Sample records for predicting b-dna structure

  1. Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes.

    PubMed

    Cer, Regina Z; Bruce, Kevin H; Mudunuri, Uma S; Yi, Ming; Volfovsky, Natalia; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2011-01-01

    Although the capability of DNA to form a variety of non-canonical (non-B) structures has long been recognized, the overall significance of these alternate conformations in biology has only recently become accepted en masse. In order to provide access to genome-wide locations of these classes of predicted structures, we have developed non-B DB, a database integrating annotations and analysis of non-B DNA-forming sequence motifs. The database provides the most complete list of alternative DNA structure predictions available, including Z-DNA motifs, quadruplex-forming motifs, inverted repeats, mirror repeats and direct repeats and their associated subsets of cruciforms, triplex and slipped structures, respectively. The database also contains motifs predicted to form static DNA bends, short tandem repeats and homo(purine•pyrimidine) tracts that have been associated with disease. The database has been built using the latest releases of the human, chimp, dog, macaque and mouse genomes, so that the results can be compared directly with other data sources. In order to make the data interpretable in a genomic context, features such as genes, single-nucleotide polymorphisms and repetitive elements (SINE, LINE, etc.) have also been incorporated. The database is accessed through query pages that produce results with links to the UCSC browser and a GBrowse-based genomic viewer. It is freely accessible at http://nonb.abcc.ncifcrf.gov.

  2. cgDNA: a software package for the prediction of sequence-dependent coarse-grain free energies of B-form DNA.

    PubMed

    Petkevičiūtė, D; Pasi, M; Gonzalez, O; Maddocks, J H

    2014-11-10

    cgDNA is a package for the prediction of sequence-dependent configuration-space free energies for B-form DNA at the coarse-grain level of rigid bases. For a fragment of any given length and sequence, cgDNA calculates the configuration of the associated free energy minimizer, i.e. the relative positions and orientations of each base, along with a stiffness matrix, which together govern differences in free energies. The model predicts non-local (i.e. beyond base-pair step) sequence dependence of the free energy minimizer. Configurations can be input or output in either the Curves+ definition of the usual helical DNA structural variables, or as a PDB file of coordinates of base atoms. We illustrate the cgDNA package by comparing predictions of free energy minimizers from (a) the cgDNA model, (b) time-averaged atomistic molecular dynamics (or MD) simulations, and (c) NMR or X-ray experimental observation, for (i) the Dickerson-Drew dodecamer and (ii) three oligomers containing A-tracts. The cgDNA predictions are rather close to those of the MD simulations, but many orders of magnitude faster to compute. Both the cgDNA and MD predictions are in reasonable agreement with the available experimental data. Our conclusion is that cgDNA can serve as a highly efficient tool for studying structural variations in B-form DNA over a wide range of sequences. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Structure and mechanism of the UvrA-UvrB DNA damage sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakotiprapha, Danaya; Samuels, Martin; Shen, Koning

    2012-04-17

    Nucleotide excision repair (NER) is used by all organisms to eliminate DNA lesions. We determined the structure of the Geobacillus stearothermophilus UvrA-UvrB complex, the damage-sensor in bacterial NER and a new structure of UvrA. We observe that the DNA binding surface of UvrA, previously found in an open shape that binds damaged DNA, also exists in a closed groove shape compatible with native DNA only. The sensor contains two UvrB molecules that flank the UvrA dimer along the predicted path for DNA, ~80 Å from the lesion. We show that the conserved signature domain II of UvrA mediates a nexusmore » of contacts among UvrA, UvrB and DNA. Further, in our new structure of UvrA, this domain adopts an altered conformation while an adjacent nucleotide binding site is vacant. Our findings raise unanticipated questions about NER and also suggest a revised picture of its early stages.« less

  4. Non-B-DNA structures on the interferon-beta promoter?

    PubMed

    Robbe, K; Bonnefoy, E

    1998-01-01

    The high mobility group (HMG) I protein intervenes as an essential factor during the virus induced expression of the interferon-beta (IFN-beta) gene. It is a non-histone chromatine associated protein that has the dual capacity of binding to a non-B-DNA structure such as cruciform-DNA as well as to AT rich B-DNA sequences. In this work we compare the binding affinity of HMGI for a synthetic cruciform-DNA to its binding affinity for the HMGI-binding-site present in the positive regulatory domain II (PRDII) of the IFN-beta promoter. Using gel retardation experiments, we show that HMGI protein binds with at least ten times more affinity to the synthetic cruciform-DNA structure than to the PRDII B-DNA sequence. DNA hairpin sequences are present in both the human and the murine PRDII-DNAs. We discuss in this work the presence of, yet putative, non-B-DNA structures in the IFN-beta promoter.

  5. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools.

    PubMed

    Cer, Regina Z; Donohue, Duncan E; Mudunuri, Uma S; Temiz, Nuri A; Loss, Michael A; Starner, Nathan J; Halusa, Goran N; Volfovsky, Natalia; Yi, Ming; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2013-01-01

    The non-B DB, available at http://nonb.abcc.ncifcrf.gov, catalogs predicted non-B DNA-forming sequence motifs, including Z-DNA, G-quadruplex, A-phased repeats, inverted repeats, mirror repeats, direct repeats and their corresponding subsets: cruciforms, triplexes and slipped structures, in several genomes. Version 2.0 of the database revises and re-implements the motif discovery algorithms to better align with accepted definitions and thresholds for motifs, expands the non-B DNA-forming motifs coverage by including short tandem repeats and adds key visualization tools to compare motif locations relative to other genomic annotations. Non-B DB v2.0 extends the ability for comparative genomics by including re-annotation of the five organisms reported in non-B DB v1.0, human, chimpanzee, dog, macaque and mouse, and adds seven additional organisms: orangutan, rat, cow, pig, horse, platypus and Arabidopsis thaliana. Additionally, the non-B DB v2.0 provides an overall improved graphical user interface and faster query performance.

  6. Non-B-Form DNA Is Enriched at Centromeres

    PubMed Central

    Henikoff, Steven

    2018-01-01

    Abstract Animal and plant centromeres are embedded in repetitive “satellite” DNA, but are thought to be epigenetically specified. To define genetic characteristics of centromeres, we surveyed satellite DNA from diverse eukaryotes and identified variation in <10-bp dyad symmetries predicted to adopt non-B-form conformations. Organisms lacking centromeric dyad symmetries had binding sites for sequence-specific DNA-binding proteins with DNA-bending activity. For example, human and mouse centromeres are depleted for dyad symmetries, but are enriched for non-B-form DNA and are associated with binding sites for the conserved DNA-binding protein CENP-B, which is required for artificial centromere function but is paradoxically nonessential. We also detected dyad symmetries and predicted non-B-form DNA structures at neocentromeres, which form at ectopic loci. We propose that centromeres form at non-B-form DNA because of dyad symmetries or are strengthened by sequence-specific DNA binding proteins. This may resolve the CENP-B paradox and provide a general basis for centromere specification. PMID:29365169

  7. Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.

    PubMed

    Dong, F; Allawi, H T; Anderson, T; Neri, B P; Lyamichev, V I

    2001-08-01

    DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5'-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific 'bridge' probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37 degrees C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.

  8. Overstretching of B-DNA with various pulling protocols: Appearance of structural polymorphism and S-DNA

    NASA Astrophysics Data System (ADS)

    Garai, Ashok; Mogurampelly, Santosh; Bag, Saientan; Maiti, Prabal K.

    2017-12-01

    We report a structural polymorphism of the S-DNA when a canonical B-DNA is stretched under different pulling protocols and provide a fundamental molecular understanding of the DNA stretching mechanism. Extensive all atom molecular dynamics simulations reveal a clear formation of S-DNA when the B-DNA is stretched along the 3' directions of the opposite strands (OS3) and is characterized by the changes in the number of H-bonds, entropy, and free energy. Stretching along the 5' directions of the opposite strands (OS5) leads to force induced melting form of the DNA. Interestingly, stretching along the opposite ends of the same strand leads to a coexistence of both the S- and melted M-DNA structures. We also do the structural characterization of the S-DNA by calculating various helical parameters. We find that the S-DNA has a twist of ˜10° which corresponds to a helical repeat length of ˜36 base pairs in close agreement with the previous experimental results. Moreover, we find that the free energy barrier between the canonical and overstretched states of DNA is higher for the same termini pulling protocol in comparison to all other protocols considered in this work. Overall, our observations not only reconcile with the available experimental results qualitatively but also enhance the understanding of different overstretched DNA structures.

  9. Early hepatitis B viral DNA clearance predicts treatment response at week 96

    PubMed Central

    Fu, Xiao-Yu; Tan, De-Ming; Liu, Cui-Mei; Gu, Bin; Hu, Li-Hua; Peng, Zhong-Tian; Chen, Bin; Xie, Yuan-Lin; Gong, Huan-Yu; Hu, Xiao-Xuan; Yao, Lian-Hui; Xu, Xiao-Ping; Fu, Zheng-Yuan; He, Lang-Qiu; Li, Si-Hai; Long, Yun-Zhu; Li, De-Hui; Gu, Ji-Long; Peng, Shi-Fang

    2017-01-01

    AIM To investigate whether hepatitis viral DNA load at 24 wk of treatment predicts response at 96 wk in patients with chronic hepatitis B. METHODS A total of 172 hepatitis B envelope antigen (HBeAg)-positive chronic hepatitis B patients who received initial treatment at 16 tertiary hospitals in Hunan Province, China were enrolled in this study. All patients received conventional doses of lamivudine and adefovir dipivoxil, telbivudine, entecavir dispersible tablets, or entecavir tablets for 96 wk. Patients who used other antiviral drugs or antitumor and immune regulation therapy were excluded. Patients were stratified into three groups according to their viral DNA load at 24 wk: < 10 IU/mL (group 1), 10-103 IU/mL (group 2), and > 103 IU/mL (group 3). Correlations of 24-wk DNA load with HBeAg negative status and HBeAg seroconversion at 96 wk were analyzed. Receiver operating characteristic curve analysis was used to test the predictive value of the HBV DNA load at 24 wk for long-term response. RESULTS The rates of conversion to HBeAg negative status and HBeAg seroconversion rates were 53.7% and 51.9%, respectively, in group 1; 35.21% and 32.39% in group 2; and 6.38% and 6.38% in group 3. The receiver operating characteristic curves for the three subgroups revealed that the lowest DNA load (< 10 IU/mL) was better correlated with response at 96 wk than a higher DNA load (10-103 IU/mL). Nested PCR was used for amplifying and sequencing viral DNA in patients with a viral DNA load > 200 IU/mL at 96 wk; resistance mutations involving different loci were present in 26 patients, and three of these patients had a viral DNA load 10-103 IU/mL at 96 wk. CONCLUSION Hepatitis B viral DNA load at 24 wk of antiviral treatment in patients with chronic hepatitis B is a predictor of the viral load and response rate at 96 wk. PMID:28522916

  10. Secondary structure prediction for complete rDNA sequences (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, and comparison of divergent domains structures across Acari.

    PubMed

    Zhao, Ya-E; Wang, Zheng-Hang; Xu, Yang; Wu, Li-Ping; Hu, Li

    2013-10-01

    According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure

    PubMed Central

    Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta

    2016-01-01

    Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA. PMID:27241949

  12. Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure

    NASA Astrophysics Data System (ADS)

    Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta

    2016-05-01

    Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA.

  13. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    PubMed

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  14. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis

    PubMed Central

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. Availability http://www.cemb.edu.pk/sw.html Abbreviations RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language. PMID:23055611

  15. Lattice-free prediction of three-dimensional structure of programmed DNA assemblies

    PubMed Central

    Pan, Keyao; Kim, Do-Nyun; Zhang, Fei; Adendorff, Matthew R.; Yan, Hao; Bathe, Mark

    2014-01-01

    DNA can be programmed to self-assemble into high molecular weight 3D assemblies with precise nanometer-scale structural features. Although numerous sequence design strategies exist to realize these assemblies in solution, there is currently no computational framework to predict their 3D structures on the basis of programmed underlying multi-way junction topologies constrained by DNA duplexes. Here, we introduce such an approach and apply it to assemblies designed using the canonical immobile four-way junction. The procedure is used to predict the 3D structure of high molecular weight planar and spherical ring-like origami objects, a tile-based sheet-like ribbon, and a 3D crystalline tensegrity motif, in quantitative agreement with experiments. Our framework provides a new approach to predict programmed nucleic acid 3D structure on the basis of prescribed secondary structure motifs, with possible application to the design of such assemblies for use in biomolecular and materials science. PMID:25470497

  16. Structural basis of DNA target recognition by the B3 domain of Arabidopsis epigenome reader VAL1

    PubMed Central

    Sasnauskas, Giedrius; Kauneckaitė, Kotryna; Siksnys, Virginijus

    2018-01-01

    Abstract Arabidopsis thaliana requires a prolonged period of cold exposure during winter to initiate flowering in a process termed vernalization. Exposure to cold induces epigenetic silencing of the FLOWERING LOCUS C (FLC) gene by Polycomb group (PcG) proteins. A key role in this epigenetic switch is played by transcriptional repressors VAL1 and VAL2, which specifically recognize Sph/RY DNA sequences within FLC via B3 DNA binding domains, and mediate recruitment of PcG silencing machinery. To understand the structural mechanism of site-specific DNA recognition by VAL1, we have solved the crystal structure of VAL1 B3 domain (VAL1-B3) bound to a 12 bp oligoduplex containing the canonical Sph/RY DNA sequence 5′-CATGCA-3′/5′-TGCATG-3′. We find that VAL1-B3 makes H-bonds and van der Waals contacts to DNA bases of all six positions of the canonical Sph/RY element. In agreement with the structure, in vitro DNA binding studies show that VAL1-B3 does not tolerate substitutions at any position of the 5′-TGCATG-3′ sequence. The VAL1-B3–DNA structure presented here provides a structural model for understanding the specificity of plant B3 domains interacting with the Sph/RY and other DNA sequences. PMID:29660015

  17. Structure Prediction and Analysis of DNA Transposon and LINE Retrotransposon Proteins*

    PubMed Central

    Abrusán, György; Zhang, Yang; Szilágyi, András

    2013-01-01

    Despite the considerable amount of research on transposable elements, no large-scale structural analyses of the TE proteome have been performed so far. We predicted the structures of hundreds of proteins from a representative set of DNA and LINE transposable elements and used the obtained structural data to provide the first general structural characterization of TE proteins and to estimate the frequency of TE domestication and horizontal transfer events. We show that 1) ORF1 and Gag proteins of retrotransposons contain high amounts of structural disorder; thus, despite their very low conservation, the presence of disordered regions and probably their chaperone function is conserved. 2) The distribution of SCOP classes in DNA transposons and LINEs indicates that the proteins of DNA transposons are more ancient, containing folds that already existed when the first cellular organisms appeared. 3) DNA transposon proteins have lower contact order than randomly selected reference proteins, indicating rapid folding, most likely to avoid protein aggregation. 4) Structure-based searches for TE homologs indicate that the overall frequency of TE domestication events is low, whereas we found a relatively high number of cases where horizontal transfer, frequently involving parasites, is the most likely explanation for the observed homology. PMID:23530042

  18. The crystal structure of Neisseria gonorrhoeae PriB reveals mechanistic differences among bacterial DNA replication restart pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Jinlan; George, Nicholas P.; Duckett, Katrina L.

    2010-05-25

    Reactivation of repaired DNA replication forks is essential for complete duplication of bacterial genomes. However, not all bacteria encode homologs of the well-studied Escherichia coli DNA replication restart primosome proteins, suggesting that there might be distinct mechanistic differences among DNA replication restart pathways in diverse bacteria. Since reactivation of repaired DNA replication forks requires coordinated DNA and protein binding by DNA replication restart primosome proteins, we determined the crystal structure of Neisseria gonorrhoeae PriB at 2.7 {angstrom} resolution and investigated its ability to physically interact with DNA and PriA helicase. Comparison of the crystal structures of PriB from N. gonorrhoeaemore » and E. coli reveals a well-conserved homodimeric structure consisting of two oligosaccharide/oligonucleotide-binding (OB) folds. In spite of their overall structural similarity, there is significant species variation in the type and distribution of surface amino acid residues. This correlates with striking differences in the affinity with which each PriB homolog binds single-stranded DNA and PriA helicase. These results provide evidence that mechanisms of DNA replication restart are not identical across diverse species and that these pathways have likely become specialized to meet the needs of individual organisms.« less

  19. Structural Basis for DNA Recognition by the Two-Component Response Regulator RcsB.

    PubMed

    Filippova, Ekaterina V; Zemaitaitis, Bozena; Aung, Theint; Wolfe, Alan J; Anderson, Wayne F

    2018-02-27

    RcsB is a highly conserved transcription regulator of the Rcs phosphorelay system, a complex two-component signal transduction system (N. Majdalani and S. Gottesman, Annu Rev Microbiol 59:379-405, 2005; A. J. Wolfe, Curr Opin Microbiol 13:204-209, 2010, https://doi.org/10.1016/j.mib.2010.01.002; D. J. Clarke, Future Microbiol 5:1173-1184, 2010, https://doi.org/10.2217/fmb.10.83). RcsB plays an important role in virulence and pathogenicity in human hosts by regulating biofilm formation. RcsB can regulate transcription alone or together with its auxiliary transcription regulators by forming heterodimers. This complexity allows RcsB to regulate transcription of more than 600 bacterial genes in response to different stresses (D. Wang et al., Mol Plant Microbe Interact 25:6-17, 2012, https://doi.org/10.1094/MPMI-08-11-0207). Despite increasing knowledge of RcsB importance, molecular mechanisms that drive the ability of RcsB to control transcription of a large number of genes remain unclear. Here, we present crystal structures of unphosphorylated RcsB in complex with the consensus DNA-binding sequence of 22-mer (DNA22) and 18-mer (DNA18) of the flhDC operon from Escherichia coli determined at 3.15- and 3.37-Å resolution, respectively. The results of our structural analysis combined with the results of in vitro binding assays provide valuable insights to the protein regulatory mechanism, demonstrate how RcsB recognizes target DNA sequences, and reveal a unique oligomeric state that allows RcsB to form homo- and heterodimers. This information will help us understand the complex mechanisms of transcriptional regulation by RcsB in bacteria. IMPORTANCE RcsB is a well-studied two-component response regulator of the Rcs phosphorelay system, conserved within the family Enterobacteriaceae , which includes many pathogens. It is a global regulator, controlling more than 5% of bacterial genes associated with capsule biosynthesis, flagellar biogenesis, cell wall biosynthesis

  20. Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA.

    PubMed

    Scheibye-Knudsen, Morten; Tseng, Anne; Borch Jensen, Martin; Scheibye-Alsing, Karsten; Fang, Evandro Fei; Iyama, Teruaki; Bharti, Sanjay Kumar; Marosi, Krisztina; Froetscher, Lynn; Kassahun, Henok; Eckley, David Mark; Maul, Robert W; Bastian, Paul; De, Supriyo; Ghosh, Soumita; Nilsen, Hilde; Goldberg, Ilya G; Mattson, Mark P; Wilson, David M; Brosh, Robert M; Gorospe, Myriam; Bohr, Vilhelm A

    2016-11-01

    Cockayne syndrome is a neurodegenerative accelerated aging disorder caused by mutations in the CSA or CSB genes. Although the pathogenesis of Cockayne syndrome has remained elusive, recent work implicates mitochondrial dysfunction in the disease progression. Here, we present evidence that loss of CSA or CSB in a neuroblastoma cell line converges on mitochondrial dysfunction caused by defects in ribosomal DNA transcription and activation of the DNA damage sensor poly-ADP ribose polymerase 1 (PARP1). Indeed, inhibition of ribosomal DNA transcription leads to mitochondrial dysfunction in a number of cell lines. Furthermore, machine-learning algorithms predict that diseases with defects in ribosomal DNA (rDNA) transcription have mitochondrial dysfunction, and, accordingly, this is found when factors involved in rDNA transcription are knocked down. Mechanistically, loss of CSA or CSB leads to polymerase stalling at non-B DNA in a neuroblastoma cell line, in particular at G-quadruplex structures, and recombinant CSB can melt G-quadruplex structures. Indeed, stabilization of G-quadruplex structures activates PARP1 and leads to accelerated aging in Caenorhabditis elegans In conclusion, this work supports a role for impaired ribosomal DNA transcription in Cockayne syndrome and suggests that transcription-coupled resolution of secondary structures may be a mechanism to repress spurious activation of a DNA damage response.

  1. Computational Approach to Explore the B/A Junction Free Energy in DNA.

    PubMed

    Kulkarni, Mandar; Mukherjee, Arnab

    2016-01-04

    Protein-DNA interactions induce conformational changes in DNA such as B- to A-form transitions at a local level. Such transitions are associated with a junction free energy cost at the boundary of two different conformations in a DNA molecule. In this study, we performed umbrella sampling simulations to find the free energy values of the B-A transition at the dinucleotide and trinucleotide level of DNA. Using a combination of dinucleotide and trinucleotide free energy costs obtained from simulations, we calculated the B/A junction free energy. Our study shows that the B/A junction free energy is 0.52 kcal mol(-1) for the A-philic GG step and 1.59 kcal mol(-1) for the B-philic AA step. This observation is in agreement with experimentally derived values. After excluding junction effects, we obtained an absolute free energy cost for the B- to A-form conversion for all the dinucleotide steps. These absolute free energies may be used for predicting the propensity of structural transitions in DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structural insight into the specificity of the B3 DNA-binding domains provided by the co-crystal structure of the C-terminal fragment of BfiI restriction enzyme

    PubMed Central

    Golovenko, Dmitrij; Manakova, Elena; Zakrys, Linas; Zaremba, Mindaugas; Sasnauskas, Giedrius; Gražulis, Saulius; Siksnys, Virginijus

    2014-01-01

    The B3 DNA-binding domains (DBDs) of plant transcription factors (TF) and DBDs of EcoRII and BfiI restriction endonucleases (EcoRII-N and BfiI-C) share a common structural fold, classified as the DNA-binding pseudobarrel. The B3 DBDs in the plant TFs recognize a diverse set of target sequences. The only available co-crystal structure of the B3-like DBD is that of EcoRII-N (recognition sequence 5′-CCTGG-3′). In order to understand the structural and molecular mechanisms of specificity of B3 DBDs, we have solved the crystal structure of BfiI-C (recognition sequence 5′-ACTGGG-3′) complexed with 12-bp cognate oligoduplex. Structural comparison of BfiI-C–DNA and EcoRII-N–DNA complexes reveals a conserved DNA-binding mode and a conserved pattern of interactions with the phosphodiester backbone. The determinants of the target specificity are located in the loops that emanate from the conserved structural core. The BfiI-C–DNA structure presented here expands a range of templates for modeling of the DNA-bound complexes of the B3 family of plant TFs. PMID:24423868

  3. Mg2+ in the Major Groove Modulates B-DNA Structure and Dynamics

    PubMed Central

    Guéroult, Marc; Boittin, Olivier; Mauffret, Oliver; Etchebest, Catherine; Hartmann, Brigitte

    2012-01-01

    This study investigates the effect of Mg2+ bound to the DNA major groove on DNA structure and dynamics. The analysis of a comprehensive dataset of B-DNA crystallographic structures shows that divalent cations are preferentially located in the DNA major groove where they interact with successive bases of (A/G)pG and the phosphate group of 5′-CpA or TpG. Based on this knowledge, molecular dynamics simulations were carried out on a DNA oligomer without or with Mg2+ close to an ApG step. These simulations showed that the hydrated Mg2+ forms a stable intra-strand cross-link between the two purines in solution. ApG generates an electrostatic potential in the major groove that is particularly attractive for cations; its intrinsic conformation is well-adapted to the formation of water-mediated hydrogen bonds with Mg2+. The binding of Mg2+ modulates the behavior of the 5′-neighboring step by increasing the BII (ε-ζ>0°) population of its phosphate group. Additional electrostatic interactions between the 5′-phosphate group and Mg2+ strengthen both the DNA-cation binding and the BII character of the 5′-step. Cation binding in the major groove may therefore locally influence the DNA conformational landscape, suggesting a possible avenue for better understanding how strong DNA distortions can be stabilized in protein-DNA complexes. PMID:22844516

  4. Probing the Potential Role of Non-B DNA Structures at Yeast Meiosis-Specific DNA Double-Strand Breaks.

    PubMed

    Kshirsagar, Rucha; Khan, Krishnendu; Joshi, Mamata V; Hosur, Ramakrishna V; Muniyappa, K

    2017-05-23

    A plethora of evidence suggests that different types of DNA quadruplexes are widely present in the genome of all organisms. The existence of a growing number of proteins that selectively bind and/or process these structures underscores their biological relevance. Moreover, G-quadruplex DNA has been implicated in the alignment of four sister chromatids by forming parallel guanine quadruplexes during meiosis; however, the underlying mechanism is not well defined. Here we show that a G/C-rich motif associated with a meiosis-specific DNA double-strand break (DSB) in Saccharomyces cerevisiae folds into G-quadruplex, and the C-rich sequence complementary to the G-rich sequence forms an i-motif. The presence of G-quadruplex or i-motif structures upstream of the green fluorescent protein-coding sequence markedly reduces the levels of gfp mRNA expression in S. cerevisiae cells, with a concomitant decrease in green fluorescent protein abundance, and blocks primer extension by DNA polymerase, thereby demonstrating the functional significance of these structures. Surprisingly, although S. cerevisiae Hop1, a component of synaptonemal complex axial/lateral elements, exhibits strong affinity to G-quadruplex DNA, it displays a much weaker affinity for the i-motif structure. However, the Hop1 C-terminal but not the N-terminal domain possesses strong i-motif binding activity, implying that the C-terminal domain has a distinct substrate specificity. Additionally, we found that Hop1 promotes intermolecular pairing between G/C-rich DNA segments associated with a meiosis-specific DSB site. Our results support the idea that the G/C-rich motifs associated with meiosis-specific DSBs fold into intramolecular G-quadruplex and i-motif structures, both in vitro and in vivo, thus revealing an important link between non-B form DNA structures and Hop1 in meiotic chromosome synapsis and recombination. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Sequence and Structure Dependent DNA-DNA Interactions

    NASA Astrophysics Data System (ADS)

    Kopchick, Benjamin; Qiu, Xiangyun

    Molecular forces between dsDNA strands are largely dominated by electrostatics and have been extensively studied. Quantitative knowledge has been accumulated on how DNA-DNA interactions are modulated by varied biological constituents such as ions, cationic ligands, and proteins. Despite its central role in biology, the sequence of DNA has not received substantial attention and ``random'' DNA sequences are typically used in biophysical studies. However, ~50% of human genome is composed of non-random-sequence DNAs, particularly repetitive sequences. Furthermore, covalent modifications of DNA such as methylation play key roles in gene functions. Such DNAs with specific sequences or modifications often take on structures other than the canonical B-form. Here we present series of quantitative measurements of the DNA-DNA forces with the osmotic stress method on different DNA sequences, from short repeats to the most frequent sequences in genome, and to modifications such as bromination and methylation. We observe peculiar behaviors that appear to be strongly correlated with the incurred structural changes. We speculate the causalities in terms of the differences in hydration shell and DNA surface structures.

  6. Transition between B-DNA and Z-DNA: free energy landscape for the B-Z junction propagation.

    PubMed

    Lee, Juyong; Kim, Yang-Gyun; Kim, Kyeong Kyu; Seok, Chaok

    2010-08-05

    Canonical, right-handed B-DNA can be transformed into noncanonical, left-handed Z-DNA in vitro at high salt concentrations or in vivo under physiological conditions. The molecular mechanism of this drastic conformational transition is still unknown despite numerous studies. Inspired by the crystal structure of a B-Z junction and the previous zipper model, we show here, with the aid of molecular dynamics simulations, that a stepwise propagation of a B-Z junction is a highly probable pathway for the B-Z transition. In this paper, the movement of a B-Z junction by a two-base-pair step in a double-strand nonamer, [d(GpCpGpCpGpCpGpCpG)](2), is considered. Targeted molecular dynamics simulations and umbrella sampling for this transition resulted in a transition pathway with a free energy barrier of 13 kcal/mol. This barrier is much more favorable than those obtained from previous atomistic simulations that lead to concerted transitions of the whole strands. The free energy difference between B-DNA and Z-DNA evaluated from our simulation is 0.9 kcal/mol per dinucleotide unit, which is consistent with previous experiments. The current computation thus strongly supports the proposal that the B-Z transition involves a relatively fast extension of B-DNA or Z-DNA by sequential propagation of B-Z junctions once nucleation of junctions is established.

  7. [DNA structure from A to Z--biological implications of structural diversity of DNA].

    PubMed

    Bukowiecka-Matusiak, Małgorzata; Woźniak, Lucyna A

    2006-01-01

    Deoxyribonucleic acid (DNA) is a biopolymer of nucleotides, usually adopting a double-stranded helical form in cells, with complementary base pairing holding the two strands together. The most stable is B-DNA conformation, although numerous other double helical structures can occur under specific conditions (A-DNA, Z-DNA, P-DNA). The existence of multiple-stranded (triplex, tetraplex) forms in vivo and their biological function in cells are subject of intensive studies.

  8. Correlation of MFOLD-predicted DNA secondary structures with separation patterns obtained by capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis.

    PubMed

    Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka

    2002-04-01

    We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments. Copyright 2002 Wiley-Liss, Inc.

  9. B-DNA to Z-DNA structural transitions in the SV40 enhancer: stabilization of Z-DNA in negatively supercoiled DNA minicircles

    NASA Technical Reports Server (NTRS)

    Gruskin, E. A.; Rich, A.

    1993-01-01

    During replication and transcription, the SV40 control region is subjected to significant levels of DNA unwinding. There are three, alternating purine-pyrimidine tracts within this region that can adopt the Z-DNA conformation in response to negative superhelix density: a single copy of ACACACAT and two copies of ATGCATGC. Since the control region is essential for both efficient transcription and replication, B-DNA to Z-DNA transitions in these vital sequence tracts may have significant biological consequences. We have synthesized DNA minicircles to detect B-DNA to Z-DNA transitions in the SV40 enhancer, and to determine the negative superhelix density required to stabilize the Z-DNA. A variety of DNA sequences, including the entire SV40 enhancer and the two segments of the enhancer with alternating purine-pyrimidine tracts, were incorporated into topologically relaxed minicircles. Negative supercoils were generated, and the resulting topoisomers were resolved by electrophoresis. Using an anti-Z-DNA Fab and an electrophoretic mobility shift assay, Z-DNA was detected in the enhancer-containing minicircles at a superhelix density of -0.05. Fab saturation binding experiments demonstrated that three, independent Z-DNA tracts were stabilized in the supercoiled minicircles. Two other minicircles, each with one of the two alternating purine-pyrimidine tracts, also contained single Z-DNA sites. These results confirm the identities of the Z-DNA-forming sequences within the control region. Moreover, the B-DNA to Z-DNA transitions were detected at superhelix densities observed during normal replication and transcription processes in the SV40 life cycle.

  10. Global force-torque phase diagram for the DNA double helix: structural transitions, triple points and collapsed plectonemes

    PubMed Central

    Marko, John F.; Neukirch, Sébastien

    2014-01-01

    We present a free energy model for structural transitions of the DNA double helix driven by tensile and torsional stress. Our model is coarse grained, and is based on semiflexible polymer descriptions of B-DNA, underwound L-DNA, and highly overwound P-DNA. The statistical-mechanical model of plectonemic supercoiling previously developed for B-DNA is applied to semiflexible polymer models of P and L-DNA, to obtain a model of DNA structural transitions in quantitative accord with experiment. We identify two distinct plectonemic states, one “inflated” by electrostatic repulsion and thermal fluctuations, and the other “collapsed”, with the two double helices inside the supercoils driven to close contact. We find that supercoiled B and L are stable only in inflated form, while supercoiled P is always collapsed. We also predict the behavior and experimental signatures of highly underwound “Q”-DNA, the left-handed analog of P-DNA; as for P, supercoiled Q is always collapsed. Overstretched “S”-DNA and strand-separated “stress-melted” DNA are also included in our model, allowing prediction of a global phase diagram for forces up to 1000 pN and torques between ±60 pN nm, or in terms of linking number density, from σ = −5 to +3. PMID:24483501

  11. Multistep modeling (MSM) of biomolecular structure application to the A-G mispair in the B-DNA environment

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Raghunathan, G.; Shibata, M.; Rein, R.

    1986-01-01

    A multistep modeling procedure has been evolved to study the structural changes introduced by lesions in DNA. We report here the change in the structure of regular B-DNA geometry due to the incorporation of Ganti-Aanti mispair in place of a regular G-C pair, preserving the helix continuity. The energetics of the structure so obtained is compared with the Ganti-Asyn configuration under similar constrained conditions. We present the methodology adopted and discuss the results.

  12. Modular structure of the full-length DNA gyrase B subunit revealed by small-angle X-ray scattering.

    PubMed

    Costenaro, Lionel; Grossmann, J Günter; Ebel, Christine; Maxwell, Anthony

    2007-03-01

    DNA gyrase, the only topoisomerase able to introduce negative supercoils into DNA, is essential for bacterial transcription and replication; absent from humans, it is a successful target for antibacterials. From biophysical experiments in solution, we report a structural model at approximately 12-15 A resolution of the full-length B subunit (GyrB). Analytical ultracentrifugation shows that GyrB is mainly a nonglobular monomer. Ab initio modeling of small-angle X-ray scattering data for GyrB consistently yields a "tadpole"-like envelope. It allows us to propose an organization of GyrB into three domains-ATPase, Toprim, and Tail-based on their crystallographic and modeled structures. Our study reveals the modular organization of GyrB and points out its potential flexibility, needed during the gyrase catalytic cycle. It provides important insights into the supercoiling mechanism by gyrase and suggests new lines of research.

  13. Cerium chloride stimulated controlled conversion of B-to-Z DNA in self-assembled nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhanjadeo, Madhabi M.; Academy of Scientific & Innovative Research; Nayak, Ashok K.

    DNA adopts different conformation not only because of novel base pairs but also while interacting with inorganic or organic compounds. Self-assembled branched DNA (bDNA) structures or DNA origami that change conformation in response to environmental cues hold great promises in sensing and actuation at the nanoscale. Recently, the B-Z transition in DNA is being explored to design various nanomechanical devices. In this communication we have demonstrated that Cerium chloride binds to the phosphate backbone of self-assembled bDNA structure and induce B-to-Z transition at physiological concentration. The mechanism of controlled conversion from right-handed to left-handed has been assayed by various dyemore » binding studies using CD and fluorescence spectroscopy. Three different bDNA structures have been identified to display B-Z transition. This approach provides a rapid and reversible means to change bDNA conformation, which can be used for dynamic and progressive control at the nanoscale. - Highlights: • Cerium-induced B-to-Z DNA transition in self-assembled nanostructures. • Lower melting temperature of Z-DNA than B-DNA confirmed by CD spectroscopy. • Binding mechanism of cerium chloride is explained using fluorescence spectroscopy. • Right-handed to left-handed DNA conformation is also noticed in modified bDNA structure.« less

  14. Clinical evaluation of the branched DNA assay for hepatitis B virus DNA detection in patients with chronic hepatitis B lacking hepatitis B e antigen and treated with interferon-alpha.

    PubMed

    Habersetzer, F; Zoulim, F; Jusot, J F; Zhang, X; Trabaud, M A; Chevallier, P; Chevallier, M; Ahmed, S N; Sepetjan, M; Comanor, L; Minor, J; Trépo, C

    1998-11-01

    The aim of this study was to evaluate the Chiron branched DNA (bDNA) assay for detection of serum hepatitis B virus (HBV) DNA in patients with chronic hepatitis B lacking hepatitis B e antigen (HBeAg) and undergoing interferon (IFN) therapy. Results obtained with the bDNA assay were compared with those obtained using the Abbott liquid hybridization (LH) assay and the polymerase chain reaction (PCR). Serial samples (274) from 34 patients were analysed. Analysis of variance results indicated that bDNA values were more significantly correlated than LH values with both PCR positive/negative results (probability of artifact (Prob > F) = 0.7 and 0.09 for LH and bDNA assays, respectively) and presence/absence of precore mutations (Prob > F = 0.21 and 0.001 for LH and bDNA assays, respectively). Both bDNA and LH results correlated highly with alanine aminotransferase (ALT) values (both had Prob > F values of 0.0) while PCR was not correlated with ALT (Prob > F = 0.05). In 26 evaluable patients, a model based on a generalized Knodell score was used to predict response to IFN therapy, as defined by normalization of ALT values during therapy. This model discriminated well between non-responders and responders. The bDNA results correlated well with the generalized Knodell score, while the LH results did not (Prob > F = 0.04 and 0.19 for the bDNA and LH assays, respectively). In conclusion, the bDNA assay appears to be useful for quantification of HBV DNA levels in HBeAg-negative chronic hepatitis as it correlates with biochemical and histological indications of disease severity as well as with response to IFN therapy.

  15. Escherichia coli DnaA forms helical structures along the longitudinal cell axis distinct from MreB filaments.

    PubMed

    Boeneman, Kelly; Fossum, Solveig; Yang, Yanhua; Fingland, Nicholas; Skarstad, Kirsten; Crooke, Elliott

    2009-05-01

    DnaA initiates chromosomal replication in Escherichia coli at a well-regulated time in the cell cycle. To determine how the spatial distribution of DnaA is related to the location of chromosomal replication and other cell cycle events, the localization of DnaA in living cells was visualized by confocal fluorescence microscopy. The gfp gene was randomly inserted into a dnaA-bearing plasmid via in vitro transposition to create a library that included internally GFP-tagged DnaA proteins. The library was screened for the ability to rescue dnaA(ts) mutants, and a candidate gfp-dnaA was used to replace the dnaA gene of wild-type cells. The resulting cells produce close to physiological levels of GFP-DnaA from the endogenous promoter as their only source of DnaA and somewhat under-initiate replication with moderate asynchrony. Visualization of GFP-tagged DnaA in living cells revealed that DnaA adopts a helical pattern that spirals along the long axis of the cell, a pattern also seen in wild-type cells by immunofluorescence with affinity purified anti-DnaA antibody. Although the DnaA helices closely resemble the helices of the actin analogue MreB, co-visualization of GFP-tagged DnaA and RFP-tagged MreB demonstrates that DnaA and MreB adopt discrete helical structures along the length of the longitudinal cell axis.

  16. Recognition of Local DNA Structures by p53 Protein

    PubMed Central

    Brázda, Václav; Coufal, Jan

    2017-01-01

    p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells. PMID:28208646

  17. DNA secondary structures: stability and function of G-quadruplex structures

    PubMed Central

    Bochman, Matthew L.; Paeschke, Katrin; Zakian, Virginia A.

    2013-01-01

    In addition to the canonical double helix, DNA can fold into various other inter- and intramolecular secondary structures. Although many such structures were long thought to be in vitro artefacts, bioinformatics demonstrates that DNA sequences capable of forming these structures are conserved throughout evolution, suggesting the existence of non-B-form DNA in vivo. In addition, genes whose products promote formation or resolution of these structures are found in diverse organisms, and a growing body of work suggests that the resolution of DNA secondary structures is critical for genome integrity. This Review focuses on emerging evidence relating to the characteristics of G-quadruplex structures and the possible influence of such structures on genomic stability and cellular processes, such as transcription. PMID:23032257

  18. Cerium chloride stimulated controlled conversion of B-to-Z DNA in self-assembled nanostructures.

    PubMed

    Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta

    2017-01-22

    DNA adopts different conformation not only because of novel base pairs but also while interacting with inorganic or organic compounds. Self-assembled branched DNA (bDNA) structures or DNA origami that change conformation in response to environmental cues hold great promises in sensing and actuation at the nanoscale. Recently, the B-Z transition in DNA is being explored to design various nanomechanical devices. In this communication we have demonstrated that Cerium chloride binds to the phosphate backbone of self-assembled bDNA structure and induce B-to-Z transition at physiological concentration. The mechanism of controlled conversion from right-handed to left-handed has been assayed by various dye binding studies using CD and fluorescence spectroscopy. Three different bDNA structures have been identified to display B-Z transition. This approach provides a rapid and reversible means to change bDNA conformation, which can be used for dynamic and progressive control at the nanoscale. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Evaluation of the effect of non-B DNA structures on plasmid integrity via accelerated stability studies.

    PubMed

    Ribeiro, S C; Monteiro, G A; Prazeres, D M F

    2009-04-01

    Plasmid biopharmaceuticals are a new class of medicines with an enormous potential. Attempts to increase the physical stability of highly purified supercoiled (SC) plasmid DNA in pharmaceutical aqueous solutions have relied on: (i) changing the DNA sequence, (ii) improving manufacturing to reduce deleterious impurities and initial DNA damage, and (iii) controlling the storage medium characteristics. In this work we analyzed the role of secondary structures on the degradation of plasmid molecules. Accelerated stability experiments were performed with SC, open circular (OC) and linear (L) isoforms of three plasmids which differed only in the "single-strandlike" content of their polyadenylation (poly A) signals. We have proved that the presence of more altered or interrupted (non-B) DNA secondary structures did not directly translate into an easier strand scission of the SC isoforms. Rather, those unusual structures imposed a lower degree of SC in the plasmids, leading to an increase in their resistance to thermal degradation. However, this behavior was reversed when the relaxed or L isoforms were tested, in which case the absence of SC rendered the plasmids essentially double-stranded. Overall, this work suggests that plasmid DNA sequence and secondary structures should be taken into account in future investigations of plasmid stability during prolonged storage.

  20. Monte Carlo approach in assessing damage in higher order structures of DNA

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Schmidt, J. B.; Holley, W. R.

    1994-01-01

    We have developed a computer monitor of nuclear DNA in the form of chromatin fibre. The fibres are modeled as a ideal solenoid consisting of twenty helical turns with six nucleosomes per turn. The chromatin model, in combination with are Monte Carlo theory of radiation damage induces by charged particles, based on general features of tack structure and stopping power theory, has been used to evaluate the influence of DNA structure on initial damage. An interesting has emerged from our calculations. Our calculated results predict the existence of strong spatial correlations in damage sites associated with the symmetries in the solenoidal model. We have calculated spectra of short fragments of double stranded DNA produced by multiple double strand breaks induced by both high and low LET radiation. The spectra exhibit peaks at multiples of approximately 85 base pairs (the nucleosome periodicity), and approximately 1000 base pairs (solenoid periodicity). Preliminary experiments to investigate the fragment distributions from irradiated DNA, made by B. Rydberg at Lawrence Berkeley Laboratory, confirm the existence of short DNA fragments and are in substantial agreement with the predictions of our theory.

  1. Activator Protein-1: redox switch controlling structure and DNA-binding.

    PubMed

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Activator Protein-1: redox switch controlling structure and DNA-binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-pointmore » redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.« less

  3. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.

    PubMed

    Sauvé, Simon; Tremblay, Luc; Lavigne, Pierre

    2004-09-17

    Basic region-helix1-loop-helix2-leucine zipper (b/H(1)LH(2)/LZ) transcription factors bind specific DNA sequence in their target gene promoters as dimers. Max, a b/H(1)LH(2)/LZ transcription factor, is the obligate heterodimeric partner of the related b/H(1)LH(2)/LZ proteins of the Myc and Mad families. These heterodimers specifically bind E-box DNA sequence (CACGTG) to activate (e.g. c-Myc/Max) and repress (e.g. Mad1/Max) transcription. Max can also homodimerize and bind E-box sequences in c-Myc target gene promoters. While the X-ray structure of the Max b/H(1)LH(2)/LZ/DNA complex and that of others have been reported, the precise sequence of events leading to the reversible and specific binding of these important transcription factors is still largely unknown. In order to provide insights into the DNA binding mechanism, we have solved the NMR solution structure of a covalently homodimerized version of a Max b/H(1)LH(2)/LZ protein with two stabilizing mutations in the LZ, and characterized its backbone dynamics from (15)N spin-relaxation measurements in the absence of DNA. Apart from minor differences in the pitch of the LZ, possibly resulting from the mutations in the construct, we observe that the packing of the helices in the H(1)LH(2) domain is almost identical to that of the two crystal structures, indicating that no important conformational change in these helices occurs upon DNA binding. Conversely to the crystal structures of the DNA complexes, the first 14 residues of the basic region are found to be mostly unfolded while the loop is observed to be flexible. This indicates that these domains undergo conformational changes upon DNA binding. On the other hand, we find the last four residues of the basic region form a persistent helical turn contiguous to H(1). In addition, we provide evidence of the existence of internal motions in the backbone of H(1) that are of larger amplitude and longer time-scale (nanoseconds) than the ones in the H(2) and LZ domain

  4. The complete sequence and structural analysis of human apolipoprotein B-100: relationship between apoB-100 and apoB-48 forms.

    PubMed Central

    Cladaras, C; Hadzopoulou-Cladaras, M; Nolte, R T; Atkinson, D; Zannis, V I

    1986-01-01

    We have isolated and sequenced overlapping cDNA clones covering the entire sequence of human apolipoprotein B-100 (apoB-100). DNA sequence analysis and determination of the mRNA transcription initiation site by S1 nuclease mapping showed that the apoB mRNA consists of 14,112 nucleotides including the 5' and 3' untranslated regions which are 128 and 301 nucleotides respectively. The DNA-derived protein sequence shows that apoB-100 is 513,000 daltons and contains 4560 amino acids including a 24-amino-acid-long signal peptide. The mol. wt of apoB-100 implies that there is one apoB molecule per LDL particle. Computer analysis of the predicted secondary structure of the protein showed that some of the potential alpha helical and beta sheet structures are amphipathic, whereas others have non-amphipathic neutral to apolar character. These latter regions may contribute to the formation of the lipid-binding domains of apoB-100. The protein contains 25 cysteines and 20 potential N-glycosylation sites. The majority of cysteines are distributed in the amino terminal portion of the protein. Four of the potential glycosylation sites are in predicted beta turn structures and may represent true glycosylation positions. ApoB lacks the tandem repeats which are characteristic of other apolipoproteins. The mean hydrophobicity the mean value of H1 and helical hydrophobic moment the mean value of microH profiles of apoB showed the presence of several potential helical regions with strong polar character and high hydrophobic moment. The region with the highest hydrophobic moment, between amino acid residues 3352 and 3369, contains five closely spaced, positively charged residues, and has sequence homology to the LDL receptor binding site of apoE. This region is flanked by three neighbouring regions with positively charged amino acids and high hydrophobic moment that are located between residues 3174 and 3681. One or more of these closely spaced apoB sequences may be involved in the

  5. In the Absence of Writhe, DNA Relieves Torsional Stress with Localized, Sequence-Dependent Structural Failure to Preserve B-form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, Graham L.; Zechiedrich, E. L.; Pettitt, Bernard M.

    2009-09-01

    To understand how underwinding and overwinding the DNA helix affects its structure, we simulated 19 independent DNA systems with fixed degrees of twist using molecular dynamics in a system that does not allow writhe. Underwinding DNA induced spontaneous, sequence-dependent base flipping and local denaturation, while overwinding DNA induced the formation of Pauling-like DNA (P-DNA). The winding resulted in a bimodal state simultaneously including local structural failure and B-form DNA for both underwinding and extreme overwinding. Our simulations suggest that base flipping and local denaturation may provide a landscape influencing protein recognition of DNA sequence to affect, for examples, replication, transcriptionmore » and recombination. Additionally, our findings help explain results from singlemolecule experiments and demonstrate that elastic rod models are strictly valid on average only for unstressed or overwound DNA up to P-DNA formation. Finally, our data support a model in which base flipping can result from torsional stress.« less

  6. Structural Transitions in Supercoiled Stretched DNA

    NASA Astrophysics Data System (ADS)

    v, Croquette

    1998-03-01

    Using magnetic micromanipulation techniques [Strick 96]( uc(T.R.) Strick, J.-F. Allemand, D. Bensimon, A. Bensimon) and uc(V.) Croquette, "The elasticity of a single supercoiled DNA molecule", Science, 271, 1835 (1996)., we have studied the mechanical properties (force versus extension) of single DNA molecules under a wide range of torsional stresses (supercoiling). We show that unwinding the DNA double helix leads to a phase separation between regular B-DNA and denaturation bubbles. The fraction of denatured molecule increases linearly with the degree of unwinding, beginning at a value of 1% unwinding. We have confirmed this denatured state by hybridization of homologous single-stranded DNA probes and by a chemical attack of the exposed bases. Surprisingly, when we overwind the molecule, the elasticity curves we obtain may also be interpreted by the coexistence of two phases, B-DNA and a new phase which we note P-DNA. The fraction of this new phase increases smoothly with overwinding, beginning at 3 % and continuing up to 300 %. Our results indicate that this new phase is four times more twisted that the standard B-DNA and is 1.75 times longer. Although the structure of this phase is not yet known, such a high twisting can only be attained if the sugar-phosphate backbones of the two strands are twisted closely while the bases are expelled outside of the molecule's core, in a structure reminiscent of the one proposed by Pauling. Indeed we have shown that this new phase is sensitive to chemical attack whereas the B-DNA is not. This new phase begins to appear on a molecule overwound by 3 % and stretched by a force of 5 pN, conditions typically encountered in vivo during gene transcription. This new phase may thus play a biological role (for more details).

  7. DNA mimic proteins: functions, structures, and bioinformatic analysis.

    PubMed

    Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J

    2014-05-13

    DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.

  8. Model Averaging for Predicting the Exposure to Aflatoxin B1 Using DNA Methylation in White Blood Cells of Infants

    NASA Astrophysics Data System (ADS)

    Rahardiantoro, S.; Sartono, B.; Kurnia, A.

    2017-03-01

    In recent years, DNA methylation has been the special issue to reveal the pattern of a lot of human diseases. Huge amount of data would be the inescapable phenomenon in this case. In addition, some researchers interesting to take some predictions based on these huge data, especially using regression analysis. The classical approach would be failed to take the task. Model averaging by Ando and Li [1] could be an alternative approach to face this problem. This research applied the model averaging to get the best prediction in high dimension of data. In the practice, the case study by Vargas et al [3], data of exposure to aflatoxin B1 (AFB1) and DNA methylation in white blood cells of infants in The Gambia, take the implementation of model averaging. The best ensemble model selected based on the minimum of MAPE, MAE, and MSE of predictions. The result is ensemble model by model averaging with number of predictors in model candidate is 15.

  9. NMR structure of the DNA decamer duplex containing double T*G mismatches of cis-syn cyclobutane pyrimidine dimer: implications for DNA damage recognition by the XPC-hHR23B complex.

    PubMed

    Lee, Joon-Hwa; Park, Chin-Ju; Shin, Jae-Sun; Ikegami, Takahisa; Akutsu, Hideo; Choi, Byong-Seok

    2004-01-01

    The cis-syn cyclobutane pyrimidine dimer (CPD) is a cytotoxic, mutagenic and carcinogenic DNA photoproduct and is repaired by the nucleotide excision repair (NER) pathway in mammalian cells. The XPC-hHR23B complex as the initiator of global genomic NER binds to sites of certain kinds of DNA damage. Although CPDs are rarely recognized by the XPC-hHR23B complex, the presence of mismatched bases opposite a CPD significantly increased the binding affinity of the XPC-hHR23B complex to the CPD. In order to decipher the properties of the DNA structures that determine the binding affinity for XPC-hHR23B to DNA, we carried out structural analyses of the various types of CPDs by NMR spectroscopy. The DNA duplex which contains a single 3' T*G wobble pair in a CPD (CPD/GA duplex) induces little conformational distortion. However, severe distortion of the helical conformation occurs when a CPD contains double T*G wobble pairs (CPD/GG duplex) even though the T residues of the CPD form stable hydrogen bonds with the opposite G residues. The helical bending angle of the CPD/GG duplex was larger than those of the CPD/GA duplex and properly matched CPD/AA duplex. The fluctuation of the backbone conformation and significant changes in the widths of the major and minor grooves at the double T*G wobble paired site were also observed in the CPD/GG duplex. These structural features were also found in a duplex that contains the (6-4) adduct, which is efficiently recognized by the XPC-hHR23B complex. Thus, we suggest that the unique structural features of the DNA double helix (that is, helical bending, flexible backbone conformation, and significant changes of the major and/or minor grooves) might be important factors in determining the binding affinity of the XPC-hHR23B complex to DNA.

  10. Sequence-dependent modelling of local DNA bending phenomena: curvature prediction and vibrational analysis.

    PubMed

    Vlahovicek, K; Munteanu, M G; Pongor, S

    1999-01-01

    Bending is a local conformational micropolymorphism of DNA in which the original B-DNA structure is only distorted but not extensively modified. Bending can be predicted by simple static geometry models as well as by a recently developed elastic model that incorporate sequence dependent anisotropic bendability (SDAB). The SDAB model qualitatively explains phenomena including affinity of protein binding, kinking, as well as sequence-dependent vibrational properties of DNA. The vibrational properties of DNA segments can be studied by finite element analysis of a model subjected to an initial bending moment. The frequency spectrum is obtained by applying Fourier analysis to the displacement values in the time domain. This analysis shows that the spectrum of the bending vibrations quite sensitively depends on the sequence, for example the spectrum of a curved sequence is characteristically different from the spectrum of straight sequence motifs of identical basepair composition. Curvature distributions are genome-specific, and pronounced differences are found between protein-coding and regulatory regions, respectively, that is, sites of extreme curvature and/or bendability are less frequent in protein-coding regions. A WWW server is set up for the prediction of curvature and generation of 3D models from DNA sequences (http:@www.icgeb.trieste.it/dna).

  11. Environment and Structure Influence in DNA Conduction

    NASA Technical Reports Server (NTRS)

    Adessi, C.; Walch, S.; Anantram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Results for transmission through the poly(G) DNA molecule are presented. We show that (i) periodically arranged sodium counter-ions in close proximity to dry DNA gives rise to a new conduction channel and aperiodicity in the counter-ion sequence can lead to a significant reduction in conduction, (ii) modification of the rise of B-DNA induces a change in the width of the transmission window, and (iii) specifically designed sequences are predicted to show intrinsic resonant tunneling behavior.

  12. An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences.

    PubMed

    Horn, T; Chang, C A; Urdea, M S

    1997-12-01

    The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays.

  13. An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences.

    PubMed Central

    Horn, T; Chang, C A; Urdea, M S

    1997-01-01

    The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays. PMID:9365265

  14. Detection of parvovirus B19 DNA in blood: Viruses or DNA remnants?

    PubMed

    Molenaar-de Backer, M W A; Russcher, A; Kroes, A C M; Koppelman, M H G M; Lanfermeijer, M; Zaaijer, H L

    2016-11-01

    Parvovirus B19 (B19V) DNA can be detected in blood over a long period after acute infection. Several reports associate the presence of B19V DNA with disease, irrespective of timing of the initial B19V infection. This study aims to analyze the properties of B19V DNA in blood, differentiating between bare, non-infectious strands of DNA and B19V DNA in viable virions. Ten blood donors with asymptomatic acute B19V infection were followed and sampled up to 22 months after infection. The samples were treated with and without an endonuclease and tested for B19V DNA, to distinguish between DNA in virions and naked DNA. In the acute phase of infection, high levels of B19V DNA were detected, concurrent with B19V IgM antibodies. B19V DNA apparently was encapsidated, as indicated by resistance to endonuclease degradation. Subsequently, B19V DNA remained detectable for more than one year in all donors at low levels (<10 5 IU/mL). Approximately 150days after infection B19V DNA became degradable by an endonuclease, indicating that this concerned naked DNA. In some donors a second endonuclease-resistant peak occurred. Detection of B19V DNA in blood by PCR does not necessarily imply that B19V replication takes place and that infectious B19V virions are present. We propose that remnant B19V DNA strands can be released from tissues without active replication. This finding urges to reconsider an assumed role of B19V infection mainly based on B19V DNA detection in blood, a much debated subject in clinical syndromes such as myocarditis and arthritis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mechanism for accurate, protein-assisted DNA annealing by Deinococcus radiodurans DdrB

    PubMed Central

    Sugiman-Marangos, Seiji N.; Weiss, Yoni M.; Junop, Murray S.

    2016-01-01

    Accurate pairing of DNA strands is essential for repair of DNA double-strand breaks (DSBs). How cells achieve accurate annealing when large regions of single-strand DNA are unpaired has remained unclear despite many efforts focused on understanding proteins, which mediate this process. Here we report the crystal structure of a single-strand annealing protein [DdrB (DNA damage response B)] in complex with a partially annealed DNA intermediate to 2.2 Å. This structure and supporting biochemical data reveal a mechanism for accurate annealing involving DdrB-mediated proofreading of strand complementarity. DdrB promotes high-fidelity annealing by constraining specific bases from unauthorized association and only releases annealed duplex when bound strands are fully complementary. To our knowledge, this mechanism provides the first understanding for how cells achieve accurate, protein-assisted strand annealing under biological conditions that would otherwise favor misannealing. PMID:27044084

  16. Binding of DNA-bending non-histone proteins destabilizes regular 30-nm chromatin structure

    PubMed Central

    Bajpai, Gaurav; Jain, Ishutesh; Inamdar, Mandar M.; Das, Dibyendu; Padinhateeri, Ranjith

    2017-01-01

    Why most of the in vivo experiments do not find the 30-nm chromatin fiber, well studied in vitro, is a puzzle. Two basic physical inputs that are crucial for understanding the structure of the 30-nm fiber are the stiffness of the linker DNA and the relative orientations of the DNA entering/exiting nucleosomes. Based on these inputs we simulate chromatin structure and show that the presence of non-histone proteins, which bind and locally bend linker DNA, destroys any regular higher order structures (e.g., zig-zag). Accounting for the bending geometry of proteins like nhp6 and HMG-B, our theory predicts phase-diagram for the chromatin structure as a function of DNA-bending non-histone protein density and mean linker DNA length. For a wide range of linker lengths, we show that as we vary one parameter, that is, the fraction of bent linker region due to non-histone proteins, the steady-state structure will show a transition from zig-zag to an irregular structure—a structure that is reminiscent of what is observed in experiments recently. Our theory can explain the recent in vivo observation of irregular chromatin having co-existence of finite fraction of the next-neighbor (i + 2) and neighbor (i + 1) nucleosome interactions. PMID:28135276

  17. Structure-Based Mutagenesis of Sulfolobus Turreted Icosahedral Virus B204 Reveals Essential Residues in the Virion-Associated DNA-Packaging ATPase.

    PubMed

    Dellas, Nikki; Snyder, Jamie C; Dills, Michael; Nicolay, Sheena J; Kerchner, Keshia M; Brumfield, Susan K; Lawrence, C Martin; Young, Mark J

    2015-12-23

    Sulfolobus turreted icosahedral virus (STIV), an archaeal virus that infects the hyperthermoacidophile Sulfolobus solfataricus, is one of the most well-studied viruses of the domain Archaea. STIV shares structural, morphological, and sequence similarities with viruses from other domains of life, all of which are thought to belong to the same viral lineage. Several of these common features include a conserved coat protein fold, an internal lipid membrane, and a DNA-packaging ATPase. B204 is the ATPase encoded by STIV and is thought to drive packaging of viral DNA during the replication process. Here, we report the crystal structure of B204 along with the biochemical analysis of B204 mutants chosen based on structural information and sequence conservation patterns observed among members of the same viral lineage and the larger FtsK/HerA superfamily to which B204 belongs. Both in vitro ATPase activity assays and transfection assays with mutant forms of B204 confirmed the essentiality of conserved and nonconserved positions. We also have identified two distinct particle morphologies during an STIV infection that differ in the presence or absence of the B204 protein. The biochemical and structural data presented here are not only informative for the STIV replication process but also can be useful in deciphering DNA-packaging mechanisms for other viruses belonging to this lineage. STIV is a virus that infects a host from the domain Archaea that replicates in high-temperature, acidic environments. While STIV has many unique features, there exist several striking similarities between this virus and others that replicate in different environments and infect a broad range of hosts from Bacteria and Eukarya. Aside from structural features shared by viruses from this lineage, there exists a significant level of sequence similarity between the ATPase genes carried by these different viruses; this gene encodes an enzyme thought to provide energy that drives DNA packaging into

  18. Sequence-specific binding of counterions to B-DNA

    PubMed Central

    Denisov, Vladimir P.; Halle, Bertil

    2000-01-01

    Recent studies by x-ray crystallography, NMR, and molecular simulations have suggested that monovalent counterions can penetrate deeply into the minor groove of B form DNA. Such groove-bound ions potentially could play an important role in AT-tract bending and groove narrowing, thereby modulating DNA function in vivo. To address this issue, we report here 23Na magnetic relaxation dispersion measurements on oligonucleotides, including difference experiments with the groove-binding drug netropsin. The exquisite sensitivity of this method to ions in long-lived and intimate association with DNA allows us to detect sequence-specific sodium ion binding in the minor groove AT tract of three B-DNA dodecamers. The sodium ion occupancy is only a few percent, however, and therefore is not likely to contribute importantly to the ensemble of B-DNA structures. We also report results of ion competition experiments, indicating that potassium, rubidium, and cesium ions bind to the minor groove with similarly weak affinity as sodium ions, whereas ammonium ion binding is somewhat stronger. The present findings are discussed in the light of previous NMR and diffraction studies of sequence-specific counterion binding to DNA. PMID:10639130

  19. Alternative DNA structure formation in the mutagenic human c-MYC promoter

    PubMed Central

    del Mundo, Imee Marie A.; Zewail-Foote, Maha; Kerwin, Sean M.

    2017-01-01

    Abstract Mutation ‘hotspot’ regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene. PMID:28334873

  20. DNA Copy Number Signature to Predict Recurrence in Early Stage Ovarian Cancer

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-14-1-0194 TITLE: DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer 5b. GRANT NUMBER W81XWH-14-1-0194 5c. PROGRAM...determine the copy number gain and loss for early stage high grade ovarian cancers through IlluminaHumanOmniExpress-FFPE BeadChip system • Subtask 1 DNA

  1. Role of DNA secondary structures in fragile site breakage along human chromosome 10

    PubMed Central

    Dillon, Laura W.; Pierce, Levi C. T.; Ng, Maggie C. Y.; Wang, Yuh-Hwa

    2013-01-01

    The formation of alternative DNA secondary structures can result in DNA breakage leading to cancer and other diseases. Chromosomal fragile sites, which are regions of the genome that exhibit chromosomal breakage under conditions of mild replication stress, are predicted to form stable DNA secondary structures. DNA breakage at fragile sites is associated with regions that are deleted, amplified or rearranged in cancer. Despite the correlation, unbiased examination of the ability to form secondary structures has not been evaluated in fragile sites. Here, using the Mfold program, we predict potential DNA secondary structure formation on the human chromosome 10 sequence, and utilize this analysis to compare fragile and non-fragile DNA. We found that aphidicolin (APH)-induced common fragile sites contain more sequence segments with potential high secondary structure-forming ability, and these segments clustered more densely than those in non-fragile DNA. Additionally, using a threshold of secondary structure-forming ability, we refined legitimate fragile sites within the cytogenetically defined boundaries, and identified potential fragile regions within non-fragile DNA. In vitro detection of alternative DNA structure formation and a DNA breakage cell assay were used to validate the computational predictions. Many of the regions identified by our analysis coincide with genes mutated in various diseases and regions of copy number alteration in cancer. This study supports the role of DNA secondary structures in common fragile site instability, provides a systematic method for their identification and suggests a mechanism by which DNA secondary structures can lead to human disease. PMID:23297364

  2. Gene structure, expression, and DNA methylation characteristics of sea cucumber cyclin B gene during aestivation.

    PubMed

    Zhu, Aijun; Chen, Muyan; Zhang, Xiumei; Storey, Kenneth B

    2016-12-05

    The sea cucumber, Apostichopus japonicus, is a good model for studying environmentally-induced aestivation by a marine invertebrate. One of the central requirements of aestivation is the repression of energy-expensive cellular processes such as cell cycle progression. The present study identified the gene structure of the cell cycle regulator, cyclin B, and detected the expression levels of this gene over three stages of the annual aestivation-arousal cycle. Furthermore, the DNA methylation characteristics of cyclin B were analyzed in non-aestivation and deep-aestivation stages of sea cucumbers. We found that the cyclin B promoter contains a CpG island, three CCAAT-boxes and three cell cycle gene homology regions (CHRs). Application of qRT-PCR analysis showed significant downregulation of cyclin B transcript levels during deep-aestivation in comparison with non-aestivation in both intestine and longitudinal muscle, and these returned to basal levels after arousal from aestivation. Methylation analysis of the cyclin B core promoter revealed that its methylation level showed significant differences between non-aestivation and deep-aestivation stages (p<0.05) and interestingly, a positive correlation between Cyclin B transcripts expression and methylation levels of the core promoter was also observed. Our findings suggest that cell cycle progression may be reversibly arrested during aestivation as indicated by the changes in cyclin B expression levels and we propose that DNA methylation is one of the regulatory mechanisms involved in cyclin B transcriptional variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Alternative DNA structure formation in the mutagenic human c-MYC promoter.

