01-01

    Background: Accuracy of diagnosis with intra-operative frozen sections is extremely important in the evaluation of ovarian tumors so that appropriate surgical procedures can be selected. Study design: All patients who with intra-operative frozen sections for ovarian masses in a tertiary center over nine years from June 2008 until April 2017 were reviewed. Frozen section diagnosis and final histopathological reports were compared. Main outcome measures: Sensitivity, specificity, positive and negative predictive values of intra-operative frozen section as compared to final histopathological results for ovarian tumors. Results: A total of 92 cases were recruited for final evaluation. The frozen section diagnoses were comparable with the final histopathological reports in 83.7% of cases. The sensitivity, specificity, positive predictive value and negative predictive value for benign and malignant ovarian tumors were 95.6%, 85.1%, 86.0% and 95.2% and 69.2%, 100%, 100% and 89.2% respectively. For borderline ovarian tumors, the sensitivity and specificity were 76.2% and 88.7%, respectively; the positive predictive value was 66.7% and the negative predictive value was 92.7%. Conclusion: The accuracy of intra-operative frozen section diagnoses for ovarian tumors is high and this approach remains a reliable option in assessing ovarian masses intra-operatively. PMID:29373916

  16. An Amino Acid Packing Code for α-helical Structure and Protein Design

    PubMed Central

    Joo, Hyun; Chavan, Archana G.; Phan, Jamie; Day, Ryan; Tsai, Jerry

    2012-01-01

    This work demonstrates that all packing in α-helices can be simplified to repetitive patterns of a single motif: the knob-socket. Using the precision of Voronoi Polyhedra/Deluaney Tessellations to identify contacts, the knob-socket is a 4 residue tetrahedral motif: a knob residue on one α-helix packs into the 3 residue socket on another α-helix. The principle of the knob-socket model relates the packing between levels of protein structure: the intra-helical packing arrangements within secondary structure that permit inter-helix tertiary packing interactions. Within an α-helix, the 3 residue sockets arrange residues into a uniform packing lattice. Inter-helix packing results from a definable pattern of interdigitated knob-socket motifs between 2 α-helices. Furthermore, the knob-socket model classifies 3 types of sockets: 1) free: favoring only intra-helical packing, 2) filled: favoring inter-helical interactions and 3) non: disfavoring α-helical structure. The amino acid propensities in these 3 socket classes essentially represent an amino acid code for structure in α-helical packing. Using this code, a novel yet straightforward approach for the design of α-helical structure was used to validate the knob-socket model. Unique sequences for 3 peptides were created to produce a predicted amount of α-helical structure: mostly helical, some helical, and no-helix. These 3 peptides were synthesized and helical content assessed using CD spectroscopy. The measured α-helicity of each peptide was consistent with the expected predictions. These results and analysis demonstrate that the knob-socket motif functions as the basic unit of packing and presents an intuitive tool to decipher the rules governing packing in protein structure. PMID:22426125

  17. Helix A Stabilization Precedes Amino-terminal Lobe Activation upon Calcium Binding to Calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Baowei; Lowry, David; Mayer, M. Uljana

    2008-08-09

    The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)-resorufin (ReAsH), which upon binding to an engineered tetracysteine binding motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the 1H- 15N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH.more » Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe (Kd = 0.36 ± 0.04 μM), which results in a reduction in the rate of ReAsH binding from 4900 M -1 sec -1 to 370 M -1 sec -1. In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe requires calcium-occupancy of amino-terminal sites (Kd = 18 ± 3 μM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces secondary structural changes within the interdomain linker that release helix A, thereby facilitating the formation of calcium binding sites in the amino-terminal lobe and linked tertiary structural rearrangements to form a high-affinity binding cleft that can associate with target proteins.« less

  18. Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking.

    PubMed

    Kihara, Daisuke; Sael, Lee; Chikhi, Rayan; Esquivel-Rodriguez, Juan

    2011-09-01

    The tertiary structures of proteins have been solved in an increasing pace in recent years. To capitalize the enormous efforts paid for accumulating the structure data, efficient and effective computational methods need to be developed for comparing, searching, and investigating interactions of protein structures. We introduce the 3D Zernike descriptor (3DZD), an emerging technique to describe molecular surfaces. The 3DZD is a series expansion of mathematical three-dimensional function, and thus a tertiary structure is represented compactly by a vector of coefficients of terms in the series. A strong advantage of the 3DZD is that it is invariant to rotation of target object to be represented. These two characteristics of the 3DZD allow rapid comparison of surface shapes, which is sufficient for real-time structure database screening. In this article, we review various applications of the 3DZD, which have been recently proposed.

  19. Free Energy Perturbation Calculations of the Thermodynamics of Protein Side-Chain Mutations.

    PubMed

    Steinbrecher, Thomas; Abel, Robert; Clark, Anthony; Friesner, Richard

    2017-04-07

    Protein side-chain mutation is fundamental both to natural evolutionary processes and to the engineering of protein therapeutics, which constitute an increasing fraction of important medications. Molecular simulation enables the prediction of the effects of mutation on properties such as binding affinity, secondary and tertiary structure, conformational dynamics, and thermal stability. A number of widely differing approaches have been applied to these predictions, including sequence-based algorithms, knowledge-based potential functions, and all-atom molecular mechanics calculations. Free energy perturbation theory, employing all-atom and explicit-solvent molecular dynamics simulations, is a rigorous physics-based approach for calculating thermodynamic effects of, for example, protein side-chain mutations. Over the past several years, we have initiated an investigation of the ability of our most recent free energy perturbation methodology to model the thermodynamics of protein mutation for two specific problems: protein-protein binding affinities and protein thermal stability. We highlight recent advances in the field and outline current and future challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of topographic position and geology on shaking damage to residential wood-framed structures during the 2003 San Simeon earthquake, western San Luis obispo county, California

    USGS Publications Warehouse

    McCrink, T.P.; Wills, C.J.; Real, C.R.; Manson, M.W.

    2010-01-01

    A statistical evaluation of shaking damage to wood-framed houses caused by the 2003 M6.5 San Simeon earthquake indicates that both the rate and severity of damage, independent of structure type, are significantly greater on hilltops compared to hill slopes when underlain by Cretaceous or Tertiary sedimentary rocks. This increase in damage is interpreted to be the result of topographic amplification. An increase in the damage rate is found for all structures built on Plio-Pleistocene rocks independent of topographic position, and this is interpreted to be the result of amplified shaking caused by geologic site response. Damage rate and severity to houses built on Tertiary rocks suggest that amplification due to both topographic position and geologic site response may be occurring in these rocks, but effects from other topographic parameters cannot be ruled out. For all geologic and topographic conditions, houses with raised foundations are more frequently damaged than those with slab foundations. However, the severity of damage to houses on raised foundations is only significantly greater for those on hill slopes underlain by Tertiary rocks. Structures with some damage-resistant characteristics experienced greater damage severity on hilltops, suggesting a spectral response to topographic amplification. ?? 2010, Earthquake Engineering Research Institute.

  1. Mineralogy of Cretaceous/Tertiary boundary clays in the Chicxulub structure in northern Yucatan

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Sharpton, Virgil L.; Schuraytz, B. C.

    1991-01-01

    The Cretaceous/Tertiary (K/T) boundary clay layer is thought to be derived from ejecta material from meteorite impact, based on the anomalous concentrations of noble metals in the layer. Because of recent findings of a half-meter thick ejecta deposit at the K/T boundary in Haiti, efforts have focused on locating a large impact feature in the Caribbean and the Gulf of Mexico. One of the leading candidates for the site of a large impact is the Chicxulub structure located on the northern Yucatan Peninsula in Mexico. The Chicxulub structure is a subsurface zone of upper Cretaceous igneous rocks, carbonates, and breccias. The structure has been interpreted to be a 200 km diameter; however, there is some question to the size of the structure or to the fact that it even is an impact feature. Little is known about the mineralogy of this structure; the objective of this study was to determine the clay mineralogy of core samples from within the Chicxulub structure.

  2. Epigenetic Biomarkers of Breast Cancer Risk: Across the Breast Cancer Prevention Continuum.

    PubMed

    Terry, Mary Beth; McDonald, Jasmine A; Wu, Hui Chen; Eng, Sybil; Santella, Regina M

    2016-01-01

    Epigenetic biomarkers, such as DNA methylation, can increase cancer risk through altering gene expression. The Cancer Genome Atlas (TCGA) Network has demonstrated breast cancer-specific DNA methylation signatures. DNA methylation signatures measured at the time of diagnosis may prove important for treatment options and in predicting disease-free and overall survival (tertiary prevention). DNA methylation measurement in cell free DNA may also be useful in improving early detection by measuring tumor DNA released into the blood (secondary prevention). Most evidence evaluating the use of DNA methylation markers in tertiary and secondary prevention efforts for breast cancer comes from studies that are cross-sectional or retrospective with limited corresponding epidemiologic data, raising concerns about temporality. Few prospective studies exist that are large enough to address whether DNA methylation markers add to the prediction of tertiary and secondary outcomes over and beyond standard clinical measures. Determining the role of epigenetic biomarkers in primary prevention can help in identifying modifiable pathways for targeting interventions and reducing disease incidence. The potential is great for DNA methylation markers to improve cancer outcomes across the prevention continuum. Large, prospective epidemiological studies will provide essential evidence of the overall utility of adding these markers to primary prevention efforts, screening, and clinical care.

  3. Both Reversible Self-Association and Structural Changes Underpin Molecular Viscoelasticity of mAb Solutions.

    PubMed

    Sarangapani, Prasad S; Weaver, Justin; Parupudi, Arun; Besong, Tabot M D; Adams, Gary G; Harding, Stephen E; Manikwar, Prakash; Castellanos, Maria M; Bishop, Steven M; Pathak, Jai A

    2016-12-01

    The role of antibody structure (conformation) in solution rheology is probed. It is demonstrated here that pH-dependent changes in the tertiary structure of 2 mAb solutions lead to viscoelasticity and not merely a shear viscosity (η) increase. Steady shear flow curves on mAb solutions are reported over broad pH (3.0 ≤ pH ≤ 8.7) and concentration (2 mg/mL ≤ c ≤ 120 mg/mL) ranges to comprehensively characterize their rheology. Results are interpreted using size exclusion chromatography, differential scanning calorimetry, analytical ultracentrifugation, near-UV circular dichroism, and dynamic light scattering. Changes in tertiary structure with concentration lead to elastic yield stress and increased solution viscosity in solution of "mAb1." These findings are supported by dynamic light scattering and differential scanning calorimetry, which show increased hydrodynamic radius of mAb1 at low pH and a reduced melting temperature T m , respectively. Conversely, another molecule at 120 mg/mL solution concentration is a strong viscoelastic gel due to perturbed tertiary structure (seen in circular dichroism) at pH 3.0, but the same molecule responds as a viscous liquid due to reversible self-association at pH 7.4 (verified by analytical ultracentrifugation). Both protein-protein interactions and structural perturbations govern pH-dependent viscoelasticity of mAb solutions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Enthalpy-Driven RNA Folding: Single-Molecule Thermodynamics of Tetraloop–Receptor Tertiary Interaction†

    PubMed Central

    Fiore, Julie L.; Kraemer, Benedikt; Koberling, Felix; Edmann, Rainer; Nesbitt, David J.

    2010-01-01

    RNA folding thermodynamics are crucial for structure prediction, which requires characterization of both enthalpic and entropic contributions of tertiary motifs to conformational stability. We explore the temperature dependence of RNA folding due to the ubiquitous GAAA tetraloop–receptor docking interaction, exploiting immobilized and freely diffusing single-molecule fluorescence resonance energy transfer (smFRET) methods. The equilibrium constant for intramolecular docking is obtained as a function of temperature (T = 21–47 °C), from which a van’t Hoff analysis yields the enthalpy (ΔH°) and entropy (ΔS°) of docking. Tetraloop–receptor docking is significantly exothermic and entropically unfavorable in 1 mM MgCl2 and 100 mM NaCl, with excellent agreement between immobilized (ΔH° = −17.4 ± 1.6 kcal/mol, and ΔS° = −56.2 ± 5.4 cal mol−1 K−1) and freely diffusing (ΔH° = −17.2 ± 1.6 kcal/mol, and ΔS° = −55.9 ± 5.2 cal mol−1 K−1) species. Kinetic heterogeneity in the tetraloop–receptor construct is unaffected over the temperature range investigated, indicating a large energy barrier for interconversion between the actively docking and nondocking subpopulations. Formation of the tetraloop–receptor interaction can account for ~60% of the ΔH° and ΔS° of P4–P6 domain folding in the Tetrahymena ribozyme, suggesting that it may act as a thermodynamic clamp for the domain. Comparison of the isolated tetraloop–receptor and other tertiary folding thermodynamics supports a theme that enthalpy- versus entropy-driven folding is determined by the number of hydrogen bonding and base stacking interactions. PMID:19186984

  5. Superacid synthesized tertiary benzenesulfonamides and benzofuzed sultams act as selective hCA IX inhibitors: toward understanding a new mode of inhibition by tertiary sulfonamides.

    PubMed

    Métayer, Benoît; Martin-Mingot, Agnès; Vullo, Daniella; Supuran, Claudiu T; Thibaudeau, Sébastien

    2013-11-21

    A series of tertiary (fluorinated) benzenesulfonamides was synthesized in superacid HF-SbF5. To circumvent the problem of the in situ iminium ion formation, proved by low temperature NMR experiments, a tandem superacid catalysed cross-coupling reaction was employed to synthesize the benzofuzed sultams analogues. These tertiary benzenesulfonamides were tested as inhibitors of human carbonic anhydrases (hCAs, EC 4.2.1.1). These compounds did not inhibit the widespread off target hCA II isoform and showed strong selectivity toward tumor-associated carbonic anhydrase isoform IX. A dramatic effect of the electronic and structural shape of the inhibitors on selectivity was demonstrated, confirming the non-zinc-bonding mode of inhibition of this class of sulfonamides. This work allowed identifying a highly selective hCA IX inhibitor lead in this series.

  6. A Case Series of the Probability Density and Cumulative Distribution of Laryngeal Disease in a Tertiary Care Voice Center.

    PubMed

    de la Fuente, Jaime; Garrett, C Gaelyn; Ossoff, Robert; Vinson, Kim; Francis, David O; Gelbard, Alexander

    2017-11-01

    To examine the distribution of clinic and operative pathology in a tertiary care laryngology practice. Probability density and cumulative distribution analyses (Pareto analysis) was used to rank order laryngeal conditions seen in an outpatient tertiary care laryngology practice and those requiring surgical intervention during a 3-year period. Among 3783 new clinic consultations and 1380 operative procedures, voice disorders were the most common primary diagnostic category seen in clinic (n = 3223), followed by airway (n = 374) and swallowing (n = 186) disorders. Within the voice strata, the most common primary ICD-9 code used was dysphonia (41%), followed by unilateral vocal fold paralysis (UVFP) (9%) and cough (7%). Among new voice patients, 45% were found to have a structural abnormality. The most common surgical indications were laryngotracheal stenosis (37%), followed by recurrent respiratory papillomatosis (18%) and UVFP (17%). Nearly 55% of patients presenting to a tertiary referral laryngology practice did not have an identifiable structural abnormality in the larynx on direct or indirect examination. The distribution of ICD-9 codes requiring surgical intervention was disparate from that seen in clinic. Application of the Pareto principle may improve resource allocation in laryngology, but these initial results require confirmation across multiple institutions.

  7. Rhodamine Inhibitors of P-glycoprotein: An Amide/Thioamide “Switch” for ATPase Activity

    PubMed Central

    Gannon, Michael K.; Holt, Jason J.; Bennett, Stephanie M.; Wetzel, Bryan R.; Loo, Tip W.; Bartlett, M. Claire; Clarke, David M.; Sawada, Geri A.; Higgins, J. William; Tombline, Gregory; Raub, Thomas J.; Detty, Michael R.

    2012-01-01

    We have examined 46 tetramethylrosamine/rhodamine derivatives with structural diversity in the heteroatom of the xanthylium core, the amino substituents of the 3- and 6-positions, and the alkyl, aryl, or heteroaryl group at the 9-substituent. These compounds were examined for affinity and ATPase stimulation in isolated MDR3 CL P-gp and human P-gp-His10, for their ability to promote uptake of calcein AM and vinblastine in multidrug-resistant MDCKII-MDR1 cells, and for transport in monolayers of MDCKII-MDR1 cells. Thioamide 31-S gave KM of 0.087 μM in human P-gp. Small changes in structure among this set of compounds affected affinity as well as transport rate (or flux) even though all derivatives examined were substrates for P-gp. With isolated protein, tertiary amide groups dictate high affinity and high stimulation while tertiary thioamide groups give high affinity and inhibition of ATPase activity. In MDCKII-MDR1 cells, the tertiary thioamide-containing derivatives promote uptake of calcein AM and have very slow passive, absorptive, and secretory rates of transport relative to transport rates for tertiary amide-containing derivatives. Thioamide 31-S promoted uptake of calcein AM and inhibited efflux of vinblastine with IC50’s of ~2 μM in MDCKII-MDR1 cells. PMID:19402665

  8. MEGADOCK: An All-to-All Protein-Protein Interaction Prediction System Using Tertiary Structure Data

    PubMed Central

    Ohue, Masahito; Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ishida, Takashi; Akiyama, Yutaka

    2014-01-01

    The elucidation of protein-protein interaction (PPI) networks is important for understanding cellular structure and function and structure-based drug design. However, the development of an effective method to conduct exhaustive PPI screening represents a computational challenge. We have been investigating a protein docking approach based on shape complementarity and physicochemical properties. We describe here the development of the protein-protein docking software package “MEGADOCK” that samples an extremely large number of protein dockings at high speed. MEGADOCK reduces the calculation time required for docking by using several techniques such as a novel scoring function called the real Pairwise Shape Complementarity (rPSC) score. We showed that MEGADOCK is capable of exhaustive PPI screening by completing docking calculations 7.5 times faster than the conventional docking software, ZDOCK, while maintaining an acceptable level of accuracy. When MEGADOCK was applied to a subset of a general benchmark dataset to predict 120 relevant interacting pairs from 120 x 120 = 14,400 combinations of proteins, an F-measure value of 0.231 was obtained. Further, we showed that MEGADOCK can be applied to a large-scale protein-protein interaction-screening problem with accuracy better than random. When our approach is combined with parallel high-performance computing systems, it is now feasible to search and analyze protein-protein interactions while taking into account three-dimensional structures at the interactome scale. MEGADOCK is freely available at http://www.bi.cs.titech.ac.jp/megadock. PMID:23855673

  9. Hyriopsis cumingii Hic52-A novel nacreous layer matrix protein with a collagen-like structure.

    PubMed

    Liu, Xiaojun; Pu, Jingwen; Zeng, Shimei; Jin, Can; Dong, Shaojian; Li, Jiale

    2017-09-01

    Nacre is a product of a precisely regulated biomineralization process and a major contributor to the luster of pearls. Nacre is composed of calcium carbonate and an organic matrix of proteins that is secreted from mollusc mantle tissue and is exclusively associated with shell formation. In this study, hic52, a novel matrix protein gene from mantle of Hyriopsis cumingii, was cloned and functionally analyzed. The full-length cDNA of hic52 encoded 542 amino acids and contained a signal peptide of 18 amino acids. Excluding the signal peptide, the theoretical molecular mass of the polypeptide was 52.2kDa. The predicted isoelectric point was 10.37, indicating a basic shell protein. The amino acid sequence of hic52 featured high proportion of Gly (28.8%) and Gln (12.4%) residues. The predicted tertiary structure was characterized as having similarities to collagen I, alpha 1 and alpha 2 in the structure. The polypeptide sequence shared no homology with collagen. The hic52 expression pattern by quantitative real-time PCR and in situ hybridization exhibits at the dorsal epithelial cells of the mantle. Expression increased during the stages of pearl sac development. The data showed that hic52 is probably a framework shell protein that mediates and controls the nacreous biomineralization process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. LCS-TA to identify similar fragments in RNA 3D structures.

    PubMed

    Wiedemann, Jakub; Zok, Tomasz; Milostan, Maciej; Szachniuk, Marta

    2017-10-23

    In modern structural bioinformatics, comparison of molecular structures aimed to identify and assess similarities and differences between them is one of the most commonly performed procedures. It gives the basis for evaluation of in silico predicted models. It constitutes the preliminary step in searching for structural motifs. In particular, it supports tracing the molecular evolution. Faced with an ever-increasing amount of available structural data, researchers need a range of methods enabling comparative analysis of the structures from either global or local perspective. Herein, we present a new, superposition-independent method which processes pairs of RNA 3D structures to identify their local similarities. The similarity is considered in the context of structure bending and bonds' rotation which are described by torsion angles. In the analyzed RNA structures, the method finds the longest continuous segments that show similar torsion within a user-defined threshold. The length of the segment is provided as local similarity measure. The method has been implemented as LCS-TA algorithm (Longest Continuous Segments in Torsion Angle space) and is incorporated into our MCQ4Structures application, freely available for download from http://www.cs.put.poznan.pl/tzok/mcq/ . The presented approach ties torsion-angle-based method of structure analysis with the idea of local similarity identification by handling continuous 3D structure segments. The first method, implemented in MCQ4Structures, has been successfully utilized in RNA-Puzzles initiative. The second one, originally applied in Euclidean space, is a component of LGA (Local-Global Alignment) algorithm commonly used in assessing protein models submitted to CASP. This unique combination of concepts implemented in LCS-TA provides a new perspective on structure quality assessment in local and quantitative aspect. A series of computational experiments show the first results of applying our method to comparison of RNA 3D models. LCS-TA can be used for identifying strengths and weaknesses in the prediction of RNA tertiary structures.

  11. The effects of health education on knowledge and attitudes to emergency contraception by female students of a tertiary educational institution in Enugu, South East Nigeria.

    PubMed

    Arinze-Onyia, S U; Onwasigwe, C N; Uzochukwu, B S C; Nwobi, E A; Ndu, A C; Nwobodo, Ed

    2010-11-28

    This was an intervention study to assess the effects of health education on the knowledge and attitudes to emergency contraception (EC) by female students of University of Nigeria in southeast Nigeria. A structured questionnaire was used to collect data from 337 female students of a tertiary educational institution (150 in the study group and 187 from the control group) who were selected by multistage sampling. Subsequently, health education was conducted only among students in the study institution. Three months after this intervention, its effects were assessed through a survey using the same structured questionnaire employed in the baseline survey. Unlike the pre-intervention results, knowledge of EC was significantly higher among the study group than the controls. Attitudes to EC were also more favourable at the post- intervention survey among the study group. Health education can effectively improve knowledge and attitudes to EC among female students of tertiary institutions and this should be encouraged.

  12. Tertiary tilting and dismemberment of the laramide arc and related hydrothermal systems, Sierrita Mountain, Arizona

    USGS Publications Warehouse

    Stavast, W.J.A.; Butler, R.P.; Seedorff, E.; Barton, M.D.; Ferguson, C.A.

    2008-01-01

    Multiple lines of evidence, including new and published geologic mapping and paleomagnetic and geobarometric determinations, demonstrate that the rocks and large porphyry copper systems of the Sierrita Mountains in southern Arizona were dismembered and tilted 50?? to 60?? to the south by Tertiary normal faulting. Repetition of geologic features and geobarometry indicate that the area is segmented into at least three major structural blocks, and the present surface corresponds to oblique sections through the Laramide plutonic-hydrothermal complex, ranging in paleodepth from ???1 to ???12 km. These results add to an evolving view of a north-south extensional domain at high angles to much extension in the southern Basin and Range, contrast with earlier interpretations that the Laramide systems are largely upright and dismembered by thrust faults, highlight the necessity of restoring Tertiary rotations before interpreting Laramide structural and hydrothermal features, and add to the broader understanding of pluton emplacement and evolution of porphyry copper systems. ?? 2008 Society of Economic Geologists, Inc.

  13. Optical spectroscopic methods for probing the conformational stability of immobilised enzymes.

    PubMed

    Ganesan, Ashok; Moore, Barry D; Kelly, Sharon M; Price, Nicholas C; Rolinski, Olaf J; Birch, David J S; Dunkin, Ian R; Halling, Peter J

    2009-07-13

    We report the development of biophysical techniques based on circular dichroism (CD), diffuse reflectance infrared Fourier transform (DRIFT) and tryptophan (Trp) fluorescence to investigate in situ the structure of enzymes immobilised on solid particles. Their applicability is demonstrated using subtilisin Carlsberg (SC) immobilised on silica gel and Candida antartica lipase B immobilised on Lewatit VP.OC 1600 (Novozyme 435). SC shows nearly identical secondary structure in solution and in the immobilised state as evident from far UV CD spectra and amide I vibration bands. Increased near UV CD intensity and reduced Trp fluorescence suggest a more rigid tertiary structure on the silica surface. After immobilised SC is inactivated, these techniques reveal: a) almost complete loss of near UV CD signal, suggesting loss of tertiary structure; b) a shift in the amide I vibrational band from 1658 cm(-1) to 1632 cm(-1), indicating a shift from alpha-helical structure to beta-sheet; c) a substantial blue shift and reduced dichroism in the far UV CD, supporting a shift to beta-sheet structure; d) strong increase in Trp fluorescence intensity, which reflects reduced intramolecular quenching with loss of tertiary structure; and e) major change in fluorescence lifetime distribution, confirming a substantial change in Trp environment. DRIFT measurements suggest that pressing KBr discs may perturb protein structure. With the enzyme on organic polymer it was possible to obtain near UV CD spectra free of interference by the carrier material. However, far UV CD, DRIFT and fluorescence measurements showed strong signals from the organic support. In conclusion, the spectroscopic methods described here provide structural information hitherto inaccessible, with their applicability limited by interference from, rather than the particulate nature of, the support material.

  14. Structural specificity of Rn nuclease I as probed on yeast tRNA(Phe) and tRNA(Asp).

    PubMed Central

    Przykorska, A; el Adlouni, C; Keith, G; Szarkowski, J W; Dirheimer, G

    1992-01-01

    A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop. No primary cuts were observed within the double stranded stems. In tRNA(Asp) the main cuts occurred at positions U33, G34, U35, C36 of the anticodon loop and G18 and C20:1 positions in the D loop. No cuts were observed in the T loop in intact tRNA(Asp) but strong primary cleavages occurred at positions psi 55, C56, A57 within that loop in the absence of the tertiary interactions between T and D loops (use of 3'-half tRNA(Asp)). These results show that Rn nuclease I is specific for exposed single-stranded regions. Images PMID:1542562

  15. Geologic Map of the Gold Creek Gold District, Elko County, Nevada

    USGS Publications Warehouse

    Ketner, Keith B.

    2007-01-01

    The Gold Creek, Nev. area displays important stratigraphic and structural relationships between Paleozoic and early Tertiary sedimentary strata in an area dominated by large intrusive bodies of Mesozoic age and extensive volcanic fields of middle to late Tertiary age. An autochthonous sequence includes the Cambrian and Proterozoic(?) Prospect Mountain Quartzite and the overlying Cambrian and Ordovician Tennessee Mountain Formation. This autochthon is overlain by three allochthonous plates each composed of a distinctive sequence of strata and having a distinctive internal structure. The structurally lowest plate is composed of the Havallah sequence, locally of Mississippian and Pennsylvanian age, which is folded on north-south trending axes. The next higher plate is composed of somewhat younger Pennsylvanian and Permian strata cut by east-west trending low-angle faults. The highest plate is composed of early Tertiary non-marine sedimentary and igneous rocks folded on varied but mainly north-south trending axes. The question of whether the allochthonous plates were emplaced by contractional or extensional forces is indeterminate from the local evidence. Mineral deposits include gold placers of moderate size and small pockets of base metals, none of which is currently being exploited.

  16. Final acceptance testing of the LSST monolithic primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Burge, James H.; Cuerden, Brian; Gressler, William; Martin, Hubert M.; West, Steven C.; Zhao, Chunyu

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a three-mirror wide-field survey telescope with the primary and tertiary mirrors on one monolithic substrate1. This substrate is made of Ohara E6 borosilicate glass in a honeycomb sandwich, spin cast at the Steward Observatory Mirror Lab at The University of Arizona2. Each surface is aspheric, with the specification in terms of conic constant error, maximum active bending forces and finally a structure function specification on the residual errors3. There are high-order deformation terms, but with no tolerance, any error is considered as a surface error and is included in the structure function. The radii of curvature are very different, requiring two independent test stations, each with instantaneous phase-shifting interferometers with null correctors. The primary null corrector is a standard two-element Offner null lens. The tertiary null corrector is a phase-etched computer-generated hologram (CGH). This paper details the two optical systems and their tolerances, showing that the uncertainty in measuring the figure is a small fraction of the structure function specification. Additional metrology includes the radii of curvature, optical axis locations, and relative surface tilts. The methods for measuring these will also be described along with their tolerances.

  17. PREDICTING DIVING PLUME BEHAVIOR

    EPA Science Inventory

    The United States Environmental Protection Agency has responded to a number of multi media environmental issues surrounding the use of methyl tertiary butyl ether (MTBE) and other fuel oxygenates. In Region 5, MTBE from various sources - but mainly from leaking underground stora...

  18. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  19. Replica exchange molecular dynamics simulation of structure variation from α/4β-fold to 3α-fold protein.

    PubMed

    Lazim, Raudah; Mei, Ye; Zhang, Dawei

    2012-03-01

    Replica exchange molecular dynamics (REMD) simulation provides an efficient conformational sampling tool for the study of protein folding. In this study, we explore the mechanism directing the structure variation from α/4β-fold protein to 3α-fold protein after mutation by conducting REMD simulation on 42 replicas with temperatures ranging from 270 K to 710 K. The simulation began from a protein possessing the primary structure of GA88 but the tertiary structure of GB88, two G proteins with "high sequence identity." Albeit the large Cα-root mean square deviation (RMSD) of the folded protein (4.34 Å at 270 K and 4.75 Å at 304 K), a variation in tertiary structure was observed. Together with the analysis of secondary structure assignment, cluster analysis and principal component, it provides insights to the folding and unfolding pathway of 3α-fold protein and α/4β-fold protein respectively paving the way toward the understanding of the ongoings during conformational variation.

  20. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN- binding defined by EPR-based hybrid method

    NASA Astrophysics Data System (ADS)

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN-, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.

  1. PredSTP: a highly accurate SVM based model to predict sequential cystine stabilized peptides.

    PubMed

    Islam, S M Ashiqul; Sajed, Tanvir; Kearney, Christopher Michel; Baker, Erich J

    2015-07-05

    Numerous organisms have evolved a wide range of toxic peptides for self-defense and predation. Their effective interstitial and macro-environmental use requires energetic and structural stability. One successful group of these peptides includes a tri-disulfide domain arrangement that offers toxicity and high stability. Sequential tri-disulfide connectivity variants create highly compact disulfide folds capable of withstanding a variety of environmental stresses. Their combination of toxicity and stability make these peptides remarkably valuable for their potential as bio-insecticides, antimicrobial peptides and peptide drug candidates. However, the wide sequence variation, sources and modalities of group members impose serious limitations on our ability to rapidly identify potential members. As a result, there is a need for automated high-throughput member classification approaches that leverage their demonstrated tertiary and functional homology. We developed an SVM-based model to predict sequential tri-disulfide peptide (STP) toxins from peptide sequences. One optimized model, called PredSTP, predicted STPs from training set with sensitivity, specificity, precision, accuracy and a Matthews correlation coefficient of 94.86%, 94.11%, 84.31%, 94.30% and 0.86, respectively, using 200 fold cross validation. The same model outperforms existing prediction approaches in three independent out of sample testsets derived from PDB. PredSTP can accurately identify a wide range of cystine stabilized peptide toxins directly from sequences in a species-agnostic fashion. The ability to rapidly filter sequences for potential bioactive peptides can greatly compress the time between peptide identification and testing structural and functional properties for possible antimicrobial and insecticidal candidates. A web interface is freely available to predict STP toxins from http://crick.ecs.baylor.edu/.

  2. Territorial organization of the lowland classic maya.

    PubMed

    Marcus, J

    1973-06-01

    Thus far I have discussed ancient Maya sociopolitical structure from the upper levels of the hierarchy downward. Let me now summarize their territorial organization from the bottom upward, starting at the hamlet level (Fig. 8). The smallest unit of settlement-one usually overlooked by archeological surveys in the lowland rain forest-was probably a cluster of thatched huts occupied by a group of related families; larger clusters may have been divided into four quadrants along the lines suggested by Coe (26). Because of the long fallow period (6 to 8 years) characteristic of slash-and-burn agriculture in the Petén, these small hamlets are presumed to have changed location over the years, although they probably shifted in a somewhat circular fashion around a tertiary ceremonial-civic center for whose maintenance they were partly responsible. These tertiary centers were spaced at fairly regular intervals around secondary ceremonial-civic centers with pyramids, carved monuments, and palace-like residences. In turn, the secondary centers occurred at such regular intervals as to form hexagonal patterns around primary centers, which were still larger, with acropolises, multiple ceremonial plazas, and greater numbers of monuments. In some cases, the distance between secondary centers was roughly twice the distance between secondary and tertiary centers, creating a lattice of nested hexagonal cells. This pattern, which conforms to a Western theoretical construct, was presumably caused by factors of service function, travel, and transport. The pattern was not recognized by the Maya at all. They simply recognized that a whole series of smaller centers were dependent on a primary center and therefore mentioned its emblem glyph. Linking the centers of the various hexagons were marriage alliances between members of royal dynasties, who had no kinship ties with the farmers in the hamlets. Out of the large number of primary centers available to them, the Maya selected four as regional capitals. True to their cosmology, the Maya regarded these capitals as associated with the four quadrants of their realm, regardless of their actual location. Each was the home city for a very important dynasty whose junior members probably ruled secondary centers. Since the hexagonal lattices were probably adjusted to variations in population density, each of the four quadrants of the Maya realm probably controlled a comparable number of persons. So strong was the cognized model that, despite the rise and fall of individual centers, there seem always to have been four capitals, each associated with a direction and, presumably, with a color. There is still a great deal to learn about the social, political, and territorial organization of the lowland Maya, and parts of the picture presented here need far more data for their confirmation. What seems likely is that the Maya had an overall quadripartite organization (rather than a core and buffer zone) and that within each quadrant there was at least a five-tiered administrative hierarchy of capital, secondary center, tertiary center, village, and hamlet. Perhaps most significant, there was no real conflict between the lattice-like network predicted by locational analysis and the cosmological four-part structure predicted by epigraphy and ethnology.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzetti, E.A.; Brennan, P.A.; Hook, S.C.