    PubMed

    Del Mundo, Imee Marie A; Zewail-Foote, Maha; Kerwin, Sean M; Vasquez, Karen M

    2017-05-05

    Mutation 'hotspot' regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    PubMed

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  5. DNA of a Human Hepatitis B Virus Candidate

    PubMed Central

    Robinson, William S.; Clayton, David A.; Greenman, Richard L.

    1974-01-01

    Particles containing DNA polymerase (Dane particles) were purified from the plasma of chronic carriers of hepatitis B antigen. After a DNA polymerase reaction with purified Dane particle preparations treated with Nonidet P-40 detergent, Dane particle core structures containing radioactive DNA product were isolated by sedimentation in a sucrose density gradient. The radioactive DNA was extracted with sodium dodecyl sulfate and isolated by band sedimentation in a preformed CsCl gradient. Examination of the radioactive DNA band by electron microscopy revealed exclusively circular double-stranded DNA molecules approximately 0.78 μm in length. Identical circular molecules were observed when DNA was isolated by a similar procedure from particles that had not undergone a DNA polymerase reaction. The molecules were completely degraded by DNase 1. When Dane particle core structures were treated with DNase 1 before DNA extraction, only 0.78-μm circular DNA molecules were detected. Without DNase treatment of core structures, linear molecules with lengths between 0.5 and 12 μm, in addition to the 0.78-μm circles were found. These results suggest that the 0.78-μm circular molecules were in a protected position within Dane particle cores and the linear molecules were not within core structures. Length measurements on 225 circular molecules revealed a mean length of 0.78 ± 0.09 μm which would correspond to a molecular weight of around 1.6 × 106. The circular molecules probably serve as primer-template for the DNA polymerase reaction carried out by Dane particle cores. Thermal denaturation and buoyant density measurements on the Dane particle DNA polymerase reaction product revealed a guanosine plus cytosine content of 48 to 49%. Images PMID:4847328

  6. Interactions of RadB, a DNA repair protein in archaea, with DNA and ATP.

    PubMed

    Guy, Colin P; Haldenby, Sam; Brindley, Amanda; Walsh, David A; Briggs, Geoffrey S; Warren, Martin J; Allers, Thorsten; Bolt, Edward L

    2006-04-21

    The RecA family of recombinases (RecA, Rad51, RadA and UvsX) catalyse strand-exchange between homologous DNA molecules by utilising conserved DNA-binding modules and a common core ATPase domain. RadB was identified in archaea as a Rad51-like protein on the basis of conserved ATPase sequences. However, RadB does not catalyse strand exchange and does not turn over ATP efficiently. RadB does bind DNA, and here we report a triplet of residues (Lys-His-Arg) that is highly conserved at the RadB C terminus, and is crucial for DNA binding. This is consistent with the motif forming a "basic patch" of highly conserved residues identified in an atomic structure of RadB from Thermococcus kodakaraensis. As the triplet motif is conserved at the C terminus of XRCC2 also, a mammalian Rad51-paralogue, we present a phylogenetic analysis that clarifies the relationship between RadB, Rad51-paralogues and recombinases. We investigate interactions between RadB and ATP using genetics and biochemistry; ATP binding by RadB is needed to promote survival of Haloferax volcanii after UV irradiation, and ATP, but not other NTPs, induces pronounced conformational change in RadB. This is the first genetic analysis of radB, and establishes its importance for maintaining genome stability in archaea. ATP-induced conformational change in RadB may explain previous reports that RadB controls Holliday junction resolution by Hjc, depending on the presence or the absence of ATP.

  7. Competition between B-Z and B-L transitions in a single DNA molecule: Computational studies

    NASA Astrophysics Data System (ADS)

    Kwon, Ah-Young; Nam, Gi-Moon; Johner, Albert; Kim, Seyong; Hong, Seok-Cheol; Lee, Nam-Kyung

    2016-02-01

    Under negative torsion, DNA adopts left-handed helical forms, such as Z-DNA and L-DNA. Using the random copolymer model developed for a wormlike chain, we represent a single DNA molecule with structural heterogeneity as a helical chain consisting of monomers which can be characterized by different helical senses and pitches. By Monte Carlo simulation, where we take into account bending and twist fluctuations explicitly, we study sequence dependence of B-Z transitions under torsional stress and tension focusing on the interaction with B-L transitions. We consider core sequences, (GC) n repeats or (TG) n repeats, which can interconvert between the right-handed B form and the left-handed Z form, imbedded in a random sequence, which can convert to left-handed L form with different (tension dependent) helical pitch. We show that Z-DNA formation from the (GC) n sequence is always supported by unwinding torsional stress but Z-DNA formation from the (TG) n sequence, which are more costly to convert but numerous, can be strongly influenced by the quenched disorder in the surrounding random sequence.

  8. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer.

    PubMed

    Qiu, Wei; Lin, Jun; Zhu, Yichen; Zhang, Jian; Zeng, Liping; Su, Ming; Tian, Ye

    2017-01-01

    Genomic DNA methylation plays an important role in both the occurrence and development of bladder cancer. Kaempferol (Kae), a natural flavonoid that is present in many fruits and vegetables, exhibits potent anti-cancer effects in bladder cancer. Similar to other flavonoids, Kae possesses a flavan nucleus in its structure. This structure was reported to inhibit DNA methylation by suppressing DNA methyltransferases (DNMTs). However, whether Kae can inhibit DNA methylation remains unclear. Nude mice bearing bladder cancer were treated with Kae for 31 days. The genomic DNA was extracted from xenografts and the methylation changes was determined using an Illumina Infinium HumanMethylation 450 BeadChip Array. The ubiquitination was detected using immuno-precipitation assay. Our data indicated that Kae modulated DNA methylation in bladder cancer, inducing 103 differential DNA methylation positions (dDMPs) associated with genes (50 hyper-methylated and 53 hypo-methylated). DNA methylation is mostly relied on the levels of DNMTs. We observed that Kae specifically inhibited the protein levels of DNMT3B without altering the expression of DNMT1 or DNMT3A. However, Kae did not downregulate the transcription of DNMT3B. Interestingly, we observed that Kae induced a premature degradation of DNMT3B by inhibiting protein synthesis with cycloheximide (CHX). By blocking proteasome with MG132, we observed that Kae induced an increased ubiquitination of DNMT3B. These results suggested that Kae could induce the degradation of DNMT3B through ubiquitin-proteasome pathway. Our data indicated that Kae is a novel DNMT3B inhibitor, which may promote the degradation of DNMT3B in bladder cancer. © 2017 The Author(s)Published by S. Karger AG, Basel.

  9. Single-copy gene detection using branched DNA (bDNA) in situ hybridization.

    PubMed

    Player, A N; Shen, L P; Kenny, D; Antao, V P; Kolberg, J A

    2001-05-01

    We have developed a branched DNA in situ hybridization (bDNA ISH) method for detection of human papillomavirus (HPV) DNA in whole cells. Using human cervical cancer cell lines with known copies of HPV DNA, we show that the bDNA ISH method is highly sensitive, detecting as few as one or two copies of HPV DNA per cell. By modifying sample pretreatment, viral mRNA or DNA sequences can be detected using the same set of oligonucleotide probes. In experiments performed on mixed populations of cells, the bDNA ISH method is highly specific and can distinguish cells with HPV-16 from cells with HPV-18 DNA. Furthermore, we demonstrate that the bDNA ISH method provides precise localization, yielding positive signals retained within the subcellular compartments in which the target nucleic acid sequences are localized. As an effective and convenient means for nucleic acid detection, the bDNA ISH method is applicable to the detection of cancers and infectious agents. (J Histochem Cytochem 49:603-611, 2001)

  10. De Novo Chromosome Structure Prediction

    NASA Astrophysics Data System (ADS)

    di Pierro, Michele; Cheng, Ryan R.; Lieberman-Aiden, Erez; Wolynes, Peter G.; Onuchic, Jose'n.

    Chromatin consists of DNA and hundreds of proteins that interact with the genetic material. In vivo, chromatin folds into nonrandom structures. The physical mechanism leading to these characteristic conformations, however, remains poorly understood. We recently introduced MiChroM, a model that generates chromosome conformations by using the idea that chromatin can be subdivided into types based on its biochemical interactions. Here we extend and complete our previous finding by showing that structural chromatin types can be inferred from ChIP-Seq data. Chromatin types, which are distinct from DNA sequence, are partially epigenetically controlled and change during cell differentiation, thus constituting a link between epigenetics, chromosomal organization, and cell development. We show that, for GM12878 lymphoblastoid cells we are able to predict accurate chromosome structures with the only input of genomic data. The degree of accuracy achieved by our prediction supports the viability of the proposed physical mechanism of chromatin folding and makes the computational model a powerful tool for future investigations.

  11. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation—and Beyond?

    PubMed Central

    Schreiner, Sabrina; Nassal, Michael

    2017-01-01

    Chronic hepatitis B virus (HBV) infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg) RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC) DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc) DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR), a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system. PMID:28531167

  12. Insights into the nature of DNA binding of AbrB-like transcription factors

    PubMed Central

    Sullivan, Daniel M.; Bobay, Benjamin G.; Kojetin, Douglas J.; Thompson, Richele J.; Rance, Mark; Strauch, Mark A.; Cavanagh, John

    2008-01-01

    Summary Understanding the DNA recognition and binding by the AbrB-like family of transcriptional regulators is of significant interest since these proteins enable bacteria to elicit the appropriate response to diverse environmental stimuli. Although these ‘transition-state regulator’ proteins have been well characterized at the genetic level, the general and specific mechanisms of DNA binding remain elusive. We present RDC-refined NMR solution structures and dynamic properties of the DNA-binding domains of three Bacillus subtilis transition-state regulators AbrB, Abh, and SpoVT. We combined previously investigated DNase I footprinting, DNA methylation, gel shift assays, mutagenic and NMR studies to generate a structural model of the complex between AbrBN55 and its cognate promoter, abrB8. These investigations have enabled us to generate the first model for the specific nature of the transition-state regulator-DNA interaction. PMID:19000822

  13. A New Protein Architecture for Processing Alkylation Damaged DNA: The Crystal Structure of DNA Glycosylase AlkD

    PubMed Central

    Rubinson, Emily H.; Metz, Audrey H.; O'Quin, Jami; Eichman, Brandt F.

    2013-01-01

    Summary DNA glycosylases safeguard the genome by locating and excising chemically modified bases from DNA. AlkD is a recently discovered bacterial DNA glycosylase that removes positively charged methylpurines from DNA, and was predicted to adopt a protein fold distinct from other DNA repair proteins. The crystal structure of Bacillus cereus AlkD presented here shows that the protein is composed exclusively of helical HEAT-like repeats, which form a solenoid perfectly shaped to accommodate a DNA duplex on the concave surface. Structural analysis of the variant HEAT repeats in AlkD provides a rationale for how this protein scaffolding motif has been modified to bind DNA. We report 7mG excision and DNA binding activities of AlkD mutants, along with a comparison of alkylpurine DNA glycosylase structures. Together, these data provide important insight into the requirements for alkylation repair within DNA and suggest that AlkD utilizes a novel strategy to manipulate DNA in its search for alkylpurine bases. PMID:18585735

  14. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria.

    PubMed

    Muñoz-Espín, Daniel; Daniel, Richard; Kawai, Yoshikazu; Carballido-López, Rut; Castilla-Llorente, Virginia; Errington, Jeff; Meijer, Wilfried J J; Salas, Margarita

    2009-08-11

    Little is known about the organization or proteins involved in membrane-associated replication of prokaryotic genomes. Here we show that the actin-like MreB cytoskeleton of the distantly related bacteria Escherichia coli and Bacillus subtilis is required for efficient viral DNA replication. Detailed analyses of B. subtilis phage ϕ29 showed that the MreB cytoskeleton plays a crucial role in organizing phage DNA replication at the membrane. Thus, phage double-stranded DNA and components of the ϕ29 replication machinery localize in peripheral helix-like structures in a cytoskeleton-dependent way. Importantly, we show that MreB interacts directly with the ϕ29 membrane-protein p16.7, responsible for attaching viral DNA at the cell membrane. Altogether, the results reveal another function for the MreB cytoskeleton and describe a mechanism by which viral DNA replication is organized at the bacterial membrane.

  15. Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1

    PubMed Central

    Sun, Fei; Huang, Li

    2013-01-01

    Strand displacement by a DNA polymerase serves a key role in Okazaki fragment maturation, which involves displacement of the RNA primer of the preexisting Okazaki fragment into a flap structure, and subsequent flap removal and fragment ligation. We investigated the role of Sulfolobus chromatin proteins Sso7d and Cren7 in strand displacement by DNA polymerase B1 (PolB1) from the hyperthermophilic archaeon Sulfolobus solfataricus. PolB1 showed a robust strand displacement activity and was capable of synthesizing thousands of nucleotides on a DNA-primed 72-nt single-stranded circular DNA template. This activity was inhibited by both Sso7d and Cren7, which limited the flap length to 3–4 nt at saturating concentrations. However, neither protein inhibited RNA displacement on an RNA-primed single-stranded DNA minicircle by PolB1. Strand displacement remained sensitive to modulation by the chromatin proteins when PolB1 was in association with proliferating cell nuclear antigen. Inhibition of DNA instead of RNA strand displacement by the chromatin proteins is consistent with the finding that double-stranded DNA was more efficiently bound and stabilized than an RNA:DNA duplex by these proteins. Our results suggest that Sulfolobus chromatin proteins modulate strand displacement by PolB1, permitting efficient removal of the RNA primer while inhibiting excessive displacement of the newly synthesized DNA strand during Okazaki fragment maturation. PMID:23821667

  16. Quantitation of HBV DNA in human serum using a branched DNA (bDNA) signal amplification assay.

    PubMed

    Hendricks, D A; Stowe, B J; Hoo, B S; Kolberg, J; Irvine, B D; Neuwald, P D; Urdea, M S; Perrillo, R P

    1995-11-01

    The aim of this study was to establish the performance characteristics of a nonradioisotopic branched DNA (bDNA) signal amplification assay for quantitation of hepatitis B virus (HBV) DNA in human serum. Quantitation was determined from a standard curve and expressed as HBV DNA equivalents/mL (Eq/mL; 285,000 Eq = 1 pg of double stranded HBV DNA). The bDNA assay exhibited a nearly four log dynamic range of quantitation and an analytical detection limit of approximately 100,000 Eq/mL. To ensure a specificity of 99.7%, the quantitation limit was set at 700,000 Eq/mL. The interassay percent coefficient of variance for quantification values ranged from 10% to 15% when performed by novice users with different sets of reagents. Using the bDNA assay, HBV DNA was detected in 94% to 100% of hepatitis B e antigen-positive specimens and 27% to 31% of hepatitis B e antigen-negative specimens from chronic HBV-infected patients. The bDNA assay may be useful as a prognostic and therapy monitoring tool for the management of HBV-infected patients undergoing antiviral treatment.

  17. A discriminatory function for prediction of protein-DNA interactions based on alpha shape modeling.

    PubMed

    Zhou, Weiqiang; Yan, Hong

    2010-10-15

    Protein-DNA interaction has significant importance in many biological processes. However, the underlying principle of the molecular recognition process is still largely unknown. As more high-resolution 3D structures of protein-DNA complex are becoming available, the surface characteristics of the complex become an important research topic. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and developed an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of protein-DNA interaction. The interface-atom curvature-dependent formalism captures atomic interaction details better than the atomic distance-based method. The proposed method provides good performance in discriminating the native structures from the docking decoy sets, and outperforms the distance-dependent formalism in terms of the z-score. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve a native z-score of -8.17 in discriminating the native structure from the highest surface-complementarity scored decoy set and a native z-score of -7.38 in discriminating the native structure from the lowest RMSD decoy set. The interface-atom curvature-dependent formalism can also be used to predict apo version of DNA-binding proteins. These results suggest that the interface-atom curvature-dependent formalism has a good prediction capability for protein-DNA interactions. The code and data sets are available for download on http://www.hy8.com/bioinformatics.htm kenandzhou@hotmail.com.

  18. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu,B.; Edstrom, W.; Benach, J.

    2006-01-01

    Nucleic acid damage by environmental and endogenous alkylation reagents creates lesions that are both mutagenic and cytotoxic, with the latter effect accounting for their widespread use in clinical cancer chemotherapy. Escherichia coliAlkB and the homologous human proteins ABH2 and ABH3 (refs 5, 7) promiscuously repair DNA and RNA bases damaged by SN2 alkylation reagents, which attach hydrocarbons to endocyclic ring nitrogen atoms (N1 of adenine and guanine and N3 of thymine and cytosine). Although the role of AlkB in DNA repair has long been established based on phenotypic studies, its exact biochemical activity was only elucidated recently after sequence profilemore » analysis revealed it to be a member of the Fe-oxoglutarate-dependent dioxygenase superfamily. These enzymes use an Fe(ii) cofactor and 2-oxoglutarate co-substrate to oxidize organic substrates. AlkB hydroxylates an alkylated nucleotide base to produce an unstable product that releases an aldehyde to regenerate the unmodified base. Here we have determined crystal structures of substrate and product complexes of E. coli AlkB at resolutions from 1.8 to 2.3 Angstroms. Whereas the Fe-2-oxoglutarate dioxygenase core matches that in other superfamily members, a unique subdomain holds a methylated trinucleotide substrate into the active site through contacts to the polynucleotide backbone. Amide hydrogen exchange studies and crystallographic analyses suggest that this substrate-binding 'lid' is conformationally flexible, which may enable docking of diverse alkylated nucleotide substrates in optimal catalytic geometry. Different crystal structures show open and closed states of a tunnel putatively gating O2 diffusion into the active site. Exposing crystals of the anaerobic Michaelis complex to air yields slow but substantial oxidation of 2-oxoglutarate that is inefficiently coupled to nucleotide oxidation. These observations suggest that protein dynamics modulate redox chemistry and that a hypothesized

  19. Crystal Structure of the Chromodomain Helicase DNA-binding Protein 1 (Chd1) DNA-binding Domain in Complex with DNA*

    PubMed Central

    Sharma, Amit; Jenkins, Katherine R.; Héroux, Annie; Bowman, Gregory D.

    2011-01-01

    Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves. PMID:22033927

  20. Comparison of Versant HBV DNA 3.0 and COBAS AmpliPrep-COBAS TaqMan assays for hepatitis B DNA quantitation: Possible clinical implications.

    PubMed

    Garbuglia, A R; Angeletti, C; Lauria, F N; Zaccaro, P; Cocca, A M; Pisciotta, M; Solmone, M; Capobianchi, M R

    2007-12-01

    We compared two commercial assays for HBV DNA quantitation, Versant HBV 3.0, System 340 (bDNA; Bayer Diagnostics) and COBAS AmpliPrep-COBAS TaqMan HBV Test (TaqMan; Roche Diagnostics). Analytical sensitivity, calculated on WHO International Standard, predicted 95% detection rate at 11.4 and 520.2IU/ml for TaqMan and bDNA, respectively. Specificity, established on 50 blood donor samples, was 100% and 84% for TaqMan and bDNA, respectively. When using clinical samples, HBV DNA was detected by TaqMan in 21/55 samples negative to bDNA. Mean values of HBV DNA obtained with bDNA were higher than those obtained with TaqMan (4.09log(10)+/-1.90 versus 3.39log(10)+/-2.41, p<0.001), and 24.4% of samples showed differences in viral load values >0.5log(10), without association with HBV genotype. There was a good correlation for HBV DNA concentrations measured by the two assays (r=0.94; p<0.001) within the overlapping range, and the distribution of results with respect to relevant clinical threshold recently confirmed (20,000 and 2000IU/ml) was similar. Approximately 50% of samples with low HBV DNA, appreciated by TaqMan but not by bDNA, were successfully sequenced in pol region, where drug resistance mutations are located.

  1. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities

    PubMed Central

    Allerston, Charles K.; Lee, Sook Y.; Newman, Joseph A.; Schofield, Christopher J.; McHugh, Peter J.; Gileadi, Opher

    2015-01-01

    The human SNM1A and SNM1B/Apollo proteins are members of an extended family of eukaryotic nuclease containing a motif related to the prokaryotic metallo-β-lactamase (MBL) fold. SNM1A is a key exonuclease during replication-dependent and transcription-coupled interstrand crosslink repair, while SNM1B/Apollo is required for maintaining telomeric overhangs. Here, we report the crystal structures of SNM1A and SNM1B at 2.16 Å. While both proteins contain a typical MBL-β-CASP domain, a region of positive charge surrounds the active site of SNM1A, which is absent in SNM1B and explains the greater apparent processivity of SNM1A. The structures of both proteins also reveal a putative, wide DNA-binding groove. Extensive mutagenesis of this groove, coupled with detailed biochemical analysis, identified residues that did not impact on SNM1A catalytic activity, but drastically reduced its processivity. Moreover, we identified a key role for this groove for efficient digestion past DNA interstrand crosslinks, facilitating the key DNA repair reaction catalysed by SNM1A. Together, the architecture and dimensions of this groove, coupled to the surrounding region of high positive charge, explain the remarkable ability of SNM1A to accommodate and efficiently digest highly distorted DNA substrates, such as those containing DNA lesions. PMID:26582912

  2. Dual targeting DNA gyrase B (GyrB) and topoisomerse IV (ParE) inhibitors: A review.

    PubMed

    Azam, Mohammed Afzal; Thathan, Janarthanan; Jubie, Selvaraj

    2015-10-01

    GyrB and ParE are type IIA topoisomerases and found in most bacteria. Its function is vital for DNA replication, repair and decatenation. The highly conserved ATP-binding subunits of DNA GyrB and ParE are structurally related and have been recognized as prime candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, no natural product or small molecule inhibitors targeting ATPase catalytic domain of both GyrB and ParE enzymes have succeeded in the clinic. Moreover, no inhibitors of these enzymes with broad-spectrum antibacterial activity against Gram-negative pathogens have been reported. Availability of high resolution crystal structures of GyrB and ParE made it possible for the design of many different classes of inhibitors with dual mechanism of action. Among them benzimidazoles, benzothiazoles, thiazolopyridines, imidiazopyridazoles, pyridines, indazoles, pyrazoles, imidazopyridines, triazolopyridines, pyrrolopyrimidines, pyrimidoindoles as well as related structures are disclosed in literatures. Unfortunately most of these inhibitors are found to be active against Gram-positive pathogens. In the present review we discuss about studies on novel dual targeting ATPase inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Internal and external relationships of the Cnidaria: implications of primary and predicted secondary structure of the 5'-end of the 23S-like rDNA.

    PubMed Central

    Odorico, D M; Miller, D J

    1997-01-01

    Since both internal (class-level) and external relationships of the Cnidaria remain unclear on the basis of analyses of 18S and (partial) 16S rDNA sequence data, we examined the informativeness of the 5'-end of the 23S-like rDNA. Here we describe analyses of both primary and predicted secondary structure data for this region from the ctenophore Bolinopsis sp., the placozoan Trichoplax adhaerens, the sponge Hymeniacidon heliophila, and representatives of all four cnidarian classes. Primary sequence analyses clearly resolved the Cnidaria from other lower Metazoa, supported sister group relationships between the Scyphozoa and Cubozoa and between the Ctenophora and the Placozoa, and confirmed the basal status of the Anthozoa within the Cnidaria. Additionally, in the ctenophore, placozoan and sponge, non-canonical base pairing is required to maintain the secondary structure of the B12 region, whereas amongst the Cnidaria this is not the case. Although the phylogenetic significance of this molecular character is unclear, our analyses do not support the close relationship between Cnidaria and Placozoa suggested by previous studies. PMID:9061962

  4. Structural basis for inhibition of DNA replication by aphidicolin

    DOE PAGES

    Baranovskiy, A. G.; Babayeva, N. D.; Suwa, Y.; ...

    2014-11-27

    Natural tetracyclic diterpenoid aphidicolin is a potent and specific inhibitor of B-family DNA polymerases, haltering replication and possessing a strong antimitotic activity in human cancer cell lines. Clinical trials revealed limitations of aphidicolin as an antitumor drug because of its low solubility and fast clearance from human plasma. The absence of structural information hampered the improvement of aphidicolin-like inhibitors: more than 50 modifications have been generated so far, but all have lost the inhibitory and antitumor properties. Here we report the crystal structure of the catalytic core of human DNA polymerase α (Pol α) in the ternary complex with anmore » RNA-primed DNA template and aphidicolin. The inhibitor blocks binding of dCTP by docking at the Pol α active site and by rotating the template guanine. The structure provides a plausible mechanism for the selectivity of aphidicolin incorporation opposite template guanine and explains why previous modifications of aphidicolin failed to improve its affinity for Pol α. With new structural information, aphidicolin becomes an attractive lead compound for the design of novel derivatives with enhanced inhibitory properties for B-family DNA polymerases.« less

  5. Structure and mechanism of human DNA polymerase [eta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biertümpfel, Christian; Zhao, Ye; Kondo, Yuji

    2010-11-03

    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase {eta} (Pol{eta}), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol{eta} at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol{eta} acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol{eta} orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assistmore » translesion synthesis. On the basis of the structures, eight Pol{eta} missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol{eta} in replicating through D loop and DNA fragile sites.« less

  6. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    PubMed

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  7. Evidence of Pervasive Biologically Functional Secondary Structures within the Genomes of Eukaryotic Single-Stranded DNA Viruses

    PubMed Central

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y. F.; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie

    2014-01-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here. PMID:24284329

  8. Mechanism of DNA binding enhancement by hepatitis B virus protein pX.

    PubMed

    Palmer, C R; Gegnas, L D; Schepartz, A

    1997-12-09

    At least three hundred million people worldwide are infected with the hepatitis B virus (HBV), and epidemiological studies show a clear correlation between chronic HBV infection and the development of hepatocellular carcinoma. HBV encodes a protein, pX, which abducts the cellular transcriptional machinery in several ways including direct interactions with bZIP transcription factors. These interactions increase the DNA affinities of target bZIP proteins in a DNA sequence-dependent manner. Here we use a series of bZIP peptide models to explore the mechanism by which pX interacts with bZIP proteins. Our results suggest that pX increases bZIP.DNA stability by increasing the stability of the bZIP dimer as well as the affinity of the dimer for DNA. Additional experiments provide evidence for a mechanism in which pX recognizes the composite structure of the peptide.DNA complex, not simply the primary peptide sequence. These experiments provide a framework for understanding how pX alters the patterns of transcription within the nucleus. The similarities between the mechanism proposed for pX and the mechanism previously proposed for the human T-cell leukemia virus protein Tax are discussed.

  9. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights

    PubMed Central

    2011-01-01

    Background Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. Results We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. cerevisiae TFs. Our collection comprises DNA binding site motifs and comprehensive in vitro DNA binding specificity data for all possible 8-bp sequences. Investigation of the DNA binding specificities within the basic leucine zipper (bZIP) and VHT1 regulator (VHR) TF families revealed unexpected plasticity in TF-DNA recognition: intriguingly, the VHR TFs, newly characterized by protein binding microarrays in this study, recognize bZIP-like DNA motifs, while the bZIP TF Hac1 recognizes a motif highly similar to the canonical E-box motif of basic helix-loop-helix (bHLH) TFs. We identified several TFs with distinct primary and secondary motifs, which might be associated with different regulatory functions. Finally, integrated analysis of in vivo TF binding data with protein binding microarray data lends further support for indirect DNA binding in vivo by sequence-specific TFs. Conclusions The comprehensive data in this curated collection allow for more accurate analyses of regulatory TF-DNA interactions, in-depth structural studies of TF-DNA specificity determinants, and future experimental investigations of the TFs' predicted target genes and regulatory roles. PMID:22189060

  10. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro

    PubMed Central

    Serfiotis-Mitsa, Dimitra; Herbert, Andrew P.; Roberts, Gareth A.; Soares, Dinesh C.; White, John H.; Blakely, Garry W.; Uhrín, Dušan; Dryden, David T. F.

    2010-01-01

    Plasmids, conjugative transposons and phage frequently encode anti-restriction proteins to enhance their chances of entering a new bacterial host that is highly likely to contain a Type I DNA restriction and modification (RM) system. The RM system usually destroys the invading DNA. Some of the anti-restriction proteins are DNA mimics and bind to the RM enzyme to prevent it binding to DNA. In this article, we characterize ArdB anti-restriction proteins and their close homologues, the KlcA proteins from a range of mobile genetic elements; including an ArdB encoded on a pathogenicity island from uropathogenic Escherichia coli and a KlcA from an IncP-1b plasmid, pBP136 isolated from Bordetella pertussis. We show that all the ArdB and KlcA act as anti-restriction proteins and inhibit the four main families of Type I RM systems in vivo, but fail to block the restriction endonuclease activity of the archetypal Type I RM enzyme, EcoKI, in vitro indicating that the action of ArdB is indirect and very different from that of the DNA mimics. We also present the structure determined by NMR spectroscopy of the pBP136 KlcA protein. The structure shows a novel protein fold and it is clearly not a DNA structural mimic. PMID:20007596

  11. Structural DNA Nanotechnology: State of the Art and Future Perspective

    PubMed Central

    2015-01-01

    Over the past three decades DNA has emerged as an exceptional molecular building block for nanoconstruction due to its predictable conformation and programmable intra- and intermolecular Watson–Crick base-pairing interactions. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures of increasing complexity. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in many directions, such as directed material assembly, structural biology, biocatalysis, DNA computing, nanorobotics, disease diagnosis, and drug delivery. This Perspective discusses the state of the art in the field of structural DNA nanotechnology and presents some of the challenges and opportunities that exist in DNA-based molecular design and programming. PMID:25029570

  12. Structural features based genome-wide characterization and prediction of nucleosome organization

    PubMed Central

    2012-01-01

    Background Nucleosome distribution along chromatin dictates genomic DNA accessibility and thus profoundly influences gene expression. However, the underlying mechanism of nucleosome formation remains elusive. Here, taking a structural perspective, we systematically explored nucleosome formation potential of genomic sequences and the effect on chromatin organization and gene expression in S. cerevisiae. Results We analyzed twelve structural features related to flexibility, curvature and energy of DNA sequences. The results showed that some structural features such as DNA denaturation, DNA-bending stiffness, Stacking energy, Z-DNA, Propeller twist and free energy, were highly correlated with in vitro and in vivo nucleosome occupancy. Specifically, they can be classified into two classes, one positively and the other negatively correlated with nucleosome occupancy. These two kinds of structural features facilitated nucleosome binding in centromere regions and repressed nucleosome formation in the promoter regions of protein-coding genes to mediate transcriptional regulation. Based on these analyses, we integrated all twelve structural features in a model to predict more accurately nucleosome occupancy in vivo than the existing methods that mainly depend on sequence compositional features. Furthermore, we developed a novel approach, named DLaNe, that located nucleosomes by detecting peaks of structural profiles, and built a meta predictor to integrate information from different structural features. As a comparison, we also constructed a hidden Markov model (HMM) to locate nucleosomes based on the profiles of these structural features. The result showed that the meta DLaNe and HMM-based method performed better than the existing methods, demonstrating the power of these structural features in predicting nucleosome positions. Conclusions Our analysis revealed that DNA structures significantly contribute to nucleosome organization and influence chromatin structure and gene

  13. Effects of Complementary DNA and Salt on the Thermoresponsiveness of Poly(N-isopropylacrylamide)-b-DNA.

    PubMed

    Fujita, Masahiro; Hiramine, Hayato; Pan, Pengju; Hikima, Takaaki; Maeda, Mizuo

    2016-02-02

    The thermoresponsive structural transition of poly(N-isopropylacrylamide) (PNIPAAm)-b-DNA copolymers was explored. Molecular assembly of the block copolymers was facilitated by adding salt, and this assembly was not nucleated by the association between DNA strands but by the coil-globule transition of PNIPAAm blocks. Below the lower critical solution temperature (LCST) of PNIPAAm, the copolymer solution remained transparent even at high salt concentrations, regardless of whether DNA was hybridized with its complementary partner to form a double-strand (or single-strand) structure. At the LCST, the hybridized copolymer assembled in spherical nanoparticles, surrounded by double-stranded DNA; subsequently, the non-cross-linking aggregation occurred, while the nanoparticles were dispersed if the salt concentration was low or DNA blocks were unhybridized. When the DNA duplex was denatured to a single-stranded state by heating, the aggregated nanoparticles redispersed owing to the recovery of the steric repulsion of the DNA strands. The changes in the steric and electrostatic effects by hybridization and the addition of salt did not result in any specific attraction between DNA strands but merely decreased the repulsive interactions. The van der Waals attraction between the nanoparticles overcame such repulsive interactions so that the non-cross-linking aggregation of the micellar particles was mediated.

  14. Prediction of TF target sites based on atomistic models of protein-DNA complexes

    PubMed Central

    Angarica, Vladimir Espinosa; Pérez, Abel González; Vasconcelos, Ana T; Collado-Vides, Julio; Contreras-Moreira, Bruno

    2008-01-01

    Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs) plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition. PMID:18922190

  15. Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA

    PubMed Central

    Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev

    2012-01-01

    B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350

  16. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities.

    PubMed

    Allerston, Charles K; Lee, Sook Y; Newman, Joseph A; Schofield, Christopher J; McHugh, Peter J; Gileadi, Opher

    2015-12-15

    The human SNM1A and SNM1B/Apollo proteins are members of an extended family of eukaryotic nuclease containing a motif related to the prokaryotic metallo-β-lactamase (MBL) fold. SNM1A is a key exonuclease during replication-dependent and transcription-coupled interstrand crosslink repair, while SNM1B/Apollo is required for maintaining telomeric overhangs. Here, we report the crystal structures of SNM1A and SNM1B at 2.16 Å. While both proteins contain a typical MBL-β-CASP domain, a region of positive charge surrounds the active site of SNM1A, which is absent in SNM1B and explains the greater apparent processivity of SNM1A. The structures of both proteins also reveal a putative, wide DNA-binding groove. Extensive mutagenesis of this groove, coupled with detailed biochemical analysis, identified residues that did not impact on SNM1A catalytic activity, but drastically reduced its processivity. Moreover, we identified a key role for this groove for efficient digestion past DNA interstrand crosslinks, facilitating the key DNA repair reaction catalysed by SNM1A. Together, the architecture and dimensions of this groove, coupled to the surrounding region of high positive charge, explain the remarkable ability of SNM1A to accommodate and efficiently digest highly distorted DNA substrates, such as those containing DNA lesions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Diagnostic Dilemma for Low Viremia with Significant Fibrosis; Is HBV DNA Threshold Level a Good Indicator for Predicting Liver Damage?

    PubMed

    Yenilmez, Ercan; Çetinkaya, Rıza Aytaç; Tural, Ersin

    2018-05-04

    The most important difficulties about management of hepatitis B are still determining the liver damage and the right time to start antiviral therapy. To reveal the role of hepatitis B virus DNA threshold level for prediction of liver fibrosis and inflammation in young-aged hepatitis B e antigen negative chronic hepatitis B patients. Diagnostic accuracy study. A total of 273 hepatitis B e antigen negative young chronic hepatitis B patients with any hepatitis B virus DNA levels between 2008 and 2016, who had liver biopsy after at least 6 months follow up period, enrolled in this retrospective study. We created two groups as case and control, cases with hepatitis B virus DNA levels below 2.000 IU/mL and controls with hepatitis B virus DNA levels over 2.000 IU/mL. Having histological activity index ≥4 or/and fibrosis scores ≥2 were defined as significant histological abnormality. Then, we analyzed the relationship between these groups. We showed that significant fibrosis may occur in one third of young chronic hepatitis B patients with low viremia (30.2%, n=42/139 in cases, %55.2, n=74/134 in controls). Among the 42 cases with low viremia and significant fibrosis, 21.4% had alanine aminotransferase level between 40-59 U/L, 42.8% had alanine aminotransferase level between 60-79 U/L, and 35.7% had alanine aminotransferase level over 80 U/L. There was weak correlation between hepatitis B virus DNA threshold level and fibrosis score (p=0.000, rho=0.253). The optimum serum hepatitis B virus DNA threshold level in our study for predicting significant fibrosis was 1293 IU/mL (p=0.00, AUC: 0.657±0.034). The optimum alanine aminotransferase threshold level for predicting significant histological activity index and fibrosis was 64.5 and 59.5 U/L, respectively. The sensitivity and the specificity of 1293 vs 2000 IU/mL hepatitis B virus DNA threshold with 60 U/L alanine aminotransferase threshold level for predicting F≥2 fibrosis score were similar (sensitivity: 0.43 and 0

  18. A strand-passage conformation of DNA gyrase is required to allow the bacterial toxin, CcdB, to access its binding site.

    PubMed

    Smith, Andrew B; Maxwell, Anthony

    2006-01-01

    DNA gyrase is the only topoisomerase able to introduce negative supercoils into DNA. Absent in humans, gyrase is a successful target for antibacterial drugs. However, increasing drug resistance is a serious problem and new agents are urgently needed. The naturally-produced Escherichia coli toxin CcdB has been shown to target gyrase by what is predicted to be a novel mechanism. CcdB has been previously shown to stabilize the gyrase 'cleavage complex', but it has not been shown to inhibit the catalytic reactions of gyrase. We present data showing that CcdB does indeed inhibit the catalytic reactions of gyrase by stabilization of the cleavage complex and that the GyrA C-terminal DNA-wrapping domain and the GyrB N-terminal ATPase domain are dispensable for CcdB's action. We further investigate the role of specific GyrA residues in the action of CcdB by site-directed mutagenesis; these data corroborate a model for CcdB action based on a recent crystal structure of a CcdB-GyrA fragment complex. From this work, we are now able to present a model for CcdB action that explains all previous observations relating to CcdB-gyrase interaction. CcdB action requires a conformation of gyrase that is only revealed when DNA strand passage is taking place.

  19. Structure-function analysis of ribonucleotide bypass by B family DNA replicases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausen, Anders R.; Murray, Michael S.; Passer, Andrew R.

    2013-11-01

    Ribonucleotides are frequently incorporated into DNA during replication, they are normally removed, and failure to remove them results in replication stress. This stress correlates with DNA polymerase (Pol) stalling during bypass of ribonucleotides in DNA templates. Here we demonstrate that stalling by yeast replicative Pols δ and ε increases as the number of consecutive template ribonucleotides increases from one to four. The homologous bacteriophage RB69 Pol also stalls during ribonucleotide bypass, with a pattern most similar to that of Pol ε. Crystal structures of an exonuclease-deficient variant of RB69 Pol corresponding to multiple steps in single ribonucleotide bypass reveal thatmore » increased stalling is associated with displacement of Tyr391 and an unpreferred C2´-endo conformation for the ribose. Even less efficient bypass of two consecutive ribonucleotides in DNA correlates with similar movements of Tyr391 and displacement of one of the ribonucleotides along with the primer-strand DNA backbone. These structure–function studies have implications for cellular signaling by ribonucleotides, and they may be relevant to replication stress in cells defective in ribonucleotide excision repair, including humans suffering from autoimmune disease associated with RNase H2 defects.« less

  20. Prediction of occult hepatitis B virus infection in liver transplant donors through hepatitis B virus blood markers.

    PubMed

    Tandoi, Francesco; Caviglia, Gian Paolo; Pittaluga, Fabrizia; Abate, Maria Lorena; Smedile, Antonina; Romagnoli, Renato; Salizzoni, Mauro

    2014-11-01

    Occult hepatitis B virus infection is defined as detectable HBV-DNA in liver of HBsAg-negative individuals, with or without detectable serum HBV-DNA. In deceased liver donors, results of tissue analysis cannot be obtained prior to allocation for liver transplantation. we investigated prevalence and predictability of occult hepatitis B using blood markers of viral exposure/infection in deceased liver donors. In 50 consecutive HBsAg-negative/anti-HBc-positive and 20 age-matched HBsAg-negative/anti-HBc-negative donors, a nested-PCR assay was employed in liver biopsies for diagnosis of occult hepatitis B according to Taormina criteria. All donors were characterized for plasma HBV-DNA and serum anti-HBs/anti-HBe. In liver tissue, occult hepatitis B was present in 30/50 anti-HBc-positive (60%) and in 0/20 anti-HBc-negative donors (p<0.0001). All anti-HBc-positive donors with detectable HBV-DNA in plasma (n=5) or anti-HBs>1,000 mIU/mL (n=5) eventually showed occult infection, i.e, 10/30 occult hepatitis B-positive donors which could have been identified prior to transplantation. In the remaining 40 anti-HBc-positive donors, probability of occult infection was 62% for anti-HBe-positive and/or anti-HBs ≥ 58 mIU/mL; 29% for anti-HBe-negative and anti-HBs<58 mIU/mL. In deceased donors, combining anti-HBc with other blood markers of hepatitis B exposure/infection allows to predict occult hepatitis B with certainty and speed in one third of cases. These findings might help refine the allocation of livers from anti-HBc-positive donors. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  1. A strand-passage conformation of DNA gyrase is required to allow the bacterial toxin, CcdB, to access its binding site

    PubMed Central

    Smith, Andrew B.; Maxwell, Anthony

    2006-01-01

    DNA gyrase is the only topoisomerase able to introduce negative supercoils into DNA. Absent in humans, gyrase is a successful target for antibacterial drugs. However, increasing drug resistance is a serious problem and new agents are urgently needed. The naturally-produced Escherichia coli toxin CcdB has been shown to target gyrase by what is predicted to be a novel mechanism. CcdB has been previously shown to stabilize the gyrase ‘cleavage complex’, but it has not been shown to inhibit the catalytic reactions of gyrase. We present data showing that CcdB does indeed inhibit the catalytic reactions of gyrase by stabilization of the cleavage complex and that the GyrA C-terminal DNA-wrapping domain and the GyrB N-terminal ATPase domain are dispensable for CcdB's action. We further investigate the role of specific GyrA residues in the action of CcdB by site-directed mutagenesis; these data corroborate a model for CcdB action based on a recent crystal structure of a CcdB–GyrA fragment complex. From this work, we are now able to present a model for CcdB action that explains all previous observations relating to CcdB–gyrase interaction. CcdB action requires a conformation of gyrase that is only revealed when DNA strand passage is taking place. PMID:16963775

  2. Organometallic DNA-B12 Conjugates as Potential Oligonucleotide Vectors: Synthesis and Structural and Binding Studies with Human Cobalamin-Transport Proteins.

    PubMed

    Mutti, Elena; Hunger, Miriam; Fedosov, Sergey; Nexo, Ebba; Kräutler, Bernhard

    2017-11-16

    The synthesis and structural characterization of Co-(dN) 25 -Cbl (Cbl: cobalamin; dN: deoxynucleotide) and Co-(dN) 39 -Cbl, which are organometallic DNA-B 12 conjugates with single DNA strands consisting of 25 and 39 deoxynucleotides, respectively, and binding studies of these two DNA-Cbl conjugates to three homologous human Cbl transporting proteins, transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are reported. This investigation tests the suitability of such DNA-Cbls for the task of eventual in vivo oligonucleotide delivery. The binding of DNA-Cbl to TC, IF, and HC was investigated in competition with either a fluorescent Cbl derivative and Co-(dN) 25 -Cbl, or radiolabeled vitamin B 12 ( 57 Co-CNCbl) and Co-(dN) 25 -Cbl or Co-(dN) 39 -Cbl. Binding of the new DNA-Cbl conjugates was fast and tight with TC, but poorer with HC and IF, which extends a similar original finding with the simpler DNA-Cbl, Co-(dN) 18 -Cbl. The contrasting affinities of TC versus IF and HC for the DNA-Cbl conjugates are rationalized herein by a stepwise mechanism of Cbl binding. Critical contributions to overall affinity result from gradual conformational adaptations of the Cbl-binding proteins to the DNA-Cbl, which is first bound to the respective β domains. This transition is fast with TC, but slow with IF and HC, with which weaker binding results. The invariably tight interaction of the DNA-Cbl conjugates with TC makes the Cbl moiety a potential natural vector for the specific delivery of oligonucleotide loads from the blood into cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Protein–DNA Interactions: The Story so Far and a New Method for Prediction

    DOE PAGES

    Jones, Susan; Thornton, Janet M.

    2003-01-01

    This review describes methods for the prediction of DNA binding function, and specifically summarizes a new method using 3D structural templates. The new method features the HTH motif that is found in approximately one-third of DNAbinding protein families. A library of 3D structural templates of HTH motifs was derived from proteins in the PDB. Templates were scanned against complete protein structures and the optimal superposition of a template on a structure calculated. Significance thresholds in terms of a minimum root mean squared deviation (rmsd) of an optimal superposition, and a minimum motif accessible surface area (ASA), have been calculated. Inmore » this way, it is possible to scan the template library against proteins of unknown function to make predictions about DNA-binding functionality.« less

  4. Dehydrated DNA in B-form: ionic liquids in rescue

    PubMed Central

    Ghoshdastidar, Debostuti; Senapati, Sanjib

    2018-01-01

    Abstract The functional B-conformation of DNA succumbs to the A-form at low water activity. Methods for room temperature DNA storage that rely upon ‘anhydrobiosis’, thus, often encounter the loss of DNA activity due to the B→A-DNA transition. Here, we show that ionic liquids, an emerging class of green solvents, can induce conformational transitions in DNA and even rescue the dehydrated DNA in the functional B-form. CD spectroscopic analyses not only reveal rapid transition of A-DNA in 78% ethanol medium to B-conformation in presence of ILs, but also the high resistance of IL-bound B-form to transit to A-DNA under dehydration. Molecular dynamics simulations show the unique ability of ILs to disrupt Na+ ion condensation and form ‘IL spine’ in DNA minor groove to drive the A→B transition. Implications of these findings range from the plausible use of ILs as novel anhydrobiotic DNA storage medium to a switch for modulating DNA conformational transitions. PMID:29669113

  5. Making the Bend: DNA Tertiary Structure and Protein-DNA Interactions

    PubMed Central

    Harteis, Sabrina; Schneider, Sabine

    2014-01-01

    DNA structure functions as an overlapping code to the DNA sequence. Rapid progress in understanding the role of DNA structure in gene regulation, DNA damage recognition and genome stability has been made. The three dimensional structure of both proteins and DNA plays a crucial role for their specific interaction, and proteins can recognise the chemical signature of DNA sequence (“base readout”) as well as the intrinsic DNA structure (“shape recognition”). These recognition mechanisms do not exist in isolation but, depending on the individual interaction partners, are combined to various extents. Driving force for the interaction between protein and DNA remain the unique thermodynamics of each individual DNA-protein pair. In this review we focus on the structures and conformations adopted by DNA, both influenced by and influencing the specific interaction with the corresponding protein binding partner, as well as their underlying thermodynamics. PMID:25026169

  6. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination.

    PubMed

    Surtees, Jennifer A; Alani, Eric

    2006-07-14

    Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.

  7. Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation

    PubMed Central

    Taylor, James A.; Pastrana, Cesar L.; Butterer, Annika; Pernstich, Christian; Gwynn, Emma J.; Sobott, Frank; Moreno-Herrero, Fernando; Dillingham, Mark S.

    2015-01-01

    The segregation of many bacterial chromosomes is dependent on the interactions of ParB proteins with centromere-like DNA sequences called parS that are located close to the origin of replication. In this work, we have investigated the binding of Bacillus subtilis ParB to DNA in vitro using a variety of biochemical and biophysical techniques. We observe tight and specific binding of a ParB homodimer to the parS sequence. Binding of ParB to non-specific DNA is more complex and displays apparent positive co-operativity that is associated with the formation of larger, poorly defined, nucleoprotein complexes. Experiments with magnetic tweezers demonstrate that non-specific binding leads to DNA condensation that is reversible by protein unbinding or force. The condensed DNA structure is not well ordered and we infer that it is formed by many looping interactions between neighbouring DNA segments. Consistent with this view, ParB is also able to stabilize writhe in single supercoiled DNA molecules and to bridge segments from two different DNA molecules in trans. The experiments provide no evidence for the promotion of non-specific DNA binding and/or condensation events by the presence of parS sequences. The implications of these observations for chromosome segregation are discussed. PMID:25572315

  8. NF-κB DNA-binding activity in embryos responding to a teratogen, cyclophosphamide

    PubMed Central

    Torchinsky, Arkady; Lishanski, Lucy; Wolstein, Orit; Shepshelovich, Jeanne; Orenstein, Hasida; Savion, Shoshana; Zaslavsky, Zeev; Carp, Howard; Brill, Alexander; Dikstein, Rivka; Toder, Vladimir; Fein, Amos

    2002-01-01

    Background The Rel/NF-κB transcription factors have been shown to regulate apoptosis in different cell types, acting as inducers or blockers in a stimuli- and cell type-dependent fashion. One of the Rel/NF-κB subunits, RelA, has been shown to be crucial for normal embryonic development, in which it functions in the embryonic liver as a protector against TNFα-induced physiological apoptosis. This study assesses whether NF-κB may be involved in the embryo's response to teratogens. Fot this, we evaluated how NF-KappaB DNA binding activity in embryonic organs demonstraiting differential sensitivity to a reference teratogen, cyclophosphamide, correlates with dysmorphic events induced by the teratogen at the cellular level (excessive apoptosis) and at the organ level (structural anomalies). Results The embryonic brain and liver were used as target organs. We observed that the Cyclophosphamide-induced excessive apoptosis in the brain, followed by the formation of severe craniofacial structural anomalies, was accompanied by suppression of NF-κB DNA-binding activity as well as by a significant and lasting increase in the activity of caspases 3 and 8. However, in the liver, in which cyclophosphamide induced transient apoptosis was not followed by dysmorphogenesis, no suppression of NF-κB DNA-binding activity was registered and the level of active caspases 3 and 8 was significantly lower than in the brain. It has also been observed that both the brain and liver became much more sensitive to the CP-induced teratogenic insult if the embryos were exposed to a combined treatment with the teratogen and sodium salicylate that suppressed NF-κB DNA-binding activity in these organs. Conclusion The results of this study demonstrate that suppression of NF-κB DNA-binding activity in embryos responding to the teratogenic insult may be associated with their decreased resistance to this insult. They also suggest that teratogens may suppress NF-κB DNA-binding activity in the

  9. Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response

    PubMed Central

    Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin

    2013-01-01

    The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858

  10. In vitro characterization of DNA gyrase inhibition by microcin B17 analogs with altered bisheterocyclic sites

    PubMed Central

    Zamble, Deborah B.; Miller, Deborah A.; Heddle, Jonathan G.; Maxwell, Anthony; Walsh, Christopher T.; Hollfelder, Florian

    2001-01-01

    Microcin B17 (MccB17) is a 3.1-kDa Escherichia coli antibiotic that contains thiazole and oxazole heterocycles in a peptide backbone. MccB17 inhibits its cellular target, DNA gyrase, by trapping the enzyme in a complex that is covalently bound to double-strand cleaved DNA, in a manner similar to the well-known quinolone drugs. The identification of gyrase as the target of MccB17 provides an opportunity to analyze the relationship between the structure of this unusual antibiotic and its activity. In this report, steady-state parameters are used to describe the induction of the cleavable complex by MccB17 analogs containing modified bisheterocyclic sites. The relative potency of these analogs corresponds to the capacity of the compounds to prevent growth of sensitive cells. In contrast to previously reported experiments, inhibition of DNA gyrase supercoiling activity by wild-type MccB17 also was observed. These results suggest that DNA gyrase is the main intracellular target of MccB17. This study probes the structure-function relationship of a new class of gyrase inhibitors and demonstrates that these techniques could be used to analyze compounds in the search for clinically useful antibiotics that block DNA gyrase. PMID:11427730

  11. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga.

    PubMed Central

    Li, Shi-Sheng; Gullbo, Joachim; Lindholm, Petra; Larsson, Rolf; Thunberg, Eva; Samuelsson, Gunnar; Bohlin, Lars; Claeson, Per

    2002-01-01

    A new basic protein, designated ligatoxin B, containing 46 amino acid residues has been isolated from the mistletoe Phoradendron liga (Gill.) Eichl. (Viscaceae). The protein's primary structure, determined unambiguously using a combination of automated Edman degradation, trypsin enzymic digestion, and tandem MS analysis, was 1-KSCCPSTTAR-NIYNTCRLTG-ASRSVCASLS-GCKIISGSTC-DSGWNH-46. Ligatoxin B exhibited in vitro cytotoxic activities on the human lymphoma cell line U-937-GTB and the primary multidrug-resistant renal adenocarcinoma cell line ACHN, with IC50 values of 1.8 microM and 3.2 microM respectively. Sequence alignment with other thionins identified a new member of the class 3 thionins, ligatoxin B, which is similar to the earlier described ligatoxin A. As predicted by the method of homology modelling, ligatoxin B shares a three-dimensional structure with the viscotoxins and purothionins and so may have the same mode of cytotoxic action. The novel similarities observed by structural comparison of the helix-turn-helix (HTH) motifs of the thionins, including ligatoxin B, and the HTH DNA-binding proteins, led us to propose the working hypothesis that thionins represent a new group of DNA-binding proteins. This working hypothesis could be useful in further dissecting the molecular mechanisms of thionin cytotoxicity and of thionin opposition to multidrug resistance, and useful in clarifying the physiological function of thionins in plants. PMID:12049612

  12. Magnetophoresis of flexible DNA-based dumbbell structures

    NASA Astrophysics Data System (ADS)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2008-02-01

    Controlled movement and manipulation of magnetic micro- and nanostructures using magnetic forces can give rise to important applications in biomedecine, diagnostics, and immunology. We report controlled magnetophoresis and stretching, in aqueous solution, of a DNA-based dumbbell structure containing magnetic and diamagnetic microspheres. The velocity and stretching of the dumbbell were experimentally measured and correlated with a theoretical model based on the forces acting on individual magnetic beads or the entire dumbbell structures. The results show that precise and predictable manipulation of dumbbell structures is achievable and can potentially be applied to immunomagnetic cell separators.

  13. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  14. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    PubMed

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of

  15. Combined branched-DNA and conventional HBV PCR assays for detection of serum HBV-DNA in hepatitis B e antigen-positive chronic hepatitis B patients.

    PubMed

    Ozdarendeli, Aykut; Toroman, Zulal Asci; Bulut, Yasemin; Demirbag, Kutbeddin; Kalkan, Ahmet; Ozden, Mehmet; Kilic, Suleyman Sirri

    2006-01-01

    Monitoring of HBV replication level is very useful for the management of patients with chronic HBV. However, the use of the correct tools to quantify HBV-DNA levels in serum and monitor the replication of HBV is of paramount importance in terms of diagnosis, and antiviral treatment of patients with chronic HBV infection. The aim of this study was to combine the bDNA assay and HBV PCR to improve detection of viremia the patients with HBeAg-positive chronic hepatitis B infection. In this study, 67 HBeAg-positive chronic hepatitis B patients were analyzed to determine viremia level using bDNA and HBV PCR assays. Sixty-four patients with HBeAg-positive chronic hepatitis B showed positivity by conventional HBV PCR, whereas 56 subjects with HBeAg-positive chronic hepatitis B showed HBV-DNA levels by bDNA. The results indicated that it is reasonable to use the bDNA assay to determine HBV replicative activity first, and use conventional HBV-PCR for HBeAg-positive chronic hepatitis B patient samples that are negative in bDNA assay.

  16. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes

    PubMed Central

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P.

    2016-01-01

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNAB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNAB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes. PMID:27574114

  17. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes.

    PubMed

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P

    2016-08-30

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNAB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNAB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes.

  18. Chicken Fetal Liver DNA Damage and Adduct Formation by Activation-Dependent DNA-Reactive Carcinogens and Related Compounds of Several Structural Classes

    PubMed Central

    Williams, Gary M.; Duan, Jian-Dong; Brunnemann, Klaus D.; Iatropoulos, Michael J.; Vock, Esther; Deschl, Ulrich

    2014-01-01

    The chicken egg genotoxicity assay (CEGA), which utilizes the liver of an intact and aseptic embryo-fetal test organism, was evaluated using four activation-dependent DNA-reactive carcinogens and four structurally related less potent carcinogens or non-carcinogens. In the assay, three daily doses of test substances were administered to eggs containing 9–11-day-old fetuses and the fetal livers were assessed for two endpoints, DNA breaks using the alkaline single cell gel electrophoresis (comet) assay and DNA adducts using the 32P-nucleotide postlabeling (NPL) assay. The effects of four carcinogens of different structures requiring distinct pathways of bioactivation, i.e., 2-acetylaminofluorene (AAF), aflatoxin B1 (AFB1), benzo[a]pyrene (B[a]P), and diethylnitrosamine (DEN), were compared with structurally related non-carcinogens fluorene (FLU) and benzo[e]pyrene (B[e]P) or weak carcinogens, aflatoxin B2 (AFB2) and N-nitrosodiethanolamine (NDELA). The four carcinogens all produced DNA breaks at microgram or low milligram total doses, whereas less potent carcinogens and non-carcinogens yielded borderline or negative results, respectively, at higher doses. AAF and B[a]P produced DNA adducts, whereas none was found with the related comparators FLU or B[e]P, consistent with comet results. DEN and NDELA were also negative for adducts, as expected in the case of DEN for an alkylating agent in the standard NPL assay. Also, AFB1 and AFB2 were negative in NPL, as expected, due to the nature of ring opened aflatoxin adducts, which are resistant to enzymatic digestion. Thus, the CEGA, using comet and NPL, is capable of detection of the genotoxicity of diverse DNA-reactive carcinogens, while not yielding false positives for non-carcinogens. PMID:24973097

  19. Chicken fetal liver DNA damage and adduct formation by activation-dependent DNA-reactive carcinogens and related compounds of several structural classes.

    PubMed

    Williams, Gary M; Duan, Jian-Dong; Brunnemann, Klaus D; Iatropoulos, Michael J; Vock, Esther; Deschl, Ulrich

    2014-09-01

    The chicken egg genotoxicity assay (CEGA), which utilizes the liver of an intact and aseptic embryo-fetal test organism, was evaluated using four activation-dependent DNA-reactive carcinogens and four structurally related less potent carcinogens or non-carcinogens. In the assay, three daily doses of test substances were administered to eggs containing 9-11-day-old fetuses and the fetal livers were assessed for two endpoints, DNA breaks using the alkaline single cell gel electrophoresis (comet) assay and DNA adducts using the (32)P-nucleotide postlabeling (NPL) assay. The effects of four carcinogens of different structures requiring distinct pathways of bioactivation, i.e., 2-acetylaminofluorene (AAF), aflatoxin B1 (AFB1), benzo[a]pyrene (B[a]P), and diethylnitrosamine (DEN), were compared with structurally related non-carcinogens fluorene (FLU) and benzo[e]pyrene (B[e]P) or weak carcinogens, aflatoxin B2 (AFB2) and N-nitrosodiethanolamine (NDELA). The four carcinogens all produced DNA breaks at microgram or low milligram total doses, whereas less potent carcinogens and non-carcinogens yielded borderline or negative results, respectively, at higher doses. AAF and B[a]P produced DNA adducts, whereas none was found with the related comparators FLU or B[e]P, consistent with comet results. DEN and NDELA were also negative for adducts, as expected in the case of DEN for an alkylating agent in the standard NPL assay. Also, AFB1 and AFB2 were negative in NPL, as expected, due to the nature of ring opened aflatoxin adducts, which are resistant to enzymatic digestion. Thus, the CEGA, using comet and NPL, is capable of detection of the genotoxicity of diverse DNA-reactive carcinogens, while not yielding false positives for non-carcinogens. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. DNA Binding and Phosphorylation Regulate the Core Structure of the NF-κB p50 Transcription Factor

    NASA Astrophysics Data System (ADS)

    Vonderach, Matthias; Byrne, Dominic P.; Barran, Perdita E.; Eyers, Patrick A.; Eyers, Claire E.

    2018-06-01

    The NF-κB transcription factors are known to be extensively phosphorylated, with dynamic site-specific modification regulating their ability to dimerize and interact with DNA. p50, the proteolytic product of p105 (NF-κB1), forms homodimers that bind DNA but lack intrinsic transactivation function, functioning as repressors of transcription from κB promoters. Here, we examine the roles of specific phosphorylation events catalysed by either protein kinase A (PKAc) or Chk1, in regulating the functions of p50 homodimers. LC-MS/MS analysis of proteolysed p50 following in vitro phosphorylation allows us to define Ser328 and Ser337 as PKAc- and Chk1-mediated modifications, and pinpoint an additional four Chk1 phosphosites: Ser65, Thr152, Ser242 and Ser248. Native mass spectrometry (MS) reveals Chk1- and PKAc-regulated disruption of p50 homodimer formation through Ser337. Additionally, we characterise the Chk1-mediated phosphosite, Ser242, as a regulator of DNA binding, with a S242D p50 phosphomimetic exhibiting a > 10-fold reduction in DNA binding affinity. Conformational dynamics of phosphomimetic p50 variants, including S242D, are further explored using ion-mobility MS (IM-MS). Finally, comparative theoretical modelling with experimentally observed p50 conformers, in the absence and presence of DNA, reveals that the p50 homodimer undergoes conformational contraction during electrospray ionisation that is stabilised by complex formation with κB DNA.

  1. DNA Binding and Phosphorylation Regulate the Core Structure of the NF-κB p50 Transcription Factor.

    PubMed

    Vonderach, Matthias; Byrne, Dominic P; Barran, Perdita E; Eyers, Patrick A; Eyers, Claire E

    2018-06-05

    The NF-κB transcription factors are known to be extensively phosphorylated, with dynamic site-specific modification regulating their ability to dimerize and interact with DNA. p50, the proteolytic product of p105 (NF-κB1), forms homodimers that bind DNA but lack intrinsic transactivation function, functioning as repressors of transcription from κB promoters. Here, we examine the roles of specific phosphorylation events catalysed by either protein kinase A (PKA c ) or Chk1, in regulating the functions of p50 homodimers. LC-MS/MS analysis of proteolysed p50 following in vitro phosphorylation allows us to define Ser328 and Ser337 as PKA c - and Chk1-mediated modifications, and pinpoint an additional four Chk1 phosphosites: Ser65, Thr152, Ser242 and Ser248. Native mass spectrometry (MS) reveals Chk1- and PKA c -regulated disruption of p50 homodimer formation through Ser337. Additionally, we characterise the Chk1-mediated phosphosite, Ser242, as a regulator of DNA binding, with a S242D p50 phosphomimetic exhibiting a > 10-fold reduction in DNA binding affinity. Conformational dynamics of phosphomimetic p50 variants, including S242D, are further explored using ion-mobility MS (IM-MS). Finally, comparative theoretical modelling with experimentally observed p50 conformers, in the absence and presence of DNA, reveals that the p50 homodimer undergoes conformational contraction during electrospray ionisation that is stabilised by complex formation with κB DNA. Graphical Abstract ᅟ.

  2. DNA-binding by Haemophilus influenzae and Escherichia coli YbaB, members of a widely-distributed bacterial protein family.

    PubMed

    Cooley, Anne E; Riley, Sean P; Kral, Keith; Miller, M Clarke; DeMoll, Edward; Fried, Michael G; Stevenson, Brian

    2009-07-13

    Genes orthologous to the ybaB loci of Escherichia coli and Haemophilus influenzae are widely distributed among eubacteria. Several years ago, the three-dimensional structures of the YbaB orthologs of both E. coli and H. influenzae were determined, revealing a novel "tweezer"-like structure. However, a function for YbaB had remained elusive, with an early study of the H. influenzae ortholog failing to detect DNA-binding activity. Our group recently determined that the Borrelia burgdorferi YbaB ortholog, EbfC, is a DNA-binding protein. To reconcile those results, we assessed the abilities of both the H. influenzae and E. coli YbaB proteins to bind DNA to which B. burgdorferi EbfC can bind. Both the H. influenzae and the E. coli YbaB proteins bound to tested DNAs. DNA-binding was not well competed with poly-dI-dC, indicating some sequence preferences for those two proteins. Analyses of binding characteristics determined that both YbaB orthologs bind as homodimers. Different DNA sequence preferences were observed between H. influenzae YbaB, E. coli YbaB and B. burgdorferi EbfC, consistent with amino acid differences in the putative DNA-binding domains of these proteins. Three distinct members of the YbaB/EbfC bacterial protein family have now been demonstrated to bind DNA. Members of this protein family are encoded by a broad range of bacteria, including many pathogenic species, and results of our studies suggest that all such proteins have DNA-binding activities. The functions of YbaB/EbfC family members in each bacterial species are as-yet unknown, but given the ubiquity of these DNA-binding proteins among Eubacteria, further investigations are warranted.

  3. Structure and stability of the consecutive stereoregulated chiral phosphorothioate DNA duplex.

    PubMed

    Kanaori, K; Tamura, Y; Wada, T; Nishi, M; Kanehara, H; Morii, T; Tajima, K; Makino, K

    1999-12-07

    The duplex structures of the stereoregulated phosphorothioate DNAs, [R(p),R(p)]- and [S(p),S(p)]-[d(GC(ps)T(ps)ACG)] (ps, phosphorothioate; PS-DNA), with their complementary RNA have been investigated by combined use of (1)H NMR and restrained molecular dynamics calculation. Compared to those obtained for the unmodified duplex structures (PO-DNA.RNA), the NOE cross-peak intensities are virtually identical for the PS-DNA.RNA hybrid duplexes. The structural analysis on the basis of the NOE restraints reveals that all of the three DNA.RNA duplexes take a A-form conformation and that there is no significant difference in the base stacking for the DNA.RNA hybrid duplexes. On the other hand, the NOE cross-peak intensities of the protons around the central T(ps)A step of the PS-DNA.DNA duplexes are apparently different from those of PO-DNA. DNA. The chemical shifts of H8/6 and H1' at the T(ps)A step are also largely different among PS-DNA.DNAs and PO-DNA.DNA, suggesting that the DNA.DNA structure is readily changed by the introduction of the phosphorothioate groups to the central T(p)A step. The structure calculations indicate that all of these DNA.DNA duplexes are B-form although there exist some small differences in helical parameters between the [R(p),R(p)]- and [S(p),S(p)]PS-DNA.DNA duplexes. The melting temperatures (T(m)) were determined for all of the duplexes by plotting the chemical shift change of isolated peaks as a function of temperature. For the PS-DNA.RNA hybrid duplexes, the [S(p),S(p)] isomer is less stable than the [R(p),R(p)] isomer while this trend is reversed for the PS-DNA.DNA duplexes. Consequently, although the PS-DNA.RNA duplexes take the similar A-form structure, the duplex stability is different between PS-DNA.RNA duplexes. The stability of the DNA.RNA duplexes may not be governed by the A-form structure itself but by some other factors such as the hydration around the phosphorothioate backbone, although the T(m) difference of the DNA.DNA

  4. Structure and dynamics of proflavine association around DNA.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2016-04-21

    Proflavine is a small molecule that intercalates into DNA and, thereby, acts as an anticancer agent. Intercalation of proflavine is shown to be a two-step process in which the first step is believed to be the formation of a pre-intercalative outside bound state. Experimental studies so far have been unable to capture the nature of the outside bound state. However, the sub-millisecond timescale observed in fluorescence kinetic experiments is often attributed to the binding of proflavine outside of DNA. Here, we have performed molecular dynamics simulations with multiple proflavine molecules to study the structure and dynamics of the formation of the outside bound state of DNA at different ion concentrations. We observed that the timescale of the outside bound state formation is, at least, five orders of magnitude faster (in nanoseconds) than the experimentally reported timescale (sub-milliseconds) attributed to binding outside DNA. Moreover, we also observed the stacked arrangement of proflavine all around DNA, which is different from the experimentally predicted stacking arrangement perpendicular to the helical axis of DNA in the close vicinity of the phosphate groups. This study, therefore, provides insight into the molecular structure and dynamics of the pre-intercalative outside bound state and will help in understanding the overall intercalation mechanism.

  5. Architecture with GIDEON, A Program for Design in Structural DNA Nanotechnology

    PubMed Central

    Birac, Jeffrey J.; Sherman, William B.; Kopatsch, Jens; Constantinou, Pamela E.; Seeman, Nadrian C.

    2012-01-01

    We present geometry based design strategies for DNA nanostructures. The strategies have been implemented with GIDEON – a Graphical Integrated Development Environment for OligoNucleotides. GIDEON has a highly flexible graphical user interface that facilitates the development of simple yet precise models, and the evaluation of strains therein. Models are built on a simple model of undistorted B-DNA double-helical domains. Simple point and click manipulations of the model allow the minimization of strain in the phosphate-backbone linkages between these domains and the identification of any steric clashes that might occur as a result. Detailed analysis of 3D triangles yields clear predictions of the strains associated with triangles of different sizes. We have carried out experiments that confirm that 3D triangles form well only when their geometrical strain is less than 4% deviation from the estimated relaxed structure. Thus geometry-based techniques alone, without energetic considerations, can be used to explain general trends in DNA structure formation. We have used GIDEON to build detailed models of double crossover and triple crossover molecules, evaluating the non-planarity associated with base tilt and junction mis-alignments. Computer modeling using a graphical user interface overcomes the limited precision of physical models for larger systems, and the limited interaction rate associated with earlier, command-line driven software. PMID:16630733

  6. JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures

    PubMed Central

    Dong, Min; Graham, Mitchell; Yadav, Nehul

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416

  7. The crystal structure of sulfamethoxazole, interaction with DNA, DFT calculation, and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L.; Sinha, Chittaranjan

    2015-02-01

    Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)sbnd H(7A)---O(2), N(7)sbnd H(7B)---O(3), N(1)sbnd H(1)---N(2), C(5)sbnd H(5)---O(3)sbnd S(1) and N(7)sbnd (H7A)---O(2)sbnd S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37 × 104 M-1. The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.

  8. An asymmetric structure of the Bacillus subtilis replication terminator protein in complex with DNA.

    PubMed

    Vivian, J P; Porter, C J; Wilce, J A; Wilce, M C J

    2007-07-13

    In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.

  9. Using DNA mechanics to predict in vitro nucleosome positions and formation energies

    PubMed Central

    Morozov, Alexandre V.; Fortney, Karissa; Gaykalova, Daria A.; Studitsky, Vasily M.; Widom, Jonathan; Siggia, Eric D.

    2009-01-01

    In eukaryotic genomes, nucleosomes function to compact DNA and to regulate access to it both by simple physical occlusion and by providing the substrate for numerous covalent epigenetic tags. While competition with other DNA-binding factors and action of chromatin remodeling enzymes significantly affect nucleosome formation in vivo, nucleosome positions in vitro are determined by steric exclusion and sequence alone. We have developed a biophysical model, DNABEND, for the sequence dependence of DNA bending energies, and validated it against a collection of in vitro free energies of nucleosome formation and a set of in vitro nucleosome positions mapped at high resolution. We have also made a first ab initio prediction of nucleosomal DNA geometries, and checked its accuracy against the nucleosome crystal structure. We have used DNABEND to design both strong and weak histone- binding sequences, and measured the corresponding free energies of nucleosome formation. We find that DNABEND can successfully predict in vitro nucleosome positions and free energies, providing a physical explanation for the intrinsic sequence dependence of histone–DNA interactions. PMID:19509309

  10. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhanjadeo, Madhabi M.; Academy of Scientific and Innovative Research; Nayak, Ashok K.

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Fieldmore » emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.« less

  11. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays.

    PubMed

    Horn, T; Chang, C A; Urdea, M S

    1997-12-01

    The divergent synthesis of bDNA structures is described. This new type of branched DNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branching network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb molecules were assembled on a solid support using parameters optimized for bDNA synthesis. The chemistry was used to synthesize bDNA comb molecules containing 15 secondary sequences. The bDNA comb molecules were elaborated by enzymatic ligation into branched amplification multimers, large bDNA molecules (a total of 1068 nt) containing an average of 36 repeated DNA oligomer sequences, each capable of hybridizing specifically to an alkaline phosphatase-labeled oligonucleotide. The bDNA comb molecules were characterized by electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The branched amplification multimers have been used as signal amplifiers in nucleic acid quantification assays for detection of viral infection. It is possible to detect as few as 50 molecules with bDNA technology.

  12. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays.

    PubMed Central

    Horn, T; Chang, C A; Urdea, M S

    1997-01-01

    The divergent synthesis of bDNA structures is described. This new type of branched DNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branching network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb molecules were assembled on a solid support using parameters optimized for bDNA synthesis. The chemistry was used to synthesize bDNA comb molecules containing 15 secondary sequences. The bDNA comb molecules were elaborated by enzymatic ligation into branched amplification multimers, large bDNA molecules (a total of 1068 nt) containing an average of 36 repeated DNA oligomer sequences, each capable of hybridizing specifically to an alkaline phosphatase-labeled oligonucleotide. The bDNA comb molecules were characterized by electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The branched amplification multimers have been used as signal amplifiers in nucleic acid quantification assays for detection of viral infection. It is possible to detect as few as 50 molecules with bDNA technology. PMID:9365266

  13. Left-handed Z-DNA: structure and function

    NASA Technical Reports Server (NTRS)

    Herbert, A.; Rich, A.

    1999-01-01

    Z-DNA is a high energy conformer of B-DNA that forms in vivo during transcription as a result of torsional strain generated by a moving polymerase. An understanding of the biological role of Z-DNA has advanced with the discovery that the RNA editing enzyme double-stranded RNA adenosine deaminase type I (ADAR1) has motifs specific for the Z-DNA conformation. Editing by ADAR1 requires a double-stranded RNA substrate. In the cases known, the substrate is formed by folding an intron back onto the exon that is targeted for modification. The use of introns to direct processing of exons requires that editing occurs before splicing. Recognition of Z-DNA by ADAR1 may allow editing of nascent transcripts to be initiated immediately after transcription, ensuring that editing and splicing are performed in the correct sequence. Structural characterization of the Z-DNA binding domain indicates that it belongs to the winged helix-turn-helix class of proteins and is similar to the globular domain of histone-H5.

  14. Intrinsic disorder in the partitioning protein KorB persists after co-operative complex formation with operator DNA and KorA.

    PubMed

    Hyde, Eva I; Callow, Philip; Rajasekar, Karthik V; Timmins, Peter; Patel, Trushar R; Siligardi, Giuliano; Hussain, Rohanah; White, Scott A; Thomas, Christopher M; Scott, David J

    2017-08-30

    The ParB protein, KorB, from the RK2 plasmid is required for DNA partitioning and transcriptional repression. It acts co-operatively with other proteins, including the repressor KorA. Like many multifunctional proteins, KorB contains regions of intrinsically disordered structure, existing in a large ensemble of interconverting conformations. Using NMR spectroscopy, circular dichroism and small-angle neutron scattering, we studied KorB selectively within its binary complexes with KorA and DNA, and within the ternary KorA/KorB/DNA complex. The bound KorB protein remains disordered with a mobile C-terminal domain and no changes in the secondary structure, but increases in the radius of gyration on complex formation. Comparison of wild-type KorB with an N-terminal deletion mutant allows a model of the ensemble average distances between the domains when bound to DNA. We propose that the positive co-operativity between KorB, KorA and DNA results from conformational restriction of KorB on binding each partner, while maintaining disorder. © 2017 The Author(s).

  15. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-Tmore » Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.« less

  16. Circular dichroism and DNA secondary structure.

    PubMed Central

    Baase, W A; Johnson, W C

    1979-01-01

    The change in average rotation of the DNA helix has been determined for the transfer from 0.05 M NaCl to 3.0 M CsCl, 6.2 M LiCl and 5.4 M NH4Cl. This work, combined with data at lower salt from other laboratories, allows us to relate the intensity of the CD of DNA at 275 nm directly to the change in the number of base pairs per turn. The change in secondary structure for the transfer of DNA from 0.05 M NaCl (where it is presumably in the B-form) to high salt (where the characteristic CD has been interpreted as corresponding to C-form geometry) is found to be -0.22 (+/- 0.02) base pairs per turn. In the case of mononucleosomes, where the CD indicates the "C-form", the change in secondary structure (including temperature effects) would add -0.31 (+/- 0.03) turns about the histone core to the -1.25 turns estimated from work on SV40 chromatin. Accurate winding angles and molar extinction coefficients were determined for ethidium. PMID:424316

  17. Charge Structure and Counterion Distribution in Hexagonal DNA Liquid Crystal

    PubMed Central

    Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; Lapp, Alain; van der Maarel, Johan R. C.

    2007-01-01

    A hexagonal liquid crystal of DNA fragments (double-stranded, 150 basepairs) with tetramethylammonium (TMA) counterions was investigated with small angle neutron scattering (SANS). We obtained the structure factors pertaining to the DNA and counterion density correlations with contrast matching in the water. Molecular dynamics (MD) computer simulation of a hexagonal assembly of nine DNA molecules showed that the inter-DNA distance fluctuates with a correlation time around 2 ns and a standard deviation of 8.5% of the interaxial spacing. The MD simulation also showed a minimal effect of the fluctuations in inter-DNA distance on the radial counterion density profile and significant penetration of the grooves by TMA. The radial density profile of the counterions was also obtained from a Monte Carlo (MC) computer simulation of a hexagonal array of charged rods with fixed interaxial spacing. Strong ordering of the counterions between the DNA molecules and the absence of charge fluctuations at longer wavelengths was shown by the SANS number and charge structure factors. The DNA-counterion and counterion structure factors are interpreted with the correlation functions derived from the Poisson-Boltzmann equation, MD, and MC simulation. Best agreement is observed between the experimental structure factors and the prediction based on the Poisson-Boltzmann equation and/or MC simulation. The SANS results show that TMA is too large to penetrate the grooves to a significant extent, in contrast to what is shown by MD simulation. PMID:17098791

  18. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice.

    PubMed

    Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta

    2017-04-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Biochemical Characterization of a Mycobacteriophage Derived DnaB Ortholog Reveals New Insight into the Evolutionary Origin of DnaB Helicases

    PubMed Central

    Bhowmik, Priyanka; Das Gupta, Sujoy K.

    2015-01-01

    The bacterial replicative helicases known as DnaB are considered to be members of the RecA superfamily. All members of this superfamily, including DnaB, have a conserved C- terminal domain, known as the RecA core. We unearthed a series of mycobacteriophage encoded proteins in which the RecA core domain alone was present. These proteins were phylogenetically related to each other and formed a distinct clade within the RecA superfamily. A mycobacteriophage encoded protein, Wildcat Gp80 that roots deep in the DnaB family, was found to possess a core domain having significant sequence homology (Expect value < 10-5) with members of this novel cluster. This indicated that Wildcat Gp80, and by extrapolation, other members of the DnaB helicase family, may have evolved from a single domain RecA core polypeptide belonging to this novel group. Biochemical investigations confirmed that Wildcat Gp80 was a helicase. Surprisingly, our investigations also revealed that a thioredoxin tagged truncated version of the protein in which the N-terminal sequences were removed was fully capable of supporting helicase activity, although its ATP dependence properties were different. DnaB helicase activity is thus, primarily a function of the RecA core although additional N-terminal sequences may be necessary for fine tuning its activity and stability. Based on sequence comparison and biochemical studies we propose that DnaB helicases may have evolved from single domain RecA core proteins having helicase activities of their own, through the incorporation of additional N-terminal sequences. PMID:26237048

  20. The action of the bacterial toxin, microcin B17, on DNA gyrase.

    PubMed

    Parks, William M; Bottrill, Andrew R; Pierrat, Olivier A; Durrant, Marcus C; Maxwell, Anthony

    2007-04-01

    Microcin B17 (MccB17) is a peptide-based bacterial toxin that targets DNA gyrase, the bacterial enzyme that introduces supercoils into DNA. The site and mode of action of MccB17 on gyrase are unclear. We review what is currently known about MccB17-gyrase interactions and summarise approaches to understanding its mode of action that involve modification of the toxin. We describe experiments in which treatment of the toxin at high pH leads to the deamidation of two asparagine residues to aspartates. The modified toxin was found to be inactive in vivo and in vitro, suggesting that the Asn residues are essential for activity. Following on from these studies we have used molecular modelling to suggest a 3D structure for microcin B17. We discuss the implications of this model for MccB17 action and investigate the possibility that it binds metal ions.

  1. The Crystal Structure of TAL Effector PthXo1 Bound to Its DNA Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mak, Amanda Nga-Sze; Bradley, Philip; Cernadas, Raul A.

    2012-02-10

    DNA recognition by TAL effectors is mediated by tandem repeats, each 33 to 35 residues in length, that specify nucleotides via unique repeat-variable diresidues (RVDs). The crystal structure of PthXo1 bound to its DNA target was determined by high-throughput computational structure prediction and validated by heavy-atom derivatization. Each repeat forms a left-handed, two-helix bundle that presents an RVD-containing loop to the DNA. The repeats self-associate to form a right-handed superhelix wrapped around the DNA major groove. The first RVD residue forms a stabilizing contact with the protein backbone, while the second makes a base-specific contact to the DNA sense strand.more » Two degenerate amino-terminal repeats also interact with the DNA. Containing several RVDs and noncanonical associations, the structure illustrates the basis of TAL effector-DNA recognition.« less

  2. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.

    PubMed

    Agarwal, Nayan P; Matthies, Michael; Joffroy, Bastian; Schmidt, Thorsten L

    2018-03-27

    The programmability of DNA enables constructing nanostructures with almost any arbitrary shape, which can be decorated with many functional materials. Moreover, dynamic structures can be realized such as molecular motors and walkers. In this work, we have explored the possibility to synthesize the complementary sequences to single-stranded gap regions in the DNA origami scaffold cost effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. This reduced the number of staple strands needed to determine the shape and size of the final structure after gap filling. For this, several DNA polymerases and single-stranded binding (SSB) proteins were tested, with T4 DNA polymerase being the best fit. The structures could be folded in as little as 6 min, and the subsequent optimized gap-filling reaction was completed in less than 3 min. The introduction of flexible gap regions results in fully collapsed or partially bent structures due to entropic spring effects. Finally, we demonstrated structural transformations of such deformed wireframe DNA origami structures with DNA polymerases including the expansion of collapsed structures and the straightening of curved tubes. We anticipate that this approach will become a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified, or mechanically switched. Mechanical force generation and structural transitions will enable applications in structural DNA nanotechnology, plasmonics, or single-molecule biophysics.

  3. RNAstructure: software for RNA secondary structure prediction and analysis.

    PubMed

    Reuter, Jessica S; Mathews, David H

    2010-03-15

    To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence. RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained. The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at http://rna.urmc.rochester.edu/RNAstructure.html.

  4. Structure and DNA-Binding Sites of the SWI1 AT-rich Interaction Domain (ARID) Suggest Determinants for Sequence-Specific DNA Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Suhkmann; Zhang, Ziming; Upchurch, Sean

    2004-04-16

    2 ARID is a homologous family of DNA-binding domains that occur in DNA binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) does not select for a specific DNA sequence from a random sequence pool. The lack of sequence specificity shown by the SWI1 ARID domain stands in contrast to the other characterized ARID domains, which recognize specific AT-rich sequences. We havemore » solved the three-dimensional structure of human SWI1 ARID using solution NMR methods. In addition, we have characterized non-specific DNA-binding by the SWI1 ARID domain. Results from this study indicate that a flexible long internal loop in ARID motif is likely to be important for sequence specific DNA-recognition. The structure of human SWI1 ARID domain also represents a distinct structural subfamily. Studies of ARID indicate that boundary of the DNA binding structural and functional domains can extend beyond the sequence homologous region in a homologous family of proteins. Structural studies of homologous domains such as ARID family of DNA-binding domains should provide information to better predict the boundary of structural and functional domains in structural genomic studies. Key Words: ARID, SWI1, NMR, structural genomics, protein-DNA interaction.« less

  5. The effect of ionic environment and mercury(II) binding on the alternative structures of DNA. An infrared spectroscopic study

    NASA Astrophysics Data System (ADS)

    Keller, P. B.; Hartman, K. A.

    Infrared spectroscopy was used to measure the effects of NaCl, NaNO 3 and HgCl 2 on the structure and structural transitions of DNA in hydrated films. The following conclusions are supported by the data. (1) The transition from the B- to the A-structural form in films of salt-free, calf-thymus DNA occurs between 86 and 75% r.h. Previous failures to obtain this transition in salt-free films and the finding that ca 4% (w/w) NaCl is needed to observe the B to A transition in films of DNA appear to be anomalies produced by the very slow kinetics for this transition. (2) The addition of NaCl to DNA increases the quantity of water absorbed at a given r.h. value and shifts the B to A transition to lower r.h. values. (3) Highly hydrated DNA (100% r.h.) with or without added NaCl exists in the B-helical structure for all samples examined. (4) DNA films containing one NaNO 3 per 6.7 nucleotide residues remained in the B-helical form to very low values of hydration. (5) The interaction of HgCl 2 with DNA to form the type I complex prevents the transition of DNA from the B- to the A-helical form but a conformational variation within the B family of structures was observed to occur between 94 and 75% r.h. (6) The primary sites of binding of Hg 2+ in the type-1 complex with the DNA are the AT base pairs. Hg 2+ binds to the N3 atom of thymine. Binding of Hg 2+ to AT pairs perturbs the CG pairs but has only a minor effect on the sugar—phosphate conformation.

  6. Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages

    PubMed Central

    Schumacher, Maria A.; Tonthat, Nam K; Lee, Jeehyun; Rodriguez-Castañeda, Fernando A.; Chinnam, Naga babu; Kalliomaa-Sanford, Anne K.; Ng, Irene W.; Barge, Madhuri T.; Shaw, Porsha L.R.; Barillà, Daniela

    2016-01-01

    Although recent studies have provided a wealth of information about archaeal biology, nothing is known about the molecular basis of DNA segregation in these organisms. Here we unveil the machinery and assembly mechanism of the archaeal Sulfolobus pNOB8 partition system. This system employs three proteins; ParA, an atypical ParB adaptor and a centromere-binding component, AspA. AspA utilizes a spreading mechanism to create a DNA superhelix onto which ParB assembles. This supercomplex links to the ParA motor, which contains a bacteria-like Walker motif. The ParB C-domain harbors structural similarity to CenpA, which dictates eukaryotic segregation. Thus, this archaeal system combines bacteria-like and eukarya-like components, suggesting the possible conservation of DNA segregation principles across the three domains of life. PMID:26339031

  7. Comparison of the protein-protein interfaces in the p53-DNA crystal structures: towards elucidation of the biological interface.

    PubMed

    Ma, Buyong; Pan, Yongping; Gunasekaran, K; Venkataraghavan, R Babu; Levine, Arnold J; Nussinov, Ruth

    2005-03-15

    p53, the tumor suppressor protein, functions as a dimer of dimers. However, how the tetramer binds to the DNA is still an open question. In the crystal structure, three copies of the p53 monomers (containing chains A, B, and C) were crystallized with the DNA-consensus element. Although the structure provides crucial data on the p53-DNA contacts, the active oligomeric state is unclear because the two dimeric (A-B and B-C) interfaces present in the crystal cannot both exist in the tetramer. Here, we address the question of which of these two dimeric interfaces may be more biologically relevant. We analyze the sequence and structural properties of the p53-p53 dimeric interfaces and carry out extensive molecular dynamics simulations of the crystal structures of the human and mouse p53 dimers. We find that the A-B interface residues are more conserved than those of the B-C. Molecular dynamics simulations show that the A-B interface can provide a stable DNA-binding motif in the dimeric state, unlike B-C. Our results indicate that the interface between chains A-B in the p53-DNA complex constitutes a better candidate for a stable biological interface, whereas the B-C interface is more likely to be due to crystal packing. Thus, they have significant implications toward our understanding of DNA binding by p53 as well as p53-mediated interactions with other proteins.

  8. Flexible DNA bending in HU–DNA cocrystal structures

    PubMed Central

    Swinger, Kerren K.; Lemberg, Kathryn M.; Zhang, Ying; Rice, Phoebe A.

    2003-01-01

    HU and IHF are members of a family of prokaryotic proteins that interact with the DNA minor groove in a sequence-specific (IHF) or non-specific (HU) manner to induce and/or stabilize DNA bending. HU plays architectural roles in replication initiation, transcription regulation and site-specific recombination, and is associated with bacterial nucleoids. Cocrystal structures of Anabaena HU bound to DNA (1P71, 1P78, 1P51) reveal that while underlying proline intercalation and asymmetric charge neutralization mechanisms of DNA bending are similar for IHF and HU, HU stabilizes different DNA bend angles (∼105–140°). The two bend angles within a single HU complex are not coplanar, and the resulting dihedral angle is consistent with negative supercoiling. Comparison of HU–DNA and IHF–DNA structures suggests that sharper bending is correlated with longer DNA binding sites and smaller dihedral angles. An HU-induced bend may be better modeled as a hinge, not a rigid bend. The ability to induce or stabilize varying bend angles is consistent with HU’s role as an architectural cofactor in many different systems that may require differing geometries. PMID:12853489

  9. Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome.

    PubMed

    Koo, Dal-Hoe; Han, Fangpu; Birchler, James A; Jiang, Jiming

    2011-06-01

    Centromeres are determined by poorly understood epigenetic mechanisms. Centromeres can be activated or inactivated without changing the underlying DNA sequences. However, virtually nothing is known about the epigenetic transition of a centromere from an active to an inactive state because of the lack of examples of the same centromere exhibiting alternative forms and being distinguishable from other centromeres. The centromere of the supernumerary B chromosome of maize provides such an opportunity because its functional core can be cytologically tracked, and an inactive version of the centromere is available. We developed a DNA fiber-based technique that can be used to assess the levels of cytosine methylation associated with repetitive DNA sequences. We report that DNA sequences in the normal B centromere exhibit hypomethylation. This methylation pattern is not affected by the genetic background or structural rearrangement of the B chromosome, but is slightly changed when the B chromosome is transferred to oat as an addition chromosome. In contrast, an inactive version of this same centromere exhibits hypermethylation, indicating that the inactive centromere was modified into a different epigenetic state at the DNA level.

  10. Structural diversity of supercoiled DNA

    PubMed Central

    Irobalieva, Rossitza N.; Fogg, Jonathan M.; Catanese, Daniel J.; Sutthibutpong, Thana; Chen, Muyuan; Barker, Anna K.; Ludtke, Steven J.; Harris, Sarah A.; Schmid, Michael F.; Chiu, Wah; Zechiedrich, Lynn

    2015-01-01

    By regulating access to the genetic code, DNA supercoiling strongly affects DNA metabolism. Despite its importance, however, much about supercoiled DNA (positively supercoiled DNA, in particular) remains unknown. Here we use electron cryo-tomography together with biochemical analyses to investigate structures of individual purified DNA minicircle topoisomers with defined degrees of supercoiling. Our results reveal that each topoisomer, negative or positive, adopts a unique and surprisingly wide distribution of three-dimensional conformations. Moreover, we uncover striking differences in how the topoisomers handle torsional stress. As negative supercoiling increases, bases are increasingly exposed. Beyond a sharp supercoiling threshold, we also detect exposed bases in positively supercoiled DNA. Molecular dynamics simulations independently confirm the conformational heterogeneity and provide atomistic insight into the flexibility of supercoiled DNA. Our integrated approach reveals the three-dimensional structures of DNA that are essential for its function. PMID:26455586

  11. Structural diversity of supercoiled DNA

    NASA Astrophysics Data System (ADS)

    Irobalieva, Rossitza N.; Fogg, Jonathan M.; Catanese, Daniel J.; Sutthibutpong, Thana; Chen, Muyuan; Barker, Anna K.; Ludtke, Steven J.; Harris, Sarah A.; Schmid, Michael F.; Chiu, Wah; Zechiedrich, Lynn

    2015-10-01

    By regulating access to the genetic code, DNA supercoiling strongly affects DNA metabolism. Despite its importance, however, much about supercoiled DNA (positively supercoiled DNA, in particular) remains unknown. Here we use electron cryo-tomography together with biochemical analyses to investigate structures of individual purified DNA minicircle topoisomers with defined degrees of supercoiling. Our results reveal that each topoisomer, negative or positive, adopts a unique and surprisingly wide distribution of three-dimensional conformations. Moreover, we uncover striking differences in how the topoisomers handle torsional stress. As negative supercoiling increases, bases are increasingly exposed. Beyond a sharp supercoiling threshold, we also detect exposed bases in positively supercoiled DNA. Molecular dynamics simulations independently confirm the conformational heterogeneity and provide atomistic insight into the flexibility of supercoiled DNA. Our integrated approach reveals the three-dimensional structures of DNA that are essential for its function.

  12. Genetic determinants of freckle occurrence in the Spanish population: Towards ephelides prediction from human DNA samples.

    PubMed

    Hernando, Barbara; Ibañez, Maria Victoria; Deserio-Cuesta, Julio Alberto; Soria-Navarro, Raquel; Vilar-Sastre, Inca; Martinez-Cadenas, Conrado

    2018-03-01

    Prediction of human pigmentation traits, one of the most differentiable externally visible characteristics among individuals, from biological samples represents a useful tool in the field of forensic DNA phenotyping. In spite of freckling being a relatively common pigmentation characteristic in Europeans, little is known about the genetic basis of this largely genetically determined phenotype in southern European populations. In this work, we explored the predictive capacity of eight freckle and sunlight sensitivity-related genes in 458 individuals (266 non-freckled controls and 192 freckled cases) from Spain. Four loci were associated with freckling (MC1R, IRF4, ASIP and BNC2), and female sex was also found to be a predictive factor for having a freckling phenotype in our population. After identifying the most informative genetic variants responsible for human ephelides occurrence in our sample set, we developed a DNA-based freckle prediction model using a multivariate regression approach. Once developed, the capabilities of the prediction model were tested by a repeated 10-fold cross-validation approach. The proportion of correctly predicted individuals using the DNA-based freckle prediction model was 74.13%. The implementation of sex into the DNA-based freckle prediction model slightly improved the overall prediction accuracy by 2.19% (76.32%). Further evaluation of the newly-generated prediction model was performed by assessing the model's performance in a new cohort of 212 Spanish individuals, reaching a classification success rate of 74.61%. Validation of this prediction model may be carried out in larger populations, including samples from different European populations. Further research to validate and improve this newly-generated freckle prediction model will be needed before its forensic application. Together with DNA tests already validated for eye and hair colour prediction, this freckle prediction model may lead to a substantially more detailed

  13. Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements

    PubMed Central

    Zhang, Xinghua; Chen, Hu; Fu, Hongxia; Doyle, Patrick S.; Yan, Jie

    2012-01-01

    Double-stranded DNA is a dynamic molecule whose structure can change depending on conditions. While there is consensus in the literature about many structures DNA can have, the state of highly-stretched DNA is still not clear. Several groups have shown that DNA in the torsion-unconstrained B-form undergoes an “overstretching” transition at a stretching force of around 65 pN, which leads to approximately 1.7-fold elongation of the DNA contour length. Recent experiments have revealed that two distinct structural transitions are involved in the overstretching process: (i) a hysteretic “peeling” off one strand from its complementary strand, and (ii) a nonhysteretic transition that leads to an undetermined DNA structure. We report the first simultaneous determination of the entropy (ΔS) and enthalpy changes (ΔH) pertaining to these respective transitions. For the hysteretic peeling transition, we determined ΔS ∼ 20 cal/(K.mol) and ΔH ∼ 7 kcal/mol. In the case of the nonhysteretic transition, ΔS ∼ -3 cal/(K.mol) and ΔH ∼ 1 kcal/mol. Furthermore, the response of the transition force to salt concentration implies that the two DNA strands are spatially separated after the hysteretic peeling transition. In contrast, the corresponding response after the nonhysteretic transition indicated that the strands remained in close proximity. The selection between the two transitions depends on DNA base-pair stability, and it can be illustrated by a multidimensional phase diagram. Our results provide important insights into the thermodynamics of DNA overstretching and conformational structures of overstretched DNA that may play an important role in vivo. PMID:22532662

  14. Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights.

    PubMed

    Shimizu, Masahiro; Noguchi, Yasunori; Sakiyama, Yukari; Kawakami, Hironori; Katayama, Tsutomu; Takada, Shoji

    2016-12-13

    Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC-DnaA-IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC-DnaA-IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.

  15. DNA methylation-based age prediction from various tissues and body fluids

    PubMed Central

    Jung, Sang-Eun; Shin, Kyoung-Jin; Lee, Hwan Young

    2017-01-01

    Aging is a natural and gradual process in human life. It is influenced by heredity, environment, lifestyle, and disease. DNA methylation varies with age, and the ability to predict the age of donor using DNA from evidence materials at a crime scene is of considerable value in forensic investigations. Recently, many studies have reported age prediction models based on DNA methylation from various tissues and body fluids. Those models seem to be very promising because of their high prediction accuracies. In this review, the changes of age-associated DNA methylation and the age prediction models for various tissues and body fluids were examined, and then the applicability of the DNA methylation-based age prediction method to the forensic investigations was discussed. This will improve the understandings about DNA methylation markers and their potential to be used as biomarkers in the forensic field, as well as the clinical field. PMID:28946940

  16. Quantification of HCV RNA in Clinical Specimens by Branched DNA (bDNA) Technology.

    PubMed

    Wilber, J C; Urdea, M S

    1999-01-01

    The diagnosis and monitoring of hepatitis C virus (HCV) infection have been aided by the development of HCV RNA quantification assays A direct measure of viral load, HCV RNA quantification has the advantage of providing information on viral kinetics and provides unique insight into the disease process. Branched DNA (bDNA) signal amplification technology provides a novel approach for the direct quantification of HCV RNA in patient specimens. The bDNA assay measures HCV RNA at physiological levels by boosting the reporter signal, rather than by replicating target sequences as the means of detection, and thus avoids the errors inherent in the extraction and amplification of target sequences. Inherently quantitative and nonradioactive, the bDNA assay is amenable to routine use in a clinical research setting, and has been used by several groups to explore the natural history, pathogenesis, and treatment of HCV infection.

  17. Genome organization and DNA methylation patterns of B chromosomes in the red fox and Chinese raccoon dogs.

    PubMed

    Bugno-Poniewierska, Monika; Solek, Przemysław; Wronski, Mariusz; Potocki, Leszek; Jezewska-Witkowska, Grażyna; Wnuk, Maciej

    2014-12-01

    The molecular structure of B chromosomes (Bs) is relatively well studied. Previous research demonstrates that Bs of various species usually contain two types of repetitive DNA sequences, satellite DNA and ribosomal DNA, but Bs also contain genes encoding histone proteins and many others. However, many questions remain regarding the origin and function of these chromosomes. Here, we focused on the comparative cytogenetic characteristics of the red fox and Chinese raccoon dog B chromosomes with particular attention to the distribution of repetitive DNA sequences and their methylation status. We confirmed that the small Bs of the red fox show a typical fluorescent telomeric distal signal, whereas medium-sized Bs of the Chinese raccoon dog were characterized by clusters of telomeric sequences along their length. We also found different DNA methylation patterns for the B chromosomes of both species. Therefore, we concluded that DNA methylation may maintain the transcriptional inactivation of DNA sequences localized to B chromosomes and may prevent genetic unbalancing and several negative phenotypic effects. © 2014 The Authors.

  18. Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase.

    PubMed

    Takahashi, Shuntaro; Brazier, John A; Sugimoto, Naoki

    2017-09-05

    Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases.

  19. Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase

    PubMed Central

    Takahashi, Shuntaro; Brazier, John A.; Sugimoto, Naoki

    2017-01-01

    Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases. PMID:28827350

  20. Modular structural elements in the replication origin region of Tetrahymena rDNA.

    PubMed Central

    Du, C; Sanzgiri, R P; Shaiu, W L; Choi, J K; Hou, Z; Benbow, R M; Dobbs, D L

    1995-01-01

    Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication. Images PMID:7784181

  1. Detection of viral infection and gene expression in clinical tissue specimens using branched DNA (bDNA) in situ hybridization.

    PubMed

    Kenny, Daryn; Shen, Lu-Ping; Kolberg, Janice A

    2002-09-01

    In situ hybridization (ISH) methods for detection of nucleic acid sequences have proved especially powerful for revealing genetic markers and gene expression in a morphological context. Although target and signal amplification technologies have enabled researchers to detect relatively low-abundance molecules in cell extracts, the sensitive detection of nucleic acid sequences in tissue specimens has proved more challenging. We recently reported the development of a branched DNA (bDNA) ISH method for detection of DNA and mRNA in whole cells. Based on bDNA signal amplification technology, bDNA ISH is highly sensitive and can detect one or two copies of DNA per cell. In this study we evaluated bDNA ISH for detection of nucleic acid sequences in tissue specimens. Using normal and human papillomavirus (HPV)-infected cervical biopsy specimens, we explored the cell type-specific distribution of HPV DNA and mRNA by bDNA ISH. We found that bDNA ISH allowed rapid, sensitive detection of nucleic acids with high specificity while preserving tissue morphology. As an adjunct to conventional histopathology, bDNA ISH may improve diagnostic accuracy and prognosis for viral and neoplastic diseases.

  2. The structure, stability, and infrared spectrum of B 2N, B 2N +, B 2N -, BO, B 2O and B 2N 2.

    NASA Astrophysics Data System (ADS)

    Martin, J. M. L.; François, J. P.; Gijbels, R.

    1992-05-01

    The structure, infrared spectrum, and heat of formation of B 2N, B 2N -, BO, and B 2O have been studied ab initio. B 2N is very stable; B 2O even more so. B 2N, B 2N -, B 2O, and probably B 2N + have symmetric linear ground-state structures; for B 2O, an asymmetric linear structure lies about 12 kcal/mol above the ground state. B 2N +, B 2N - and B 2O have intense asymmetric stretching frequencies, predicted near 870, 1590 and 1400 cm -1, respectively. Our predicted harmonic frequencies and isotopic shifts for B 2O confirm the recent experimental identification by Andrews and Burkholder. Absorptions at 1889.5 and 1998.5 cm -1 in noble-gas trapped boron nitride vapor belong the BNB and BNBN ( 3Π), respectively; a tentative assignment of 882.5 cm -1 to BNB + is proposed. Total atomization energies Σ De (Σ D0) are computed (accuracy ±2 kcal/mol) as: BO 193.1 (190.4), B 2O 292.5 (288.7), B 2N 225.0 (250.3) kcal/mol. The ionization potential and electron affinity of B 2N are predicted to be 8.62±0.1 and 3.34±0.1 eV. The MP4-level additivity approximations involved in G1 theory results in errors on the order of 1 kcal/mol in the Σ De values.

  3. Structural Insights Into DNA Repair by RNase T—An Exonuclease Processing 3′ End of Structured DNA in Repair Pathways

    PubMed Central

    Hsiao, Yu-Yuan; Fang, Woei-Horng; Lee, Chia-Chia; Chen, Yi-Ping; Yuan, Hanna S.

    2014-01-01

    DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3′ end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminated base in an inosine-containing heteroduplex DNA. Crystal structure analyses further reveal how RNase T recognizes the bulge DNA by inserting a phenylalanine into the bulge, and as a result the 3′ end of blunt-end bulge DNA can be digested by RNase T. In contrast, the homodimeric RNase T interacts with the Y-structured DNA by a different binding mode via a single protomer so that the 3′ overhang of the Y-structured DNA can be trimmed closely to the duplex region. Our data suggest that RNase T likely processes bulge and bubble DNA in the Endonuclease V–dependent DNA repair, whereas it processes Y-structured DNA in UV-induced and various other DNA repair pathways. This study thus provides mechanistic insights for RNase T and thousands of DnaQ-like exonucleases in DNA 3′-end processing. PMID:24594808

  4. Intermolecular G-quadruplex structure-based fluorescent DNA detection system.

    PubMed

    Zhou, Hui; Wu, Zai-Sheng; Shen, Guo-Li; Yu, Ru-Qin

    2013-03-15

    Adopting multi-donors to pair with one acceptor could improve the performance of fluorogenic detection probes. However, common dyes (e.g., fluorescein) in close proximity to each other would self-quench the fluorescence, and the fluorescence is difficult to restore. In this contribution, we constructed a novel "multi-donors-to-one acceptor" fluorescent DNA detection system by means of the intermolecular G-quadruplex (IGQ) structure-based fluorescence signal enhancement combined with the hairpin oligonucleotide. The novel IGQ-hairpin system was characterized using the p53 gene as the model target DNA. The proposed system showed an improved assay performance due to the introduction of IGQ-structure into fluorescent signaling probes, which could inhibit the background fluorescence and increase fluorescence restoration amplitude of fluoresceins upon target DNA hybridization. The proof-of-concept scheme is expected to provide new insight into the potential of G-quadruplex structure and promote the application of fluorescent oligonucleotide probes in fundamental research, diagnosis, and treatment of genetic diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements.

    PubMed

    Redrejo-Rodríguez, Modesto; Ordóñez, Carlos D; Berjón-Otero, Mónica; Moreno-González, Juan; Aparicio-Maldonado, Cristian; Forterre, Patrick; Salas, Margarita; Krupovic, Mart

    2017-11-07

    Family B DNA polymerases (PolBs) play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB), that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. HBeAg and hepatitis B virus DNA as outcome predictors during therapy with peginterferon alfa-2a for HBeAg-positive chronic hepatitis B.

    PubMed

    Fried, Michael W; Piratvisuth, Teerha; Lau, George K K; Marcellin, Patrick; Chow, Wan-Cheng; Cooksley, Graham; Luo, Kang-Xian; Paik, Seung Woon; Liaw, Yun-Fan; Button, Peter; Popescu, Matei

    2008-02-01

    The aims of this study were to evaluate the usefulness of quantitative hepatitis B e antigen (HBeAg) values for predicting HBeAg seroconversion in patients treated with peginterferon alfa-2a and to assess the dynamic changes in quantitative HBeAg during therapy, compared with conventional measures of serum hepatitis B virus DNA. Data were analyzed from a large, randomized, multinational phase III registration trial involving 271 HBV-infected HBeAg-positive patients who received peginterferon alfa-2a plus oral placebo for 48 weeks. HBeAg levels were measured serially during therapy using a microparticle enzyme immunoassay validated with in-house reference standards obtained from the Paul Ehrlich Institute (PEIU/mL). In patients who achieved HBeAg seroconversion, levels of HBeAg consistently decreased during treatment and remained at their lowest level during the 24 weeks of posttreatment follow-up. After 24 weeks of treatment, 4% of patients with the highest levels of HBeAg (>or=100 PEIU/mL) achieved HBeAg seroconversion, yielding a negative predictive value of 96%, which was greater than that obtained for levels of HBV DNA (86%). Late responders to peginterferon alfa-2a could also be differentiated from nonresponders by continued decrease in HBeAg values, which were not evident by changes in HBV DNA. These analyses suggest quantitative HBeAg is a useful adjunctive measurement for predicting HBeAg seroconversion in patients treated with peginterferon when considering both sensitivity and specificity compared with serum HBV DNA.

  7. The helical structure of DNA facilitates binding

    NASA Astrophysics Data System (ADS)

    Berg, Otto G.; Mahmutovic, Anel; Marklund, Emil; Elf, Johan

    2016-09-01

    The helical structure of DNA imposes constraints on the rate of diffusion-limited protein binding. Here we solve the reaction-diffusion equations for DNA-like geometries and extend with simulations when necessary. We find that the helical structure can make binding to the DNA more than twice as fast compared to a case where DNA would be reactive only along one side. We also find that this rate advantage remains when the contributions from steric constraints and rotational diffusion of the DNA-binding protein are included. Furthermore, we find that the association rate is insensitive to changes in the steric constraints on the DNA in the helix geometry, while it is much more dependent on the steric constraints on the DNA-binding protein. We conclude that the helical structure of DNA facilitates the nonspecific binding of transcription factors and structural DNA-binding proteins in general.

  8. Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages.

    PubMed

    Schumacher, Maria A; Tonthat, Nam K; Lee, Jeehyun; Rodriguez-Castañeda, Fernando A; Chinnam, Naga Babu; Kalliomaa-Sanford, Anne K; Ng, Irene W; Barge, Madhuri T; Shaw, Porsha L R; Barillà, Daniela

    2015-09-04

    Although recent studies have provided a wealth of information about archaeal biology, nothing is known about the molecular basis of DNA segregation in these organisms. Here, we unveil the machinery and assembly mechanism of the archaeal Sulfolobus pNOB8 partition system. This system uses three proteins: ParA; an atypical ParB adaptor; and a centromere-binding component, AspA. AspA utilizes a spreading mechanism to create a DNA superhelix onto which ParB assembles. This supercomplex links to the ParA motor, which contains a bacteria-like Walker motif. The C domain of ParB harbors structural similarity to CenpA, which dictates eukaryotic segregation. Thus, this archaeal system combines bacteria-like and eukarya-like components, which suggests the possible conservation of DNA segregation principles across the three domains of life. Copyright © 2015, American Association for the Advancement of Science.

  9. Helical Structure Determines Different Susceptibilities of dsDNA, dsRNA, and tsDNA to Counterion-Induced Condensation

    PubMed Central

    Kornyshev, Alexei A.; Leikin, Sergey

    2013-01-01

    Recent studies of counterion-induced condensation of nucleic acid helices into aggregates produced several puzzling observations. For instance, trivalent cobalt hexamine ions condensed double-stranded (ds) DNA oligomers but not their more highly charged dsRNA counterparts. Divalent alkaline earth metal ions condensed triple-stranded (ts) DNA oligomers but not dsDNA. Here we show that these counterintuitive experimental results can be rationalized within the electrostatic zipper model of interactions between molecules with helical charge motifs. We report statistical mechanical calculations that reveal dramatic and nontrivial interplay between the effects of helical structure and thermal fluctuations on electrostatic interaction between oligomeric nucleic acids. Combining predictions for oligomeric and much longer helices, we also interpret recent experimental studies of the role of counterion charge, structure, and chemistry. We argue that an electrostatic zipper attraction might be a major or even dominant force in nucleic acid condensation. PMID:23663846

  10. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    PubMed

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  11. Crystal structure of metallo DNA duplex containing consecutive Watson-Crick-like T-Hg(II)-T base pairs.

    PubMed

    Kondo, Jiro; Yamada, Tom; Hirose, Chika; Okamoto, Itaru; Tanaka, Yoshiyuki; Ono, Akira

    2014-02-24

    The metallo DNA duplex containing mercury-mediated T-T base pairs is an attractive biomacromolecular nanomaterial which can be applied to nanodevices such as ion sensors. Reported herein is the first crystal structure of a B-form DNA duplex containing two consecutive T-Hg(II)-T base pairs. The Hg(II) ion occupies the center between two T residues. The N3-Hg(II) bond distance is 2.0 Å. The relatively short Hg(II)-Hg(II) distance (3.3 Å) observed in consecutive T-Hg(II)-T base pairs suggests that the metallophilic attraction could exist between them and may stabilize the B-form double helix. To support this, the DNA duplex is largely distorted and adopts an unusual nonhelical conformation in the absence of Hg(II). The structure of the metallo DNA duplex itself and the Hg(II)-induced structural switching from the nonhelical form to the B-form provide the basis for structure-based design of metal-conjugated nucleic acid nanomaterials. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Complete sequence of HLA-B27 cDNA identified through the characterization of structural markers unique to the HLA-A, -B, and -C allelic series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szoets, H.; Reithmueller, G.; Weiss, E.

    1986-03-01

    Antigen HLA-B27 is a high-risk genetic factor with respect to a group of rheumatoid disorders, especially ankylosing spondylitis. A cDNA library was constructed from an autozygous B-cell line expressing HLA-B27, HLA-Cw1, and the previously cloned HLA-A2 antigen. Clones detected with an HLA probe were isolated and sorted into homology groups by differential hybridization and restriction maps. Nucleotide sequencing allowed the unambiguous assignment of cDNAs to HLA-A, -B, and -C loci. The HLA-B27 mRNA has the structure features and the codon variability typical of an HLA class I transcript but it specifies two uncommon amino acid replacements: a cysteine in positionmore » 67 and a serine in position 131. The latter substitution may have functional consequences, because it occurs in a conserved region and at a position invariably occupied by a species-specific arginine in humans and lysine in mice. The availability of the complete sequence of HLA-B27 and of the partial sequence of HLA-Cw1 allows the recognition of locus-specific sequence markers, particularly, but not exclusively, in the transmembrane and cytoplasmic domains.« less

  13. A Structural Basis for the Regulatory Inactivation of DnaA

    PubMed Central

    Xu, Qingping; McMullan, Daniel; Abdubek, Polat; Astakhova, Tamara; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Elsliger, Marc-Andre; Feuerhelm, Julie; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Trame, Christine; van den Bedem, Henry; Weekes, Dana; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    Summary Regulatory inactivation of DnaA is dependent on Hda, a protein homologous to the AAA+ ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 Å resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174, 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation which promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel β-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda. PMID:19000695

  14. Identification of DNA-Binding Proteins Using Structural, Electrostatic and Evolutionary Features

    PubMed Central

    Nimrod, Guy; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir

    2009-01-01

    Summary DNA binding proteins (DBPs) often take part in various crucial processes of the cell's life cycle. Therefore, the identification and characterization of these proteins are of great importance. We present here a random forests classifier for identifying DBPs among proteins with known three-dimensional structures. First, clusters of evolutionarily conserved regions (patches) on the protein's surface are detected using the PatchFinder algorithm; previous studies showed that these regions are typically the proteins' functionally important regions. Next, we train a classifier using features like the electrostatic potential, cluster-based amino acid conservation patterns and the secondary structure content of the patches, as well as features of the whole protein including its dipole moment. Using 10-fold cross validation on a dataset of 138 DNA-binding proteins and 110 proteins which do not bind DNA, the classifier achieved a sensitivity and a specificity of 0.90, which is overall better than the performance of previously published methods. Furthermore, when we tested 5 different methods on 11 new DBPs which did not appear in the original dataset, only our method annotated all correctly. The resulting classifier was applied to a collection of 757 proteins of known structure and unknown function. Of these proteins, 218 were predicted to bind DNA, and we anticipate that some of them interact with DNA using new structural motifs. The use of complementary computational tools supports the notion that at least some of them do bind DNA. PMID:19233205

  15. Identification of Specific DNA Binding Residues in the TCP Family of Transcription Factors in Arabidopsis[W

    PubMed Central

    Aggarwal, Pooja; Das Gupta, Mainak; Joseph, Agnel Praveen; Chatterjee, Nirmalya; Srinivasan, N.; Nath, Utpal

    2010-01-01

    The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an ∼60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix (bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors. PMID:20363772

  16. DNA attachment to support structures

    DOEpatents

    Balhorn, Rodney L.; Barry, Christopher H.

    2002-01-01

    Microscopic beads or other structures are attached to nucleic acids (DNA) using a terminal transferase. The transferase adds labeled dideoxy nucleotide bases to the ends of linear strands of DNA. The labels, such as the antigens digoxigenin and biotin, bind to the antibody compounds or other appropriate complementary ligands, which are bound to the microscopic beads or other support structures. The method does not require the synthesis of a synthetic oligonucleotide probe. The method can be used to tag or label DNA even when the DNA has an unknown sequence, has blunt ends, or is a very large fragment (e.g., >500 kilobase pairs).

  17. Understanding the Molecular Determinant of Reversible Human Monoamine Oxidase B Inhibitors Containing 2H-Chromen-2-One Core: Structure-Based and Ligand-Based Derived Three-Dimensional Quantitative Structure-Activity Relationships Predictive Models.

    PubMed

    Mladenović, Milan; Patsilinakos, Alexandros; Pirolli, Adele; Sabatino, Manuela; Ragno, Rino

    2017-04-24

    Monoamine oxidase B (MAO B) catalyzes the oxidative deamination of aryalkylamines neurotransmitters with concomitant reduction of oxygen to hydrogen peroxide. Consequently, the enzyme's malfunction can induce oxidative damage to mitochondrial DNA and mediates development of Parkinson's disease. Thus, MAO B emerges as a promising target for developing pharmaceuticals potentially useful to treat this vicious neurodegenerative condition. Aiming to contribute to the development of drugs with the reversible mechanism of MAO B inhibition only, herein, an extended in silico-in vitro procedure for the selection of novel MAO B inhibitors is demonstrated, including the following: (1) definition of optimized and validated structure-based three-dimensional (3-D) quantitative structure-activity relationships (QSAR) models derived from available cocrystallized inhibitor-MAO B complexes; (2) elaboration of SAR features for either irreversible or reversible MAO B inhibitors to characterize and improve coumarin-based inhibitor activity (Protein Data Bank ID: 2V61 ) as the most potent reversible lead compound; (3) definition of structure-based (SB) and ligand-based (LB) alignment rule assessments by which virtually any untested potential MAO B inhibitor might be evaluated; (4) predictive ability validation of the best 3-D QSAR model through SB/LB modeling of four coumarin-based external test sets (267 compounds); (5) design and SB/LB alignment of novel coumarin-based scaffolds experimentally validated through synthesis and biological evaluation in vitro. Due to the wide range of molecular diversity within the 3-D QSAR training set and derived features, the selected N probe-derived 3-D QSAR model proves to be a valuable tool for virtual screening (VS) of novel MAO B inhibitors and a platform for design, synthesis and evaluation of novel active structures. Accordingly, six highly active and selective MAO B inhibitors (picomolar to low nanomolar range of activity) were disclosed as a

  18. Monitoring ssDNA Binding to the DnaB Helicase from Helicobacter pylori by Solid-State NMR Spectroscopy.

    PubMed

    Wiegand, Thomas; Cadalbert, Riccardo; Gardiennet, Carole; Timmins, Joanna; Terradot, Laurent; Böckmann, Anja; Meier, Beat H

    2016-11-02

    DnaB helicases are bacterial, ATP-driven enzymes that unwind double-stranded DNA during DNA replication. Herein, we study the sequential binding of the "non-hydrolysable" ATP analogue AMP-PNP and of single-stranded (ss) DNA to the dodecameric DnaB helicase from Helicobacter pylori using solid-state NMR. Phosphorus cross-polarization experiments monitor the binding of AMP-PNP and DNA to the helicase. 13 C chemical-shift perturbations (CSPs) are used to detect conformational changes in the protein upon binding. The helicase switches upon AMP-PNP addition into a conformation apt for ssDNA binding, and AMP-PNP is hydrolyzed and released upon binding of ssDNA. Our study sheds light on the conformational changes which are triggered by the interaction with AMP-PNP and are needed for ssDNA binding of H. pylori DnaB in vitro. They also demonstrate the level of detail solid-state NMR can provide for the characterization of protein-DNA interactions and the interplay with ATP or its analogues. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation.

    PubMed

    Chaitanya, Lakshmi; Breslin, Krystal; Zuñiga, Sofia; Wirken, Laura; Pośpiech, Ewelina; Kukla-Bartoszek, Magdalena; Sijen, Titia; Knijff, Peter de; Liu, Fan; Branicki, Wojciech; Kayser, Manfred; Walsh, Susan

    2018-07-01

    concordance testing, demonstrated the robustness, efficiency, and forensic suitability of the new 17-plex assay, as previously shown for the 24-plex assay. Finally, we provide an update to the publically available HIrisPlex website https://hirisplex.erasmusmc.nl/, now allowing the estimation of individual probabilities for 3 eye, 4 hair, and 5 skin colour categories from HIrisPlex-S input genotypes. The HIrisPlex-S DNA test represents the first forensically validated tool for skin colour prediction, and reflects the first forensically validated tool for simultaneous eye, hair and skin colour prediction from DNA. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A structural basis for the regulatory inactivation of DnaA.

    PubMed

    Xu, Qingping; McMullan, Daniel; Abdubek, Polat; Astakhova, Tamara; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Elsliger, Marc-Andre; Feuerhelm, Julie; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Johnson, Hope A; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Sri Krishna, S; Kumar, Abhinav; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L; Sefcovic, Natasha; Trame, Christine; van den Bedem, Henry; Weekes, Dana; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2009-01-16

    Regulatory inactivation of DnaA is dependent on Hda (homologous to DnaA), a protein homologous to the AAA+ (ATPases associated with diverse cellular activities) ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 A resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174 and 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation that promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type of mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel beta-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP-bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda.

  1. A-DNA and B-DNA: Comparing Their Historical X-Ray Fiber Diffraction Images

    ERIC Educational Resources Information Center

    Lucas, Amand A.

    2008-01-01

    A-DNA and B-DNA are two secondary molecular conformations (among other allomorphs) that double-stranded DNA drawn into a fiber can assume, depending on the relative water content and other chemical parameters of the fiber. They were the first two forms to be observed by X-ray fiber diffraction in the early 1950s, respectively by Wilkins and…

  2. Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore

    PubMed Central

    Seyedmohammad, Saeed; Fuentealba, Natalia Alveal; Marriott, Robert A.J.; Goetze, Tom A.; Edwardson, J. Michael; Barrera, Nelson P.; Venter, Henrietta

    2016-01-01

    Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel. PMID:26934982

  3. Overproduction, purification, and ATPase activity of the Escherichia coli RuvB protein involved in DNA repair.

    PubMed Central

    Iwasaki, H; Shiba, T; Makino, K; Nakata, A; Shinagawa, H

    1989-01-01

    The ruvA and ruvB genes of Escherichia coli constitute an operon which belongs to the SOS regulon. Genetic evidence suggests that the products of the ruv operon are involved in DNA repair and recombination. To begin biochemical characterization of these proteins, we developed a plasmid system that overproduced RuvB protein to 20% of total cell protein. Starting from the overproducing system, we purified RuvB protein. The purified RuvB protein behaved like a monomer in gel filtration chromatography and had an apparent relative molecular mass of 38 kilodaltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which agrees with the value predicted from the DNA sequence. The amino acid sequence of the amino-terminal region of the purified protein was analyzed, and the sequence agreed with the one deduced from the DNA sequence. Since the deduced sequence of RuvB protein contained the consensus sequence for ATP-binding proteins, we examined the ATP-binding and ATPase activities of the purified RuvB protein. RuvB protein had a stronger affinity to ADP than to ATP and weak ATPase activity. The results suggest that the weak ATPase activity of RuvB protein is at least partly due to end product inhibition by ADP. Images PMID:2529252

  4. Pregnancy prediction by free sperm DNA and sperm DNA fragmentation in semen specimens of IVF/ICSI-ET patients.

    PubMed

    Bounartzi, Theofania; Dafopoulos, Konstantinos; Anifandis, George; Messini, Christina I; Koutsonikou, Chrysoula; Kouris, Spyros; Satra, Maria; Sotiriou, Sotirios; Vamvakopoulos, Nicholas; Messinis, Ioannis E

    2016-04-01

    The purpose of this study was to evaluate the predictive value of free sperm plasma DNA (f-spDNA) and sperm DNA fragmentation (SDF), in semen specimens from men undergoing in vitro fertilization/intracytoplasmic sperm injection-embryo transfer (IVF/ICSI-ET) treatments. Fifty-five semen samples were evaluated during 55 consecutive IVF/ICSI-ET cycles. F-spDNA was determined by conventional quantitative real-time PCR-Sybr green detection approach, while evaluation of sperm DNA damage was performed using the sperm chromatin dispersion (SCD) assay. While f-spDNA only correlated with total sperm count, SDF correlated with many semen parameters (including sperm concentration, total sperm count and the per cent of non-progressive sperm). Neither SDF nor the proportion of sperm with small or no halos correlated with f-spDNA. Interestingly, smoking status correlated with f-spDNA but not with SDF. Although these two factors seem to interact for the prediction of pregnancy, receiver-operating characteristics (ROC) analysis revealed that SDF had a stronger predictive value (AUC = 0.7, p < 0.05) than f-spDNA (AUC = 0.6, p > 0.05). SDF and f-spDNA may not be associated together but they interact at a significant level in order to exert their actions on pregnancy outcome. Among the two markers, SDF appears to have stronger and significantly predictive value for pregnancy success.

  5. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study.

    PubMed

    Roschewski, Mark; Dunleavy, Kieron; Pittaluga, Stefania; Moorhead, Martin; Pepin, Francois; Kong, Katherine; Shovlin, Margaret; Jaffe, Elaine S; Staudt, Louis M; Lai, Catherine; Steinberg, Seth M; Chen, Clara C; Zheng, Jianbiao; Willis, Thomas D; Faham, Malek; Wilson, Wyndham H

    2015-05-01

    Diffuse large-B-cell lymphoma is curable, but when treatment fails, outcome is poor. Although imaging can help to identify patients at risk of treatment failure, they are often imprecise, and radiation exposure is a potential health risk. We aimed to assess whether circulating tumour DNA encoding the clonal immunoglobulin gene sequence could be detected in the serum of patients with diffuse large-B-cell lymphoma and used to predict clinical disease recurrence after frontline treatment. We used next-generation DNA sequencing to retrospectively analyse cell-free circulating tumour DNA in patients assigned to one of three treatment protocols between May 8, 1993, and June 6, 2013. Eligible patients had diffuse large-B-cell lymphoma, no evidence of indolent lymphoma, and were previously untreated. We obtained serial serum samples and concurrent CT scans at specified times during most treatment cycles and up to 5 years of follow-up. VDJ gene segments of the rearranged immunoglobulin receptor genes were amplified and sequenced from pretreatment specimens and serum circulating tumour DNA encoding the VDJ rearrangements was quantitated. Tumour clonotypes were identified in pretreatment specimens from 126 patients who were followed up for a median of 11 years (IQR 6·8-14·2). Interim monitoring of circulating tumour DNA at the end of two treatment cycles in 108 patients showed a 5-year time to progression of 41·7% (95% CI 22·2-60·1) in patients with detectable circulating tumour DNA and 80·2% (69·6-87·3) in those without detectable circulating tumour DNA (p<0·0001). Detectable interim circulating tumour DNA had a positive predictive value of 62·5% (95% CI 40·6-81·2) and a negative predictive value of 79·8% (69·6-87·8). Surveillance monitoring of circulating tumour DNA was done in 107 patients who achieved complete remission. A Cox proportional hazards model showed that the hazard ratio for clinical disease progression was 228 (95% CI 51-1022) for patients who

  6. Electrotransfection of Polyamine Folded DNA Origami Structures.

    PubMed

    Chopra, Aradhana; Krishnan, Swati; Simmel, Friedrich C

    2016-10-12

    DNA origami structures are artificial molecular nanostructures in which DNA double helices are forced into a closely packed configuration by a multitude of DNA strand crossovers. We show that three different types of origami structures (a flat sheet, a hollow tube, and a compact origami block) can be formed in magnesium-free buffer solutions containing low (<1 mM) concentrations of the condensing agent spermidine. Much like in DNA condensation, the amount of spermidine required for origami folding is proportional to the DNA concentration. At excessive amounts, the structures aggregate and precipitate. In contrast to origami structures formed in conventional buffers, the resulting structures are stable in the presence of high electric field pulses, such as those commonly used for electrotransfection experiments. We demonstrate that spermidine-stabilized structures are stable in cell lysate and can be delivered into mammalian cells via electroporation.