    The authors present graphical solutions to the extensional fault-related folding equations of Xiao and Suppe (1992), simplifying the prediction of normal fault location or rollover geometry from subsurface data. These equations also predict the extent of bed thinning and elongation in hanging wall strata. They have derived new equations that relate change in fault slip across a fault bend to fault geometry. Applying these equations in seismic interpretation makes it easier to (1) construct balanced cross-sections, (2) account for the slip observed, and (3) determine the growth history of extensional fault-related folds. They have applied these concepts to several southeastmore » Asian rift basins in Malaysia, Myanmar, Indonesia, and Thailand. These basins were formed by early Tertiary crustal extension, producing rollover structures in which sediment supply generally did not keep up with subsidence. These under-filled, internally drained depressions periodically contained lakes, providing the environment for deposition of organic-rich strata that ultimately became hydrocarbon source rock. Typically, the main basin bounding faults dip 35-55[degrees] near their upper terminations and flatten to become subhorizontal. Synthetic and antithetic secondary faults are usually present. Late compaction faulting often propagates upward from major extensional faults and may reactivate the upper portions of these faults. In many basins, late compression produced inversion structures. By applying the concepts of extensional fault-related folding to these basins, they can (1) explain observed geometries, (2) predict poorly imaged geometries, (3) predict the location of source and reservoir facies, and (4) determine the timing of faulting relative to deposition of source and reservoir rocks.« less

  4. Geologic framework of lower Cook Inlet, Alaska

    USGS Publications Warehouse

    Fisher, M.A.; Magoon, L.B.

    1978-01-01

    Three seismic reflectors are present throughout the lower Cook Inlet basin and can be correlated with onshore geologic features. The reflections come from unconformities at the base of the Tertiary sequence, at the base of Upper Cretaceous rocks, and near the base of Upper Jurassic strata. A contour map of the deepest horizon shows that Mesozoic rocks are formed into a northeast-trending syncline. Along the southeast flank of the basin, the northwest-dipping Mesozoic rocks are truncated at the base of Tertiary rocks. The Augustine-Seldovia arch trends across the basin axis between Augustine Island and Seldovia. Tertiary rocks thin onto the arch from the north and south. Numerous anticlines, smaller in structural relief and breadth than the Augustine-Seldovia arch, trend northeast parallel with the basin, and intersect the arch at oblique angles. The stratigraphic record shows four cycles of sedimentation and tectonism that are bounded by three regional unconformities in lower Cook Inlet and by four thrust faults and the modern Benioff zone in flysch rocks of the Kenai Peninsula and the Gulf of Alaska. The four cycles of sedimentation are, from oldest to youngest, the early Mesozoic, late Mesozoic, early Cenozoic, and late Cenozoic. Data on organic geochemistry of the rocks from one well suggest that Middle Jurassic strata may be a source of hydrocarbons. Seismic data show that structural traps are formed by northeast-trending anticlines and by structures formed at the intersections of these anticlines with the transbasin arch. Stratigraphic traps may be formed beneath the unconformity at the base of Tertiary strata and beneath unconformities within Mesozoic strata.

  5. Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations

    PubMed Central

    McDowell, S. Elizabeth; Jun, Jesse M.; Walter, Nils G.

    2010-01-01

    Enzymes generally are thought to derive their functional activity from conformational motions. The limited chemical variation in RNA suggests that such structural dynamics may play a particularly important role in RNA function. Minimal hammerhead ribozymes are known to cleave efficiently only in ∼10-fold higher than physiologic concentrations of Mg2+ ions. Extended versions containing native loop–loop interactions, however, show greatly enhanced catalytic activity at physiologically relevant Mg2+ concentrations, for reasons that are still ill-understood. Here, we use Mg2+ titrations, activity assays, ensemble, and single molecule fluorescence resonance energy transfer (FRET) approaches, combined with molecular dynamics (MD) simulations, to ask what influence the spatially distant tertiary loop–loop interactions of an extended hammerhead ribozyme have on its structural dynamics. By comparing hammerhead variants with wild-type, partially disrupted, and fully disrupted loop–loop interaction sequences we find that the tertiary interactions lead to a dynamic motional sampling that increasingly populates catalytically active conformations. At the global level the wild-type tertiary interactions lead to more frequent, if transient, encounters of the loop-carrying stems, whereas at the local level they lead to an enrichment in favorable in-line attack angles at the cleavage site. These results invoke a linkage between RNA structural dynamics and function and suggest that loop–loop interactions in extended hammerhead ribozymes—and Mg2+ ions that bind to minimal ribozymes—may generally allow more frequent access to a catalytically relevant conformation(s), rather than simply locking the ribozyme into a single active state. PMID:20921269

  6. Exploration of Novel Chemical Space: Synthesis and in vitro Evaluation of N-Functionalized Tertiary Sulfonimidamides.

    PubMed

    Izzo, Flavia; Schäfer, Martina; Lienau, Philip; Ganzer, Ursula; Stockman, Robert; Lücking, Ulrich

    2018-05-04

    An unprecedented set of structurally diverse sulfonimidamides (47 compounds) has been prepared by various N-functionalization reactions of tertiary =NH sulfonimidamide 2 aa. These N-functionalization reactions of model compound 2 aa include arylation, alkylation, trifluoromethylation, cyanation, sulfonylation, alkoxycarbonylation (carbamate formation) and aminocarbonylation (urea formation). Small molecule X-ray analyses of selected N-functionalized products are reported. To gain further insight into the properties of sulfonimidamides relevant to medicinal chemistry, a variety of structurally diverse reaction products were tested in selected in vitro assays. The described N-functionalization reactions provide a short and efficient approach to structurally diverse sulfonimidamides which have been the subject of recent, growing interest in the life sciences. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations

    PubMed Central

    Chen, Alan A.; García, Angel E.

    2013-01-01

    We report the de novo folding of three hyperstable RNA tetraloops to 1–3 Å rmsd from their experimentally determined structures using molecular dynamics simulations initialized in the unfolded state. RNA tetraloops with loop sequences UUCG, GCAA, or CUUG are hyperstable because of the formation of noncanonical loop-stabilizing interactions, and they are all faithfully reproduced to angstrom-level accuracy in replica exchange molecular dynamics simulations, including explicit solvent and ion molecules. This accuracy is accomplished using unique RNA parameters, in which biases that favor rigid, highly stacked conformations are corrected to accurately capture the inherent flexibility of ssRNA loops, accurate base stacking energetics, and purine syn-anti interconversions. In a departure from traditional quantum chemistrycentric approaches to force field optimization, our parameters are calibrated directly from thermodynamic and kinetic measurements of intra- and internucleotide structural transitions. The ability to recapitulate the signature noncanonical interactions of the three most abundant hyperstable stem loop motifs represents a significant milestone to the accurate prediction of RNA tertiary structure using unbiased all-atom molecular dynamics simulations. PMID:24043821

  8. Predicting Electrostatic Forces in RNA Folding

    PubMed Central

    Tan, Zhi-Jie; Chen, Shi-Jie

    2016-01-01

    Metal ion-mediated electrostatic interactions are critical to RNA folding. Although considerable progress has been made in mechanistic studies, the problem of accurate predictions for the ion effects in RNA folding remains unsolved, mainly due to the complexity of several potentially important issues such as ion correlation and dehydration effects. In this chapter, after giving a brief overview of the experimental findings and theoretical approaches, we focus on a recently developed new model, the tightly bound ion (TBI) model, for ion electrostatics in RNA folding. The model is unique because it can treat ion correlation and fluctuation effects for realistic RNA 3D structures. For monovalent ion (such as Na+) solutions, where ion correlation is weak, TBI and the Poisson–Boltzmann (PB) theory give the same results and the results agree with the experimental data. For multivalent ion (such as Mg2+) solutions, where ion correlation can be strong, however, TBI gives much improved predictions than the PB. Moreover, the model suggests an ion correlation- induced mechanism for the unusual efficiency of Mg2+ ions in the stabilization of RNA tertiary folds. In this chapter, after introducing the theoretical framework of the TBI model, we will describe how to apply the model to predict ion-binding properties and ion-dependent folding stabilities. PMID:20946803

  9. Reduction in lipophilicity improved the solubility, plasma–protein binding, and permeability of tertiary sulfonamide RORc inverse agonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauber, Benjamin P.; René, Olivier; de Leon Boenig, Gladys

    2014-08-01

    Using structure-based drug design principles, we identified opportunities to reduce the lipophilicity of our tertiary sulfonamide RORc inverse agonists. The new analogs possessed improved RORc cellular potencies with >77-fold selectivity for RORc over other nuclear receptors in our cell assay suite. The reduction in lipophilicity also led to an increased plasma–protein unbound fraction and improvements in cellular permeability and aqueous solubility.

  10. Molecular dynamics study of unfolding of lysozyme in water and its mixtures with dimethyl sulfoxide.

    PubMed

    Sedov, Igor A; Magsumov, Timur I

    2017-09-01

    All-atom explicit solvent molecular dynamics was used to study the process of unfolding of hen egg white lysozyme in water and mixtures of water with dimethyl sulfoxide at different compositions. We have determined the kinetic parameters of unfolding at a constant temperature 450K. For each run, the time of disruption of the tertiary structure of lysozyme t u was defined as the moment when a certain structural criterion computed from the trajectory reaches its critical value. A good agreement is observed between the results obtained using several different criteria. The secondary structure according to DSSP calculations is found to be partially unfolded to the moment of disruption of tertiary structure, but some of its elements keep for a long time after that. The values of t u averaged over ten 30ns-long trajectories for each solvent composition are shown to decrease very rapidly with addition of dimethyl sulfoxide, and rather small amounts of dimethyl sulfoxide are found to change the pathway of unfolding. In pure water, despite the loss of tertiary contacts and disruption of secondary structure elements, the protein preserves its compact globular state at least over 130ns of simulation, while even at 5mol percents of dimethyl sulfoxide it loses its compactness within 30ns. The proposed methodology is a generally applicable tool to quantify the rate of protein unfolding in simulation studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Improving mental health service users' with medical co-morbidity transition between tertiary medical hospital and primary care services: a qualitative study.

    PubMed

    Cranwell, Kate; Polacsek, Meg; McCann, Terence V

    2016-07-26

    Mental health service users have high rates of medical co-morbidity but frequently experience problems accessing and transitioning between tertiary medical and primary care services. The aim of this study was to identify ways to improve service users' with medical co-morbidity care and experience during their transition between tertiary medical hospitals and primary care services. Experience-based co-design (EBCD) qualitative study incorporating a focus group discussion. The study took place in a large tertiary medical service, incorporating three medical hospitals, and primary care services, in Melbourne, Australia. A purposive sample of service users and their caregivers and tertiary medical and primary care clinicians participated in the focus group discussion, in August 2014. A semi-structured interview guide was used to inform data collection. A thematic analysis of the data was undertaken. Thirteen participants took part in the focus group interview, comprising 5 service users, 2 caregivers and 6 clinicians. Five themes were abstracted from the data, illustrating participants' perspectives about factors that facilitated (clinicians' expertise, engagement and accessibility enhancing transition) and presented as barriers (improving access pathways; enhancing communication and continuity of care; improving clinicians' attitudes; and increasing caregiver participation) to service users' progress through tertiary medical and primary care services. A sixth theme, enhancing service users' transition, incorporated three strategies to enhance their transition through tertiary medical and primary care services. EBCD is a useful approach to collaboratively develop strategies to improve service users' with medical co-morbidity and their caregivers' transition between tertiary medical and primary care services. A whole-of-service approach, incorporating policy development and implementation, change of practice philosophy, professional development education and support for clinicians, and acceptance of the need for caregiver participation, is required to improve service users' transition.

  12. Sampling the multiple folding mechanisms of Trp-cage in explicit solvent

    PubMed Central

    Juraszek, J.; Bolhuis, P. G.

    2006-01-01

    We investigate the kinetic pathways of folding and unfolding of the designed miniprotein Trp- cage in explicit solvent. Straightforward molecular dynamics and replica exchange methods both have severe convergence problems, whereas transition path sampling allows us to sample unbiased dynamical pathways between folded and unfolded states and leads to deeper understanding of the mechanisms of (un)folding. In contrast to previous predictions employing an implicit solvent, we find that Trp-cage folds primarily (80% of the paths) via a pathway forming the tertiary contacts and the salt bridge, before helix formation. The remaining 20% of the paths occur in the opposite order, by first forming the helix. The transition states of the rate-limiting steps are solvated native-like structures. Water expulsion is found to be the last step upon folding for each route. Committor analysis suggests that the dynamics of the solvent is not part of the reaction coordinate. Nevertheless, during the transition, specific water molecules are strongly bound and can play a structural role in the folding. PMID:17035504

  13. Three-residue turns in alpha/beta-peptides and their application in the design of tertiary structures.

    PubMed

    Sharma, Gangavaram V M; Nagendar, Pendem; Ramakrishna, Kallaganti V S; Chandramouli, Nagula; Choudhary, Madavi; Kunwar, Ajit C

    2008-06-02

    A new three-residue turn was serendipitously discovered in alpha/beta hybrid peptides derived from alternating C-linked carbo-beta-amino acids (beta-Caa) and L-Ala residues. The three-residue beta-alpha-beta turn at the C termini, nucleated by a helix at the N termini, resulted in helix-turn (HT) supersecondary structures in these peptides. The turn in the HT motif is stabilized by two H bonds-CO(i-2)-NH(i), with a seven-membered pseudoring (gamma turn) in the backward direction, and NH(i-2)-CO(i), with a 13-membered pseudoring in the forward direction (i being the last residue)--at the C termini. The study was extended to generalize the new three-residue turn (beta-alpha-beta) by using different alpha- and beta-amino acids. Furthermore, the HT motifs were efficiently converted, by an extension with helical oligomers at the C termini, into peptides with novel helix-turn-helix (HTH) tertiary structures. However, this resulted in the destabilization of the beta-alpha-beta turn with the concomitant nucleation of another three-residue turn, alpha-beta-beta, which is stabilized by 11- and 15-membered bifurcated H bonds. Extensive NMR spectroscopic studies were carried out to delineate the secondary and tertiary structures in these peptides, which are further supported by molecular dynamics (MD) investigations.

  14. Identification and Analysis of the Biosynthetic Gene Cluster Encoding the Thiopeptide Antibiotic Cyclothiazomycin in Streptomyces hygroscopicus 10-22▿ †

    PubMed Central

    Wang, Jiang; Yu, Yi; Tang, Kexuan; Liu, Wen; He, Xinyi; Huang, Xi; Deng, Zixin

    2010-01-01

    Thiopeptide antibiotics are an important class of natural products resulting from posttranslational modifications of ribosomally synthesized peptides. Cyclothiazomycin is a typical thiopeptide antibiotic that has a unique bridged macrocyclic structure derived from an 18-amino-acid structural peptide. Here we reported cloning, sequencing, and heterologous expression of the cyclothiazomycin biosynthetic gene cluster from Streptomyces hygroscopicus 10-22. Remarkably, successful heterologous expression of a 22.7-kb gene cluster in Streptomyces lividans 1326 suggested that there is a minimum set of 15 open reading frames that includes all of the functional genes required for cyclothiazomycin production. Six genes of these genes, cltBCDEFG flanking the structural gene cltA, were predicted to encode the enzymes required for the main framework of cyclothiazomycin, and two enzymes encoded by a putative operon, cltMN, were hypothesized to participate in the tailoring step to generate the tertiary thioether, leading to the final cyclization of the bridged macrocyclic structure. This rigorous bioinformatics analysis based on heterologous expression of cyclothiazomycin resulted in an ideal biosynthetic model for us to understand the biosynthesis of thiopeptides. PMID:20154110

  15. Modeling disordered protein interactions from biophysical principles

    PubMed Central

    Christoffer, Charles; Terashi, Genki

    2017-01-01

    Disordered protein-protein interactions (PPIs), those involving a folded protein and an intrinsically disordered protein (IDP), are prevalent in the cell, including important signaling and regulatory pathways. IDPs do not adopt a single dominant structure in isolation but often become ordered upon binding. To aid understanding of the molecular mechanisms of disordered PPIs, it is crucial to obtain the tertiary structure of the PPIs. However, experimental methods have difficulty in solving disordered PPIs and existing protein-protein and protein-peptide docking methods are not able to model them. Here we present a novel computational method, IDP-LZerD, which models the conformation of a disordered PPI by considering the biophysical binding mechanism of an IDP to a structured protein, whereby a local segment of the IDP initiates the interaction and subsequently the remaining IDP regions explore and coalesce around the initial binding site. On a dataset of 22 disordered PPIs with IDPs up to 69 amino acids, successful predictions were made for 21 bound and 18 unbound receptors. The successful modeling provides additional support for biophysical principles. Moreover, the new technique significantly expands the capability of protein structure modeling and provides crucial insights into the molecular mechanisms of disordered PPIs. PMID:28394890

  16. Novel pre-therapeutic scoring system using patient and haematological data to predict facial palsy prognosis.

    PubMed

    Wasano, K; Ishikawa, T; Kawasaki, T; Yamamoto, S; Tomisato, S; Shinden, S; Minami, S; Wakabayashi, T; Ogawa, K

    2017-12-01

    We describe a novel scoring system, the facial Palsy Prognosis Prediction score (PPP score), which we test for reliability in predicting pre-therapeutic prognosis of facial palsy. We aimed to use readily available patient data that all clinicians have access to before starting treatment. Multicenter case series with chart review. Three tertiary care hospitals. We obtained haematological and demographic data from 468 facial palsy patients who were treated between 2010 and 2014 in three tertiary care hospitals. Patients were categorised as having Bell's palsy or Ramsey Hunt's palsy. We compared the data of recovered and unrecovered patients. PPP scores consisted of combinatorial threshold values of continuous patient data (eg platelet count) and categorical variables (eg gender) that best predicted recovery. We created separate PPP scores for Bell's palsy patients (PPP-B) and for Ramsey Hunt's palsy patients (PPP-H). The PPP-B score included age (≥65 years), gender (male) and neutrophil-to-lymphocyte ratio (≥2.9). The PPP-H score included age (≥50 years), monocyte rate (≥6.0%), mean corpuscular volume (≥95 fl) and platelet count (≤200 000 /μL). Patient recovery rate significantly decreased with increasing PPP scores (both PPP-B and PPP-H) in a step-wise manner. PPP scores (ie PPP-B score and PPP-H score) ≥2 were associated with worse than average prognosis. Palsy Prognosis Prediction scores are useful for predicting prognosis of facial palsy before beginning treatment. © 2017 John Wiley & Sons Ltd.

  17. Leaf Assemblages across the Cretaceous-Tertiary Boundary in the Raton Basin, New Mexico and Colorado

    NASA Astrophysics Data System (ADS)

    Wolfe, Jack A.; Upchurch, Garland R., Jr.

    1987-08-01

    Analyses of leaf megafossil and dispersed leaf cuticle assemblages indicate that major ecologic disruption and high rates of extinction occurred in plant communities at the Cretaceous-Tertiary boundary in the Raton Basin. In diversity increase, the early Paleocene vegetational sequence mimics normal short-term ecologic succession, but on a far longer time scale. No difference can be detected between latest Cretaceous and early Paleocene temperatures, but precipitation markedly increased at the boundary. Higher survival rate of deciduous versus evergreen taxa supports occurrence of a brief cold interval (<1 year), as predicted in models of an “impact winter.”

  18. Effect of pulsed light on activity and structural changes of horseradish peroxidase

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to investigate the effects of pulsed light (PL) on the activity and structure of horseradish peroxidase (HRP) in buffer solution. Enzyme residual activities were measured after PL. Surface topography, secondary, and tertiary structures of HRP were determined using ...

  19. CASP10-BCL::Fold efficiently samples topologies of large proteins.

    PubMed

    Heinze, Sten; Putnam, Daniel K; Fischer, Axel W; Kohlmann, Tim; Weiner, Brian E; Meiler, Jens

    2015-03-01

    During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template-based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Fold's ability to sample the native topology, identify native-like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE-only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native-like assembly of SSEs for further refinement and submission. It was also observed that for some β-strand proteins model refinement failed as β-strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non-natural topologies that require loop regions to pass through the center of the protein. © 2015 Wiley Periodicals, Inc.

  20. Assembly-directed antivirals differentially bind quasiequivalent pockets to modify hepatitis B virus capsid tertiary and quaternary structure.

    PubMed

    Katen, Sarah P; Tan, Zhenning; Chirapu, Srinivas Reddy; Finn, M G; Zlotnick, Adam

    2013-08-06

    Hepatitis B virus (HBV) is a major cause of liver disease. Assembly of the HBV capsid is a critical step in virus production and an attractive target for new antiviral therapies. We determined the structure of HBV capsid in complex with AT-130, a member of the phenylpropenamide family of assembly effectors. AT-130 causes tertiary and quaternary structural changes but does not disrupt capsid structure. AT-130 binds a hydrophobic pocket that also accommodates the previously characterized heteroaryldihydropyrimidine compounds but favors a unique quasiequivalent location on the capsid surface. Thus, this pocket is a promiscuous drug-binding site and a likely target for different assembly effectors with a broad range of mechanisms of activity. That AT-130 successfully decreases virus production by increasing capsid assembly rate without disrupting capsid structure delineates a paradigm in antiviral design, that disrupting reaction timing is a viable strategy for assembly effectors of HBV and other viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. [Development of an index system for the comprehensive evaluation on public health emergency events surveillance system in China].

    PubMed

    Hong, Zhiheng; Ni, Daxin; Cao, Yang; Meng, Ling; Tu, Wenxiao; Li, Leilei; Li, Qun; Jin, Lianmei

    2015-06-01

    To establish a comprehensive evaluation index system for the China Public Health Emergency Events Surveillance System (CPHEESS). A draft index system was built through literature review and under the consideration of the characteristics on CPHEESS. Delphi method was adapted to determine the final index system. The index system was divided into primary, secondary and tertiary levels. There were 4 primary indicators: System structure, Network platform, Surveillance implementation reports with Data analysis and utilization. There were 16 secondary and 70 tertiary indicators being set, with System structure including 14 tertiary indicators (accounted for 20.00%), 21 Network platforms (accounted for 30.00%). Twenty-four Surveillance implementation reports (accounted for 34.29%), 11 Data analysis and utilization (accounted for 15.71%). The average score of importance of each indicators was 4.29 (3.77-4.94), with an average coefficient variation as 0.14 (0.12-0.16). The mean Chronbach's α index was 0.84 (0.81-0.89). The adaptability of each related facilities indicator was specified. The primary indicators were set in accordance with the characteristics and goals of the surveillance systems. Secondary indicators provided key elements in the management and control of the system while the tertiary indicators were available and operative. The agreement rate of experts was high with good validity and reliability. This index system could be used for CPHEESS in future.

  2. Prediction of global and local model quality in CASP8 using the ModFOLD server.

    PubMed

    McGuffin, Liam J

    2009-01-01

    The development of effective methods for predicting the quality of three-dimensional (3D) models is fundamentally important for the success of tertiary structure (TS) prediction strategies. Since CASP7, the Quality Assessment (QA) category has existed to gauge the ability of various model quality assessment programs (MQAPs) at predicting the relative quality of individual 3D models. For the CASP8 experiment, automated predictions were submitted in the QA category using two methods from the ModFOLD server-ModFOLD version 1.1 and ModFOLDclust. ModFOLD version 1.1 is a single-model machine learning based method, which was used for automated predictions of global model quality (QMODE1). ModFOLDclust is a simple clustering based method, which was used for automated predictions of both global and local quality (QMODE2). In addition, manual predictions of model quality were made using ModFOLD version 2.0--an experimental method that combines the scores from ModFOLDclust and ModFOLD v1.1. Predictions from the ModFOLDclust method were the most successful of the three in terms of the global model quality, whilst the ModFOLD v1.1 method was comparable in performance to other single-model based methods. In addition, the ModFOLDclust method performed well at predicting the per-residue, or local, model quality scores. Predictions of the per-residue errors in our own 3D models, selected using the ModFOLD v2.0 method, were also the most accurate compared with those from other methods. All of the MQAPs described are publicly accessible via the ModFOLD server at: http://www.reading.ac.uk/bioinf/ModFOLD/. The methods are also freely available to download from: http://www.reading.ac.uk/bioinf/downloads/. Copyright 2009 Wiley-Liss, Inc.

  3. Revisiting the NMR structure of the ultrafast downhill folding protein gpW from bacteriophage λ.

    PubMed

    Sborgi, Lorenzo; Verma, Abhinav; Muñoz, Victor; de Alba, Eva

    2011-01-01

    GpW is a 68-residue protein from bacteriophage λ that participates in virus head morphogenesis. Previous NMR studies revealed a novel α+β fold for this protein. Recent experiments have shown that gpW folds in microseconds by crossing a marginal free energy barrier (i.e., downhill folding). These features make gpW a highly desirable target for further experimental and computational folding studies. As a step in that direction, we have re-determined the high-resolution structure of gpW by multidimensional NMR on a construct that eliminates the purification tags and unstructured C-terminal tail present in the prior study. In contrast to the previous work, we have obtained a full manual assignment and calculated the structure using only unambiguous distance restraints. This new structure confirms the α+β topology, but reveals important differences in tertiary packing. Namely, the two α-helices are rotated along their main axis to form a leucine zipper. The β-hairpin is orthogonal to the helical interface rather than parallel, displaying most tertiary contacts through strand 1. There also are differences in secondary structure: longer and less curved helices and a hairpin that now shows the typical right-hand twist. Molecular dynamics simulations starting from both gpW structures, and calculations with CS-Rosetta, all converge to our gpW structure. This confirms that the original structure has strange tertiary packing and strained secondary structure. A comparison of NMR datasets suggests that the problems were mainly caused by incomplete chemical shift assignments, mistakes in NOE assignment and the inclusion of ambiguous distance restraints during the automated procedure used in the original study. The new gpW corrects these problems, providing the appropriate structural reference for future work. Furthermore, our results are a cautionary tale against the inclusion of ambiguous experimental information in the determination of protein structures.

  4. Network structure and concentration fluctuations in a series of elemental, binary, and tertiary liquids and glasses.

    PubMed

    Soper, Alan K

    2010-10-13

    Liquids and glasses continue to produce a lively debate about the nature of the disordered structure in these materials, and whether it is driven by longer range concentration or density fluctuations. One factor often lacking in these studies is an overview of a wide range of structures from which common features of and differences between materials can be identified. Here I examine the structure of a wide range of chain and network, elemental, binary and tertiary liquids and glasses, using available x-ray and neutron diffraction data and combining them with empirical potential structure refinement. Calculation of the Bhatia-Thornton number-number and concentration-concentration structure factors and distribution functions highlights common structural motifs that run through many of the series. It is found that the greatest structural overlap occurs where the nearest-neighbour and second-neighbour coordination numbers are similar for different materials. As these coordination numbers increase, so the structures undergo a sequence of characteristic changes involving increasingly bent bond angle distributions and increased packing fractions. In these regards liquid and amorphous phosphorus appear to be in a structural class of their own, combining both chain-like and network-like characteristics.

  5. Protein folding: understanding the role of water and the low Reynolds number environment as the peptide chain emerges from the ribosome and folds.

    PubMed

    Sen, Siddhartha; Voorheis, H Paul

    2014-12-21

    The mechanism of protein folding during early stages of the process has three determinants. First, moving water molecules obey the rules of low Reynolds number physics without an inertial component. Molecular movement is instantaneous and size insensitive. Proteins emerging from the ribosome move and rotate without an external force if they change shape, forming and propagating helical structures that increases translocational efficiency. Forward motion ceases when the shape change or propelling force ceases. Second, application of quantum field theory to water structure predicts the spontaneous formation of low density coherent units of fixed size that expel dissolved atmospheric gases. Structured water layers with both coherent and non-coherent domains, form a sheath around the new protein. The surface of exposed hydrophobic amino acids is protected from water contact by small nanobubbles of dissolved atmospheric gases, 5 or 6 molecules on average, that vibrate, attracting even widely separated resonating nanobubbles. This force results from quantum effects, appearing only when the system is within and interacts with an oscillating electromagnetic field. The newly recognized quantum force sharply bends the peptide and is part of a dynamic field determining the pathway of protein folding. Third, the force initiating the tertiary folding of proteins arises from twists at the position of each hydrophobic amino acid, that minimizes surface exposure of the hydrophobic amino acids and propagates along the protein. When the total bend reaches 360°, the leading segment of water sheath intersects the trailing segment. This steric self-intersection expels water from overlapping segments of the sheath and by Newton׳s second law moves the polypeptide chain in an opposite direction. Consequently, with very few exceptions that we enumerate and discuss, tertiary structures are absent from proteins without hydrophobic amino acids, which control the early stages of protein folding and the overall shape of protein. Consequently, proteins only adopt a limited number of forms. The formation of quaternary structures is not necessarily prevented by the absence of hydrophobic amino acids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Tertiary lymphoid structures in cancer and beyond.

    PubMed

    Dieu-Nosjean, Marie-Caroline; Goc, Jérémy; Giraldo, Nicolas A; Sautès-Fridman, Catherine; Fridman, Wolf Herman

    2014-11-01

    Tertiary lymphoid structures (TLS) are ectopic lymphoid formations found in inflamed, infected, or tumoral tissues. They exhibit all the characteristics of structures in the lymph nodes (LN) associated with the generation of an adaptive immune response, including a T cell zone with mature dendritic cells (DC), a germinal center with follicular dendritic cells (FDC) and proliferating B cells, and high endothelial venules (HEV). In this review, we discuss evidence for the roles of TLS in chronic infection, autoimmunity, and cancer, and address the question of whether TLS present beneficial or deleterious effects in these contexts. We examine the relationship between TLS in tumors and patient prognosis, and discuss the potential role of TLS in building and/or maintaining local immune responses and how this understanding may guide therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Assembly and analysis of eukaryotic Argonaute–RNA complexes in microRNA-target recognition

    PubMed Central

    Gan, Hin Hark; Gunsalus, Kristin C.

    2015-01-01

    Experimental studies have uncovered a variety of microRNA (miRNA)–target duplex structures that include perfect, imperfect and seedless duplexes. However, non-canonical binding modes from imperfect/seedless duplexes are not well predicted by computational approaches, which rely primarily on sequence and secondary structural features, nor have their tertiary structures been characterized because solved structures to date are limited to near perfect, straight duplexes in Argonautes (Agos). Here, we use structural modeling to examine the role of Ago dynamics in assembling viable eukaryotic miRNA-induced silencing complexes (miRISCs). We show that combinations of low-frequency, global modes of motion of Ago domains are required to accommodate RNA duplexes in model human and C. elegans Ago structures. Models of viable miRISCs imply that Ago adopts variable conformations at distinct target sites that generate distorted, imperfect miRNA-target duplexes. Ago's ability to accommodate a duplex is dependent on the region where structural distortions occur: distortions in solvent-exposed seed and 3′-end regions are less likely to produce steric clashes than those in the central duplex region. Energetic analyses of assembled miRISCs indicate that target recognition is also driven by favorable Ago-duplex interactions. Such structural insights into Ago loading and target recognition mechanisms may provide a more accurate assessment of miRNA function. PMID:26432829

  8. Marked variation in newborn resuscitation practice: A national survey in the UK☆

    PubMed Central

    Mann, Chantelle; Ward, Carole; Grubb, Mark; Hayes-Gill, Barrie; Crowe, John; Marlow, Neil; Sharkey, Don

    2012-01-01

    Background Although international newborn resuscitation guidance has been in force for some time, there are no UK data on current newborn resuscitation practices. Objective Establish delivery room (DR) resuscitation practices in the UK, and identify any differences between neonatal intensive care units (NICU), and other local neonatal services. Methods We conducted a structured two-stage survey of DR management, among UK neonatal units during 2009–2010 (n = 192). Differences between NICU services (tertiary level) and other local neonatal services (non-tertiary) were analysed using Fisher's exact and Student's t-tests. Results There was an 89% response rate (n = 171). More tertiary NICUs institute DR CPAP than non-tertiary units (43% vs. 16%, P = 0.0001) though there was no significant difference in frequency of elective intubation and surfactant administration for preterm babies. More tertiary units commence DR resuscitation in air (62% vs. 29%, P < 0.0001) and fewer in 100% oxygen (11% vs. 41%, P < 0.0001). Resuscitation of preterm babies in particular, commences with air in 56% of tertiary units. Significantly more tertiary units use DR pulse oximeters (58% vs. 29%, P < 0.01) and titrate oxygen based on saturations. Almost all services use occlusive wrapping to maintain temperature for preterm infants. Conclusions In the UK, there are many areas of good evidence based DR practice. However, there is marked variation in management, including between units of different designation, suggesting a need to review practice to fulfil new resuscitation guidance, which will have training and resource implications. PMID:22245743

  9. Structural reinterpretation of the Ajo mining district, Pima County, Arizona, based on paleomagnetic and geochronologic studies.