  7. Evidence for the role of DNA strand passage in the mechanism of action of microcin B17 on DNA gyrase.

    PubMed

    Pierrat, Olivier A; Maxwell, Anthony

    2005-03-22

    Microcin B17 (MccB17) is a DNA gyrase poison; in previous work, this bacterial toxin was found to slowly and incompletely inhibit the reactions of supercoiling and relaxation of DNA by gyrase and to stabilize the cleavage complex, depending on the presence of ATP and the DNA topology. We now show that the action of MccB17 on the gyrase ATPase reaction and cleavage complex formation requires a linear DNA fragment of more than 150 base pairs. MccB17 is unable to stimulate the ATPase reaction by stabilizing the weak interactions between short linear DNA fragments (70 base pairs or less) and gyrase, in contrast with the quinolone ciprofloxacin. However, MccB17 can affect the ATP-dependent relaxation of DNA by gyrase lacking its DNA-wrapping or ATPase domains. From these findings, we propose a mode of action of MccB17 requiring a DNA molecule long enough to allow the transport of a segment through the DNA gate of the enzyme. Furthermore, we suggest that MccB17 may trap a transient intermediate state of the gyrase reaction present only during DNA strand passage and enzyme turnover. The proteolytic signature of MccB17 from trypsin treatment of the full enzyme requires DNA and ATP and shows a protection of the C-terminal 47-kDa domain of gyrase, indicating the involvement of this domain in the toxin mode of action and consistent with its proposed role in the mechanism of DNA strand passage. We suggest that the binding site of MccB17 is in the C-terminal domain of GyrB.

  8. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.

    PubMed

    Makarova, A V; Kulbachinskiy, A V

    2012-06-01

    Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.

  9. Molecular events during translocation and proofreading extracted from 200 static structures of DNA polymerase.

    PubMed

    Ren, Zhong

    2016-09-06

    DNA polymerases in family B are workhorses of DNA replication that carry out the bulk of the job at a high speed with high accuracy. A polymerase in this family relies on a built-in exonuclease for proofreading. It has not been observed at the atomic resolution how the polymerase advances one nucleotide space on the DNA template strand after a correct nucleotide is incorporated, that is, a process known as translocation. It is even more puzzling how translocation is avoided after the primer strand is excised by the exonuclease and returned back to the polymerase active site once an error occurs. The structural events along the bifurcate pathways of translocation and proofreading have been unwittingly captured by hundreds of structures in Protein Data Bank. This study analyzes all available structures of a representative member in family B and reveals the orchestrated event sequence during translocation and proofreading. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination.

    PubMed

    Kobayashi, Maki; Aida, Masatoshi; Nagaoka, Hitoshi; Begum, Nasim A; Kitawaki, Yoko; Nakata, Mikiyo; Stanlie, Andre; Doi, Tomomitsu; Kato, Lucia; Okazaki, Il-mi; Shinkura, Reiko; Muramatsu, Masamichi; Kinoshita, Kazuo; Honjo, Tasuku

    2009-12-29

    To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.

  11. Clinical performances of two real-time PCR assays and bDNA/TMA to early monitor treatment outcome in patients with chronic hepatitis C.

    PubMed

    Martinot-Peignoux, Michelle; Khiri, Hacène; Leclere, Laurence; Maylin, Sarah; Marcellin, Patrick; Halfon, Philippe

    2009-11-01

    Early viral monitoring is essential for the management of treatment outcome in patients with chronic hepatitis C. A variety of commercially available assays are now available to quantify HCV-RNA in routine clinical practice. Compare the clinical results of 3 commercially available assays to evaluate the positive predictive value (PPV) and the negative predictive value (NPV) of rapid virological response (RVR) at week 4 and early virological response (EVR) at week 12. 287 patients treated with standard care regimen combination therapy were studied. HCV-RNA values measured at baseline, week 4, week 12 with VERSANT HCV 3.0 Assay (bDNA), and VERSANT HCV-RNA Qualitative Assay (TMA) (bDNA/TMA); COBAS Ampliprep/COBAS/TaqMan (CAP/CTM) and Abbott m2000sp extraction/m2000rt amplification system (ART). RVR was defined as undetectable serum HCV-RNA and EVR as a > OR =2 log decline in baseline viral load (BLV). Median (range) BVLs were: 5.585(2.585-6.816), 5.189(2.792-7.747) and 4.804(2.380-6.580) log(10)IU/ml, with bDNA/TMA, CAP/CTM and ART, respectively (p<0.01); RVR was observed in 22%, 30% and 27% of the patients and PPVs were 97%, 91% and 94% with bDNA/TMA, CAP/CTM and ART, respectively (p=0.317). EVR was observed in 76%, 73% and 67% of the patients and NPVs were 93%, 83% and 79% with bDNA/TMA, CAP/CTM and ART, respectively (p=0.09). Treatment monitoring should include both detection of serum HCV-RNA at week 4 to predict SVR and at week 12 to predict non-SVR. The value of all 3 assays was similar for evaluating RVR or EVR. Because of viral load discrepancies the same assay should be used throughout patient treatment follow-up.

  12. Enhanced photoelectrochemical DNA sensor based on TiO2/Au hybrid structure.

    PubMed

    Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang

    2018-05-23

    A novel enhanced photoelectrochemical DNA sensor, based on a TiO 2 /Au hybrid electrode structure, was developed to detect target DNA. The sensor was developed by successively modifying fluorine-tin oxide (FTO) electrodes with TiO 2 nanoparticles, gold (Au) nanoparticles, hairpin DNA (DNA1), and CdSe-COOH quantum dots (QDs), which acted as signal amplification factors. In the absence of target DNA, the incubated DNA1 hairpin and the CdSe-COOH QDs were in close contact with the TiO 2 /Au electrode surface, leading to an enhanced photocurrent intensity due to the sensitization effect. After incubation of the modified electrode with the target DNA, the hairpin DNA changed into a double helix structure, and the CdSe QDs moved away from the TiO 2 /Au electrode surface, leading to a decreased sensitization effect and photoelectrochemical signal intensity. This novel DNA sensor exhibited stable, sensitive and reproducible detection of DNA from 0.1 μM to 10 fM, with a lower detection limit of 3 fM. It provided good specificity, reproducibility, stability and is a promising strategy for the detection of a variety of other DNA targets, for early clinical diagnosis of various diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Crystal Structures of Two Archaeal 8-Oxoguanine DNA Glycosylases Provide Structural Insight into Guanine/8-Oxoguanine Distinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faucher, Frédérick; Duclos, Stéphanie; Bandaru, Viswanath

    Among the four DNA bases, guanine is particularly vulnerable to oxidative damage and the most common oxidative product, 7,8-dihydro-8-oxoguanine (8-oxoG), is the most prevalent lesion observed in DNA molecules. Fortunately, 8-oxoG is recognized and excised by the 8-oxoguanine DNA glycosylase (Ogg) of the base excision repair pathway. Ogg enzymes are divided into three separate families, namely, Ogg1, Ogg2, and archaeal GO glycosylase (AGOG). To date, structures of members of both Ogg1 and AGOG families are known but no structural information is available for members of Ogg2. Here we describe the first crystal structures of two archaeal Ogg2: Methanocaldococcus janischii Oggmore » and Sulfolobus solfataricus Ogg. A structural comparison with OGG1 and AGOG suggested that the C-terminal lysine of Ogg2 may play a key role in discriminating between guanine and 8-oxoG. This prediction was substantiated by measuring the glycosylase/lyase activity of a C-terminal deletion mutant of MjaOgg.« less

  14. Structural polymorphism of a cytosine-rich DNA sequence forming i-motif structure: Exploring pH based biosensors.

    PubMed

    Ahmed, Saami; Kaushik, Mahima; Chaudhary, Swati; Kukreti, Shrikant

    2018-05-01

    Sequence recognition and conformational polymorphism enable DNA to emerge out as a substantial tool in fabricating the devices within nano-dimensions. These DNA associated nano devices work on the principle of conformational switches, which can be facilitated by many factors like sequence of DNA/RNA strand, change in pH or temperature, enzyme or ligand interactions etc. Thus, controlling these DNA conformational changes to acquire the desired function is significant for evolving DNA hybridization biosensor, used in genetic screening and molecular diagnosis. For exploring this conformational switching ability of cytosine-rich DNA oligonucleotides as a function of pH for their potential usage as biosensors, this study has been designed. A C-rich stretch of DNA sequence (5'-TCCCCCAATTAATTCCCCCA-3'; SG20c) has been investigated using UV-Thermal denaturation, poly-acrylamide gel electrophoresis and CD spectroscopy. The SG20c sequence is shown to adopt various topologies of i-motif structure at low pH. This pH dependent transition of SG20c from unstructured single strand to unimolecular and bimolecular i-motif structures can further be exploited for its utilization as switching on/off pH-based biosensors. Copyright © 2018. Published by Elsevier B.V.

  15. Single-Walled Carbon Nanotubes Modulate the B- to A-DNA Transition

    PubMed Central

    2015-01-01

    We study the conformational equilibrium between B-to-A forms of ds-DNA adsorbed onto a single-walled carbon nanotube (SWNT) using free energy profile calculations based on all-atom molecular dynamics simulations. The potential of mean force (PMF) of the B-to-A transition of ds-DNA in the presence of an uncharged (10,0) carbon nanotube for two dodecamers with poly-AT or poly-GC sequences is calculated as a function of a root-mean-square-distance (ΔRMSD) difference metric for the B-to-A transition. The calculations reveal that in the presence of a SWNT DNA favors B-form DNA significantly in both poly-GC and poly-AT sequences. Furthermore, the poly-AT DNA:SWNT complex shows a higher energy penalty for adopting an A-like conformation than poly-GC DNA:SWNT by several kcal/mol. The presence of a SWNT on either poly-AT or poly-GC DNA affects the PMF of the transition such that the B form is favored by as much as 10 kcal/mol. In agreement with published data, we find a potential energy minimum between A and B-form DNA at ΔRMSD ≈ −1.5 Å and that the presence of the SWNT moves this minimum by as much as ΔRMSD = 3 Å. PMID:25553205

  16. Integrating DNA structure switch with branched hairpins for the detection of uracil-DNA glycosylase activity and inhibitor screening.

    PubMed

    Zhu, Jing; Hao, Qijie; Liu, Yi; Guo, Zhaohui; Rustam, Buayxigul; Jiang, Wei

    2018-03-01

    The detection of uracil-DNA glycosylase (UDG) activity is pivotal for its biochemical studies and the development of drugs for UDG-related diseases. Here, we explored an integrated DNA structure switch for high sensitive detection of UDG activity. The DNA structure switch containing two branched hairpins was employed to recognize UDG enzyme and generate fluorescent signal. Under the action of UDG, one branched hairpin was impelled folding into a close conformation after the excision of the single uracil. This reconfigured hairpin could immediately initiate the polymerization/nicking amplification reaction of another branched hairpin accompanying with the release of numerous G-quadruplexes (G4s). In the absence of UDG, the DNA structure switch kept its original configuration, and thus the subsequent polymerization/nicking reaction was inhibited, resulting in the release of few G4 strands. In this work, Thioflavin T was used as signal reporter to target G4s. By integrating the DNA structure switch, the quick response and high sensitivity for UDG determination was achieved and a low detection limit of 0.0001U/mL was obtained, which was superior to the most fluorescent methods for UDG assay. The repeatability of the as-proposed strategy was demonstrated under the concentration of 0.02U/mL and 0.002U/mL, the relative standard deviation obtained from 5 successive samples were 1.7% and 2.8%, respectively. The integrated DNA structure switch strategy proposed here has the potential application for the study of mechanism and function of UDG enzyme and the screening the inhibitors as potential drugs and biochemical tools. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes.

    PubMed

    Kayser, Manfred

    2015-09-01

    Forensic DNA Phenotyping refers to the prediction of appearance traits of unknown sample donors, or unknown deceased (missing) persons, directly from biological materials found at the scene. "Biological witness" outcomes of Forensic DNA Phenotyping can provide investigative leads to trace unknown persons, who are unidentifiable with current comparative DNA profiling. This intelligence application of DNA marks a substantially different forensic use of genetic material rather than that of current DNA profiling presented in the courtroom. Currently, group-specific pigmentation traits are already predictable from DNA with reasonably high accuracies, while several other externally visible characteristics are under genetic investigation. Until individual-specific appearance becomes accurately predictable from DNA, conventional DNA profiling needs to be performed subsequent to appearance DNA prediction. Notably, and where Forensic DNA Phenotyping shows great promise, this is on a (much) smaller group of potential suspects, who match the appearance characteristics DNA-predicted from the crime scene stain or from the deceased person's remains. Provided sufficient funding being made available, future research to better understand the genetic basis of human appearance will expectedly lead to a substantially more detailed description of an unknown person's appearance from DNA, delivering increased value for police investigations in criminal and missing person cases involving unknowns. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Topological Behavior of Plasmid DNA

    PubMed Central

    Higgins, N. Patrick; Vologodskii, Alexander V.

    2015-01-01

    The discovery of the B-form structure of DNA by Watson and Crick led to an explosion of research on nucleic acids in the fields of biochemistry, biophysics, and genetics. Powerful techniques were developed to reveal a myriad of different structural conformations that change B-DNA as it is transcribed, replicated, and recombined and as sister chromosomes are moved into new daughter cell compartments during cell division. This article links the original discoveries of superhelical structure and molecular topology to non-B form DNA structure and contemporary biochemical and biophysical techniques. The emphasis is on the power of plasmids for studying DNA structure and function. The conditions that trigger the formation of alternative DNA structures such as left-handed Z-DNA, inter- and intra-molecular triplexes, triple-stranded DNA, and linked catenanes and hemicatenanes are explained. The DNA dynamics and topological issues are detailed for stalled replication forks and for torsional and structural changes on DNA in front of and behind a transcription complex and a replisome. The complex and interconnected roles of topoisomerases and abundant small nucleoid association proteins are explained. And methods are described for comparing in vivo and in vitro reactions to probe and understand the temporal pathways of DNA and chromosome chemistry that occur inside living cells. PMID:26104708

  19. Replication origins oriGNAI3 and oriB of the mammalian AMPD2 locus nested in a region of straight DNA flanked by intrinsically bent DNA sites.

    PubMed

    Balani, Valério Américo; de Lima Neto, Quirino Alves; Takeda, Karen Izumi; Gimenes, Fabrícia; Fiorini, Adriana; Debatisse, Michelle; Fernandez, Maria Aparecida

    2010-11-01

    The aim of this work was to determine whether intrinsically bent DNA sites are present at, or close to, the mammalian replication origins oriGNAI3 and oriB in the Chinese hamster AMPD2 locus. Using an electrophoretic mobility shift assay and in silico analysis, we located four intrinsically bent DNA sites (b1 to b4) in a fragment that contains the oriGNAI3 and one site (b5) proximal to oriB. The helical parameters show that each bent DNA site is curved in a left-handed superhelical writhe. A 2D projection of 3D fragment trajectories revealed that oriGNAI3 is located in a relatively straight segment flanked by bent sites b1 and b2, which map in previously identified Scaffold/Matrix Attachment Region. Sites b3 and b4 are located approximately 2 kb downstream and force the fragment into a strong closed loop structure. The b5 site is also located in an S/MAR that is found just downstream of oriB.

  20. Identification of DNA-binding proteins using structural, electrostatic and evolutionary features.

    PubMed

    Nimrod, Guy; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir

    2009-04-10

    DNA-binding proteins (DBPs) participate in various crucial processes in the life-cycle of the cells, and the identification and characterization of these proteins is of great importance. We present here a random forests classifier for identifying DBPs among proteins with known 3D structures. First, clusters of evolutionarily conserved regions (patches) on the surface of proteins were detected using the PatchFinder algorithm; earlier studies showed that these regions are typically the functionally important regions of proteins. Next, we trained a classifier using features like the electrostatic potential, cluster-based amino acid conservation patterns and the secondary structure content of the patches, as well as features of the whole protein, including its dipole moment. Using 10-fold cross-validation on a dataset of 138 DBPs and 110 proteins that do not bind DNA, the classifier achieved a sensitivity and a specificity of 0.90, which is overall better than the performance of published methods. Furthermore, when we tested five different methods on 11 new DBPs that did not appear in the original dataset, only our method annotated all correctly. The resulting classifier was applied to a collection of 757 proteins of known structure and unknown function. Of these proteins, 218 were predicted to bind DNA, and we anticipate that some of them interact with DNA using new structural motifs. The use of complementary computational tools supports the notion that at least some of them do bind DNA.

  1. IFI16 Preferentially Binds to DNA with Quadruplex Structure and Enhances DNA Quadruplex Formation.

    PubMed

    Hároníková, Lucia; Coufal, Jan; Kejnovská, Iva; Jagelská, Eva B; Fojta, Miroslav; Dvořáková, Petra; Muller, Petr; Vojtesek, Borivoj; Brázda, Václav

    2016-01-01

    Interferon-inducible protein 16 (IFI16) is a member of the HIN-200 protein family, containing two HIN domains and one PYRIN domain. IFI16 acts as a sensor of viral and bacterial DNA and is important for innate immune responses. IFI16 binds DNA and binding has been described to be DNA length-dependent, but a preference for supercoiled DNA has also been demonstrated. Here we report a specific preference of IFI16 for binding to quadruplex DNA compared to other DNA structures. IFI16 binds to quadruplex DNA with significantly higher affinity than to the same sequence in double stranded DNA. By circular dichroism (CD) spectroscopy we also demonstrated the ability of IFI16 to stabilize quadruplex structures with quadruplex-forming oligonucleotides derived from human telomere (HTEL) sequences and the MYC promotor. A novel H/D exchange mass spectrometry approach was developed to assess protein interactions with quadruplex DNA. Quadruplex DNA changed the IFI16 deuteration profile in parts of the PYRIN domain (aa 0-80) and in structurally identical parts of both HIN domains (aa 271-302 and aa 586-617) compared to single stranded or double stranded DNAs, supporting the preferential affinity of IFI16 for structured DNA. Our results reveal the importance of quadruplex DNA structure in IFI16 binding and improve our understanding of how IFI16 senses DNA. IFI16 selectivity for quadruplex structure provides a mechanistic framework for IFI16 in immunity and cellular processes including DNA damage responses and cell proliferation.

  2. Evaluation of three statistical prediction models for forensic age prediction based on DNA methylation.

    PubMed

    Smeers, Inge; Decorte, Ronny; Van de Voorde, Wim; Bekaert, Bram

    2018-05-01

    DNA methylation is a promising biomarker for forensic age prediction. A challenge that has emerged in recent studies is the fact that prediction errors become larger with increasing age due to interindividual differences in epigenetic ageing rates. This phenomenon of non-constant variance or heteroscedasticity violates an assumption of the often used method of ordinary least squares (OLS) regression. The aim of this study was to evaluate alternative statistical methods that do take heteroscedasticity into account in order to provide more accurate, age-dependent prediction intervals. A weighted least squares (WLS) regression is proposed as well as a quantile regression model. Their performances were compared against an OLS regression model based on the same dataset. Both models provided age-dependent prediction intervals which account for the increasing variance with age, but WLS regression performed better in terms of success rate in the current dataset. However, quantile regression might be a preferred method when dealing with a variance that is not only non-constant, but also not normally distributed. Ultimately the choice of which model to use should depend on the observed characteristics of the data. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Synthesis and evaluation of novel caged DNA alkylating agents bearing 3,4-epoxypiperidine structure.

    PubMed

    Kawada, Yuji; Kodama, Tetsuya; Miyashita, Kazuyuki; Imanishi, Takeshi; Obika, Satoshi

    2012-07-14

    Previously, we reported that the 3,4-epoxypiperidine structure, whose design was based on the active site of DNA alkylating antitumor antibiotics, azinomycins A and B, possesses prominent DNA cleavage activity. In this report, novel caged DNA alkylating agents, which were designed to be activated by UV irradiation, were synthesized by the introduction of four photo-labile protecting groups to a 3,4-epoxypiperidine derivative. The DNA cleavage activity and cytotoxicity of the caged DNA alkylating agents were examined under UV irradiation. Four caged DNA alkylating agents showed various degrees of bioactivity depending on the photosensitivity of the protecting groups.

  4. [Diagnosis for human parvovirus B19-polyarthritis: usefulness of empty particle B19.ELISA and B19-DNA.PCR].

    PubMed

    Hatakeyama, Y; Ishii, K; Murai, C; Sugamura, K; Mitomo, N; Saitoh, T; Rikimaru, Y; Okazaki, T; Sasaki, T

    1998-10-01

    To evaluate the usefulness of new ELISA for human parvovirus B19 (B19) antibodies and PCR for the diagnosis of acute onset of B19 polyarthritis. We evaluated the reproducibility and sensitivity on the detection of anti-B19 antibody by ELISA using recombinant VP-1 and VP-2 (empty particle), and then studied for the prevalence of IgM and IgG B19 antibody in 125 samples for anti-B19 tests. The random study on anti-B19 antibody assay as well as PCR for B19-DNA was also performed in 130 cases with acute onset of arthritis excluding those with known origins, 224 with rheumatoid arthritis and 149 with other categories. The results by using B19-empty particle ELISA were reproducible and showed the assay was a sensitive way for clinical use. IgM anti-B19 antibodies were positive not only in all samples from erythema infectiosum, but also often in those from hemolytic anemia, pure red cell aplasia, fetal hydrops, hepatic injury, fever of unknown origin. Among 130 with acute onset of arthritis, 21 showed positive tests for IgM anti-B19 antibody and/or B19 DNA. On the other hand, 4 among 224 patients with rheumatoid arthritis were positive for IgM anti-B19 antibody, but all of 149 in control group were negative for IgM anti-B19 antibodies and for B19 DNA. Anti-B19 ELISA using B19-empty particle which has been introduced as a routine test system, is a useful tool for the diagnosis of acute onset of B19 arthritis. An additional examination using PCR for B19 DNA may contribute for understanding persistent B19 polyarthritis or reactivation of B19 infection.

  5. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses.

    PubMed

    Königer, Christian; Wingert, Ida; Marsmann, Moritz; Rösler, Christine; Beck, Jürgen; Nassal, Michael

    2014-10-07

    Hepatitis B virus (HBV), the causative agent of chronic hepatitis B and prototypic hepadnavirus, is a small DNA virus that replicates by protein-primed reverse transcription. The product is a 3-kb relaxed circular DNA (RC-DNA) in which one strand is linked to the viral polymerase (P protein) through a tyrosyl-DNA phosphodiester bond. Upon infection, the incoming RC-DNA is converted into covalently closed circular (ccc) DNA, which serves as a viral persistence reservoir that is refractory to current anti-HBV treatments. The mechanism of cccDNA formation is unknown, but the release of P protein is one mandatory step. Structural similarities between RC-DNA and cellular topoisomerase-DNA adducts and their known repair by tyrosyl-DNA-phosphodiesterase (TDP) 1 or TDP2 suggested that HBV may usurp these enzymes for its own purpose. Here we demonstrate that human and chicken TDP2, but only the yeast ortholog of TDP1, can specifically cleave the Tyr-DNA bond in virus-adapted model substrates and release P protein from authentic HBV and duck HBV (DHBV) RC-DNA in vitro, without prior proteolysis of the large P proteins. Consistent with TPD2's having a physiological role in cccDNA formation, RNAi-mediated TDP2 depletion in human cells significantly slowed the conversion of RC-DNA to cccDNA. Ectopic TDP2 expression in the same cells restored faster conversion kinetics. These data strongly suggest that TDP2 is a first, although likely not the only, host DNA-repair factor involved in HBV cccDNA biogenesis. In addition to establishing a functional link between hepadnaviruses and DNA repair, our results open new prospects for directly targeting HBV persistence.

  6. Global skin colour prediction from DNA.

    PubMed

    Walsh, Susan; Chaitanya, Lakshmi; Breslin, Krystal; Muralidharan, Charanya; Bronikowska, Agnieszka; Pospiech, Ewelina; Koller, Julia; Kovatsi, Leda; Wollstein, Andreas; Branicki, Wojciech; Liu, Fan; Kayser, Manfred

    2017-07-01

    Human skin colour is highly heritable and externally visible with relevance in medical, forensic, and anthropological genetics. Although eye and hair colour can already be predicted with high accuracies from small sets of carefully selected DNA markers, knowledge about the genetic predictability of skin colour is limited. Here, we investigate the skin colour predictive value of 77 single-nucleotide polymorphisms (SNPs) from 37 genetic loci previously associated with human pigmentation using 2025 individuals from 31 global populations. We identified a minimal set of 36 highly informative skin colour predictive SNPs and developed a statistical prediction model capable of skin colour prediction on a global scale. Average cross-validated prediction accuracies expressed as area under the receiver-operating characteristic curve (AUC) ± standard deviation were 0.97 ± 0.02 for Light, 0.83 ± 0.11 for Dark, and 0.96 ± 0.03 for Dark-Black. When using a 5-category, this resulted in 0.74 ± 0.05 for Very Pale, 0.72 ± 0.03 for Pale, 0.73 ± 0.03 for Intermediate, 0.87±0.1 for Dark, and 0.97 ± 0.03 for Dark-Black. A comparative analysis in 194 independent samples from 17 populations demonstrated that our model outperformed a previously proposed 10-SNP-classifier approach with AUCs rising from 0.79 to 0.82 for White, comparable at the intermediate level of 0.63 and 0.62, respectively, and a large increase from 0.64 to 0.92 for Black. Overall, this study demonstrates that the chosen DNA markers and prediction model, particularly the 5-category level; allow skin colour predictions within and between continental regions for the first time, which will serve as a valuable resource for future applications in forensic and anthropologic genetics.

  7. Structural Determination of Functional Domains in Early B-cell Factor (EBF) Family of Transcription Factors Reveals Similarities to Rel DNA-binding Proteins and a Novel Dimerization Motif*

    PubMed Central

    Siponen, Marina I.; Wisniewska, Magdalena; Lehtiö, Lari; Johansson, Ida; Svensson, Linda; Raszewski, Grzegorz; Nilsson, Lennart; Sigvardsson, Mikael; Berglund, Helena

    2010-01-01

    The early B-cell factor (EBF) transcription factors are central regulators of development in several organs and tissues. This protein family shows low sequence similarity to other protein families, which is why structural information for the functional domains of these proteins is crucial to understand their biochemical features. We have used a modular approach to determine the crystal structures of the structured domains in the EBF family. The DNA binding domain reveals a striking resemblance to the DNA binding domains of the Rel homology superfamily of transcription factors but contains a unique zinc binding structure, termed zinc knuckle. Further the EBF proteins contain an IPT/TIG domain and an atypical helix-loop-helix domain with a novel type of dimerization motif. The data presented here provide insights into unique structural features of the EBF proteins and open possibilities for detailed molecular investigations of this important transcription factor family. PMID:20592035

  8. Week 4 viral load predicts long-term suppression of hepatitis B virus DNA during antiviral therapy: improving hepatitis B treatment in the real world.

    PubMed

    Truong, J; Shadbolt, B; Ooi, M; Chitturi, S; Kaye, G; Farrell, G C; Teoh, N C

    2017-01-01

    Entecavir and tenofovir potently suppress hepatitis B virus (HBV) replication so that serum HBV DNA levels <20 IU/mL can be achieved after 2 years. Despite this, inadequate suppression is reported in >20% of cases for unclear reasons. We tested whether 4-week viral load (VL) assessment could improve 96-week treatment outcome. Data on all chronic hepatitis B patients treated with entecavir or tenofovir between 2005 and 2014 were entered prospectively. Full data capture included pre-treatment, weeks 4, 24, 48 and 96 HBV DNA titre, HBeAg, age, gender, antiviral agent and dose escalation. Compliance data were compiled from pharmacy records, doctors' letters and clinic bookings/attendance. Time to achieve complete viral suppression (HBV DNA < 20 IU/mL) was graphed using Kaplan-Meier curves. Factors affecting this were examined using a multivariate Cox Proportional Hazard model. Among 156 patients treated, 72 received entecavir and 84 tenofovir. Pre-treatment HBV DNA titre, 4-week assessment and compliance impacted significantly on time to complete viral suppression. At 96 weeks, 90% of those assessed as compliant by 4-week HBV DNA had complete viral suppression versus 50% followed by 6-month VL estimation. Continuing care by the same physician was related to 4-week VL testing and optimal compliance. Medium-term outcomes of HBV antiviral therapy are improved by early on-treatment VL testing, facilitating patient engagement and improved compliance. The observation that 90% complete viral suppression after 2 years monotherapy is achievable in a routine clinic setting questions the need for combination therapy in HBV cases with suboptimal response. © 2016 Royal Australasian College of Physicians.

  9. Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations

    NASA Technical Reports Server (NTRS)

    Gessner, R. V.; Quigley, G. J.; Wang, A. H.; van der Marel, G. A.; van Boom, J. H.; Rich, A.

    1985-01-01

    In the equilibrium between B-DNA and Z-DNA in poly(dC-dG), the [Co(NH3)6]3+ ion stabilizes the Z form 4 orders of magnitude more effectively than the Mg2+ ion. The structural basis of this difference is revealed in Z-DNA crystal structures of d(CpGpCpGpCpG) stabilized by either Na+/Mg2+ or Na+/Mg2+ plus [Co(NH3)6]3+. The crystals diffract X-rays to high resolution, and the structures were refined at 1.25 A. The [Co(NH3)6]3+ ion forms five hydrogen bonds onto the surface of Z-DNA, bonding to a guanine O6 and N7 as well as to a phosphate group in the ZII conformation. The Mg2+ ion binds through its hydration shell with up to three hydrogen bonds to guanine N7 and O6. Higher charge, specific fitting of more hydrogen bonds, and a more stable complex all contribute to the great effectiveness of [Co(NH3)6]3+ in stabilizing Z-DNA.

  10. What Combined Measurements From Structures and Imaging Tell Us About DNA Damage Responses

    PubMed Central

    Brosey, Chris A.; Ahmed, Zamal; Lees-Miller, Susan P.; Tainer, John A.

    2017-01-01

    DNA damage outcomes depend upon the efficiency and fidelity of DNA damage responses (DDRs) for different cells and damage. As such, DDRs represent tightly regulated prototypical systems for linking nanoscale biomolecular structure and assembly to the biology of genomic regulation and cell signaling. However, the dynamic and multifunctional nature of DDR assemblies can render elusive the correlation between the structures of DDR factors and specific biological disruptions to the DDR when these structures are altered. In this chapter, we discuss concepts and strategies for combining structural, biophysical, and imaging techniques to investigate DDR recognition and regulation, and thus bridge sequence-level structural biochemistry to quantitative biological outcomes visualized in cells. We focus on representative DDR responses from PARP/PARG/AIF damage signaling in DNA single-strand break repair and nonhomologous end joining complexes in double-strand break repair. Methods with exemplary experimental results are considered with a focus on strategies for probing flexibility, conformational changes, and assembly processes that shape a predictive understanding of DDR mechanisms in a cellular context. Integration of structural and imaging measurements promises to provide foundational knowledge to rationally control and optimize DNA damage outcomes for synthetic lethality and for immune activation with resulting insights for biology and cancer interventions. PMID:28668129

  11. A Method for WD40 Repeat Detection and Secondary Structure Prediction

    PubMed Central

    Wang, Yang; Jiang, Fan; Zhuo, Zhu; Wu, Xian-Hui; Wu, Yun-Dong

    2013-01-01

    WD40-repeat proteins (WD40s), as one of the largest protein families in eukaryotes, play vital roles in assembling protein-protein/DNA/RNA complexes. WD40s fold into similar β-propeller structures despite diversified sequences. A program WDSP (WD40 repeat protein Structure Predictor) has been developed to accurately identify WD40 repeats and predict their secondary structures. The method is designed specifically for WD40 proteins by incorporating both local residue information and non-local family-specific structural features. It overcomes the problem of highly diversified protein sequences and variable loops. In addition, WDSP achieves a better prediction in identifying multiple WD40-domain proteins by taking the global combination of repeats into consideration. In secondary structure prediction, the average Q3 accuracy of WDSP in jack-knife test reaches 93.7%. A disease related protein LRRK2 was used as a representive example to demonstrate the structure prediction. PMID:23776530

  12. Minimalist Approach to Complexity: Templating the Assembly of DNA Tile Structures with Sequentially Grown Input Strands.

    PubMed

    Lau, Kai Lin; Sleiman, Hanadi F

    2016-07-26

    Given its highly predictable self-assembly properties, DNA has proven to be an excellent template toward the design of functional materials. Prominent examples include the remarkable complexity provided by DNA origami and single-stranded tile (SST) assemblies, which require hundreds of unique component strands. However, in many cases, the majority of the DNA assembly is purely structural, and only a small "working area" needs to be aperiodic. On the other hand, extended lattices formed by DNA tile motifs require only a few strands; but they suffer from lack of size control and limited periodic patterning. To overcome these limitations, we adopt a templation strategy, where an input strand of DNA dictates the size and patterning of resultant DNA tile structures. To prepare these templating input strands, a sequential growth technique developed in our lab is used, whereby extended DNA strands of defined sequence and length may be generated simply by controlling their order of addition. With these, we demonstrate the periodic patterning of size-controlled double-crossover (DX) and triple-crossover (TX) tile structures, as well as intentionally designed aperiodicity of a DX tile structure. As such, we are able to prepare size-controlled DNA structures featuring aperiodicity only where necessary with exceptional economy and efficiency.

  13. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments

    PubMed Central

    Ovanesyan, Zaven; Fenley, Marcia O.; Guerrero-García, Guillermo Iván; Olvera de la Cruz, Mónica

    2014-01-01

    The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models. PMID:25494770

  14. Comparison of EBV DNA viral load in whole blood, plasma, B-cells and B-cell culture supernatant.

    PubMed

    Ouedraogo, David Eric; Bollore, Karine; Viljoen, Johannes; Foulongne, Vincent; Reynes, Jacques; Cartron, Guillaume; Vendrell, Jean-Pierre; Van de Perre, Philippe; Tuaillon, Edouard

    2014-05-01

    Epstein-Barr virus (EBV) genome quantitation in whole blood is used widely for therapeutic monitoring of EBV-associated disorders in immunosuppressed individuals and in patients with EBV-associated lymphoma. However, the most appropriate biological material to be used for EBV DNA quantitation remains a subject of debate. This study compare the detection rate and levels of EBV DNA from whole blood, plasma, enriched B-cells, and B-cell short-term culture supernatant using quantitative real-time PCR. Samples were collected from 33 subjects with either HIV infection or B-cell lymphoma. Overall, EBV DNA was detected in 100% of enriched B-cell samples, in 82% of B-cell culture supernatants, in 57% of plasma, and 42% of whole blood samples. A significant correlation for EBV viral load was found between enriched B-cell and B-cell culture supernatant material (ρ = 0.92; P < 0.0001), but no significant correlation existed between EBV DNA levels in whole blood and enriched B-cells (ρ = -0.02; P = 0.89), whole blood and plasma (ρ = 0.24; P = 0.24), or enriched B-cells and plasma (ρ = 0.08; P = 0.77). Testing of enriched B-cells appeared to be the most sensitive method for detection of EBV DNA as well as for exploration of the cellular reservoir. Quantitation of EBV DNA in plasma and B-cell culture supernatant may be of interest to assess EBV reactivation dynamics and response to treatment as well as to decipher EBV host-pathogen interactions in various clinical scenarios. © 2013 Wiley Periodicals, Inc.

  15. Effects of Replication and Transcription on DNA Structure-Related Genetic Instability.

    PubMed

    Wang, Guliang; Vasquez, Karen M

    2017-01-05

    Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease.

  16. Effects of Replication and Transcription on DNA Structure-Related Genetic Instability

    PubMed Central

    Wang, Guliang; Vasquez, Karen M.

    2017-01-01

    Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease. PMID:28067787

  17. Free energy profiles for two ubiquitous damaging agents: methylation and hydroxylation of guanine in B-DNA.

    PubMed

    Grüber, R; Aranda, J; Bellili, A; Tuñón, I; Dumont, E

    2017-06-07

    DNA methylation and hydroxylation are two ubiquitous reactions in DNA damage induction, yet insights are scarce concerning the free energy of activation within B-DNA. We resort to multiscale simulations to investigate the attack of a hydroxyl radical and of the primary diazonium onto a guanine embedded in a solvated dodecamer. Reaction free energy profiles characterize two strongly exergonic processes, yet allow unprecedented quantification of the barrier towards this damage reaction, not higher than 6 kcal mol -1 and sometimes inexistent, and of the exergonicities. In the case of the [G(C8)-OH]˙ intermediate, we challenge the functional dependence of such simulations: recently-proposed functionals, such as M06-2X and LC-BLYP, agree on a ∼4 kcal mol -1 barrier, whereas the hybrid GGA B3LYP functional predicts a barrier-less pathway. In the long term, multiscale approaches can help build up a unified panorama of DNA lesion induction. These results stress the importance of DFT/MM-MD simulations involving new functionals towards the sound modelling of biomolecule damage even in the ground state.

  18. I-motif DNA structures are formed in the nuclei of human cells

    NASA Astrophysics Data System (ADS)

    Zeraati, Mahdi; Langley, David B.; Schofield, Peter; Moye, Aaron L.; Rouet, Romain; Hughes, William E.; Bryan, Tracy M.; Dinger, Marcel E.; Christ, Daniel

    2018-06-01

    Human genome function is underpinned by the primary storage of genetic information in canonical B-form DNA, with a second layer of DNA structure providing regulatory control. I-motif structures are thought to form in cytosine-rich regions of the genome and to have regulatory functions; however, in vivo evidence for the existence of such structures has so far remained elusive. Here we report the generation and characterization of an antibody fragment (iMab) that recognizes i-motif structures with high selectivity and affinity, enabling the detection of i-motifs in the nuclei of human cells. We demonstrate that the in vivo formation of such structures is cell-cycle and pH dependent. Furthermore, we provide evidence that i-motif structures are formed in regulatory regions of the human genome, including promoters and telomeric regions. Our results support the notion that i-motif structures provide key regulatory roles in the genome.

  19. Indirect DNA Readout by an H-NS Related Protein: Structure of the DNA Complex of the C-Terminal Domain of Ler

    PubMed Central

    Cordeiro, Tiago N.; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel

    2011-01-01

    Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family. PMID:22114557

  20. Indirect DNA readout by an H-NS related protein: structure of the DNA complex of the C-terminal domain of Ler.

    PubMed

    Cordeiro, Tiago N; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel

    2011-11-01

    Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family.

  1. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    NASA Astrophysics Data System (ADS)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  2. Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli

    PubMed Central

    Ullers, Ronald S.; Ang, Debbie; Schwager, Françoise; Georgopoulos, Costa; Genevaux, Pierre

    2007-01-01

    Polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytoplasmic, integral membrane, or exported proteins. In Escherichia coli, the chaperones SecB, Trigger Factor (TF), and DnaK are key players in this process. Here, we report that, as with dnaK or dnaJ mutants, a secB null strain exhibits a strong cold-sensitive (Cs) phenotype. Through suppressor analyses, we found that inactivating mutations in the tig gene encoding TF fully relieve both the Cs phenotype and protein aggregation observed in the absence of SecB. This antagonistic effect of TF depends on its ribosome-binding and chaperone activities but unrelated to its peptidyl-prolyl cis/trans isomerase (PPIase) activity. Furthermore, in contrast to the previously known synergistic action of TF and DnaK/DnaJ above 30°C, a tig null mutation partially suppresses the Cs phenotype exhibited by a compromised DnaK/DnaJ chaperone machine. The antagonistic role of TF is further exemplified by the fact that the secB dnaJ double mutant is viable only in the absence of TF. Finally, we show that, in the absence of TF, more SecA and ribosomes are associated with the inner membrane, suggesting that the presence of TF directly or indirectly interferes with the process of cotranslational protein targeting to the Sec translocon. PMID:17360615

  3. On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension.

    PubMed

    Wereszczynski, Jeff; Andricioaei, Ioan

    2006-10-31

    A precise understanding of the flexibility of double stranded nucleic acids and the nature of their deformed conformations induced by external forces is important for a wide range of biological processes including transcriptional regulation, supercoil and catenane removal, and site-specific recombination. We present, at atomic resolution, a simulation of the dynamics involved in the transitions from B-DNA and A-RNA to Pauling (P) forms and to denatured states driven by application of external torque and tension. We then calculate the free energy profile along a B- to P-transition coordinate and from it, compute a reversible pathway, i.e., an isotherm of tension and torque pairs required to maintain P-DNA in equilibrium. The reversible isotherm maps correctly onto a phase diagram derived from single molecule experiments, and yields values of elongation, twist, and twist-stretch coupling in agreement with measured values. We also show that configurational entropy compensates significantly for the large electrostatic energy increase due to closer-packed P backbones. A similar set of simulations applied to RNA are used to predict a novel structure, P-RNA, with its associated free energy, equilibrium tension, torque and structural parameters, and to assign the location, on the phase-diagram, of a putative force-torque-dependent RNA "triple point."

  4. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA

    NASA Astrophysics Data System (ADS)

    Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan

    2018-05-01

    Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.

  5. Target Highlights in CASP9: Experimental Target Structures for the Critical Assessment of Techniques for Protein Structure Prediction

    PubMed Central

    Kryshtafovych, Andriy; Moult, John; Bartual, Sergio G.; Bazan, J. Fernando; Berman, Helen; Casteel, Darren E.; Christodoulou, Evangelos; Everett, John K.; Hausmann, Jens; Heidebrecht, Tatjana; Hills, Tanya; Hui, Raymond; Hunt, John F.; Jayaraman, Seetharaman; Joachimiak, Andrzej; Kennedy, Michael A.; Kim, Choel; Lingel, Andreas; Michalska, Karolina; Montelione, Gaetano T.; Otero, José M.; Perrakis, Anastassis; Pizarro, Juan C.; van Raaij, Mark J.; Ramelot, Theresa A.; Rousseau, Francois; Tong, Liang; Wernimont, Amy K.; Young, Jasmine; Schwede, Torsten

    2011-01-01

    One goal of the CASP Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, i.e. the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this manuscript, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fibre protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iβ (PKGIβ) dimerization/docking domain, the ectodomain of the JTB (Jumping Translocation Breakpoint) transmembrane receptor, Autotaxin (ATX) in complex with an inhibitor, the DNA-Binding J-Binding Protein 1 (JBP1) domain essential for biosynthesis and maintenance of DNA base-J (β-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the Phycobilisome (PBS) core-membrane linker (LCM) phycobiliprotein ApcE from Synechocystis, the Heat shock protein 90 (Hsp90) activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. PMID:22020785

  6. Parvovirus B19V DNA contamination in Chinese plasma and plasma derivatives

    PubMed Central

    2012-01-01

    Background To ensure the safety of plasma derivatives, screening for human parvovirus B19V genomic DNA in donated plasma using a pooling strategy is performed in some countries. We investigated the prevalence of B19V DNA and anti-B19V antibodies in Chinese plasma pools, plasma derivatives and plasma donations to evaluate the risk posed by B19V. Methods Using a Q-PCR assay developed in-house, we tested for B19V genomic DNA in 142 plasma pools collected between January 2009 and June 2011 from two Chinese blood products manufacturers. Plasma derivatives collected between 1993–1995 (10 batches of albumin, 155 batches of intravenous immunoglobulin, IVIG) and 2009–2011 (50 batches of albumin, 54 batches of IVIG, 35 batches of factor VIII, 7 batches of fibrinogen, and 17 batches of prothrombin complex concentrate, PCC) were also tested for B19V contamination. In addition, B19V genome prevalence in minipools(including 90 individual donations) of 49680 individual plasma samples collected between August 2011 and March 2012 by a single Chinese manufacturer was investigated. IgM/IgG was also investigated in plasma pools/derivatives and in minipools with B19V-DNA titers above 1x104 and 1x106 geq/mL using B19 ELISA IgM/IgG assay(Virion-Serion, Würzburg, Germany), respectively. Results B19V-DNA was detected in 54.2% of plasma pools from two Chinese blood product manufacturers; among recently produced blood products, B19V was detected in 21/54 IVIG samples, 19/35 factor VIII samples, 6/7 fibrinogen samples, and 12/17 PCC samples, but not in albumin samples. The levels of B19V-DNA in these samples varied from 102-107 geq/mL. In samples with >104 geq/mL genome DNA, B19V-specific IgG was also found in all corresponding plasma pools and IVIG, whereas none was detected in the majority of other plasma derivatives. Screening of plasma donations indicated that most minipools were contaminated with B19V-DNA (102-108 geq/mL) and one donation had 1.09 × 1010 geq/mL B19V genomic DNA

  7. Li2 B12 and Li3 B12 : Prediction of the Smallest Tubular and Cage-like Boron Structures.

    PubMed

    Dong, Xue; Jalife, Said; Vásquez-Espinal, Alejandro; Ravell, Estefanía; Pan, Sudip; Cabellos, José Luis; Liang, Wei-Yan; Cui, Zhong-Hua; Merino, Gabriel

    2018-04-16

    An intriguing structural transition from the quasi-planar form of B 12 cluster upon the interaction with lithium atoms is reported. High-level computations show that the lowest energy structures of LiB 12 , Li 2 B 12 , and Li 3 B 12 have quasi-planar (C s ), tubular (D 6d ), and cage-like (C s ) geometries, respectively. The energetic cost of distorting the B 12 quasi-planar fragment is overcompensated by an enhanced electrostatic interaction between the Li cations and the tubular or cage-like B 12 fragments, which is the main reason of such drastic structural changes, resulting in the smallest tubular (Li 2 B 12 ) and cage-like (Li 3 B 12 ) boron structures reported to date. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Towards predictive molecular dynamics simulations of DNA: electrostatics and solution/crystal environments

    NASA Astrophysics Data System (ADS)

    Babin, Volodymr; Baucom, Jason; Darden, Thomas; Sagui, Celeste

    2006-03-01

    We have investigated to what extend molecular dynamics (MD) simulatons can reproduce DNA sequence-specific features, given different electrostatic descriptions and different cell environments. For this purpose, we have carried out multiple unrestrained MD simulations of the duplex d(CCAACGTTGG)2. With respect to the electrostatic descriptions, two different force fields were studied: a traditional description based on atomic point charges and a polarizable force field. With respect to the cell environment, the difference between crystal and solution environments is emphasized, as well as the structural importance of divalent ions. By imposing the correct experimental unit cell environment, an initial configuration with two ideal B-DNA duplexes in the unit cell is shown to converge to the crystallographic structure. To the best of our knowledge, this provides the first example of a multiple nanosecond MD trajectory that shows and ideal structure converging to an experimental one, with a significant decay of the RMSD.

  9. Comparison of the Second-Generation Digene Hybrid Capture Assay with the Branched-DNA Assay for Measurement of Hepatitis B Virus DNA in Serum

    PubMed Central

    Ho, Stephen K. N.; Chan, Tak Mao; Cheng, Ignatius K. P.; Lai, Kar Neng

    1999-01-01

    The optimal hepatitis B virus (HBV) DNA quantitative assay for clinical use remains to be determined. We examined the sensitivity, linearity, and variability of a novel second-generation antibody capture solution hybridization assay, the Digene Hybrid Capture II assay (HCII), and compared it with another widely used solution hybridization assay, the branched-DNA (bDNA) assay (Quantiplex; Chiron Corp.). Our results showed similar and satisfactory assay linearity values, as well as interassay and intra-assay variability values, for both HCII and bDNA assays across different ranges of HBV DNA. Ninety-one percent of 102 serum samples from hepatitis B surface antigen-positive patients showed concordant results with the two assays. The HCII assay was more sensitive than the bDNA assay by 1 dilution, with the lowest reading being 0.9 pg/ml (3.8 pg/ml by bDNA assay). The HBV DNA seropositivity rates for the 102 samples were 58, 67, and 97% by bDNA, HCII, and nested PCR, respectively. While the relationship between results obtained with the bDNA assay and those with the HCII assay was nonlinear, with the bDNA assay yielding values 2.83 ± 0.92-fold higher than those of the HCII assay, especially at high HBV DNA levels, a linear relationship was observed between the two sets of data after logarithmic conversion. The formula for interassay conversion of results was derived as follows: HBV DNA by HCII (picograms per milliliter) = 3.19 × [HBV DNA by bDNA (megaequivalents per milliliter)]0.866. The HCII assay was technically less complex and required a shorter assay time (4 h) than the bDNA assay (24 h). We conclude that the HCII assay compares favorably with the bDNA assay and offers the additional advantages of increased sensitivity and shorter assay time. The increased sensitivity should be particularly useful in monitoring the efficacy of antiviral therapies and detecting the emergence of drug-resistant HBV mutants. PMID:10405385

  10. Comparison of the second-generation digene hybrid capture assay with the branched-DNA assay for measurement of hepatitis B virus DNA in serum.

    PubMed

    Ho, S K; Chan, T M; Cheng, I K; Lai, K N

    1999-08-01

    The optimal hepatitis B virus (HBV) DNA quantitative assay for clinical use remains to be determined. We examined the sensitivity, linearity, and variability of a novel second-generation antibody capture solution hybridization assay, the Digene Hybrid Capture II assay (HCII), and compared it with another widely used solution hybridization assay, the branched-DNA (bDNA) assay (Quantiplex; Chiron Corp.). Our results showed similar and satisfactory assay linearity values, as well as interassay and intra-assay variability values, for both HCII and bDNA assays across different ranges of HBV DNA. Ninety-one percent of 102 serum samples from hepatitis B surface antigen-positive patients showed concordant results with the two assays. The HCII assay was more sensitive than the bDNA assay by 1 dilution, with the lowest reading being 0.9 pg/ml (3.8 pg/ml by bDNA assay). The HBV DNA seropositivity rates for the 102 samples were 58, 67, and 97% by bDNA, HCII, and nested PCR, respectively. While the relationship between results obtained with the bDNA assay and those with the HCII assay was nonlinear, with the bDNA assay yielding values 2.83 +/- 0.92-fold higher than those of the HCII assay, especially at high HBV DNA levels, a linear relationship was observed between the two sets of data after logarithmic conversion. The formula for interassay conversion of results was derived as follows: HBV DNA by HCII (picograms per milliliter) = 3.19 x [HBV DNA by bDNA (megaequivalents per milliliter)](0.866). The HCII assay was technically less complex and required a shorter assay time (4 h) than the bDNA assay (24 h). We conclude that the HCII assay compares favorably with the bDNA assay and offers the additional advantages of increased sensitivity and shorter assay time. The increased sensitivity should be particularly useful in monitoring the efficacy of antiviral therapies and detecting the emergence of drug-resistant HBV mutants.

  11. Fluorescence studies with DNA probes: dynamic aspects of DNA structure and DNA-protein interactions

    NASA Astrophysics Data System (ADS)

    Millar, David P.; Carver, Theodore E.

    1994-08-01

    Time-resolved fluorescence measurements of optical probes incorporated at specific sites in DNA provides a new approach to studies of DNA structure and DNA:protein interactions. This approach can be used to study complex multi-state behavior, such as the folding of DNA into alternative higher order structures or the transfer of DNA between multiple binding sites on a protein. In this study, fluorescence anisotropy decay of an internal dansyl probe attached to 17/27-mer oligonucleotides was used to monitor the distribution of DNA 3' termini bound at either the polymerase of 3' to 5' exonuclease sites of the Klenow fragment of DNA polymerase I. Partitioning of the primer terminus between the two active sites of the enzyme resulted in a heterogeneous probe environment, reflected in the associative behavior of the fluorescence anisotropy decay. Analysis of the anisotropy decay with a two state model of solvent-exposed and protein-associated dansyl probes was used to determine the fraction of DNA bound at each site. We examined complexes of Klenow fragment with DNAs containing various base mismatches. Single mismatches at the primer terminus caused a 3-fold increase in the equilibrium partitioning of DNA into the exonuclease site, while two or more consecutive G:G mismatches caused the DNA to bind exclusively at the exonuclease site, with a partitioning constant at least 250- fold greater than that of the corresponding matched DNA sequence. Internal single mismatches located up to four bases from the primer terminus produced larger effects than the same mismatch at the primer terminus. These results provide insight into the recognition mechanisms that enable DNA polymerases to proofread misincorporated bases during DNA replication.

  12. DNA nanotechnology based on i-motif structures.

    PubMed

    Dong, Yuanchen; Yang, Zhongqiang; Liu, Dongsheng

    2014-06-17

    CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this

  13. Escherichia coli DNA polymerase I can disrupt G-quadruplex structures during DNA replication.

    PubMed

    Teng, Fang-Yuan; Hou, Xi-Miao; Fan, San-Hong; Rety, Stephane; Dou, Shuo-Xing; Xi, Xu-Guang

    2017-12-01

    Non-canonical four-stranded G-quadruplex (G4) DNA structures can form in G-rich sequences that are widely distributed throughout the genome. The presence of G4 structures can impair DNA replication by hindering the progress of replicative polymerases (Pols), and failure to resolve these structures can lead to genetic instability. In the present study, we combined different approaches to address the question of whether and how Escherichia coli Pol I resolves G4 obstacles during DNA replication and/or repair. We found that E. coli Pol I-catalyzed DNA synthesis could be arrested by G4 structures at low protein concentrations and the degree of inhibition was strongly dependent on the stability of the G4 structures. Interestingly, at high protein concentrations, E. coli Pol I was able to overcome some kinds of G4 obstacles without the involvement of other molecules and could achieve complete replication of G4 DNA. Mechanistic studies suggested that multiple Pol I proteins might be implicated in G4 unfolding, and the disruption of G4 structures requires energy derived from dNTP hydrolysis. The present work not only reveals an unrealized function of E. coli Pol I, but also presents a possible mechanism by which G4 structures can be resolved during DNA replication and/or repair in E. coli. © 2017 Federation of European Biochemical Societies.

  14. Computer-aided design of DNA origami structures.

    PubMed

    Selnihhin, Denis; Andersen, Ebbe Sloth

    2015-01-01

    The DNA origami method enables the creation of complex nanoscale objects that can be used to organize molecular components and to function as reconfigurable mechanical devices. Of relevance to synthetic biology, DNA origami structures can be delivered to cells where they can perform complicated sense-and-act tasks, and can be used as scaffolds to organize enzymes for enhanced synthesis. The design of DNA origami structures is a complicated matter and is most efficiently done using dedicated software packages. This chapter describes a procedure for designing DNA origami structures using a combination of state-of-the-art software tools. First, we introduce the basic method for calculating crossover positions between DNA helices and the standard crossover patterns for flat, square, and honeycomb DNA origami lattices. Second, we provide a step-by-step tutorial for the design of a simple DNA origami biosensor device, from schematic idea to blueprint creation and to 3D modeling and animation, and explain how careful modeling can facilitate later experimentation in the laboratory.

  15. Structural variability and the nature of intermolecular interactions in Watson-Crick B-DNA base pairs.

    PubMed

    Czyznikowska, Z; Góra, R W; Zaleśny, R; Lipkowski, P; Jarzembska, K N; Dominiak, P M; Leszczynski, J

    2010-07-29

    A set of nearly 100 crystallographic structures was analyzed using ab initio methods in order to verify the effect of the conformational variability of Watson-Crick guanine-cytosine and adenine-thymine base pairs on the intermolecular interaction energy and its components. Furthermore, for the representative structures, a potential energy scan of the structural parameters describing mutual orientation of the base pairs was carried out. The results were obtained using the hybrid variational-perturbational interaction energy decomposition scheme. The electron correlation effects were estimated by means of the second-order Møller-Plesset perturbation theory and coupled clusters with singles and doubles method adopting AUG-cc-pVDZ basis set. Moreover, the characteristics of hydrogen bonds in complexes, mimicking those appearing in B-DNA, were evaluated using topological analysis of the electron density. Although the first-order electrostatic energy is usually the largest stabilizing component, it is canceled out by the associated exchange repulsion in majority of the studied crystallographic structures. Therefore, the analyzed complexes of the nucleic acid bases appeared to be stabilized mainly by the delocalization component of the intermolecular interaction energy which, in terms of symmetry adapted perturbation theory, encompasses the second- and higher-order induction and exchange-induction terms. Furthermore, it was found that the dispersion contribution, albeit much smaller in terms of magnitude, is also a vital stabilizing factor. It was also revealed that the intermolecular interaction energy and its components are strongly influenced by four (out of six) structural parameters describing mutual orientation of bases in Watson-Crick pairs, namely shear, stagger, stretch, and opening. Finally, as a part of a model study, much of the effort was devoted to an extensive testing of the UBDB databank. It was shown that the databank quite successfully reproduces the

  16. High Mitochondrial DNA Stability in B-Cell Chronic Lymphocytic Leukemia

    PubMed Central

    Cerezo, María; Bandelt, Hans-Jürgen; Martín-Guerrero, Idoia; Ardanaz, Maite; Vega, Ana; Carracedo, Ángel; García-Orad, África; Salas, Antonio

    2009-01-01

    Background Chronic Lymphocytic Leukemia (CLL) leads to progressive accumulation of lymphocytes in the blood, bone marrow, and lymphatic tissues. Previous findings have suggested that the mtDNA could play an important role in CLL. Methodology/Principal Findings The mitochondrial DNA (mtDNA) control-region was analyzed in lymphocyte cell DNA extracts and compared with their granulocyte counterpart extract of 146 patients suffering from B-Cell CLL; B-CLL (all recruited from the Basque country). Major efforts were undertaken to rule out methodological artefacts that would render a high false positive rate for mtDNA instabilities and thus lead to erroneous interpretation of sequence instabilities. Only twenty instabilities were finally confirmed, most of them affecting the homopolymeric stretch located in the second hypervariable segment (HVS-II) around position 310, which is well known to constitute an extreme mutational hotspot of length polymorphism, as these mutations are frequently observed in the general human population. A critical revision of the findings in previous studies indicates a lack of proper methodological standards, which eventually led to an overinterpretation of the role of the mtDNA in CLL tumorigenesis. Conclusions/Significance Our results suggest that mtDNA instability is not the primary causal factor in B-CLL. A secondary role of mtDNA mutations cannot be fully ruled out under the hypothesis that the progressive accumulation of mtDNA instabilities could finally contribute to the tumoral process. Recommendations are given that would help to minimize erroneous interpretation of sequencing results in mtDNA studies in tumorigenesis. PMID:19924307

  17. Predictive genomics DNA profiling for athletic performance.

    PubMed

    Kambouris, Marios; Ntalouka, Foteini; Ziogas, Georgios; Maffulli, Nicola

    2012-12-01

    Genes control biological processes such as muscle, cartilage and bone formation, muscle energy production and metabolism (mitochondriogenesis, lactic acid removal), blood and tissue oxygenation (erythropoiesis, angiogenesis, vasodilatation), all essential in sport and athletic performance. DNA sequence variations in such genes confer genetic advantages that can be exploited, or genetic 'barriers' that could be overcome to achieve optimal athletic performance. Predictive Genomic DNA Profiling for athletic performance reveals genetic variations that may be associated with better suitability for endurance, strength and speed sports, vulnerability to sports-related injuries and individualized nutritional requirements. Knowledge of genetic 'suitability' in respect to endurance capacity or strength and speed would lead to appropriate sport and athletic activity selection. Knowledge of genetic advantages and barriers would 'direct' an individualized training program, nutritional plan and nutritional supplementation to achieving optimal performance, overcoming 'barriers' that results from intense exercise and pressure under competition with minimum waste of time and energy and avoidance of health risks (hypertension, cardiovascular disease, inflammation, and musculoskeletal injuries) related to exercise, training and competition. Predictive Genomics DNA profiling for Athletics and Sports performance is developing into a tool for athletic activity and sport selection and for the formulation of individualized and personalized training and nutritional programs to optimize health and performance for the athlete. Human DNA sequences are patentable in some countries, while in others DNA testing methodologies [unless proprietary], are non patentable. On the other hand, gene and variant selection, genotype interpretation and the risk and suitability assigning algorithms based on the specific Genomic variants used are amenable to patent protection.

  18. Role of sequence encoded κB DNA geometry in gene regulation by Dorsal

    PubMed Central

    Mrinal, Nirotpal; Tomar, Archana; Nagaraju, Javaregowda

    2011-01-01

    Many proteins of the Rel family can act as both transcriptional activators and repressors. However, mechanism that discerns the ‘activator/repressor’ functions of Rel-proteins such as Dorsal (Drosophila homologue of mammalian NFκB) is not understood. Using genomic, biophysical and biochemical approaches, we demonstrate that the underlying principle of this functional specificity lies in the ‘sequence-encoded structure’ of the κB-DNA. We show that Dorsal-binding motifs exist in distinct activator and repressor conformations. Molecular dynamics of DNA-Dorsal complexes revealed that repressor κB-motifs typically have A-tract and flexible conformation that facilitates interaction with co-repressors. Deformable structure of repressor motifs, is due to changes in the hydrogen bonding in A:T pair in the ‘A-tract’ core. The sixth nucleotide in the nonameric κB-motif, ‘A’ (A6) in the repressor motifs and ‘T’ (T6) in the activator motifs, is critical to confer this functional specificity as A6 → T6 mutation transformed flexible repressor conformation into a rigid activator conformation. These results highlight that ‘sequence encoded κB DNA-geometry’ regulates gene expression by exerting allosteric effect on binding of Rel proteins which in turn regulates interaction with co-regulators. Further, we identified and characterized putative repressor motifs in Dl-target genes, which can potentially aid in functional annotation of Dorsal gene regulatory network. PMID:21890896

  19. Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA

    PubMed Central

    Kim, Minji; Kreig, Alex; Lee, Chun-Ying; Rube, H. Tomas; Calvert, Jacob; Song, Jun S.; Myong, Sua

    2016-01-01

    Abstract G-quadruplex (GQ) is a four-stranded DNA structure that can be formed in guanine-rich sequences. GQ structures have been proposed to regulate diverse biological processes including transcription, replication, translation and telomere maintenance. Recent studies have demonstrated the existence of GQ DNA in live mammalian cells and a significant number of potential GQ forming sequences in the human genome. We present a systematic and quantitative analysis of GQ folding propensity on a large set of 438 GQ forming sequences in double-stranded DNA by integrating fluorescence measurement, single-molecule imaging and computational modeling. We find that short minimum loop length and the thymine base are two main factors that lead to high GQ folding propensity. Linear and Gaussian process regression models further validate that the GQ folding potential can be predicted with high accuracy based on the loop length distribution and the nucleotide content of the loop sequences. Our study provides important new parameters that can inform the evaluation and classification of putative GQ sequences in the human genome. PMID:27095201

  20. The DNA-recognition mode shared by archaeal feast/famine-regulatory proteins revealed by the DNA-binding specificities of TvFL3, FL10, FL11 and Ss-LrpB

    PubMed Central

    Yokoyama, Katsushi; Nogami, Hideki; Kabasawa, Mamiko; Ebihara, Sonomi; Shimowasa, Ai; Hashimoto, Keiko; Kawashima, Tsuyoshi; Ishijima, Sanae A.; Suzuki, Masashi

    2009-01-01

    The DNA-binding mode of archaeal feast/famine-regulatory proteins (FFRPs), i.e. paralogs of the Esherichia coli leucine-responsive regulatory protein (Lrp), was studied. Using the method of systematic evolution of ligands by exponential enrichment (SELEX), optimal DNA duplexes for interacting with TvFL3, FL10, FL11 and Ss-LrpB were identified as TACGA[AAT/ATT]TCGTA, GTTCGA[AAT/ATT]TCGAAC, CCGAAA[AAT/ATT]TTTCGG and TTGCAA[AAT/ATT]TTGCAA, respectively, all fitting into the form abcdeWWWedcba. Here W is A or T, and e.g. a and a are bases complementary to each other. Apparent equilibrium binding constants of the FFRPs and various DNA duplexes were determined, thereby confirming the DNA-binding specificities of the FFRPs. It is likely that these FFRPs recognize DNA in essentially the same way, since their DNA-binding specificities were all explained by the same pattern of relationship between amino-acid positions and base positions to form chemical interactions. As predicted from this relationship, when Gly36 of TvFL3 was replaced by Thr, the b base in the optimal DNA duplex changed from A to T, and, when Thr36 of FL10 was replaced by Ser, the b base changed from T to G/A. DNA-binding characteristics of other archaeal FFRPs, Ptr1, Ptr2, Ss-Lrp and LysM, are also consistent with the relationship. PMID:19468044

  1. The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*

    PubMed Central

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.