    USGS Publications Warehouse

    Hagstrum, J.T.; Cox, D.P.; Miller, R.J.

    1987-01-01

    The Ajo mining district of southern Arizona is divided into two main structural blocks by the Gibson Arroyo fault. The eastern Camelback Mountain block contains the Late Cretaceous-early Tertiary porphyry copper deposit which has been previously thought to be associated with the displaced apex of a large intrusion exposed by deeper erosion in the western Cardigan Peak block. However, unpublished U-Pb data support a mid-Tertiary age for the western intrusion. The following sequence of mid-Tertiary events in the district are indicated: 1) emplacement of the western intrusion, 2) movement along the Gibson Arroyo fault, 3) unroofing and perhaps tilting of the pluton approx 70o to the south along with the Camelback Mountain block, 4) syntectonic depositions of the Locomotive Fanglomerate and the Ajo Volcanics, 5) continued uplift and tilting to the south totaling 40o to 60o, 6) intrusion of the youngest dikes with attendant alteration and remagnetization of the host rocks, and 7) minor (?) oblique movement along the Gibson Arroyo fault.-from Authors

  10. Structure-Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439).

    PubMed

    Dong, Yuxiang; Wang, Xiaofang; Kamaraj, Sriraghavan; Bulbule, Vivek J; Chiu, Francis C K; Chollet, Jacques; Dhanasekaran, Manickam; Hein, Christopher D; Papastogiannidis, Petros; Morizzi, Julia; Shackleford, David M; Barker, Helena; Ryan, Eileen; Scheurer, Christian; Tang, Yuanqing; Zhao, Qingjie; Zhou, Lin; White, Karen L; Urwyler, Heinrich; Charman, William N; Matile, Hugues; Wittlin, Sergio; Charman, Susan A; Vennerstrom, Jonathan L

    2017-04-13

    Building on insights gained from the discovery of the antimalarial ozonide arterolane (OZ277), we now describe the structure-activity relationship (SAR) of the antimalarial ozonide artefenomel (OZ439). Primary and secondary amino ozonides had higher metabolic stabilities than tertiary amino ozonides, consistent with their higher pK a and lower log D 7.4 values. For primary amino ozonides, addition of polar functional groups decreased in vivo antimalarial efficacy. For secondary amino ozonides, additional functional groups had variable effects on metabolic stability and efficacy, but the most effective members of this series also had the highest log D 7.4 values. For tertiary amino ozonides, addition of polar functional groups with H-bond donors increased metabolic stability but decreased in vivo antimalarial efficacy. Primary and tertiary amino ozonides with cycloalkyl and heterocycle substructures were superior to their acyclic counterparts. The high curative efficacy of these ozonides was most often associated with high and prolonged plasma exposure, but exposure on its own did not explain the presence or absence of either curative efficacy or in vivo toxicity.

  11. A Biome map for Modelling Global Mid-Pliocene Climate Change

    NASA Astrophysics Data System (ADS)

    Salzmann, U.; Haywood, A. M.

    2006-12-01

    The importance of vegetation-climate feedbacks was highlighted by several paleo-climate modelling exercises but their role as a boundary condition in Tertiary modelling has not been fully recognised or explored. Several paleo-vegetation datasets and maps have been produced for specific time slabs or regions for the Tertiary, but the vegetation classifications that have been used differ, thus making meaningful comparisons difficult. In order to facilitate further investigations into Tertiary climate and environmental change we are presently implementing the comprehensive GIS database TEVIS (Tertiary Environment and Vegetation Information System). TEVIS integrates marine and terrestrial vegetation data, taken from fossil pollen, leaf or wood, into an internally consistent classification scheme to produce for different time slabs global Tertiary Biome and Mega- Biome maps (Harrison & Prentice, 2003). In the frame of our ongoing 5-year programme we present a first global vegetation map for the mid-Pliocene time slab, a period of sustained global warmth. Data were synthesised from the PRISM data set (Thompson and Fleming 1996) after translating them to the Biome classification scheme and from new literature. The outcomes of the Biome map are compared with modelling results using an advanced numerical general circulation model (HadAM3) and the BIOME 4 vegetation model. Our combined proxy data and modelling approach will provide new palaeoclimate datasets to test models that are used to predict future climate change, and provide a more rigorous picture of climate and environmental changes during the Neogene.

  12. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective

    NASA Technical Reports Server (NTRS)

    Gutell, R. R.; Larsen, N.; Woese, C. R.

    1994-01-01

    The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical modification (in the isolated rRNA), which suggests that considerable higher-order structure remains to be found (although all of it may not involve base-base interactions and so may not be detectable by comparative analysis). The agreement between the higher-order structure of the small-subunit rRNA and protection against chemical modification is not perfect, however; some bases shown to covary canonically are accessible to chemical modification (45).(ABSTRACT TRUNCATED AT 400 WORDS).

  13. Thermodynamic Origins of Monovalent Facilitated RNA Folding

    PubMed Central

    Holmstrom, Erik D.; Fiore, Julie L.; Nesbitt, David J.

    2012-01-01

    Cations have long been associated with formation of native RNA structure and are commonly thought to stabilize the formation of tertiary contacts by favorably interacting with the electrostatic potential of the RNA, giving rise to an “ion atmosphere”. A significant amount of information regarding the thermodynamics of structural transitions in the presence of an ion atmosphere has accumulated and suggests stabilization is dominated by entropic terms. This work provides an analysis of how RNA–cation interactions affect the entropy and enthalpy associated with an RNA tertiary transition. Specifically, temperature-dependent single-molecule fluorescence resonance energy transfer studies have been exploited to determine the free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) of folding for an isolated tetraloop–receptor tertiary interaction as a function of Na+ concentration. Somewhat unexpectedly, increasing the Na+ concentration changes the folding enthalpy from a strongly exothermic process [e.g., ΔH° = −26(2) kcal/mol at 180 mM] to a weakly exothermic process [e.g., ΔH° = −4(1) kcal/mol at 630 mM]. As a direct corollary, it is the strong increase in folding entropy [Δ(ΔS°) > 0] that compensates for this loss of exothermicity for the achievement of more favorable folding [Δ(ΔG°) < 0] at higher Na+ concentrations. In conjunction with corresponding measurements of the thermodynamics of the transition state barrier, these data provide a detailed description of the folding pathway associated with the GAAA tetraloop–receptor interaction as a function of Na+ concentration. The results support a potentially universal mechanism for monovalent facilitated RNA folding, whereby an increasing monovalent concentration stabilizes tertiary structure by reducing the entropic penalty for folding. PMID:22448852

  14. Distinct reaction pathway promoted by non-divalent-metal cations in a tertiary stabilized hammerhead ribozyme

    PubMed Central

    Roychowdhury-Saha, Manami; Burke, Donald H.

    2007-01-01

    Divalent ion sensitivity of hammerhead ribozymes is significantly reduced when the RNA structure includes appropriate tertiary stabilization. Therefore, we investigated the activity of the tertiary stabilized “RzB” hammerhead ribozyme in several nondivalent ions. Ribozyme RzB is active in spermidine and Na+ alone, although the cleavage rates are reduced by more than 1,000-fold relative to the rates observed in Mg2+ and in transition metal ions. The trivalent cobalt hexammine (CoHex) ion is often used as an exchange-inert analog of hydrated magnesium ion. Trans-cleavage rates exceeded 8 min−1 in 20 mM CoHex, which promoted cleavage through outersphere interactions. The stimulation of catalysis afforded by the tertiary structural interactions within RzB does not require Mg2+, unlike other extended hammerhead ribozymes. Site-specific interaction with at least one Mg2+ ion is suggested by CoHex competition experiments. In the presence of a constant, low concentration of Mg2+, low concentrations of CoHex decreased the rate by two to three orders of magnitude relative to the rate in Mg2+ alone. Cleavage rates increased as CoHex concentrations were raised further, but the final fraction cleaved was lower than what was observed in CoHex or Mg2+ alone. These observations suggest that Mg2+ and CoHex compete for binding and that they cause misfolded structures when they are together. The results of this study support the existence of an alternate catalytic mechanism used by nondivalent ions (especially CoHex) that is distinct from the one promoted by divalent metal ions, and they imply that divalent metals influence catalysis through a specific nonstructural role. PMID:17456566

  15. A 'periodic table' for protein structures.

    PubMed

    Taylor, William R

    2002-04-11

    Current structural genomics programs aim systematically to determine the structures of all proteins coded in both human and other genomes, providing a complete picture of the number and variety of protein structures that exist. In the past, estimates have been made on the basis of the incomplete sample of structures currently known. These estimates have varied greatly (between 1,000 and 10,000; see for example refs 1 and 2), partly because of limited sample size but also owing to the difficulties of distinguishing one structure from another. This distinction is usually topological, based on the fold of the protein; however, in strict topological terms (neglecting to consider intra-chain cross-links), protein chains are open strings and hence are all identical. To avoid this trivial result, topologies are determined by considering secondary links in the form of intra-chain hydrogen bonds (secondary structure) and tertiary links formed by the packing of secondary structures. However, small additions to or loss of structure can make large changes to these perceived topologies and such subjective solutions are neither robust nor amenable to automation. Here I formalize both secondary and tertiary links to allow the rigorous and automatic definition of protein topology.

  16. Exploring the process-structure-function relationship of horseradish peroxidase through investigation of pH- and heat induced conformational changes

    NASA Astrophysics Data System (ADS)

    Stănciuc, Nicoleta; Aprodu, Iuliana; Ioniță, Elena; Bahrim, Gabriela; Râpeanu, Gabriela

    2015-08-01

    Given the importance of peroxidase as an indicator for the preservation of vegetables by heat treatment, the present study is focused on enzyme behavior under different pH and temperature conditions, in terms of process-structure-function relationships. Thus, the process-structure-function relationship of peroxidase was investigated by combining fluorescence spectroscopy, in silico prediction methods and inactivation kinetic studies. The fluorescence spectra indicated that at optimum pH value, the Trp117 residue is not located in the hydrophobic core of the protein. Significant blue- and red-shifts were obtained at different pH values, whereas the heat-treatment did not cause significant changes in Trp and Tyr environment. The ANS and quenching experiments demonstrated a more flexible conformation at lower pH and respectively at higher temperature. On the other hand molecular dynamics simulations at different temperatures highlighted that the secondary structure appeared better preserved against temperature, whereas the tertiary structure around the heme was more affected. Temperature dependent changes in the hydrogen bonding and ion paring involving amino acids from the heme-binding region (His170 and Asp247) might trigger miss-coordination of the heme iron atom by His170 residue and further enzyme activity loss.

  17. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  18. Structural Biology for A-Level Students

    ERIC Educational Resources Information Center

    Philip, Judith

    2013-01-01

    The relationship between the structure and function of proteins is an important area in biochemistry. Pupils studying A-level Biology are introduced to the four levels of protein structure (primary, secondary, tertiary and quaternary) and how these can be used to describe the progressive folding of a chain of amino acid residues to a final,…

  19. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN− binding defined by EPR-based hybrid method

    PubMed Central

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN−, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane. PMID:26817826

  20. Delipidation of Cytochrome c Oxidase from Rhodobacter sphaeroides Destabilizes its Quaternary Structure

    PubMed Central

    Musatov, Andrej; Varhač, Rastislav; Hosler, Jonathan P.; Sedlák, Erik

    2016-01-01

    Delipidation of detergent-solubilized cytochrome c oxidase isolated from Rhodobacter sphaeroides (Rbs-CcO) has no apparent structural and/or functional effect on the protein, however affects its resistance against thermal or chemical denaturation. Phospholipase A2 (PLA2) hydrolysis of phospholipids that are co-purified with the enzyme removes all but two tightly bound phosphatidylethanolamines. Replacement of the removed phospholipids with nonionic detergent decreases both thermal stability of the enzyme and its resilience against the effect of chemical denaturants such as urea. In contrast to nondelipidated Rbs-CcO, the enzymatic activity of PLA2-treated Rbs-CcO is substantially diminished after exposure to high (>4M) urea concentration at room temperature without an alteration of its secondary structure. Absorbance spectroscopy and sedimentation velocity experiments revealed a strong correlation between intact tertiary structure of heme regions and quaternary structure, respectively, and the enzymatic activity of the protein. We concluded that phospholipid environment of Rbs-CcO has the protective role for stability of its tertiary and quaternary structures. PMID:26923069

  1. Acute maternal social dysfunction, health perception and psychological distress after ultrasonographic detection of a fetal structural anomaly.

    PubMed

    Kaasen, A; Helbig, A; Malt, U F; Naes, T; Skari, H; Haugen, G

    2010-08-01

    To predict acute psychological distress in pregnant women following detection of a fetal structural anomaly by ultrasonography, and to relate these findings to a comparison group. A prospective, observational study. Tertiary referral centre for fetal medicine. One hundred and eighty pregnant women with a fetal structural anomaly detected by ultrasound (study group) and 111 with normal ultrasound findings (comparison group) were included within a week following sonographic examination after gestational age 12 weeks (inclusion period: May 2006 to February 2009). Social dysfunction and health perception were assessed by the corresponding subscales of the General Health Questionnaire (GHQ-28). Psychological distress was assessed using the Impact of Events Scale (IES-22), Edinburgh Postnatal Depression Scale (EPDS) and the anxiety and depression subscales of the GHQ-28. Fetal anomalies were classified according to severity and diagnostic or prognostic ambiguity at the time of assessment. Social dysfunction, health perception and psychological distress (intrusion, avoidance, arousal, anxiety, depression). The least severe anomalies with no diagnostic or prognostic ambiguity induced the lowest levels of IES intrusive distress (P = 0.025). Women included after 22 weeks of gestation (24%) reported significantly higher GHQ distress than women included earlier in pregnancy (P = 0.003). The study group had significantly higher levels of psychosocial distress than the comparison group on all psychometric endpoints. Psychological distress was predicted by gestational age at the time of assessment, severity of the fetal anomaly, and ambiguity concerning diagnosis or prognosis.

  2. A study of the thermal denaturation of the S-layer protein from Lactobacillus salivarius

    NASA Astrophysics Data System (ADS)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2012-09-01

    Surface layer (S-layer) proteins display an intrinsic self-assembly property, forming monomolecular crystalline arrays, identified in outermost structures of the cell envelope in many organisms, such as bacteria and archaea. Isolated S-layer proteins also possess the ability to recrystallize into regular lattices, being used in biotechnological applications, such as controlling the architecture of biomimetic surfaces. To this end, the stability of the S-layer proteins under high-temperature conditions is very important. In this study, the S-layer protein has been isolated from Lactobacillus salivarius 16 strain of human origin, and purified by cation-exchange chromatography. Using circular dichroism (CD) spectroscopy, we have investigated the thermal denaturation of the S-layer protein. The far- and near-UV CD spectra have been collected, and the temperature dependence of the CD signal in these spectral domains has been analyzed. The variable temperature results show that the secondary and tertiary structures of the S-layer protein change irreversibly due to the heating of the sample. After the cooling of the heated protein, the secondary and tertiary structures are partially recovered. The denaturation curves show that the protein unfolding depends on the sample concentration and on the heating rate. The secondary and tertiary structures of the protein suffer changes in the same temperature range. We have also detected an intermediate state in the protein denaturation pathway. Our results on the thermal behavior of the S-layer protein may be important for the use of S-layer proteins in biotechnological applications, as well as for a better understanding of the structure and function of S-layer proteins.

  3. Induced helical backbone conformations of self-organizable dendronized polymers.

    PubMed

    Rudick, Jonathan G; Percec, Virgil

    2008-12-01

    Control of function through the primary structure of a molecule presents a significant challenge with valuable rewards for nanoscience. Dendritic building blocks encoded with information that defines their three-dimensional shape (e.g., flat-tapered or conical) and how they associate with each other are referred to as self-assembling dendrons. Self-organizable dendronized polymers possess a flat-tapered or conical self-assembling dendritic side chain on each repeat unit of a linear polymer backbone. When appended to a covalent polymer, the self-assembling dendrons direct a folding process (i.e., intramolecular self-assembly). Alternatively, intermolecular self-assembly of dendrons mediated by noncovalent interactions between apex groups can generate a supramolecular polymer backbone. Self-organization, as we refer to it, is the spontaneous formation of periodic and quasiperiodic arrays from supramolecular elements. Covalent and supramolecular polymers jacketed with self-assembling dendrons self-organize. The arrays are most often comprised of cylindrical or spherical objects. The shape of the object is determined by the primary structure of the dendronized polymer: the structure of the self-assembling dendron and the length of the polymer backbone. It is therefore possible to predictably generate building blocks for single-molecule nanotechnologies or arrays of supramolecules for bottom-up self-assembly. We exploit the self-organization of polymers jacketed with self-assembling dendrons to elucidate how primary structure determines the adopted conformation and fold (i.e., secondary and tertiary structure), how the supramolecules associate (i.e., quaternary structure), and their resulting functions. A combination of experimental techniques is employed to interrogate the primary, secondary, tertiary, and quaternary structure of the self-organizable dendronized polymers. We refer to the process by which we interpolate between the various levels of structural information to rationalize function as retrostructural analysis. Retrostructural analysis validates our hypothesis that the self-assembling dendrons induce a helical backbone conformation in cylindrical self-organizable dendronized polymers. This helical conformation mediates unprecedented functions. Self-organizable dendronized polymers have emerged as powerful building blocks for nanoscience by virtue of their dimensions and ability to self-organize. Discrete cylindrical and spherical structures with well-defined dimensions can be visualized and manipulated individually. More importantly, they provide a robust framework for elucidating functions available only at the nanoscale. This Account will highlight structures and functions generated from self-organizable dendronized polymers that enable integration of the nanoworld with its macroscopic universe. Emphasis is placed on those structures and functions derived from the induced helical backbone conformation of cylindrical self-organizable dendronized polymers.

  4. Nurse-physician collaboration impacts job satisfaction and turnover among nurses: A hospital-based cross-sectional study in Beijing.

    PubMed

    Zhang, Lin; Huang, Lei; Liu, Meng; Yan, Hong; Li, Xiue

    2016-06-01

    This study aims to explore the impact of physician-nurse collaboration on nurse job satisfaction and turnover in a dental hospital. Physician-nurse collaboration is important for the stability of the entire nursing team. Few studies have shown the impact on job satisfaction and turnover among nurses working in Chinese dental hospitals. This was a prospective, cross-sectional study and investigated nurses from a tertiary dental hospital in Beijing using convenience non-randomized sampling. A structured questionnaire was used to collect data, which included general information, the Index of Work Satisfaction, the Nurse-Physician Collaboration Scale and the Turnover Intention Scale. The scores of physician-nurse collaboration correlated positively with those for job satisfaction and negatively with the stated likelihood of turnover intention. Physician-nurse collaboration scores positively predicted job satisfaction and negatively predicted the likelihood of quitting the current job. In conclusion, improving the level of physician-nurse collaboration is helpful to enhance job satisfaction and reduce turnover among nurses in a dental hospital. © 2016 John Wiley & Sons Australia, Ltd.

  5. The pH-dependent tertiary structure of a designed helix-loop-helix dimer.

    PubMed

    Dolphin, G T; Baltzer, L

    1997-01-01

    De novo designed helix-loop-helix motifs can fold into well-defined tertiary structures if residues or groups of residues are incorporated at the helix-helix boundary to form helix-recognition sites that restrict the conformational degrees of freedom of the helical segments. Understanding the relationship between structure and function of conformational constraints therefore forms the basis for the engineering of non-natural proteins. This paper describes the design of an interhelical HisH+-Asp- hydrogen-bonded ion pair and the conformational stability of the folded helix-loop-helix motif. GTD-C, a polypeptide with 43 amino acid residues, has been designed to fold into a hairpin helix-loop-helix motif that can dimerise to form a four-helix bundle. The folded motif is in slow conformational exchange on the NMR timescale and has a well-dispersed 1H NMR spectrum, a narrow temperature interval for thermal denaturation and a near-UV CD spectrum with some fine structure. The conformational stability is pH dependent with an optimum that corresponds to the pH for maximum formation of a hydrogen-bonded ion pair between HisH17+ in helix I and Asp27- in helix II. The formation of an interhelical salt bridge is strongly suggested by the pH dependence of a number of spectroscopic probes to generate a well-defined tertiary structure in a designed helix-loop-helix motif. The thermodynamic stability of the folded motif is not increased by the formation of the salt bridge, but neighbouring conformations are destabilised. The use of this novel design principle in combination with hydrophobic interactions that provide sufficient binding energy in the folded structure should be of general use in de novo design of native-like proteins.

  6. Fast protein tertiary structure retrieval based on global surface shape similarity.

    PubMed

    Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke

    2008-09-01

    Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.

  7. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and the CARES/Creep program.

  8. Discrete Haar transform and protein structure.

    PubMed

    Morosetti, S

    1997-12-01

    The discrete Haar transform of the sequence of the backbone dihedral angles (phi and psi) was performed over a set of X-ray protein structures of high resolution from the Brookhaven Protein Data Bank. Afterwards, the new dihedral angles were calculated by the inverse transform, using a growing number of Haar functions, from the lower to the higher degree. New structures were obtained using these dihedral angles, with standard values for bond lengths and angles, and with omega = 0 degree. The reconstructed structures were compared with the experimental ones, and analyzed by visual inspection and statistical analysis. When half of the Haar coefficients were used, all the reconstructed structures were not yet collapsed to a tertiary folding, but they showed yet realized most of the secondary motifs. These results indicate a substantial separation of structural information in the space of Haar transform, with the secondary structural information mainly present in the Haar coefficients of lower degrees, and the tertiary one present in the higher degree coefficients. Because of this separation, the representation of the folded structures in the space of Haar transform seems a promising candidate to encompass the problem of premature convergence in genetic algorithms.

  9. Structural perturbation of proteins in low denaturant concentrations.

    PubMed

    Basak, S; Debnath, D; Haque, E; Ray, S; Chakrabarti, A

    2001-01-01

    The presence of very low concentrations of the widely used chemical denaturants, guanidinium chloride and urea, induce changes in the tertiary structure of proteins. We have presented results on such changes in four structurally unrelated proteins to show that such structural perturbations are common irrespective of their origin. Data representative of such structural changes are shown for the monomeric globular proteins such as horseradish peroxidase (HRP) from a plant, human serum albumin (HSA) and prothrombin from ovine blood serum, and for the membrane-associated, worm-like elongated protein, spectrin, from ovine erythrocytes. Structural alterations in these proteins were reflected in quenching studies of tryptophan fluorescence using the widely used quencher acrylamide. Stern-Volmer quenching constants measured in presence of the denaturants, even at concentrations below 100 mM, were higher than those measured in absence of the denaturants. Both steady-state and time-resolved fluorescence emission properties of tryptophan and of the extrinsic probe PRODAN were used for monitoring conformational changes in the proteins in presence of different low concentrations of the denaturants. These results are consistent with earlier studies from our laboratory indicating structural perturbations in proteins at the tertiary level, keeping their native-like secondary structure and their biological activity more or less intact.

  10. Formation of toxic 2-nonyl-p-benzoquinones from α-tertiary 4-nonylphenol isomers during microbial metabolism of technical nonylphenol.

    PubMed

    Gabriel, Frédéric L P; Mora, Mauricio Arrieta; Kolvenbach, Boris A; Corvini, Philippe F X; Kohler, Hans-Peter E

    2012-06-05

    In many environmental compartments, microbial degradation of α-quaternary nonylphenols proceeds along an ipso-substitution pathway. It has been reported that technical nonylphenol contains, besides α-quaternary nonylphenols, minor amounts of various α-H, α-methyl substituted tertiary isomers. Here, we show that potentially toxic metabolites of such minor components are formed during ipso-degradation of technical nonylphenol by Sphingobium xenophagum Bayram, a strain isolated from activated sewage sludge. Small but significant amounts of nonylphenols were converted to the corresponding nonylhydroquinones, which in the presence of air oxygen oxidized to the corresponding nonyl-p-benzoquinones-yielding a complex mixture of potentially toxic metabolites. Through reduction with ascorbic acid and subsequent analysis by gas chromatography-mass spectrometry, we were able to characterize this unique metabolic fingerprint and to show that its components originated for the most part from α-tertiary nonylphenol isomers. Furthermore, our results indicate that the metabolites mixture also contained several α, β-dehydrogenated derivatives of nonyl-p-benzoquinones that originated by hydroxylation induced rearrangement, and subsequent ring and side chain oxidation from α-tertiary nonylphenol isomers. We predict that in nonylphenol polluted natural systems, in which microbial ipso-degradation is prominent, 2-alkylquinone metabolites will be produced and will contribute to the overall toxicity of the remaining material.

  11. Evolution of the thermopsin peptidase family (A5).

    PubMed

    Rawlings, Neil D

    2013-01-01

    Thermopsin is a peptidase from Sulfolobus acidocaldarius that is active at low pH and high temperature. From reversible inhibition with pepstatin, thermopsin is thought to be an aspartic peptidase. It is a member of the only family of peptidases to be restricted entirely to the archaea, namely peptidase family A5. Evolution within this family has been mapped, using a taxonomic tree based on the known classification of archaea. Homologues are found only in archaeans that are both hyperthermophiles and acidophiles, and this implies lateral transfer of genes between archaea, because species with homologues are not necessarily closely related. Despite the remarkable stability and activity in extreme conditions, no tertiary structure has been solved for any member of the family, and the catalytic mechanism is unknown. Putative catalytic residues have been predicted here by examination of aligned sequences.

  12. Free-energy landscape of the villin headpiece in an all-atom force field.

    PubMed

    Herges, Thomas; Wenzel, Wolfgang

    2005-04-01

    We investigate the landscape of the internal free-energy of the 36 amino acid villin headpiece with a modified basin hopping method in the all-atom force field PFF01, which was previously used to predictively fold several helical proteins with atomic resolution. We identify near native conformations of the protein as the global optimum of the force field. More than half of the twenty best simulations started from random initial conditions converge to the folding funnel of the native conformation, but several competing low-energy metastable conformations were observed. From 76,000 independently generated conformations we derived a decoy tree which illustrates the topological structure of the entire low-energy part of the free-energy landscape and characterizes the ensemble of metastable conformations. These emerge as similar in secondary content, but differ in tertiary arrangement.

  13. Analysis of gravity data beneath Endut geothermal prospect using horizontal gradient and Euler deconvolution

    NASA Astrophysics Data System (ADS)

    Supriyanto, Noor, T.; Suhanto, E.

    2017-07-01

    The Endut geothermal prospect is located in Banten Province, Indonesia. The geological setting of the area is dominated by quaternary volcanic, tertiary sediments and tertiary rock intrusion. This area has been in the preliminary study phase of geology, geochemistry, and geophysics. As one of the geophysical study, the gravity data measurement has been carried out and analyzed in order to understand geological condition especially subsurface fault structure that control the geothermal system in Endut area. After precondition applied to gravity data, the complete Bouguer anomaly have been analyzed using advanced derivatives method such as Horizontal Gradient (HG) and Euler Deconvolution (ED) to clarify the existance of fault structures. These techniques detected boundaries of body anomalies and faults structure that were compared with the lithologies in the geology map. The analysis result will be useful in making a further realistic conceptual model of the Endut geothermal area.

  14. Designing cooperatively folded abiotic uni- and multimolecular helix bundles

    NASA Astrophysics Data System (ADS)

    de, Soumen; Chi, Bo; Granier, Thierry; Qi, Ting; Maurizot, Victor; Huc, Ivan

    2018-01-01

    Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix-turn-helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix-turn-helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.

  15. Effect of structured physical activity on respiratory outcomes in sedentary elderly adults with mobility limitations

    USDA-ARS?s Scientific Manuscript database

    OBJECTIVES: To evaluate the effect of structured physical activity on respiratory outcomes in community dwelling elderly adults with mobility limitations. DESIGN: Multicenter, randomized trial of physical activity vs health education, with respiratory variables prespecified as tertiary outcomes over...

  16. Importance of Diffuse Metal Ion Binding to RNA

    PubMed Central

    Tan, Zhi-Jie; Chen, Shi-Jie

    2016-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding. PMID:22010269

  17. Importance of diffuse metal ion binding to RNA.

    PubMed

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding.

  18. A novel assay to measure tertiary and quaternary amines in wastewater: An indicator for NDMA wastewater precursors.

    PubMed

    Woods-Chabane, Gwen C; Glover, Caitlin M; Marti, Erica J; Dickenson, Eric R V

    2017-07-01

    This study examined the potential of using a novel bulk amine assay as an approximation for the tertiary and quaternary amine load in wastewaters and surface water samples, and this approximation was compared to N-nitrosodimethylamine (NDMA) formation potential using chloramines. An existing colorimetric method was examined and optimized for the detection of amines in environmental water samples. The method consists of liquid-liquid extraction followed by a catalyzed reaction to form a yet-undefined product that is known to be both a strong chromophore and fluorophore. Previous work verified that this reaction was effectively catalyzed by a number of compounds containing tertiary and quaternary amine moieties. Many tertiary and quaternary compounds are also efficient producers of NDMA under chloramination conditions, and a linear correlation was consequently derived from the bulk amine signals vs. NDMA formation potential in various wastewater samples (R 2  = 0.74; n = 24; p-value < 0.05). The results provide evidence that approximately 2% of the tertiary and quaternary amines measured can form NDMA and an estimated 0.01-1.3% of nitrogen in dissolved organic nitrogen originates from these bulk amines. The normalization of NDMA concentration by the amine measurement revealed that ozone effectively destroyed those tertiary and quaternary amine structures more likely to form NDMA in treated wastewater samples. This bulk amine assay illustrates that proxy measurements of tertiary and quaternary amines can be linked to the NDMA formation potential of a given sample, and this approach may prove useful as a characterizing tool for NDMA precursors in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch

    PubMed Central

    Hanke, Christian A.

    2017-01-01

    Riboswitches are genetic regulatory elements that control gene expression depending on ligand binding. The guanine-sensing riboswitch (Gsw) binds ligands at a three-way junction formed by paired regions P1, P2, and P3. Loops L2 and L3 cap the P2 and P3 helices and form tertiary interactions. Part of P1 belongs to the switching sequence dictating the fate of the mRNA. Previous studies revealed an intricate relationship between ligand binding and presence of the tertiary interactions, and between ligand binding and influence on the P1 region. However, no information is available on the interplay among these three main regions in Gsw. Here we show that stabilization of the L2-L3 region by tertiary interactions, and the ligand binding site by ligand binding, cooperatively influences the structural stability of terminal base pairs in the P1 region in the presence of Mg2+ ions. The results are based on molecular dynamics simulations with an aggregate simulation time of ~10 μs across multiple systems of the unbound state of the Gsw aptamer and a G37A/C61U mutant, and rigidity analyses. The results could explain why the three-way junction is a central structural element also in other riboswitches and how the cooperative effect could become contextual with respect to intracellular Mg2+ concentration. The results suggest that the transmission of allosteric information to P1 can be entropy-dominated. PMID:28640851

  20. Novel recombinant insulin analogue with flexible C-terminus in B chain. NMR structure of biosynthetic engineered A22G-B31K-B32R human insulin monomer in water/acetonitrile solution.

    PubMed

    Borowicz, Piotr; Bocian, Wojciech; Sitkowski, Jerzy; Bednarek, Elżbieta; Mikiewicz-Syguła, Diana; Błażej-Sosnowska, Sylwia; Bogiel, Monika; Rusek, Dorota; Kurzynoga, Dariusz; Kozerski, Lech

    2011-11-01

    A tertiary structure of recombinant A22(G)-B31(K)-B32(R)-human insulin monomer (insulin GKR) has been characterized by (1)H, (13)C NMR at natural isotopic abundance using NOESY, TOCSY, (1)H/(13)C-GHSQC, and (1)H/(13)C-GHSQC-TOCSY spectra. Translational diffusion studies indicate the monomer structure in water/acetonitrile (65/35vol.%). CSI analysis confirms existence of secondary structure motifs present in human insulin standard (HIS). Both techniques allow to establish that in this solvent recombinant insulin GKR exists as a monomer. Starting from structures calculated by the program CYANA, two different refinement protocols used molecular dynamics simulated annealing with the program AMBER; in vacuum (AMBER_VC), and including a generalized Born solvent model (AMBER_GB). From these calculations an ensemble of 20 structures of lowest energy was chosen which represents the tertiary structure of studied insulin. Here we present novel insulin with added A22(G) amino acid which interacts with β-turn environment resulting in high flexibility of B chain C-terminus. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Consistent global structures of complex RNA states through multidimensional chemical mapping

    PubMed Central

    Cheng, Clarence Yu; Chou, Fang-Chieh; Kladwang, Wipapat; Tian, Siqi; Cordero, Pablo; Das, Rhiju

    2015-01-01

    Accelerating discoveries of non-coding RNA (ncRNA) in myriad biological processes pose major challenges to structural and functional analysis. Despite progress in secondary structure modeling, high-throughput methods have generally failed to determine ncRNA tertiary structures, even at the 1-nm resolution that enables visualization of how helices and functional motifs are positioned in three dimensions. We report that integrating a new method called MOHCA-seq (Multiplexed •OH Cleavage Analysis with paired-end sequencing) with mutate-and-map secondary structure inference guides Rosetta 3D modeling to consistent 1-nm accuracy for intricately folded ncRNAs with lengths up to 188 nucleotides, including a blind RNA-puzzle challenge, the lariat-capping ribozyme. This multidimensional chemical mapping (MCM) pipeline resolves unexpected tertiary proximities for cyclic-di-GMP, glycine, and adenosylcobalamin riboswitch aptamers without their ligands and a loose structure for the recently discovered human HoxA9D internal ribosome entry site regulon. MCM offers a sequencing-based route to uncovering ncRNA 3D structure, applicable to functionally important but potentially heterogeneous states. DOI: http://dx.doi.org/10.7554/eLife.07600.001 PMID:26035425

  2. Universal partitioning of the hierarchical fold network of 50-residue segments in proteins

    PubMed Central

    Ito, Jun-ichi; Sonobe, Yuki; Ikeda, Kazuyoshi; Tomii, Kentaro; Higo, Junichi

    2009-01-01

    Background Several studies have demonstrated that protein fold space is structured hierarchically and that power-law statistics are satisfied in relation between the numbers of protein families and protein folds (or superfamilies). We examined the internal structure and statistics in the fold space of 50 amino-acid residue segments taken from various protein folds. We used inter-residue contact patterns to measure the tertiary structural similarity among segments. Using this similarity measure, the segments were classified into a number (Kc) of clusters. We examined various Kc values for the clustering. The special resolution to differentiate the segment tertiary structures increases with increasing Kc. Furthermore, we constructed networks by linking structurally similar clusters. Results The network was partitioned persistently into four regions for Kc ≥ 1000. This main partitioning is consistent with results of earlier studies, where similar partitioning was reported in classifying protein domain structures. Furthermore, the network was partitioned naturally into several dozens of sub-networks (i.e., communities). Therefore, intra-sub-network clusters were mutually connected with numerous links, although inter-sub-network ones were rarely done with few links. For Kc ≥ 1000, the major sub-networks were about 40; the contents of the major sub-networks were conserved. This sub-partitioning is a novel finding, suggesting that the network is structured hierarchically: Segments construct a cluster, clusters form a sub-network, and sub-networks constitute a region. Additionally, the network was characterized by non-power-law statistics, which is also a novel finding. Conclusion Main findings are: (1) The universe of 50 residue segments found here was characterized by non-power-law statistics. Therefore, the universe differs from those ever reported for the protein domains. (2) The 50-residue segments were partitioned persistently and universally into some dozens (ca. 40) of major sub-networks, irrespective of the number of clusters. (3) These major sub-networks encompassed 90% of all segments. Consequently, the protein tertiary structure is constructed using the dozens of elements (sub-networks). PMID:19454039

  3. Stability of Secondary and Tertiary Structures of Virus-Like Particles Representing Noroviruses: Effects of pH, Ionic Strength, and Temperature and Implications for Adhesion to Surfaces.

    PubMed

    Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail; Jean, Julie

    2015-11-01

    Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Technological, Pedagogical, and Content Knowledge (TPACK): An Educational Landscape for Tertiary Science Faculty

    NASA Astrophysics Data System (ADS)

    Lavadia, Linda

    Earlier studies concluded that technology's strength is in supporting student learning rather than as an instrument for content delivery (Angeli & Valanides, 2014). Current research espouses the merits of the Technological Pedagogical Content Knowledge (TPACK) framework as a guide for educators' reflections about technology integration within the context of content and instructional practice. Grounded by two theoretical frameworks, TPACK (Mishra & Koehler, 2006; 2008) and Rogers' (1983, 1995) theory of diffusion of innovation, the purpose of this mixed-methods research was two-fold: to explore the perceived competencies of tertiary science faculty at higher education institutions with respect to their integration of technology within the constructs of pedagogical practice and content learning and to analyze whether these perceived competencies may serve as predictive factors for technology adoption level. The literature review included past research that served as models for the Sci-TPACK instrument. Twenty-nine professors of tertiary science courses participated in an online Likert survey, and four professors provided in-depth interviews on their TPACK practices. Quantitative analysis of data consisted of descriptive and reliability statistics, calculations of means for each of the seven scales or domains of TPACK, and regression analysis. Open-ended questions on the Likert survey and individual interviews provided recurrent themes of the qualitative data. Final results revealed that the participants integrate technology into pedagogy and content through a myriad of TPACK practices. Regression analysis supported perceived TPACK competencies as predictive factors for technology adoption level.

  5. DWARF – a data warehouse system for analyzing protein families

    PubMed Central

    Fischer, Markus; Thai, Quan K; Grieb, Melanie; Pleiss, Jürgen

    2006-01-01

    Background The emerging field of integrative bioinformatics provides the tools to organize and systematically analyze vast amounts of highly diverse biological data and thus allows to gain a novel understanding of complex biological systems. The data warehouse DWARF applies integrative bioinformatics approaches to the analysis of large protein families. Description The data warehouse system DWARF integrates data on sequence, structure, and functional annotation for protein fold families. The underlying relational data model consists of three major sections representing entities related to the protein (biochemical function, source organism, classification to homologous families and superfamilies), the protein sequence (position-specific annotation, mutant information), and the protein structure (secondary structure information, superimposed tertiary structure). Tools for extracting, transforming and loading data from public available resources (ExPDB, GenBank, DSSP) are provided to populate the database. The data can be accessed by an interface for searching and browsing, and by analysis tools that operate on annotation, sequence, or structure. We applied DWARF to the family of α/β-hydrolases to host the Lipase Engineering database. Release 2.3 contains 6138 sequences and 167 experimentally determined protein structures, which are assigned to 37 superfamilies 103 homologous families. Conclusion DWARF has been designed for constructing databases of large structurally related protein families and for evaluating their sequence-structure-function relationships by a systematic analysis of sequence, structure and functional annotation. It has been applied to predict biochemical properties from sequence, and serves as a valuable tool for protein engineering. PMID:17094801

  6. Predictive Role of Personality Traits on Internet Addiction

    ERIC Educational Resources Information Center

    Celik, Serkan; Atak, Hasan; Basal, Ahmet

    2012-01-01

    Aiming to develop a model seeking to investigate the direct effects of personality types on internet addiction, this study was set and tested on tertiary level students receiving education within two learning modes: face to face and distance education. The participants of the study, selected through maximum variety method within purposive…

  7. TOXICITY OF ACETYLENIC ALCOHOLS TO THE FATHEAD MINNOW, PIMEPHALES PROMELAS: NARCOSIS AND PROELECTROPHILE ACTIVATION

    EPA Science Inventory

    The 96-h LC50 values for 16 acetylenic alcohols in the fathead minnow (Pimephales promelas) were determined using continuous-flow diluters. The measured LC50 values for seven tertiary propargylic alcohols agreed closely with the QSAR predictions based upon data for other organic ...

  8. ELM: the status of the 2010 eukaryotic linear motif resource

    PubMed Central

    Gould, Cathryn M.; Diella, Francesca; Via, Allegra; Puntervoll, Pål; Gemünd, Christine; Chabanis-Davidson, Sophie; Michael, Sushama; Sayadi, Ahmed; Bryne, Jan Christian; Chica, Claudia; Seiler, Markus; Davey, Norman E.; Haslam, Niall; Weatheritt, Robert J.; Budd, Aidan; Hughes, Tim; Paś, Jakub; Rychlewski, Leszek; Travé, Gilles; Aasland, Rein; Helmer-Citterich, Manuela; Linding, Rune; Gibson, Toby J.

    2010-01-01

    Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a ‘Bar Code’ format, which also displays known instances from homologous proteins through a novel ‘Instance Mapper’ protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation. PMID:19920119

  9. Integration of Inhibition Kinetics and Molecular Dynamics Simulations: A Urea-Mediated Folding Study on Acetaldehyde Dehydrogenase 1.

    PubMed

    Xu, Yingying; Lee, Jinhyuk; Lü, Zhi-Rong; Mu, Hang; Zhang, Qian; Park, Yong-Doo

    2016-07-01

    Understanding the mechanism of acetaldehyde dehydrogenase 1 (ALDH1) folding is important because this enzyme is directly involved in several types of cancers and other diseases. We investigated the urea-mediated unfolding of ALDH1 by integrating kinetic inhibition studies with computational molecular dynamics (MD) simulations. Conformational changes in the enzyme structure were also analyzed using intrinsic and 1-anilinonaphthalene-8-sulfonate (ANS)-binding fluorescence measurements. Kinetic studies revealed that the direct binding of urea to ALDH1 induces inactivation of ALDH1 in a manner of mixed-type inhibition. Tertiary structural changes associated with regional hydrophobic exposure of the active site were observed. The urea binding regions on ALDH1 were predicted by docking simulations and were partly shared with active site residues of ALDH1 and with interface residues of the oligomerization domain for tetramer formation. The docking results suggest that urea prevents formation of the ALDH1 normal shape for the tetramer state as well as entrance of the substrate into the active site. Our study provides insight into the structural changes that accompany urea-mediated unfolding of ALDH1 and the catalytic role associated with conformational changes.

  10. Publications - RI 2000-1A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Folding; Formations; Fossils; Generalized; Geologic; Geologic Map; Geology; Geomorphology; Glacial ; Silt; Structure; Surficial; Surficial Geology; Tectonics; Tertiary; Thaw Lakes; Trace Fossils

  11. Biochemical profiling in silico--predicting substrate specificities of large enzyme families.

    PubMed

    Tyagi, Sadhna; Pleiss, Juergen

    2006-06-25

    A general high-throughput method for in silico biochemical profiling of enzyme families has been developed based on covalent docking of potential substrates into the binding sites of target enzymes. The method has been tested by systematically docking transition state--analogous intermediates of 12 substrates into the binding sites of 20 alpha/beta hydrolases from 15 homologous families. To evaluate the effect of side chain orientations to the docking results, 137 crystal structures were included in the analysis. A good substrate must fulfil two criteria: it must bind in a productive geometry with four hydrogen bonds between the substrate and the catalytic histidine and the oxyanion hole, and a high affinity of the enzyme-substrate complex as predicted by a high docking score. The modelling results in general reproduce experimental data on substrate specificity and stereoselectivity: the differences in substrate specificity of cholinesterases toward acetyl- and butyrylcholine, the changes of activity of lipases and esterases upon the size of the acid moieties, activity of lipases and esterases toward tertiary alcohols, and the stereopreference of lipases and esterases toward chiral secondary alcohols. Rigidity of the docking procedure was the major reason for false positive and false negative predictions, as the geometry of the complex and docking score may sensitively depend on the orientation of individual side chains. Therefore, appropriate structures have to be identified. In silico biochemical profiling provides a time efficient and cost saving protocol for virtual screening to identify the potential substrates of the members of large enzyme family from a library of molecules.

  12. A Mixed-methods Study to Assess Interrater Reliability and Nurse Perception of the Braden Scale in a Tertiary Acute Care Setting.

    PubMed

    Ho, Chester H; Cheung, Amanda; Southern, Danielle; Ocampo, Wrechelle; Kaufman, Jaime; Hogan, David B; Baylis, Barry; Conly, John M; Stelfox, Henry T; Ghali, William A

    2016-12-01

    Research regarding the reliability of the Braden Scale and nurses' perspectives on the instrument for predicting pressure ulcer (PU) risk in acute care settings is limited. A mixed-methods study was conducted in a tertiary acute care facility to examine interrater reliability (IRR) of the Braden Scale and its subscales, and a qualitative survey using semi-structured interviews was conducted among nurses caring for patients in acute care units to gain nurse perspective regarding scale usability. Data were extracted from a previous retrospective, randomized, controlled trial involving adult patients with compromised mobility receiving care in a tertiary acute care hospital in Canada. One-way, intraclass correlation coefficients (ICCs) were calculated on item and total scores, and kappa statistics were used to determine reliability of categorizing patients on their risk. Interview results were categorized by common themes. Reliability was assessed on 64 patients, where nurses and research staff independently assessed enrolled participants at baseline and after 72 hours using the Braden Scale as it appeared on an electronic medical record. IRR for the total score was high (ICC = 0.807). The friction and shear item had the lowest reliability (ICC = 0.266). Reliability of categorizing patients' level of risk had moderate agreement (κ = 0.408). Three (3) major and 12 subthemes emerged from the 14 nurse interviews; nurses were aware of the scale's purpose but were uncertain of its effectiveness, some items were difficult to rate, and questions were raised as to whether using the scale enhanced patient care. Aspects identified by nurses to enhance usability included: 1) changes to the electronic version (incorporating the scale into daily assessment documents with readily available item descriptions), 2) additional training, and 3) easily available resource material to improve reliability and usability of scale. These findings need to be considered when using the Braden Scale in clinical practice. Further study of the value of the total Braden Scale and its subscales is warranted.

  13. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    PubMed Central

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further suggesting that the proteins are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance. Conclusions/Significance We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity. Trial Registration ClinicalTrials.gov NCT00663546 PMID:26701602

  14. PAT: predictor for structured units and its application for the optimization of target molecules for the generation of synthetic antibodies.

    PubMed

    Jeon, Jouhyun; Arnold, Roland; Singh, Fateh; Teyra, Joan; Braun, Tatjana; Kim, Philip M

    2016-04-01

    The identification of structured units in a protein sequence is an important first step for most biochemical studies. Importantly for this study, the identification of stable structured region is a crucial first step to generate novel synthetic antibodies. While many approaches to find domains or predict structured regions exist, important limitations remain, such as the optimization of domain boundaries and the lack of identification of non-domain structured units. Moreover, no integrated tool exists to find and optimize structural domains within protein sequences. Here, we describe a new tool, PAT ( http://www.kimlab.org/software/pat ) that can efficiently identify both domains (with optimized boundaries) and non-domain putative structured units. PAT automatically analyzes various structural properties, evaluates the folding stability, and reports possible structural domains in a given protein sequence. For reliability evaluation of PAT, we applied PAT to identify antibody target molecules based on the notion that soluble and well-defined protein secondary and tertiary structures are appropriate target molecules for synthetic antibodies. PAT is an efficient and sensitive tool to identify structured units. A performance analysis shows that PAT can characterize structurally well-defined regions in a given sequence and outperforms other efforts to define reliable boundaries of domains. Specially, PAT successfully identifies experimentally confirmed target molecules for antibody generation. PAT also offers the pre-calculated results of 20,210 human proteins to accelerate common queries. PAT can therefore help to investigate large-scale structured domains and improve the success rate for synthetic antibody generation.

  15. Chemoselective SN2' Allylations of Detrifluoroacetylatively In Situ Generated 3-Fluoroindolin-2-one-Derived Tertiary Enolates with Morita-Baylis-Hillman Carbonates.

    PubMed

    Zhu, Yi; Mei, Haibo; Han, Jianlin; Soloshonok, Vadim A; Zhou, Jie; Pan, Yi

    2017-12-15

    The first example of the S N 2' reaction type of the detrifluoroacetylatively in situ generated tertiary fluoro-enolates in the uncatalyzed reactions with Morita-Baylis-Hillman derivatives has been described. The S N 2' substitution takes place in a highly chemoselective manner as no corresponding S N 2 products were observed in the reaction mixtures. Due to the excellent stereochemical outcome, the reactions seem to have an apparent synthetic value for the preparation of structurally new fluorinated oxindoles.

  16. Introduction to bioinformatics.

    PubMed

    Can, Tolga

    2014-01-01

    Bioinformatics is an interdisciplinary field mainly involving molecular biology and genetics, computer science, mathematics, and statistics. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data. A bioinformatics solution usually involves the following steps: Collect statistics from biological data. Build a computational model. Solve a computational modeling problem. Test and evaluate a computational algorithm. This chapter gives a brief introduction to bioinformatics by first providing an introduction to biological terminology and then discussing some classical bioinformatics problems organized by the types of data sources. Sequence analysis is the analysis of DNA and protein sequences for clues regarding function and includes subproblems such as identification of homologs, multiple sequence alignment, searching sequence patterns, and evolutionary analyses. Protein structures are three-dimensional data and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. Gene expression data is usually represented as matrices and analysis of microarray data mostly involves statistics analysis, classification, and clustering approaches. Biological networks such as gene regulatory networks, metabolic pathways, and protein-protein interaction networks are usually modeled as graphs and graph theoretic approaches are used to solve associated problems such as construction and analysis of large-scale networks.

  17. Evolutionary Strategies for Protein Folding

    NASA Astrophysics Data System (ADS)

    Murthy Gopal, Srinivasa; Wenzel, Wolfgang

    2006-03-01

    The free energy approach for predicting the protein tertiary structure describes the native state of a protein as the global minimum of an appropriate free-energy forcefield. The low-energy region of the free-energy landscape of a protein is extremely rugged. Efficient optimization methods must therefore speed up the search for the global optimum by avoiding high energy transition states, adapt large scale moves or accept unphysical intermediates. Here we investigate an evolutionary strategies(ES) for optimizing a protein conformation in our all-atom free-energy force field([1],[2]). A set of random conformations is evolved using an ES to get a diverse population containing low energy structure. The ES is shown to balance energy improvement and yet maintain diversity in structures. The ES is implemented as a master-client model for distributed computing. Starting from random structures and by using this optimization technique, we were able to fold a 20 amino-acid helical protein and 16 amino-acid beta hairpin[3]. We compare ES to basin hopping method. [1]T. Herges and W. Wenzel,Biophys.J. 87,3100(2004) [2] A. Verma and W. Wenzel Stabilization and folding of beta-sheet and alpha-helical proteins in an all-atom free energy model(submitted)(2005) [3] S. M. Gopal and W. Wenzel Evolutionary Strategies for Protein Folding (in preparation)

  18. Structure of the Yersinia pestis type III secretion chaperone SycH in complex with a stable fragment of YscM2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Jason; Tropea, Joseph E.; Waugh, David S.

    2010-11-16

    Pathogenic Yersinia species use a type III secretion system to inject cytotoxic effector proteins directly into the cytosol of mammalian cells, where they neutralize the innate immune response by interfering with the signal-transduction pathways that control phagocytosis and inflammation. To be exported efficiently, some effectors must transiently associate with cognate cytoplasmic secretion chaperones. SycH is the chaperone for YopH, a potent eukaryotic-like protein tyrosine phosphatase that is essential for virulence. SycH also binds two negative regulators of type III secretion, YscM1 and YscM2, both of which share significant sequence homology with the chaperone-binding domain of YopH. Here, the structure ofmore » a complex between SycH and a stable fragment of YscM2 that was designed on the basis of limited proteolysis experiments is presented. The overall fold of SycH is very similar to the structures of other homodimeric secretion chaperones that have been determined to date. YscM2 wraps around SycH in an extended fashion, with some secondary but no tertiary structure, assuming a conformation distinct from the globular fold that it is predicted to adopt in the absence of SycH.« less

  19. Geophysical interpretations west of and within the northwestern part of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grauch, V.J.; Sawyer, D.A.; Fridrich, C.J.

    1997-12-31

    This report focuses on interpretation of gravity and new magnetic data west of the Nevada Test Site (NTS) and within the northwestern part of NTS. The interpretations integrate the gravity and magnetic data with other geophysical, geological, and rock property data to put constraints on tectonic and magmatic features not exposed at the surface. West of NTS, where drill hole information is absent, these geophysical data provide the best available information on the subsurface. Interpreted subsurface features include calderas, intrusions, basalt flows and volcanoes, Tertiary basins, structurally high pre-Tertiary rocks, and fault zones. New features revealed by this study includemore » (1) a north-south buried tectonic fault east of Oasis Mountain, which the authors call the Hogback fault; (2) an east striking fault or accommodation zone along the south side of Oasis Valley basin, which they call the Hot Springs fault; (3) a NNE striking structural zone coinciding with the western margins of the caldera complexes; (4) regional magnetic highs that probably represent a thick sequence of Tertiary volcanic rocks; and (5) two probable buried calderas that may be related to the tuffs of Tolicha Peak and of Sleeping Butte, respectively.« less

  20. Evidence for close side-chain packing in an early protein folding intermediate previously assumed to be a molten globule

    PubMed Central

    Rosen, Laura E.; Connell, Katelyn B.; Marqusee, Susan

    2014-01-01

    The molten globule, a conformational ensemble with significant secondary structure but only loosely packed tertiary structure, has been suggested to be a ubiquitous intermediate in protein folding. However, it is difficult to assess the tertiary packing of transiently populated species to evaluate this hypothesis. Escherichia coli RNase H is known to populate an intermediate before the rate-limiting barrier to folding that has long been thought to be a molten globule. We investigated this hypothesis by making mimics of the intermediate that are the ground-state conformation at equilibrium, using two approaches: a truncation to generate a fragment mimic of the intermediate, and selective destabilization of the native state using point mutations. Spectroscopic characterization and the response of the mimics to further mutation are consistent with studies on the transient kinetic intermediate, indicating that they model the early intermediate. Both mimics fold cooperatively and exhibit NMR spectra indicative of a closely packed conformation, in contrast to the hypothesis of molten tertiary packing. This result is important for understanding the nature of the subsequent rate-limiting barrier to folding and has implications for the assumption that many other proteins populate molten globule folding intermediates. PMID:25258414

  1. Evidence for close side-chain packing in an early protein folding intermediate previously assumed to be a molten globule.

    PubMed

    Rosen, Laura E; Connell, Katelyn B; Marqusee, Susan

    2014-10-14

    The molten globule, a conformational ensemble with significant secondary structure but only loosely packed tertiary structure, has been suggested to be a ubiquitous intermediate in protein folding. However, it is difficult to assess the tertiary packing of transiently populated species to evaluate this hypothesis. Escherichia coli RNase H is known to populate an intermediate before the rate-limiting barrier to folding that has long been thought to be a molten globule. We investigated this hypothesis by making mimics of the intermediate that are the ground-state conformation at equilibrium, using two approaches: a truncation to generate a fragment mimic of the intermediate, and selective destabilization of the native state using point mutations. Spectroscopic characterization and the response of the mimics to further mutation are consistent with studies on the transient kinetic intermediate, indicating that they model the early intermediate. Both mimics fold cooperatively and exhibit NMR spectra indicative of a closely packed conformation, in contrast to the hypothesis of molten tertiary packing. This result is important for understanding the nature of the subsequent rate-limiting barrier to folding and has implications for the assumption that many other proteins populate molten globule folding intermediates.

  2. Group 6 metal pentacarbonyl complexes of air-stable primary, secondary, and tertiary ferrocenylethylphosphines.

    PubMed

    Rabiee Kenaree, Amir; Sauvé, Ethan R; Ragogna, Paul J; Gilroy, Joe B

    2016-02-21

    The synthesis and characterization of a series of Group 6 metal pentacarbonyl complexes of air stable primary, secondary, and tertiary phosphines containing ferrocenylethyl substituents are reported [M(CO)5L: M = Cr, Mo, W; L = PH2(CH2CH2Fc), PH(CH2CH2Fc)2, P(CH2CH2Fc)3]. The structure and composition of the complexes were confirmed by multinuclear NMR spectroscopy, IR and UV-Vis absorption spectroscopy, mass spectrometry, X-ray crystallography, and elemental analysis. The solid-state structural data reported revealed trends in M-C and M-P bond lengths that mirrored those of the atomic radii of the Group 6 metals involved. UV-Vis absorption spectroscopy and cyclic voltammetry highlighted characteristics consistent with electronically isolated ferrocene units including wavelengths of maximum absorption between 435 and 441 nm and reversible one-electron (per ferrocene unit) oxidation waves between 10 and -5 mV relative to the ferrocene/ferrocenium redox couple. IR spectroscopy confirmed that the σ donating ability of the phosphines increased as ferrocenylethyl substituents were introduced and that the tertiary phosphine ligand described is a stronger σ donor than PPh3 and a weaker σ donor than PEt3, respectively.

  3. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix.

    PubMed

    Pley, H W; Flaherty, K M; McKay, D B

    1994-11-03

    In large structured RNAs, RNA hairpins in which the strands of the duplex stem are connected by a tetraloop of the consensus sequence 5'-GNRA (where N is any nucleotide, and R is either G or A) are unusually frequent. In group I introns there is a covariation in sequence between nucleotides in the third and fourth positions of the loop with specific distant base pairs in putative RNA duplex stems: GNAA loops correlate with successive 5'-C-C.G-C base pairs in stems, whereas GNGA loops correlate with 5'-C-U.G-A. This has led to the suggestion that GNRA tetraloops may be involved in specific long-range tertiary interactions, with each A in position 3 or 4 of the loop interacting with a C-G base pair in the duplex, and G in position 3 interacting with a U-A base pair. This idea is supported experimentally for the GAAA loop of the P5b extension of the group I intron of Tetrahymena thermophila and the L9 GUGA terminal loop of the td intron of bacteriophage T4 (ref. 4). NMR has revealed the overall structure of the tetraloop for 12-nucleotide hairpins with GCAA and GAAA loops and models have been proposed for the interaction of GNRA tetraloops with base pairs in the minor groove of A-form RNA. Here we describe the crystal structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. The interactions we observe correlate with the specificity of GNRA tetraloops inferred from phylogenetic studies, suggesting that this complex is a legitimate model for intramolecular tertiary interactions mediated by GNRA tetraloops in large structured RNAs.

  4. Prognostic and predictive implications of Sokal, Euro and EUTOS scores in chronic myeloid leukaemia in the imatinib era-experience from a tertiary oncology centre in Southern India.

    PubMed

    Kuntegowdanahalli, Lakshmaiah Chinnagiriyappa; Kanakasetty, Govind Babu; Thanky, Aditi Harsh; Dasappa, Lokanatha; Jacob, Linu Abraham; Mallekavu, Suresh Babu; Lakkavalli, Rajeev Krishnappa; Kadabur, Lokesh N; Haleshappa, Rudresha Antapura

    2016-01-01

    Chronic myeloid leukaemia (CML) is a myeloproliferative disorder. Over the years many prognostic models have been developed to better risk stratify this disease at baseline. Sokal, Euro, and EUTOS scores were developed in varied populations initially receiving various therapies. Here we try to identify their predictive and prognostic implication in a larger population of Indian patients with CML-CP (chronic phase) in the imatinib era.

  5. Structural insights into a key carotenogenesis related enzyme phytoene synthase of P. falciparum: a novel drug target for malaria.

    PubMed

    Agarwal, Shalini; Sharma, Vijeta; Phulera, Swastik; Abdin, M Z; Ayana, R; Singh, Shailja

    2015-12-01

    Carotenoids represent a diverse group of pigments derived from the common isoprenoid precursors and fulfill a variety of critical functions in plants and animals. Phytoene synthase (PSY), a transferase enzyme that catalyzes the first specific step in carotenoid biosynthesis plays a central role in the regulation of a number of essential functions mediated via carotenoids. PSYs have been deeply investigated in plants, bacteria and algae however in apicomplexans it is poorly studied. In an effort to characterize PSY in apicomplexans especially the malaria parasite Plasmodium falciparum (P. falciparum), a detailed bioinformatics analysis is undertaken. We have analysed the Phylogenetic relationship of PSY also referred to as octaprenyl pyrophosphate synthase (OPPS) in P. falciparum with other taxonomic groups. Further, we in silico characterized the secondary and tertiary structures of P. falciparum PSY/OPPS and compared the tertiary structures with crystal structure of Thermotoga maritima (T. maritima) OPPS. Our results evidenced the resemblance of P. falciparum PSY with the active site of T. maritima OPPS. Interestingly, the comparative structural analysis revealed an unconserved unique loop in P. falciparum OPPS/PSY. Such structural insights might contribute novel accessory functions to the protein thus, offering potential drug targets.

  6. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae)

    PubMed Central

    Zhang, Yong-Hua; Wang, Ian J.; Comes, Hans Peter; Peng, Hua; Qiu, Ying-Xiong

    2016-01-01

    Examining how historical and contemporary geographic and environmental factors contribute to genetic divergence at different evolutionary scales is a central yet largely unexplored question in ecology and evolution. Here, we examine this key question by investigating how environmental and geographic factors across different epochs have driven genetic divergence at deeper (phylogeographic) and shallower (landscape genetic) evolutionary scales in the Chinese Tertiary relict tree Emmenopterys henryi. We found that geography played a predominant role at all levels – phylogeographic clades are broadly geographically structured, the deepest levels of divergence are associated with major geological or pre-Quaternary climatic events, and isolation by distance (IBD) primarily explained population genetic structure. However, environmental factors are clearly also important – climatic fluctuations since the Last Interglacial (LIG) have likely contributed to phylogeographic structure, and the population genetic structure (in our AFLP dataset) was partly explained by isolation by environment (IBE), which may have resulted from natural selection in environments with divergent climates. Thus, historical and contemporary geography and historical and contemporary environments have all shaped patterns of genetic structure in E. henryi, and, in fact, changes in the landscape through time have also been critical factors. PMID:27137438

  7. Structure of coastal community occupational in responsible environmental quality at Tanjung Burung village, Tangerang regency

    NASA Astrophysics Data System (ADS)

    Syahdanul, Darul; Sumabrata, Jachrizal; Darmajanti, Linda

    2018-03-01

    Tanjung Burung Village is an area located on the river mouth. The position makes the occupational structure of the community has a relationship with the environmental conditions of the river mouth. The occupational structure of the estuary community tends to be in the primary sector. However, at present, the environmental condition of the Cisadane River estuary has a quality degradation in terms of the intensity of river water pollution, the frequency of flooding, and the intensity of groundwater contamination. This study aims to analyze the relationship between environmental degradation and changes in occupational structure, and analysis on the quality of life of the community. In collecting and processing data, this research uses sequential exploratory strategy. This process refers to the geographical map of Tanjung Burung Village in 1996, 2006, 2016; Population data of 1995, 2000, 2005, 2011, 2016; as well as environmental quality data from 1995 to 2017. The results of this study show that within 20 years the community has strengthened occupational structure in the tertiary sector. Furthermore, the strengthening of occupational structure in the tertiary sector has not been able to improve the quality of life of Tanjung Burung villagers.

  8. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae).

    PubMed

    Zhang, Yong-Hua; Wang, Ian J; Comes, Hans Peter; Peng, Hua; Qiu, Ying-Xiong

    2016-05-03

    Examining how historical and contemporary geographic and environmental factors contribute to genetic divergence at different evolutionary scales is a central yet largely unexplored question in ecology and evolution. Here, we examine this key question by investigating how environmental and geographic factors across different epochs have driven genetic divergence at deeper (phylogeographic) and shallower (landscape genetic) evolutionary scales in the Chinese Tertiary relict tree Emmenopterys henryi. We found that geography played a predominant role at all levels - phylogeographic clades are broadly geographically structured, the deepest levels of divergence are associated with major geological or pre-Quaternary climatic events, and isolation by distance (IBD) primarily explained population genetic structure. However, environmental factors are clearly also important - climatic fluctuations since the Last Interglacial (LIG) have likely contributed to phylogeographic structure, and the population genetic structure (in our AFLP dataset) was partly explained by isolation by environment (IBE), which may have resulted from natural selection in environments with divergent climates. Thus, historical and contemporary geography and historical and contemporary environments have all shaped patterns of genetic structure in E. henryi, and, in fact, changes in the landscape through time have also been critical factors.

  9. Potential effects of climate change on geographic distribution of the Tertiary relict tree species Davidia involucrata in China

    PubMed Central

    Tang, Cindy Q.; Dong, Yi-Fei; Herrando-Moraira, Sonia; Matsui, Tetsuya; Ohashi, Haruka; He, Long-Yuan; Nakao, Katsuhiro; Tanaka, Nobuyuki; Tomita, Mizuki; Li, Xiao-Shuang; Yan, Hai-Zhong; Peng, Ming-Chun; Hu, Jun; Yang, Ruo-Han; Li, Wang-Jun; Yan, Kai; Hou, Xiuli; Zhang, Zhi-Ying; López-Pujol, Jordi

    2017-01-01

    This study, using species distribution modeling (involving a new approach that allows for uncertainty), predicts the distribution of climatically suitable areas prevailing during the mid-Holocene, the Last Glacial Maximum (LGM), and at present, and estimates the potential formation of new habitats in 2070 of the endangered and rare Tertiary relict tree Davidia involucrata Baill. The results regarding the mid-Holocene and the LGM demonstrate that south-central and southwestern China have been long-term stable refugia, and that the current distribution is limited to the prehistoric refugia. Given future distribution under six possible climate scenarios, only some parts of the current range of D. involucrata in the mid-high mountains of south-central and southwestern China would be maintained, while some shift west into higher mountains would occur. Our results show that the predicted suitable area offering high probability (0.5‒1) accounts for an average of only 29.2% among the models predicted for the future (2070), making D. involucrata highly vulnerable. We assess and propose priority protected areas in light of climate change. The information provided will also be relevant in planning conservation of other paleoendemic species having ecological traits and distribution ranges comparable to those of D. involucrata. PMID:28272437

  10. A hybrid MD-kMC algorithm for folding proteins in explicit solvent.

    PubMed

    Peter, Emanuel Karl; Shea, Joan-Emma

    2014-04-14

    We present a novel hybrid MD-kMC algorithm that is capable of efficiently folding proteins in explicit solvent. We apply this algorithm to the folding of a small protein, Trp-Cage. Different kMC move sets that capture different possible rate limiting steps are implemented. The first uses secondary structure formation as a relevant rate event (a combination of dihedral rotations and hydrogen-bonding formation and breakage). The second uses tertiary structure formation events through formation of contacts via translational moves. Both methods fold the protein, but via different mechanisms and with different folding kinetics. The first method leads to folding via a structured helical state, with kinetics fit by a single exponential. The second method leads to folding via a collapsed loop, with kinetics poorly fit by single or double exponentials. In both cases, folding times are faster than experimentally reported values, The secondary and tertiary move sets are integrated in a third MD-kMC implementation, which now leads to folding of the protein via both pathways, with single and double-exponential fits to the rates, and to folding rates in good agreement with experimental values. The competition between secondary and tertiary structure leads to a longer search for the helix-rich intermediate in the case of the first pathway, and to the emergence of a kinetically trapped long-lived molten-globule collapsed state in the case of the second pathway. The algorithm presented not only captures experimentally observed folding intermediates and kinetics, but yields insights into the relative roles of local and global interactions in determining folding mechanisms and rates.