    2015-01-01

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  2. Comparison of potential protection conferred by three immunization strategies (protein/protein, DNA/DNA, and DNA/protein) against Brucella infection using Omp2b in BALB/c Mice.

    PubMed

    Golshani, Maryam; Rafati, Sima; Nejati-Moheimani, Mehdi; Ghasemian, Melina; Bouzari, Saeid

    2016-12-25

    In the present study, immunogenicity and protective efficacy of the Brucella outer membrane protein 2b (Omp2b) was evaluated in BALB/c mice using Protein/Protein, DNA/DNA and DNA/Protein vaccine strategies. Immunization of mice with three vaccine regimens elicited a strong specific IgG response (higher IgG2a titers over IgG1 titers) and provided Th1-oriented immune response. Vaccination of BALB/c mice with the DNA/Pro regimen induced higher levels of IFN-γ/IL-2 and conferred more protection levels against B. melitenisis and B. abortus challenge than did the protein or DNA alone. In conclusion, Omp2b is able to stimulate specific immune responses and to confer cross protection against B. melitensis and B. abortus infection. Therefore, it could be introduced as a new potential candidate for the development of a subunit vaccine against Brucella infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells

    PubMed Central

    Jain, Aklank; Bacolla, Albino; del Mundo, Imee M.; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M.

    2013-01-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA. PMID:24049074

  4. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells.

    PubMed

    Jain, Aklank; Bacolla, Albino; Del Mundo, Imee M; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M

    2013-12-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.

  5. DNA-lipid complexes: stability of honeycomb-like and spaghetti-like structures.

    PubMed Central

    May, S; Ben-Shaul, A

    1997-01-01

    A molecular level theory is presented for the thermodynamic stability of two (similar) types of structural complexes formed by (either single strand or supercoiled) DNA and cationic liposomes, both involving a monolayer-coated DNA as the central structural unit. In the "spaghetti" complex the central unit is surrounded by another, oppositely curved, monolayer, thus forming a bilayer mantle. The "honeycomb" complex is a bundle of hexagonally packed DNA-monolayer units. The formation free energy of these complexes, starting from a planar cationic/neutral lipid bilayer and bare DNA, is expressed as a sum of electrostatic, bending, mixing, and (for the honeycomb) chain frustration contributions. The electrostatic free energy is calculated using the Poisson-Boltzmann equation. The bending energy of the mixed lipid layers is treated in the quadratic curvature approximation with composition-dependent bending rigidity and spontaneous curvature. Ideal lipid mixing is assumed within each lipid monolayer. We found that the most stable monolayer-coated DNA units are formed when the charged/neutral lipid composition corresponds (nearly) to charge neutralization; the optimal monolayer radius corresponds to close DNA-monolayer contact. These conclusions are also valid for the honeycomb complex, as the chain frustration energy is found to be negligible. Typically, the stabilization energies for these structures are on the order of 1 k(B)T/A of DNA length, reflecting mainly the balance between the electrostatic and bending energies. The spaghetti complexes are less stable due to the additional bending energy of the external monolayer. A thermodynamic analysis is presented for calculating the equilibrium lipid compositions when the complexes coexist with excess bilayer. PMID:9370436

  6. Structure-based Analysis to Hu-DNA Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinger,K.; Rice, P.

    2007-01-01

    HU and IHF are prokaryotic proteins that induce very large bends in DNA. They are present in high concentrations in the bacterial nucleoid and aid in chromosomal compaction. They also function as regulatory cofactors in many processes, such as site-specific recombination and the initiation of replication and transcription. HU and IHF have become paradigms for understanding DNA bending and indirect readout of sequence. While IHF shows significant sequence specificity, HU binds preferentially to certain damaged or distorted DNAs. However, none of the structurally diverse HU substrates previously studied in vitro is identical with the distorted substrates in the recently publishedmore » Anabaena HU(AHU)-DNA cocrystal structures. Here, we report binding affinities for AHU and the DNA in the cocrystal structures. The binding free energies for formation of these AHU-DNA complexes range from 10-14.5 kcal/mol, representing K{sub d} values in the nanomolar to low picomolar range, and a maximum stabilization of at least 6.3 kcal/mol relative to complexes with undistorted, non-specific DNA. We investigated IHF binding and found that appropriate structural distortions can greatly enhance its affinity. On the basis of the coupling of structural and relevant binding data, we estimate the amount of conformational strain in an IHF-mediated DNA kink that is relieved by a nick (at least 0.76 kcal/mol) and pinpoint the location of the strain. We show that AHU has a sequence preference for an A+T-rich region in the center of its DNA-binding site, correlating with an unusually narrow minor groove. This is similar to sequence preferences shown by the eukaryotic nucleosome.« less

  7. Protein Structure Prediction by Protein Threading

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  8. PCR-RFLP analysis of mitochondrial DNA cytochrome b gene among Haruan (Channa striatus) in Malaysia.

    PubMed

    Rahim, Mohamamd Hafiz Abdul; Ismail, Patimah; Alias, Rozila; Muhammad, Norwati; Mat Jais, Abdul Manan

    2012-02-15

    Haruan (Channa striatus) is in great demand in the Malaysian domestic fish market. In the present study, mtDNA cyt b was used to investigate genetic variation of C. striatus among populations in Peninsular Malaysia. The overall population of C. striatus demonstrated a high level of haplotype diversity (h) and a low-to-moderate level of nucleotide diversity (π). Analysis of molecular variance (AMOVA) results showed a significantly different genetic differentiation among 6 populations (F(ST)=0.37566, P=0.01). Gene flow (Nm) was high and ranged from 0.32469 to infinity (∞). No significant relationship between genetic distance and geographic distance was detected. A UPGMA tree based on the distance matrix of net interpopulation nucleotide divergence (d(A)) and haplotype network of mtDNA cyt b revealed that C. striatus is divided into 2 major clades. The neutrality and mismatch distribution tests for all populations suggested that C. striatus in the study areas had undergone population expansion. The estimated time of population expansion in the mtDNA cyt b of C. striatus populations occurred 0.72-6.19 million years ago. Genetic diversity of mtDNA cyt b and population structure among Haruan populations in Peninsular Malaysia will be useful in fisheries management for standardization for Good Agriculture Practices (GAP) in fish-farming technology, as well as providing the basis for Good Manufacturing Practices (GMP). Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Mechanical characteriztion of single-stranded DNA and single-walled carbon nanotube hybrid structures

    NASA Astrophysics Data System (ADS)

    Rokadia, Husein Juzer

    's modulus of 4.5 GPa and 1.0 GPa in the dry and wet environments, respectively. MD results indicated that the wrapping of the ssDNA had a significant impact on the hybrid structures. The longitudinal Young's modulus of a hybrid structure was found to be approximately 50.0 GPa, compared to a bare nanotube whose Young's modulus was approximately 800 GPa. Overall, the experimental and numerical results displayed consistent trends. The experimental results reported the swCNTs to have the highest transverse Young's modulus followed by the hybrids and the ssDNA. Similarly, the numerical simulations predicted the highest longitudinal Young's modulus for the swCNTs, followed by the hybrids and the DNA.

  10. Structural Analysis of HMGD-DNA Complexes Reveal Influence of Intercalation on Sequence Selectivity and DNA Bending

    PubMed Central

    Churchill, Mair E.A.; Klass, Janet; Zoetewey, David L.

    2010-01-01

    The ubiquitous eukaryotic High-Mobility-Group-Box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and fifty base pairs of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1-boxA-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending. PMID:20800069

  11. Structural and Thermodynamic Signatures of DNA Recognition by Mycobacterium tuberculosis DnaA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsodikov, Oleg V.; Biswas, Tapan

    An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 {angstrom} resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 {angstrom}). Thesemore » structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.« less

  12. Challenges and opportunities for structural DNA nanotechnology

    PubMed Central

    Pinheiro, Andre V.; Han, Dongran; Shih, William M.; Yan, Hao

    2012-01-01

    DNA molecules have been used to build a variety of nanoscale structures and devices over the past 30 years, and potential applications have begun to emerge. But the development of more advanced structures and applications will require a number of issues to be addressed, the most significant of which are the high cost of DNA and the high error rate of self-assembly. Here we examine the technical challenges in the field of structural DNA nanotechnology and outline some of the promising applications that could be developed if these hurdles can be overcome. In particular, we highlight the potential use of DNA nanostructures in molecular and cellular biophysics, as biomimetic systems, in energy transfer and photonics, and in diagnostics and therapeutics for human health. PMID:22056726

  13. Conformational dynamism for DNA interaction in the Salmonella RcsB response regulator

    PubMed Central

    Miguel-Romero, Laura; Huesa, Juanjo; García, Pablo; García-del Portillo, Francisco

    2018-01-01

    Abstract The RcsCDB phosphorelay system controls an extremely large regulon in Enterobacteriaceae that involves processes such as biofilm formation, flagella production, synthesis of extracellular capsules and cell division. Therefore, fine-tuning of this system is essential for virulence in pathogenic microorganisms of this group. The final master effector of the RcsCDB system is the response regulator (RR) RcsB, which activates or represses multiple genes by binding to different promoter regions. This regulatory activity of RcsB can be done alone or in combination with additional transcriptional factors in phosphorylated or dephosphorylated states. The capacity of RcsB to interact with multiple promoters and partners, either dephosphorylated or phosphorylated, suggests an extremely conformational dynamism for this RR. To shed light on the activation mechanism of RcsB and its implication on promoter recognition, we solved the crystal structure of full-length RcsB from Salmonella enterica serovar Typhimurium in the presence and absence of a phosphomimetic molecule BeF3−. These two novel structures have guided an extensive site-directed mutagenesis study at the structural and functional level that confirms RcsB conformational plasticity and dynamism. Our data allowed us to propose a β5-T switch mechanism where phosphorylation is coupled to alternative DNA binding ways and which highlights the conformational dynamism of RcsB to be so pleiotropic. PMID:29186528

  14. Human parvovirus B19: a mechanistic overview of infection and DNA replication

    PubMed Central

    Luo, Yong; Qiu, Jianming

    2015-01-01

    Human parvovirus B19 (B19V) is a human pathogen that belongs to genus Erythroparvovirus of the Parvoviridae family, which is composed of a group of small DNA viruses with a linear single-stranded DNA genome. B19V mainly infects human erythroid progenitor cells and causes mild to severe hematological disorders in patients. However, recent clinical studies indicate that B19V also infects nonerythroid lineage cells, such as myocardial endothelial cells, and may be associated with other disease outcomes. Several cell culture systems, including permissive and semipermissive erythroid lineage cells, nonpermissive human embryonic kidney 293 cells and recently reported myocardial endothelial cells, have been used to study the mechanisms underlying B19V infection and B19V DNA replication. This review aims to summarize recent advances in B19V studies with a focus on the mechanisms of B19V tropism specific to different cell types and the cellular pathways involved in B19V DNA replication including cellular signaling transduction and cell cycle arrest. PMID:26097496

  15. Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, Scott E.; De Silva, Erandi K.; Keck, James L.

    2010-11-05

    Putative transcription factors have only recently been identified in the Plasmodium spp., with the major family of regulators comprising the Apicomplexan Apetala2 (AP2) proteins. To better understand the DNA-binding mechanisms of these transcriptional regulators, we characterized the structure and in vitro function of an AP2 DNA-binding domain from a prototypical Apicomplexan AP2 protein, PF14{_}0633 from Plasmodium falciparum. The X-ray crystal structure of the PF14{_}0633 AP2 domain bound to DNA reveals a {beta}-sheet fold that binds the DNA major groove through base-specific and backbone contacts; a prominent {alpha}-helix supports the {beta}-sheet structure. Substitution of predicted DNA-binding residues with alanine weakened ormore » eliminated DNA binding in solution. In contrast to plant AP2 domains, the PF14{_}0633 AP2 domain dimerizes upon binding to DNA through a domain-swapping mechanism in which the {alpha}-helices of the AP2 domains pack against the {beta}-sheets of the dimer mates. DNA-induced dimerization of PF14{_}0633 may be important for tethering two distal DNA loci together in the nucleus and/or for inducing functional rearrangements of its domains to facilitate transcriptional regulation. Consistent with a multisite binding mode, at least two copies of the consensus sequence recognized by PF14{_}0633 are present upstream of a previously identified group of sporozoite-stage genes. Taken together, these findings illustrate how Plasmodium has adapted the AP2 DNA-binding domain for genome-wide transcriptional regulation.« less

  16. Accurate representation of B-DNA double helical structure with implicit solvent and counterions.

    PubMed Central

    Wang, Lihua; Hingerty, Brian E; Srinivasan, A R; Olson, Wilma K; Broyde, Suse

    2002-01-01

    High-resolution nuclear magnetic resonance (NMR) and crystallographic data have been taken to refine the force field used in the torsion angle space nucleic acids molecular mechanics program DUPLEX. The population balance deduced from NMR studies of two carcinogen-modified DNA conformers in equilibrium was used to fine tune a sigmoidal, distance-dependent dielectric function so that reasonable relative energies could be obtained. In addition, the base-pair and backbone geometry from high-resolution crystal structures of the Dickerson-Drew dodecamer was used to re-evaluate the deoxyribose pseudorotation profile and the Lennard-Jones nonbonded energy terms. With a modified dielectric function that assumes a very steep distance-dependent form, a deoxyribose pseudorotation profile with reduced energy barriers between C2'- and C3'-endo minima, and a shift of the Lennard-Jones potential energy minimum to a distance approximately 0.4 A greater than the sum of the van der Waals' radii, the sequence-dependent conformational features of the Dickerson-Drew dodecamer in both the solid state and the aqueous liquid crystalline phase are well reproduced. The robust performance of the revised force field, in conjunction with its efficiency through implicit treatment of solvent and counterions, provides a valuable tool for elucidating conformations and structure-function relationships of DNA, including those of molecules modified by carcinogens and other ligands. PMID:12080128

  17. Interaction investigations of HipA binding to HipB dimer and HipB dimer + DNA complex: a molecular dynamics simulation study.

    PubMed

    Li, Chaoqun; Wang, Yaru; Wang, Yan; Chen, Guangju

    2013-11-01

    We carried out molecular dynamics simulations and free energy calculations for a series of ternary and diplex models for the HipA protein, HipB dimer, and DNA molecule to address the mechanism of HipA sequestration and the binding order of events from apo HipB/HipA to 2HipA + HipB dimer + DNA complex. The results revealed that the combination of DNA with the HipB dimer is energetically favorable for the combination of HipB dimer with HipA protein. The binding of DNA to HipB dimer induces a long-range allosteric communication from the HipB2 -DNA interface to the HipA-HipB2 interface, which involves the closeness of α1 helices of HipB dimer to HipA protein and formations of extra hydrogen bonds in the HipA-HipB2 interface through the extension of α2/3 helices in the HipB dimer. These simulated results suggested that the DNA molecule, as a regulative media, modulates the HipB dimer conformation, consequently increasing the interactions of HipB dimer with the HipA proteins, which explains the mechanism of HipA sequestration reported by the previous experiment. Simultaneously, these simulations also explored that the thermodynamic binding order in a simulated physiological environment, that is, the HipB dimer first bind to DNA to form HipB dimer + DNA complex, then capturing strongly the HipA proteins to form a ternary complex, 2HipA + HipB dimer + DNA, for sequestrating HipA in the nucleoid. Copyright © 2013 John Wiley & Sons, Ltd.

  18. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability

    PubMed Central

    Hamperl, Stephan; Cimprich, Karlene A.

    2014-01-01

    Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923

  19. Polyplex formation between four-arm poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate) and plasmid DNA in gene delivery.

    PubMed

    He, E; Yue, C Y; Simeon, F; Zhou, L H; Too, H P; Tam, K C

    2009-12-01

    Amphiphilic polyelectrolytes comprising cationic and uncharged hydrophilic segments condensed negatively charged DNA to form a core-shell structure stabilized by a layer of hydrophilic corona chains. At physiological pH, four-arm star-shaped poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate) (four-arm PEO-b-PDEAEMA) block copolymer possessed positively charged amine groups that interacted with negatively charged plasmid DNA to form polymer/DNA complexes. The mechanism and physicochemical properties of the complex formation were investigated at varying molar ratio of amine groups on polymer chains and phosphate group on plasmid DNA segments (N/P ratio). The capability of the star block copolymer to condense DNA was demonstrated through gel electrophoresis and ethidium bromide exclusion assay. In the absence of salt, the hydrodynamic radius of polyplexes was about 94 nm at low polymer/DNA ratio, and it decreased to about 34 nm at large N/P ratios, forming a compact spherical structure with a weighted average molecular weight of 4.39 +/- 0.22 x 10(6) g/mol. Approximately 15 polymeric chains were required to condense a plasmid DNA. The addition of monovalent salt to the polyplexes significantly altered the size of the complexes, which would have an impact on cell transfection. Because of the electrostatic interaction induced by the diffusion of small ions, the polyplex increased in size to about 53 nm with a less compact structure. In vitro cytotoxicty of polymer and polymer/pDNA complexes were evaluated, and the polyplexes exhibited low toxicity at low N/P ratios. At N/P ratio of 4.5, the four-arm PEO-b-PDEAEMA showed the highest level of transfection in Neuro-2A cells. These observations showed that the star-shaped multi-arm polymers offers interesting properties in self-association and condensation ability for plasmid DNA and can serve as a nonviral DNA delivery system. Copyright 2008 Wiley Periodicals, Inc.

  20. Inactive DNMT3B Splice Variants Modulate De Novo DNA Methylation

    PubMed Central

    Gordon, Catherine A.; Hartono, Stella R.; Chédin, Frédéric

    2013-01-01

    Inactive DNA methyltransferase (DNMT) 3B splice isoforms are associated with changes in DNA methylation, yet the mechanisms by which they act remain largely unknown. Using biochemical and cell culture assays, we show here that the inactive DNMT3B3 and DNMT3B4 isoforms bind to and regulate the activity of catalytically competent DNMT3A or DNMT3B molecules. DNMT3B3 modestly stimulated the de novo methylation activity of DNMT3A and also counteracted the stimulatory effects of DNMT3L, therefore leading to subtle and contrasting effects on activity. DNMT3B4, by contrast, significantly inhibited de novo DNA methylation by active DNMT3 molecules, most likely due to its ability to reduce the DNA binding affinity of co-complexes, thereby sequestering them away from their substrate. Immunocytochemistry experiments revealed that in addition to their effects on the intrinsic catalytic function of active DNMT3 enzymes, DNMT3B3 and DNMT34 drive distinct types of chromatin compaction and patterns of histone 3 lysine 9 tri-methylation (H3K9me3) deposition. Our findings suggest that regulation of active DNMT3 members through the formation of co-complexes with inactive DNMT3 variants is a general mechanism by which DNMT3 variants function. This may account for some of the changes in DNA methylation patterns observed during development and disease. PMID:23894490

  1. Crystal structure of the Msx-1 homeodomain/DNA complex.

    PubMed

    Hovde, S; Abate-Shen, C; Geiger, J H

    2001-10-09

    The Msx-1 homeodomain protein plays a crucial role in craniofacial, limb, and nervous system development. Homeodomain DNA-binding domains are comprised of 60 amino acids that show a high degree of evolutionary conservation. We have determined the structure of the Msx-1 homeodomain complexed to DNA at 2.2 A resolution. The structure has an unusually well-ordered N-terminal arm with a unique trajectory across the minor groove of the DNA. DNA specificity conferred by bases flanking the core TAAT sequence is explained by well ordered water-mediated interactions at Q50. Most interactions seen at the TAAT sequence are typical of the interactions seen in other homeodomain structures. Comparison of the Msx-1-HD structure to all other high resolution HD-DNA complex structures indicate a remarkably well-conserved sphere of hydration between the DNA and protein in these complexes.

  2. Antiviral strategies to eliminate hepatitis B virus covalently closed circular DNA (cccDNA).

    PubMed

    Revill, Peter; Locarnini, Stephen

    2016-10-01

    It has been over 50 years since the discovery of hepatitis B virus (HBV), yet 240 million people worldwide live with chronic HBV, resulting in up to 800000 deaths per year. A cure is yet to be achieved, due largely to a viral nuclear reservoir of transcriptionally active covalently closed circular DNA (cccDNA). While current antiviral therapies are effective at reducing viral replication, they have no impact on the existing cccDNA reservoir. Identifying mechanisms to either eliminate (complete cure) or inactivate (functional cure) HBV cccDNA are a major focus of HBV research worldwide. This review discusses recent advances in efforts to eliminate and/or regulate cccDNA, as well as future directions that may be considered in efforts to cure chronic HBV. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Chen, Tony

    2006-01-01

    The previously developed Ko closed-form aging theory has been reformulated into a more compact mathematical form for easier application. A new equivalent loading theory and empirical loading theories have also been developed and incorporated into the revised Ko aging theory for the prediction of a safe operational life of airborne failure-critical structural components. The new set of aging and loading theories were applied to predict the safe number of flights for the B-52B aircraft to carry a launch vehicle, the structural life of critical components consumed by load excursion to proof load value, and the ground-sitting life of B-52B pylon failure-critical structural components. A special life prediction method was developed for the preflight predictions of operational life of failure-critical structural components of the B-52H pylon system, for which no flight data are available.

  4. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites.

    PubMed

    Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F

    2011-08-02

    A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.

  5. Inhibition of polyomavirus ori-dependent DNA replication by mSin3B.

    PubMed

    Xie, An-Yong; Folk, William R

    2002-12-01

    When tethered in cis to DNA, the transcriptional corepressor mSin3B inhibits polyomavirus (Py) ori-dependent DNA replication in vivo. Histone deacetylases (HDACs) appear not to be involved, since tethering class I and class II HDACs in cis does not inhibit replication and treating the cells with trichostatin A does not specifically relieve inhibition by mSin3B. However, the mSin3B L59P mutation that impairs mSin3B interaction with N-CoR/SMRT abrogates inhibition of replication, suggesting the involvement of N-CoR/SMRT. Py large T antigen interacts with mSin3B, suggesting an HDAC-independent mechanism by which mSin3B inhibits DNA replication.

  6. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface.

    PubMed

    Williamson, Adele; Rothweiler, Ulli; Leiros, Hanna Kirsti Schrøder

    2014-11-01

    DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme-adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.

  7. An overview of the structures of protein-DNA complexes

    PubMed Central

    Luscombe, Nicholas M; Austin, Susan E; Berman , Helen M; Thornton, Janet M

    2000-01-01

    On the basis of a structural analysis of 240 protein-DNA complexes contained in the Protein Data Bank (PDB), we have classified the DNA-binding proteins involved into eight different structural/functional groups, which are further classified into 54 structural families. Here we present this classification and review the functions, structures and binding interactions of these protein-DNA complexes. PMID:11104519

  8. Generation and Repair of AID-initiated DNA Lesions in B Lymphocytes

    PubMed Central

    Chen, Zhangguo; Wang, Jing H.

    2014-01-01

    Activation-induced deaminase (AID) initiates the secondary antibody diversification process in B lymphocytes. In mammalian B cells, this process includes somatic hypermutation (SHM) and class switch recombination (CSR), both of which require AID. AID induces U:G mismatch lesions in DNA that are subsequently converted into point mutations or DNA double stranded breaks during SHM/CSR. In a physiological context, AID targets immunoglobulin (Ig) loci to mediate SHM/CSR. However, recent studies reveal genome-wide access of AID to numerous non-Ig loci. Thus, AID poses a threat to the genome of B cells if AID-initiated DNA lesions cannot be properly repaired. In this review, we focus on the molecular mechanisms that regulate the specificity of AID targeting and the repair pathways responsible for processing AID-initiated DNA lesions. PMID:24748462

  9. Human Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks

    PubMed Central

    George, Tresa; Wen, Qin; Griffiths, Richard; Ganesh, Anil; Meuth, Mark; Sanders, Cyril M.

    2009-01-01

    Pif-1 proteins are 5′→3′ superfamily 1 (SF1) helicases that in yeast have roles in the maintenance of mitochondrial and nuclear genome stability. The functions and activities of the human enzyme (hPif1) are unclear, but here we describe its DNA binding and DNA remodeling activities. We demonstrate that hPif1 specifically recognizes and unwinds DNA structures resembling putative stalled replication forks. Notably, the enzyme requires both arms of the replication fork-like structure to initiate efficient unwinding of the putative leading replication strand of such substrates. This DNA structure-specific mode of initiation of unwinding is intrinsic to the conserved core helicase domain (hPifHD) that also possesses a strand annealing activity as has been demonstrated for the RecQ family of helicases. The result of hPif1 helicase action at stalled DNA replication forks would generate free 3′ ends and ssDNA that could potentially be used to assist replication restart in conjunction with its strand annealing activity. PMID:19700773

  10. HIV-1 DNA predicts disease progression and post-treatment virological control

    PubMed Central

    Williams, James P; Hurst, Jacob; Stöhr, Wolfgang; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Carrington, Mary; Babiker, Abdel; Weber, Jonathan

    2014-01-01

    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials. Clinical trial registration: ISRCTN76742797 and EudraCT2004-000446-20 DOI: http://dx.doi.org/10.7554/eLife.03821.001 PMID:25217531

  11. The structure and intermolecular forces of DNA condensates.

    PubMed

    Yoo, Jejoong; Aksimentiev, Aleksei

    2016-03-18

    Spontaneous assembly of DNA molecules into compact structures is ubiquitous in biological systems. Experiment has shown that polycations can turn electrostatic self-repulsion of DNA into attraction, yet the physical mechanism of DNA condensation has remained elusive. Here, we report the results of atomistic molecular dynamics simulations that elucidated the microscopic structure of dense DNA assemblies and the physics of interactions that makes such assemblies possible. Reproducing the setup of the DNA condensation experiments, we measured the internal pressure of DNA arrays as a function of the DNA-DNA distance, showing a quantitative agreement between the results of our simulations and the experimental data. Analysis of the MD trajectories determined the DNA-DNA force in a DNA condensate to be pairwise, the DNA condensation to be driven by electrostatics of polycations and not hydration, and the concentration of bridging cations, not adsorbed cations, to determine the magnitude and the sign of the DNA-DNA force. Finally, our simulations quantitatively characterized the orientational correlations of DNA in DNA arrays as well as diffusive motion of DNA and cations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Quantification of cytokine mRNA in peripheral blood mononuclear cells using branched DNA (bDNA) technology.

    PubMed

    Shen, L P; Sheridan, P; Cao, W W; Dailey, P J; Salazar-Gonzalez, J F; Breen, E C; Fahey, J L; Urdea, M S; Kolberg, J A

    1998-06-01

    Changes in the patterns of cytokine expression are thought to be of central importance in human infectious and inflammatory diseases. As such, there is a need for precise, reproducible assays for quantification of cytokine mRNA that are amenable to routine use in a clinical setting. In this report, we describe the design and performance of a branched DNA (bDNA) assay for the direct quantification of multiple cytokine mRNA levels in peripheral blood mononuclear cells (PBMCs). Oligonucleotide target probe sets were designed for several human cytokines, including TNFalpha, IL-2, IL-4, IL-6, IL-10, and IFNgamma. The bDNA assay yielded highly reproducible quantification of cytokine mRNAs, exhibited a broad linear dynamic range of over 3-log10, and showed a sensitivity sufficient to measure at least 3000 molecules. The potential clinical utility of the bDNA assay was explored by measuring cytokine mRNA levels in PBMCs from healthy and immunocompromised individuals. Cytokine expression levels in PBMCs from healthy blood donors were found to remain relatively stable over a one-month period of time. Elevated levels of IFNgamma mRNA were detected in PBMCs from HIV-1 seropositive individuals, but no differences in mean levels of TNFalpha or IL-6 mRNA were detected between seropositive and seronegative individuals. By providing a reproducible method for quantification of low abundance transcripts in clinical specimens, the bDNA assay may be useful for studies addressing the role of cytokine expression in disease.

  13. DNA minicircles clarify the specific role of DNA structure on retroviral integration

    PubMed Central

    Pasi, Marco; Mornico, Damien; Volant, Stevenn; Juchet, Anna; Batisse, Julien; Bouchier, Christiane; Parissi, Vincent; Ruff, Marc; Lavery, Richard; Lavigne, Marc

    2016-01-01

    Chromatin regulates the selectivity of retroviral integration into the genome of infected cells. At the nucleosome level, both histones and DNA structure are involved in this regulation. We propose a strategy that allows to specifically study a single factor: the DNA distortion induced by the nucleosome. This strategy relies on mimicking this distortion using DNA minicircles (MCs) having a fixed rotational orientation of DNA curvature, coupled with atomic-resolution modeling. Contrasting MCs with linear DNA fragments having identical sequences enabled us to analyze the impact of DNA distortion on the efficiency and selectivity of integration. We observed a global enhancement of HIV-1 integration in MCs and an enrichment of integration sites in the outward-facing DNA major grooves. Both of these changes are favored by LEDGF/p75, revealing a new, histone-independent role of this integration cofactor. PFV integration is also enhanced in MCs, but is not associated with a periodic redistribution of integration sites, thus highlighting its distinct catalytic properties. MCs help to separate the roles of target DNA structure, histone modifications and integrase (IN) cofactors during retroviral integration and to reveal IN-specific regulation mechanisms. PMID:27439712

  14. Effect of magnesium ions on the structure of DNA thin films: an infrared spectroscopy study

    PubMed Central

    Serec, Kristina; Babić, Sanja Dolanski; Podgornik, Rudolf; Tomić, Silvia

    2016-01-01

    Utilizing Fourier transform infrared spectroscopy we have investigated the vibrational spectrum of thin dsDNA films in order to track the structural changes upon addition of magnesium ions. In the range of low magnesium concentration ([magnesium]/[phosphate] = [Mg]/[P] < 0.5), both the red shift and the intensity of asymmetric PO2 stretching band decrease, indicating an increase of magnesium-phosphate binding in the backbone region. Vibration characteristics of the A conformation of the dsDNA vanish, whereas those characterizing the B conformation become fully stabilized. In the crossover range with comparable Mg and intrinsic Na DNA ions ([Mg]/[P] ≈ 1) B conformation remains stable; vibrational spectra show moderate intensity changes and a prominent blue shift, indicating a reinforcement of the bonds and binding in both the phosphate and the base regions. The obtained results reflect the modified screening and local charge neutralization of the dsDNA backbone charge, thus consistently demonstrating that the added Mg ions interact with DNA via long-range electrostatic forces. At high Mg contents ([Mg]/[P] > 10), the vibrational spectra broaden and show a striking intensity rise, while the base stacking remains unaffected. We argue that at these extreme conditions, where a charge compensation by vicinal counterions reaches 92–94%, DNA may undergo a structural transition into a more compact form. PMID:27484473

  15. Increased immunostimulatory activity of polypod-like structured DNA by ligation of the terminal loop structures.

    PubMed

    Mohri, Kohta; Takahashi, Natsuki; Nishikawa, Makiya; Kusuki, Eri; Shiomi, Tomoki; Takahashi, Yuki; Takakura, Yoshinobu

    2012-11-10

    The immunostimulatory activity of phosphodiester DNA containing unmethylated cytosine-guanine (CpG) dinucleotides can be increased by converting it into branched structures. These structures could be stabilized by ligating the 5'- and 3'-ends to form a closed loop with no terminal ends. To further increase the ability of branched DNA assemblies to induce cytokines, a series of tetrapod-like structured DNA, or tetrapodna, were designed using four 48-base oligodeoxynucleotides (ODNs). All these preparations were designed to have the same sequence except for the nick sites, and all the ODNs of one of the tetrapodna preparations were ligated to obtain circular tetrapodna. The nick site significantly influenced the formation of the structure and melting temperature (Tm), but hardly affected the enzymatic stability of the tetrapodna preparations. Circular tetrapodna exhibited a significantly higher Tm and was more stable in mouse serum than its non-ligated counterparts. The amounts of cytokines released from macrophage-like RAW264.7 cells or dendritic DC2.4 cells after addition of circular tetrapodna were not significantly higher than those after addition of other tetrapodna preparations under conditions when no serum was present. However, when serum was present, circular tetrapodna induced the greatest amount of tumor necrosis factor-α, indicating that circular tetrapodna is effective in inducing cytokines under conditions where DNA-degrading enzymes are present. The cellular association of tetrapodna preparations was almost unaffected by ligation of the terminal ends. These results indicate that circular tetrapodna with no terminal ends is more effective than its non-ligated counterparts in the presence of serum. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    PubMed

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Multivalent Lipid--DNA Complexes: Distinct DNA Compaction Regimes

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Ewert, K.; Safinya, C. R.

    2004-03-01

    Cationic liposomes (CL), while intrinsically advantageous in comparison to viruses, still have limited success for gene therapy and require more study. CL spontaneously self-assemble with DNA via counterion release, forming small particles approximately 200nm in diameter. X-ray diffraction reveals CL-DNA structures that are typically a multilamellar organization of lipids with DNA intercalated between the layers. We explore the structural properties of CL-DNA complexes formed with new multivalent lipids (Ewert et al, J. Med. Chem. 2002; 45:5023) that range from 2+ to 16+. Contrary to a simple prediction for the DNA interaxial spacing d_DNA based on a geometrical space-filling model, these lipids show dramatic DNA compaction, down to d_DNA ˜ 25 ÅVariations in the membrane charge density, σ _M, lead to distinct spacing regimes. We propose that this DNA condensation is controlled by a unique locking mechanism between the DNA double helix and the large, multivalent lipid head groups. Funded by NSF DMR-0203755 and NIH GM-59288.

  18. Predicting DNA hybridization kinetics from sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Jinny X.; Fang, John Z.; Duan, Wei; Wu, Lucia R.; Zhang, Angela W.; Dalchau, Neil; Yordanov, Boyan; Petersen, Rasmus; Phillips, Andrew; Zhang, David Yu

    2018-01-01

    Hybridization is a key molecular process in biology and biotechnology, but so far there is no predictive model for accurately determining hybridization rate constants based on sequence information. Here, we report a weighted neighbour voting (WNV) prediction algorithm, in which the hybridization rate constant of an unknown sequence is predicted based on similarity reactions with known rate constants. To construct this algorithm we first performed 210 fluorescence kinetics experiments to observe the hybridization kinetics of 100 different DNA target and probe pairs (36 nt sub-sequences of the CYCS and VEGF genes) at temperatures ranging from 28 to 55 °C. Automated feature selection and weighting optimization resulted in a final six-feature WNV model, which can predict hybridization rate constants of new sequences to within a factor of 3 with ∼91% accuracy, based on leave-one-out cross-validation. Accurate prediction of hybridization kinetics allows the design of efficient probe sequences for genomics research.

  19. An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations

    NASA Astrophysics Data System (ADS)

    Bernal, M. A.; Sikansi, D.; Cavalcante, F.; Incerti, S.; Champion, C.; Ivanchenko, V.; Francis, Z.

    2013-12-01

    In this paper, an atomistic geometrical model for the B-DNA configuration is explained. This model accounts for five organization levels of the DNA, up to the 30 nm chromatin fiber. However, fragments of this fiber can be used to construct the whole genome. The algorithm developed in this work is capable to determine which is the closest atom with respect to an arbitrary point in space. It can be used in any application in which a DNA geometrical model is needed, for instance, in investigations related to the effects of ionizing radiations on the human genetic material. Successful consistency checks were carried out to test the proposed model. Catalogue identifier: AEPZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1245 No. of bytes in distributed program, including test data, etc.: 6574 Distribution format: tar.gz Programming language: FORTRAN. Computer: Any. Operating system: Multi-platform. RAM: 2 Gb Classification: 3. Nature of problem: The Monte Carlo method is used to simulate the interaction of ionizing radiation with the human genetic material in order to determine DNA damage yields per unit absorbed dose. To accomplish this task, an algorithm to determine if a given energy deposition lies within a given target is needed. This target can be an atom or any other structure of the genetic material. Solution method: This is a stand-alone subroutine describing an atomic-resolution geometrical model of the B-DNA configuration. It is able to determine the closest atom to an arbitrary point in space. This model accounts for five organization levels of the human genetic material, from the nucleotide pair up to the 30 nm chromatin fiber. This subroutine carries out a series of coordinate transformations

  20. The Human DNA glycosylases NEIL1 and NEIL3 Excise Psoralen-Induced DNA-DNA Cross-Links in a Four-Stranded DNA Structure.

    PubMed

    Martin, Peter R; Couvé, Sophie; Zutterling, Caroline; Albelazi, Mustafa S; Groisman, Regina; Matkarimov, Bakhyt T; Parsons, Jason L; Elder, Rhoderick H; Saparbaev, Murat K

    2017-12-12

    Interstrand cross-links (ICLs) are highly cytotoxic DNA lesions that block DNA replication and transcription by preventing strand separation. Previously, we demonstrated that the bacterial and human DNA glycosylases Nei and NEIL1 excise unhooked psoralen-derived ICLs in three-stranded DNA via hydrolysis of the glycosidic bond between the crosslinked base and deoxyribose sugar. Furthermore, NEIL3 from Xenopus laevis has been shown to cleave psoralen- and abasic site-induced ICLs in Xenopus egg extracts. Here we report that human NEIL3 cleaves psoralen-induced DNA-DNA cross-links in three-stranded and four-stranded DNA substrates to generate unhooked DNA fragments containing either an abasic site or a psoralen-thymine monoadduct. Furthermore, while Nei and NEIL1 also cleave a psoralen-induced four-stranded DNA substrate to generate two unhooked DNA duplexes with a nick, NEIL3 targets both DNA strands in the ICL without generating single-strand breaks. The DNA substrate specificities of these Nei-like enzymes imply the occurrence of long uninterrupted three- and four-stranded crosslinked DNA-DNA structures that may originate in vivo from DNA replication fork bypass of an ICL. In conclusion, the Nei-like DNA glycosylases unhook psoralen-derived ICLs in various DNA structures via a genuine repair mechanism in which complex DNA lesions can be removed without generation of highly toxic double-strand breaks.

  1. Assessing Diversity of DNA Structure-Related Sequence Features in Prokaryotic Genomes

    PubMed Central

    Huang, Yongjie; Mrázek, Jan

    2014-01-01

    Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches. PMID:24408877

  2. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences.

    PubMed

    Bacolla, Albino; Tainer, John A; Vasquez, Karen M; Cooper, David N

    2016-07-08

    Gross chromosomal rearrangements (including translocations, deletions, insertions and duplications) are a hallmark of cancer genomes and often create oncogenic fusion genes. An obligate step in the generation of such gross rearrangements is the formation of DNA double-strand breaks (DSBs). Since the genomic distribution of rearrangement breakpoints is non-random, intrinsic cellular factors may predispose certain genomic regions to breakage. Notably, certain DNA sequences with the potential to fold into secondary structures [potential non-B DNA structures (PONDS); e.g. triplexes, quadruplexes, hairpin/cruciforms, Z-DNA and single-stranded looped-out structures with implications in DNA replication and transcription] can stimulate the formation of DNA DSBs. Here, we tested the postulate that these DNA sequences might be found at, or in close proximity to, rearrangement breakpoints. By analyzing the distribution of PONDS-forming sequences within ±500 bases of 19 947 translocation and 46 365 sequence-characterized deletion breakpoints in cancer genomes, we find significant association between PONDS-forming repeats and cancer breakpoints. Specifically, (AT)n, (GAA)n and (GAAA)n constitute the most frequent repeats at translocation breakpoints, whereas A-tracts occur preferentially at deletion breakpoints. Translocation breakpoints near PONDS-forming repeats also recur in different individuals and patient tumor samples. Hence, PONDS-forming sequences represent an intrinsic risk factor for genomic rearrangements in cancer genomes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. The role of correlation and solvation in ion interactions with B-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sushko, Maria L.; Thomas, Dennis G.; Pabit, Suzette

    Ionic atmosphere around nucleic acids plays important roles in biological function. Large-scale explicit solvent simulations coupled to experimental assays such as anomalous small-angle X-ray scattering (ASAXS) can provide important insights into the structure and energetics of the ionic atmosphere but are time- and resource-intensive. In this paper, we demonstrate the use of classical density functional theory to model DNA-ion interactions and explore the balance between ion-DNA, ion-water, and ion-ion interactions. In particular, we compute the distribution of RbCl, SrCl2, and CoHexCl3 (cobalt hexammine chlo- ride) around a B-form DNA molecule. The accuracy of the DFT calculations was assessed by comparisonmore » between simulated and experimental ASAXS curves. As expected, these calculations revealed significant differences between the monovalent, divalent, and trivalent cations. About half of the DNA-bound Rb+ ions penetrate into the minor groove of the DNA and half adsorb on the DNA strands. The fraction of cations in the minor groove decreases for the larger Sr2+ ions and becomes zero for CoHex3+ ions, which all adsorb on the DNA strands. The distribution of CoHex3+ ions is mainly determined by Coulomb interactions, while ion-correlation forces play a central role in the monovalent Rb+ distribution and a combination of ion-correlation and hydration forces affect the Sr2+ distribution around DNA.« less

  4. Association of BMPR-1B and GDF9 genes polymorphisms and secondary protein structure changes with reproduction traits in Mehraban ewes.

    PubMed

    Abdoli, R; Zamani, P; Deljou, A; Rezvan, H

    2013-07-25

    BMPR-1B and GDF9 genes are well known due to their important effects on litter size and mechanisms controlling ovulation rate in sheep. In the present study, polymorphisms of BMPR-1B gene exon 8 and GDF9 gene exon 1 were detected by single strand conformational polymorphism (SSCP) analysis and DNA sequencing methods in 100 Mehraban ewes. The PCR reaction forced to amplify 140 and 380-bp fragments of BMPR-1B and GDF9 genes, respectively. Two single nucleotide polymorphisms (SNPS) were identified in two different SSCP patterns of BMPR-1B gene (CC and CA genotypes) that deduced one amino acid exchange. Also, two SNPS were identified in three different SSCP patterns of GDF9 gene (AA, AG and GG genotypes) that deduced one amino acid exchanges. Two different secondary structures of protein were predicted for BMPR-1B exon 8, but the secondary protein structures predicted for GDF9 exon 1 were similar together. The evaluation of the associations between the SSCP patterns and the protein structure changes with reproduction traits showed that BMPR-1B exon 8 genotypes have significant effects on some of reproduction traits but the GDF9 genotypes did not have any significant effect. The CA genotype of BMPR-1B exon 8 had a significant positive effect on reproduction performance and could be considered as an important and new mutation, affecting the ewes reproduction performance. Marker assisted selection using BMPR-IB gene could be noticed to improve the reproduction traits in Mehraban sheep. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Conformational dynamism for DNA interaction in the Salmonella RcsB response regulator.

    PubMed

    Casino, Patricia; Miguel-Romero, Laura; Huesa, Juanjo; García, Pablo; García-Del Portillo, Francisco; Marina, Alberto

    2018-01-09

    The RcsCDB phosphorelay system controls an extremely large regulon in Enterobacteriaceae that involves processes such as biofilm formation, flagella production, synthesis of extracellular capsules and cell division. Therefore, fine-tuning of this system is essential for virulence in pathogenic microorganisms of this group. The final master effector of the RcsCDB system is the response regulator (RR) RcsB, which activates or represses multiple genes by binding to different promoter regions. This regulatory activity of RcsB can be done alone or in combination with additional transcriptional factors in phosphorylated or dephosphorylated states. The capacity of RcsB to interact with multiple promoters and partners, either dephosphorylated or phosphorylated, suggests an extremely conformational dynamism for this RR. To shed light on the activation mechanism of RcsB and its implication on promoter recognition, we solved the crystal structure of full-length RcsB from Salmonella enterica serovar Typhimurium in the presence and absence of a phosphomimetic molecule BeF3-. These two novel structures have guided an extensive site-directed mutagenesis study at the structural and functional level that confirms RcsB conformational plasticity and dynamism. Our data allowed us to propose a β5-T switch mechanism where phosphorylation is coupled to alternative DNA binding ways and which highlights the conformational dynamism of RcsB to be so pleiotropic. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Self-entanglement of long linear DNA vectors using transient non-B-DNA attachment points: a new concept for improvement of non-viral therapeutic gene delivery.

    PubMed

    Tolmachov, Oleg E

    2012-05-01

    The cell-specific and long-term expression of therapeutic transgenes often requires a full array of native gene control elements including distal enhancers, regulatory introns and chromatin organisation sequences. The delivery of such extended gene expression modules to human cells can be accomplished with non-viral high-molecular-weight DNA vectors, in particular with several classes of linear DNA vectors. All high-molecular-weight DNA vectors are susceptible to damage by shear stress, and while for some of the vectors the harmful impact of shear stress can be minimised through the transformation of the vectors to compact topological configurations by supercoiling and/or knotting, linear DNA vectors with terminal loops or covalently attached terminal proteins cannot be self-compacted in this way. In this case, the only available self-compacting option is self-entangling, which can be defined as the folding of single DNA molecules into a configuration with mutual restriction of molecular motion by the individual segments of bent DNA. A negatively charged phosphate backbone makes DNA self-repulsive, so it is reasonable to assume that a certain number of 'sticky points' dispersed within DNA could facilitate the entangling by bringing DNA segments into proximity and by interfering with the DNA slipping away from the entanglement. I propose that the spontaneous entanglement of vector DNA can be enhanced by the interlacing of the DNA with sites capable of mutual transient attachment through the formation of non-B-DNA forms, such as interacting cruciform structures, inter-segment triplexes, slipped-strand DNA, left-handed duplexes (Z-forms) or G-quadruplexes. It is expected that the non-B-DNA based entanglement of the linear DNA vectors would consist of the initial transient and co-operative non-B-DNA mediated binding events followed by tight self-ensnarement of the vector DNA. Once in the nucleoplasm of the target human cells, the DNA can be disentangled by type II

  7. Predicting conformational ensembles and genome-wide transcription factor binding sites from DNA sequences.

    PubMed

    Andrabi, Munazah; Hutchins, Andrew Paul; Miranda-Saavedra, Diego; Kono, Hidetoshi; Nussinov, Ruth; Mizuguchi, Kenji; Ahmad, Shandar

    2017-06-22

    DNA shape is emerging as an important determinant of transcription factor binding beyond just the DNA sequence. The only tool for large scale DNA shape estimates, DNAshape was derived from Monte-Carlo simulations and predicts four broad and static DNA shape features, Propeller twist, Helical twist, Minor groove width and Roll. The contributions of other shape features e.g. Shift, Slide and Opening cannot be evaluated using DNAshape. Here, we report a novel method DynaSeq, which predicts molecular dynamics-derived ensembles of a more exhaustive set of DNA shape features. We compared the DNAshape and DynaSeq predictions for the common features and applied both to predict the genome-wide binding sites of 1312 TFs available from protein interaction quantification (PIQ) data. The results indicate a good agreement between the two methods for the common shape features and point to advantages in using DynaSeq. Predictive models employing ensembles from individual conformational parameters revealed that base-pair opening - known to be important in strand separation - was the best predictor of transcription factor-binding sites (TFBS) followed by features employed by DNAshape. Of note, TFBS could be predicted not only from the features at the target motif sites, but also from those as far as 200 nucleotides away from the motif.

  8. Structure and expression of dna methyltransferase genes from apomictic and sexual Boechera species.

    PubMed

    Taşkin, Kemal Melik; Özbilen, Aslıhan; Sezer, Fatih; Hürkan, Kaan; Güneş, Şebnem

    2017-04-01

    In this study, we determined the structure of DNA methyltransferase (DNMT) genes in apomict and sexual Boechera species and investigated the expression levels during seed development. Protein and DNA sequences of diploid sexual Boechera stricta DNMT genes obtained from Phytozome 10.3 were used to identify the homologues in apomicts, Boechera holboellii and Boechera divaricarpa. Geneious R8 software was used to map the short-paired reads library of B. holboellii whole genome or B. divaricarpa transcriptome reads to the reference gene sequences. We determined three DNMT genes; for Boechera spp. METHYLTRANSFERASE1 (MET1), CHROMOMETHYLASE 3 (CMT3) and DOMAINS REARRANGED METHYLTRANSFERASE 1/2 (DRM2). We examined the structure of these genes with bioinformatic tools and compared with other DNMT genes in plants. We also examined the levels of expression in silique tissues after fertilization by semi-quantitative PCR. The structure of DNMT proteins in apomict and sexual Boechera species share common features. However, the expression levels of DNMT genes were different in apomict and sexual Boechera species. We found that DRM2 was upregulated in apomictic Boechera species after fertilization. Phylogenetic trees showed that three genes are conserved among green algae, monocotyledons and dicotyledons. Our results indicated a deregulation of DNA methylation machinery during seed development in apomicts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Predicting DNA binding proteins using support vector machine with hybrid fractal features.

    PubMed

    Niu, Xiao-Hui; Hu, Xue-Hai; Shi, Feng; Xia, Jing-Bo

    2014-02-21

    DNA-binding proteins play a vitally important role in many biological processes. Prediction of DNA-binding proteins from amino acid sequence is a significant but not fairly resolved scientific problem. Chaos game representation (CGR) investigates the patterns hidden in protein sequences, and visually reveals previously unknown structure. Fractal dimensions (FD) are good tools to measure sizes of complex, highly irregular geometric objects. In order to extract the intrinsic correlation with DNA-binding property from protein sequences, CGR algorithm, fractal dimension and amino acid composition are applied to formulate the numerical features of protein samples in this paper. Seven groups of features are extracted, which can be computed directly from the primary sequence, and each group is evaluated by the 10-fold cross-validation test and Jackknife test. Comparing the results of numerical experiments, the group of amino acid composition and fractal dimension (21-dimension vector) gets the best result, the average accuracy is 81.82% and average Matthew's correlation coefficient (MCC) is 0.6017. This resulting predictor is also compared with existing method DNA-Prot and shows better performances. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  10. B-DNA Structure and Stability as Function of Nucleic Acid Composition: Dispersion-Corrected DFT Study of Dinucleoside Monophosphate Single and Double Strands

    PubMed Central

    Barone, Giampaolo; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2013-01-01

    We have computationally investigated the structure and stability of all 16 combinations of two out of the four natural DNA bases A, T, G and C in a di-2′-deoxyribonucleoside-monophosphate model DNA strand as well as in 10 double-strand model complexes thereof, using dispersion-corrected density functional theory (DFT-D). Optimized geometries with B-DNA conformation were obtained through the inclusion of implicit water solvent and, in the DNA models, of sodium counterions, to neutralize the negative charge of the phosphate groups. The results obtained allowed us to compare the relative stability of isomeric single and double strands. Moreover, the energy of the Watson–Crick pairing of complementary single strands to form double-helical structures was calculated. The latter furnished the following increasing stability trend of the double-helix formation energy: d(TpA)2

  11. Ultraviolet-B-induced DNA damage and ultraviolet-B tolerance mechanisms in species with different functional groups coexisting in subalpine moorlands.

    PubMed

    Wang, Qing-Wei; Kamiyama, Chiho; Hidema, Jun; Hikosaka, Kouki

    2016-08-01

    High doses of ultraviolet-B (UV-B; 280-315 nm) radiation can have detrimental effects on plants, and especially damage their DNA. Plants have DNA repair and protection mechanisms to prevent UV-B damage. However, it remains unclear how DNA damage and tolerance mechanisms vary among field species. We studied DNA damage and tolerance mechanisms in 26 species with different functional groups coexisting in two moorlands at two elevations. We collected current-year leaves in July and August, and determined accumulation of cyclobutane pyrimidine dimer (CPD) as UV-B damage and photorepair activity (PRA) and concentrations of UV-absorbing compounds (UACs) and carotenoids (CARs) as UV-B tolerance mechanisms. DNA damage was greater in dicot than in monocot species, and higher in herbaceous than in woody species. Evergreen species accumulated more CPDs than deciduous species. PRA was higher in Poaceae than in species of other families. UACs were significantly higher in woody than in herbaceous species. The CPD level was not explained by the mechanisms across species, but was significantly related to PRA and UACs when we ignored species with low CPD, PRA and UACs, implying the presence of another effective tolerance mechanism. UACs were correlated negatively with PRA and positively with CARs. Our results revealed that UV-induced DNA damage significantly varies among native species, and this variation is related to functional groups. DNA repair, rather than UV-B protection, dominates in UV-B tolerance in the field. Our findings also suggest that UV-B tolerance mechanisms vary among species under evolutionary trade-off and synergism.

  12. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.

    PubMed

    Zaman, Rianon; Chowdhury, Shahana Yasmin; Rashid, Mahmood A; Sharma, Alok; Dehzangi, Abdollah; Shatabda, Swakkhar

    2017-01-01

    DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  13. ProbeDesigner: for the design of probesets for branched DNA (bDNA) signal amplification assays.

    PubMed

    Bushnell, S; Budde, J; Catino, T; Cole, J; Derti, A; Kelso, R; Collins, M L; Molino, G; Sheridan, P; Monahan, J; Urdea, M

    1999-05-01

    The sensitivity and specificity of branched DNA (bDNA) assays are derived in part through the judicious design of the capture and label extender probes. To minimize non-specific hybridization (NSH) events, which elevate assay background, candidate probes must be computer screened for complementarity with generic sequences present in the assay. We present a software application which allows for rapid and flexible design of bDNA probesets for novel targets. It includes an algorithm for estimating the magnitude of NSH contribution to background, a mechanism for removing probes with elevated contributions, a methodology for the simultaneous design of probesets for multiple targets, and a graphical user interface which guides the user through the design steps. The program is available as a commercial package through the Pharmaceutical Drug Discovery program at Chiron Diagnostics.

  14. SNM1B/Apollo in the DNA damage response and telomere maintenance.

    PubMed

    Schmiester, Maren; Demuth, Ilja

    2017-07-18

    hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease.

  15. Structure and free energy of cholesteric DNA droplets

    NASA Astrophysics Data System (ADS)

    Strey, Helmut; Hong, Helen; Easwar, Nalini

    2000-03-01

    Liquid crystals of DNA are the simplest model systems for DNA packing in cell nuclei or in phage heads. With increasing concentration DNA solutions exhibit the following phases: hexagonal, line hexatic, cholesteric, blue phases. We will present measurements of defect structure and pitch of cholesteric spherulites of short fragment DNA (146 base pairs). DNA concentration as well as salt concentrations are controlled by bathing the spherulites in poly (ethylene glycol) (MW 35,000u) solutions of known osmotic pressure. Combining polarizing microscopy and x-ray scattering with the osmotic stress method allows us to monitor the cholesteric structure and pitch as a function of interaxial distance between DNA molecules as well as salt concentration and type. In particular, we present data on how the DNA cholesteric pitch unwinds when the line hexatic phase is approached.

  16. Monitoring the reversible B to A-like transition of DNA in eukaryotic cells using Fourier transform infrared spectroscopy

    PubMed Central

    Whelan, Donna R.; Bambery, Keith R.; Heraud, Philip; Tobin, Mark J.; Diem, Max; McNaughton, Don; Wood, Bayden R.

    2011-01-01

    The ability to detect DNA conformation in eukaryotic cells is of paramount importance in understanding how some cells retain functionality in response to environmental stress. It is anticipated that the B to A transition might play a role in resistance to DNA damage such as heat, desiccation and toxic damage. To this end, conformational detail about the molecular structure of DNA has been derived primarily from in vitro experiments on extracted or synthetic DNA. Here, we report that a B- to A-like DNA conformational change can occur in the nuclei of intact cells in response to dehydration. This transition is reversible upon rehydration in air-dried cells. By systematically monitoring the dehydration and rehydration of single and double-stranded DNA, RNA, extracted nuclei and three types of eukaryotic cells including chicken erythrocytes, mammalian lymphocytes and cancerous rodent fibroblasts using Fourier transform infrared (FTIR) spectroscopy, we unequivocally assign the important DNA conformation marker bands within these cells. We also demonstrate that by applying FTIR spectroscopy to hydrated samples, the DNA bands become sharper and more intense. This is anticipated to provide a methodology enabling differentiation of cancerous from non-cancerous cells based on the increased DNA content inherent to dysplastic and neoplastic tissue. PMID:21447564

  17. GeneBuilder: interactive in silico prediction of gene structure.

    PubMed

    Milanesi, L; D'Angelo, D; Rogozin, I B

    1999-01-01

    Prediction of gene structure in newly sequenced DNA becomes very important in large genome sequencing projects. This problem is complicated due to the exon-intron structure of eukaryotic genes and because gene expression is regulated by many different short nucleotide domains. In order to be able to analyse the full gene structure in different organisms, it is necessary to combine information about potential functional signals (promoter region, splice sites, start and stop codons, 3' untranslated region) together with the statistical properties of coding sequences (coding potential), information about homologous proteins, ESTs and repeated elements. We have developed the GeneBuilder system which is based on prediction of functional signals and coding regions by different approaches in combination with similarity searches in proteins and EST databases. The potential gene structure models are obtained by using a dynamic programming method. The program permits the use of several parameters for gene structure prediction and refinement. During gene model construction, selecting different exon homology levels with a protein sequence selected from a list of homologous proteins can improve the accuracy of the gene structure prediction. In the case of low homology, GeneBuilder is still able to predict the gene structure. The GeneBuilder system has been tested by using the standard set (Burset and Guigo, Genomics, 34, 353-367, 1996) and the performances are: 0.89 sensitivity and 0.91 specificity at the nucleotide level. The total correlation coefficient is 0.88. The GeneBuilder system is implemented as a part of the WebGene a the URL: http://www.itba.mi. cnr.it/webgene and TRADAT (TRAncription Database and Analysis Tools) launcher URL: http://www.itba.mi.cnr.it/tradat.

  18. Predicting nucleic acid binding interfaces from structural models of proteins.

    PubMed

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  19. Predicting nucleic acid binding interfaces from structural models of proteins

    PubMed Central

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2011-01-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767

  20. Structural Basis for Eukaryotic Transcription-Coupled DNA Repair Initiation

    PubMed Central

    Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A.; Chong, Jenny; Hare, Alissa A.; Dervan, Peter B.; DiMaio, Frank; Leschziner, Andres E.; Wang, Dong

    2017-01-01

    Eukaryotic transcription-coupled repair (TCR), or transcription-coupled nucleotide excision repair (TC-NER), is an important and well-conserved sub-pathway of nucleotide excision repair (NER) that preferentially removes DNA lesions from the template strand blocking RNA polymerase II (Pol II) translocation1,2. Cockayne syndrome group B protein in humans (CSB, or ERCC6), or its yeast orthologs (Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe), is among the first proteins to be recruited to the lesion-arrested Pol II during initiation of eukaryotic TCR1,3–10. Mutations in CSB are associated with Cockayne syndrome, an autosomal-recessive neurologic disorder characterized by progeriod features, growth failure, and photosensitivity1. The molecular mechanism of eukaryotic TCR initiation remains elusive, with several long-standing questions unanswered: How do cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II? How does CSB interact with the arrested Pol II complex? What is the role of CSB in TCR initiation? The lack of structures of CSB or the Pol II-CSB complex have hindered our ability to answer those questions. Here we report the first structure of S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy (cryo-EM). The structure reveals that Rad26 binds to the DNA upstream of Pol II where it dramatically alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes forward movement of Pol II and elucidate key roles for Rad26/CSB in both TCR and transcription elongation. PMID:29168508

  1. Clones from a shooty tobacco crown gall tumor I: deletions, rearrangements and amplifications resulting in irregular T-DNA structures and organizations.

    PubMed

    Peerbolte, R; Leenhouts, K; Hooykaas-van Slogteren, G M; Hoge, J H; Wullems, G J; Schilperoort, R A

    1986-07-01

    Transformed clones from a shooty tobacco crown gall tumor, induced byAgrobacterium tumefaciens strain LBA1501, having a Tn1831 insertion in the auxin locus, were investigated for their T-DNA structure and expression. In addition to clones with the expected phenotype, i.e. phytohormone autonomy, regeneration of non-rooting shoots and octopine synthesis (Aut(+)Reg(+)Ocs(+) 'type I' clones), clones were obtained with an aberrant phenotype. Among these were the Aut(-)Reg(-)Ocs(+) 'type II' clones. Two shooty type I clones and three type II callus clones (all randomly chosen) as well as a rooting shoot regenerated from a type II clone via a high kinetin treatment, all had a T-DNA structure which differed significantly from 'regular' T-DNA structures. No Tn1831 DNA sequences were detected in these clones. The two type I clones were identical: they both contained the same highly truncated T-DNA segments. One TL-DNA segment of approximately 0.7 kb, originating form the left part of the TL-region, was present at one copy per diploid tobacco genome. Another segment with a maximum size of about 7 kb was derived from the right hand part of the TL-region and was present at minimally two copies. Three copies of a truncated TR-DNA segment were detected, probably starting at the right TR-DNA border repeat and ending halfway the regular TR-region. Indications have been obtained that at least some of the T-DNA segments are closely linked, sometimes via intervening plant DNA sequences. The type I clones harbored TL-DNA transcripts 4, 6a/b and 3 as well as TR-DNA transcript 0'. The type II clones harbored three to six highly truncated T-DNA segments, originating from the right part of the TL-region. In addition they had TR-DNA segments, similar to those of the type I clones. On Northern blots TR-DNA transcripts 0' and 1' were detected as well as the TL-DNA transcripts 3 and 6a/b and an 1800 bp hybrid transcript (tr.Y) containing gene 6b sequences. Possible origins of the observed

  2. Transcription blockage by stable H-DNA analogs in vitro

    PubMed Central

    Pandey, Shristi; Ogloblina, Anna M.; Belotserkovskii, Boris P.; Dolinnaya, Nina G.; Yakubovskaya, Marianna G.; Mirkin, Sergei M.; Hanawalt, Philip C.

    2015-01-01

    DNA sequences that can form unusual secondary structures are implicated in regulating gene expression and causing genomic instability. H-palindromes are an important class of such DNA sequences that can form an intramolecular triplex structure, H-DNA. Within an H-palindrome, the H-DNA and canonical B-DNA are in a dynamic equilibrium that shifts toward H-DNA with increased negative supercoiling. The interplay between H- and B-DNA and the fact that the process of transcription affects supercoiling makes it difficult to elucidate the effects of H-DNA upon transcription. We constructed a stable structural analog of H-DNA that cannot flip into B-DNA, and studied the effects of this structure on transcription by T7 RNA polymerase in vitro. We found multiple transcription blockage sites adjacent to and within sequences engaged in this triplex structure. Triplex-mediated transcription blockage varied significantly with changes in ambient conditions: it was exacerbated in the presence of Mn2+ or by increased concentrations of K+ and Li+. Analysis of the detailed pattern of the blockage suggests that RNA polymerase is sterically hindered by H-DNA and has difficulties in unwinding triplex DNA. The implications of these findings for the biological roles of triple-stranded DNA structures are discussed. PMID:26101261

  3. An Improved Method for TAL Effectors DNA-Binding Sites Prediction Reveals Functional Convergence in TAL Repertoires of Xanthomonas oryzae Strains

    PubMed Central

    Pérez-Quintero, Alvaro L.; Rodriguez-R, Luis M.; Dereeper, Alexis; López, Camilo; Koebnik, Ralf; Szurek, Boris; Cunnac, Sebastien

    2013-01-01

    Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs. PMID:23869221

  4. Self-assembled DNA Structures for Nanoconstruction

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.