  11. Validation of Coevolving Residue Algorithms via Pipeline Sensitivity Analysis: ELSC and OMES and ZNMI, Oh My!

    PubMed Central

    Brown, Christopher A.; Brown, Kevin S.

    2010-01-01

    Correlated amino acid substitution algorithms attempt to discover groups of residues that co-fluctuate due to either structural or functional constraints. Although these algorithms could inform both ab initio protein folding calculations and evolutionary studies, their utility for these purposes has been hindered by a lack of confidence in their predictions due to hard to control sources of error. To complicate matters further, naive users are confronted with a multitude of methods to choose from, in addition to the mechanics of assembling and pruning a dataset. We first introduce a new pair scoring method, called ZNMI (Z-scored-product Normalized Mutual Information), which drastically improves the performance of mutual information for co-fluctuating residue prediction. Second and more important, we recast the process of finding coevolving residues in proteins as a data-processing pipeline inspired by the medical imaging literature. We construct an ensemble of alignment partitions that can be used in a cross-validation scheme to assess the effects of choices made during the procedure on the resulting predictions. This pipeline sensitivity study gives a measure of reproducibility (how similar are the predictions given perturbations to the pipeline?) and accuracy (are residue pairs with large couplings on average close in tertiary structure?). We choose a handful of published methods, along with ZNMI, and compare their reproducibility and accuracy on three diverse protein families. We find that (i) of the algorithms tested, while none appear to be both highly reproducible and accurate, ZNMI is one of the most accurate by far and (ii) while users should be wary of predictions drawn from a single alignment, considering an ensemble of sub-alignments can help to determine both highly accurate and reproducible couplings. Our cross-validation approach should be of interest both to developers and end users of algorithms that try to detect correlated amino acid substitutions. PMID:20531955

  12. Entitlement Attitudes Predict Students' Poor Performance in Challenging Academic Conditions

    ERIC Educational Resources Information Center

    Anderson, Donna; Halberstadt, Jamin; Aitken, Robert

    2013-01-01

    Excessive entitlement--an exaggerated or unrealistic belief about what one deserves--has been associated with a variety of maladaptive behaviors, including a decline in motivation and effort. In the context of tertiary education, we reasoned that if students expend less effort to obtain positive outcomes to which they feel entitled, this should…

  13. Predicting Acceptance of Mobile Technology for Aiding Student-Lecturer Interactions: An Empirical Study

    ERIC Educational Resources Information Center

    Gan, Chin Lay; Balakrishnan, Vimala

    2017-01-01

    The current study sets out to identify determinants affecting tertiary students' behavioural intentions to use mobile technology in lectures. The study emphasises that the reason for using mobile technology in classrooms with large numbers of students is to facilitate interactions among students and lecturers. The proposed conceptual framework has…

  14. Predicting English Word Accent on Morphological Grounds

    ERIC Educational Resources Information Center

    Salmani Nodoushan, Mohammad Ali

    2007-01-01

    Learners of English as a foreign/Second Language (EFL/ESL) can easily learn the correct pronunciation of English words, some linguists have tried to simplify English phonology in general, and English accent in particular, over the past 50 years or so; some scholars have talked about four degrees of primary, secondary, tertiary and weak stress…

  15. The Influence of Student Experiences on Post-Graduation Surveys

    ERIC Educational Resources Information Center

    Hirschberg, Joe; Lye, Jenny

    2016-01-01

    This study attempts to establish the extent to which in-class teaching quality instruments can be used to predict post-graduation survey results. It examines the responses for the Good Teaching Scale of the Course Experience Questionnaire administered to 10,433 students who completed their studies at a major Australian tertiary institution from…

  16. What Predicts Health Students' Self-Reported Preparedness to Work in Indigenous Health Settings?

    ERIC Educational Resources Information Center

    Bullen, Jonathan; Roberts, Lynne; Hoffman, Julie

    2017-01-01

    Australian undergraduate programs are implementing curriculum aimed at better preparing graduates to work in culturally diverse settings, but there remains uncertainty over the role of extant student attitudes towards Indigenous Australians. To begin to address this, we obtained baseline data on student attitudes upon entry to tertiary education.…

  17. Is ATAR Useful for Predicting the Success of Australian Students in Initial Teacher Education?

    ERIC Educational Resources Information Center

    Wright, Vince J.

    2015-01-01

    Quality teaching is the most significant systemic factor contributing to student achievement. Attracting, developing and retaining effective teachers are important goals for Australia as they are for all nations. Debate rages currently about criteria for selection of students into Initial Teacher Education (ITE). The Australian Tertiary Admission…

  18. Rotational spectra of tetracyclic quinolizidine alkaloids: does a water molecule flip sparteine?

    PubMed

    Lesarri, Alberto; Pinacho, Ruth; Enríquez, Lourdes; Rubio, José E; Jaraíz, Martín; Abad, José L; Gigosos, Marco A

    2017-07-21

    Sparteine is a quinolizidine alkaloid used as a chiral auxiliary in asymmetric synthesis. We examine whether hydration by a single molecule can flip sparteine from the most stable trans conformation to the bidentate cis arrangement observed in catalytic complexation to a metal center. Sparteine and the sparteine-water dimer were generated in a supersonic jet expansion with H 2 16 O and H 2 18 O, and characterized by broadband chirped-pulse microwave spectroscopy. Even though the bidentate water dimer was predicted with larger binding energy, a single isomer was observed for the monohydrated cluster, with sparteine retaining the trans conformation observed for the free molecule. The absence of the bidentate dimer is attributed to the kinetic control of cluster formation, favoring the pre-expansion most abundant monomer. The structural properties of the O-HN hydrogen bond in the dimer are compared with those of complexes of other secondary and tertiary amines.

  19. Modeling Long-term Creep Performance for Welded Nickel-base Superalloy Structures for Power Generation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chen

    2015-01-01

    We report here a constitutive model for predicting long-term creep strain evolution in’ strengthened Ni-base superalloys. Dislocation climb-bypassing’, typical in intermediate’ volume fraction (~20%) alloys, is considered as the primary deformation mechanism. Dislocation shearing’ to anti-phase boundary (APB) faults and diffusional creep are also considered for high-stress and high-temperature low-stress conditions, respectively. Additional damage mechanism is taken into account for rapid increase in tertiary creep strain. The model has been applied to Alloy 282, and calibrated in a temperature range of 1375-1450°F, and stress range of 15-45ksi. The model parameters and a MATLAB code are provided. This report is preparedmore » by Monica Soare and Chen Shen at GE Global Research. Technical discussions with Dr. Vito Cedro are greatly appreciated. This work was supported by DOE program DE-FE0005859« less

  20. High-resolution structures of a heterochiral coiled coil

    DOE PAGES

    Mortenson, David E.; Steinkruger, Jay D.; Kreitler, Dale F.; ...

    2015-10-12

    Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from D amino acids (D peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein–protein interactions. Coiled–coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled–coil interactions were predicted over 50 years ago by Crick, andmore » limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report in this paper two independent crystal structures that elucidate coiled-coil packing between L- and D-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. Finally, however, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.« less

  1. A sequence-based hybrid predictor for identifying conformationally ambivalent regions in proteins.

    PubMed

    Liu, Yu-Cheng; Yang, Meng-Han; Lin, Win-Li; Huang, Chien-Kang; Oyang, Yen-Jen

    2009-12-03

    Proteins are dynamic macromolecules which may undergo conformational transitions upon changes in environment. As it has been observed in laboratories that protein flexibility is correlated to essential biological functions, scientists have been designing various types of predictors for identifying structurally flexible regions in proteins. In this respect, there are two major categories of predictors. One category of predictors attempts to identify conformationally flexible regions through analysis of protein tertiary structures. Another category of predictors works completely based on analysis of the polypeptide sequences. As the availability of protein tertiary structures is generally limited, the design of predictors that work completely based on sequence information is crucial for advances of molecular biology research. In this article, we propose a novel approach to design a sequence-based predictor for identifying conformationally ambivalent regions in proteins. The novelty in the design stems from incorporating two classifiers based on two distinctive supervised learning algorithms that provide complementary prediction powers. Experimental results show that the overall performance delivered by the hybrid predictor proposed in this article is superior to the performance delivered by the existing predictors. Furthermore, the case study presented in this article demonstrates that the proposed hybrid predictor is capable of providing the biologists with valuable clues about the functional sites in a protein chain. The proposed hybrid predictor provides the users with two optional modes, namely, the high-sensitivity mode and the high-specificity mode. The experimental results with an independent testing data set show that the proposed hybrid predictor is capable of delivering sensitivity of 0.710 and specificity of 0.608 under the high-sensitivity mode, while delivering sensitivity of 0.451 and specificity of 0.787 under the high-specificity mode. Though experimental results show that the hybrid approach designed to exploit the complementary prediction powers of distinctive supervised learning algorithms works more effectively than conventional approaches, there exists a large room for further improvement with respect to the achieved performance. In this respect, it is of interest to investigate the effects of exploiting additional physiochemical properties that are related to conformational ambivalence. Furthermore, it is of interest to investigate the effects of incorporating lately-developed machine learning approaches, e.g. the random forest design and the multi-stage design. As conformational transition plays a key role in carrying out several essential types of biological functions, the design of more advanced predictors for identifying conformationally ambivalent regions in proteins deserves our continuous attention.

  2. Cooperative catalysis by tertiary amino-thioureas: mechanism and basis for enantioselectivity of ketone cyanosilylation.

    PubMed

    Zuend, Stephan J; Jacobsen, Eric N

    2007-12-26

    The mechanism of the enantioselective cyanosilylation of ketones catalyzed by tertiary amino-thiourea derivatives was investigated using a combination of experimental and theoretical methods. The kinetic analysis is consistent with a cooperative mechanism in which both the thiourea and the tertiary amine of the catalyst are involved productively in the rate-limiting cyanide addition step. Density functional theory calculations were used to distinguish between mechanisms involving thiourea activation of ketone or of cyanide in the enantioselectivity-determining step. The strong correlation obtained between experimental and calculated ee's for a range of substrates and catalysts provides support for the most favorable calculated transition structures involving amine-bound HCN adding to thiourea-bound ketone. The calculations suggest that enantioselectivity arises from direct interactions between the ketone substrate and the amino-acid derived portion of the catalyst. On the basis of this insight, more enantioselective catalysts with broader substrate scope were prepared and evaluated experimentally.

  3. New Mapping in the Sand Springs Range of Western Nevada Clarifies and Constrains Regional Deformation Sequences of the Luning-Fencemaker Thrust Belt

    NASA Astrophysics Data System (ADS)

    Czarnecki, S.; Jarvis, J.; Satterfield, J. I.

    2016-12-01

    The Sand Springs Range in western Nevada exposes Mesozoic through Cenozoic structures of the eastern Sierra Nevada, Luning-Fencemaker Thrust Belt (LFTB), Basin and Range province, and Walker Lane. A recent undergraduate geologic mapping project in the northern Sand Springs Range (nSSR) set out to map igneous intrusions in detail, specifically smaller intrusions which had not been a focus in previous work. This was accomplished using different techniques including mapping at a smaller scale (1:8000 vs. 1:24000), locating contacts and faults using handheld GPS, and focusing on relationships between metamorphic tectonites and igneous units. This revealed key cross-cutting relations between structures and diverse Triassic through Tertiary igneous rocks as well as distinctions between the nSSR and the surrounding LFTB assemblages. During our mapping we identified four metamorphic tectonite map units, Cretaceous granitoid and diorite plutons and sills, Tertiary rhyolite sills and dikes, and interbedded Tertiary basalt and ash flow tuff. The cross-cutting relations of these units overturn previously published sequences of events and constrain the timing of a deformation sequence which differs from the surrounding LFTB assemblages. We found that the nSSR contains three phases of deformation: a pre-LFTB syn-metamorphic event which achieved amphibolite facies that is not described elsewhere in the LFTB (D1), followed by two non-metamorphic folding and thrusting phases characteristic of the LFTB (D2 and D3). Our mapping provided four key timing constraints. First, D1 axial-planar cleavage (S1) deformed Triassic intrusions. Second, Cretaceous granitoid and diorite units cross-cut S1 foliation, D1 folds, and low-angle faults. Third, Cretaceous and Tertiary sills that locally terminate at a low-angle fault actually post-dated faulting. Fourth, cross-cutting relations showed a basaltic lava previously mapped as Jurassic is actually Tertiary. The large Sand Springs Pluton was the only intrusion mapped in detail during previous studies; but our mapping has demonstrated the importance of both small and large intrusions in understanding the overall structural history of a complex area. This project was supported by research grants from Angelo State University and the Southwest Section AAPG.

  4. Expanding the Concepts in Protein Structure-Function Relationships and Enzyme Kinetics: Teaching Using Morpheeins

    ERIC Educational Resources Information Center

    Lawrence, Sarah H.; Jaffe, Eileen K.

    2008-01-01

    A morpheein is a homo-oligomeric protein that can exist as an ensemble of physiologically significant and functionally distinct alternate quaternary assemblies. Morpheeins exist in nature and use conformational equilibria between different tertiary structures to form distinct oligomers as a means of regulating their function. Notably, alternate…

  5. Basics of Sterile Compounding: Manipulating Peptides and Proteins.

    PubMed

    Akers, Michael J

    2017-01-01

    Biopharmaceuticals contain primary and secondary structure, which offer few problems. It is the tertiary structure that causes problems, resulting in both physical and chemical stability issues. The thrust of this article is to share briefly what can be done to minimize these problems. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  6. Thermal aggregation of glycated bovine serum albumin.

    PubMed

    Rondeau, Philippe; Navarra, Giovanna; Cacciabaudo, Francesco; Leone, Maurizio; Bourdon, Emmanuel; Militello, Valeria

    2010-04-01

    Aggregation and glycation processes in proteins have a particular interest in medicine fields and in food technology. Serum albumins are model proteins which are able to self-assembly in aggregates and also sensitive to a non-enzymatic glycation in cases of diabetes. In this work, we firstly reported a study on the glycation and oxidation effects on the structure of bovine serum albumin (BSA). The experimental approach is based on the study of conformational changes of BSA at secondary and tertiary structures by FTIR absorption and fluorescence spectroscopy, respectively. Secondly, we analysed the thermal aggregation process on BSA glycated with different glucose concentrations. Additional information on the aggregation kinetics are obtained by light scattering measurements. The results show that glycation process affects the native structure of BSA. Then, the partial unfolding of the tertiary structure which accompanies the aggregation process is similar both in native and glycated BSA. In particular, the formation of aggregates is progressively inhibited with growing concentration of glucose incubated with BSA. These results bring new insights on how aggregation process is affected by modification of BSA induced by glycation. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Epitope targeting of tertiary protein structure enables target-guided synthesis of a potent in-cell inhibitor of botulinum neurotoxin.

    PubMed

    Farrow, Blake; Wong, Michelle; Malette, Jacquie; Lai, Bert; Deyle, Kaycie M; Das, Samir; Nag, Arundhati; Agnew, Heather D; Heath, James R

    2015-06-08

    Botulinum neurotoxin (BoNT) serotype A is the most lethal known toxin and has an occluded structure, which prevents direct inhibition of its active site before it enters the cytosol. Target-guided synthesis by in situ click chemistry is combined with synthetic epitope targeting to exploit the tertiary structure of the BoNT protein as a landscape for assembling a competitive inhibitor. A substrate-mimicking peptide macrocycle is used as a direct inhibitor of BoNT. An epitope-targeting in situ click screen is utilized to identify a second peptide macrocycle ligand that binds to an epitope that, in the folded BoNT structure, is active-site-adjacent. A second in situ click screen identifies a molecular bridge between the two macrocycles. The resulting divalent inhibitor exhibits an in vitro inhibition constant of 165 pM against the BoNT/A catalytic chain. The inhibitor is carried into cells by the intact holotoxin, and demonstrates protection and rescue of BoNT intoxication in a human neuron model. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme

    DOE PAGES

    Lee, Hui-Ting; Kilburn, D.; Behrouzi, R.; ...

    2014-12-05

    The native structure of the Azoarcus group I ribozyme is stabilized by the cooperative formation of tertiary interactions between double helical domains. Thus, even single mutations that break this network of tertiary interactions reduce ribozyme activity in physiological Mg2+ concentrations. Here, we report that molecular crowding comparable to that in the cell compensates for destabilizing mutations in the Azoarcus ribozyme. Small angle X-ray scattering, native polyacrylamide gel electrophoresis and activity assays were used to compare folding free energies in dilute and crowded solutions containing 18% PEG1000. Crowder molecules allowed the wild-type and mutant ribozymes to fold at similarly low Mg2+more » concentrations and stabilized the active structure of the mutant ribozymes under physiological conditions. This compensation helps explains why ribozyme mutations are often less deleterious in the cell than in the test tube. Nevertheless, crowding did not rescue the high fraction of folded but less active structures formed by double and triple mutants. We conclude that crowding broadens the fitness landscape by stabilizing compact RNA structures without improving the specificity of self-assembly.« less

  9. Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hui-Ting; Kilburn, D.; Behrouzi, R.

    The native structure of the Azoarcus group I ribozyme is stabilized by the cooperative formation of tertiary interactions between double helical domains. Thus, even single mutations that break this network of tertiary interactions reduce ribozyme activity in physiological Mg2+ concentrations. Here, we report that molecular crowding comparable to that in the cell compensates for destabilizing mutations in the Azoarcus ribozyme. Small angle X-ray scattering, native polyacrylamide gel electrophoresis and activity assays were used to compare folding free energies in dilute and crowded solutions containing 18% PEG1000. Crowder molecules allowed the wild-type and mutant ribozymes to fold at similarly low Mg2+more » concentrations and stabilized the active structure of the mutant ribozymes under physiological conditions. This compensation helps explains why ribozyme mutations are often less deleterious in the cell than in the test tube. Nevertheless, crowding did not rescue the high fraction of folded but less active structures formed by double and triple mutants. We conclude that crowding broadens the fitness landscape by stabilizing compact RNA structures without improving the specificity of self-assembly.« less

  10. Prevalence and predictors of depression and anxiety in adult patients with type 1 diabetes in tertiary care setting.

    PubMed

    Castellano-Guerrero, A M; Guerrero, R; Relimpio, F; Losada, F; Mangas, M A; Pumar, A; Martínez-Brocca, M A

    2018-06-13

    To determine gender and age differences in the prevalence of depression and anxiety and their predictive factors in adult patients with type 1 diabetes (DM1). Random sample of DM1 adult patients from a tertiary care hospital cohort. To evaluate the presence of depression and anxiety, psychological evaluation was performed using structured clinical interview (MINI). For the specific evaluation of fear of hypoglycemia (FH), FH-15 questionnaire was used. 339 patients [51.6% male; 38.5 ± 12.9 years; HbA 1c 7.5 ± 1.1% (58.5 ± 14.2 mmol/mol); 20.1 ± 12.0 years of DM1] met the inclusion criteria. Prevalence of depression, anxiety, and FH in men vs. women was as follows (%): depression: 15.4 vs. 33.5 (p < 0.05); anxiety: 13.7 vs. 26.2 (p < 0.05); and FH: 42.8 vs. 46.0 (p = NS). Among midlife female patients, prevalence of depression and anxiety was higher compared to male. Moreover, comorbid depressive and anxious symptoms were also higher in midlife female patients compared to age-matched male patients (3.5 vs. 14%, p < 0.05). Apart from age-related vulnerability, female gender, poor glycemic control, and microvascular and macrovascular complications were predictive factors for depressive and anxious symptomatology. Unawareness hypoglycemia and anxiety-prone personality were predictor factors for FH. In adults with DM1, prevalence of depression and anxiety is higher in women. Midlife patients, in particular women, show a significantly higher prevalence of anxiety symptoms and comorbid depression and anxiety. The presence of secondary complications and sustained poor glycemic control should alert to the possibility of these mental disorders, especially in the most vulnerable age population; clinical, gender and age-related patterns could help to design more effective psychological assessment and support in adult patients with DM1.

  11. Diagnostic Value of the Serum Anti-Toxocara IgG Titer for Ocular Toxocariasis in Patients with Uveitis at a Tertiary Hospital in Korea

    PubMed Central

    Bae, Ki Woong; Ahn, Seong Joon; Park, Kyu Hyung

    2016-01-01

    Purpose This study evaluated the prevalence of ocular toxocariasis (OT) in patients with uveitis of unknown etiology who visited a tertiary hospital in South Korea and assessed the success of serum anti-Toxocara immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) as a diagnostic test for OT. Methods The records of consecutive patients with intraocular inflammation of unknown etiology were reviewed. All participants underwent clinical and laboratory investigations, including ELISA for serum anti-Toxocara IgG. OT was diagnosed based on typical clinical findings. Clinical characteristics, seropositivity, and IgG titers were compared between patients diagnosed with OT and non-OT uveitis. The seropositivity and the diagnostic value of anti-Toxocara IgG was investigated among patients with different types of uveitis. Results Of 238 patients with uveitis of unknown etiology, 71 (29.8%) were diagnosed with OT, and 80 (33.6%) had positive ELISA results for serum anti-Toxocara IgG. The sensitivity and specificity of the ELISA test were 91.5% (65 / 71) and 91.0% (152 / 167), respectively. The positive predictive value of the serum anti-Toxocara IgG assay was 81.3%. Among patients with anterior, intermediate, posterior, and panuveitis, the prevalence rates of OT were 8.3%, 47.1%, 44.8%, and 7.1%, respectively; the seropositivity percentages were 18.1%, 47.1%, 43.7%, and 17.9%; and the positive predictive values were 38.5%, 95.8%, 92.1%, and 40.0%. The serum anti-Toxocara IgG titer also significantly decreased following albendazole treatment. Conclusions OT is a common cause of intraocular inflammation in the tertiary hospital setting. Considering that OT is more prevalent in intermediate and posterior uveitis, and that the positive predictive value of the anti-Toxocara IgG assay is high, a routine test for anti-Toxocara IgG might be necessary for Korean patients with intermediate and posterior uveitis. PMID:27478352

  12. Diagnostic Value of the Serum Anti-Toxocara IgG Titer for Ocular Toxocariasis in Patients with Uveitis at a Tertiary Hospital in Korea.

    PubMed

    Bae, Ki Woong; Ahn, Seong Joon; Park, Kyu Hyung; Woo, Se Joon

    2016-08-01

    This study evaluated the prevalence of ocular toxocariasis (OT) in patients with uveitis of unknown etiology who visited a tertiary hospital in South Korea and assessed the success of serum anti-Toxocara immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) as a diagnostic test for OT. The records of consecutive patients with intraocular inflammation of unknown etiology were reviewed. All participants underwent clinical and laboratory investigations, including ELISA for serum anti-Toxocara IgG. OT was diagnosed based on typical clinical findings. Clinical characteristics, seropositivity, and IgG titers were compared between patients diagnosed with OT and non-OT uveitis. The seropositivity and the diagnostic value of anti-Toxocara IgG was investigated among patients with different types of uveitis. Of 238 patients with uveitis of unknown etiology, 71 (29.8%) were diagnosed with OT, and 80 (33.6%) had positive ELISA results for serum anti-Toxocara IgG. The sensitivity and specificity of the ELISA test were 91.5% (65 / 71) and 91.0% (152 / 167), respectively. The positive predictive value of the serum anti-Toxocara IgG assay was 81.3%. Among patients with anterior, intermediate, posterior, and panuveitis, the prevalence rates of OT were 8.3%, 47.1%, 44.8%, and 7.1%, respectively; the seropositivity percentages were 18.1%, 47.1%, 43.7%, and 17.9%; and the positive predictive values were 38.5%, 95.8%, 92.1%, and 40.0%. The serum anti-Toxocara IgG titer also significantly decreased following albendazole treatment. OT is a common cause of intraocular inflammation in the tertiary hospital setting. Considering that OT is more prevalent in intermediate and posterior uveitis, and that the positive predictive value of the anti-Toxocara IgG assay is high, a routine test for anti-Toxocara IgG might be necessary for Korean patients with intermediate and posterior uveitis.

  13. Predictive value of Borrelia burgdorferi IgG antibody levels in patients referred to a tertiary Lyme centre.

    PubMed

    Zwerink, M; Zomer, T P; van Kooten, B; Blaauw, G; van Bemmel, T; van Hees, B C; Vermeeren, Y M; Landman, G W

    2018-03-01

    A two-step testing strategy is recommended in serological testing for Lyme borreliosis; positive and indeterminate enzyme-linked immunosorbent assay (ELISA) results are confirmed with immunoblots. Several ELISAs quantify the concentration of antibodies tested, however, no recommendation exists for an upper cut-off value at which an IgG ELISA is sufficient and the immunoblot can be omitted. The study objective was to determine at which IgG antibody level an immunoblot does not have any additional predictive value compared to ELISA results. Data of adult patients who visited a tertiary Lyme centre between 2008 and 2014 were analysed. Both an ELISA (Enzygnost Lyme link VlsE IgG) and immunoblot (recomLine blot Borrelia) were performed. Clinical data were extracted from the patient's digital medical record. Positive predictive values (PPVs) for either previous or active infection with Borrelia burgdorferi s.l. were calculated for different cut-off ELISA IgG antibody levels where the immunoblot was regarded as reference test. In total, 1454 patients were included. According to the two-step test strategy, 486 (33%), 69 (5%) and 899 (62%) patients had positive, indeterminate and negative Borrelia IgG serology, respectively. At IgG levels of 500 IU/ml and higher, all immunoblots were positive, resulting in a 100% PPV (95% CI: 97.0-100). At IgG levels of 200 IU/ml and higher, the PPV was 99.3% (95% CI: 97.4-99.8). In conclusion, at IgG levels of 200 IU/ml and higher, an ELISA was sufficient to detect antibodies to Borrelia burgdorferi s.l. At those IgG levels, a confirmatory immunoblot may be omitted in patients referred to a tertiary Lyme centre. Before these results can be implemented in routine diagnosis of Lyme borreliosis, confirmation of the results is necessary in other patient populations and using other quantitative ELISAs and immunoblots. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Pre-treatment factor structures of the Montgomery and Åsberg Depression Rating scale as predictors of response to escitalopram in Indian patients with non-psychotic major depressive disorder.

    PubMed

    Basu, Aniruddha; Chadda, Rakesh; Sood, Mamta; Rizwan, S A

    2017-08-01

    Major Depressive Disorder (MDD) is a broad heterogeneous construct resolving into several symptom-clusters by factor analysis. The aim was to find the factor structures of MDD as per Montgomery and Asberg Depression Rating Scale (MADRS) and whether they predict escitalopram response. In a longitudinal study at a tertiary institute in north India, 116 adult out-patients with non-psychotic unipolar MDD were assessed with MADRS before and after treatment with escitalopram (10-20mg) over 6-8 weeks for drug response. For total 116 patients pre-treatment four factor structures of MADRS extracted by principal component analysis with varimax rotation altogether explained a variance of 57%: first factor 'detachment' (concentration difficulty, lassitude, inability to feel); second factor 'psychic anxiety' (suicidal thoughts and inner tension); third 'mood-pessimism' (apparent sadness, reported sadness, pessimistic thoughts) and fourth 'vegetative' (decreased sleep, appetite). Eighty patients (68.9%) who completed the study had mean age 35.37±10.9 yrs, majority were male (57.5%), with mean pre-treatment MADRS score 28.77±5.18 and majority (65%) having moderate severity (MADRS <30). Among them 56 (70%) responded to escitalopram. At the end of the treatment there were significant changes in all the 4 factor structures (p<0.01). Vegetative function was an important predictor of response (p<0.01, odd's ratio: 1.3 [1.1-1.6] 95% CI). Melancholia significantly predicted non-response (p=0.04). Non-psychotic unipolar major depression having moderate severity in north Indian patients as per MADRS resolved into four factor-structures all significantly improved with adequate escitalopram treatment. Understanding the factor structure is important as they can be important predictor of escitalopram response. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Phocid Seal Leptin: Tertiary Structure and Hydrophobic Receptor Binding Site Preservation during Distinct Leptin Gene Evolution

    PubMed Central

    Hammond, John A.; Hauton, Chris; Bennett, Kimberley A.; Hall, Ailsa J.

    2012-01-01

    The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids) have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR) binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional surfactant requirement is met by the leptin pulmonary surfactant production pathway which normally appears only to function in the mammalian foetus. PMID:22536379

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, Andrew J.; Fedosova, Natalya U.; Hoffmann, Søren V.

    Highlights: •Ouabain binding to pig and shark Na,K-ATPase enhances thermal stability. •Ouabain stabilises both membrane-bound and solubilised Na,K-ATPase. •Synchrotron radiation circular dichroism is used for structure determination. •Secondary structure in general is not affected by ouabain binding. •Stabilisation is due to re-arrangement of tertiary structure. -- Abstract: Cardiotonic steroids such as ouabain bind with high affinity to the membrane-bound cation-transporting P-type Na,K-ATPase, leading to complete inhibition of the enzyme. Using synchrotron radiation circular dichroism spectroscopy we show that the enzyme-ouabain complex is less susceptible to thermal denaturation (unfolding) than the ouabain-free enzyme, and this protection is observed with Na,K-ATPase purifiedmore » from pig kidney as well as from shark rectal glands. It is also shown that detergent-solubilised preparations of Na,K-ATPase are stabilised by ouabain, which could account for the successful crystallisation of Na,K-ATPase in the ouabain-bound form. The secondary structure is not significantly affected by the binding of ouabain. Ouabain appears however, to induce a reorganization of the tertiary structure towards a more compact protein structure which is less prone to unfolding; recent crystal structures of the two enzymes are consistent with this interpretation. These circular dichroism spectroscopic studies in solution therefore provide complementary information to that provided by crystallography.« less

  17. The Colorado front range: anatomy of a Laramide uplift

    USGS Publications Warehouse

    Kellogg, Karl; Bryant, Bruce; Reed, John C.

    2004-01-01

    Along a transect across the Front Range from Denver to the Blue River valley near Dillon, the trip explores the geologic framework and Laramide (Late Cretaceous to early Eocene) uplift history of this basement-cored mountain range. Specific items for discussion at various stops are (1) the sedimentary and structural record along the upturned eastern margin of the range, which contains several discontinuous, east-directed reverse faults; (2) the western structural margin of the range, which contains a minimum of 9 km of thrust overhang and is significantly different in structural style from the eastern margin; (3) mid- to late-Tertiary modifications to the western margin of the range from extensional faulting along the northern Rio Grande rift trend; (4) the thermal and uplift history of the range as revealed by apatite fission track analysis; (5) the Proterozoic basement of the range, including the significance of northeast-trending shear zones; and (6) the geologic setting of the Colorado mineral belt, formed during Laramide and mid-Tertiary igneous activity.

  18. Molecular identification of aiiA homologous gene from endophytic Enterobacter species and in silico analysis of putative tertiary structure of AHL-lactonase.

    PubMed

    Rajesh, P S; Rai, V Ravishankar

    2014-01-03

    The aiiA homologous gene known to encode AHL- lactonase enzyme which hydrolyze the N-acylhomoserine lactone (AHL) quorum sensing signaling molecules produced by Gram negative bacteria. In this study, the degradation of AHL molecules was determined by cell-free lysate of endophytic Enterobacter species. The percentage of quorum quenching was confirmed and quantified by HPLC method (p<0.0001). Amplification and sequence BLAST analysis showed the presence of aiiA homologous gene in endophytic Enterobacter asburiae VT65, Enterobacter aerogenes VT66 and Enterobacter ludwigii VT70 strains. Sequence alignment analysis revealed the presence of two zinc binding sites, "HXHXDH" motif as well as tyrosine residue at the position 194. Based on known template available at Swiss-Model, putative tertiary structure of AHL-lactonase was constructed. The result showed that novel endophytic strains of Enterobacter genera encode the novel aiiA homologous gene and its structural importance for future study. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. An excited state underlies gene regulation of a transcriptional riboswitch

    PubMed Central

    Zhao, Bo; Guffy, Sharon L.; Williams, Benfeard; Zhang, Qi

    2017-01-01

    Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (~1%) and short-lived (~3 ms) excited conformational state that unravels a conserved ‘linchpin’ base pair to signal transcription termination. Upon fluoride binding, this highly localized fleeting process is allosterically suppressed to activate transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity response across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation. PMID:28719589

  20. Enhancing quality practice for prevention and diagnosis of urinary tract infection during inpatient spinal cord rehabilitation.

    PubMed

    Alavinia, Seyed Mohammad; Omidvar, Maryam; Farahani, Farnoosh; Bayley, Mark; Zee, Joana; Craven, Beverley Catharine

    2017-11-01

    To reduce the incidence of Urinary Tract Infection (UTI) in subacute SCI individuals admitted for tertiary inpatient rehabilitation. A quality improvement team was assembled to improve UTI prevention/diagnosis. To plan data collection, UTI-related factors were mapped in an Ishikawa (fishbone) driver diagram. Data including patient demographics, presence and frequency of signs and/or symptoms of UTI and antibiotic initiation from August to December 2015 were recorded. Sensitivity, Specificity, Positive and Negative Predictive Values (PPV, NPV), and Likelihood Ratios (LR) were calculated for each sign and symptom. Tertiary SCI Rehabilitation Results: Among 55 inpatients with subacute SCI who had signs/symptoms prompting urine culture and sensitivity (C&S), 32 (58.18%) were diagnosed with a UTI. The most frequent symptoms were foul smelling urine (41%), change in urine color (31%), and incontinence (25%), and the most common sign was fever (34%). Most UTIs (81%) occurred among individuals using Clean Intermittent Catheterization (CIC), with 46% of catheterizations performed by nurses. Foul smelling urine had the highest sensitivity (0.50, 95% CI: 0.31-0.69), and new incontinence had the highest specificity (0.88, 95% CI: 0.69-0.97) for UTI diagnosis. The highest PPV belonged to the cloudy urine (0.71, 95% CI: 0.42-0.92). The combination of cloudy and foul smelling urine increased the PPV to 78% (95% CI: (0.40-0.97). The concurrent presence of cloudy and foul smelling urine is predicted of UTI diagnosis inpatients tertiary setting. SCI inpatients are susceptible to UTI when learning CIC technique from nurses.

  1. Structural geologic analysis of Nevada using ERTS-1 images: A preliminary report

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Wetlaufer, P. H.

    1973-01-01

    Structural analysis of Nevada using ERTS-1 images showns several previously unrecognized lineaments which may be the surface manifestations of major fault or fracture zones. Principle trends are NE, NW, NNE-NNW, and ENE. Two lineament zones, the Walker Lane and Midas Trench lineament system, transect the predominantly NNE-NNW trending mountain ranges for more than 500 km. 50 circular features have been delineated. Comparison with known Tertiary volcanic centers and reference to geologic maps suggest 8 new centers. Preferred distribution of mines and Tertiary volcanic centers along some of the major lineament suggests a genetic relationship. The intersection of three previously unmapped lineaments in northwestern Nevada is the location of a highly productive metallogenic district. In the Walker Lane, ENE-trending lineament appear to be related to the occurrence of productive ore deposits.

  2. Adolescent smoking and tertiary education: opposing pathways linking socio-economic background to alcohol consumption.

    PubMed

    Green, Michael J; Leyland, Alastair H; Sweeting, Helen; Benzeval, Michaela

    2016-08-01

    If socio-economic disadvantage is associated with more adolescent smoking, but less participation in tertiary education, and smoking and tertiary education are both associated with heavier drinking, these may represent opposing pathways to heavy drinking. This paper examines contextual variation in the magnitude and direction of these associations. Comparing cohort studies. United Kingdom. Participants were from the 1958 National Child Development Study (NCDS58; n = 15 672), the British birth cohort study (BCS70; n = 12 735) and the West of Scotland Twenty-07 1970s cohort (T07; n = 1515). Participants self-reported daily smoking and weekly drinking in adolescence (age 16 years) and heavy drinking (> 14/21 units in past week) in early adulthood (ages 22-26 years). Parental occupational class (manual versus non-manual) indicated socio-economic background. Education beyond age 18 was coded as tertiary. Models were adjusted for parental smoking and drinking, family structure and adolescent psychiatric distress. Respondents from a manual class were more likely to smoke and less likely to enter tertiary education (e.g. in NCDS58, probit coefficients were 0.201 and -0.765, respectively; P < 0.001 for both) than respondents from a non-manual class. Adolescent smokers were more likely to drink weekly in adolescence (0.346; P < 0.001) and more likely to drink heavily in early adulthood (0.178; P < 0.001) than adolescent non-smokers. Respondents who participated in tertiary education were more likely to drink heavily in early adulthood (0.110 for males, 0.182 for females; P < 0.001 for both) than respondents with no tertiary education. With some variation in magnitude, these associations were consistent across all three cohorts. In Britain, young adults are more likely to drink heavily both if they smoke and participate in tertiary education (college and university) despite socio-economic background being associated in opposite directions with these risk factors. © 2016 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  3. Origin and late quaternary tectonism of a western Canadian continental shelf trough

    NASA Astrophysics Data System (ADS)

    Moslow, Thomas F.; Luternauer, John L.; Rohr, Kristin

    1991-08-01

    Analyses of high resolution and multi-channel seismic profiles from the central continental shelf of western Canada ascribe a late Quaternary glacial origin to large-scale troughs. Along the margins of Moresby Trough, one of three large-scale cross-shelf bathymetric depressions in Queen Charlotte Sound, seismic profiles within Quaternary sediments show a divergence of reflectors, thickening and folding of seismic units, and concavity of reflectors suggestive of drag. Compactional subsidence, growth faulting, and compaction faulting are also observed. Fault traces commonly terminate below the seabed. Deformation of Quaternary sediments due to faulting is plastic in nature and maximum offset of reflectors is 2.5 m. The observed Quaternary deformation appears to be a product of rapid deposition, loading and subsidence of late Quaternary sediment, which is unrelated to seismic activity. In addition, Quaternary faulting was probably activated by post-glacial loading and isostatic rebound of consolidated Tertiary strata along the margins of continental shelf troughs. The presence of mass movement (slump or debris flow) deposits overlying lithified Tertiary strata along the flanks of Moresby Trough provides the only evidence of seismic activity in the study area. The lack of a mud drape over these deposits implies a late Holocene age for the timing of their emplacement. The Quaternary troughs are incised into Tertiary-aged sedimentary fill of the Queen Charlotte basin. Previous workers had interpreted seafloor escarpments paralleling the trough margins to indicate that the location of Moresby Trough was controlled by renewed or continued activity on Tertiary-aged faults. A multi-channel seismic line across Moresby Trough shows that such an escarpment on the seafloor does not correlate to faults either in the Tertiary basin fill or the underlying basement. Tertiary reflectors are continuous underneath Moresby Trough; the seafloor escarpment is an erosional feature and was not created by reactivation of Tertiary structures. Trough erosion and subsequent fill (up to 175 m thick) are entirely of Quaternary age.

  4. Managing patient pathways to achieve lung cancer waiting time targets: mixed methods study

    PubMed Central

    Ip, Hugh; Amer, Tarik; Dangoor, Michael; Zamir, Affan; Gibbings-Isaac, Darryl; Kochhar, Ranjeev; Heymann, Timothy

    2012-01-01

    Objectives England's National Health Service (NHS) introduced a 62-day target, from referral to treatment, to make lung cancer patient pathways more efficient. This study aims to understand pathway delays that lead to breaches of the target when patients need care in both secondary and tertiary setting, so more than one institution is involved. Design Mixed methods cross case analysis. Setting Two tertiary referral hospitals in London. Participants Database records of 53 patients were analysed. Nineteen sets of patient notes were used for pathway mapping. Seventeen doctors, four nurses, eight managers and administrators were interviewed. Main outcome measures Qualitative methods include pathway mapping and semi-structured interviews. Quantitative analysis of patient pathway times from cancer services records. Results The majority of the patient pathway (68.4%) is spent in secondary centres. There is more variability in the processes of secondary centres but tertiary centres do not have perfect processes either. Three themes emerged from discussions: information flows, pathway performance and the role of the multidisciplinary approach. Conclusions The actions of secondary centres have a greater influence on whether a patient breaches the 62-day target, compared with tertiary centres. Nevertheless variability exists in both, with potential for improvement. PMID:23162682

  5. Sequential events in the irreversible thermal denaturation of human brain-type creatine kinase by spectroscopic methods.

    PubMed

    Gao, Yan-Song; Su, Jing-Tan; Yan, Yong-Bin

    2010-06-25

    The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK) thermal denaturation were studied by differential scanning calorimetry (DSC), CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK). The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.

  6. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations

    PubMed Central

    Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi

    2016-01-01

    Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation. PMID:27227775

  7. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations.

    PubMed

    Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi

    2016-01-01

    Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.

  8. Bioinformatic prediction of G protein-coupled receptor encoding sequences from the transcriptome of the foreleg, including the Haller’s organ, of the cattle tick, Rhipicephalus australis

    PubMed Central

    Munoz, Sergio; Guerrero, Felix D.; Kellogg, Anastasia; Heekin, Andrew M.

    2017-01-01

    The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller’s organ, located in the tick’s forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this agricultural pest, we aimed to sequence and annotate the transcriptome of the R. australis forelegs and associated tissues, including the Haller's organ. As G protein-coupled receptors (GPCRs) are an important family of eukaryotic proteins studied as pharmaceutical targets in humans, we prioritized the identification and classification of the GPCRs expressed in the foreleg tissues. The two forelegs from adult R. australis were excised, RNA extracted, and pyrosequenced with 454 technology. Reads were assembled into unigenes and annotated by sequence similarity. Python scripts were written to find open reading frames (ORFs) from each unigene. These ORFs were analyzed by different GPCR prediction approaches based on sequence alignments, support vector machines, hidden Markov models, and principal component analysis. GPCRs consistently predicted by multiple methods were further studied by phylogenetic analysis and 3D homology modeling. From 4,782 assembled unigenes, 40,907 possible ORFs were predicted. Using Blastp, Pfam, GPCRpred, TMHMM, and PCA-GPCR, a basic set of 46 GPCR candidates were compiled and a phylogenetic tree was constructed. With further screening of tertiary structures predicted by RaptorX, 6 likely GPCRs emerged and the strongest candidate was classified by PCA-GPCR to be a GABAB receptor. PMID:28231302

  9. Bioinformatic prediction of G protein-coupled receptor encoding sequences from the transcriptome of the foreleg, including the Haller's organ, of the cattle tick, Rhipicephalus australis.

    PubMed

    Munoz, Sergio; Guerrero, Felix D; Kellogg, Anastasia; Heekin, Andrew M; Leung, Ming-Ying

    2017-01-01

    The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller's organ, located in the tick's forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this agricultural pest, we aimed to sequence and annotate the transcriptome of the R. australis forelegs and associated tissues, including the Haller's organ. As G protein-coupled receptors (GPCRs) are an important family of eukaryotic proteins studied as pharmaceutical targets in humans, we prioritized the identification and classification of the GPCRs expressed in the foreleg tissues. The two forelegs from adult R. australis were excised, RNA extracted, and pyrosequenced with 454 technology. Reads were assembled into unigenes and annotated by sequence similarity. Python scripts were written to find open reading frames (ORFs) from each unigene. These ORFs were analyzed by different GPCR prediction approaches based on sequence alignments, support vector machines, hidden Markov models, and principal component analysis. GPCRs consistently predicted by multiple methods were further studied by phylogenetic analysis and 3D homology modeling. From 4,782 assembled unigenes, 40,907 possible ORFs were predicted. Using Blastp, Pfam, GPCRpred, TMHMM, and PCA-GPCR, a basic set of 46 GPCR candidates were compiled and a phylogenetic tree was constructed. With further screening of tertiary structures predicted by RaptorX, 6 likely GPCRs emerged and the strongest candidate was classified by PCA-GPCR to be a GABAB receptor.

  10. Broad control of disulfide stability through microenvironmental effects and analysis in complex redox environments.

    PubMed

    Wu, Chuanliu; Wang, Shuo; Brülisauer, Lorine; Leroux, Jean-Christophe; Gauthier, Marc A

    2013-07-08

    Disulfide bonds stabilize the tertiary- and quaternary structure of proteins. In addition, they can be used to engineer redox-sensitive (bio)materials and drug-delivery systems. Many of these applications require control of the stability of the disulfide bond. It has recently been shown that the charged microenvironment of the disulfide can be used to alter their stability by ∼3 orders of magnitude in a predictable and finely tunable manner at acidic pH. The aim of this work is to extend these findings to physiological pH and to demonstrate the validity of this approach in complex redox milieu. Disulfide microenvironments were manipulated synergistically with steric hindrance herein to control disulfide bond stability over ∼3 orders of magnitude at neutral pH. Control of disulfide stability through microenvironmental effects could also be observed in complex redox buffers (including serum) and in the presence of cells. Such fine and predictable control of disulfide properties is not achievable using other existing approaches. These findings provide easily implementable and general tools for controlling the responsiveness of biomaterials and drug delivery systems toward various local endogenous redox environments.

  11. Gender norms in South Africa: implications for HIV and pregnancy prevention among African and Indian women students at a South African tertiary institution.

    PubMed

    Mantell, Joanne E; Needham, Sarah L; Smit, Jennifer Ann; Hoffman, Susie; Cebekhulu, Queen; Adams-Skinner, Jessica; Exner, Theresa M; Mabude, Zonke; Beksinska, Mags; Stein, Zena A; Milford, Cecilia

    2009-02-01

    In post-Apartheid South Africa, women are constitutionally guaranteed protections and freedoms that were previously unknown to them. These freedoms may have positive implications for women's ability to negotiate sexual protection with partners and hence prevent unintended pregnancy and decrease their risk of HIV. Among tertiary institution students, who are a relatively 'privileged' group, there is little information on gender norms that might shape responses to HIV-prevention programmes. To elicit gender norms regarding women's and men's roles, condom and contraceptive use, sexual communication and sexual pleasure, we conducted 10 semi-structured focus group discussions with African and Indian female tertiary institution students in order to understand how norms might be used to buttress HIV- and pregnancy-prevention. Participants reported dramatic changes in the structure of gender norms and relations with the formal recognition of women's rights in the post-Apartheid context. These generational shifts in norms are supported by other research in South Africa. At the same time, women recognized the co-existence of traditional constructions of gender that operate to constrain women's freedom. The perceived changes that have taken place provide an entry point for intervention, particularly for reinforcing emerging gender norms that promote women's protection against unintended pregnancy and HIV/STIs.

  12. Open to Critique: Predictive Effects of Academic Outcomes from a Bridging/Foundation Programme on First-Year Degree-Level Study

    ERIC Educational Resources Information Center

    Curtis, Elana; Wikaire, Erena; Jiang, Yannan; McMillan, Louise; Loto, Robert; Fonua, Sonia; Herbert, Rowan; Hori, Melissa; Ko, Teri; Newport, Rochelle; Salter, David; Wiles, Janine; Airini; Reid, Papaarangi

    2017-01-01

    Bridging/foundation programmes are often provided by tertiary institutions to increase equity in access and academic performance of students from under-served communities. Little empirical evidence exists to measure the effectiveness of these bridging/foundation programmes on undergraduate academic outcomes. This research identifies the predictive…

  13. Dynamic determination of kinetic parameters and computer simulation of growth of Clostridium perfringens in cooked beef

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to develop a new one-step methodology that uses a dynamic approach to directly construct a tertiary model for prediction of the growth of C. perfringens in cooked beef. This methodology was based on numerical analysis and optimization of both primary and secondary...

  14. Predicting English Word Accent on Morphological Grounds

    ERIC Educational Resources Information Center

    Salmani-Nodoushan, Mohammad Ali

    2007-01-01

    Learners of English as a foreign/Second Language (EFL/ESL) can easily learn the correct pronunciation of English words. Linguists have tried to simplify English phonology in general, and English accent in particular, over the past 50 years or so; some scholars have talked about four degrees of primary, secondary, tertiary and weak stress (e.g.,…

  15. Predicting the Academic Achievement of First-Year, Pre-Service Teachers: The Role of Engagement, Motivation, ATAR, and Emotional Intelligence

    ERIC Educational Resources Information Center

    Wurf, Gerald; Croft-Piggin, Lindy

    2015-01-01

    Australian universities are enrolling a larger and more diverse undergraduate student population. Counter to this trend, several states have developed plans to restrict entrance into the teaching profession. This study investigates the role of engagement, motivation, Australian Tertiary Admission Rank (ATAR), and emotional intelligence in the…

  16. Predictors of Academic Success for Maori, Pacific and Non-Maori Non-Pacific Students in Health Professional Education: A Quantitative Analysis

    ERIC Educational Resources Information Center

    Wikaire, Erena; Curtis, Elana; Cormack, Donna; Jiang, Yannan; McMillan, Louise; Loto, Rob; Reid, Papaarangi

    2017-01-01

    Tertiary institutions internationally aim to increase student diversity, however are struggling to achieve equitable academic outcomes for indigenous and ethnic minority students and detailed exploration of factors that impact on success is required. This study explored the predictive effect of admission variables on academic outcomes for health…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevena, A.S.; Varga, R.J.; Collins, I.D.

    Salin basin of central Myanmar is a tertiary fore-arc basin that extends over 10,000 mi{sup 2} and contains 30,000+ ft of siliciclastic rocks. In the western Salin basin, Tertiary deltaic and fluvial formations contain thousands of feet of lithic sandstones that alternate with transgressive shallow marine shales. Facies and paleocurrent studies indicate deposition by north-to-south prograding tidal deltas and associated fluvial systems in a semi-restricted basin. Presence of serpentinite and volcanic clasts in Tertiary sandstones may imply that the basin was bounded to the east by the volcanic arc and to the west by a fore-arc accretionary ridge throughout muchmore » of the Cenozoic. Salin basin is currently defined by a regional north/south-trending syncline with uplifts along the eastern and western margins. Elongate folds along the eastern basin margin verge to the east and lie above the reverse faults that dip west; much of Myanmar's present hydrocarbon production is from these structures. Analogous structures occur along the western margin, but verge to the west and are associated with numerous hydrocarbon seeps and hand-dug wells. These basin-bounding structures are the result of fault-propagation folding. In the western Salin basin, major detachments occur within the shaly Tabyin and Laungshe formations. Fault ramps propagated through steep forelimbs on the western sides of the folds, resulting in highly asymmetric footwall synclines. Stratigraphic and apatite fission track data are consistent with dominantly Plio-Pleistocene uplift, with limited uplift beginning approximately 10 Ma. Paleostress analysis of fault/slickenside data indicates that fold and thrust structures formed during regional east/west compression and are not related in any simple way to regional transpression as suggested by plate kinematics.« less

  18. Systematic detection of internal symmetry in proteins using CE-Symm.

    PubMed

    Myers-Turnbull, Douglas; Bliven, Spencer E; Rose, Peter W; Aziz, Zaid K; Youkharibache, Philippe; Bourne, Philip E; Prlić, Andreas

    2014-05-29

    Symmetry is an important feature of protein tertiary and quaternary structures that has been associated with protein folding, function, evolution, and stability. Its emergence and ensuing prevalence has been attributed to gene duplications, fusion events, and subsequent evolutionary drift in sequence. This process maintains structural similarity and is further supported by this study. To further investigate the question of how internal symmetry evolved, how symmetry and function are related, and the overall frequency of internal symmetry, we developed an algorithm, CE-Symm, to detect pseudo-symmetry within the tertiary structure of protein chains. Using a large manually curated benchmark of 1007 protein domains, we show that CE-Symm performs significantly better than previous approaches. We use CE-Symm to build a census of symmetry among domain superfamilies in SCOP and note that 18% of all superfamilies are pseudo-symmetric. Our results indicate that more domains are pseudo-symmetric than previously estimated. We establish a number of recurring types of symmetry-function relationships and describe several characteristic cases in detail. With the use of the Enzyme Commission classification, symmetry was found to be enriched in some enzyme classes but depleted in others. CE-Symm thus provides a methodology for a more complete and detailed study of the role of symmetry in tertiary protein structure [availability: CE-Symm can be run from the Web at http://source.rcsb.org/jfatcatserver/symmetry.jsp. Source code and software binaries are also available under the GNU Lesser General Public License (version 2.1) at https://github.com/rcsb/symmetry. An interactive census of domains identified as symmetric by CE-Symm is available from http://source.rcsb.org/jfatcatserver/scopResults.jsp]. Copyright © 2014. Published by Elsevier Ltd.

  19. Denaturation of RNA secondary and tertiary structure by urea: simple unfolded state models and free energy parameters account for measured m-values

    PubMed Central

    Lambert, Dominic; Draper, David E.

    2012-01-01

    To investigate the mechanism by which urea destabilizes RNA structure, urea-induced unfolding of four different RNA secondary and tertiary structures was quantified in terms of an m-value, the rate at which the free energy of unfolding changes with urea molality. From literature data and our osmometric study of a backbone analog, we derived average interaction potentials (per Å2 of solvent accessible surface) between urea and three kinds of RNA surfaces: phosphate, ribose, and base. Estimates of the increases in solvent accessible surface areas upon RNA denaturation were based on a simple model of unfolded RNA as a combination of helical and single strand segments. These estimates, combined with the three interaction potentials and a term to account for urea interactions with released ions, yield calculated m-values in good agreement with experimental values (200 mm monovalent salt). Agreement was obtained only if single-stranded RNAs were modeled in a highly stacked, A form conformation. The primary driving force for urea induced denaturation is the strong interaction of urea with the large surface areas of bases that become exposed upon denaturation of either RNA secondary or tertiary structure, though urea interactions with backbone and released ions may account for up to a third of the m-value. Urea m-values for all four RNA are salt-dependent, which we attribute to an increased extension (or decreased charge density) of unfolded RNAs with increased urea concentration. The sensitivity of the urea m-value to base surface exposure makes it a potentially useful probe of the conformations of RNA unfolded states. PMID:23088364

  20. Computational characterization of how the VX nerve agent binds human serum paraoxonase 1.

    PubMed

    Fairchild, Steven Z; Peterson, Matthew W; Hamza, Adel; Zhan, Chang-Guo; Cerasoli, Douglas M; Chang, Wenling E

    2011-01-01

    Human serum paraoxonase 1 (HuPON1) is an enzyme that can hydrolyze various chemical warfare nerve agents including VX. A previous study has suggested that increasing HuPON1's VX hydrolysis activity one to two orders of magnitude would make the enzyme an effective countermeasure for in vivo use against VX. This study helps facilitate further engineering of HuPON1 for enhanced VX-hydrolase activity by computationally characterizing HuPON1's tertiary structure and how HuPON1 binds VX. HuPON1's structure is first predicted through two homology modeling procedures. Docking is then performed using four separate methods, and the stability of each bound conformation is analyzed through molecular dynamics and solvated interaction energy calculations. The results show that VX's lone oxygen atom has a strong preference for forming a direct electrostatic interaction with HuPON1's active site calcium ion. Various HuPON1 residues are also detected that are in close proximity to VX and are therefore potential targets for future mutagenesis studies. These include E53, H115, N168, F222, N224, L240, D269, I291, F292, and V346. Additionally, D183 was found to have a predicted pKa near physiological pH. Given D183's location in HuPON1's active site, this residue could potentially act as a proton donor or accepter during hydrolysis. The results from the binding simulations also indicate that steered molecular dynamics can potentially be used to obtain accurate binding predictions even when starting with a closed conformation of a protein's binding or active site.

  1. Comparative analysis of QSAR models for predicting pK(a) of organic oxygen acids and nitrogen bases from molecular structure.

    PubMed

    Yu, Haiying; Kühne, Ralph; Ebert, Ralf-Uwe; Schüürmann, Gerrit

    2010-11-22

    For 1143 organic compounds comprising 580 oxygen acids and 563 nitrogen bases that cover more than 17 orders of experimental pK(a) (from -5.00 to 12.23), the pK(a) prediction performances of ACD, SPARC, and two calibrations of a semiempirical quantum chemical (QC) AM1 approach have been analyzed. The overall root-mean-square errors (rms) for the acids are 0.41, 0.58 (0.42 without ortho-substituted phenols with intramolecular H-bonding), and 0.55 and for the bases are 0.65, 0.70, 1.17, and 1.27 for ACD, SPARC, and both QC methods, respectively. Method-specific performances are discussed in detail for six acid subsets (phenols and aromatic and aliphatic carboxylic acids with different substitution patterns) and nine base subsets (anilines, primary, secondary and tertiary amines, meta/para-substituted and ortho-substituted pyridines, pyrimidines, imidazoles, and quinolines). The results demonstrate an overall better performance for acids than for bases but also a substantial variation across subsets. For the overall best-performing ACD, rms ranges from 0.12 to 1.11 and 0.40 to 1.21 pK(a) units for the acid and base subsets, respectively. With regard to the squared correlation coefficient r², the results are 0.86 to 0.96 (acids) and 0.79 to 0.95 (bases) for ACD, 0.77 to 0.95 (acids) and 0.85 to 0.97 (bases) for SPARC, and 0.64 to 0.87 (acids) and 0.43 to 0.83 (bases) for the QC methods, respectively. Attention is paid to structural and method-specific causes for observed pitfalls. The significant subset dependence of the prediction performances suggests a consensus modeling approach.

  2. dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins.

    PubMed

    Huang, Kai-Yao; Su, Min-Gang; Kao, Hui-Ju; Hsieh, Yun-Chung; Jhong, Jhih-Hua; Cheng, Kuang-Hao; Huang, Hsien-Da; Lee, Tzong-Yi

    2016-01-04

    Owing to the importance of the post-translational modifications (PTMs) of proteins in regulating biological processes, the dbPTM (http://dbPTM.mbc.nctu.edu.tw/) was developed as a comprehensive database of experimentally verified PTMs from several databases with annotations of potential PTMs for all UniProtKB protein entries. For this 10th anniversary of dbPTM, the updated resource provides not only a comprehensive dataset of experimentally verified PTMs, supported by the literature, but also an integrative interface for accessing all available databases and tools that are associated with PTM analysis. As well as collecting experimental PTM data from 14 public databases, this update manually curates over 12 000 modified peptides, including the emerging S-nitrosylation, S-glutathionylation and succinylation, from approximately 500 research articles, which were retrieved by text mining. As the number of available PTM prediction methods increases, this work compiles a non-homologous benchmark dataset to evaluate the predictive power of online PTM prediction tools. An increasing interest in the structural investigation of PTM substrate sites motivated the mapping of all experimental PTM peptides to protein entries of Protein Data Bank (PDB) based on database identifier and sequence identity, which enables users to examine spatially neighboring amino acids, solvent-accessible surface area and side-chain orientations for PTM substrate sites on tertiary structures. Since drug binding in PDB is annotated, this update identified over 1100 PTM sites that are associated with drug binding. The update also integrates metabolic pathways and protein-protein interactions to support the PTM network analysis for a group of proteins. Finally, the web interface is redesigned and enhanced to facilitate access to this resource. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. MoRFPred-plus: Computational Identification of MoRFs in Protein Sequences using Physicochemical Properties and HMM profiles.

    PubMed

    Sharma, Ronesh; Bayarjargal, Maitsetseg; Tsunoda, Tatsuhiko; Patil, Ashwini; Sharma, Alok

    2018-01-21

    Intrinsically Disordered Proteins (IDPs) lack stable tertiary structure and they actively participate in performing various biological functions. These IDPs expose short binding regions called Molecular Recognition Features (MoRFs) that permit interaction with structured protein regions. Upon interaction they undergo a disorder-to-order transition as a result of which their functionality arises. Predicting these MoRFs in disordered protein sequences is a challenging task. In this study, we present MoRFpred-plus, an improved predictor over our previous proposed predictor to identify MoRFs in disordered protein sequences. Two separate independent propensity scores are computed via incorporating physicochemical properties and HMM profiles, these scores are combined to predict final MoRF propensity score for a given residue. The first score reflects the characteristics of a query residue to be part of MoRF region based on the composition and similarity of assumed MoRF and flank regions. The second score reflects the characteristics of a query residue to be part of MoRF region based on the properties of flanks associated around the given residue in the query protein sequence. The propensity scores are processed and common averaging is applied to generate the final prediction score of MoRFpred-plus. Performance of the proposed predictor is compared with available MoRF predictors, MoRFchibi, MoRFpred, and ANCHOR. Using previously collected training and test sets used to evaluate the mentioned predictors, the proposed predictor outperforms these predictors and generates lower false positive rate. In addition, MoRFpred-plus is a downloadable predictor, which makes it useful as it can be used as input to other computational tools. https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus:-Download. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Using a Strategy of "Structured Conversation" to Enhance the Quality of Tutorial Time

    ERIC Educational Resources Information Center

    Robinson, Stephanie

    2008-01-01

    This article considers the impact of a technique of structured conversation to enhance a student-centred approach to tutorial time. It is suggested that the development of such an approach can provide enhanced learning support in the current challenge of widening diversity in the learner population. Many students in modern tertiary education show…

  5. Water-stable helical structure of tertiary amides of bicyclic β-amino acid bearing 7-azabicyclo[2.2.1]heptane. Full control of amide cis-trans equilibrium by bridgehead substitution.

    PubMed

    Hosoya, Masahiro; Otani, Yuko; Kawahata, Masatoshi; Yamaguchi, Kentaro; Ohwada, Tomohiko

    2010-10-27

    Helical structures of oligomers of non-natural β-amino acids are significantly stabilized by intramolecular hydrogen bonding between main-chain amide moieties in many cases, but the structures are generally susceptible to the environment; that is, helices may unfold in protic solvents such as water. For the generation of non-hydrogen-bonded ordered structures of amides (tertiary amides in most cases), control of cis-trans isomerization is crucial, even though there is only a small sterical difference with respect to cis and trans orientations. We have established methods for synthesis of conformationally constrained β-proline mimics, that is, bridgehead-substituted 7-azabicyclo[2.2.1]heptane-2-endo-carboxylic acids. Our crystallographic, 1D- and 2D-NMR, and CD spectroscopic studies in solution revealed that a bridgehead methoxymethyl substituent completely biased the cis-trans equilibrium to the cis-amide structure along the main chain, and helical structures based on the cis-amide linkage were generated independently of the number of residues, from the minimalist dimer through the tetramer, hexamer, and up to the octamer, and irrespective of the solvent (e.g., water, alcohol, halogenated solvents, and cyclohexane). Generality of the control of the amide equilibrium by bridgehead substitution was also examined.

  6. Distributed cooperative control of AC microgrids

    NASA Astrophysics Data System (ADS)

    Bidram, Ali

    In this dissertation, the comprehensive secondary control of electric power microgrids is of concern. Microgrid technical challenges are mainly realized through the hierarchical control structure, including primary, secondary, and tertiary control levels. Primary control level is locally implemented at each distributed generator (DG), while the secondary and tertiary control levels are conventionally implemented through a centralized control structure. The centralized structure requires a central controller which increases the reliability concerns by posing the single point of failure. In this dissertation, the distributed control structure using the distributed cooperative control of multi-agent systems is exploited to increase the secondary control reliability. The secondary control objectives are microgrid voltage and frequency, and distributed generators (DGs) active and reactive powers. Fully distributed control protocols are implemented through distributed communication networks. In the distributed control structure, each DG only requires its own information and the information of its neighbors on the communication network. The distributed structure obviates the requirements for a central controller and complex communication network which, in turn, improves the system reliability. Since the DG dynamics are nonlinear and non-identical, input-output feedback linearization is used to transform the nonlinear dynamics of DGs to linear dynamics. Proposed control frameworks cover the control of microgrids containing inverter-based DGs. Typical microgrid test systems are used to verify the effectiveness of the proposed control protocols.

  7. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements

    PubMed Central

    Grigoryan, Zareh A.; Karapetian, Armen T.

    2015-01-01

    The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA) in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed. PMID:26345143

  8. All-atom four-body knowledge-based statistical potential to distinguish native tertiary RNA structures from nonnative folds.

    PubMed

    Masso, Majid

    2018-09-14

    Scientific breakthroughs in recent decades have uncovered the capability of RNA molecules to fulfill a wide array of structural, functional, and regulatory roles in living cells, leading to a concomitantly significant increase in both the number and diversity of experimentally determined RNA three-dimensional (3D) structures. Atomic coordinates from a representative training set of solved RNA structures, displaying low sequence and structure similarity, facilitate derivation of knowledge-based energy functions. Here we develop an all-atom four-body statistical potential and evaluate its capacity to distinguish native RNA 3D structures from nonnative folds based on calculated free energy scores. Atomic four-body nearest-neighbors are objectively identified by their occurrence as tetrahedral vertices in the Delaunay tessellations of RNA structures, and rates of atomic quadruplet interactions expected by chance are obtained from a multinomial reference distribution. Our four-body energy function, referred to as RAMP (ribonucleic acids multibody potential), is subsequently derived by applying the inverted Boltzmann principle to the frequency data, yielding an energy score for each type of atomic quadruplet interaction. Several well-known benchmark datasets reveal that RAMP is comparable with, and often outperforms, existing knowledge- and physics-based energy functions. To the best of our knowledge, this is the first study detailing an RNA tertiary structure-based multibody statistical potential and its comparative evaluation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Determinants of career satisfaction among pediatric hospitalists: a qualitative exploration

    PubMed Central

    Leyenaar, JoAnna K.; Capra, Lisa A.; O'Brien, Emily R.; Leslie, Laurel K.; Mackie, Thomas I.

    2014-01-01

    Objectives To characterize determinants of career satisfaction among pediatric hospitalists working in diverse practice settings, and to develop a framework to conceptualize factors influencing career satisfaction. Methods Semi-structured interviews were conducted with community and tertiary care hospitalists, using purposeful sampling to attain maximum response diversity. We employed close- and open-ended questions to assess levels of career satisfaction and its determinants. Interviews were conducted by telephone, recorded, and transcribed verbatim. Emergent themes were identified and analyzed using an inductive approach to qualitative analysis. Results A total of 30 interviews were conducted with community and tertiary care hospitalists, representing 20 hospital medicine programs and 7 Northeastern states. Qualitative analysis yielded 657 excerpts which were coded and categorized into four domains and associated determinants of career satisfaction: (i) professional responsibilities; (ii) hospital medicine program administration; (iii) hospital and healthcare systems; and (iv) career development. While community and tertiary care hospitalists reported similar levels of career satisfaction, they expressed variation in perspectives across these four domains. While the role of hospital medicine program administration was consistently emphasized by all hospitalists, community hospitalists prioritized resource availability, work schedule and clinical responsibilities while tertiary care hospitalists prioritized diversity in non-clinical responsibilities and career development. Conclusions We illustrate how hospitalists in different organizational settings prioritize both consistent and unique determinants of career satisfaction. Given associations between physician satisfaction and healthcare quality, efforts to optimize modifiable factors within this framework, at both community and tertiary care hospitals, may have broad impacts. PMID:24976348

  10. Mechanisms for creating accommodation space during early Tertiary sedimentation in Tibet.

    NASA Astrophysics Data System (ADS)

    Studnicki-Gizbert, C.; Burchfiel, B. C.