    2004-09-01

    In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.

  5. BEST: Improved Prediction of B-Cell Epitopes from Antigen Sequences

    PubMed Central

    Gao, Jianzhao; Faraggi, Eshel; Zhou, Yaoqi; Ruan, Jishou; Kurgan, Lukasz

    2012-01-01

    Accurate identification of immunogenic regions in a given antigen chain is a difficult and actively pursued problem. Although accurate predictors for T-cell epitopes are already in place, the prediction of the B-cell epitopes requires further research. We overview the available approaches for the prediction of B-cell epitopes and propose a novel and accurate sequence-based solution. Our BEST (B-cell Epitope prediction using Support vector machine Tool) method predicts epitopes from antigen sequences, in contrast to some method that predict only from short sequence fragments, using a new architecture based on averaging selected scores generated from sliding 20-mers by a Support Vector Machine (SVM). The SVM predictor utilizes a comprehensive and custom designed set of inputs generated by combining information derived from the chain, sequence conservation, similarity to known (training) epitopes, and predicted secondary structure and relative solvent accessibility. Empirical evaluation on benchmark datasets demonstrates that BEST outperforms several modern sequence-based B-cell epitope predictors including ABCPred, method by Chen et al. (2007), BCPred, COBEpro, BayesB, and CBTOPE, when considering the predictions from antigen chains and from the chain fragments. Our method obtains a cross-validated area under the receiver operating characteristic curve (AUC) for the fragment-based prediction at 0.81 and 0.85, depending on the dataset. The AUCs of BEST on the benchmark sets of full antigen chains equal 0.57 and 0.6, which is significantly and slightly better than the next best method we tested. We also present case studies to contrast the propensity profiles generated by BEST and several other methods. PMID:22761950

  6. Structure of a DNA glycosylase that unhooks interstrand cross-links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, Elwood A.; Warren, Garrett M.; Bradley, Noah P.

    DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of Streptomyces sahachiroi AlkZ (previously Orf1), a bacterial DNA glycosylase that protectsmore » its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.« less

  7. Prediction of B1 to B10 phase transition in LuN under pressure: An ab-initio investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.

    2016-05-23

    Ab-initio total energy calculations have been performed in lutetium nitride (LuN) as a function of hydrostatic compression to understand the high pressure behavior of this compound. Our calculations predict a phase transition from ambient rocksalt type structure (B1 phase) to a tetragonal structure (B10 phase) at ~ 240 GPa. The phase transition has been identified as first order in nature with volume discontinuity of ~ 6%. The predicted high pressure phase has been found to be stable up to at least 400 GPa, the maximum pressure up to which calculations have been performed.Further, to substantiate the results of static lattice calculations analysismore » of lattice dynamic stability of B1 and B10 phase has been carried out at different pressures. Apart from this, we have analyzed the lattice dynamic stability CsCl type (B2) phase around the 240 GPa, the pressure reported for B1 to B2 transition in previous all-electron calculations by Gupta et al. 2013. We find that the B2 structure is lattice dynamically unstable at this pressure and remains unstable up to ~ 400 GPa, ruling out the possibility of B1 to B2 phase transition at least up to ~ 400 GPa. Further, the theoretically determined equation of state has been utilized to derive various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus of B1 phase at ambient conditions.« less

  8. Size-Expanded yDNA bases: An Ab Initio Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes-Cabrera, Miguel A; Sumpter, Bobby G; Lipkowski, Pawel

    2006-01-01

    xDNA and yDNA are new classes of synthetic nucleic acids characterized by having base-pairs with one of the bases larger than the natural congeners. Here these larger bases are called x- and y-bases. We recently investigated and reported the structural and electronic properties of the x-bases (Fuentes-Cabrera et al. J. Phys. Chem. B 2005, 109, 21135-21139). Here we extend this study by investigating the structure and electronic properties of the y-bases. These studies are framed within our interest that xDNA and yDNA could function as nanowires, for they could have smaller HOMO-LUMO gaps than natural DNA. The limited amount ofmore » experimental structural data in these synthetic duplexes makes it necessary to first understand smaller models and, subsequently, to use that information to build larger models. In this paper, we report the results on the chemical and electronic structure of the y-bases. In particular, we predict that the y-bases have smaller HOMO-LUMO gaps than their natural congeners, which is an encouraging result for it indicates that yDNA could have a smaller HOMO-LUMO gap than natural DNA. Also, we predict that the y-bases are less planar than the natural ones. Particularly interesting are our results corresponding to yG. Our studies show that yG is unstable because it is less aromatic and has a Coulombic repulsion that involves the amino group, as compared with a more stable tautomer. However, yG has a very small HOMO-LUMO gap, the smallest of all the size-expanded bases we have considered. The results of this study provide useful information that may allow the synthesis of an yG-mimic that is stable and has a small HOMO-LUMO gap.« less

  9. Blind Predictions of DNA and RNA Tweezers Experiments with Force and Torque

    PubMed Central

    Chou, Fang-Chieh; Lipfert, Jan; Das, Rhiju

    2014-01-01

    Single-molecule tweezers measurements of double-stranded nucleic acids (dsDNA and dsRNA) provide unprecedented opportunities to dissect how these fundamental molecules respond to forces and torques analogous to those applied by topoisomerases, viral capsids, and other biological partners. However, tweezers data are still most commonly interpreted post facto in the framework of simple analytical models. Testing falsifiable predictions of state-of-the-art nucleic acid models would be more illuminating but has not been performed. Here we describe a blind challenge in which numerical predictions of nucleic acid mechanical properties were compared to experimental data obtained recently for dsRNA under applied force and torque. The predictions were enabled by the HelixMC package, first presented in this paper. HelixMC advances crystallography-derived base-pair level models (BPLMs) to simulate kilobase-length dsDNAs and dsRNAs under external forces and torques, including their global linking numbers. These calculations recovered the experimental bending persistence length of dsRNA within the error of the simulations and accurately predicted that dsRNA's “spring-like” conformation would give a two-fold decrease of stretch modulus relative to dsDNA. Further blind predictions of helix torsional properties, however, exposed inaccuracies in current BPLM theory, including three-fold discrepancies in torsional persistence length at the high force limit and the incorrect sign of dsRNA link-extension (twist-stretch) coupling. Beyond these experiments, HelixMC predicted that ‘nucleosome-excluding’ poly(A)/poly(T) is at least two-fold stiffer than random-sequence dsDNA in bending, stretching, and torsional behaviors; Z-DNA to be at least three-fold stiffer than random-sequence dsDNA, with a near-zero link-extension coupling; and non-negligible effects from base pair step correlations. We propose that experimentally testing these predictions should be powerful next steps for

  10. Structure of fluorescent metal clusters on a DNA template.

    NASA Astrophysics Data System (ADS)

    Vdovichev, A. A.; Sych, T. S.; Reveguk, Z. V.; Smirnova, A. A.; Maksimov, D. A.; Ramazanov, R. R.; Kononov, A. I.

    2016-08-01

    Luminescent metal clusters are a subject of growing interest in recent years due to their bright emission from visible to near infrared range. Detailed structure of the fluorescent complexes of Ag and other metal clusters with ligands still remains a challenging task. In this joint experimental and theoretical study we synthesized Ag-DNA complexes on a DNA oligonucleotide emitting in violet- green spectral range. The structure of DNA template was determined by means of various spectral measurements (CD, MS, XPS). Comparison of the experimental fluorescent excitation spectra and calculated absorption spectra for different QM/MM optimized structures allowed us to determine the detailed structure of the green cluster containing three silver atoms in the stem of the DNA hairpin structure stabilized by cytosine-Ag+-cytosine bonds.

  11. SNM1B/Apollo in the DNA damage response and telomere maintenance

    PubMed Central

    Schmiester, Maren; Demuth, Ilja

    2017-01-01

    hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease. PMID:28430596

  12. From structure to mechanism—understanding initiation of DNA replication

    PubMed Central

    Riera, Alberto; Barbon, Marta; Noguchi, Yasunori; Reuter, L. Maximilian; Schneider, Sarah; Speck, Christian

    2017-01-01

    DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability. PMID:28717046

  13. iDBPs: a web server for the identification of DNA binding proteins

    PubMed Central

    Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir

    2010-01-01

    Summary: The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. Availability: http://idbps.tau.ac.il/ Contact: NirB@tauex.tau.ac.il Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20089514

  14. Polymorphic design of DNA origami structures through mechanical control of modular components.

    PubMed

    Lee, Chanseok; Lee, Jae Young; Kim, Do-Nyun

    2017-12-12

    Scaffolded DNA origami enables the bottom-up fabrication of diverse DNA nanostructures by designing hundreds of staple strands, comprised of complementary sequences to the specific binding locations of a scaffold strand. Despite its exceptionally high design flexibility, poor reusability of staples has been one of the major hurdles to fabricate assorted DNA constructs in an effective way. Here we provide a rational module-based design approach to create distinct bent shapes with controllable geometries and flexibilities from a single, reference set of staples. By revising the staple connectivity within the desired module, we can control the location, stiffness, and included angle of hinges precisely, enabling the construction of dozens of single- or multiple-hinge structures with the replacement of staple strands up to 12.8% only. Our design approach, combined with computational shape prediction and analysis, can provide a versatile and cost-effective procedure in the design of DNA origami shapes with stiffness-tunable units.

  15. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    PubMed

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  16. FANCJ promotes DNA synthesis through G-quadruplex structures

    PubMed Central

    Castillo Bosch, Pau; Segura-Bayona, Sandra; Koole, Wouter; van Heteren, Jane T; Dewar, James M; Tijsterman, Marcel; Knipscheer, Puck

    2014-01-01

    Our genome contains many G-rich sequences, which have the propensity to fold into stable secondary DNA structures called G4 or G-quadruplex structures. These structures have been implicated in cellular processes such as gene regulation and telomere maintenance. However, G4 sequences are prone to mutations particularly upon replication stress or in the absence of specific helicases. To investigate how G-quadruplex structures are resolved during DNA replication, we developed a model system using ssDNA templates and Xenopus egg extracts that recapitulates eukaryotic G4 replication. Here, we show that G-quadruplex structures form a barrier for DNA replication. Nascent strand synthesis is blocked at one or two nucleotides from the G4. After transient stalling, G-quadruplexes are efficiently unwound and replicated. In contrast, depletion of the FANCJ/BRIP1 helicase causes persistent replication stalling at G-quadruplex structures, demonstrating a vital role for this helicase in resolving these structures. FANCJ performs this function independently of the classical Fanconi anemia pathway. These data provide evidence that the G4 sequence instability in FANCJ−/− cells and Fancj/dog1 deficient C. elegans is caused by replication stalling at G-quadruplexes. PMID:25193968

  17. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.

    PubMed

    Pedersen, Hege Lynum; Johnson, Kenneth A; McVey, Colin E; Leiros, Ingar; Moe, Elin

    2015-10-01

    Uracil-DNA N-glycosylase (UNG) is a DNA-repair enzyme in the base-excision repair (BER) pathway which removes uracil from DNA. Here, the crystal structure of UNG from the extremophilic bacterium Deinococcus radiodurans (DrUNG) in complex with DNA is reported at a resolution of 1.35 Å. Prior to the crystallization experiments, the affinity between DrUNG and different DNA oligonucleotides was tested by electrophoretic mobility shift assays (EMSAs). As a result of this analysis, two 16 nt double-stranded DNAs were chosen for the co-crystallization experiments, one of which (16 nt AU) resulted in well diffracting crystals. The DNA in the co-crystal structure contained an abasic site (substrate product) flipped into the active site of the enzyme, with no uracil in the active-site pocket. Despite the high resolution, it was not possible to fit all of the terminal nucleotides of the DNA complex into electron density owing to disorder caused by a lack of stabilizing interactions. However, the DNA which was in contact with the enzyme, close to the active site, was well ordered and allowed detailed analysis of the enzyme-DNA interaction. The complex revealed that the interaction between DrUNG and DNA is similar to that in the previously determined crystal structure of human UNG (hUNG) in complex with DNA [Slupphaug et al. (1996). Nature (London), 384, 87-92]. Substitutions in a (here defined) variable part of the leucine loop result in a shorter loop (eight residues instead of nine) in DrUNG compared with hUNG; regardless of this, it seems to fulfil its role and generate a stabilizing force with the minor groove upon flipping out of the damaged base into the active site. The structure also provides a rationale for the previously observed high catalytic efficiency of DrUNG caused by high substrate affinity by demonstrating an increased number of long-range electrostatic interactions between the enzyme and the DNA. Interestingly, specific interactions between residues

  18. Making Ordered DNA and Protein Structures from Computer-Printed Transparency Film Cut-Outs

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Instructions are given for building physical scale models of ordered structures of B-form DNA, protein [alpha]-helix, and parallel and antiparallel protein [beta]-pleated sheets made from colored computer printouts designed for transparency film sheets. Cut-outs from these sheets are easily assembled. Conventional color coding for atoms are used…

  19. Fluoroquinolone-Gyrase-DNA Complexes

    PubMed Central

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M.; Hiasa, Hiroshi; Marks, Kevin R.; Kerns, Robert J.; Berger, James M.; Drlica, Karl

    2014-01-01

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases. PMID:24497635

  20. Similarities and Differences between RNA and DNA Double-Helical Structures in Circular Dichroism Spectroscopy: A SAC-CI Study.

    PubMed

    Miyahara, Tomoo; Nakatsuji, Hiroshi; Sugiyama, Hiroshi

    2016-11-17

    The helical structures of DNA and RNA are investigated experimentally using circular dichroism (CD) spectroscopy. The signs and the shapes of the CD spectra are much different between the right- and left-handed structures as well as between DNA and RNA. The main difference lies in the sign at around 295 nm of the CD spectra: it is positive for the right-handed B-DNA and the left-handed Z-RNA but is negative for the left-handed Z-DNA and the right-handed A-RNA. We calculated the SAC-CI CD spectra of DNA and RNA using the tetramer models, which include both hydrogen-bonding and stacking interactions that are important in both DNA and RNA. The SAC-CI results reproduced the features at around 295 nm of the experimental CD spectra of each DNA and RNA, and elucidated that the strong stacking interaction between the two base pairs is the origin of the negative peaks at 295 nm of the CD spectra for both DNA and RNA. On the basis of these facts, we discuss the similarities and differences between RNA and DNA double-helical structures in the CD spectroscopy based on the ChiraSac methodology.

  1. Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure.

    PubMed

    Gram, Anna M; Sun, Chenglong; Landman, Sanne L; Oosenbrug, Timo; Koppejan, Hester J; Kwakkenbos, Mark J; Hoeben, Rob C; Paludan, Søren R; Ressing, Maaike E

    2017-11-01

    Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion. Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. A Paper Model of DNA Structure and Replication.

    ERIC Educational Resources Information Center

    Sigismondi, Linda A.

    1989-01-01

    A paper model which is designed to give students a hands-on experience during lecture and blackboard instruction on DNA structure is provided. A list of materials, paper patterns, and procedures for using the models to teach DNA structure and replication are given. (CW)

  3. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xun; Guanga, Gerald P; Wan, Cheng

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G –5C –4 andmore » central C 0/G 0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.« less

  4. NF-κB inhibition delays DNA damage–induced senescence and aging in mice

    PubMed Central

    Tilstra, Jeremy S.; Robinson, Andria R.; Wang, Jin; Gregg, Siobhán Q.; Clauson, Cheryl L.; Reay, Daniel P.; Nasto, Luigi A.; St Croix, Claudette M.; Usas, Arvydas; Vo, Nam; Huard, Johnny; Clemens, Paula R.; Stolz, Donna B.; Guttridge, Denis C.; Watkins, Simon C.; Garinis, George A.; Wang, Yinsheng; Niedernhofer, Laura J.; Robbins, Paul D.

    2012-01-01

    The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB–activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging. PMID:22706308

  5. From structure to mechanism-understanding initiation of DNA replication.

    PubMed

    Riera, Alberto; Barbon, Marta; Noguchi, Yasunori; Reuter, L Maximilian; Schneider, Sarah; Speck, Christian

    2017-06-01

    DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2-7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability. © 2017 Riera et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Design, Synthesis, and Evaluation of Novel Tyrosine-Based DNA Gyrase B Inhibitors.

    PubMed

    Cotman, Andrej E; Trampuž, Marko; Brvar, Matjaž; Kikelj, Danijel; Ilaš, Janez; Peterlin-Mašič, Lucija; Montalvão, Sofia; Tammela, Päivi; Frlan, Rok

    2017-08-01

    The discovery and synthesis of new tyrosine-based inhibitors of DNA gyrase B (GyrB), which target its ATPase subunit, is reported. Twenty-four compounds were synthesized and evaluated for activity against DNA gyrase and DNA topoisomerase IV. The antibacterial properties of selected GyrB inhibitors were demonstrated by their activity against Staphylococcus aureus and Enterococcus faecalis in the low micromolar range. The most promising compounds, 8a and 13e, inhibited Escherichia coli and S. aureus GyrB with IC 50 values of 40 and 30 µM. The same compound also inhibited the growth of S. aureus and E. faecalis with minimal inhibitory concentrations (MIC 90 ) of 14 and 28 µg/mL, respectively. © 2017 Deutsche Pharmazeutische Gesellschaft.

  7. DNA breaks early in replication in B cell cancers

    Cancer.gov

    Research by scientists at the NCI has identified a new class of DNA sites in cells that break early in the replication process. They found that these break sites correlate with damage often seen in B cell cancers, such as diffuse large B cell lymphoma.

  8. Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation.

    PubMed

    Iwasa, Takuma; Han, Yong-Woon; Hiramatsu, Ryo; Yokota, Hiroaki; Nakao, Kimiko; Yokokawa, Ryuji; Ono, Teruo; Harada, Yoshie

    2015-12-14

    The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA-RuvB-Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA-Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA-Holliday junction DNA complex in the following order: no nucleotide, ADP, ATPγS, and mixture of ADP and ATPγS. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA-RuvB-Holliday junction DNA complex formation.

  9. Structural mechanics of DNA wrapping in the nucleosome.

    PubMed

    Battistini, Federica; Hunter, Christopher A; Gardiner, Eleanor J; Packer, Martin J

    2010-02-19

    Experimental X-ray crystal structures and a database of calculated structural parameters of DNA octamers were used in combination to analyse the mechanics of DNA bending in the nucleosome core complex. The 1kx5 X-ray crystal structure of the nucleosome core complex was used to determine the relationship between local structure at the base-step level and the global superhelical conformation observed for nucleosome-bound DNA. The superhelix is characterised by a large curvature (597 degrees) in one plane and very little curvature (10 degrees) in the orthogonal plane. Analysis of the curvature at the level of 10-step segments shows that there is a uniform curvature of 30 degrees per helical turn throughout most of the structure but that there are two sharper kinks of 50 degrees at +/-2 helical turns from the central dyad base pair. The curvature is due almost entirely to the base-step parameter roll. There are large periodic variations in roll, which are in phase with the helical twist and account for 500 degrees of the total curvature. Although variations in the other base-step parameters perturb the local path of the DNA, they make minimal contributions to the total curvature. This implies that DNA bending in the nucleosome is achieved using the roll-slide-twist degree of freedom previously identified as the major degree of freedom in naked DNA oligomers. The energetics of bending into a nucleosome-bound conformation were therefore analysed using a database of structural parameters that we have previously developed for naked DNA oligomers. The minimum energy roll, the roll flexibility force constant and the maximum and minimum accessible roll values were obtained for each base step in the relevant octanucleotide context to account for the effects of conformational coupling that vary with sequence context. The distribution of base-step roll values and corresponding strain energy required to bend DNA into the nucleosome-bound conformation defined by the 1kx5 structure

  10. Transcription blockage by stable H-DNA analogs in vitro.

    PubMed

    Pandey, Shristi; Ogloblina, Anna M; Belotserkovskii, Boris P; Dolinnaya, Nina G; Yakubovskaya, Marianna G; Mirkin, Sergei M; Hanawalt, Philip C

    2015-08-18

    DNA sequences that can form unusual secondary structures are implicated in regulating gene expression and causing genomic instability. H-palindromes are an important class of such DNA sequences that can form an intramolecular triplex structure, H-DNA. Within an H-palindrome, the H-DNA and canonical B-DNA are in a dynamic equilibrium that shifts toward H-DNA with increased negative supercoiling. The interplay between H- and B-DNA and the fact that the process of transcription affects supercoiling makes it difficult to elucidate the effects of H-DNA upon transcription. We constructed a stable structural analog of H-DNA that cannot flip into B-DNA, and studied the effects of this structure on transcription by T7 RNA polymerase in vitro. We found multiple transcription blockage sites adjacent to and within sequences engaged in this triplex structure. Triplex-mediated transcription blockage varied significantly with changes in ambient conditions: it was exacerbated in the presence of Mn(2+) or by increased concentrations of K(+) and Li(+). Analysis of the detailed pattern of the blockage suggests that RNA polymerase is sterically hindered by H-DNA and has difficulties in unwinding triplex DNA. The implications of these findings for the biological roles of triple-stranded DNA structures are discussed. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. [Serum levels of HCV-RNA determined by branched DNA (bDNA) probe assay in chronic hepatitis C: method and clinical significance on interferon (IFN) therapy].

    PubMed

    Osada, T; Iwabuchi, S; Takatori, M; Murayama, M; Iino, S

    1994-07-01

    Recently serum levels of HCV RNA (s-HCV RNA) in chronic hepatitis C has been regarded as one of an important indicator for the activity of disease and outcome of IFN therapy. Quantitative analysis by competitive RT-PCR, however, requires special skills and is too expensive for clinical use. We attempted to determine serial sample of s-HCV RNA and genotypes in 117 cases treated with IFN using bDNA probe assay which has lately been developed by Chiron corporation. Cases with complete response to IFN therapy showed 62% (49/79) in lower than 10(6) levels, 27% (8/30) in 10(6)-10(7) and only 5% (2/41) in higher than 10(7). Genotype III, IV had higher response than type II on the same level of s-HCV RNA. These data indicates that determination of s-HCV levels by bDNA assay may be useful for prediction of the outcome of IFN therapy and making adequate schedule of the therapy in each cases.

  12. Comparison of the Chiron Quantiplex branched DNA (bDNA) assay and the Abbott Genostics solution hybridization assay for quantification of hepatitis B viral DNA.

    PubMed

    Kapke, G E; Watson, G; Sheffler, S; Hunt, D; Frederick, C

    1997-01-01

    Several assays for quantification of DNA have been developed and are currently used in research and clinical laboratories. However, comparison of assay results has been difficult owing to the use of different standards and units of measurements as well as differences between assays in dynamic range and quantification limits. Although a few studies have compared results generated by different assays, there has been no consensus on conversion factors and thorough analysis has been precluded by small sample size and limited dynamic range studied. In this study, we have compared the Chiron branched DNA (bDNA) and Abbott liquid hybridization assays for quantification of hepatitis B virus (HBV) DNA in clinical specimens and have derived conversion factors to facilitate comparison of assay results. Additivity and variance stabilizing (AVAS) regression, a form of non-linear regression analysis, was performed on assay results for specimens from HBV clinical trials. Our results show that there is a strong linear relationship (R2 = 0.96) between log Chiron and log Abbott assay results. Conversion factors derived from regression analyses were found to be non-constant and ranged from 6-40. Analysis of paired assay results below and above each assay's limit of quantification (LOQ) indicated that a significantly (P < 0.01) larger proportion of observations were below the Abbott assay LOQ but above the Chiron assay LOQ, indicating that the Chiron assay is significantly more sensitive than the Abbott assay. Testing of replicate specimens showed that the Chiron assay consistently yielded lower per cent coefficients of variance (% CVs) than the Abbott assay, indicating that the Chiron assay provides superior precision.

  13. De Novo Design of Protein Mimics of B-DNA

    PubMed Central

    Yüksel, Deniz; Bianco, Piero R.; Kumar, Krishna

    2015-01-01

    Structural mimicry of DNA is utilized in nature as a strategy to evade molecular defences mounted by host organisms. One such example is the protein Ocr – the first translation product to be expressed as the bacteriophage T7 infects E. coli. The structure of Ocr reveals an intricate and deliberate arrangement of negative charges that endows it with the ability to mimic ∼24 base pair stretches of B–DNA. This uncanny resemblance to DNA enables Ocr to compete in binding the type I restriction modification (R/M) system, and neutralizes the threat of hydrolytic cleavage of viral genomic material. Here, we report the de novo design and biophysical characterization of DNA mimicking peptides, and describe the inhibitory action of the designed helical bundles on a type I R/M enzyme, EcoR124I. This work validates the use of charge patterning as a design principle for creation of protein mimics of DNA, and serves as a starting point for development of therapeutic peptide inhibitors against human pathogens that employ molecular camouflage as part of their invasion stratagem. PMID:26568416

  14. Communication: Origin of the contributions to DNA structure in phages

    PubMed Central

    Myers, Christopher G.; Pettitt, B. Montgomery

    2013-01-01

    Cryo electron microscopy (cryo-EM) data of the interior of phages show ordering of the interior DNA that has been interpreted as a nearly perfectly ordered polymer. We show surface-induced correlations, excluded volume, and electrostatic forces are sufficient to predict most of the major features of the current structural data for DNA packaged within viral capsids without additional ordering due to elastic bending forces for the polymer. Current models assume highly-ordered, even spooled, hexagonally packed conformations based on interpretation of cryo-EM density maps. We show herein that the surface induced packing of short (6mer), unconnected DNA polymer segments is the only necessary ingredient in creating ringed densities consistent with experimental density maps. This implies the ensemble of possible conformations of polymeric DNA within the capsid that are consistent with cryo-EM data may be much larger than implied by traditional interpretations where such rings can only result from highly-ordered spool-like conformations. This opens the possibility of a more disordered, entropically-driven view of phage packaging thermodynamics. We also show the electrostatics of the DNA contributes a large portion of the internal hydrostatic and osmotic pressures of a phage virion, suggesting that nonlinear elastic anomalies might reduce the overall elastic bending enthalpy of more disordered conformations to have allowable free energies. PMID:23444988

  15. Communication: Origin of the contributions to DNA structure in phages.

    PubMed

    Myers, Christopher G; Pettitt, B Montgomery

    2013-02-21

    Cryo electron microscopy (cryo-EM) data of the interior of phages show ordering of the interior DNA that has been interpreted as a nearly perfectly ordered polymer. We show surface-induced correlations, excluded volume, and electrostatic forces are sufficient to predict most of the major features of the current structural data for DNA packaged within viral capsids without additional ordering due to elastic bending forces for the polymer. Current models assume highly-ordered, even spooled, hexagonally packed conformations based on interpretation of cryo-EM density maps. We show herein that the surface induced packing of short (6mer), unconnected DNA polymer segments is the only necessary ingredient in creating ringed densities consistent with experimental density maps. This implies the ensemble of possible conformations of polymeric DNA within the capsid that are consistent with cryo-EM data may be much larger than implied by traditional interpretations where such rings can only result from highly-ordered spool-like conformations. This opens the possibility of a more disordered, entropically-driven view of phage packaging thermodynamics. We also show the electrostatics of the DNA contributes a large portion of the internal hydrostatic and osmotic pressures of a phage virion, suggesting that nonlinear elastic anomalies might reduce the overall elastic bending enthalpy of more disordered conformations to have allowable free energies.

  16. The structural impact of DNA mismatches

    PubMed Central

    Rossetti, Giulia; Dans, Pablo D.; Gomez-Pinto, Irene; Ivani, Ivan; Gonzalez, Carlos; Orozco, Modesto

    2015-01-01

    The structure and dynamics of all the transversion and transition mismatches in three different DNA environments have been characterized by molecular dynamics simulations and NMR spectroscopy. We found that the presence of mismatches produced significant local structural alterations, especially in the case of purine transversions. Mismatched pairs often show promiscuous hydrogen bonding patterns, which interchange among each other in the nanosecond time scale. This therefore defines flexible base pairs, where breathing is frequent, and where distortions in helical parameters are strong, resulting in significant alterations in groove dimension. Even if the DNA structure is plastic enough to absorb the structural impact of the mismatch, local structural changes can be propagated far from the mismatch site, following the expected through-backbone and a previously unknown through-space mechanism. The structural changes related to the presence of mismatches help to understand the different susceptibility of mismatches to the action of repairing proteins. PMID:25820425

  17. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role?

    PubMed

    Barros, Alain Victor; Wolski, Michele Andressa Vier; Nogaroto, Viviane; Almeida, Mara Cristina; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo

    2017-04-15

    Repetitive DNA regions are known as fragile chromosomal sites which present a high flexibility and low stability. Our focus was characterize fragile sites in 5S rDNA regions. The Ancistrus sp. species shows a diploid number of 50 and an indicative Robertsonian fusion at chromosomal pair 1. Two sequences of 5S rDNA were identified: 5S.1 rDNA and 5S.2 rDNA. The first sequence gathers the necessary structures to gene expression and shows a functional secondary structure prediction. Otherwise, the 5S.2 rDNA sequence does not contain the upstream sequences that are required to expression, furthermore its structure prediction reveals a nonfunctional ribosomal RNA. The chromosomal mapping revealed several 5S.1 and 5S.2 rDNA clusters. In addition, the 5S.2 rDNA clusters were found in acrocentric and metacentric chromosomes proximal regions. The pair 1 5S.2 rDNA cluster is co-located with interstitial telomeric sites (ITS). Our results indicate that its clusters are hotspots to chromosomal breaks. During the meiotic prophase bouquet arrangement, double strand breaks (DSBs) at proximal 5S.2 rDNA of acrocentric chromosomes could lead to homologous and non-homologous repair mechanisms as Robertsonian fusions. Still, ITS sites provides chromosomal instability, resulting in telomeric recombination via TRF2 shelterin protein and a series of breakage-fusion-bridge cycles. Our proposal is that 5S rDNA derived sequences, act as chromosomal fragile sites in association with some chromosomal rearrangements of Loricariidae. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Using RT-PCR and bDNA assays to measure non-clade B HIV-1 subtype RNA.

    PubMed

    Pasquier, C; Sandres, K; Salama, G; Puel, J; Izopet, J

    1999-08-01

    The performance of the new version of RT-PCR assay (Amplicor HIV-1 Monitor v1.5) was assessed. The quantification of non-B subtype HIV-1 plasma RNA (30A, 1C, 1D, 3E, 2F, 3G) obtained using Monitor v1.5 was compared to the former version of this assay (Monitor v1.0) and to the Quantiplex v2.0 bDNA assay. The new primers used in Monitor v1.5 were similar to the former version in both specificity and sensitivity. The new primers corrected the detection and quantification defect observed previously for HIV-1 non-B subtypes and gave slightly higher RNA concentrations than those measured using the bDNA assay (+0.39 log copies/ml).

  19. Simulations Meet Experiment to Reveal New Insights into DNA Intrinsic Mechanics

    PubMed Central

    Ben Imeddourene, Akli; Elbahnsi, Ahmad; Guéroult, Marc; Oguey, Christophe; Foloppe, Nicolas; Hartmann, Brigitte

    2015-01-01

    The accurate prediction of the structure and dynamics of DNA remains a major challenge in computational biology due to the dearth of precise experimental information on DNA free in solution and limitations in the DNA force-fields underpinning the simulations. A new generation of force-fields has been developed to better represent the sequence-dependent B-DNA intrinsic mechanics, in particular with respect to the BI ↔ BII backbone equilibrium, which is essential to understand the B-DNA properties. Here, the performance of MD simulations with the newly updated force-fields Parmbsc0εζOLI and CHARMM36 was tested against a large ensemble of recent NMR data collected on four DNA dodecamers involved in nucleosome positioning. We find impressive progress towards a coherent, realistic representation of B-DNA in solution, despite residual shortcomings. This improved representation allows new and deeper interpretation of the experimental observables, including regarding the behavior of facing phosphate groups in complementary dinucleotides, and their modulation by the sequence. It also provides the opportunity to extensively revisit and refine the coupling between backbone states and inter base pair parameters, which emerges as a common theme across all the complementary dinucleotides. In sum, the global agreement between simulations and experiment reveals new aspects of intrinsic DNA mechanics, a key component of DNA-protein recognition. PMID:26657165

  20. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

    PubMed Central

    Wiens, Matthew; Lakatos, Mathias; Heerwig, Andreas; Ostermaier, Frieder; Haufe, Nora

    2016-01-01

    Summary DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures. PMID:27547612

  1. Identification of Intermediate in Hepatitis B Virus CCC DNA Formation and Sensitive and Selective CCC DNA Detection.

    PubMed

    Luo, Jun; Cui, Xiuji; Gao, Lu; Hu, Jianming

    2017-06-21

    The hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC to CCC DNA conversion, two 3' exonucleases Exo I and Exo III, in combination were used to degrade all DNA strands with a free 3' end, which would nevertheless preserve closed circular DNA, either single-stranded (SS) or double-stranded (DS). Indeed, a RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA or cM-RC DNA) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5' end of the plus strand in RC DNA, suggesting that minus strand closing can occur before plus strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA is the molecular basis of viral persistence, by serving as the viral transcriptional template. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC to CCC DNA, thus providing

  2. Interplay of protein and DNA structure revealed in simulations of the lac operon.

    PubMed

    Czapla, Luke; Grosner, Michael A; Swigon, David; Olson, Wilma K

    2013-01-01

    The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.

  3. Efficient Production of Retroviruses Using PLGA/bPEI-DNA Nanoparticles and Application for Reprogramming Somatic Cells

    PubMed Central

    Do, Eun Kyoung; Cheon, Hyo Cheon; Heo, Soon Chul; Kwon, Yang Woo; Jeong, Geun Ok; Kim, Ba Reun; Kim, Jae Ho

    2013-01-01

    Reprogramming of somatic cells to pluripotent cells requires the introduction of factors driving fate switches. Viral delivery has been the most efficient method for generation of induced pluripotent stem cells. Transfection, which precedes virus production, is a commonly-used process for delivery of nucleic acids into cells. The aim of this study is to evaluate the efficiency of PLGA/ bPEI nanoparticles in transfection and virus production. Using a modified method of producing PLGA nanoparticles, PLGA/bPEI-DNA nanoparticles were examined for transfection efficiency and virus production yield in comparison with PLGA-DNA, bPEI-DNA nanoparticles or liposome-DNA complexes. After testing various ratios of PLGA, bPEI, and DNA, the ratio of 6:3:1 (PLGA:bPEI:DNA, w/w/w) was determined to be optimal, with acceptable cellular toxicity. PLGA/bPEI-DNA (6:3:1) nanoparticles showed superior transfection efficiency, especially in multiple gene transfection, and viral yield when compared with liposome-DNA complexes. The culture supernatants of HEK293FT cells transfected with PLGA/bPEI-DNA of viral constructs containing reprogramming factors (Oct4, Sox2, Klf4, or c-Myc) successfully and more efficiently generated induced pluripotent stem cell colonies from mouse embryonic fibroblasts. These results strongly suggest that PLGA/bPEI-DNA nanoparticles can provide significant advantages in studying the effect of multiple factor delivery such as in reprogramming or direct conversion of cell fate. PMID:24098810

  4. Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda: localized unwinding of duplex DNA by a six-protein reaction.

    PubMed Central

    Dodson, M; Echols, H; Wickner, S; Alfano, C; Mensa-Wilmot, K; Gomes, B; LeBowitz, J; Roberts, J D; McMacken, R

    1986-01-01

    The O protein of bacteriophage lambda localizes the initiation of DNA replication to a unique site on the lambda genome, ori lambda. By means of electron microscopy, we infer that the binding of O to ori lambda initiates a series of protein addition and transfer reactions that culminate in localized unwinding of the origin DNA, generating a prepriming structure for the initiation of DNA replication. We can define three stages of this prepriming reaction, the first two of which we have characterized previously. First, dimeric O protein binds to multiple DNA binding sites and self-associates to form a nucleoprotein structure, the O-some. Second, lambda P and host DnaB proteins interact with the O-some to generate a larger complex that includes additional DNA from an A + T-rich region adjacent to the O binding sites. Third, the addition of the DnaJ, DnaK, and Ssb proteins and ATP results in an origin-specific unwinding reaction, probably catalyzed by the helicase activity of DnaB. The unwinding reaction is unidirectional, proceeding "rightward" from the origin. The minimal DNA sequence competent for unwinding consists of two O binding sites and the adjacent A + T-rich region to the right of the binding sites. We conclude that the lambda O protein localizes and initiates a six-protein sequential reaction responsible for but preceding the precise initiation of DNA replication. Specialized nucleoprotein structures similar to the O-some may be a general feature of DNA transactions requiring extraordinary precision in localization and control. Images PMID:3020552

  5. MD simulations of papillomavirus DNA-E2 protein complexes hints at a protein structural code for DNA deformation.

    PubMed

    Falconi, M; Oteri, F; Eliseo, T; Cicero, D O; Desideri, A

    2008-08-01

    The structural dynamics of the DNA binding domains of the human papillomavirus strain 16 and the bovine papillomavirus strain 1, complexed with their DNA targets, has been investigated by modeling, molecular dynamics simulations, and nuclear magnetic resonance analysis. The simulations underline different dynamical features of the protein scaffolds and a different mechanical interaction of the two proteins with DNA. The two protein structures, although very similar, show differences in the relative mobility of secondary structure elements. Protein structural analyses, principal component analysis, and geometrical and energetic DNA analyses indicate that the two transcription factors utilize a different strategy in DNA recognition and deformation. Results show that the protein indirect DNA readout is not only addressable to the DNA molecule flexibility but it is finely tuned by the mechanical and dynamical properties of the protein scaffold involved in the interaction.

  6. Replication, checkpoint suppression and structure of centromeric DNA

    PubMed Central

    Romeo, Francesco; Costanzo, Vincenzo

    2016-01-01

    ABSTRACT Human centromeres contain large amounts of repetitive DNA sequences known as α satellite DNA, which can be difficult to replicate and whose functional role is unclear. Recently, we have characterized protein composition, structural organization and checkpoint response to stalled replication forks of centromeric chromatin reconstituted in Xenopus laevis egg extract. We showed that centromeric DNA has high affinity for SMC2-4 subunits of condensins and for CENP-A, it is enriched for DNA repair factors and suppresses the ATR checkpoint to ensure its efficient replication. We also showed that centromeric chromatin forms condensins enriched and topologically constrained DNA loops, which likely contribute to the overall structure of the centromere. These findings have important implications on how chromosomes are organized and genome stability is maintained in mammalian cells. PMID:27893298

  7. KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage

    PubMed Central

    Moon, Eui Jung; Razorenova, Olga V.; Krieg, Adam J.; von Eyben, Rie

    2017-01-01

    Abstract The p53 tumor suppressor protein plays a critical role in orchestrating the genomic response to various stress signals by acting as a master transcriptional regulator. Differential gene activity is controlled by transcription factors but also dependent on the underlying chromatin structure, especially on covalent histone modifications. After screening different histone lysine methyltransferases and demethylases, we identified JMJD2B/KDM4B as a p53-inducible gene in response to DNA damage. p53 directly regulates JMJD2B gene expression by binding to a canonical p53-consensus motif in the JMJD2B promoter. JMJD2B induction attenuates the transcription of key p53 transcriptional targets including p21, PIG3 and PUMA, and this modulation is dependent on the catalytic capacity of JMJD2B. Conversely, JMJD2B silencing led to an enhancement of the DNA-damage driven induction of p21 and PIG3. These findings indicate that JMJD2B acts in an auto-regulatory loop by which p53, through JMJD2B activation, is able to influence its own transcriptional program. Functionally, exogenous expression of JMJD2B enhanced subcutaneous tumor growth of colon cancer cells in a p53-dependent manner, and genetic inhibition of JMJD2B impaired tumor growth in vivo. These studies provide new insights into the regulatory effect exerted by JMJD2B on tumor growth through the modulation of p53 target genes. PMID:28073943

  8. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks

    NASA Astrophysics Data System (ADS)

    Singleton, Martin R.; Dillingham, Mark S.; Gaudier, Martin; Kowalczykowski, Stephen C.; Wigley, Dale B.

    2004-11-01

    RecBCD is a multi-functional enzyme complex that processes DNA ends resulting from a double-strand break. RecBCD is a bipolar helicase that splits the duplex into its component strands and digests them until encountering a recombinational hotspot (Chi site). The nuclease activity is then attenuated and RecBCD loads RecA onto the 3' tail of the DNA. Here we present the crystal structure of RecBCD bound to a DNA substrate. In this initiation complex, the DNA duplex has been split across the RecC subunit to create a fork with the separated strands each heading towards different helicase motor subunits. The strands pass along tunnels within the complex, both emerging adjacent to the nuclease domain of RecB. Passage of the 3' tail through one of these tunnels provides a mechanism for the recognition of a Chi sequence by RecC within the context of double-stranded DNA. Gating of this tunnel suggests how nuclease activity might be regulated.

  9. [Effects of hepatitis B virus on human semen parameters and sperm DNA integrity].

    PubMed

    Liu, Hao; Geng, Chun-Hui; Wang, Wei; Xiao, Ke-Lin; Xiong, Li-Kuan; Huang, Yong-Xiang; Yang, Xiao-Ling; Li, Jin

    2013-10-01

    To investigate the effects of hepatitis B virus (HBV) in semen on human semen parameters and sperm DNA integrity. We detected HBV DNA in the semen samples of 153 HBsAg-seropositive patients by real-time fluorescence quantitative PCR and calculated the sperm nuclear DNA fragmentation index (DFI) by sperm chromatin dispersion (SCD) assay. We compared the semen parameters between the HBV DNA-positive group (A, n = 43) and HBV DNA-negative group (B, n = 110) and analyzed the correlation of sperm DFI with the number of HBV DNA copies in the semen. HBV DNA was detected in 43 (28.1%) of the 153 semen samples. No statistically significant differences were observed in age, semen volume and sperm concentration between groups A and B (P >0.05). Compared with group B, group A showed significantly decreased sperm viability ([58.0 +/- 18.8]% vs [51.4 +/-17.1]%, P<0.05), progressively motile sperm ([29.6 +/- 13.3]% vs [24.5 +/- 10.1]%, P<0.05), average straight-line velocity ([23.7 +/- 4.0] microm/s vs [19.9 +/- 4.5 ] microm/s, P<0.01) and average path velocity ([26.5 +/- 7.0] microm/s vs [23.4 +/- 5.3] microm/s, P<0.01), but remarkably decreased sperm DFI ([19.3 +/- 8.0]% vs [24.2 +/- 9.4]%, P<0.01). The number of HBV DNA copies in semen exhibited a significant positive correlation with sperm DFI (r = 0.819, P < 0.01). HBV DNA in semen is not significantly associated with the number of sperm, but may affect sperm viability, velocity and DFI. There is a load-effect relationship between the number of HBV DNA copies in semen and sperm nuclear DNA integrity.

  10. Age-related DNA methylation changes for forensic age-prediction.

    PubMed

    Yi, Shao Hua; Jia, Yun Shu; Mei, Kun; Yang, Rong Zhi; Huang, Dai Xin

    2015-03-01

    There is no available method of age-prediction for biological samples. The accumulating evidences indicate that DNA methylation patterns change with age. Aging resembles a developmentally regulated process that is tightly controlled by specific epigenetic modifications and age-associated methylation changes exist in human genome. In this study, three age-related methylation fragments were isolated and identified in blood of 40 donors. Age-related methylation changes with each fragment was validated and replicated in a general population sample of 65 donors over a wide age range (11-72 years). Methylation of these fragments is linearly correlated with age over a range of six decades (r = 0.80-0.88). Using average methylation of CpG sites of three fragments, a regression model that explained 95 % of the variance in age was built and is able to predict an individual's age with great accuracy (R (2 )= 0.93). The predicted value is highly correlated with the observed age in the sample (r = 0.96) and has great accuracy of average 4 years difference between predicted age and true age. This study implicates that DNA methylation can be an available biological marker of age-prediction. Further measurement of relevant markers in the genome could be a tool in routine screening to predict age of forensic biological samples.

  11. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    PubMed

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. DNA Secondary Structure at Chromosomal Fragile Sites in Human Disease

    PubMed Central

    Thys, Ryan G; Lehman, Christine E; Pierce, Levi C. T; Wang, Yuh-Hwa

    2015-01-01

    DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease. PMID:25937814

  13. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.

    PubMed

    Di Pierro, Michele; Cheng, Ryan R; Lieberman Aiden, Erez; Wolynes, Peter G; Onuchic, José N

    2017-11-14

    Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible. Copyright © 2017 the Author(s). Published by PNAS.

  14. Structural investigations of platinum anticancer drugs with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellon, S.F.

    The antitumor agent cis-diamminedichloroplatinum (II) (cis-DDP) can successfully treat testicular and ovarian cancers, presumably by binding to DNA and preventing replication. cis-DDP is less successful in treating lung and breast cancers and the trans isomer is inactive. It has been suggested that cellular recognition and repair processes may be responsible for the difference in activity between cis- and trans-DDP, the differential effectiveness against different types of cancers, as well as acquired resistance. The author reviews structural methods used to characterize several site-specific adducts. Structure-function relations that emerge may help clarify the mechanism of action. The extent of DNA bending causedmore » by several site-specific DNA adducts formed by cis- and trans-DDP has been determined using a gel electrophoresis assay. The adducts cis-GG, cis-AG, cis-GTG, and trans-GTG were incorporated into synthetic DNA oligonucleotides of varying lengths with two bp cohesive ends. Subtle DNA distortions were amplified by polymerizing these monomers and quantitated using polyacrylamide gel electrophoresis. The three adducts cis-GG, cis-AG, and cis-GTG were all found to bend the helix in a directed fashion by about 32-35[degrees]. The trans-GTG adduct gave a degree of flexibility to the double helix, allowing bending in more than one direction. The DNA unwinding caused by the platinum binding was measured by systematically varying the interplatinum distance in a series of synthetic DNA oligonucleotides. The cis-GG and cis-AG adducts both unwind the double helix by 13[degrees]C, while the cis-GTG adduct unwinds by 23[degrees]. To determine the complete structure of platinated duplex DNA< single crystals of a platinated 12 base pair duplex oligonucletide were obtained. Despite extreme temperature and radiation sensitivity problems, a complete set of data was collected. Several different approaches to solve the structure were attempted.« less

  15. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA.

    PubMed

    Herzner, Anna-Maria; Hagmann, Cristina Amparo; Goldeck, Marion; Wolter, Steven; Kübler, Kirsten; Wittmann, Sabine; Gramberg, Thomas; Andreeva, Liudmila; Hopfner, Karl-Peter; Mertens, Christina; Zillinger, Thomas; Jin, Tengchuan; Xiao, Tsan Sam; Bartok, Eva; Coch, Christoph; Ackermann, Damian; Hornung, Veit; Ludwig, Janos; Barchet, Winfried; Hartmann, Gunther; Schlee, Martin

    2015-10-01

    Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.

  16. Intrinsic flexibility of B-DNA: the experimental TRX scale.

    PubMed

    Heddi, Brahim; Oguey, Christophe; Lavelle, Christophe; Foloppe, Nicolas; Hartmann, Brigitte

    2010-01-01

    B-DNA flexibility, crucial for DNA-protein recognition, is sequence dependent. Free DNA in solution would in principle be the best reference state to uncover the relation between base sequences and their intrinsic flexibility; however, this has long been hampered by a lack of suitable experimental data. We investigated this relationship by compiling and analyzing a large dataset of NMR (31)P chemical shifts in solution. These measurements reflect the BI <--> BII equilibrium in DNA, intimately correlated to helicoidal descriptors of the curvature, winding and groove dimensions. Comparing the ten complementary DNA dinucleotide steps indicates that some steps are much more flexible than others. This malleability is primarily controlled at the dinucleotide level, modulated by the tetranucleotide environment. Our analyses provide an experimental scale called TRX that quantifies the intrinsic flexibility of the ten dinucleotide steps in terms of Twist, Roll, and X-disp (base pair displacement). Applying the TRX scale to DNA sequences optimized for nucleosome formation reveals a 10 base-pair periodic alternation of stiff and flexible regions. Thus, DNA flexibility captured by the TRX scale is relevant to nucleosome formation, suggesting that this scale may be of general interest to better understand protein-DNA recognition.

  17. Structural DNA nanotechnology: from design to applications.

    PubMed

    Zadegan, Reza M; Norton, Michael L

    2012-01-01

    The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains. In contrast, the origami method, at this time, would appear to be more appropriate for the construction of bigger, more sophisticated and exactly defined structures.

  18. [A fluoride-sensor for kink structure in DNA condensation process].

    PubMed

    Liu, Yan-Hui; Zhang, Jing; Chen, Ying-Bing; Li, Yu-Pu; Hu, Lin

    2014-01-01

    Bloomfield has pointed out that the kink structure occurs for sharp bending during DNA condensation process, until now, which has not been proved by experiments. Using UV Spectrophotometer, the effects of fluoride and chlorine on the polyamine-DNA condensation system can be detected. Fluoride and chlorine both belong to the halogen family, but their effects on spermine-DNA condensation system are totally different. Fluoride ions make blue-shift and hyperchromicity appear in the spermine-DNA condensation system, but chlorine ions only make insignificant hyperchromicity happen in this system. Both fluoride ions and chlorine ions only make insignificant hyperchromicity happen in spermidine-DNA condensation system. Based on the distinguished character of fluoride, a fluoride-sensor for "kink" structure in DNA condensation was developed and the second kind of "kink" structure only appear in the spermine-DNA condensation system.

  19. Structural basis of human PCNA sliding on DNA

    NASA Astrophysics Data System (ADS)

    de March, Matteo; Merino, Nekane; Barrera-Vilarmau, Susana; Crehuet, Ramon; Onesti, Silvia; Blanco, Francisco J.; de Biasio, Alfredo

    2017-01-01

    Sliding clamps encircle DNA and tether polymerases and other factors to the genomic template. However, the molecular mechanism of clamp sliding on DNA is unknown. Using crystallography, NMR and molecular dynamics simulations, here we show that the human clamp PCNA recognizes DNA through a double patch of basic residues within the ring channel, arranged in a right-hand spiral that matches the pitch of B-DNA. We propose that PCNA slides by tracking the DNA backbone via a `cogwheel' mechanism based on short-lived polar interactions, which keep the orientation of the clamp invariant relative to DNA. Mutation of residues at the PCNA-DNA interface has been shown to impair the initiation of DNA synthesis by polymerase δ (pol δ). Therefore, our findings suggest that a clamp correctly oriented on DNA is necessary for the assembly of a replication-competent PCNA-pol δ holoenzyme.

  20. Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium.

    PubMed

    Dong, Zixun; Ran, Jianhua; Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue

    2013-01-01

    Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.

  1. A reaction mechanism-based prediction of mutagenicity: α-halo carbonyl compounds adduct with DNA by SN2 reaction.

    PubMed

    Haranosono, Yu; Ueoka, Hiroki; Kito, Gakushi; Nemoto, Shingo; Kurata, Masaaki; Sakaki, Hideyuki

    2018-01-01

    Most of the α-halo carbonyl (AHC) compounds tend to be predicted as mutagenic by structure-activity relationship based on structural category only, because they have an alkyl halide structure as a structural alert of mutagenicity. However, some AHC compounds are not mutagenic. We hypothesized that AHC reacts with DNA by S N 2 reaction, and the reactivity relates to mutagenicity. As an index of S N 2 reactivity, we focused on molecular orbitals (MOs), as the direction and position of two molecules in collision are important in the S N 2 reaction. The MOs suitable for S N 2 reaction (SN2MOs) were selected by chemical-visual inspection based on the shape of the MO. We used the level gap and the energy gap between SN2MO and the lowest unoccupied molecular orbital as the descriptors of S N 2 reactivity. As the results, S N 2 reactivity related to mutagenicity and we were able to predict mutagenicity of 20 AHC compounds with 95.0% concordance. It was suggested that S N 2 reaction is a reaction mechanism of AHC compounds and DNA in the mutagenic process. The method allows for discrimination among structurally similar compounds by combination with quantitative structure-activity relationships. The combination approach is expected to be useful for the mutagenic assessment of pharmaceutical impurities.

  2. Predicted secondary structure similarity in the absence of primary amino acid sequence homology: hepatitis B virus open reading frames.

    PubMed Central

    Schaeffer, E; Sninsky, J J

    1984-01-01

    Proteins that are related evolutionarily may have diverged at the level of primary amino acid sequence while maintaining similar secondary structures. Computer analysis has been used to compare the open reading frames of the hepatitis B virus to those of the woodchuck hepatitis virus at the level of amino acid sequence, and to predict the relative hydrophilic character and the secondary structure of putative polypeptides. Similarity is seen at the levels of relative hydrophilicity and secondary structure, in the absence of sequence homology. These data reinforce the proposal that these open reading frames encode viral proteins. Computer analysis of this type can be more generally used to establish structural similarities between proteins that do not share obvious sequence homology as well as to assess whether an open reading frame is fortuitous or codes for a protein. PMID:6585835

  3. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor.

    PubMed

    Yu, Xiang; Yu, Zhigang; Li, Fengqin; Xu, Yanmei; He, Xunjun; Xu, Lan; Shi, Wenbing; Zhang, Guiling; Yan, Hong

    2017-05-15

    A type of "signal on" displacement-based sensors named target induced signaling probe shifting DNA-based (TISPS-DNA) sensor were developed for a designated DNA detection. The signaling mechanism of the signaling probe (SP) shifting different from the classical conformation/flexibility change mode endows the sensor with high sensitivity. Through using thiolated or no thiolated capturing probe (CP), two 3-probe sensing structures, sensor-1 and sensor-2, were designed and constructed. The systematical comparing research results show that both sensors exhibit some similarities or big differences in sensing performance. On the one hand, the similarity in structures determines the similarity in some aspects of signaling mechanism, background signal, signal changing form, anti-fouling ability and versatility; on the other hand, the slight difference in structures also results in two opposite hybridization modes of gradual increasing resistance and gradual decreasing resistance which can affect the hybridization efficiency between the assistant probe (AP) and the SP, further producing some big differences in sensing performance, for example, apparently different signal enhancement (SE) change, point mutation discrimination ability and response speed. Under the optimized fabrication and detection conditions, both sensors feature high sensitivity for target DNAs with the detection limits of ∼10 fM for sensor-1 and ∼7 fM for sensor-2, respectively. Among many acquired sensing virtues, the sensor-1 shows a peculiar specificity adjustability which is also a highlight in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Underwound DNA under Tension: Structure, Elasticity, and Sequence-Dependent Behaviors

    NASA Astrophysics Data System (ADS)

    Sheinin, Maxim Y.; Forth, Scott; Marko, John F.; Wang, Michelle D.

    2011-09-01

    DNA melting under torsion plays an important role in a wide variety of cellular processes. In the present Letter, we have investigated DNA melting at the single-molecule level using an angular optical trap. By directly measuring force, extension, torque, and angle of DNA, we determined the structural and elastic parameters of torsionally melted DNA. Our data reveal that under moderate forces, the melted DNA assumes a left-handed structure as opposed to an open bubble conformation and is highly torsionally compliant. We have also discovered that at low forces melted DNA properties are highly dependent on DNA sequence. These results provide a more comprehensive picture of the global DNA force-torque phase diagram.

  5. Interactions of DNA binding proteins with G-Quadruplex structures at the single molecule level

    NASA Astrophysics Data System (ADS)

    Ray, Sujay

    Guanine-rich nucleic acid (DNA/RNA) sequences can form non-canonical secondary structures, known as G-quadruplex (GQ). Numerous in vivo and in vitro studies have demonstrated formation of these structures in telomeric and non-telomeric regions of the genome. Telomeric GQs protect the chromosome ends whereas non-telomeric GQs either act as road blocks or recognition sites for DNA metabolic machinery. These observations suggest the significance of these structures in regulation of different metabolic processes, such as replication and repair. GQs are typically thermodynamically more stable than the corresponding Watson-Crick base pairing formed by G-rich and C-rich strands, making protein activity a crucial factor for their destabilization. Inside the cell, GQs interact with different proteins and their enzymatic activity is the determining factor for their stability. We studied interactions of several proteins with GQs to understand the underlying principles of protein-GQ interactions using single-molecule FRET and other biophysical techniques. Replication Protein-A (RPA), a single stranded DNA (ssDNA) binding protein, is known to posses GQ unfolding activity. First, we compared the thermal stability of three potentially GQ-forming DNA sequences (PQS) to their stability against RPA-mediated unfolding. One of these sequences is the human telomeric repeat and the other two, located in the promoter region of tyrosine hydroxylase gene, are highly heterogeneous sequences that better represent PQS in the genome. The thermal stability of these structures do not necessarily correlate with their stability against protein-mediated unfolding. We conclude that thermal stability is not necessarily an adequate criterion for predicting the physiological viability of GQ structures. To determine the critical structural factors that influence protein-GQ interactions we studied two groups of GQ structures that have systematically varying loop lengths and number of G-tetrad layers. We

  6. Structure of the EndoMS-DNA Complex as Mismatch Restriction Endonuclease.

    PubMed

    Nakae, Setsu; Hijikata, Atsushi; Tsuji, Toshiyuki; Yonezawa, Kouki; Kouyama, Ken-Ichi; Mayanagi, Kouta; Ishino, Sonoko; Ishino, Yoshizumi; Shirai, Tsuyoshi

    2016-11-01

    Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Monitoring of Hepatitis B Virus (HBV) DNA and Risk of HBV Reactivation in B-Cell Lymphoma: A Prospective Observational Study.

    PubMed

    Kusumoto, Shigeru; Tanaka, Yasuhito; Suzuki, Ritsuro; Watanabe, Takashi; Nakata, Masanobu; Takasaki, Hirotaka; Fukushima, Noriyasu; Fukushima, Takuya; Moriuchi, Yukiyoshi; Itoh, Kuniaki; Nosaka, Kisato; Choi, Ilseung; Sawa, Masashi; Okamoto, Rumiko; Tsujimura, Hideki; Uchida, Toshiki; Suzuki, Sachiko; Okamoto, Masataka; Takahashi, Tsutomu; Sugiura, Isamu; Onishi, Yasushi; Kohri, Mika; Yoshida, Shinichiro; Sakai, Rika; Kojima, Minoru; Takahashi, Hiroyuki; Tomita, Akihiro; Maruyama, Dai; Atsuta, Yoshiko; Tanaka, Eiji; Suzuki, Takayo; Kinoshita, Tomohiro; Ogura, Michinori; Mizokami, Masashi; Ueda, Ryuzo

    2015-09-01

    There is no standard management of reactivation of hepatitis B virus (HBV) infection in HBV-resolved patients without hepatitis B surface antigen (HBsAg), but with antibodies against hepatitis B core antigen and/or antibodies against HBsAg (anti-HBs). We conducted a prospective observational study to evaluate the occurrence of HBV reactivation by serial monthly monitoring of HBV DNA and to establish preemptive therapy guided by this monitoring in B-cell non-Hodgkin lymphoma (B-NHL) treated with rituximab plus corticosteroid-containing chemotherapy (R-steroid-chemo). The primary endpoint was the incidence of HBV reactivation defined as quantifiable HBV DNA levels of ≥ 11 IU/mL. With a median HBV DNA follow-up of 562 days, HBV reactivation was observed in 21 of the 269 analyzed patients. The incidence of HBV reactivation at 1.5 years was 8.3% (95% confidence interval, 5.5-12.4). No hepatitis due to HBV reactivation was observed in patients who received antiviral treatment when HBV DNA levels were between 11 and 432 IU/mL. An anti-HBs titer of <10 mIU/mL and detectable HBV DNA remaining below the level of quantification at baseline were independent risk factors for HBV reactivation (hazard ratio, 20.6 and 56.2, respectively; P < .001). Even in 6 patients with a rapid increase of HBV due to mutations, the monthly HBV DNA monitoring was effective at preventing HBV-related hepatitis. Monthly monitoring of HBV DNA is useful for preventing HBV reactivation-related hepatitis among B-NHL patients with resolved HBV infection following R-steroid-chemo (UMIN000001299). © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.

    PubMed

    Zheng, Wenjun

    2017-02-01

    In the adaptive immune systems of many bacteria and archaea, the Cas9 endonuclease forms a complex with specific guide/scaffold RNA to identify and cleave complementary target sequences in foreign DNA. This DNA targeting machinery has been exploited in numerous applications of genome editing and transcription control. However, the molecular mechanism of the Cas9 system is still obscure. Recently, high-resolution structures have been solved for Cas9 in different structural forms (e.g., unbound forms, RNA-bound binary complexes, and RNA-DNA-bound tertiary complexes, corresponding to an inactive state, a pre-target-bound state, and a cleavage-competent or product state), which offered key structural insights to the Cas9 mechanism. To further probe the structural dynamics of Cas9 interacting with RNA and DNA at the amino-acid level of details, we have performed systematic coarse-grained modeling using an elastic network model and related analyses. Our normal mode analysis predicted a few key modes of collective motions that capture the observed conformational changes featuring large domain motions triggered by binding of RNA and DNA. Our flexibility analysis identified specific regions with high or low flexibility that coincide with key functional sites (such as DNA/RNA-binding sites, nuclease cleavage sites, and key hinges). We also identified a small set of hotspot residues that control the energetics of functional motions, which overlap with known functional sites and offer promising targets for future mutagenesis efforts to improve the specificity of Cas9. Finally, we modeled the conformational transitions of Cas9 from the unbound form to the binary complex and then the tertiary complex, and predicted a distinct sequence of domain motions. In sum, our findings have offered rich structural and dynamic details relevant to the Cas9 machinery, and will guide future investigation and engineering of the Cas9 systems. Proteins 2017; 85:342-353. © 2016 Wiley Periodicals

  9. Solution structure of a highly stable DNA duplex conjugated to a minor groove binder.

    PubMed Central

    Kumar, S; Reed, M W; Gamper, H B; Gorn, V V; Lukhtanov, E A; Foti, M; West, J; Meyer, R B; Schweitzer, B I

    1998-01-01

    The tripeptide 1,2-dihydro-(3 H )-pyrrolo[3,2- e ]indole-7-carboxylate (CDPI3) binds to the minor groove of DNA with high affinity. When this minor groove binder is conjugated to the 5'-end of short oligonucleotides the conjugates form unusually stable hybrids with complementary DNA and thus may have useful diagnostic and/or therapeutic applications. In order to gain an understanding of the structural interactions between the CDPI3minor groove binding moiety and the DNA, we have determined and compared the solution structure of a duplex consisting of oligodeoxyribonucleotide 5'-TGATTATCTG-3' conjugated at the 5'-end to CDPI3 and its complementary strand to an unmodified control duplex of the same sequence using nuclear magnetic resonance techniques. Thermal denaturation studies indicated that the hybrid of this conjugate with its complementary strand had a melting temperature that was 30 degrees C higher compared with the unmodified control duplex. Following restrained molecular dynamics and relaxation matrix refinement, the solution structure of the CDPI3-conjugated DNA duplex demonstrated that the overall shape of the duplex was that of a straight B-type helix and that the CDPI3moiety was bound snugly in the minor groove, where it was stabilized by extensive van der Waal's interactions. PMID:9443977

  10. Solution structure of a highly stable DNA duplex conjugated to a minor groove binder.

    PubMed

    Kumar, S; Reed, M W; Gamper, H B; Gorn, V V; Lukhtanov, E A; Foti, M; West, J; Meyer, R B; Schweitzer, B I

    1998-02-01

    The tripeptide 1,2-dihydro-(3 H )-pyrrolo[3,2- e ]indole-7-carboxylate (CDPI3) binds to the minor groove of DNA with high affinity. When this minor groove binder is conjugated to the 5'-end of short oligonucleotides the conjugates form unusually stable hybrids with complementary DNA and thus may have useful diagnostic and/or therapeutic applications. In order to gain an understanding of the structural interactions between the CDPI3minor groove binding moiety and the DNA, we have determined and compared the solution structure of a duplex consisting of oligodeoxyribonucleotide 5'-TGATTATCTG-3' conjugated at the 5'-end to CDPI3 and its complementary strand to an unmodified control duplex of the same sequence using nuclear magnetic resonance techniques. Thermal denaturation studies indicated that the hybrid of this conjugate with its complementary strand had a melting temperature that was 30 degrees C higher compared with the unmodified control duplex. Following restrained molecular dynamics and relaxation matrix refinement, the solution structure of the CDPI3-conjugated DNA duplex demonstrated that the overall shape of the duplex was that of a straight B-type helix and that the CDPI3moiety was bound snugly in the minor groove, where it was stabilized by extensive van der Waal's interactions.

  11. Unique structural modulation of a non-native substrate by cochaperone DnaJ.

    PubMed

    Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik; Mapa, Koyeli

    2013-02-12

    The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.

  12. Structure of the Tetrameric p53 Tumor Suppressor Bound to DNA

    DTIC Science & Technology

    2002-05-01

    been unable to prepare suitable p53/DNA cocrystals for structure determination. Nonetheless, we have successfully determined the medium resolution (2.7A... cocrystallization with longer DNA targets or DNA targets assembled into nucleosome core particles. The structure of tetrameric p53 bound to DNA will provide

  13. Seroprevalence, molecular epidemiology and quantitation of parvovirus B19 DNA levels in Iranian blood donors.

    PubMed

    Zadsar, Maryam; Aghakhani, Arezoo; Banifazl, Mohammad; Kazemimanesh, Monireh; Tabatabaei Yazdi, Seyed Morteza; Mamishi, Setareh; Bavand, Anahita; Sadat Larijani, Mona; Ramezani, Amitis

    2018-04-16

    Human parvovirus B19 (B19) infection is common among blood donors, and healthy blood donors can transmit virus via transfusion. Due to resistance of B19 to viral inactivation methods, there is a potential concern regarding transfusion safety in blood products. We aimed to determine the seroprevalence, molecular epidemiology, and quantitation of B19 DNA levels in blood donors in Tehran, Iran. A total of 500 blood donors from Blood Transfusion Research Center were studied. ELISA was used for detection of B19 IgG and IgM and nested PCR was carried out for detection of B19 DNA. PCR products were subjected to direct sequencing. B19 viral load was determined by real time PCR. B19 IgG, IgM, and DNA were detected in 27.6, 2.6, and 1.2% of donors respectively. Ten samples (2%) were positive for both antibodies while in four cases (0.8%), B19 IgG and DNA detected simultaneously. One case had B19 IgM, IgG, and viremia concurrently. The titers of B19 DNA in four of six donors were more than 10 6  IU/mL (high level viremia) and all four cases had IgG simultaneously. All B19 isolates categorized in genotype 1A. Our findings indicated that prevalence of B19 DNA in Iranian blood donors was comparable with previous studies throughout the world. High level B19 viremia found in 0.8% of our donors and all viremic donors revealed neutralizing B19 antibody. Therefore implementation of a B19 screening test for each volunteer blood donor does not appear to be necessary but B19 testing for plasma-derived products seems important in Iranian donors. © 2018 Wiley Periodicals, Inc.

  14. Dna2 nuclease-helicase structure, mechanism and regulation by Rpa.

    PubMed

    Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P

    2015-11-02

    The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5' end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5' but not 3' end, explaining how Rpa regulates cleavage polarity.

  15. Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO determined by NMR spectroscopy.

    PubMed

    Spielmann, H P; Wemmer, D E; Jacobsen, J P

    1995-07-11

    We have used two-dimensional 1H NMR spectroscopy to determine the solution structure of the DNA oligonucleotide d(5'-CGCTAGCG-3')2 complexed with the bis-intercalating dye 1,1'-(4,4,8,8-tetramethyl-4,8-diazaundecamethylene)bis[4-(3-methyl -2,3- dihydrobenzo-1,3-thiazolyl-2-methylidene)qui nolinium] tetraiodide (TOTO). The determination of the structure was based on total relaxation matrix analysis of the NOESY cross-peak intensities using the program MARDIGRAS. Improved procedures to consider the experimental "noise" in NOESY spectra during these calculations have been employed. The NOE-derived distance restraints were applied in restrained molecular dynamics calculations. Twenty final structures each were generated for the TOTO complex from both A-form and B-form dsDNA starting structures. The root-mean-square (rms) deviation of the coordinates for the 40 structures of the complex was 1.45 A. The local DNA structure is distorted in the complex. The helix is unwound by 60 degrees and has an overall helical repeat of 12 base pairs, caused by bis-intercalation of TOTO. The poly(propylenamine) linker chain is located in the minor groove of dsDNA. Calculations indicate that the benzothiazole ring system is twisted relative to the quinoline in the uncomplexed TOTO molecule. The site selectivity of TOTO for the CTAG-CTAG site is explained by its ability to adapt to the base pair propeller twist of dsDNA to optimize stacking and the hydrophobic interaction between the thymidine methyl group and the benzothiazole ring. There is a 3000-fold fluorescence enhancement upon binding of TOTO to dsDNA. Rotation about the cyanine methine bonds is possible in free TOTO, allowing relaxation nonradiatively. When bound to dsDNA, the benzothiazole ring and the quinolinium ring are clamped by the nucleobases preventing this rotation, and the chromophore loses excitation energy by fluorescence instead.

  16. Structural DNA Nanotechnology: From Design to Applications

    PubMed Central

    Zadegan, Reza M.; Norton, Michael L.

    2012-01-01

    The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains. In contrast, the origami method, at this time, would appear to be more appropriate for the construction of bigger, more sophisticated and exactly defined structures. PMID:22837684

  17. Molecular structure of r/GCG/d/TATACGC/ - A DNA-RNA hybrid helix joined to double helical DNA

    NASA Technical Reports Server (NTRS)

    Wang, A. H.-J.; Fujii, S.; Rich, A.; Van Boom, J. H.; Van Der Marel, G. A.; Van Boeckel, S. A. A.

    1982-01-01

    The molecule r(GCG)d(TATACGC) is self-complementary and forms two DNA-RNA hybrid segments surrounding a central region of double helical DNA; its molecular structure has been solved by X-ray analysis. All three parts of the molecule adopt a conformation which is close to that seen in the 11-fold RNA double helix. The conformation of the ribonucleotides is partly determined by water molecules bridging between the ribose O2' hydroxyl group and cytosine O2. The hybrid-DNA duplex junction contains no structural discontinuities. However, the central DNA TATA sequence has some structural irregularities.

  18. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.

    PubMed

    Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A; Chong, Jenny; Hare, Alissa A; Dervan, Peter B; DiMaio, Frank; Leschziner, Andres E; Wang, Dong

    2017-11-30

    Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.

  19. Urea Transporter UT-B Deletion Induces DNA Damage and Apoptosis in Mouse Bladder Urothelium

    PubMed Central

    Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue

    2013-01-01

    Background Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Methodology/Principal Findings Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. Conclusions/Significance UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders. PMID:24204711

  20. The degree of microRNA-34b/c methylation in serum-circulating DNA is associated with malignant pleural mesothelioma.

    PubMed

    Muraoka, Takayuki; Soh, Junichi; Toyooka, Shinichi; Aoe, Keisuke; Fujimoto, Nobukazu; Hashida, Shinsuke; Maki, Yuho; Tanaka, Norimitsu; Shien, Kazuhiko; Furukawa, Masashi; Yamamoto, Hiromasa; Asano, Hiroaki; Tsukuda, Kazunori; Kishimoto, Takumi; Otsuki, Takemi; Miyoshi, Shinichiro

    2013-12-01

    Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. microRNA-34b/c (miR-34b/c), which plays an important role in the pathogenesis of MPM, is frequently downregulated by DNA methylation in approximately 90% of MPM cases. In this study, we estimated the degree of miR-34b/c methylation in serum-circulating DNA using a digital methylation specific PCR assay (MSP). A real-time MSP assay was performed using the SYBR Green method. The melting temperature (Tm) of each PCR product was examined using a melting curve analysis. For a digital MSP assay, 40 wells were analyzed per sample. A total of 110 serum samples from 48 MPM cases, 21 benign asbestos pleurisy (BAP) cases, and 41 healthy volunteers (HVs) were examined. Positive range of Tm value for miR-34b/c methylation was defined as 77.71-78.79 °C which was the mean ± 3 standard deviations of 40 wells of a positive control. The number of miR-34b/c methylated wells was counted per sample according to this criterion. The number of miR-34b/c methylated wells in MPM cases was significantly higher than that in BAP cases (P=0.03) or HVs (P<0.001). Advanced MPM cases tended to have higher number of miR-34b/c methylated wells than early MPM cases. Receiver-operating characteristic (ROC) curve analysis revealed that three number of miR-34b/c methylated wells per sample was the best cut-off of positivity of MPM with a 67% of sensitivity and a 77% specificity for prediction. The area under the ROC curve was 0.77. Our digital MSP assay can quantify miR-34b/c methylation in serum-circulating DNA. The degree of miR-34b/c methylation in serum-circulating DNA is associated with MPM, suggesting that this approach might be useful for the establishment of a new detection system for MPM. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences.

    PubMed

    Zhang, Cheng; Li, Qingqing; Wu, Xugan; Liu, Qing; Cheng, Yongxu

    2017-11-20

    The Chinese mitten crab, Eriocheir sinensis, is one of the important native crab species in East Asian region, which has been widely cultured throughout China, particularly in river basins of Yangtze, Huanghe and Liaohe. This study was designed to evaluate the genetic diversity and genetic structure of cultured and wild E. sinensis populations from the three river basins based on mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b). The results showed that there were 62 variable sites and 30 parsimony informative sites in the 647 bp of sequenced mtDNA COI from 335 samples. Similarly, a 637 bp segment of Cyt b provided 59 variable sites and 26 parsimony informative sites. AMOVA showed that the levels of genetic differentiation were low among six populations. Although the haplotype diversity and nucleotide diversity of Huanghe wild population had slightly higher than the other populations, there were no significant differences. There was no significant differentiation between the genetic and geographic distance of the six populations, and haplotype network diagram indicated that there may exist genetic hybrids of E. sinensis from different river basins. The results of clustering and neutrality tests revealed that the distance of geographical locations were not completely related to their genetic distance values for the six populations. In conclusion, these results have great significance for the evaluation and exploitation of germplasm resources of E. sinensis.

  2. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.

    PubMed

    Yin, Changchuan

    2015-04-01

    To apply digital signal processing (DSP) methods to analyze DNA sequences, the sequences first must be specially mapped into numerical sequences. Thus, effective numerical mappings of DNA sequences play key roles in the effectiveness of DSP-based methods such as exon prediction. Despite numerous mappings of symbolic DNA sequences to numerical series, the existing mapping methods do not include the genetic coding features of DNA sequences. We present a novel numerical representation of DNA sequences using genetic codon context (GCC) in which the numerical values are optimized by simulation annealing to maximize the 3-periodicity signal to noise ratio (SNR). The optimized GCC representation is then applied in exon and intron prediction by Short-Time Fourier Transform (STFT) approach. The results show the GCC method enhances the SNR values of exon sequences and thus increases the accuracy of predicting protein coding regions in genomes compared with the commonly used 4D binary representation. In addition, this study offers a novel way to reveal specific features of DNA sequences by optimizing numerical mappings of symbolic DNA sequences.

  3. Development of 19F-NMR chemical shift detection of DNA B-Z equilibrium using 19F-NMR.

    PubMed

    Nakamura, S; Yang, H; Hirata, C; Kersaudy, F; Fujimoto, K

    2017-06-28

    Various DNA conformational changes are in correlation with biological events. In particular, DNA B-Z equilibrium showed a high correlation with translation and transcription. In this study, we developed a DNA probe containing 5-trifluoromethylcytidine or 5-trifluoromethylthymidine to detect DNA B-Z equilibrium using 19 F-NMR. Its probe enabled the quantitative detection of B-, Z-, and ss-DNA based on 19 F-NMR chemical shift change.

  4. Structural Insights into the HIV-1 Minus-strand Strong-stop DNA*

    PubMed Central

    Chen, Yingying; Maskri, Ouerdia; Chaminade, Françoise; René, Brigitte; Benkaroun, Jessica; Godet, Julien; Mély, Yves; Mauffret, Olivier; Fossé, Philippe

    2016-01-01

    An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first strand transfer that requires base pairing of the R region at the 3′-end of the genomic RNA with the complementary r region at the 3′-end of minus-strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the full-length HIV-1 ssDNA in the absence or presence of NC. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the three-dimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the NC-mediated annealing process does not rely on a single pathway (zipper intermediate or kissing complex). PMID:26668324

  5. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine

    PubMed Central

    2016-01-01

    Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge. PMID:27936622

  6. Rv0004 is a new essential member of the mycobacterial DNA replication machinery.

    PubMed

    Mann, Katherine M; Huang, Deborah L; Hooppaw, Anna J; Logsdon, Michelle M; Richardson, Kirill; Lee, Hark Joon; Kimmey, Jacqueline M; Aldridge, Bree B; Stallings, Christina L

    2017-11-01

    DNA replication is fundamental for life, yet a detailed understanding of bacterial DNA replication is limited outside the organisms Escherichia coli and Bacillus subtilis. Many bacteria, including mycobacteria, encode no identified homologs of helicase loaders or regulators of the initiator protein DnaA, despite these factors being essential for DNA replication in E. coli and B. subtilis. In this study we discover that a previously uncharacterized protein, Rv0004, from the human pathogen Mycobacterium tuberculosis is essential for bacterial viability and that depletion of Rv0004 leads to a block in cell cycle progression. Using a combination of genetic and biochemical approaches, we found that Rv0004 has a role in DNA replication, interacts with DNA and the replicative helicase DnaB, and affects DnaB-DnaA complex formation. We also identify a conserved domain in Rv0004 that is predicted to structurally resemble the N-terminal protein-protein interaction domain of DnaA. Mutation of a single conserved tryptophan within Rv0004's DnaA N-terminal-like domain leads to phenotypes similar to those observed upon Rv0004 depletion and can affect the association of Rv0004 with DnaB. In addition, using live cell imaging during depletion of Rv0004, we have uncovered a previously unappreciated role for DNA replication in coordinating mycobacterial cell division and cell size. Together, our data support that Rv0004 encodes a homolog of the recently identified DciA family of proteins found in most bacteria that lack the DnaC-DnaI helicase loaders in E. coli and B. subtilis. Therefore, the mechanisms of Rv0004 elucidated here likely apply to other DciA homologs and reveal insight into the diversity of bacterial strategies in even the most conserved biological processes.

  7. Rv0004 is a new essential member of the mycobacterial DNA replication machinery

    PubMed Central

    Hooppaw, Anna J.; Richardson, Kirill; Lee, Hark Joon; Kimmey, Jacqueline M.; Aldridge, Bree B.

    2017-01-01

    DNA replication is fundamental for life, yet a detailed understanding of bacterial DNA replication is limited outside the organisms Escherichia coli and Bacillus subtilis. Many bacteria, including mycobacteria, encode no identified homologs of helicase loaders or regulators of the initiator protein DnaA, despite these factors being essential for DNA replication in E. coli and B. subtilis. In this study we discover that a previously uncharacterized protein, Rv0004, from the human pathogen Mycobacterium tuberculosis is essential for bacterial viability and that depletion of Rv0004 leads to a block in cell cycle progression. Using a combination of genetic and biochemical approaches, we found that Rv0004 has a role in DNA replication, interacts with DNA and the replicative helicase DnaB, and affects DnaB-DnaA complex formation. We also identify a conserved domain in Rv0004 that is predicted to structurally resemble the N-terminal protein-protein interaction domain of DnaA. Mutation of a single conserved tryptophan within Rv0004’s DnaA N-terminal-like domain leads to phenotypes similar to those observed upon Rv0004 depletion and can affect the association of Rv0004 with DnaB. In addition, using live cell imaging during depletion of Rv0004, we have uncovered a previously unappreciated role for DNA replication in coordinating mycobacterial cell division and cell size. Together, our data support that Rv0004 encodes a homolog of the recently identified DciA family of proteins found in most bacteria that lack the DnaC-DnaI helicase loaders in E. coli and B. subtilis. Therefore, the mechanisms of Rv0004 elucidated here likely apply to other DciA homologs and reveal insight into the diversity of bacterial strategies in even the most conserved biological processes. PMID:29176877

  8. [Length and structure of telomeric DNA in three species of Baikal gastropods (Caenogastropoda: Hydrobioidea: Benedictiidae)].

    PubMed

    Koroleva, A G; Evtushenko, E V; Maximova, N V; Vershinin, A V; Sintnikova, T Y; Kirilchik, S V

    2015-03-01

    The structure of telomeric repeat (TTAGGG)n was determined and the length of telomeric DNA (tDNA) was measured in three species of gastropods from the family Benedictiidae that are endemic to Lake Baikal. Fluorescence in situ hybridization (FISH) confirmed the localization of a telomeric repeat at the chromosome ends. The sizes of tDNA in "giant" eurybathic, psammo-pelobiontic species Benedictia fragilis and shallow water litho-psammobiontic species B. baicalensis with medium shell sizes were similar (16 ± 2.9 and 15 ± 2.1 kb, respectively), but they had a greater length than that of the shallow water spongio-litobiontic species Kobeltocochlea martensiana with small shells (10.5 ± 1.5 kb). We discuss tendencies in age-related changes in tDNA length in snails and a possible mechanism for maintaining tDNA size in ontogeny.

  9. Fructosylation induced structural changes in mammalian DNA examined by biophysical techniques

    NASA Astrophysics Data System (ADS)

    Zaman, Asif; Arif, Zarina; Alam, Khursheed

    2017-03-01

    Glycosylation of DNA, proteins, lipids, etc. by reducing sugars, can lead to the formation of advanced glycation end products (AGEs). These products may accumulate and involve in the pathogenesis of a number of diseases, contributing to tissue injury via several mechanisms. In this study, fructosylation of calf thymus dsDNA was carried out with varying concentrations of fructose. The neo-structure of fructosylated-DNA was studied by various biophysical techniques and morphological characterization. Fructosylated-DNA showed hyperchromicity, increase in fluorescence intensity and decrease in melting temperature. The CD signal of modified-DNA shifted in the direction of higher wavelength indicative of structural changes in DNA. FTIR results indicated shift in specific band positions in fructosylated-DNA. Morphological characterization of fructosylated-DNA exhibited strand breakage and aggregation. The results suggest that the structure and conformation of DNA may be altered under high concentrations of fructose.

  10. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pröpper, Kevin; Instituto de Biologia Molecular de Barcelona; Meindl, Kathrin

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite themore » fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.« less

  11. Dna2 nuclease-helicase structure, mechanism and regulation by Rpa

    PubMed Central

    Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P

    2015-01-01

    The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5’ end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5’ but not 3’ end, explaining how Rpa regulates cleavage polarity. DOI: http://dx.doi.org/10.7554/eLife.09832.001 PMID:26491943

  12. Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands.

    PubMed

    Rodríguez, David; Brea, José; Loza, María Isabel; Carlsson, Jens

    2014-08-05

    The development of safe and effective drugs relies on the discovery of selective ligands. Serotonin (5-hydroxytryptamine [5-HT]) G protein-coupled receptors are therapeutic targets for CNS disorders but are also associated with adverse drug effects. The determination of crystal structures for the 5-HT1B and 5-HT2B receptors provided an opportunity to identify subtype selective ligands using structure-based methods. From docking screens of 1.3 million compounds, 22 molecules were predicted to be selective for the 5-HT1B receptor over the 5-HT2B subtype, a requirement for safe serotonergic drugs. Nine compounds were experimentally verified as 5-HT1B-selective ligands, with up to 300-fold higher affinities for this subtype. Three of the ligands were agonists of the G protein pathway. Analysis of state-of-the-art homology models of the two 5-HT receptors revealed that the crystal structures were critical for predicting selective ligands. Our results demonstrate that structure-based screening can guide the discovery of ligands with specific selectivity profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Structure of chromatin and the linking number of DNA.

    PubMed Central

    Worcel, A; Strogatz, S; Riley, D

    1981-01-01

    Recent observations suggest that the basic supranucleosomal structure of chromatin is a zigzag helical ribbon with a repeat unit made of two nucleosomes connected by a relaxed spacer DNA. A remarkable feature of one particular ribbon is that it solves the apparent paradox between the number of DNA turns per nucleosome and the total linking number of a nucleosome-containing closed circular DNA molecule. We show here that the repeat unit of the proposed structure, which contains two nucleosomes with -1 3/4 DNA turns per nucleosome and one spacer crossover per repeat, contributes -2 to the linking number of closed circular DNA. Space-filling models show that the cylindrical 250-A chromatin fiber can be generated by twisting the ribbon. Images PMID:6940168

  14. Genetic structure and diversity of Japanese kokanee Oncorhynchus nerka stocks as revealed by microsatellite and mitochondrial DNA markers.

    PubMed

    Yamamoto, S; Kitamura, S; Sakano, H; Morita, K

    2011-11-01

    Genetic structure and diversity of nine Japanese kokanee (landlocked) Oncorhynchus nerka stocks and anadromous O. nerka from the North Pacific and the Canadian Lake Cultus population were examined using microsatellite and mitochondrial DNA. Sequence analyses of the cytochrome b region of mtDNA for Japanese kokanee O. nerka stocks on Honshu and Hokkaido islands revealed that most Japanese stocks were monomorphic of one major haplotype, which was also dominant in the Lake Cultus population and anadromous O. nerka in the North Pacific. Assignment tests using microsatellite DNA revealed that there was no clear-cut population structure in Japanese kokanee O. nerka stocks. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  15. DNA viewed as an out-of-equilibrium structure

    NASA Astrophysics Data System (ADS)

    Provata, A.; Nicolis, C.; Nicolis, G.

    2014-05-01

    The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ2 tests shows that DNA can not be described as a low order Markov chain of order up to r =6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.

  16. DNA viewed as an out-of-equilibrium structure.

    PubMed

    Provata, A; Nicolis, C; Nicolis, G

    2014-05-01

    The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ^{2} tests shows that DNA can not be described as a low order Markov chain of order up to r=6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.

  17. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    PubMed Central

    Andersen, Felicie F.; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto; Frøhlich, Rikke F.; Krüger, Dinna; Bungert, Jörg; Agbandje-McKenna, Mavis; McKenna, Robert; Juul, Sissel; Veigaard, Christopher; Koch, Jørn; Rubinstein, John L.; Guldbrandtsen, Bernt; Hede, Marianne S.; Karlsson, Göran; Andersen, Anni H.; Pedersen, Jan Skov; Knudsen, Birgitta R.

    2008-01-01

    The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson–Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnology. Here we present the design, construction and structural analysis of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double-stranded DNA helices that assembles from eight oligonucleotides with a yield of ∼30%. As demonstrated by Small Angle X-ray Scattering and cryo-Transmission Electron Microscopy analyses the eight-stranded DNA structure has a central cavity larger than the apertures in the surrounding DNA lattice and can be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures. PMID:18096620

  18. Structure and Environment Influence in DNA Conduction

    NASA Technical Reports Server (NTRS)

    Adessi, C.; Walch, S.; Anantram, M. P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Results for transmission through a poly(G) DNA molecule are presented. We show that a modification of the rise of a B-DNA form can induce a shift of the conduction channel toward the valence one. We clearly prove that deformation of the backbone of the molecule has a significant influence on hole transport. Finally, we observe that the presence of ionic species, such Na, near the molecule can create new conduction channels.

  19. Interaction of cationic phthalocyanines with DNA. Importance of the structure of the substituents.

    PubMed

    López Zeballos, N C; Gauna, G A; García Vior, M C; Awruch, J; Dicelio, L E

    2014-07-05

    The interaction of novel zinc (II) cationic phthalocyanines with CT-DNA was studied using absorption and fluorescence spectroscopy, as well as thermal denaturation profiles. Results showed an electrostatic interaction between the phthalocyanines and CT-DNA. The properties of these phthalocyanines were compared taking the structure of the macrocycle peripheral substituents into account. 2,9(10),16(17),23(24)-tetrakis[(N-butyl-N-methylammonium)ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide (Pc6) had a greater affinity for the CT-DNA helix than its bioisoster 2,9(10),16(17),23(24)-tetrakis[(N-dibutyl-N-methylammonium)ethoxy]phthalocyaninatozinc(II) tetraiodide (Pc7). 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium)ethyl-sulfanyl]phthalocyaninatozinc(II) tetraiodide (Pc13) also carried a sulfur atom like Pc6, but linked to bulky substituents such as trimethylammonium groups. The planar aromatic region of the cationic phthalocyanines in this study appears to be unable to facilitate their intercalation with CT-DNA. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Characterization of the human SNM1A and SNM1B/Apollo DNA repair exonucleases.

    PubMed

    Sengerová, Blanka; Allerston, Charles K; Abu, Mika; Lee, Sook Y; Hartley, Janet; Kiakos, Konstantinos; Schofield, Christopher J; Hartley, John A; Gileadi, Opher; McHugh, Peter J

    2012-07-27

    Human SNM1A and SNM1B/Apollo have both been implicated in the repair of DNA interstrand cross-links (ICLs) by cellular studies, and SNM1B is also required for telomere protection. Here, we describe studies on the biochemical characterization of the SNM1A and SNM1B proteins. The results reveal some fundamental differences in the mechanisms of the two proteins. Both SNM1A and SNM1B digest double-stranded and single-stranded DNA with a 5'-to-3' directionality in a reaction that is stimulated by divalent cations, and both nucleases are inhibited by the zinc chelator o-phenanthroline. We find that SNM1A has greater affinity for single-stranded DNA over double-stranded DNA that is not observed with SNM1B. Although both proteins demonstrate a low level of processivity on low molecular weight DNA oligonucleotide substrates, when presented with high molecular weight DNA, SNM1A alone is rendered much more active, being capable of digesting kilobase-long stretches of DNA. Both proteins can digest past ICLs induced by the non-distorting minor groove cross-linking agent SJG-136, albeit with SNM1A showing a greater capacity to achieve this. This is consistent with the proposal that SNM1A and SNM1B might exhibit some redundancy in ICL repair. Together, our work establishes differences in the substrate selectivities of SNM1A and SNM1B that are likely to be relevant to their in vivo roles and which might be exploited in the development of selective inhibitors.

  1. DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes.

    PubMed

    Tretyakova, Natalia Y; Groehler, Arnold; Ji, Shaofei

    2015-06-16

    Noncovalent DNA-protein interactions are at the heart of normal cell function. In eukaryotic cells, genomic DNA is wrapped around histone octamers to allow for chromosomal packaging in the nucleus. Binding of regulatory protein factors to DNA directs replication, controls transcription, and mediates cellular responses to DNA damage. Because of their fundamental significance in all cellular processes involving DNA, dynamic DNA-protein interactions are required for cell survival, and their disruption is likely to have serious biological consequences. DNA-protein cross-links (DPCs) form when cellular proteins become covalently trapped on DNA strands upon exposure to various endogenous, environmental and chemotherapeutic agents. DPCs progressively accumulate in the brain and heart tissues as a result of endogenous exposure to reactive oxygen species and lipid peroxidation products, as well as normal cellular metabolism. A range of structurally diverse DPCs are found following treatment with chemotherapeutic drugs, transition metal ions, and metabolically activated carcinogens. Because of their considerable size and their helix-distorting nature, DPCs interfere with the progression of replication and transcription machineries and hence hamper the faithful expression of genetic information, potentially contributing to mutagenesis and carcinogenesis. Mass spectrometry-based studies have identified hundreds of proteins that can become cross-linked to nuclear DNA in the presence of reactive oxygen species, carcinogen metabolites, and antitumor drugs. While many of these proteins including histones, transcription factors, and repair proteins are known DNA binding partners, other gene products with no documented affinity for DNA also participate in DPC formation. Furthermore, multiple sites within DNA can be targeted for cross-linking including the N7 of guanine, the C-5 methyl group of thymine, and the exocyclic amino groups of guanine, cytosine, and adenine. This structural

  2. DNA-Protein Cross-links: Formation, Structural Identities, and Biological Outcomes

    PubMed Central

    Tretyakova, Natalia Y.; Groehler, Arnold; Ji, Shaofei

    2015-01-01

    CONSPECTUS Non-covalent DNA-protein interactions are at the heart of normal cell function. In eukaryotic cells, genomic DNA is wrapped around histone octamers to allow for chromosomal packaging in the nucleus. Binding of regulatory protein factors to DNA directs replication, controls transcription, and mediates cellular responses to DNA damage. Because of their fundamental significance in all cellular processes involving DNA, dynamic DNA-protein interactions are required for cell survival, and their disruption is likely to have serious biological consequences. DNA-protein cross-links (DPCs) form when cellular proteins become covalently trapped on DNA strands upon exposure to various endogenous, environmental and chemotherapeutic agents. DPCs progressively accumulate in the brain and heart tissues as a result of endogenous exposure to reactive oxygen species and lipid peroxidation products, as well as normal cellular metabolism. A range of structurally diverse DPCs are found following treatment with chemotherapeutic drugs, transition metal ions, and metabolically activated carcinogens. Because of their considerable size and their helix-distorting nature, DPCs interfere with the progression of replication and transcription machineries and hence hamper the faithful expression of genetic information, potentially contributing to mutagenesis and carcinogenesis. Mass spectrometry-based studies have identified hundreds of proteins that can become cross-linked to nuclear DNA in the presence of reactive oxygen species, carcinogen metabolites, and antitumor drugs. While many of these proteins including histones, transcription factors, and repair proteins are known DNA binding partners, other gene products with no documented affinity for DNA also participate in DPC formation. Furthermore, multiple sites within DNA can be targeted for cross-linking including the N7 of guanine, the C-5 methyl group of thymine, and the exocyclic amino groups of guanine, cytosine, and adenine

  3. Hands on Group Work Paper Model for Teaching DNA Structure, Central Dogma and Recombinant DNA

    ERIC Educational Resources Information Center

    Altiparmak, Melek; Nakiboglu Tezer, Mahmure

    2009-01-01

    Understanding life on a molecular level is greatly enhanced when students are given the opportunity to visualize the molecules. Especially understanding DNA structure and function is essential for understanding key concepts of molecular biology such as DNA, central dogma and the manipulation of DNA. Researches have shown that undergraduate…

  4. Conformation-dependent DNA attraction

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-05-01

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by

  5. Transcription initiation complex structures elucidate DNA opening.

    PubMed

    Plaschka, C; Hantsche, M; Dienemann, C; Burzinski, C; Plitzko, J; Cramer, P

    2016-05-19

    Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts.

  6. Reducing Electroosmotic Flow Enables DNA Separations in Ultrathin Channels.

    DTIC Science & Technology

    1998-08-01

    Chemical structure of DNA bases 2 Figure 1-2: Schematic diagram of DNA base pairing 5 Figure 1-3: Schematic diagram of the capillary and the...hydrogen atoms near one of the Figure 1-1: A. Chemical structure of the DNA backbone. B. Chemical structure of DNA bases . The DNA backbone consists...of pentose sugar (deoxyribose) held together by phosphodiester bonds. The DNA bases that are derivatives of purine are adenine (A) and guanine (G

  7. The clpB gene of Bifidobacterium breve UCC 2003: transcriptional analysis and first insights into stress induction.

    PubMed

    Ventura, Marco; Kenny, John G; Zhang, Ziding; Fitzgerald, Gerald F; van Sinderen, Douwe

    2005-09-01

    The so-called clp genes, which encode components of the Clp proteolytic complex, are widespread among bacteria. The Bifidobacterium breve UCC 2003 genome contains a clpB gene with significant homology to predicted clpB genes from other members of the Actinobacteridae group. The heat- and osmotic-inducibility of the B. breve UCC 2003 clpB homologue was verified by slot-blot analysis, while Northern blot and primer extension analyses showed that the clpB gene is transcribed as a monocistronic unit with a single promoter. The role of a hspR homologue, known to control the regulation of clpB and dnaK gene expression in other high G+C content bacteria was investigated by gel mobility shift assays. Moreover the predicted 3D structure of HspR provides further insight into the binding mode of this protein to the clpB promoter region, and highlights the key amino acid residues believed to be involved in the protein-DNA interaction.

  8. The role of structural parameters in DNA cyclization

    DOE PAGES

    Alexandrov, Ludmil B.; Bishop, Alan R.; Rasmussen, Kim O.; ...

    2016-02-04

    The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this paper, we use a well-established coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating DNA cyclization.

  9. Nucleic Acid-Based Cross-Linking Assay for Detection and Quantification of Hepatitis B Virus DNA

    PubMed Central

    Lai, Vicky C. H.; Guan, Richard; Wood, Michael L.; Lo, Su Kong; Yuen, Man-Fung; Lai, Ching-Lung

    1999-01-01

    A nucleic acid photo-cross-linking technology was used to develop a direct assay for the quantification of hepatitis B virus (HBV) DNA levels in serum. Cross-linker-modified DNA probes complementary to the viral genomes of the major HBV subtypes were synthesized and used in an assay that could be completed in less than 6 h. The quantification range of the assay, as determined by testing serial dilutions of Eurohep HBV reference standards and cloned HBV DNA, was 5 × 105 to 3 × 109 molecules of HBV DNA/ml of serum. Within-run and between-run coefficients of variation (CVs) for the assay were 4.3 and 4.0%, respectively. The assay was used to determine HBV DNA levels in 302 serum samples, and the results were compared to those obtained after testing the same samples with the Chiron branched-DNA (bDNA) assay for HBV DNA. Of the samples tested, 218 were positive for HBV DNA by both assays and 72 gave results below the cutoff for both assays. Of the remaining 12 samples, 10 were positive for HBV DNA by the cross-linking assay only; the 2 other samples were positive by the bDNA assay only. Twenty-eight samples had to be retested by the bDNA assay (CV, >20% between the results obtained from the testing of each sample in duplicate), whereas only three samples required retesting by the cross-linking assay. The correlation between the HBV DNA levels, as measured by the two tests, was very high (r = 0.902; P = 0.01). We conclude that the cross-linking assay is a sensitive and reproducible method for the detection and quantification of HBV DNA levels in serum. PMID:9854083

  10. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations

    PubMed Central

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-01-01

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840

  11. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.

    PubMed

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-12-10

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.

  12. Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database.

    PubMed

    Nurminen, Anssi; Farnum, Gregory A; Kaguni, Laurie S

    2017-06-01

    DNA polymerase gamma (POLG) is the replicative polymerase responsible for maintaining mitochondrial DNA (mtDNA). Disorders related to its functionality are a major cause of mitochondrial disease. The clinical spectrum of POLG syndromes includes Alpers-Huttenlocher syndrome (AHS), childhood myocerebrohepatopathy spectrum (MCHS), myoclonic epilepsy myopathy sensory ataxia (MEMSA), the ataxia neuropathy spectrum (ANS) and progressive external ophthalmoplegia (PEO). We have collected all publicly available POLG-related patient data and analyzed it using our pathogenic clustering model to provide a new research and clinical tool in the form of an online server. The server evaluates the pathogenicity of both previously reported and novel mutations. There are currently 176 unique point mutations reported and found in mitochondrial patients in the gene encoding the catalytic subunit of POLG, POLG . The mutations are distributed nearly uniformly along the length of the primary amino acid sequence of the gene. Our analysis shows that most of the mutations are recessive, and that the reported dominant mutations cluster within the polymerase active site in the tertiary structure of the POLG enzyme. The POLG Pathogenicity Prediction Server (http://polg.bmb.msu.edu) is targeted at clinicians and scientists studying POLG disorders, and aims to provide the most current available information regarding the pathogenicity of POLG mutations.

  13. Electrostatic potential of B-DNA: effect of interionic correlations.

    PubMed Central

    Gavryushov, S; Zielenkiewicz, P

    1998-01-01

    Modified Poisson-Boltzmann (MPB) equations have been numerically solved to study ionic distributions and mean electrostatic potentials around a macromolecule of arbitrarily complex shape and charge distribution. Results for DNA are compared with those obtained by classical Poisson-Boltzmann (PB) calculations. The comparisons were made for 1:1 and 2:1 electrolytes at ionic strengths up to 1 M. It is found that ion-image charge interactions and interionic correlations, which are neglected by the PB equation, have relatively weak effects on the electrostatic potential at charged groups of the DNA. The PB equation predicts errors in the long-range electrostatic part of the free energy that are only approximately 1.5 kJ/mol per nucleotide even in the case of an asymmetrical electrolyte. In contrast, the spatial correlations between ions drastically affect the electrostatic potential at significant separations from the macromolecule leading to a clearly predicted effect of charge overneutralization. PMID:9826596

  14. A DNA Origami Mechanical Device for the Regulation of Microcosmic Structural Rigidity.

    PubMed

    Wan, Neng; Hong, Zhouping; Wang, Huading; Fu, Xin; Zhang, Ziyue; Li, Chao; Xia, Han; Fang, Yan; Li, Maoteng; Zhan, Yi; Yang, Xiangliang

    2017-11-01

    DNA origami makes it feasible to fabricate a tremendous number of DNA nanostructures with various geometries, dimensions, and functionalities. Moreover, an increasing amount of research on DNA nanostructures is focused on biological and biomedical applications. Here, the reversible regulation of microcosmic structural rigidity is accomplished using a DNA origami device in vitro. The designed DNA origami monomer is composed of an internal central axis and an external sliding tube. Due to the external tube sliding, the device transforms between flexible and rigid states. By transporting the device into the liposome, the conformational change of the origami device induces a structural change in the liposome. The results obtained demonstrate that the programmed DNA origami device can be applied to regulate the microcosmic structural rigidity of liposomes. Because microcosmic structural rigidity is important to cell proliferation and function, the results obtained potentially provide a foundation for the regulation of cell microcosmic structural rigidity using DNA nanostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Liposomal lipid and plasmid DNA delivery to B16/BL6 tumors after intraperitoneal administration of cationic liposome DNA aggregates.

    PubMed

    Reimer, D L; Kong, S; Monck, M; Wyles, J; Tam, P; Wasan, E K; Bally, M B

    1999-05-01

    The transfer of plasmid expression vectors to cells is essential for transfection after administration of lipid-based DNA formulations (lipoplexes). A murine i.p. B16/BL6 tumor model was used to characterize DNA delivery, liposomal lipid delivery, and gene transfer after regional (i.p.) administration of free plasmid DNA and DNA lipoplexes. DNA lipoplexes were prepared using cationic dioleoyldimethylammonium chloride/dioleoylphosphatidylethanolamine (50:50 mol ratio) liposomes mixed with plasmid DNA (1 microgram DNA/10 nmol lipid). The plasmid used contained the chloramphenicol acetyltransferase gene and chloramphenicol acetyltransferase expression (mU/g tumor) was measured to estimate transfection efficiency. Tumor-associated DNA and liposomal lipid levels were measured to estimate the efficiency of lipid-mediated DNA delivery to tumors. Plasmid DNA delivery was estimated using [3H]-labeled plasmid as a tracer, dot blot analysis, and/or Southern analysis. Liposomal lipid delivery was estimated using [14C]-dioleoylphosphatidylethanolamine as a liposomal lipid marker. Gene expression in the B16/BL6 tumors was highly variable, with values ranging from greater than 2,000 mU/g tumor to less than 100 mU/g tumor. There was a tendency to observe enhanced transfection in small (<250 mg) tumors. Approximately 18% of the injected dose of DNA was associated with these small tumors 2 h after i.p. administration. Southern analysis of extracted tumor DNA indicated that plasmid DNA associated with tumors was intact 24 h after administration. DNA and associated liposomal lipid are efficiently bound to tumors after regional administration; however, it is unclear whether delivery is sufficient to abet internalization and appropriate subcellular localization of the expression vector.

  16. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.

    PubMed

    Ke, Yonggang; Castro, Carlos; Choi, Jong Hyun

    2018-06-04

    Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery.

  17. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10{sup 5}-fold, during amore » period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis.« less

  18. Characterization of the Human SNM1A and SNM1B/Apollo DNA Repair Exonucleases*

    PubMed Central

    Sengerová, Blanka; Allerston, Charles K.; Abu, Mika; Lee, Sook Y.; Hartley, Janet; Kiakos, Konstantinos; Schofield, Christopher J.; Hartley, John A.; Gileadi, Opher; McHugh, Peter J.

    2012-01-01

    Human SNM1A and SNM1B/Apollo have both been implicated in the repair of DNA interstrand cross-links (ICLs) by cellular studies, and SNM1B is also required for telomere protection. Here, we describe studies on the biochemical characterization of the SNM1A and SNM1B proteins. The results reveal some fundamental differences in the mechanisms of the two proteins. Both SNM1A and SNM1B digest double-stranded and single-stranded DNA with a 5′-to-3′ directionality in a reaction that is stimulated by divalent cations, and both nucleases are inhibited by the zinc chelator o-phenanthroline. We find that SNM1A has greater affinity for single-stranded DNA over double-stranded DNA that is not observed with SNM1B. Although both proteins demonstrate a low level of processivity on low molecular weight DNA oligonucleotide substrates, when presented with high molecular weight DNA, SNM1A alone is rendered much more active, being capable of digesting kilobase-long stretches of DNA. Both proteins can digest past ICLs induced by the non-distorting minor groove cross-linking agent SJG-136, albeit with SNM1A showing a greater capacity to achieve this. This is consistent with the proposal that SNM1A and SNM1B might exhibit some redundancy in ICL repair. Together, our work establishes differences in the substrate selectivities of SNM1A and SNM1B that are likely to be relevant to their in vivo roles and which might be exploited in the development of selective inhibitors. PMID:22692201

  19. Hepatitis B serological markers and plasma DNA concentrations

    PubMed Central

    Price, Huw; Dunn, David; Zachary, Tamale; Vudriko, Tobias; Chirara, Michael; Kityo, Cissy; Munderi, Paula; Spyer, Moira; Hakim, James; Gilks, Charles; Kaleebu, Pontiano; Pillay, Deenan; Gilson, Richard

    2017-01-01

    Objectives: To examine hepatitis B (HBV) serological markers and plasma DNA concentrations in a large group of untreated HBV/HIV-coinfected individuals in two sub-Saharan settings. Design: Baseline analysis of a randomized controlled trial. Methods: DART was a large trial of treatment monitoring practices in HIV-infected adults with advanced disease starting antiretroviral therapy at centres in Kampala or Entebbe, Uganda (n = 2317) and Harare, Zimbabwe (n = 999). HBV serological markers [antibody to HBV core antigen, HBV surface antigen (HBsAg), antibody to HBV surface antigen, HBV ‘e’ antigen (HBeAg), and antibody to hepatitis B ‘e’ antigen] and plasma HBV DNA viral load were measured retrospectively on stored baseline samples. Logistic regression was used to examine associations with baseline demographic and clinical factors. Results: The rate of HBsAg positivity was significantly higher in Zimbabwe than Uganda (12.2 vs. 7.7%, adjusted odds ratio = 1.54, P < 0.001) despite a similar prevalence of antibody to HBV core antigen (56.3 vs. 52.4%) in the two settings. Overall, HBsAg positivity was associated with male sex (adjusted odds ratio = 1.54, P < 0.001) but not with age, WHO disease stage, or CD4+ cell count. HBeAg was detected among 37% of HBsAg-positive patients, with higher rates among those with advanced WHO stage (P = 0.02). Also in HBsAg-positive patients, HBV DNA was undetectable in 21%, detectable but below the level of quantification in 14%, and quantifiable in 65%. A total of 96% of HBeAg-positive and 70% of HBeAg-negative patients had detectable HBV DNA; 92 and 28% of patients, respectively, had HBV DNA viral load more than 2000 IU/ml. Conclusion: High rates of HBV coinfection were observed, highlighting the importance of ensuring that coinfected patients receive an antiretroviral regimen, whether first-line or not, that is active against both viruses. PMID:28328795

  20. Unique Dynamic Properties of DNA Duplexes Containing Interstrand Crosslinks†

    PubMed Central

    Friedman, Joshua I.; Jiang, Yu Lin; Miller, Paul S.; Stivers, James T.

    2010-01-01

    Bifunctional DNA alkylating agents form a diverse assortment of covalent DNA interstrand crosslinked (ICL) structures that are potent cytotoxins. Since it is implausible that cells could possess distinct DNA repair systems for each individual ICL, it is believed that common structural and dynamic features of ICL damage are recognized, rather than specific structural characteristics of each cross-linking agent. Investigation of the structural and dynamic properties of ICLs that might be important for recognition has been complicated by heterogeneous incorporation of these lesions into DNA. To address this problem we have synthesized and characterized several homogenous ICL-DNAs containing site–specific staggered N4-cytosine-ethyl-N4-cytosine crosslinks. Staggered crosslinks were introduced in two ways: in a manner that preserves the overall structure of B-form duplex DNA, and in a manner that highly distorts the DNA structure, with the goal of understanding how structural and dynamic properties of diverse ICL duplexes might flag these sites for repair. Measurements of base pair opening dynamics in the B-form ICL duplex by 1H NMR linewidth or imino proton solvent exchange showed that the guanine base opposite to the crosslinked cytosine opened at least an order of magnitude more slowly than when in a control matched normal duplex. To a lesser degree, the B-form ICL also induced a decrease in base pair opening dynamics that extended from the site of the crosslink to adjacent base pairs. In contrast, the non-B-form ICL showed extensive conformational dynamics at the site of the cross link, which extended over the entire DNA sequence. Since DNA duplexes containing the B-form and non-B-form ICL crosslinks have both been shown to be incised when incubated in mammalian whole cell extracts, while a matched normal duplex is not, we conclude that intrinsic DNA dynamics is not a requirement for specific damage incision of these ICLs. Instead, we propose a general model where

  1. Mechanism for priming DNA synthesis by yeast DNA Polymerase α

    PubMed Central

    Perera, Rajika L; Torella, Rubben; Klinge, Sebastian; Kilkenny, Mairi L; Maman, Joseph D; Pellegrini, Luca

    2013-01-01

    The DNA Polymerase α (Pol α)/primase complex initiates DNA synthesis in eukaryotic replication. In the complex, Pol α and primase cooperate in the production of RNA-DNA oligonucleotides that prime synthesis of new DNA. Here we report crystal structures of the catalytic core of yeast Pol α in unliganded form, bound to an RNA primer/DNA template and extending an RNA primer with deoxynucleotides. We combine the structural analysis with biochemical and computational data to demonstrate that Pol α specifically recognizes the A-form RNA/DNA helix and that the ensuing synthesis of B-form DNA terminates primer synthesis. The spontaneous release of the completed RNA-DNA primer by the Pol α/primase complex simplifies current models of primer transfer to leading- and lagging strand polymerases. The proposed mechanism of nucleotide polymerization by Pol α might contribute to genomic stability by limiting the amount of inaccurate DNA to be corrected at the start of each Okazaki fragment. DOI: http://dx.doi.org/10.7554/eLife.00482.001 PMID:23599895

  2. Hepatitis B infection among HIV infected individuals in Gabon: Occult hepatitis B enhances HBV DNA prevalence

    PubMed Central

    Amougou-Atsama, Marie; Zoa-Assoumou, Samira; M’boyis Kamdem, Hervé; Nzengui-Nzengui, Guy Francis; Ndojyi-Mbiguino, Angélique; Njouom, Richard; François-Souquière, Sandrine

    2018-01-01

    In Gabon, a central African country, human immunodeficiency virus (HIV) and hepatitis B virus (HBV) are endemic. In a recent study, conducted in a semi-urban area (Franceville, Gabon), HBV infection was found to be more prevalent among HIV infected individuals. This study aims to investigate the prevalence and genetic diversity of hepatitis B virus infection among HIV infected individuals, predominantly under antiretroviral therapy, living in fully urbanized area: Libreville, capital of Gabon. Serological and molecular tests were performed to detect HBV infection among patients living with HIV/AIDS (PLHA). We used Monolisa HBsAg ULTRA, Anti-HBc Plus and Anti-HBs Plus EIA kits for serological analyses. HBV DNA viral load (HBV DNA VL) was determined by real time PCR and molecular characterization of HBV strains was performed by sequencing and phylogenetic analysis of partial HBV surface and core genes. At all, 70.2% of patients were under antiretroviral therapy. The prevalence of HBsAg was 8.8% (43/487). Detectable HBV DNA was found in 69.7% (30/43) of HBsAg positive patients and in 17.5% (24/137) HBsAg negative patients. HBV DNA VL was significantly higher among patient with CD4 cell counts less than 200 cells/mm3 than those with CD4 cell counts greater than 500 cells/mm3 (p = 0.008). We confirmed the presence of HBV sub-genotypes QS-A3 (40%), and A4 (20%) and HBV-E genotype (40%). The percentage of resistance to Lamivudine was high (40%) and varied according to the M204V/I motif. Occult hepatitis B infection (OBI) was found in patients with isolated HBcAb and among patients who had completed their HBsAg seroconversion. We detected HBV DNA for one patient without any HBV serological marker. This study provides a new landmark for the comprehension of HBV infection in PLHA in urban areas. OBI enhances HBV DNA prevalence and should be investigated in all HBsAg negative individuals. PMID:29315352

  3. Hepatitis B infection among HIV infected individuals in Gabon: Occult hepatitis B enhances HBV DNA prevalence.

    PubMed

    Bivigou-Mboumba, Berthold; Amougou-Atsama, Marie; Zoa-Assoumou, Samira; M'boyis Kamdem, Hervé; Nzengui-Nzengui, Guy Francis; Ndojyi-Mbiguino, Angélique; Njouom, Richard; François-Souquière, Sandrine

    2018-01-01

    In Gabon, a central African country, human immunodeficiency virus (HIV) and hepatitis B virus (HBV) are endemic. In a recent study, conducted in a semi-urban area (Franceville, Gabon), HBV infection was found to be more prevalent among HIV infected individuals. This study aims to investigate the prevalence and genetic diversity of hepatitis B virus infection among HIV infected individuals, predominantly under antiretroviral therapy, living in fully urbanized area: Libreville, capital of Gabon. Serological and molecular tests were performed to detect HBV infection among patients living with HIV/AIDS (PLHA). We used Monolisa HBsAg ULTRA, Anti-HBc Plus and Anti-HBs Plus EIA kits for serological analyses. HBV DNA viral load (HBV DNA VL) was determined by real time PCR and molecular characterization of HBV strains was performed by sequencing and phylogenetic analysis of partial HBV surface and core genes. At all, 70.2% of patients were under antiretroviral therapy. The prevalence of HBsAg was 8.8% (43/487). Detectable HBV DNA was found in 69.7% (30/43) of HBsAg positive patients and in 17.5% (24/137) HBsAg negative patients. HBV DNA VL was significantly higher among patient with CD4 cell counts less than 200 cells/mm3 than those with CD4 cell counts greater than 500 cells/mm3 (p = 0.008). We confirmed the presence of HBV sub-genotypes QS-A3 (40%), and A4 (20%) and HBV-E genotype (40%). The percentage of resistance to Lamivudine was high (40%) and varied according to the M204V/I motif. Occult hepatitis B infection (OBI) was found in patients with isolated HBcAb and among patients who had completed their HBsAg seroconversion. We detected HBV DNA for one patient without any HBV serological marker. This study provides a new landmark for the comprehension of HBV infection in PLHA in urban areas. OBI enhances HBV DNA prevalence and should be investigated in all HBsAg negative individuals.

  4. Pressure induced structural phase transition from NaCl-type (B1) to CsCl-type (B2) structure in sodium chloride

    NASA Astrophysics Data System (ADS)

    Jain, Aayushi; Dixit, R. C.

    2018-05-01

    Pressure induced structural phase transition of NaCl-type (B1) to CsCl-type (B2) structure in Sodium Chloride NaCl are presented. An effective interionic interaction potential (EIOP) with long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge is reported here. The reckon value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are compatible as compared with reported data. The variations of elastic constants and their combinations with pressure follow ordered behavior. The present approach has also succeeded in predicting the Born and relative stability criteria.

  5. Attitudes to predictive DNA testing in familial adenomatous polyposis.

    PubMed Central

    Whitelaw, S; Northover, J M; Hodgson, S V

    1996-01-01

    Attitudes to predictive DNA testing for familial adenomatous polyposis were documented in 62 affected adults. Patient views on prenatal testing and termination of pregnancy for this disorder were sought, as were opinions on the most suitable age to offer predictive testing for at risk children and the most appropriate age to begin screening. While 15 (24%) of those questioned stated that they would proceed to termination of pregnancy if a prenatal test indicated that the unborn baby was affected, in clinical practice no one has yet requested this option. Six (10%) people who had refrained from having children for fear of passing on the polyposis gene felt that the arrival of prenatal testing would enable them to consider planning a family. The majority of patients (93%) said they would like their children tested by DNA analysis at birth or in infancy, but felt that 10 to 12 years was the most appropriate time to discuss the diagnosis with the child. PMID:8818937

  6. Comparison of clinical application of the Abbott HBV PCR kit and the VERSANT HBV DNA 3.0 test to measure serum hepatitis B virus DNA in Taiwanese patients.

    PubMed

    Yang, Jeng-Fu; Lin, Ya-Yun; Huang, Jee-Fu; Liu, Shu-Fen; Chu, Pei-Yu; Hsieh, Ming-Yen; Lin, Zu-Yau; Chen, Shinn-Cherng; Wang, Liang-Yen; Dai, Chia-Yen; Chuang, Wan-Long; Yu, Ming-Lung

    2009-08-01

    With an estimated 350-400 million people worldwide chronically infected with hepatitis B virus (HBV), and the subsequent serious complications caused by liver damage including cirrhosis, liver failure, and hepatocellular carcinoma, HBV infection remains a global health issue, particularly in Taiwan, an HBV-hyperendemic area. Sensitive and accurate quantification of HBV DNA is necessary to monitor patients with chronic hepatitis B who are receiving antiviral therapy to determine treatment response and adapt therapy. We evaluated and compared the clinical performance of two HBV DNA assays based on different technologies: the RealArt HBV PCR Kit (Abbott HBV DNA PCR kit, real-time polymerase chain reaction assay, detection limit: 27 IU/mL) and the VERSANT bDNA 3.0 assay (Bayer, branched DNA signal amplification assay, detection limit: 357 IU/mL). Serum levels of HBV DNA in 173 chronic HBV carriers were determined using both the RealArt HBV PCR Kit and the VERSANT bDNA 3.0 test. Of the 173 samples analyzed for baseline viral load detection, HBV DNA was quantifiable in 147 patients (82.1%) by the RealArt HBV PCR Kit, which was significantly higher than the 92 (53.2%) samples quantified by the VERSANT bDNA 3.0 assay. A total of 86 (49.7%) samples were quantifiable by both assays, whereas 25 (14.5%) were below the detection limit of both assays. The HBV DNA quantification values measured by the RealArt HBV PCR Kit and the VERSANT bDNA 3.0 assay were positively correlated (Spearman's rank correlation coefficient r = 0.932, p < 0.001). On average, the results derived from the RealArt HBV PCR Kit were 0.67 log lower than those of the VERSANT bDNA 3.0 assay. HBV DNA concentrations were significantly higher in 63 HBV e antigen (HBeAg)-seropositive patients than in 110 HBeAg-seronegative patients (5.42 +/- 2.34 logs vs. 3.21 +/- 2.27 logs, p < 0.001). The RealArt HBV PCR Kit is more sensitive and has a wider dynamic range than the VERSANT bDNA 3.0 assay in the clinical setting

  7. DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria.

    PubMed

    Ruiz-Ruano, F J; Ruiz-Estévez, M; Rodríguez-Pérez, J; López-Pino, J L; Cabrero, J; Camacho, J P M

    2011-01-01

    We analyzed the DNA amount in X and B chromosomes of 2 XX/X0 grasshopper species (Eyprepocnemis plorans and Locusta migratoria), by means of Feulgen image analysis densitometry (FIAD), using previous estimates in L. migratoria as standard (5.89 pg). We first analyzed spermatids of 0B males and found a bimodal distribution of integrated optical densities (IODs), suggesting that one peak corresponded to +X and the other to -X spermatids. The difference between the 2 peaks corresponded to the X chromosome DNA amount, which was 1.28 pg in E. plorans and 0.80 pg in L. migratoria. In addition, the +X peak in E. plorans gave an estimate of the C-value in this species (10.39 pg). We next analyzed diplotene cells from 1B males in E. plorans and +B males in L. migratoria (a species where Bs are mitotically unstable and no integer B number can be defined for an individual) and measured B chromosome IOD relative to X chromosome IOD, within the same cell, taking advantage of the similar degree of condensation for both positively heteropycnotic chromosomes at this meiotic stage. From this proportion, we estimated the DNA amount for 3 different B chromosome variants found in individuals from 3 E. plorans Spanish populations (0.54 pg for B1 from Saladares, 0.51 pg for B2 from Salobreña and 0.64 for B24 from Torrox). Likewise, we estimated the DNA amount of the B chromosome in L. migratoria to be 0.15 pg. To automate measurements, we wrote a GPL3 licensed Python program (pyFIA). We discuss the utility of the present approach for estimating X and B chromosome DNA amount in a variety of situations, and the meaning of the DNA amount estimates for X and B chromosomes in these 2 species. Copyright © 2011 S. Karger AG, Basel.

  8. Molecular determinants of the interactions between proteins and ssDNA.

    PubMed

    Mishra, Garima; Levy, Yaakov

    2015-04-21

    ssDNA binding proteins (SSBs) protect ssDNA from chemical and enzymatic assault that can derail DNA processing machinery. Complexes between SSBs and ssDNA are often highly stable, but predicting their structures is challenging, mostly because of the inherent flexibility of ssDNA and the geometric and energetic complexity of the interfaces that it forms. Here, we report a newly developed coarse-grained model to predict the structure of SSB-ssDNA complexes. The model is successfully applied to predict the binding modes of six SSBs with ssDNA strands of lengths of 6-65 nt. In addition to charge-charge interactions (which are often central to governing protein interactions with nucleic acids by means of electrostatic complementarity), an essential energetic term to predict SSB-ssDNA complexes is the interactions between aromatic residues and DNA bases. For some systems, flexibility is required from not only the ssDNA but also, the SSB to allow it to undergo conformational changes and the penetration of the ssDNA into its binding pocket. The association mechanisms can be quite varied, and in several cases, they involve the ssDNA sliding along the protein surface. The binding mechanism suggests that coarse-grained models are appropriate to study the motion of SSBs along ssDNA, which is expected to be central to the function carried out by the SSBs.

  9. The Escherichia coli supX locus is topA, the structural gene for DNA topoisomerase I.

    PubMed Central

    Margolin, P; Zumstein, L; Sternglanz, R; Wang, J C

    1985-01-01

    Mutations in the supX locus, which result in the absence of DNA topoisomerase I enzyme activity in both Salmonella typhimurium and Escherichia coli, are all selected as suppressors of the leu-500 promoter mutation in S. typhimurium. To determine whether the supX locus is the structural gene topA for the DNA topoisomerase I enzyme or is a positive-acting regulator/activator gene for a nearby topA structural gene, nonsense mutations were selected in the E. coli supX gene carried on an F' episome in S. typhimurium cells. The cysB-topA region of the episomes with nonsense-mutant supX alleles were then cloned onto plasmid pBR322 and transformed into E. coli cells lacking a chromosomal supX gene. Three such E. coli strains, each carrying cloned DNA from episomes with different nonsense-mutant supX alleles, all lacked DNA topoisomerase I activity but expressed antigenic determinants specific to the enzyme; control cells lacked both enzyme activity and antigenic determinants. Maxicell studies of plasmid-coded proteins demonstrated the absence of the DNA topoisomerase I protein (100 kDa) in the three strains but the appearance of a new smaller peptide in each (36, 47, and 64 kDa). These new peptides must represent fragments of the enzyme resulting from translation termination at the supX nonsense codons and confirm the interpretation that the supX gene is topA, the structural gene for DNA topoisomerase I. Images PMID:2991925

  10. Inference of Expanded Lrp-Like Feast/Famine Transcription Factor Targets in a Non-Model Organism Using Protein Structure-Based Prediction

    PubMed Central

    Ashworth, Justin; Plaisier, Christopher L.; Lo, Fang Yin; Reiss, David J.; Baliga, Nitin S.

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer. PMID:25255272

  11. Inference of expanded Lrp-like feast/famine transcription factor targets in a non-model organism using protein structure-based prediction.

    PubMed

    Ashworth, Justin; Plaisier, Christopher L; Lo, Fang Yin; Reiss, David J; Baliga, Nitin S

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer.

  12. Structural DNA nanotechnology for intelligent drug delivery.

    PubMed

    Chao, Jie; Liu, Huajie; Su, Shao; Wang, Lianhui; Huang, Wei; Fan, Chunhai

    2014-11-01

    Drug delivery carriers have been popularly employed to improve solubility, stability, and efficacy of chemical and biomolecular drugs. Despite the rapid progress in this field, it remains a great challenge to develop an ideal carrier with minimal cytotoxicity, high biocompatibility and intelligence for targeted controlled release. The emergence of DNA nanotechnology offers unprecedented opportunities in this regard. Due to the unparalleled self-recognition properties of DNA molecules, it is possible to create numerous artificial DNA nanostructures with well-defined structures and DNA nanodevices with precisely controlled motions. More importantly, recent studies have proven that DNA nanostructures possess greater permeability to the membrane barrier of cells, which pave the way to developing new drug delivery carriers with nucleic acids, are summarized. In this Concept, recent advances on the design and fabrication of both static and dynamic DNA nanostructures, and the use of these nanostructures for the delivery of various types of drugs, are highlighted. It is also demonstrated that dynamic DNA nanostructures provide the required intelligence to realize logically controlled drug release. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural features that predict real-value fluctuations of globular proteins.

    PubMed

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2012-05-01

    It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics (MD) trajectories of nonhomologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real value of residue fluctuations using the support vector regression (SVR). It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in MD trajectories. Moreover, SVR that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson's correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed in predictions by the Gaussian network model (GNM). An advantage of the developed method over the GNMs is that the former predicts the real value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. Copyright © 2012 Wiley Periodicals, Inc.

  14. Structural features that predict real-value fluctuations of globular proteins

    PubMed Central

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2012-01-01

    It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics trajectories of non-homologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real-value of residue fluctuations using the support vector regression. It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in molecular dynamics trajectories. Moreover, support vector regression that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson’s correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed for the prediction by the Gaussian network model. An advantage of the developed method over the Gaussian network models is that the former predicts the real-value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. PMID:22328193

  15. Computational approach to analyze isolated ssDNA aptamers against angiotensin II.

    PubMed

    Heiat, Mohammad; Najafi, Ali; Ranjbar, Reza; Latifi, Ali Mohammad; Rasaee, Mohammad Javad

    2016-07-20

    Aptamers are oligonucleotides with highly structured molecules that can bind to their targets through specific 3-D conformation. Commonly, not all the nucleotides such as primer binding fixed region and some other sequences are vital for aptamers folding and interaction. Elimination of unnecessary regions needs trustworthy prediction tools to reduce experimental efforts and errors. Here we introduced a manipulated in-silico approach to predict the 3-D structure of aptamers and their target interactions. To design an approach for computational analysis of isolated ssDNA aptamers (FLC112, FLC125 and their truncated core region including CRC112 and CRC125), their secondary and tertiary structures were modeled by Mfold and RNA composer respectively. Output PDB files were modified from RNA to DNA in the discovery studio visualizer software. Using ZDOCK server, the aptamer-target interactions were predicted. Finally, the interaction scores were compared with the experimental results. In-silico interaction scores and the experimental outcomes were in the same descending arrangement of FLC112>CRC125>CRC112>FLC125 with similar intensity. The consistent results of innovative in-silico method with experimental outputs, affirmed that the present method may be a reliable approach. Also, it showed that the exact in-silico predictions can be utilized as a credible reference to find aptameric fragments binding potency. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Structural and sequencing analysis of local target DNA recognition by MLV integrase.