    2003-12-01

    The Tibetan plateau is for the most part underlain by rocks of pre-Cenozoic age, a fact that has hindered the identification of Cenozoic shortening structures that can be unequivocally related to the effects of India-Asia collision. Notably, however, the Qiangtang block contains a number of small, short wavelength basins filled with terrestrial sediments of early Tertiary age. Where these basins have been well studied, sedimentation is recognized as having occurred coevally with compressional deformation. The classic treatment of compressional basins appeals to accommodation space created by the flexure of an elastic plate in response to loads created by adjacent thrust fault bound ranges. It is unlikely that the Tertiary basins of the Qiangtang block formed in this manner. The wavelength of a classically modelled flexural basin is a basically a function of the thickness of the elastic plate and the density difference between sedimentary fill and ductile material underlying the plate. Assuming a model of elastic flexure, the very small wavelengths (5 - 30km) characteristic of Qiangtang basins would then imply extremely thin (~ 1-5 km) effective elastic plate thicknesses. These very low values are difficult to reconcile with any reasonable characterization of crustal rheology. Instead, these relatively small basins likely record the creation of accommodation space created by differential uplift across the strike of folds and faults. Stratal geometries and sedimentation rates reflect the kinematics and geometries of local compressional structures and the mechanical basis for the creation of accommodation space remains uncertain. Finally, the origin of these basins makes it unlikely that early Tertiary sedimentation represents a significant fraction of the upper crust of Tibetan plateau.

  11. Micro-Macro Analysis and Phenomenological Modelling of Salt Viscous Damage and Application to Salt Caverns

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Pouya, Ahmad; Arson, Chloé

    2015-11-01

    This paper aims to gain fundamental understanding of the microscopic mechanisms that control the transition between secondary and tertiary creep around salt caverns in typical geological storage conditions. We use a self-consistent inclusion-matrix model to homogenize the viscoplastic deformation of halite polycrystals and predict the number of broken grains in a Representative Elementary Volume of salt. We use this micro-macro modeling framework to simulate creep tests under various axial stresses, which gives us the critical viscoplastic strain at which grain breakage (i.e., tertiary creep) is expected to occur. The comparison of simulation results for short-term and long-term creep indicates that the initiation of tertiary creep depends on the stress and the viscoplastic strain. We use the critical viscoplastic deformation as a yield criterion to control the transition between secondary and tertiary creep in a phenomenological viscoplastic model, which we implement into the Finite Element Method program POROFIS. We model a 850-m-deep salt cavern of irregular shape, in axis-symmetric conditions. Simulations of cavern depressurization indicate that a strain-dependent damage evolution law is more suitable than a stress-dependent damage evolution law, because it avoids high damage concentrations and allows capturing the formation of a damaged zone around the cavity. The modeling framework explained in this paper is expected to provide new insights to link grain breakage to phenomenological damage variables used in Continuum Damage Mechanics.

  12. Can we ease the financial burden of colonoscopy? Using real-time endoscopic assessment of polyp histology to predict surveillance intervals.

    PubMed

    Chandran, S; Parker, F; Lontos, S; Vaughan, R; Efthymiou, M

    2015-12-01

    Polyps identified at colonoscopy are predominantly diminutive (<5 mm) with a small risk (>1%) of high-grade dysplasia or carcinoma; however, the cost of histological assessment is substantial. The aim of this study was to determine whether prediction of colonoscopy surveillance intervals based on real-time endoscopic assessment of polyp histology is accurate and cost effective. A prospective cohort study was conducted across a tertiary care and private community hospital. Ninety-four patients underwent colonoscopy and polypectomy of diminutive (≤5 mm) polyps from October 2012 to July 2013, yielding a total of 159 polyps. Polyps were examined and classified according to the Sano-Emura classification system. The endoscopic assessment (optical diagnosis) of polyp histology was used to predict appropriate colonoscopy surveillance intervals. The main outcome measure was the accuracy of optical diagnosis of diminutive colonic polyps against the gold standard of histological assessment. Optical diagnosis was correct in 105/108 (97.2%) adenomas. This yielded a sensitivity, specificity and positive and negative predictive values (with 95%CI) of 97.2% (92.1-99.4%), 78.4% (64.7-88.7%), 90.5% (83.7-95.2%) and 93% (80.9-98.5%) respectively. Ninety-two (98%) patients were correctly triaged to their repeat surveillance colonoscopy. Based on these findings, a cut and discard approach would have resulted in a saving of $319.77 per patient. Endoscopists within a tertiary care setting can accurately predict diminutive polyp histology and confer an appropriate surveillance interval with an associated financial benefit to the healthcare system. However, limitations to its application in the community setting exist, which may improve with further training and high-definition colonoscopes. © 2015 Royal Australasian College of Physicians.

  13. Changes in plant defense chemistry (pyrrolizidine alkaloids) revealed through high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Sabrina; Macel, Mirka; Schlerf, Martin; Moghaddam, Fatemeh Eghbali; Mulder, Patrick P. J.; Skidmore, Andrew K.; van der Putten, Wim H.

    2013-06-01

    Plant toxic biochemicals play an important role in defense against natural enemies and often are toxic to humans and livestock. Hyperspectral reflectance is an established method for primary chemical detection and could be further used to determine plant toxicity in the field. In order to make a first step for pyrrolizidine alkaloids detection (toxic defense compound against mammals and many insects) we studied how such spectral data can estimate plant defense chemistry under controlled conditions. In a greenhouse, we grew three related plant species that defend against generalist herbivores through pyrrolizidine alkaloids: Jacobaea vulgaris, Jacobaea erucifolia and Senecio inaequidens, and analyzed the relation between spectral measurements and chemical concentrations using multivariate statistics. Nutrient addition enhanced tertiary-amine pyrrolizidine alkaloids contents of J. vulgaris and J. erucifolia and decreased N-oxide contents in S. inaequidens and J. vulgaris. Pyrrolizidine alkaloids could be predicted with a moderate accuracy. Pyrrolizidine alkaloid forms tertiary-amines and epoxides were predicted with 63% and 56% of the variation explained, respectively. The most relevant spectral regions selected for prediction were associated with electron transitions and Csbnd H, Osbnd H, and Nsbnd H bonds in the 1530 and 2100 nm regions. Given the relatively low concentration in pyrrolizidine alkaloids concentration (in the order of mg g-1) and resultant predictions, it is promising that pyrrolizidine alkaloids interact with incident light. Further studies should be considered to determine if such a non-destructive method may predict changes in PA concentration in relation to plant natural enemies. Spectroscopy may be used to study plant defenses in intact plant tissues, and may provide managers of toxic plants, food industry and multitrophic-interaction researchers with faster and larger monitoring possibilities.

  14. Bridging the gap between structural bioinformatics and receptor research: the membrane-embedded, ligand-gated, P2X glycoprotein receptor.

    PubMed

    Mager, Peter P; Weber, Anje; Illes, Peter

    2004-01-01

    No details on P2X receptor architecture had been known at the atomic resolution level. Using comparative homology-based molecular modelling and threading, it was attempted to predict the three-dimensional structure of P2X receptors. This prediction could not be carried out, however, because important properties of the P2X family differ considerably from that of the potential template proteins. This paper reviews an alternative approach consisting of three research fields: bioinformatics, structural modelling, and a variety of the results of biological experiments. Starting point is the amino acid sequence. Using the sequential data, the first step is a secondary structure prediction. The resulting secondary structure is converted into a three-dimensional geometry. Then, the secondary and tertiary structures are optimized by using the quantum chemistry RHF/3-21G minimal basic set and the all-atom molecular mechanics AMBER96 force field. The fold of the membrane-embedded protein is simulated by a suitable dielectricum. The structure is refined using a conjugate gradient minimizer (Fletcher-Reeves modification of the Polak-Ribiere method). The results of the geometry optimization were checked by a Ramanchandran plot, rotamer analysis, all-atom contact dots, and the C(beta) deviation. As additional tools for the model building, multiple alignment analysis and comparative sequence-function analysis were used. The approach is exemplified on the membrane-embedded, ligand-gated P2X3 receptor subunit, a monovalent-bivalent cation channel-forming glycoprotein that is activated by extracellular adenosine 5'-triphosphate. From these results, a topology of the pore-forming motif of the P2X3 receptor subunit was proposed. It is believed that a fully functional P2X channel requires a precise coupling between (i) two distinct peptide modules, an extracellularly occurring ATP-binding module and a pore module that includes a long transmembrane and short intracellular part, (ii) an interaction surface with membranes, and (iii) hydrogen bonding forces of the residues and hydrated cations. Furthermore, this paper demonstrates the role of quantitative structure-activity relationships (QSARs) in P2X research (calcium ion permeability of the wild-type and after site-directed mutagenesis of the rat P2X2 receptor protein, KN-62 analogs as competitive antagonists of the human P2X7 receptor). EXPERIMENTAL PROOFS: The predictions are experimentally testable and may provide an additional interpretation of experimental observations published in literature. In particular, there is the good agreement of the geometry optimized P2X3 structure with experimentally proposed P2X receptor models obtained by neurophysiological, biochemical, pharmacological, and mutation experiments. Although the rat P2X3 receptor subunit is more complex (397 amino acids) than the KcsA protein (160 amino acids), the overall folds of the peptide backbone atoms are similar. To avoid semantic confusion, it should be noted that "prediction" is defined in a probabilistic sense. Matches to generic rules do not mean "this is true" but rather "this might be true". Only biological and chemical knowledge can determine whether or not these predictions are meaningful. Thus, the results from the computational tools are probabilistic predictions and subject to further experimental verification. The geometry optimized P2X3 receptor subunit is freely available for academic researchers on e-mail request (PDB format).

  15. Rapid screening for inflammatory neuropathies by standardized clinical criteria

    PubMed Central

    Tramontozzi, Louis A.

    2016-01-01

    Abstract Background: Delay in recognition and treatment of inflammatory neuropathies increases morbidity and mortality. We have developed and standardized 3 clinical screening criteria that rapidly detect inflammatory neuropathies. Methods: We reviewed all patients with definite large fiber neuropathy in 2 different patient populations: 1 from a private neurology clinic and the other from a tertiary care center. Patients were divided into 2 groups: those with an inflammatory neuropathy and those with a noninflammatory neuropathy. We specifically noted the 3 key neuropathy characteristics: onset, distribution, and associated systemic features (ODS). We studied the sensitivity and specificity of ODS in differentiating between inflammatory and noninflammatory neuropathies. Results: A total of 206 patients were included: 51 from the private clinic and 155 from the tertiary care center. The sensitivity of using ODS in detecting an inflammatory neuropathy was 96% and the specificity was 85%. The positive predictive value of ODS was 0.8 and negative predictive value was 0.97. Conclusions: Rapid screening for inflammatory neuropathies by ODS clinical criteria is highly sensitive and has a high negative predictive value for noninflammatory neuropathies. ODS uses simple clinical criteria to rapidly screen for patients with a potentially treatable form of neuropathy and accelerate their diagnostic evaluation. Classification of evidence: This study provides Class IV evidence that 3 neuropathy characteristics—onset, distribution, and associated systemic features—accurately identify patients with inflammatory neuropathies. PMID:29443273

  16. Nurses' participation in personal knowledge transfer: the role of leader-member exchange (LMX) and structural empowerment.

    PubMed

    Davies, Alicia; Wong, Carol A; Laschinger, Heather

    2011-07-01

    The purpose of this study was to test Kanter's theory by examining relationships among structural empowerment, leader-member exchange (LMX) quality and nurses' participation in personal knowledge transfer activities. Despite the current emphasis on evidence-based practice in health care, research suggests that implementation of research findings in everyday clinical practice is unsystematic at best with mixed outcomes. This study was a secondary analysis of data collected using a non-experimental, predictive mailed survey design. A random sample of 400 registered nurses who worked in urban tertiary care hospitals in Ontario yielded a final sample of 234 for a 58.5% response rate. Hierarchical multiple linear regression analysis revealed that the combination of LMX and structural empowerment accounted for 9.1% of the variance in personal knowledge transfer but only total empowerment was a significant independent predictor of knowledge transfer (β=0.291, t=4.012, P<0.001). Consistent with Kanter's Theory, higher levels of empowerment and leader-member exchange quality resulted in increased participation in personal knowledge transfer in practice. The results reinforce the pivotal role of nurse managers in supporting empowering work environments that are conducive to transfer of knowledge in practice to provide evidence-based care. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.

  17. Combined Endoscopic/Sonographic-Based Risk Matrix Model for Predicting One-Year Risk of Surgery: A Prospective Observational Study of a Tertiary Center Severe/Refractory Crohn's Disease Cohort.

    PubMed

    Rispo, Antonio; Imperatore, Nicola; Testa, Anna; Bucci, Luigi; Luglio, Gaetano; De Palma, Giovanni Domenico; Rea, Matilde; Nardone, Olga Maria; Caporaso, Nicola; Castiglione, Fabiana

    2018-03-08

    In the management of Crohn's Disease (CD) patients, having a simple score combining clinical, endoscopic and imaging features to predict the risk of surgery could help to tailor treatment more effectively. AIMS: to prospectively evaluate the one-year risk factors for surgery in refractory/severe CD and to generate a risk matrix for predicting the probability of surgery at one year. CD patients needing a disease re-assessment at our tertiary IBD centre underwent clinical, laboratory, endoscopy and bowel sonography (BS) examinations within one week. The optimal cut-off values in predicting surgery were identified using ROC curves for Simple Endoscopic Score for CD (SES-CD), bowel wall thickness (BWT) at BS, and small bowel CD extension at BS. Binary logistic regression and Cox's regression were then carried out. Finally, the probabilities of surgery were calculated for selected baseline levels of covariates and results were arranged in a prediction matrix. Of 100 CD patients, 30 underwent surgery within one year. SES-CD©9 (OR 15.3; p<0.001), BWT©7 mm (OR 15.8; p<0.001), small bowel CD extension at BS©33 cm (OR 8.23; p<0.001) and stricturing/penetrating behavior (OR 4.3; p<0.001) were the only independent factors predictive of surgery at one-year based on binary logistic and Cox's regressions. Our matrix model combined these risk factors and the probability of surgery ranged from 0.48% to 87.5% (sixteen combinations). Our risk matrix combining clinical, endoscopic and ultrasonographic findings can accurately predict the one-year risk of surgery in patients with severe/refractory CD requiring a disease re-evaluation. This tool could be of value in clinical practice, serving as the basis for a tailored management of CD patients.

  18. Prediction, Refinement and Persistency of Transmembrane Helix Dimers in Lipid Bilayers using Implicit and Explicit Solvent/Lipid Representations: Microsecond Molecular Dynamics Simulations of ErbB1/B2 and EphA1

    PubMed Central

    Zhang, Liqun; Sodt, Alexander J.; Venable, Richard M.; Pastor, Richard W.; Buck, Matthias

    2012-01-01

    All-atom simulations are carried out on ErbB1/B2 and EphA1 transmembrane helix dimers in lipid bilayers starting from their solution/DMPC bicelle NMR structures. Over the course of microsecond trajectories, the structures remain in close proximity to the initial configuration and satisfy the great majority of experimental tertiary contact restraints. These results further validate CHARMM protein/lipid force fields and simulation protocols on Anton. Separately, dimer conformations are generated using replica exchange in conjunction with an implicit solvent and lipid representation. The implicit model requires further improvement, and this study investigates whether lengthy all-atom molecular dynamics simulations can alleviate the shortcomings of the initial conditions. The simulations correct many of the deficiencies. For example excessive helix twisting is eliminated over a period of hundreds of nanoseconds. The helix tilt, crossing angles and dimer contacts approximate those of the NMR derived structure, although the detailed contact surface remains off-set for one of two helices in both systems. Hence, even microsecond simulations are not long enough for extensive helix rotations. The alternate structures can be rationalized with reference to interaction motifs and may represent still sought after receptor states that are important in ErbB1/B2 and EphA1 signaling. PMID:23042146

  19. On the Roles of Substrate Binding and Hinge Unfolding in Conformational Changes of Adenylate Kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brokaw, Jason B.; Chu, Jhih-wei

    2010-11-17

    We characterized the conformational change of adenylate kinase (AK) between open and closed forms by conducting five all-atom molecular-dynamics simulations, each of 100 ns duration. Different initial structures and substrate binding configurations were used to probe the pathways of AK conformational change in explicit solvent, and no bias potential was applied. A complete closed-to-open and a partial open-to-closed transition were observed, demonstrating the direct impact of substrate-mediated interactions on shifting protein conformation. The sampled configurations suggest two possible pathways for connecting the open and closed structures of AK, affirming the prediction made based on available x-ray structures and earlier worksmore » of coarse-grained modeling. The trajectories of the all-atom molecular-dynamics simulations revealed the complexity of protein dynamics and the coupling between different domains during conformational change. Calculations of solvent density and density fluctuations surrounding AK did not show prominent variation during the transition between closed and open forms. Finally, we characterized the effects of local unfolding of an important hinge near Pro177 on the closed-to-open transition of AK and identified a novel mechanism by which hinge unfolding modulates protein conformational change. The local unfolding of Pro177 hinge induces alternative tertiary contacts that stabilize the closed structure and prevent the opening transition.« less

  20. The Unfolding and Refolding Reactions of Triosephosphate Isomerase from Trypanosoma Cruzi Follow Similar Pathways. Guanidinium Hydrochloride Studies

    NASA Astrophysics Data System (ADS)

    Vázquez-Contreras, Edgar; Pérez Hernández, Gerardo; Sánchez-Rebollar, Brenda Guadalupe; Chánez-Cárdenas, María Elena

    2005-04-01

    The unfolding and refolding reactions of Trypanosoma cruzi triosephosphate isomerase (TcTIM) was studied under equilibrium conditions at increasing guanidinium hydrochloride concentrations. The changes in activity intrinsic fluorescence and far-ultraviolet circular dichroism as a function of denaturant were used as a quaternary, tertiary and secondary structural probes respectively. The change in extrinsic ANS fluorescence intensity was also investigated. The results show that the transition between the homodimeric native enzyme to the unfolded monomers (unfolding), and its inverse reaction (refolding) are described by similar pathways and two equilibrium intermediates were detected in both reactions. The mild denaturant concentrations intermediate is active and contains significant amount of secondary and tertiary structures. The medium denaturant concentrations intermediate is inactive and able to bind the fluorescent dye. This intermediates are maybe related with those observed in the denaturation pattern of TIMs from other species; the results are discussed in this context.

  1. Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives

    DOE PAGES

    Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M; ...

    2016-06-23

    In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less

  2. Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M

    In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less

  3. Deformation of allochthonous salt and evolution of related salt-structural systems, eastern Louisiana Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, D.C.

    1996-12-31

    Salt tectonics in the northern Gulf of Mexico involves both vertical diapirism and lateral silling or flow of salt into wings and tablets (sheets). Combinations of these two modes of salt deformation, concurrent with sediment loading and salt evacuation, have produced complex structures in the coastal and offshore region of southeastern Louisiana, a prolific oil and gas province. Many large growth faults and salt domes in the study area root into intra-Tertiary salt welds that were formerly occupied by allochthonous salt tablets. Two end-member structural systems involving evacuation of former tabular salt are recognized: roho systems and stepped counter-regional systems.more » Both end-member systems share a similar multi-staged evolution, including (1) initial formation of a south-leaning salt dome or wall sourced from the Jurassic salt level; (2) progressive development into a semi-tabular allochthonous salt body; and (3) subsequent loading, evacuation, and displacement of the tabular salt into secondary domes. In both systems, it is not uncommon to find salt displaced as much as 16-24 km south of its autochthonous source, connected by a horizontal salt weld to an updip, deflated counter-regional feeder. Although both end-member structural systems may originate before loading of allochthonous salt having grossly similar geometry, their final structural configurations after loading and salt withdrawal are distinctly different. Roho systems are characterized by large-displacement, listric, south-dipping growth faults that sole into intra-Tertiary salt welds marked by high-amplitude reflections continuous with residual salt masses. Salt from the former salt tablets has been loaded and squeezed laterally and downdip. Stepped counter-regional systems, in contrast, comprise large salt domes and adjacent large-displacement, north-dipping growth faults that sole into intra-Tertiary salt welds before stepping down again farther north.« less

  4. Structural changes in gluten protein structure after addition of emulsifier. A Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.

    2011-06-01

    Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.

  5. Tectonic framework of Turkish sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, P.O.

    1988-08-01

    Turkey's exploration potential primarily exists in seven onshore (Southeast Turkey platform, Tauride platform, Pontide platform, East Anatolian platform, Interior, Trace, and Adana) basins and four offshore (Black Sea, Marmara Sea, Aegean Sea, and Mediterranean Sea) regional basins formed during the Mesozoic and Tertiary. The Mesozoic basins are the onshore basins: Southeast Turkey, Tauride, Pontide, East Anatolian, and Interior basins. Due to their common tectonic heritage, the southeast Turkey and Tauride basins have similar source rocks, structural growth, trap size, and structural styles. In the north, another Mesozoic basin, the Pontide platform, has a much more complex history and very littlemore » in common with the southerly basins. The Pontide has two distinct parts; the west has Paleozoic continental basement and the east is underlain by island-arc basement of Jurassic age. The plays are in the upper Mesozoic rocks in the west Pontide. The remaining Mesozoic basins of the onshore Interior and East Anatolian basins are poorly known and very complex. Their source, reservoir, and seal are not clearly defined. The basins formed during several orogenic phases in mesozoic and Tertiary. The Cenozoic basins are the onshore Thrace and Adana basins, and all offshore regional basins formed during Miocene extension. Further complicating the onshore basins evolution is the superposition of Cenozoic basins and Mesozoic basins. The Thrace basin in the northwest and Adana basin in the south both originate from Tertiary extension over Tethyan basement and result in a similar source, reservoir, and seal. Local strike-slip movement along the North Anatolian fault modifies the Thrace basin structures, influencing its hydrocarbon potential.« less

  6. Skill Acquisition and Use across the Life Course: Current Trends, Future Prospects

    ERIC Educational Resources Information Center

    Martin, Bill

    2007-01-01

    People's life pathways are no longer as predictable as they were in the second half of the 20th century. It is no longer as simple as moving from school to work, probably via tertiary education, to living independently, then getting married and starting a family. Changes in how people combine education with life-course transitions will influence…

  7. Validity of the Social Communication Questionnaire in Assessing Risk of Autism in Preschool Children with Developmental Problems

    ERIC Educational Resources Information Center

    Allen, C. W.; Silove, N.; Williams, K.; Hutchins, P.

    2007-01-01

    This study estimates the sensitivity and specificity of the social communication questionnaire (SCQ) for autistic spectrum disorders in preschool children at high risk for developmental problems referred to a tertiary centre and compares the predictions of the SCQ and the referrer. The SCQ was completed by 81 parents prior to multidisciplinary…

  8. Diagnostic performance of influenza viruses and RSV rapid antigen detection tests in children in tertiary care.

    PubMed

    Moesker, F M; van Kampen, J J A; Aron, G; Schutten, M; van de Vijver, D A M C; Koopmans, M P G; Osterhaus, A D M E; Fraaij, P L A

    2016-06-01

    Rapid antigen detection tests (RADTs) are increasingly used to detect influenza viruses and respiratory syncytial virus (RSV). However, their sensitivity and specificity are a matter of debate, challenging their clinical usefulness. Comparing diagnostic performances of BinaxNow Influenza AB(®) (BNI) and BinaxNow RSV(®) (BNR), to those of real-time reverse transcriptase PCR (RT-PCR), virus isolation and direct immunofluorescence (D-IF) in paediatric patients. Between November 2005 and September 2013, 521 nasal washings from symptomatic children (age <5 years) attending our tertiary care centre were tested, with a combination of the respective assays using RT-PCR as gold standard. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of BNI were 69% (confidence interval [CI] [51-83]), 96% [94-97], 55% [39-70] and 98% [96-99] respectively. Of eleven false-negative samples, RT-PCR Ct-values were higher than all RT-PCR positive test results (27 vs 22, p=0.012). Of twenty false-positive samples, none were culture positive and two tested positive in D-IF. Sensitivity, specificity, PPV and NPV for BNR were 79% [73-85], 98% [96-99], 97% [93-99] and 88% [84-91]. Of the 42 false-negative samples the median Ct-value was higher than that of all RT-PCR positive samples (31 vs 23, p<0.0001). Five false-positive samples were detected. Three of these tested positive for RSV in virus isolation and D-IF. RADTs have a high specificity with BNR being superior to BNI. However, their relative low sensitivity limits their usefulness for clinical decision making in a tertiary care paediatric hospital. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Factors predicting quality of work life among nurses in tertiary-level hospitals, Bangladesh.

    PubMed

    Akter, N; Akkadechanunt, T; Chontawan, R; Klunklin, A

    2018-06-01

    This study examined the level of quality of work life and predictability of years of education, monthly income, years of experience, job stress, organizational commitment and work environment on quality of work life among nurses in tertiary-level hospitals in the People's Republic of Bangladesh. There is an acute shortage of nurses worldwide including Bangladesh. Quality of work life is important for quality of patient care and nurse retention. Nurses in Bangladesh are fighting to provide quality care for emerging health problems for the achievement of sustainable development goals. We collected data from 288 randomly selected registered nurses, from six tertiary-level hospitals. All nurses were requested to fill questionnaire consisted of Demographic Data Sheet, Quality of Nursing Work Life Survey, Expanded Nursing Stress Scale, Questionnaire of Organizational Commitment and Practice Environment Scale of the Nursing Work Index. Data were analysed by descriptive statistics and multiple regression. The quality of work life as perceived by nurses in Bangladesh was at moderate level. Monthly income was found as the best predictor followed by work environment, organizational commitment and job stress. A higher monthly income helps nurses to fulfil their personal needs; positive work environment helps to provide quality care to the patients. Quality of work life and predictors measured by self-report only may not reflect the original picture of the quality of work life among nurses. Findings provide information for nursing and health policymakers to develop policies to improve quality of work life among nurses that can contribute to quality of nursing care. This includes the working environment, commitment to the organization and measures to reduce job stress. © 2017 International Council of Nurses.

  10. The intracellular region of ClC-3 chloride channel is in a partially folded state and a monomer.

    PubMed

    Li, Shu Jie; Kawazaki, Masanobu; Ogasahara, Kyoko; Nakagawa, Atsushi

    2006-05-01

    In contrast to bacterial ClC chloride channels, all eukaryotic ClC chloride channels have a conserved long intracellular region that makes up of the carboxyl terminus of the protein and is necessary for channel functions as a channel gate. Little is known, however, about the molecular structure of the intracellular region of ClC chloride channels so far. Here, for the first time, we have expressed and purified the intracellular region of the rat ClC-3 chloride channel (C-ClC-3) as a water-soluble protein under physiological conditions, and investigated its structural characteristics and assembly behavior by means of circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC), size exclusion chromatography and analytical ultracentrifugation. The far-UV CD spectra of C-ClC-3 in the native state and in the presence of urea clearly show that the protein has a significantly folded secondary structure consisting of alpha-helices and beta-sheets, while the near-UV CD spectra and DSC experiments indicate the protein is deficient in well-defined tertiary packing. Its Stokes radius is larger than its expected size as a folded globular protein, as determined on size exclusion chromatography. Furthermore, the DisEMBL program, a useful computational tool for the prediction of disordered/unstructured regions within a protein sequence, predicts that the protein is in a partially folded state. Based on these results, we conclude that C-ClC-3 is partially folded. On the other hand, both size exclusion chromatography and sedimentation equilibrium analysis show that C-ClC-3 exists as a monomer in solution, not a dimer like the whole ClC-3 molecule.

  11. Computational Analysis of the CB1 Carboxyl-terminus in the Receptor-G Protein Complex

    PubMed Central

    Shim, Joong-Youn; Khurana, Leepakshi; Kendall, Debra A.

    2016-01-01

    Despite the important role of the carboxyl-terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1-Gi complex (Shim J-Y, Ahn KH, Kendall DA. The Journal of Biological Chemistry 2013;288:32449-32465) to incorporate a complete CB1 Ct (Glu416Ct–Leu472Ct). Based upon the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1-Gi complex. The resulting models were consistent with the NMR-determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site-directed mutagenesis studies of Glu416Ct, Asp423Ct, Asp428Ct, and Arg444Ct of CB1 Ct suggested that the CB1 Ct can influence receptor-G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein. PMID:26994549

  12. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortuna, S. V., E-mail: s-fortuna@ispms.ru; Ivanov, K. V., E-mail: ikv@ispms.ru; Eliseev, A. A., E-mail: alan@ispms.ru

    2015-10-27

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  13. Students' Communicative Resources in Relation to Their Conceptual Understanding--The Role of Non-Conventionalized Expressions in Making Sense of Visualizations of Protein Function

    ERIC Educational Resources Information Center

    Rundgren, Carl-Johan; Hirsch, Richard; Chang Rundgren, Shu-Nu; Tibell, Lena A. E.

    2012-01-01

    This study examines how students explain their conceptual understanding of protein function using visualizations. Thirteen upper secondary students, four tertiary students (studying chemical biology), and two experts were interviewed in semi-structured interviews. The interviews were structured around 2D illustrations of proteins and an animated…

  14. Recent Development in Spectroscopic and Chemical Characterization of Cellulose

    DTIC Science & Technology

    2005-01-01

    specific to the reducing end groups of the polysaccharides , confirmed the parallel alignment of molecular chains within the microfibrils in native...they include primary, secondary, and tertiary structures. And indeed, crystallographic studies of the monosaccharides and of related structures...Two approaches were adopted for this purpose. The first was based on examining the Raman spectra of polysaccharide polymers and oligomers that

  15. The evolution of the Piedemonte Llanero petroleum system, Cordillera Oriental, Colombia (2) Reservoir petrography & petroleum geochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piggott, N.; Vear, A.; Warren, E.A.

    1996-08-01

    Detailed quantification of cements and rock texture, fluid inclusion microthermometry, thermal maturity data, oil-source rock correlations and structural restorations have been integrated to reveal the porosity and hydrocarbon charge evolution of reservoirs in the Piedemonte Llanero thrustbelt of Colombia. Active exploration of deeply buried structures in different thrust sheets of the Piedemonte Llanero has encountered quartz arenites of widely varying average porosities (4-15%). Porosity has been reduced by mechanical compaction and quartz cementation during burial, and by pressure solution during structural deformation. The relative importance and timing of these processes varies between thrust sheets controlling the observed porosity variation. Thermalmore » maturity data indicate that all thrust sheets have been deeply buried and uplifted in several stages of compression. Detailed structural restorations indicate significant differences in the burial histories of individual thrust sheets. Oil-source rock correlations suggest two major hydrocarbon components in the thrustbelt: a Late Cretaceous oil-prone source and a Tertiary oil- and gas-prone source. Initial generation charged early structures leading to partial inhibition of quartz cementation. For most structures quartz cementation predated major hydrocarbon migration. Average quartz cementation temperature is uniform within a structure, but varies between thrust sheets. These variations appear to reflect differences in burial depths during quartz cementation rather than variations in timing. Integration of all data reveals a complex but predictable evolution of porosity and hydrocarbon charge in both space and time which is being applied to current exploration in the Piedemonte Llanero and is relevant to thrustbelt exploration elsewhere.« less

  16. Computing the origin and evolution of the ribosome from its structure — Uncovering processes of macromolecular accretion benefiting synthetic biology

    PubMed Central

    Caetano-Anollés, Gustavo; Caetano-Anollés, Derek

    2015-01-01

    Accretion occurs pervasively in nature at widely different timeframes. The process also manifests in the evolution of macromolecules. Here we review recent computational and structural biology studies of evolutionary accretion that make use of the ideographic (historical, retrodictive) and nomothetic (universal, predictive) scientific frameworks. Computational studies uncover explicit timelines of accretion of structural parts in molecular repertoires and molecules. Phylogenetic trees of protein structural domains and proteomes and their molecular functions were built from a genomic census of millions of encoded proteins and associated terminal Gene Ontology terms. Trees reveal a ‘metabolic-first’ origin of proteins, the late development of translation, and a patchwork distribution of proteins in biological networks mediated by molecular recruitment. Similarly, the natural history of ancient RNA molecules inferred from trees of molecular substructures built from a census of molecular features shows patchwork-like accretion patterns. Ideographic analyses of ribosomal history uncover the early appearance of structures supporting mRNA decoding and tRNA translocation, the coevolution of ribosomal proteins and RNA, and a first evolutionary transition that brings ribosomal subunits together into a processive protein biosynthetic complex. Nomothetic structural biology studies of tertiary interactions and ancient insertions in rRNA complement these findings, once concentric layering assumptions are removed. Patterns of coaxial helical stacking reveal a frustrated dynamics of outward and inward ribosomal growth possibly mediated by structural grafting. The early rise of the ribosomal ‘turnstile’ suggests an evolutionary transition in natural biological computation. Results make explicit the need to understand processes of molecular growth and information transfer of macromolecules. PMID:27096056

  17. iPARTS2: an improved tool for pairwise alignment of RNA tertiary structures, version 2.