    PubMed

    Aiyer, Sriram; Rossi, Paolo; Malani, Nirav; Schneider, William M; Chandar, Ashwin; Bushman, Frederic D; Montelione, Gaetano T; Roth, Monica J

    2015-06-23

    Target-site selection by retroviral integrase (IN) proteins profoundly affects viral pathogenesis. We describe the solution nuclear magnetic resonance structure of the Moloney murine leukemia virus IN (M-MLV) C-terminal domain (CTD) and a structural homology model of the catalytic core domain (CCD). In solution, the isolated MLV IN CTD adopts an SH3 domain fold flanked by a C-terminal unstructured tail. We generated a concordant MLV IN CCD structural model using SWISS-MODEL, MMM-tree and I-TASSER. Using the X-ray crystal structure of the prototype foamy virus IN target capture complex together with our MLV domain structures, residues within the CCD α2 helical region and the CTD β1-β2 loop were predicted to bind target DNA. The role of these residues was analyzed in vivo through point mutants and motif interchanges. Viable viruses with substitutions at the IN CCD α2 helical region and the CTD β1-β2 loop were tested for effects on integration target site selection. Next-generation sequencing and analysis of integration target sequences indicate that the CCD α2 helical region, in particular P187, interacts with the sequences distal to the scissile bonds whereas the CTD β1-β2 loop binds to residues proximal to it. These findings validate our structural model and disclose IN-DNA interactions relevant to target site selection. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Computational investigation of fullerene-DNA interactions: Implications of fullerene's size and functionalization on DNA structure and binding energetics.

    PubMed

    Papavasileiou, Konstantinos D; Avramopoulos, Aggelos; Leonis, Georgios; Papadopoulos, Manthos G

    2017-06-01

    DNA is the building block of life, as it carries the biological information controlling development, function and reproduction of all organisms. However, its central role in storing and transferring genetic information can be severely hindered by molecules with structure altering abilities. Fullerenes are nanoparticles that find a broad spectrum of uses, but their toxicological effects on living organisms upon exposure remain unclear. The present study examines the interactions of a diverse array of fullerenes with DNA, by means of Molecular Dynamics and MM-PBSA methodologies, with special focus on structural deformations that may hint toxicity implications. Our results show that pristine and hydroxylated fullerenes have no unwinding effects upon DNA structure, with the latter displaying binding preference to the DNA major groove, achieved by both direct formation of hydrogen bonds and water molecule mediation. Fluorinated derivatives are capable of penetrating DNA structure, forming intercalative complexes with high binding affinities. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Distribution of Parvovirus B19 DNA in Blood Compartments and Persistence of Virus in Blood Donors

    PubMed Central

    Lee, Tzong-Hae; Kleinman, Steven H.; Wen, Li; Montalvo, Lani; Todd, Deborah S.; Wright, David J.; Tobler, Leslie H.; Busch, Michael P.

    2013-01-01

    Introduction Because the receptor for Parvovirus B19 (B19V) is on erythrocytes, we investigated B19V distribution in blood by in-vitro spiking experiments and evaluated viral compartmentalization and persistence in natural infection. Methods Two whole blood protocols (ultracentrifugation and a rapid RBC lysis/removal protocol) were evaluated using quantitative real-time PCR. Whole blood (WB) was spiked with known concentrations of B19V and recovery in various blood fractions was determined. The rapid RBC lysis/removal protocol was then used to compare B19V concentrations in 104 paired whole blood and plasma samples collected longitudinally from 43 B19V infected donors with frozen specimens in the REDS Allogeneic Donor and Recipient Repository (RADAR). Results In B19V spiking experiments, ~one-third of viral DNA was recovered in plasma and two-thirds was loosely bound to erythrocytes. In the IgM positive stage of infection in blood donors when plasma B19V DNA concentrations were > 100 IU/mL, median DNA concentrations were ~30-fold higher in WB than in plasma. In contrast, when IgM was absent and when the B19V DNA concentration was lower, the median whole blood to plasma ratio was ~1. Analysis of longitudinal samples demonstrated persistent detection of B19V in WB but declining ratios of WB/plasma B19V with declining plasma VL levels and loss of IgM-reactivity. Conclusions The WB/plasma B19V DNA ratio varies by stage of infection. Further study is required to determine if this is related to the presence of circulating DNA-positive erythrocytes derived from B19V infected erythroblasts, B19V-specific IgM mediated binding of virus to cells, or other factors. PMID:21303368

  19. Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure.

    PubMed

    Tapio, Kosti; Leppiniemi, Jenni; Shen, Boxuan; Hytönen, Vesa P; Fritzsche, Wolfgang; Toppari, J Jussi

    2016-11-09

    DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However, after extending the islands by chemical growth of gold, several structures exhibited Coulomb blockade behavior from 4.2 K up to room temperature, which gives a good indication that self-assembled DNA structures could be used for nanoelectronic patterning and single electron devices.

  20. Controlling Valence of DNA-Coated Emulsion Droplets with Multiple Flavors of DNA

    NASA Astrophysics Data System (ADS)

    McMullen, Angus; Bargteil, Dylan; Pine, David; Brujic, Jasna

    We explore the control of valence of DNA-coated emulsion droplets as a first step in developing DNA-directed self-assembly of emulsions. Emulsion droplets differ from solid colloids in that they are deformable and the DNA strands attached to them are free to move along the emulsion surface. The balance of binding energy and droplet deformation provides control over a droplet's valence via its ligand density. After binding, some DNA often remains unbound due to the entropic cost of DNA recruitment. In practice, therefore, the assembly kinetics yield a distribution in valence. Our goal is to control valence by altering the binding kinetics with multiple flavors of DNA. We coat one set of droplets with two DNA types, A and B, and two other sets with one complementary strand, A' or B'. When an AB droplet binds to an A' droplet, the adhesion patch depletes A strands, leaving the rest of the droplet coated with more B than A strands. This increases the chance that the next droplet to bind will be a B' rather than an A'. Controlling valence will allow us to build a wide array of soft structures, such as emulsion polymers or networks with a determined coordination number. This work was supported by the NSF MRSEC Program (DMR-0820341).

  1. Structure prediction of Fe(II) 2-oxoglutarate dioxygenase from a psychrophilic yeast Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Yusof, Nik Yusnoraini; Bakar, Farah Diba Abu; Mahadi, Nor Muhammad; Raih, Mohd Firdaus; Murad, Abdul Munir Abdul

    2015-09-01

    A cDNA encoding Fe(II) 2-oxoglutarate (2OG) dependent dioxygenases was isolated from psychrophilic yeast, Glaciozyma antarctica PI12. We have successfully amplified 1,029 bp cDNA sequence that encodes 342 amino acid with predicted molecular weight 38 kDa. The prediction protein was analysed using various bioinformatics tools to explore the properties of the protein. Based on a BLAST search analysis, the Fe2OX amino acid sequence showed 61% identity to the sequence of oxoglutarate/iron-dependent oxygenase from Rhodosporidium toruloides NP11. SignalP prediction showed that the Fe2OX protein contains no putative signal peptide, which suggests that this enzyme most probably localised intracellularly.The structure of Fe2OX was predicted by homology modelling using MODELLER9v11. The model with the lowest objective function was selected from hundred models generated using MODELLER9v11. Analysis of the structure revealed the longer loop at Fe2OX from G.antarctica that might be responsible for the flexibility of the structure, which contributes to its adaptation to low temperatures. Fe2OX hold a highly conserved Fe(II) binding HXD/E…H triad motif. The binding site for 2-oxoglutarate was found conserved for Arg280 among reported studies, however the Phe268 was found to be different in Fe2OX.

  2. Parvovirus B19 DNA CpG Dinucleotide Methylation and Epigenetic Regulation of Viral Expression

    PubMed Central

    Bonvicini, Francesca; Manaresi, Elisabetta; Di Furio, Francesca; De Falco, Luisa; Gallinella, Giorgio

    2012-01-01

    CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression. The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections. The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19. PMID:22413013

  3. Comparison of Three Different Sensitive Assays for Hepatitis B Virus DNA in Monitoring of Responses to Antiviral Therapy

    PubMed Central

    Chan, Henry L. Y.; Leung, Nancy W. Y.; Lau, Tracy C. M.; Wong, May L.; Sung, Joseph J. Y.

    2000-01-01

    The aim of our study was to compare the performances of two new hepatitis B virus (HBV) DNA assays, a cross-linking assay (NAXCOR) and a hybrid-capture amplification assay (Digene), versus the widely used branched-DNA (bDNA) assay (Chiron) in the monitoring of HBV DNA levels during antiviral treatment. Serial serum samples from 12 chronically HBV infected patients undergoing a phase II trial of an antiviral drug, 2′,3′-dideoxy-5-fluoro-3′-thiacytidine (FTC), were studied. A total of 96 serum samples were tested for HBV DNA using the cross-linking, hybrid-capture amplification, and bDNA assays. In the comparison of the cross-linking and bDNA assays, concordant results were found in 77 (80.3%) samples, no significant difference was found between the median log10 HBV DNA levels (6.66 versus 7.17 meq/ml), and the results of the two assays were closely correlated (r = 0.95). In the comparison of the hybrid-capture amplification and bDNA assays, concordant results were found in 79 (82.3%) samples, no significant difference was found between the median log10 HBV DNA levels (6.98 versus 6.99 meq/ml), and the results of the two assays were closely correlated (r = 0.99). Six (6.3%) samples by the cross-linking assay and 10 (10.4%) samples by the bDNA assay required retesting because of unacceptably high within-run coefficients of variance. No sample required retesting in the hybrid-capture amplification assay according to the internal validation. In conclusion, the cross-linking and hybrid-capture amplification assays were as sensitive as the bDNA assay for HBV DNA detection and can be recommended for monitoring of HBV DNA levels during antiviral treatment. PMID:10970358

  4. Knot soliton in DNA and geometric structure of its free-energy density.

    PubMed

    Wang, Ying; Shi, Xuguang

    2018-03-01

    In general, the geometric structure of DNA is characterized using an elastic rod model. The Landau model provides us a new theory to study the geometric structure of DNA. By using the decomposition of the arc unit in the helical axis of DNA, we find that the free-energy density of DNA is similar to the free-energy density of a two-condensate superconductor. By using the φ-mapping topological current theory, the torus knot soliton hidden in DNA is demonstrated. We show the relation between the geometric structure and free-energy density of DNA and the Frenet equations in differential geometry theory are considered. Therefore, the free-energy density of DNA can be expressed by the curvature and torsion of the helical axis.

  5. Vfold: a web server for RNA structure and folding thermodynamics prediction.

    PubMed

    Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie

    2014-01-01

    The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our ability to design RNA-based therapeutic strategies. The Vfold server offers a web interface to predict (a) RNA two-dimensional structure from the nucleotide sequence, (b) three-dimensional structure from the two-dimensional structure and the sequence, and (c) folding thermodynamics (heat capacity melting curve) from the sequence. To predict the two-dimensional structure (base pairs), the server generates an ensemble of structures, including loop structures with the different intra-loop mismatches, and evaluates the free energies using the experimental parameters for the base stacks and the loop entropy parameters given by a coarse-grained RNA folding model (the Vfold model) for the loops. To predict the three-dimensional structure, the server assembles the motif scaffolds using structure templates extracted from the known PDB structures and refines the structure using all-atom energy minimization. The Vfold-based web server provides a user friendly tool for the prediction of RNA structure and stability. The web server and the source codes are freely accessible for public use at "http://rna.physics.missouri.edu".

  6. NMR and computational methods applied to the 3- dimensional structure determination of DNA and ligand-DNA complexes in solution

    NASA Astrophysics Data System (ADS)

    Smith, Jarrod Anson

    2D homonuclear 1H NMR methods and restrained molecular dynamics (rMD) calculations have been applied to determining the three-dimensional structures of DNA and minor groove-binding ligand-DNA complexes in solution. The structure of the DNA decamer sequence d(GCGTTAACGC)2 has been solved both with a distance-based rMD protocol and an NOE relaxation matrix backcalculation-based protocol in order to probe the relative merits of the different refinement methods. In addition, three minor groove binding ligand-DNA complexes have been examined. The solution structure of the oligosaccharide moiety of the antitumor DNA scission agent calicheamicin γ1I has been determined in complex with a decamer duplex containing its high affinity 5'-TCCT- 3' binding sequence. The structure of the complex reinforces the belief that the oligosaccharide moiety is responsible for the sequence selective minor-groove binding activity of the agent, and critical intermolecular contacts are revealed. The solution structures of both the (+) and (-) enantiomers of the minor groove binding DNA alkylating agent duocarmycin SA have been determined in covalent complex with the undecamer DNA duplex d(GACTAATTGTC).d(GAC AATTAGTC). The results support the proposal that the alkylation activity of the duocarmycin antitumor antibiotics is catalyzed by a binding-induced conformational change in the ligand which activates the cyclopropyl group for reaction with the DNA. Comparisons between the structures of the two enantiomers covalently bound to the same DNA sequence at the same 5'-AATTA-3 ' site have provided insight into the binding orientation and site selectivity, as well as the relative rates of reactivity of these two agents.

  7. Structural basis for DNA binding by replication initiator Mcm10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Eric M.; Vaithiyalingam, Sivaraja; Haworth, Justin

    2009-06-30

    Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae resultmore » in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.« less

  8. Wormlike Chain Theory and Bending of Short DNA

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2007-05-01

    The probability distributions for bending angles in double helical DNA obtained in all-atom molecular dynamics simulations are compared with theoretical predictions. The computed distributions remarkably agree with the wormlike chain theory and qualitatively differ from predictions of the subelastic chain model. The computed data exhibit only small anomalies in the apparent flexibility of short DNA and cannot account for the recently reported AFM data. It is possible that the current atomistic DNA models miss some essential mechanisms of DNA bending on intermediate length scales. Analysis of bent DNA structures reveal, however, that the bending motion is structurally heterogeneous and directionally anisotropic on the length scales where the experimental anomalies were detected. These effects are essential for interpretation of the experimental data and they also can be responsible for the apparent discrepancy.

  9. Tumor Cell-Free DNA Copy Number Instability Predicts Therapeutic Response to Immunotherapy.

    PubMed

    Weiss, Glen J; Beck, Julia; Braun, Donald P; Bornemann-Kolatzki, Kristen; Barilla, Heather; Cubello, Rhiannon; Quan, Walter; Sangal, Ashish; Khemka, Vivek; Waypa, Jordan; Mitchell, William M; Urnovitz, Howard; Schütz, Ekkehard

    2017-09-01

    Purpose: Chromosomal instability is a fundamental property of cancer, which can be quantified by next-generation sequencing (NGS) from plasma/serum-derived cell-free DNA (cfDNA). We hypothesized that cfDNA could be used as a real-time surrogate for imaging analysis of disease status as a function of response to immunotherapy and as a more reliable tool than tumor biomarkers. Experimental Design: Plasma cfDNA sequences from 56 patients with diverse advanced cancers were prospectively collected and analyzed in a single-blind study for copy number variations, expressed as a quantitative chromosomal number instability (CNI) score versus 126 noncancer controls in a training set of 23 and a blinded validation set of 33. Tumor biomarker concentrations and a surrogate marker for T regulatory cells (Tregs) were comparatively analyzed. Results: Elevated CNI scores were observed in 51 of 56 patients prior to therapy. The blinded validation cohort provided an overall prediction accuracy of 83% (25/30) and a positive predictive value of CNI score for progression of 92% (11/12). The combination of CNI score before cycle (Cy) 2 and 3 yielded a correct prediction for progression in all 13 patients. The CNI score also correctly identified cases of pseudo-tumor progression from hyperprogression. Before Cy2 and Cy3, there was no significant correlation for protein tumor markers, total cfDNA, or surrogate Tregs. Conclusions: Chromosomal instability quantification in plasma cfDNA can serve as an early indicator of response to immunotherapy. The method has the potential to reduce health care costs and disease burden for cancer patients following further validation. Clin Cancer Res; 23(17); 5074-81. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Sequence Based Prediction of DNA-Binding Proteins Based on Hybrid Feature Selection Using Random Forest and Gaussian Naïve Bayes

    PubMed Central

    Lou, Wangchao; Wang, Xiaoqing; Chen, Fan; Chen, Yixiao; Jiang, Bo; Zhang, Hua

    2014-01-01

    Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred

  11. Automatic prediction of facial trait judgments: appearance vs. structural models.

    PubMed

    Rojas, Mario; Masip, David; Todorov, Alexander; Vitria, Jordi

    2011-01-01

    Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.

  12. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations.

    PubMed

    Owczarzy, Richard; Moreira, Bernardo G; You, Yong; Behlke, Mark A; Walder, Joseph A

    2008-05-13

    Accurate predictions of DNA stability in physiological and enzyme buffers are important for the design of many biological and biochemical assays. We therefore investigated the effects of magnesium, potassium, sodium, Tris ions, and deoxynucleoside triphosphates on melting profiles of duplex DNA oligomers and collected large melting data sets. An empirical correction function was developed that predicts melting temperatures, transition enthalpies, entropies, and free energies in buffers containing magnesium and monovalent cations. The new correction function significantly improves the accuracy of predictions and accounts for ion concentration, G-C base pair content, and length of the oligonucleotides. The competitive effects of potassium and magnesium ions were characterized. If the concentration ratio of [Mg (2+)] (0.5)/[Mon (+)] is less than 0.22 M (-1/2), monovalent ions (K (+), Na (+)) are dominant. Effects of magnesium ions dominate and determine duplex stability at higher ratios. Typical reaction conditions for PCR and DNA sequencing (1.5-5 mM magnesium and 20-100 mM monovalent cations) fall within this range. Conditions were identified where monovalent and divalent cations compete and their stability effects are more complex. When duplexes denature, some of the Mg (2+) ions associated with the DNA are released. The number of released magnesium ions per phosphate charge is sequence dependent and decreases surprisingly with increasing oligonucleotide length.

  13. Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia.

    PubMed

    Weil, D; Levy, G; Sahly, I; Levi-Acobas, F; Blanchard, S; El-Amraoui, A; Crozet, F; Philippe, H; Abitbol, M; Petit, C

    1996-04-16

    The gene encoding human myosin VIIA is responsible for Usher syndrome type III (USH1B), a disease which associates profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. The reconstituted cDNA sequence presented here predicts a 2215 amino acid protein with a typical unconventional myosin structure. This protein is expected to dimerize into a two-headed molecule. The C terminus of its tail shares homology with the membrane-binding domain of the band 4.1 protein superfamily. The gene consists of 48 coding exons. It encodes several alternatively spliced forms. In situ hybridization analysis in human embryos demonstrates that the myosin VIIA gene is expressed in the pigment epithelium and the photoreceptor cells of the retina, thus indicating that both cell types may be involved in the USH1B retinal degenerative process. In addition, the gene is expressed in the human embryonic cochlear and vestibular neuroepithelia. We suggest that deafness and vestibular dysfunction in USH1B patients result from a defect in the morphogenesis of the inner ear sensory cell stereocilia.

  14. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  15. DNA nanotechnology: a future perspective

    PubMed Central

    2013-01-01

    In addition to its genetic function, DNA is one of the most distinct and smart self-assembling nanomaterials. DNA nanotechnology exploits the predictable self-assembly of DNA oligonucleotides to design and assemble innovative and highly discrete nanostructures. Highly ordered DNA motifs are capable of providing an ultra-fine framework for the next generation of nanofabrications. The majority of these applications are based upon the complementarity of DNA base pairing: adenine with thymine, and guanine with cytosine. DNA provides an intelligent route for the creation of nanoarchitectures with programmable and predictable patterns. DNA strands twist along one helix for a number of bases before switching to the other helix by passing through a crossover junction. The association of two crossovers keeps the helices parallel and holds them tightly together, allowing the assembly of bigger structures. Because of the DNA molecule's unique and novel characteristics, it can easily be applied in a vast variety of multidisciplinary research areas like biomedicine, computer science, nano/optoelectronics, and bionanotechnology. PMID:23497147

  16. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.

    PubMed

    Lin, C H; Patel, D J

    1997-11-01

    Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.

  17. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties

    PubMed Central

    2011-01-01

    Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der

  18. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function

    PubMed Central

    Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2015-01-01

    The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide

  19. Structural stability of DNA origami nanostructures in the presence of chaotropic agents

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-01

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we

  20. Global structure of forked DNA in solution revealed by high-resolution single-molecule FRET.

    PubMed

    Sabir, Tara; Schröder, Gunnar F; Toulmin, Anita; McGlynn, Peter; Magennis, Steven W

    2011-02-09

    Branched DNA structures play critical roles in DNA replication, repair, and recombination in addition to being key building blocks for DNA nanotechnology. Here we combine single-molecule multiparameter fluorescence detection and molecular dynamics simulations to give a general approach to global structure determination of branched DNA in solution. We reveal an open, planar structure of a forked DNA molecule with three duplex arms and demonstrate an ion-induced conformational change. This structure will serve as a benchmark for DNA-protein interaction studies.

  1. Polymyxin B causes DNA damage in HK-2 cells and mice.

    PubMed

    Yun, B; Zhang, T; Azad, M A K; Wang, J; Nowell, C J; Kalitsis, P; Velkov, T; Hudson, D F; Li, J

    2018-03-20

    Increasing incidence of multidrug-resistant bacteria presents an imminent risk to global health. Polymyxins are 'last-resort' antibiotics against Gram-negative 'superbugs'; however, nephrotoxicity remains a key impediment in their clinical use. Molecular mechanisms underlying this nephrotoxicity remain poorly defined. Here, we examined the pathways which led to polymyxin B induced cell death in vitro and in vivo. Human proximal tubular cells were treated with polymyxin B (12.5-100 μM) for up to 24 h and showed a significant increase in micronuclei frequency, as well as abnormal mitotic events (over 40% in treated cells, p < 0.05). Time-course studies were performed using a mouse nephrotoxicity model (cumulative 72 mg/kg). Kidneys were collected over 48 h and investigated for histopathology and DNA damage. Notable increases in γH2AX foci (indicative of double-stranded breaks) were observed in both cell culture (up to ~ 44% cells with 5+ foci at 24 h, p < 0.05) and mice treated with polymyxin B (up to ~ 25%, p < 0.05). Consistent with these results, in vitro assays showed high binding affinity of polymyxin B to DNA. Together, our results indicate that polymyxin B nephrotoxicity is associated with DNA damage, leading to chromosome missegregation and genome instability. This novel mechanistic information may lead to new strategies to overcome the nephrotoxicity of this important last-line class of antibiotics.

  2. Conformation-dependent DNA attraction.

    PubMed

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-06-21

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.

  3. Engineering the Structure and Properties of DNA-Nanoparticle Superstructures Using Polyvalent Counterions.

    PubMed

    Chou, Leo Y T; Song, Fayi; Chan, Warren C W

    2016-04-06

    DNA assembly of nanoparticles is a powerful approach to control their properties and prototype new materials. However, the structure and properties of DNA-assembled nanoparticles are labile and sensitive to interactions with counterions, which vary with processing and application environment. Here we show that substituting polyamines in place of elemental counterions significantly enhanced the structural rigidity and plasmonic properties of DNA-assembled metal nanoparticles. These effects arose from the ability of polyamines to condense DNA and cross-link DNA-coated nanoparticles. We further used polyamine wrapped DNA nanostructures as structural templates to seed the growth of polymer multilayers via layer-by-layer assembly, and controlled the degree of DNA condensation, plasmon coupling efficiency, and material responsiveness to environmental stimuli by varying polyelectrolyte composition. These results highlight counterion engineering as a versatile strategy to tailor the properties of DNA-nanoparticle assemblies for various applications, and should be applicable to other classes of DNA nanostructures.

  4. Mms1 is an assistant for regulating G-quadruplex DNA structures.

    PubMed

    Schwindt, Eike; Paeschke, Katrin

    2018-06-01

    The preservation of genome stability is fundamental for every cell. Genomic integrity is constantly challenged. Among those challenges are also non-canonical nucleic acid structures. In recent years, scientists became aware of the impact of G-quadruplex (G4) structures on genome stability. It has been shown that folded G4-DNA structures cause changes in the cell, such as transcriptional up/down-regulation, replication stalling, or enhanced genome instability. Multiple helicases have been identified to regulate G4 structures and by this preserve genome stability. Interestingly, although these helicases are mostly ubiquitous expressed, they show specificity for G4 regulation in certain cellular processes (e.g., DNA replication). To this date, it is not clear how this process and target specificity of helicases are achieved. Recently, Mms1, an ubiquitin ligase complex protein, was identified as a novel G4-DNA-binding protein that supports genome stability by aiding Pif1 helicase binding to these regions. In this perspective review, we discuss the question if G4-DNA interacting proteins are fundamental for helicase function and specificity at G4-DNA structures.

  5. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  6. Identifying the Genotypes of Hepatitis B Virus (HBV) with DNA Origami Label.

    PubMed

    Liu, Ke; Pan, Dun; Wen, Yanqin; Zhang, Honglu; Chao, Jie; Wang, Lihua; Song, Shiping; Fan, Chunhai; Shi, Yongyong

    2018-02-01

    The hepatitis B virus (HBV) genotyping may profoundly affect the accurate diagnosis and antiviral treatment of viral hepatitis. Existing genotyping methods such as serological, immunological, or molecular testing are still suffered from substandard specificity and low sensitivity in laboratory or clinical application. In a previous study, a set of high-efficiency hybridizable DNA origami-based shape ID probes to target the templates through which genetic variation could be determined in an ultrahigh resolution of atomic force microscopy (AFM) nanomechanical imaging are established. Here, as a further confirmatory research to explore the sensitivity and applicability of this assay, differentially predesigned DNA origami shape ID probes are also developed for precisely HBV genotyping. Through the specific identification of visualized DNA origami nanostructure with clinical HBV DNA samples, the genetic variation information of genotypes can be directly identified under AFM. As a proof-of-concept, five genotype B and six genotype C are detected in 11 HBV-infected patients' blood DNA samples of Han Chinese population in the single-blinded test. The AFM image-based DNA origami shape ID genotyping approach shows high specificity and sensitivity, which could be promising for virus infection diagnosis and precision medicine in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Role of CYP1B1 in PAH-DNA adduct formation and breast cancer risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goth-Goldstein, Regine; Russell, Marion L.; Muller, A.P.

    2010-04-01

    This study investigated the hypothesis that increased exposure to polycyclic aromatic hydrocarbons (PAHs) increases breast cancer risk. PAHs are products of incomplete burning of organic matter and are present in cigarette smoke, ambient air, drinking water, and diet. PAHs require metabolic transformation to bind to DNA, causing DNA adducts, which can lead to mutations and are thought to be an important pre-cancer marker. In breast tissue, PAHs appear to be metabolized to their cancer-causing form primarily by the cytochrome P450 enzyme CYP1B1. Because the genotoxic impact of PAH depends on their metabolism, we hypothesized that high CYP1B1 enzyme levels resultmore » in increased formation of PAH-DNA adducts in breast tissue, leading to increased development of breast cancer. We have investigated molecular mechanisms of the relationship between PAH exposure, CYP1B1 expression and breast cancer risk in a clinic-based case-control study. We collected histologically normal breast tissue from 56 women (43 cases and 13 controls) undergoing breast surgery and analyzed these specimens for CYP1B1 genotype, PAH-DNA adducts and CYP1B1 gene expression. We did not detect any difference in aromatic DNA adduct levels of cases and controls, only between smokers and non-smokers. CYP1B1 transcript levels were slightly lower in controls than cases, but the difference was not statistically significant. We found no correlation between the levels of CYP1B1 expression and DNA adducts. If CYP1B1 has any role in breast cancer etiology it might be through its metabolism of estrogen rather than its metabolism of PAHs. However, due to the lack of statistical power these results should be interpreted with caution.« less

  8. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Jamy C.

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) thatmore » binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those

  9. Searching for DNA Lesions: Structural Evidence for Lower- and Higher-Affinity DNA Binding Conformations of Human Alkyladenine DNA Glycosylase

    PubMed Central

    2011-01-01

    To efficiently repair DNA, human alkyladenine DNA glycosylase (AAG) must search the million-fold excess of unmodified DNA bases to find a handful of DNA lesions. Such a search can be facilitated by the ability of glycosylases, like AAG, to interact with DNA using two affinities: a lower-affinity interaction in a searching process and a higher-affinity interaction for catalytic repair. Here, we present crystal structures of AAG trapped in two DNA-bound states. The lower-affinity depiction allows us to investigate, for the first time, the conformation of this protein in the absence of a tightly bound DNA adduct. We find that active site residues of AAG involved in binding lesion bases are in a disordered state. Furthermore, two loops that contribute significantly to the positive electrostatic surface of AAG are disordered. Additionally, a higher-affinity state of AAG captured here provides a fortuitous snapshot of how this enzyme interacts with a DNA adduct that resembles a one-base loop. PMID:22148158

  10. Cost-effectiveness of quantitative hepatitis B virus surface antigen testing in pregnancy in predicting vertical transmission risk.

    PubMed

    Samadi Kochaksaraei, Golasa; Congly, Stephen E; Matwiy, Trudy; Castillo, Eliana; Martin, Steven R; Charlton, Carmen L; Coffin, Carla S

    2016-11-01

    Vertical transmission of hepatitis B virus (HBV) can occur despite immunoprophylaxis in mothers with high HBV DNA levels (>5-7 log 10 IU/ml). Quantitative hepatitis B surface antigen (qHBsAg) testing could be used as a surrogate marker to identify high viral load carriers, but there is limited data in pregnancy. We conducted a prospective observational study to determine the cost-effectiveness and utility of qHBsAg as a valid surrogate marker of HBV DNA. Pregnant patients with chronic hepatitis B were recruited from a tertiary referral centre. HBV DNA levels and qHBsAg were assessed in the second to third trimester. Statistical analysis was performed by Spearman's rank correlation and student's t-test. The cost-effectiveness of qHBsAg as compared to HBV DNA testing was calculated. Ninety nine women with 103 pregnancies, median age 32 years, 65% Asian, 23% African and 12% other [Hispanic, Caucasian] were enrolled. Overall, 23% (23/99) were HBV e Ag (HBeAg)-positive. A significant correlation between qHBsAg and HBV DNA levels was noted in HBeAg-positive patients (r = 0.79, P < 0.05) but not in HBeAg-negative patients (r = 0.17, P = 0.06). In receiver operating characteristic analysis, the optimal qHBsAg cut-off values for predicting maternal viraemia associated with immunoprophylaxis failure (i.e., HBV DNA ≥7 log 10 IU/ml) was 4.3 log 10 IU/ml (accuracy 98.7%, sensitivity 94.7%, specificity 94.4%) (95% CI, 97-100%, P < 0.05). Use of HBV DNA as compared to qHBsAg costs approximately $20 000 more per infection prevented. In resource poor regions, qHBsAg could be used as a more cost-effective marker for high maternal viraemia, and indicate when anti-HBV nucleos/tide analogue therapy should be used to prevent HBV immunoprophylaxis failure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Dose-dependent DNA adduct formation by cinnamaldehyde and other food-borne α,β-unsaturated aldehydes predicted by physiologically based in silico modelling.

    PubMed

    Kiwamoto, R; Ploeg, D; Rietjens, I M C M; Punt, A

    2016-03-01

    Genotoxicity of α,β-unsaturated aldehydes shown in vitro raises a concern for the use of the aldehydes as food flavourings, while at low dose exposures the formation of DNA adducts may be prevented by detoxification. Unlike many α,β-unsaturated aldehydes for which in vivo data are absent, cinnamaldehyde was shown to be not genotoxic or carcinogenic in vivo. The present study aimed at comparing dose-dependent DNA adduct formation by cinnamaldehyde and 18 acyclic food-borne α,β-unsaturated aldehydes using physiologically based kinetic/dynamic (PBK/D) modelling. In rats, cinnamaldehyde was predicted to induce higher DNA adducts levels than 6 out of the 18 α,β-unsaturated aldehydes, indicating that these 6 aldehydes may also test negative in vivo. At the highest cinnamaldehyde dose that tested negative in vivo, cinnamaldehyde was predicted to form at least three orders of magnitude higher levels of DNA adducts than the 18 aldehydes at their respective estimated daily intake. These results suggest that for all the 18 α,β-unsaturated aldehydes DNA adduct formation at doses relevant for human dietary exposure may not raise a concern. The present study illustrates a possible use of physiologically based in silico modelling to facilitate a science-based comparison and read-across on the possible risks posed by DNA reactive agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Does Tyrosyl DNA Phosphodiesterase-2 Play a Role in Hepatitis B Virus Genome Repair?

    PubMed Central

    Boregowda, Rajeev; Sohn, Ji A.; Ledesma, Felipe Cortes; Caldecott, Keith W.; Seeger, Christoph; Hu, Jianming

    2015-01-01

    Hepatitis B virus (HBV) replication and persistence are sustained by a nuclear episome, the covalently closed circular (CCC) DNA, which serves as the transcriptional template for all viral RNAs. CCC DNA is converted from a relaxed circular (RC) DNA in the virion early during infection as well as from RC DNA in intracellular progeny nucleocapsids via an intracellular amplification pathway. Current antiviral therapies suppress viral replication but cannot eliminate CCC DNA. Thus, persistence of CCC DNA remains an obstacle toward curing chronic HBV infection. Unfortunately, very little is known about how CCC DNA is formed. CCC DNA formation requires removal of the virally encoded reverse transcriptase (RT) protein from the 5’ end of the minus strand of RC DNA. Tyrosyl DNA phosphodiesterase-2 (Tdp2) was recently identified as the enzyme responsible for cleavage of tyrosyl-5’ DNA linkages formed between topoisomerase II and cellular DNA. Because the RT-DNA linkage is also a 5’ DNA-phosphotyrosyl bond, it has been hypothesized that Tdp2 might be one of several elusive host factors required for CCC DNA formation. Therefore, we examined the role of Tdp2 in RC DNA deproteination and CCC DNA formation. We demonstrated Tdp2 can cleave the tyrosyl-minus strand DNA linkage using authentic HBV RC DNA isolated from nucleocapsids and using RT covalently linked to short minus strand DNA produced in vitro. On the other hand, our results showed that Tdp2 gene knockout did not block CCC DNA formation during HBV infection of permissive human hepatoma cells and did not prevent intracellular amplification of duck hepatitis B virus CCC DNA. These results indicate that although Tdp2 can remove the RT covalently linked to the 5’ end of the HBV minus strand DNA in vitro, this protein might not be required for CCC DNA formation in vivo. PMID:26079492

  13. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography.

    PubMed

    Hedayati Ch, Mojtaba; Amani, Jafar; Sedighian, Hamid; Amin, Mohsen; Salimian, Jafar; Halabian, Raheleh; Imani Fooladi, Abbas Ali

    2016-09-01

    Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA-aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd  = 2.3 × 10(-11) ). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Identification of Disubstituted Sulfonamide Compounds as Specific Inhibitors of Hepatitis B Virus Covalently Closed Circular DNA Formation

    PubMed Central

    Cai, Dawei; Mills, Courtney; Yu, Wenquan; Yan, Ran; Aldrich, Carol E.; Saputelli, Jeffry R.; Mason, William S.; Xu, Xiaodong; Guo, Ju-Tao; Block, Timothy M.

    2012-01-01

    Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a central role in viral infection and persistence and is the basis for viral rebound after the cessation of therapy, as well as the elusiveness of a cure even after extended treatment. Therefore, there is an urgent need for the development of novel therapeutic agents that directly target cccDNA formation and maintenance. By employing an innovative cell-based cccDNA assay in which secreted HBV e antigen is a cccDNA-dependent surrogate, we screened an in-house small-molecule library consisting of 85,000 drug-like compounds. Two structurally related disubstituted sulfonamides (DSS), termed CCC-0975 and CCC-0346, emerged and were confirmed as inhibitors of cccDNA production, with low micromolar 50% effective concentrations (EC50s) in cell culture. Further mechanistic studies demonstrated that DSS compound treatment neither directly inhibited HBV DNA replication in cell culture nor reduced viral polymerase activity in the in vitro endogenous polymerase assay but synchronously reduced the levels of HBV cccDNA and its putative precursor, deproteinized relaxed circular DNA (DP-rcDNA). However, DSS compounds did not promote the intracellular decay of HBV DP-rcDNA and cccDNA, suggesting that the compounds interfere primarily with rcDNA conversion into cccDNA. In addition, we demonstrated that CCC-0975 was able to reduce cccDNA biosynthesis in duck HBV-infected primary duck hepatocytes. This is the first attempt, to our knowledge, to identify small molecules that target cccDNA formation, and DSS compounds thus potentially serve as proof-of-concept drug candidates for development into therapeutics to eliminate cccDNA from chronic HBV infection. PMID:22644022

  15. Differential structural status of the RNA counterpart of an undecamer quasi-palindromic DNA sequence present in LCR of human β-globin gene cluster.

    PubMed

    Kaushik, Mahima; Kukreti, Shrikant

    2015-01-01

    Our previous work on structural polymorphism shown at a single nucleotide polymorphism (SNP) (A → G) site located on HS4 region of locus control region (LCR) of β-globin gene has established a hairpin → duplex equilibrium corresponding to A → B like DNA transition (Kaushik M, Kukreti, R., Grover, D., Brahmachari, S.K. and Kukreti S. Nucleic Acids Res. 2003; Kaushik M, Kukreti S. Nucleic Acids Res. 2006). The G-allele of A → G SNP has been shown to be significantly associated with the occurrence of β-thalassemia. Considering the significance of this 11-nt long quasi-palindromic sequence [5'-TGGGG(G/A)CCCCA; HP(G/A)11] of β-globin gene LCR, we further explored the differential behavior of the same DNA sequence with its RNA counterpart, using various biophysical and biochemical techniques. In contrast to its DNA counterpart exhibiting a A → B structural transition and an equilibrium between duplex and hairpin forms, the studied RNA oligonucleotide sequence [5'-UGGGG(G/A)CCCCA; RHP(G/A)11] existed only in duplex form (A-conformation) and did not form hairpin. The single residue difference from A to G led to the unusual thermal stability of the RNA structure formed by the studied sequence. Since, naturally occurring mutations and various SNP sites may stabilize or destabilize the local DNA/RNA secondary structures, these structural transitions may affect the gene expression by a change in the protein-DNA recognition patterns.

  16. Structure and DNA-binding of meiosis-specific protein Hop2

    NASA Astrophysics Data System (ADS)

    Zhou, Donghua; Moktan, Hem; Pezza, Roberto

    2014-03-01

    Here we report structure elucidation of the DNA binding domain of homologous pairing protein 2 (Hop2), which is important to gene diversity when sperms and eggs are produced. Together with another protein Mnd1, Hop2 enhances the strand invasion activity of recombinase Dmc1 by over 30 times, facilitating proper synapsis of homologous chromosomes. However, the structural and biochemical bases for the function of Hop2 and Mnd1 have not been well understood. As a first step toward such understanding, we recently solved the structure for the N-terminus of Hop2 (1-84) using solution NMR. This fragment shows a typical winged-head conformation with recognized DNA binding activity. DNA interacting sites were then investigated by chemical shift perturbations in a titration experiment. Information of these sites was used to guide protein-DNA docking with MD simulation, revealing that helix 3 is stably lodged in the DNA major groove and that wing 1 (connecting strands 2 and 3) transiently comes in contact with the minor groove in nanosecond time scale. Mutagenesis analysis further confirmed the DNA binding sites in this fragment of the protein.

  17. MITOCHONDRIAL DNA DEPLETION SYNDROME DUE TO MUTATIONS IN THE RRM2B GENE

    PubMed Central

    Bornstein, Belén; Area, Estela; Flanigan, Kevin M.; Ganesh, Jaya; Jayakar, Parul; Swoboda, Kathryn J.; Coku, Jorida; Naini, Ali; Shanske, Sara; Tanji, Kurenai; Hirano, Michio; DiMauro, Salvatore

    2014-01-01

    Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in The RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in 7 infants from 4 families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at three months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exon 6, 8 and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy. PMID:18504129

  18. Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene.

    PubMed

    Bornstein, Belén; Area, Estela; Flanigan, Kevin M; Ganesh, Jaya; Jayakar, Parul; Swoboda, Kathryn J; Coku, Jorida; Naini, Ali; Shanske, Sara; Tanji, Kurenai; Hirano, Michio; DiMauro, Salvatore

    2008-06-01

    Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in the RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in seven infants from four families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at 3 months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exons 6, 8, and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy.

  19. Role of CYP1B1 in PAH-DNA Adduct Formation and Breast Cancer Risk

    DTIC Science & Technology

    2006-03-01

    32 cases and 11 controls) undergoing surgery and analyzed these specimens for CYP1B1 gene expression, CYP1B1 genotype and PAH-DNA adducts. CYP1B1...quantitated and its purity determined by its 260/280 nm absorption. Samples were aliqoted for later measurements of CYP1B1 genotype and DNA adducts...19.78) 0.06 – 73.7 d. Perform CYP1B1 genotype analysis The CYP1B1 genotype at two polymorphic sites located in the catalytic side of the enzyme

  20. A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA

    PubMed Central

    Lavery, Richard; Zakrzewska, Krystyna; Beveridge, David; Bishop, Thomas C.; Case, David A.; Cheatham, Thomas; Dixit, Surjit; Jayaram, B.; Lankas, Filip; Laughton, Charles; Maddocks, John H.; Michon, Alexis; Osman, Roman; Orozco, Modesto; Perez, Alberto; Singh, Tanya; Spackova, Nada; Sponer, Jiri

    2010-01-01

    It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein–DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of laboratories was consequently formed to obtain this information using molecular simulations. This article describes results providing information not only on all 10 unique base pair steps, but also on all possible nearest-neighbor effects on these steps. These results are derived from simulations of 50–100 ns on 39 different DNA oligomers in explicit solvent and using a physiological salt concentration. We demonstrate that the simulations are converged in terms of helical and backbone parameters. The results show that nearest-neighbor effects on base pair steps are very significant, implying that dinucleotide models are insufficient for predicting sequence-dependent behavior. Flanking base sequences can notably lead to base pair step parameters in dynamic equilibrium between two conformational sub-states. Although this study only provides limited data on next-nearest-neighbor effects, we suggest that such effects should be analyzed before attempting to predict the sequence-dependent behavior of DNA. PMID:19850719

  1. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  2. Effects of seminal plasma and flash-freezing on DNA structure of stallion epididymal sperm exposed to different potentiators of DNA damage.

    PubMed

    Serafini, R; Varner, D D; Blanchard, T L; Teague, S R; LaCaze, K; Love, C C

    2018-05-24

    The tolerance of sperm DNA structure to seminal plasma and freezing conditions has both clinical and basic biologic relevance. In this study, fresh (FS) or flash-frozen (FZ) stallion epididymal sperm were exposed (SP + ) or unexposed (SP - ) to seminal plasma. Sperm were then evaluated to monitor the degree of change in DNA structure following challenge with chemical (dithiothreitol-DTT), oxidative (iron sulfate; FeSO 4 ) or enzymatic (DNase I) potentiators of DNA damage. For sperm not treated with potentiators (controls), there was no effect of SP treatment (SP - vs. SP + ) or freezing treatment (FS vs. FZ; non-significant) on measures of any DNA assays (i.e., 8-hydroxy, 2'deoxyguanosine [8OHdG], TUNEL, or sperm chromatin structure [SCSA] assays). Group FZ was more susceptible than Group FS to potentiators of DNA damage. Percent 8OHdG-positive sperm was higher in Group FZ/SP - treated with FeSO 4 than all other groups (P < 0.05). Percent TUNEL-positive sperm was similar among FZ/SP - groups treated with DTT, FeSO 4 , or DNase (non-significant) and was higher in these groups than all other treatments (P < 0.05). Percent COMP-α t was higher following treatment with DNase or DTT, as compared to their respective controls, regardless of prior exposure to SP (P < 0.05). Overall, sperm DNA structure was unaffected by seminal plasma or freezing treatment when samples were not exposed to potentiators of sperm DNA damage; however, marked differences were identified in DNA structure when sperm were challenged with chemical, oxidative or enzymatic treatments. These results highlight the importance of challenging DNA structure prior to analysis. The use of potentiators of DNA damage provided a model to evaluate sperm DNA structure following exposure of sperm to various experimental treatments. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions

    PubMed Central

    Shanbhag, Vinit; Sachdev, Shrikesh; Flores, Jacqueline A.; Modak, Mukund J.; Singh, Kamalendra

    2018-01-01

    DNA polymerases are essential for genome replication, DNA repair and translesion DNA synthesis (TLS). Broadly, these enzymes belong to two groups: replicative and non-replicative DNA polymerases. A considerable body of data suggests that both groups of DNA polymerases are associated with cancer. Many mutations in cancer cells are either the result of error-prone DNA synthesis by non-replicative polymerases, or the inability of replicative DNA polymerases to proofread mismatched nucleotides due to mutations in 3′-5′ exonuclease activity. Moreover, non-replicative, TLS-capable DNA polymerases can negatively impact cancer treatment by synthesizing DNA past lesions generated from treatments such as cisplatin, oxaliplatin, etoposide, bleomycin, and radiotherapy. Hence, the inhibition of DNA polymerases in tumor cells has the potential to enhance treatment outcomes. Here, we review the association of DNA polymerases in cancer from the A and B families, which participate in lesion bypass, and conduct gene replication. We also discuss possible therapeutic interventions that could be used to maneuver the role of these enzymes in tumorigenesis. PMID:29301327

  4. The detection of (total and ccc) HBV DNA in liver transplant recipients with hepatitis B vaccine against HBV reinfection.

    PubMed

    Duan, Bin-Wei; Lu, Shi-Chun; Lai, Wei; Liu, Xue-En; Liu, Yuan

    2015-01-01

    To investigate the levels of hepatitis B virus total DNA (HBV DNA) and covalently closed circular (ccc) DNA in liver transplant recipients who received hepatitis B vaccination, including responders and non-responders, following liver transplantation due to hepatitis B-related diseases and to investigate the efficacy of hepatitis B immune reconstitution against HBV reinfection. Twenty responders and 34 non-responders were enrolled in the present study. The levels of HBV total DNA and ccc DNA in peripheral blood mononuclear cells (PBMCs) and the liver and plasma were detected by real-time polymerase chain reaction (PCR). Fifty-three blood samples and 38 liver allograft tissues were acquired. For the responders, the mean serum titer for anti-HBs (antibodies against hepatitis B surface antigen) was 289 (46.64-1000) IU/ml. Also for the responders, HBV total DNA was detected in PBMCs for one recipient and in the liver for another recipient, but ccc DNA was not detected in either of those 2 recipients. For the non-responders, HBV total DNA was detected in PBMCS for 2 recipients, neither of whom had ccc DNA. Also for the non-responders, HBV total DNA was detected in the livers of 3 recipients, 2 of whom also had ccc DNA. All responders had discontinued hepatitis B immunoglobulin (HBIG), and 13 responders had discontinued antiviral agents. One responder experienced HBV recurrence during the follow-up period. For the majority of liver transplant recipients, no HBV total DNA or ccc DNA was detected in the blood or liver. The lack of HBV total DNA and ccc DNA both in PBMCs and the liver in liver transplant recipients who received hepatitis B vaccination to prevent HBV reinfection should be a prerequisite for the withdrawal of HBIG and/or antiviral agents.

  5. DNA Nanotubes for NMR Structure Determination of Membrane Proteins

    PubMed Central

    Bellot, Gaëtan; McClintock, Mark A.; Chou, James J; Shih, William M.

    2013-01-01

    Structure determination of integral membrane proteins by solution NMR represents one of the most important challenges of structural biology. A Residual-Dipolar-Coupling-based refinement approach can be used to solve the structure of membrane proteins up to 40 kDa in size, however, a weak-alignment medium that is detergent-resistant is required. Previously, availability of media suitable for weak alignment of membrane proteins was severely limited. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400nm-long six-helix bundles each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, towards collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes via counter ions and small DNA binding molecules. This detergent-resistant liquid-crystal media offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility, and structural programmability. Production of sufficient nanotubes for 4–5 NMR experiments can be completed in one week by a single individual. PMID:23518667

  6. Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases

    DOE PAGES

    Manthei, Kelly A.; Hill, Morgan C.; Burke, Jordan E.; ...

    2015-03-23

    RecQ helicases unwind remarkably diverse DNA structures as key components of many cellular processes. How RecQ enzymes accommodate different substrates in a unified mechanism that couples ATP hydrolysis to DNA unwinding is unknown. In this paper, the X-ray crystal structure of the Cronobacter sakazakii RecQ catalytic core domain bound to duplex DNA with a 3' single-stranded extension identifies two DNA-dependent conformational rearrangements: a winged-helix domain pivots ~90° to close onto duplex DNA, and a conserved aromatic-rich loop is remodeled to bind ssDNA. These changes coincide with a restructuring of the RecQ ATPase active site that positions catalytic residues for ATPmore » hydrolysis. Complex formation also induces a tight bend in the DNA and melts a portion of the duplex. Finally, this bending, coupled with translocation, could provide RecQ with a mechanism for unwinding duplex and other DNA structures.« less

  7. Duck Enteritis Virus Glycoprotein D and B DNA Vaccines Induce Immune Responses and Immunoprotection in Pekin Ducks

    PubMed Central

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks. PMID:24736466

  8. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    PubMed

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  9. Mechanism of Error-Free DNA Replication Past Lucidin-Derived DNA Damage by Human DNA Polymerase κ.

    PubMed

    Yockey, Oliver P; Jha, Vikash; Ghodke, Pratibha P; Xu, Tianzuo; Xu, Wenyan; Ling, Hong; Pradeepkumar, P I; Zhao, Linlin

    2017-11-20

    DNA damage impinges on genetic information flow and has significant implications in human disease and aging. Lucidin-3-O-primeveroside (LuP) is an anthraquinone derivative present in madder root, which has been used as a coloring agent and food additive. LuP can be metabolically converted to genotoxic compound lucidin, which subsequently forms lucidin-specific N 2 -2'-deoxyguanosine (N 2 -dG) and N 6 -2'-deoxyadenosine (N 6 -dA) DNA adducts. Lucidin is mutagenic and carcinogenic in rodents but has low carcinogenic risks in humans. To understand the molecular mechanism of low carcinogenicity of lucidin in humans, we performed DNA replication assays using site-specifically modified oligodeoxynucleotides containing a structural analogue (LdG) of lucidin-N 2 -dG DNA adduct and determined the crystal structures of DNA polymerase (pol) κ in complex with LdG-bearing DNA and an incoming nucleotide. We examined four human pols (pol η, pol ι, pol κ, and Rev1) in their efficiency and accuracy during DNA replication with LdG; these pols are key players in translesion DNA synthesis. Our results demonstrate that pol κ efficiently and accurately replicates past the LdG adduct, whereas DNA replication by pol η, pol ι is compromised to different extents. Rev1 retains its ability to incorporate dCTP opposite the lesion albeit with decreased efficiency. Two ternary crystal structures of pol κ illustrate that the LdG adduct is accommodated by pol κ at the enzyme active site during insertion and postlesion-extension steps. The unique open active site of pol κ allows the adducted DNA to adopt a standard B-form for accurate DNA replication. Collectively, these biochemical and structural data provide mechanistic insights into the low carcinogenic risk of lucidin in humans.

  10. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage

    PubMed Central

    Sheng, Gang; Zhao, Hongtu; Wang, Jiuyu; Rao, Yu; Tian, Wenwen; Swarts, Daan C.; van der Oost, John; Patel, Dinshaw J.; Wang, Yanli

    2014-01-01

    We report on crystal structures of ternary Thermus thermophilus Argonaute (TtAgo) complexes with 5′-phosphorylated guide DNA and a series of DNA targets. These ternary complex structures of cleavage-incompatible, cleavage-compatible, and postcleavage states solved at improved resolution up to 2.2 Å have provided molecular insights into the orchestrated positioning of catalytic residues, a pair of Mg2+ cations, and the putative water nucleophile positioned for in-line attack on the cleavable phosphate for TtAgo-mediated target cleavage by a RNase H-type mechanism. In addition, these ternary complex structures have provided insights into protein and DNA conformational changes that facilitate transition between cleavage-incompatible and cleavage-compatible states, including the role of a Glu finger in generating a cleavage-competent catalytic Asp-Glu-Asp-Asp tetrad. Following cleavage, the seed segment forms a stable duplex with the complementary segment of the target strand. PMID:24374628

  11. The HBV DNA cutoff value for discriminating patients with HBeAgnegative chronic hepatitis B from inactive carriers.

    PubMed

    Kim, Eun Sun; Seo, Yeon Seok; Keum, Bora; Kim, Ji Hoon; A, Hyonggin; Yim, Hyung Joon; Kim, Yong Sik; Jeen, Yoon Tae; Lee, Hong Sik; Chun, Hoon Jai; Um, Soon Ho; Duck Kim, Chang; Ryu, Ho Sang

    2011-05-01

    Patients with HBeAg-negative chronic hepatitis B (CHB) has a significantly different prognosis than inactive carriers; there is however, no reliable strategy for accurately differentiating these two disease conditions. To determine a strategy for discriminating patients with HBeAg-negative CHB from inactive carriers. Consecutive inactive carriers (i.e. HBeAg-negativity, anti-HBe-positivity, normal ALT levels, and HBV DNA < 2000 IU/mL) were enrolled. HBV reactivation was defined as the elevation of the HBV DNA level to ≥ 2000 IU/mL. Patients were classified into true inactive carriers when their HBV DNA levels remained at < 2000 IU/mL or false inactive carriers when their HBV DNA levels increased to ≥ 2000 IU/mL during the first year. The Mean ± SD age of 208 inactive carriers (140 males) was 47.7 ± 12.6 years. The Mean ± SD serum ALT and HBV DNA levels were 22.8 ± 8.6 IU/L and 360 ± 482 IU/mL, respectively. HBV reactivation developed in 41 (19.7%) patients during the first year. Baseline HBV DNA and ALT levels differed significantly between true inactive and false inactive carriers. The AUROCs of the baseline ALT and HBV DNA levels for predicting a false inactive carrier were 0.609 and 0.831, respectively. HBV reactivation developed more often in patients with a baseline HBV DNA level of ≥ 200 IU/mL than in those with a baseline HBV DNA level of < 200 IU/mL during a Mean ± SD follow-up of 622 ± 199 days. The HBV DNA level was useful for discriminating patients with HBeAg-negative CHB from true inactive carriers. The follow-up strategies applied to inactive carriers need to vary with their HBV DNA levels.

  12. Crystal structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates

    PubMed Central

    Gwon, Gwang Hyeon; Jo, Aera; Baek, Kyuwon; Jin, Kyeong Sik; Fu, Yaoyao; Lee, Jong-Bong; Kim, YoungChang; Cho, Yunje

    2014-01-01

    The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3′ flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a “5′ end binding pocket” that hosts the 5′ nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3′ flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5′ flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3′ flap DNA substrates with 5′ nicked ends. PMID:24733841

  13. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  14. [Anti-B[a]PDE-DNA formation in lymphomonocytes of humans environmentally exposed to polycyclic aromatic hydrocarbons].

    PubMed

    Pavanello, S; Pulliero, A; Lai, A; Gaiardo, A; Mastrangelo, G; Clonfero, E

    2005-01-01

    [Anti-B[a]PDE-DNA formation in lymphomonocytes of humans environmentally exposed to polycyclic aromatic hydrocarbons] We are currently evaluating anti-benzo[a]pyrenediolepoxide-(B[a]PDE)-DNA adduct levels in lymphomonocytes of humans exposed to polycyclic aromatic hydrocarbons (PAHs) to validate this indicator of biologically effective dose in a surrogate tissue. The study protocol (October 2002-June 2005) implies: (a) a signed informed consent by each participant; (b) recruitment of 600 Padua municipal workers during visits at our outpatient clinic; (c) administration of a questionnaire regarding non occupational sources of PAH (B[a]P) exposure; (d) collection of blood (15 ml) and urine (200 ml) samples. Anti-B[a]PDE-DNA adduct levels in lymphomonocytes are detected by HPLC-fluorescence analysis. To date, 438 subjects have been examined (age range 20-62 years; 52% males). We found that: (i) anti-B[a]PDE-DNA adduct levels are significantly lower than those we previously found in coke-oven workers (N=95) occupationally exposed to high levels of PAHs (1.51 +/- 2.68 versus 4.07 +/- 3.78 anti-B[a]PDE-adduct/10(8) nucleotides, p < 0.001; 37% versus 97% positive subjects with > or =1 adduct/10(8) nucleotides; p < 0.001); (ii) smokers (23%) have significantly higher adduct levels than non smokers (p < 0.001); iii) non smokers who consume PAH-rich meals > or =52 times/year (142 subjects, 42%) have significantly increased adduct levels than those <52 times/year (p < 0.01). Dietary and smoking habits did not influence the occupationally-induced adduct levels in coke-oven workers. This is the first study that examines anti-B[a]PDE-DNA adduct levels in a large cohort showing that anti-B[a]PDE-DNA adducts can be detected in humans environmentally exposed to low doses of PAH (B[a]P and are modulated by smoke and dietary habits.

  15. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  16. Activation of the DnaK-ClpB Complex is Regulated by the Properties of the Bound Substrate.

    PubMed

    Fernández-Higuero, Jose Angel; Aguado, Alejandra; Perales-Calvo, Judit; Moro, Fernando; Muga, Arturo

    2018-04-11

    The chaperone ClpB in bacteria is responsible for the reactivation of aggregated proteins in collaboration with the DnaK system. Association of these chaperones at the aggregate surface stimulates ATP hydrolysis, which mediates substrate remodeling. However, a question that remains unanswered is whether the bichaperone complex can be selectively activated by substrates that require remodeling. We find that large aggregates or bulky, native-like substrates activates the complex, whereas a smaller, permanently unfolded protein or extended, short peptides fail to stimulate it. Our data also indicate that ClpB interacts differently with DnaK in the presence of aggregates or small peptides, displaying a higher affinity for aggregate-bound DnaK, and that DnaK-ClpB collaboration requires the coupled ATPase-dependent remodeling activities of both chaperones. Complex stimulation is mediated by residues at the β subdomain of DnaK substrate binding domain, which become accessible to the disaggregase when the lid is allosterically detached from the β subdomain. Complex activation also requires an active NBD2 and the integrity of the M domain-ring of ClpB. Disruption of the M-domain ring allows the unproductive stimulation of the DnaK-ClpB complex in solution. The ability of the DnaK-ClpB complex to discrimínate different substrate proteins might allow its activation when client proteins require remodeling.

  17. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction II: Nonplanar Molecules.

    PubMed

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-11-14

    The crystal structure prediction (CSP) of a given compound from its molecular diagram is a fundamental challenge in computational chemistry with implications in relevant technological fields. A key component of CSP is the method to calculate the lattice energy of a crystal, which allows the ranking of candidate structures. This work is the second part of our investigation to assess the potential of the exchange-hole dipole moment (XDM) dispersion model for crystal structure prediction. In this article, we study the relatively large, nonplanar, mostly flexible molecules in the first five blind tests held by the Cambridge Crystallographic Data Centre. Four of the seven experimental structures are predicted as the energy minimum, and thermal effects are demonstrated to have a large impact on the ranking of at least another compound. As in the first part of this series, delocalization error affects the results for a single crystal (compound X), in this case by detrimentally overstabilizing the π-conjugated conformation of the monomer. Overall, B86bPBE-XDM correctly predicts 16 of the 21 compounds in the five blind tests, a result similar to the one obtained using the best CSP method available to date (dispersion-corrected PW91 by Neumann et al.). Perhaps more importantly, the systems for which B86bPBE-XDM fails to predict the experimental structure as the energy minimum are mostly the same as with Neumann's method, which suggests that similar difficulties (absence of vibrational free energy corrections, delocalization error,...) are not limited to B86bPBE-XDM but affect GGA-based DFT-methods in general. Our work confirms B86bPBE-XDM as an excellent option for crystal energy ranking in CSP and offers a guide to identify crystals (organic salts, conjugated flexible systems) where difficulties may appear.

  18. B-chromosome systems in the greater glider, Petauroides volans (Marsupialia: Pseudocheiridae). II. Investigation of B-chromosome DNA sequences isolated by micromanipulation and PCR.

    PubMed

    McQuade, L R; Hill, R J; Francis, D

    1994-01-01

    B chromosomes, despite their common occurrence throughout the animal and plant kingdoms, have not been investigated extensively at the molecular level. While the majority of B chromosomes occurring in animals have been described as heterochromatic, only a few researchers have examined the DNA of these chromosomes beyond this gross cytological level. This is the case in the largest of the gliding marsupial possums, the greater glider, Petauroides volans. To examine the molecular composition and localization of B-chromosome DNA sequences in P. volans, a combination of micromanipulation and the polymerase chain reaction was used in this study to isolate and then amplify the DNA of the B chromosomes. Localization of the isolated B-chromosome sequences to metaphase chromosomes was investigated using fluorescence in situ hybridization. The B chromosomes in this species are shown to be composed of a heterogeneous mixture of sequences, some of which are unique to the B chromosomes, while others exhibit homology to the centromeric regions of the autosomal complement.

  19. A non-heme iron-mediated chemical demethylation in DNA and RNA.

    PubMed

    Yi, Chengqi; Yang, Cai-Guang; He, Chuan

    2009-04-21

    DNA methylation is arguably one of the most important chemical signals in biology. However, aberrant DNA methylation can lead to cytotoxic or mutagenic consequences. A DNA repair protein in Escherichia coli, AlkB, corrects some of the unwanted methylations of DNA bases by a unique oxidative demethylation in which the methyl carbon is liberated as formaldehyde. The enzyme also repairs exocyclic DNA lesions--that is, derivatives in which the base is augmented with an additional heterocyclic subunit--by a similar mechanism. Two proteins in humans that are homologous to AlkB, ABH2 and ABH3, repair the same spectrum of lesions; another human homologue of AlkB, FTO, is linked to obesity. In this Account, we describe our studies of AlkB, ABH2, and ABH3, including our development of a general strategy to trap homogeneous protein-DNA complexes through active-site disulfide cross-linking. AlkB uses a non-heme mononuclear iron(II) and the cofactors 2-ketoglutarate (2KG) and dioxygen to effect oxidative demethylation of the DNA base lesions 1-methyladenine (1-meA), 3-methylcytosine (3-meC), 1-methylguanine (1-meG), and 3-methylthymine (3-meT). ABH3, like AlkB, works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA. Conversely, ABH2 primarily repairs lesions in double-stranded DNA (dsDNA); it is the main housekeeping enzyme that protects the mammalian genome from 1-meA base damage. The AlkB-family proteins have moderate affinities for their substrates and bind DNA in a non-sequence-specific manner. Knowing that these proteins flip the damaged base out from the duplex DNA and insert it into the active site for further processing, we first engineered a disulfide cross-link in the active site to stabilize the Michaelis complex. Based on the detailed structural information afforded by the active-site cross-linked structures, we can readily install a cross-link away from the active site to obtain the native-like structures of these complexes

  20. Structural stability of DNA origami nanostructures in the presence of chaotropic agents.

    PubMed

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-21

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.