    PubMed

    Yang, Chung-Han; Shih, Cheng-Ting; Chen, Kun-Tze; Lee, Po-Han; Tsai, Ping-Han; Lin, Jian-Cheng; Yen, Ching-Yu; Lin, Tiao-Yin; Lu, Chin Lung

    2016-07-08

    Since its first release in 2010, iPARTS has become a valuable tool for globally or locally aligning two RNA 3D structures. It was implemented by a structural alphabet (SA)-based approach, which uses an SA of 23 letters to reduce RNA 3D structures into 1D sequences of SA letters and applies traditional sequence alignment to these SA-encoded sequences for determining their global or local similarity. In this version, we have re-implemented iPARTS into a new web server iPARTS2 by constructing a totally new SA, which consists of 92 elements with each carrying both information of base and backbone geometry for a representative nucleotide. This SA is significantly different from the one used in iPARTS, because the latter consists of only 23 elements with each carrying only the backbone geometry information of a representative nucleotide. Our experimental results have shown that iPARTS2 outperforms its previous version iPARTS and also achieves better accuracy than other popular tools, such as SARA, SETTER and RASS, in RNA alignment quality and function prediction. iPARTS2 takes as input two RNA 3D structures in the PDB format and outputs their global or local alignments with graphical display. iPARTS2 is now available online at http://genome.cs.nthu.edu.tw/iPARTS2/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Efficient Ligation of the Schistosoma Hammerhead Ribozyme †

    PubMed Central

    Canny, Marella D.; Jucker, Fiona M.; Pardi, Arthur

    2011-01-01

    The hammerhead ribozyme from Schistosoma mansoni is the best characterized of the natural hammerhead ribozymes. Biophysical, biochemical, and structural studies have shown that the formation of the loop-loop tertiary interaction between stems I and II alters the global folding, cleavage kinetics, and conformation of the catalytic core of this hammerhead, leading to a ribozyme that is readily cleaved under physiological conditions. This study investigates the ligation kinetics and the internal equilibrium between cleavage and ligation for the Schistosoma hammerhead. Single turnover kinetic studies on a construct where the ribozyme cleaves and ligates substrate(s) in trans showed up to 23% ligation when starting from fully cleaved products. This was achieved by a ~2,000-fold increase in the rate of ligation compared to a minimal hammerhead without the loop-loop tertiary interaction, yielding an internal equilibrium that ranges from 2–3 at physiological Mg2+ ion concentrations (0.1 –1 mM). Thus, the natural Schistosoma hammerhead ribozyme is almost as efficient at ligation as it is at cleavage. The results here are consistent with a model where formation of the loop-loop tertiary interaction leads to a higher population of catalytically active molecules, and where formation of this tertiary interaction has a much larger effect on the ligation than the cleavage activity of the Schistosoma hammerhead ribozyme. PMID:17319693

  19. Biospheric Effects of the Chicxulub Impact and Their Role in the Cretaceous/Tertiary Mass Extinction

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1997-01-01

    A comprehensive analysis of volatiles in the Chicxulub impact strongly supports the hypothesis that impact-generated sulfate aerosols caused over a decade of global cooling, acid rain, and disruption of ocean circulation, which contributed to the mass extinction at the Cretaceous/Tertiary (K/T) boundary. The crater size, meteoritic content of the K/T boundary clay, and impact models indicate that the Chicxulub crater was formed by a short period comet or an asteroid impact that released 0.7-3.4 x 10(exp 31) ergs of energy. Impact models and experiments combined with estimates of volatiles in the projectile and target rocks predict that over 200 gigatons (Gt) each of SO2 and water vapor, and over 500 Gt of CO2, were globally distributed in the stratosphere by the impact.

  20. Identification of phosphates involved in catalysis by the ribozyme RNase P RNA.

    PubMed Central

    Harris, M E; Pace, N R

    1995-01-01

    The RNA subunit of ribonuclease P (RNase P RNA) is a catalytic RNA that cleaves precursor tRNAs to generate mature tRNA 5' ends. Little is known concerning the identity and arrangement of functional groups that constitute the active site of this ribozyme. We have used an RNase P RNA-substrate conjugate that undergoes rapid, accurate, and efficient self-cleavage in vitro to probe, by phosphorothioate modification-interference, functional groups required for catalysis. We identify four phosphate oxygens where substitution by sulfur significantly reduces the catalytic rate (50-200-fold). Interference at one site was partially rescued in the presence of manganese, suggesting a direct involvement in binding divalent metal ion cofactors required for catalysis. All sites are located in conserved sequence and secondary structure, and positioned adjacent to the substrate phosphate in a tertiary structure model of the ribozyme-substrate complex. The spatial arrangement of phosphorothioate-sensitive sites in RNase P RNA was found to resemble the distribution of analogous positions in the secondary and potential tertiary structures of other large catalytic RNAs. PMID:7585250

  1. Structure-activity relationships in the fusion of small unilamellar phosphatidylcholine vesicles induced by a model peptide.

    PubMed

    da Costa, M H; Chaimovich, H

    1997-09-01

    Limited proteolysis of fatty acid-free bovine serum albumin by pepsin yields several well characterized peptides, one of which (P9, M(r) 9,000), induces fusion of small unilamellar vesicles (SUV) of phosphatidylcholine at pH 3.6. Circular dichroism (CD) of P9 solutions confirmed that the peptide undergoes a reversible transition between pH 7 and pH 3.6. The spectral changes observed with CD suggest that in the low pH conformation there is a decrease in the alpha-helical contents and an exposure of hydrophobic residues. CD and differential ultraviolet spectroscopy demonstrated that P9 binds to micelles of hexadecylphosphorylcholine and the binding produces changes in the tertiary structure of the peptide. Reduction and carboxymethylation of the two disulfide bridges of P9 produced loss of the ability to induce fusion of SUV, although the reduced peptide binds to vesicles, induces loss of entrapped marker and produces vesicle disruption. In the active form P9 exposes hydrophobic groups, one amphiphilic alpha-helix and requires the integrity of the disulfide bridge-stabilized tertiary structure.

  2. Geology of the Attaka oil field, East Kalimantan, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, C.M.; Laughbaum, G.H. Jr.; Samsu, B.S.

    1973-11-01

    The Attaka field is the first commercial offshore oil field to be discovered in Kalimantan, Indonesia. After its discovery in 1970 and the drilling of confirmation wells during 1970 and 1971, a development program involving 50 wells from 6 platforms was begun. The field is 12 miles off shore from the E. Kalimantan coast in 200 ft of water. Areal and vertical closures of the Attaka structure are 26 sq miles and 600 ft, respectively, and the areal extent of oil accumulation is some 9.8 sq miles. The Attaka structure is located in the Tertiary Kutei Basin which contains earlymore » Tertiary to Quaternary sediments, and the oil in the Attaka field is in numerous deltaic sands deposited during a late Miocene advance of the ancestral Mahakam River delta. Seismic velocity and well velocity survey data indicate the presence of a low velocity region more or less coincident with the limits of oil and gas accumulation on the crest of the Attaka structure. Gravity of the Attaka oil ranges from 35' to 43' API and its sulfur content is 0.1% by wt.« less

  3. Mannan-binding lectin of the sea urchin Strongylocentrotus nudus.

    PubMed

    Bulgakov, Aleksandr A; Eliseikina, Marina G; Kovalchuk, Svetlana N; Petrova, Irina Yu; Likhatskaya, Galina N; Shamshurina, Ekaterina V; Rasskazov, Valery A

    2013-02-01

    A novel lectin specific to low-branched mannans (MBL-SN) was isolated from coelomic plasma of the sea urchin Strongylocentrotus nudus by combining anion-exchange liquid chromatography on DEAE Toyopearl 650 M, affinity chromatography on mannan-Sepharose and gel filtration on the Sephacryl S-200. The molecular mass of MBL-SN was estimated by sodium dodecyl sulphate polyacrylamide gel electrophoresis under non-reducing conditions to be about 34 kDa. MBL-SN was shown to be a dimer with two identical subunits of about 17 kDa. The native MBL-SN exists as a tetramer. The physico-chemical properties of MBL-SN indicate that it belongs to C-type mannan-binding lectins. The cDNA encoding MBL-SN was cloned from the total cDNA of S. nudus coelomocytes and encodes a 17-kDa protein of 144 amino acid residues that contains a single carbohydrate-recognition domain of C-type lectins. Prediction of the MBL-SN tertiary structure using comparative modelling revealed that MBL-SN is an α/β-protein with eight β-strands and two α-helices. Comparison of the MBL-SN model with available three-dimensional structures of C-type lectins revealed that they share a common fold pattern.

  4. Extensional faulting in the southern Klamath Mountains, California

    USGS Publications Warehouse

    Schweickert, R.A.; Irwin, W.P.

    1989-01-01

    Large northeast striking normal faults in the southern Klamath Mountains may indicate that substantial crustal extension occurred during Tertiary time. Some of these faults form grabens in the Jurassic and older bedrock of the province. The grabens contain continental Oligocene or Miocene deposits (Weaverville Formation), and in two of them the Oligocene or Miocene is underlain by Lower Cretaceous marine formations (Great Valley sequence). At the La Grange gold placer mine the Oligocene or Miocene strata dip northwest into the gently southeast dipping mylonitic footwall surface of the La Grange fault. The large normal displacement required by the relations at the La Grange mine is also suggested by omission of several kilometers of structural thickness of bedrock units across the northeast continuation of the La Grange fault, as well as by significant changes in bedrock across some northeast striking faults elsewhere in the Central Metamorphic and Eastern Klamath belts. The Trinity ultramafic sheet crops out in the Eastern Klamath terrane as part of a broad northeast trending arch that may be structurally analogous to the domed lower plate of metamorphic core complexes found in eastern parts of the Cordillera. The northeast continuation of the La Grange fault bounds the southeastern side of the Trinity arch in the Eastern Klamath terrane and locally cuts out substantial lower parts of adjacent Paleozoic strata of the Redding section. Faults bounding the northwestem side of the Trinity arch generally trend northeast and juxtapose stacked thrust sheets of lower Paleozoic strata of the Yreka terrane against the Trinity ultramafic sheet. Geometric relations suggest that the Tertiary extension of the southern Klamath Mountains was in NW-SE directions and that the Redding section and the southern part of the Central Metamorphic terrane may be a large Tertiary allochthon detached from the Trinity ultramafic sheet. Paleomagnetic data indicate a lack of rotation about a vertical axis during the extension. We propose that the Trinity ultramafic sheet is structurally analogous to a metamorphic core complex; if so, it is the first core complex to be described that involves ultramafic rocks. We infer that Mesozoic terrane accretion produced a large gravitational instability in the crust that spread laterally during Tertiary extension

  5. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.

    PubMed

    Qi, Phoebe X; Ren, Daxi; Xiao, Yingping; Tomasula, Peggy M

    2015-05-01

    The effect of homogenization alone or in combination with high-temperature, short-time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a 2-stage homogenizer at 35°C (6.9 MPa/10.3 MPa) and, along with skim milk, were subjected to HTST pasteurization (72°C for 15 s) or UHT processing (135°C for 2 s). Other whole milk samples were processed using homogenization followed by either HTST pasteurization or UHT processing. The processed skim and whole milk samples were centrifuged further to remove fat and then acidified to pH 4.6 to isolate the corresponding whey fractions, and centrifuged again. The whey fractions were then purified using dialysis and investigated using the circular dichroism, Fourier transform infrared, and Trp intrinsic fluorescence spectroscopic techniques. Results demonstrated that homogenization combined with UHT processing of milk caused not only changes in protein composition but also significant secondary structural loss, particularly in the amounts of apparent antiparallel β-sheet and α-helix, as well as diminished tertiary structural contact. In both cases of homogenization alone and followed by HTST treatments, neither caused appreciable chemical changes, nor remarkable secondary structural reduction. But disruption was evident in the tertiary structural environment of the whey proteins due to homogenization of whole milk as shown by both the near-UV circular dichroism and Trp intrinsic fluorescence. In-depth structural stability analyses revealed that even though processing of milk imposed little impairment on the secondary structural stability, the tertiary structural stability of whey protein was altered significantly. The following order was derived based on these studies: raw whole>HTST, homogenized, homogenized and pasteurized>skimmed and pasteurized, and skimmed UHT>homogenized UHT. The methodology demonstrated in this study can be used to gain insight into the behavior of milk proteins when processed and provides a new empirical and comparative approach for analyzing and assessing the effect of processing schemes on the nutrition and quality of milk and dairy product without the need for extended separation and purification, which can be both time-consuming and disruptive to protein structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Geometry at the aliphatic tertiary carbon atom: computational and experimental test of the Walsh rule.

    PubMed

    Böhm, Stanislav; Exner, Otto

    2004-02-01

    The geometrical parameters of molecules of 2-substituted 2-methylpropanes and 1-substituted bicyclo[2.2.2]octanes were calculated at the B3LYP/6-311+G(d,p) level. They agreed reasonably well with the mean crystallographic values retrieved from the Cambridge Structural Database for a set of diverse non-cyclic structures with a tertiary C atom. The angle deformations at this C atom produced by the immediately bonded substituent are also closely related to those observed previously in benzene mono derivatives (either as calculated or as derived from crystallographic data). The calculated geometrical parameters were used to test the classical Walsh rule: It is evidently true that an electron-attracting substituent increases the proportion of C-atom p-electrons in the bond to the substituent and leaves more s-electrons to the remaining bonds; as a consequence the C-C-C angles at a tertiary carbon are widened and the C-C bonds shortened. However, this rule describes only part of the reality since the bond angles and lengths are controlled by other factors as well, for instance by steric crowding. Another imperfection of the Walsh rule is that the sequence of substituents does not correspond to their electronegativities, as measured by any known scale; more probably it is connected with the inductive effect, but then only very roughly.

  7. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Hautot, Sophie; Whaler, Kathryn; Gebru, Workneh; Desissa, Mohammednur

    2006-03-01

    The northwestern Plateau of Ethiopia is almost entirely covered with extensive Tertiary continental flood basalts that mask the underlying formations. Mesozoic and Tertiary sediments are exposed in a few locations surrounding the Lake Tana area suggesting that the Tana depression is an extensional basin buried by the 1-2 km thick Eocene-Oligocene flood basalt sequences in this region. A magnetotelluric survey has been carried out to investigate the deep structure of the Tana area. The objectives were to estimate the thickness of the volcanics and anticipated underlying sedimentary basin. We have collected 27 magnetotelluric soundings south and east of Lake Tana. Two-dimensional inversion of the data along a 160 km long profile gives a model consistent with a NW-SE trending sedimentary basin beneath the lava flows. The thickness of sediments overlying the Precambrian basement averages 1.5-2 km, which is comparable to the Blue Nile stratigraphic section, south of the area. A 1 km thickening of sediments over a 30-40 km wide section suggests that the form of the basin is a half-graben. It is suggested that electrically resistive features in the model are related to volcanic materials intruded within the rift basin sediments through normal faults. The results illustrate the strong control of the Precambrian fracture zones on the feeding of the Tertiary Trap series.

  8. Biotransformation of Two Pharmaceuticals by the Ammonia-Oxidizing Archaeon Nitrososphaera gargensis.

    PubMed

    Men, Yujie; Han, Ping; Helbling, Damian E; Jehmlich, Nico; Herbold, Craig; Gulde, Rebekka; Onnis-Hayden, Annalisa; Gu, April Z; Johnson, David R; Wagner, Michael; Fenner, Kathrin

    2016-05-03

    The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation.

  9. Gender norms in South Africa: Implications for HIV and pregnancy prevention among African and Indian women students at a South African tertiary institution

    PubMed Central

    Mantell, Joanne E.; Needham, Sarah L.; Smit, Jennifer Ann; Hoffman, Susie; Cebekhulu, Queen; Adams-Skinner, Jessica; Exner, Theresa M.; Mabude, Zonke; Beksinska, Mags; Stein, Zena A.; Milford, Cecilia

    2009-01-01

    In post-Apartheid South Africa, women are constitutionally guaranteed protections and freedoms that were previously unknown to them. These freedoms may have positive implications for women’s ability to negotiate sexual protection with partners and hence prevent unintended pregnancy and decrease their risk of HIV. Among tertiary institution students who are a relatively ‘privileged’ group, there is little information on gender norms that might shape responses to HIV prevention programmes. To elicit gender norms regarding women’s and men’s roles, condom and contraceptive use, sexual communication, and sexual pleasure, we conducted 10 semi-structured focus group discussions with African and Indian female tertiary institution students so as to understand how norms might be used to buttress HIV and pregnancy prevention. Participants reported dramatic changes in the structure of gender norms and relations with the formal recognition of women’s rights in the post-Apartheid context. These generational shifts in norms are supported by other research in South Africa. At the same time, women recognized the co-existence of traditional constructions of gender that operate to constrain women’s freedom. The perceived changes that have taken place provide an entry point for intervention, particularly for reinforcing emerging gender norms that promote women’s protection against unintended pregnancy and HIV/STIs. PMID:19247859

  10. SOV_refine: A further refined definition of segment overlap score and its significance for protein structure similarity.

    PubMed

    Liu, Tong; Wang, Zheng

    2018-01-01

    The segment overlap score (SOV) has been used to evaluate the predicted protein secondary structures, a sequence composed of helix (H), strand (E), and coil (C), by comparing it with the native or reference secondary structures, another sequence of H, E, and C. SOV's advantage is that it can consider the size of continuous overlapping segments and assign extra allowance to longer continuous overlapping segments instead of only judging from the percentage of overlapping individual positions as Q3 score does. However, we have found a drawback from its previous definition, that is, it cannot ensure increasing allowance assignment when more residues in a segment are further predicted accurately. A new way of assigning allowance has been designed, which keeps all the advantages of the previous SOV score definitions and ensures that the amount of allowance assigned is incremental when more elements in a segment are predicted accurately. Furthermore, our improved SOV has achieved a higher correlation with the quality of protein models measured by GDT-TS score and TM-score, indicating its better abilities to evaluate tertiary structure quality at the secondary structure level. We analyzed the statistical significance of SOV scores and found the threshold values for distinguishing two protein structures (SOV_refine  > 0.19) and indicating whether two proteins are under the same CATH fold (SOV_refine > 0.94 and > 0.90 for three- and eight-state secondary structures respectively). We provided another two example applications, which are when used as a machine learning feature for protein model quality assessment and comparing different definitions of topologically associating domains. We proved that our newly defined SOV score resulted in better performance. The SOV score can be widely used in bioinformatics research and other fields that need to compare two sequences of letters in which continuous segments have important meanings. We also generalized the previous SOV definitions so that it can work for sequences composed of more than three states (e.g., it can work for the eight-state definition of protein secondary structures). A standalone software package has been implemented in Perl with source code released. The software can be downloaded from http://dna.cs.miami.edu/SOV/.

  11. Management Information in Tertiary Institutions.

    ERIC Educational Resources Information Center

    Findlay, A. W.

    1981-01-01

    A college or university's management information system corresponds roughly to the institution's structure, with these elements in descending order in the hierarchy: policy and planning, a planning system, control and coordination, and typical operating systems (payroll, exams, scheduling, library, facilities assignments, and accounting…

  12. SU-E-T-802: Verification of Implanted Cardiac Pacemaker Doses in Intensity-Modulated Radiation Therapy: Dose Prediction Accuracy and Reduction Effect of a Lead Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Chung, J

    2015-06-15

    Purpose: To verify delivered doses on the implanted cardiac pacemaker, predicted doses with and without dose reduction method were verified using the MOSFET detectors in terms of beam delivery and dose calculation techniques in intensity-modulated radiation therapy (IMRT). Methods: The pacemaker doses for a patient with a tongue cancer were predicted according to the beam delivery methods [step-and-shoot (SS) and sliding window (SW)], intensity levels for dose optimization, and dose calculation algorithms. Dosimetric effects on the pacemaker were calculated three dose engines: pencil-beam convolution (PBC), analytical anisotropic algorithm (AAA), and Acuros-XB. A lead shield of 2 mm thickness was designedmore » for minimizing irradiated doses to the pacemaker. Dose variations affected by the heterogeneous material properties of the pacemaker and effectiveness of the lead shield were predicted by the Acuros-XB. Dose prediction accuracy and the feasibility of the dose reduction strategy were verified based on the measured skin doses right above the pacemaker using mosfet detectors during the radiation treatment. Results: The Acuros-XB showed underestimated skin doses and overestimated doses by the lead-shield effect, even though the lower dose disagreement was observed. It led to improved dose prediction with higher intensity level of dose optimization in IMRT. The dedicated tertiary lead sheet effectively achieved reduction of pacemaker dose up to 60%. Conclusion: The current SS technique could deliver lower scattered doses than recommendation criteria, however, use of the lead sheet contributed to reduce scattered doses.Thin lead plate can be a useful tertiary shielder and it could not acuse malfunction or electrical damage of the implanted pacemaker in IMRT. It is required to estimate more accurate scattered doses of the patient with medical device to design proper dose reduction strategy.« less

  13. The K-turn motif in riboswitches and other RNA species☆

    PubMed Central

    Lilley, David M.J.

    2014-01-01

    The kink turn is a widespread structure motif that introduces a tight bend into the axis of duplex RNA. This generally functions to mediate tertiary interactions, and to serve as a specific protein binding site. K-turns or closely related structures are found in at least seven different riboswitch structures, where they function as key architectural elements that help generate the ligand binding pocket. This article is part of a Special Issue entitled: Riboswitches. PMID:24798078

  14. The role of atomic level steric effects and attractive forces in protein folding.

    PubMed

    Lammert, Heiko; Wolynes, Peter G; Onuchic, José N

    2012-02-01

    Protein folding into tertiary structures is controlled by an interplay of attractive contact interactions and steric effects. We investigate the balance between these contributions using structure-based models using an all-atom representation of the structure combined with a coarse-grained contact potential. Tertiary contact interactions between atoms are collected into a single broad attractive well between the C(β) atoms between each residue pair in a native contact. Through the width of these contact potentials we control their tolerance for deviations from the ideal structure and the spatial range of attractive interactions. In the compact native state dominant packing constraints limit the effects of a coarse-grained contact potential. During folding, however, the broad attractive potentials allow an early collapse that starts before the native local structure is completely adopted. As a consequence the folding transition is broadened and the free energy barrier is decreased. Eventually two-state folding behavior is lost completely for systems with very broad attractive potentials. The stabilization of native-like residue interactions in non-perfect geometries early in the folding process frequently leads to structural traps. Global mirror images are a notable example. These traps are penalized by the details of the repulsive interactions only after further collapse. Successful folding to the native state requires simultaneous guidance from both attractive and repulsive interactions. Copyright © 2011 Wiley Periodicals, Inc.

  15. Decaying relevance of clinical data towards future decisions in data-driven inpatient clinical order sets.

    PubMed

    Chen, Jonathan H; Alagappan, Muthuraman; Goldstein, Mary K; Asch, Steven M; Altman, Russ B

    2017-06-01

    Determine how varying longitudinal historical training data can impact prediction of future clinical decisions. Estimate the "decay rate" of clinical data source relevance. We trained a clinical order recommender system, analogous to Netflix or Amazon's "Customers who bought A also bought B..." product recommenders, based on a tertiary academic hospital's structured electronic health record data. We used this system to predict future (2013) admission orders based on different subsets of historical training data (2009 through 2012), relative to existing human-authored order sets. Predicting future (2013) inpatient orders is more accurate with models trained on just one month of recent (2012) data than with 12 months of older (2009) data (ROC AUC 0.91 vs. 0.88, precision 27% vs. 22%, recall 52% vs. 43%, all P<10 -10 ). Algorithmically learned models from even the older (2009) data was still more effective than existing human-authored order sets (ROC AUC 0.81, precision 16% recall 35%). Training with more longitudinal data (2009-2012) was no better than using only the most recent (2012) data, unless applying a decaying weighting scheme with a "half-life" of data relevance about 4 months. Clinical practice patterns (automatically) learned from electronic health record data can vary substantially across years. Gold standards for clinical decision support are elusive moving targets, reinforcing the need for automated methods that can adapt to evolving information. Prioritizing small amounts of recent data is more effective than using larger amounts of older data towards future clinical predictions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Multilingual Validation of the Questionnaire for Verifying Stroke-Free Status in West Africa.

    PubMed

    Sarfo, Fred; Gebregziabher, Mulugeta; Ovbiagele, Bruce; Akinyemi, Rufus; Owolabi, Lukman; Obiako, Reginald; Akpa, Onoja; Armstrong, Kevin; Akpalu, Albert; Adamu, Sheila; Obese, Vida; Boa-Antwi, Nana; Appiah, Lambert; Arulogun, Oyedunni; Mensah, Yaw; Adeoye, Abiodun; Tosin, Aridegbe; Adeleye, Osimhiarherhuo; Tabi-Ajayi, Eric; Phillip, Ibinaiye; Sani, Abubakar; Isah, Suleiman; Tabari, Nasir; Mande, Aliyu; Agunloye, Atinuke; Ogbole, Godwin; Akinyemi, Joshua; Laryea, Ruth; Melikam, Sylvia; Uvere, Ezinne; Adekunle, Gregory; Kehinde, Salaam; Azuh, Paschal; Dambatta, Abdul; Ishaq, Naser; Saulson, Raelle; Arnett, Donna; Tiwari, Hemnant; Jenkins, Carolyn; Lackland, Dan; Owolabi, Mayowa

    2016-01-01

    The Questionnaire for Verifying Stroke-Free Status (QVSFS), a method for verifying stroke-free status in participants of clinical, epidemiological, and genetic studies, has not been validated in low-income settings where populations have limited knowledge of stroke symptoms. We aimed to validate QVSFS in 3 languages, Yoruba, Hausa and Akan, for ascertainment of stroke-free status of control subjects enrolled in an on-going stroke epidemiological study in West Africa. Data were collected using a cross-sectional study design where 384 participants were consecutively recruited from neurology and general medicine clinics of 5 tertiary referral hospitals in Nigeria and Ghana. Ascertainment of stroke status was by neurologists using structured neurological examination, review of case records, and neuroimaging (gold standard). Relative performance of QVSFS without and with pictures of stroke symptoms (pictograms) was assessed using sensitivity, specificity, positive predictive value, and negative predictive value. The overall median age of the study participants was 54 years and 48.4% were males. Of 165 stroke cases identified by gold standard, 98% were determined to have had stroke, whereas of 219 without stroke 87% were determined to be stroke-free by QVSFS. Negative predictive value of the QVSFS across the 3 languages was 0.97 (range, 0.93-1.00), sensitivity, specificity, and positive predictive value were 0.98, 0.82, and 0.80, respectively. Agreement between the questionnaire with and without the pictogram was excellent/strong with Cohen k=0.92. QVSFS is a valid tool for verifying stroke-free status across culturally diverse populations in West Africa. © 2015 American Heart Association, Inc.

  17. PROPERTIES OF THE CLOSE-IN TERTIARY IN THE QUADRUPLE SYSTEM V401 CYG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, L.-Y.; Qian, S.-B.; Zhou, X.

    2013-08-01

    V401 Cyg is a quadruple system in which the spectroscopic signature of a close-in tertiary and a distant visual companion star were reported. Orbital properties of the close-in companion should provide valuable information on the formation of close binaries and stellar dynamical interaction. By analyzing new times of minimum light together with those collected from the literature, we discovered that the observed-calculated (O - C) curve of V401 Cyg shows a cyclic change with a short period of 3.5 yr and a semi-amplitude of 0.00436 days while it undergoes an upward parabolic variation. Those photoelectric and CCD data covered moremore » than two cycles and were analyzed for the light-travel time effect via the presence of the tertiary companion. The mass of the third body was determined to be M{sub 3}sin i' = 0.65({+-} 0.08) M{sub Sun }, which is close to the value estimated from the spectroscopic data (M{sub 3} {approx} 0.64 M{sub Sun }). This reveals that the orbital inclination of the tertiary was about i' {approx} 90 Degree-Sign , indicating that the contact components of V401 Cyg have the possibility of being eclipsed by the tertiary at an orbital distance of about 3.0 AU, and it may be a triply eclipsing hierarchical triple system. The upward parabolic change indicates a period increase at a rate of (P-dot{sub 2} = 1.5 x 10{sup -7} revealing a mass transfer from the secondary to the primary (M-dot{sub 2} = 5.9 x 10{sup -8} M{sub Sun} yr{sup -1}). This is consistent with the predictions of the theory of thermal relaxation oscillation (TRO) suggesting that V401 Cyg is undergoing an expanding-orbit stage in the TRO cycles.« less

  18. Peri-operative management of high-risk paediatric adenotonsillectomy patients: A survey of 35 UK tertiary referral centres.

    PubMed

    Cheong, Ryan Chin Taw; Bowles, Philippe; Moore, Andrew; Watts, Simon

    2017-05-01

    Peri-operative management of high-risk paediatric patients undergoing adenotonsillectomy for treatment of obstructive sleep apnoea varies between tertiary referral hospitals. 'Day of surgery cancellation' (DoSC) rates of up to 11% have been reported due to pre-booked critical care being unavailable on the day of surgery as a result of competing needs from other hospital departments. We report the results of a survey of peri-operative management in UK tertiary care centres of high-risk paediatric patients undergoing adenotonsillectomy for obstructive sleep apnoea (OSA). An 8-point questionnaire was developed using a cloud-based software platform (www.surveymonkey.com). A web-link to the survey was embedded in a customised e-mail which was sent via secure server to the Clinical Leads for Paediatric Otolaryngology at 35 United Kingdom (UK) Tertiary referral centres. The survey response rate was 60% (n = 21). Almost all (94.1%) of centres considered paediatric critical care facilities to be limited, with 70.6% (n = 12) stating that DoSC often occurred due to unavailable paediatric critical care capacity. There was variation between tertiary referral units in the practice applied for pre-booking critical care beds (our survey identifies 6 variations) (Table 1). The most frequent selection method reported (47.1%) was at the discretion of the booking clinician at the time of listing the patient for surgery. In the context of limited critical care resources, variation in practice and difficulty in accurately predicting which patients will require post-operative critical care beds, a review and consensus on best practice in the peri-operative management of high risk paediatric adenotonsillectomy patients may offer a safe means of reducing cancellations and improving patient care, resource allocation and hospital efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Supramolecular Architectures and Mimics of Complex Natural Folds Derived from Rationally Designed alpha-Helical Protein Structures

    NASA Astrophysics Data System (ADS)

    Tavenor, Nathan Albert

    Protein-based supramolecular polymers (SMPs) are a class of biomaterials which draw inspiration from and expand upon the many examples of complex protein quaternary structures observed in nature: collagen, microtubules, viral capsids, etc. Designing synthetic supramolecular protein scaffolds both increases our understanding of natural superstructures and allows for the creation of novel materials. Similar to small-molecule SMPs, protein-based SMPs form due to self-assembly driven by intermolecular interactions between monomers, and monomer structure determines the properties of the overall material. Using protein-based monomers takes advantage of the self-assembly and highly specific molecular recognition properties encodable in polypeptide sequences to rationally design SMP architectures. The central hypothesis underlying our work is that alpha-helical coiled coils, a well-studied protein quaternary folding motif, are well-suited to SMP design through the addition of synthetic linkers at solvent-exposed sites. Through small changes in the structures of the cross-links and/or peptide sequence, we have been able to control both the nanoscale organization and the macroscopic properties of the SMPs. Changes to the linker and hydrophobic core of the peptide can be used to control polymer rigidity, stability, and dimensionality. The gaps in knowledge that this thesis sought to fill on this project were 1) the relationship between the molecular structure of the cross-linked polypeptides and the macroscopic properties of the SMPs and 2) a means of creating materials exhibiting multi-dimensional net or framework topologies. Separate from the above efforts on supramolecular architectures was work on improving backbone modification strategies for an alpha-helix in the context of a complex protein tertiary fold. Earlier work in our lab had successfully incorporated unnatural building blocks into every major secondary structure (beta-sheet, alpha-helix, loops and beta-turns) of a small protein with a tertiary fold. Although the tertiary fold of the native sequence was mimicked by the resulting artificial protein, the thermodynamic stability was greatly compromised. Most of this energetic penalty derived from the modifications present in the alpha-helix. The contribution within this thesis was direct comparison of several alpha-helical design strategies and establishment of the thermodynamic consequences of each.

  20. Comparative Analysis of Type IV Pilin in Desulfuromonadales

    PubMed Central

    Shu, Chuanjun; Xiao, Ke; Yan, Qin; Sun, Xiao

    2016-01-01

    During anaerobic respiration, the bacteria Geobacter sulfurreducens can transfer electrons to extracellular electron accepters through its pilus. G. sulfurreducens pili have been reported to have metallic-like conductivity that is similar to doped organic semiconductors. To study the characteristics and origin of conductive pilin proteins found in the pilus structure, their genetic, structural, and phylogenetic properties were analyzed. The genetic relationships, and conserved structures and sequences that were obtained were used to predict the evolution of the pilins. Homologous genes that encode conductive pilin were found using PilFind and Cluster. Sequence characteristics and protein tertiary structures were analyzed with MAFFT and QUARK, respectively. The origin of conductive pilins was explored by building a phylogenetic tree. Truncation is a characteristic of conductive pilin. The structures of truncated pilins and their accompanying proteins were found to be similar to the N-terminal and C-terminal ends of full-length pilins respectively. The emergence of the truncated pilins can probably be ascribed to the evolutionary pressure of their extracellular electron transporting function. Genes encoding truncated pilins and proteins similar to the C-terminal of full-length pilins, which contain a group of consecutive anti-parallel beta-sheets, are adjacent in bacterial genomes. According to the genetic, structure, and phylogenetic analyses performed in this study, we inferred that the truncated pilins and their accompanying proteins probably evolved from full-length pilins by gene fission through duplication, degeneration, and separation. These findings provide new insights about the molecular mechanisms involved in long-range electron transport along the conductive pili of Geobacter species. PMID:28066394

Top