Sample records for predicting bed load

  1. A general power equation for predicting bed load transport rates in gravel bed rivers

    Treesearch

    Jeffrey J. Barry; John M. Buffington; John G. King

    2004-01-01

    A variety of formulae has been developed to predict bed load transport in gravel bed rivers, ranging from simple regressions to complex multiparameter formulations. The ability to test these formulae across numerous field sites has, until recently, been hampered by a paucity of bed load transport data for gravel bed rivers. We use 2104 bed load transport observations...

  2. Predicting fractional bed load transport rates: Application of the Wilcock‐Crowe equations to a regulated gravel bed river

    USGS Publications Warehouse

    Gaeuman, David; Andrews, E.D.; Krause, Andreas; Smith, Wes

    2009-01-01

    Bed load samples from four locations in the Trinity River of northern California are analyzed to evaluate the performance of the Wilcock‐Crowe bed load transport equations for predicting fractional bed load transport rates. Bed surface particles become smaller and the fraction of sand on the bed increases with distance downstream from Lewiston Dam. The dimensionless reference shear stress for the mean bed particle size (τ*rm) is largest near the dam, but varies relatively little between the more downstream locations. The relation between τ*rm and the reference shear stresses for other size fractions is constant across all locations. Total bed load transport rates predicted with the Wilcock‐Crowe equations are within a factor of 2 of sampled transport rates for 68% of all samples. The Wilcock‐Crowe equations nonetheless consistently under‐predict the transport of particles larger than 128 mm, frequently by more than an order of magnitude. Accurate prediction of the transport rates of the largest particles is important for models in which the evolution of the surface grain size distribution determines subsequent bed load transport rates. Values of τ*rm estimated from bed load samples are up to 50% larger than those predicted with the Wilcock‐Crowe equations, and sampled bed load transport approximates equal mobility across a wider range of grain sizes than is implied by the equations. Modifications to the Wilcock‐Crowe equation for determining τ*rm and the hiding function used to scale τ*rm to other grain size fractions are proposed to achieve the best fit to observed bed load transport in the Trinity River.

  3. A method for improving predictions of bed-load discharges to reservoirs

    USGS Publications Warehouse

    Lopes, V.L.; Osterkamp, W.R.; Bravo-Espinosa, M.

    2007-01-01

    Effective management options for mitigating the loss of reservoir water storage capacity to sedimentation depend on improved predictions of bed-load discharges into the reservoirs. Most predictions of bed-load discharges, however, are based on the assumption that the rates of bed-load sediment availability equal the transport capacity of the flow, ignoring the spatio-temporal variability of the sediment supply. This paper develops a semiquantitative method to characterize bed-load sediment transport in alluvial channels, assuming a channel reach is non-supply limited when the bed-load discharge of a given sediment particle-size class is functionally related to the energy that is available to transport that fraction of the total bed-load. The method was applied to 22 alluvial stream channels in the USA to determine whether a channel reach had a supply-limited or non-supply-limited bed-load transport regime. The non-supply-limited transport regime was further subdivided into two groups on the basis of statistical tests. The results indicated the pattern of bed-load sediment transport in alluvial channels depends on the complete spectrum of sediment particle sizes available for transport rather than individual particle-size fractions represented by one characteristic particle size. The application of the method developed in this paper should assist reservoir managers in selecting bed-load sediment transport equations to improve predictions of bed-load discharge in alluvial streams, thereby significantly increasing the efficiency of management options for maintaining the storage capacity of waterbodies. ?? 2007 Blackwell Publishing Asia Pty Ltd.

  4. Reply to comment by Claude Michel on "A general power equation for predicting bed load transport rates in gravel bed rivers"

    Treesearch

    Jeffrey J. Barry; John M. Buffington; John G. King

    2005-01-01

    We thank Michel [2005] for the opportunity to improve our bed load transport equation [Barry et al., 2004, equation (6)] and to resolve the dimensional complexity that he identified. However, we do not believe that the alternative bed load transport equation proposed by Michel [2005] provides either the mechanistic insight or predictive power of our transport equation...

  5. Predicting boundary shear stress and sediment transport over bed forms

    USGS Publications Warehouse

    McLean, S.R.; Wolfe, S.R.; Nelson, J.M.

    1999-01-01

    To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of the internal boundary layer with semiempirical structure functions to predict the velocity at the crest of a bedform, where the flow is most similar to a uniform boundary layer. Significantly, the methodology is directed toward making specific predictions only at the bed-form crest, and as a result it avoids the difficulty and questionable validity of spatial averaging. The model provides an accurate estimate of the skin friction at the crest where transport rates are highest. Simple geometric constraints can be used to derive the mean transport rates as long as bed load is dominant.To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of the internal boundary layer with semiempirical structure functions to predict the velocity at the crest of a bedform, where the flow is most similar to a uniform boundary layer. Significantly, the methodology is directed toward making specific predictions only at the bed-form crest, and as a result it avoids the difficulty and questionable validity of spatial averaging. The model provides an accurate estimate of the skin friction at the crest where transport rates are highest. Simple geometric constraints can be used to derive the mean transport rates as long as bed load is dominant.

  6. Performance of bed-load transport equations relative to geomorphic significance: Predicting effective discharge and its transport rate

    Treesearch

    Jeffrey J. Barry; John M. Buffington; Peter Goodwin; John .G. King; William W. Emmett

    2008-01-01

    Previous studies assessing the accuracy of bed-load transport equations have considered equation performance statistically based on paired observations of measured and predicted bed-load transport rates. However, transport measurements were typically taken during low flows, biasing the assessment of equation performance toward low discharges, and because equation...

  7. Correction to "A general power equation for predicting bed load transport rates in gravel bed rivers"

    Treesearch

    Jeffrey J. Barry; John M. Buffington; John G. King

    2007-01-01

    In the paper "A general power equation for predicting bed load transport rates in gravel bed rivers" by Jeffrey J. Barry et al. (Water Resources Research, 40, W10401, doi:10.1029/2004WR003190, 2004), the y axis for Figures 5 and 10 was incorrectly labeled and should have read "log10 (predicted transport) - log10 (observed transport)." In addition,...

  8. Bed load transport in gravel-bed rivers

    Treesearch

    Jeffrey J. Barry

    2007-01-01

    Bed load transport is a fundamental physical process in alluvial rivers, building and maintaining a channel geometry that reflects both the quantity and timing of water and the volume and caliber of sediment delivered from the watershed. A variety of formulae have been developed to predict bed load transport in gravel-bed rivers, but testing of the equations in natural...

  9. Evaluation of a numerical model's ability to predict bed load transport observed in braided river experiments

    NASA Astrophysics Data System (ADS)

    Javernick, Luke; Redolfi, Marco; Bertoldi, Walter

    2018-05-01

    New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.

  10. [Fire behavior of Mongolian oak leaves fuel bed under no-wind and zero-slope conditions. II. Analysis of the factors affecting flame length and residence time and related prediction models].

    PubMed

    Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen

    2012-11-01

    Taking fuel moisture content, fuel loading, and fuel bed depth as controlling factors, the fuel beds of Mongolian oak leaves in Maoershan region of Northeast China in field were simulated, and a total of one hundred experimental burnings under no-wind and zero-slope conditions were conducted in laboratory, with the effects of the fuel moisture content, fuel loading, and fuel bed depth on the flame length and its residence time analyzed and the multivariate linear prediction models constructed. The results indicated that fuel moisture content had a significant negative liner correlation with flame length, but less correlation with flame residence time. Both the fuel loading and the fuel bed depth were significantly positively correlated with flame length and its residence time. The interactions of fuel bed depth with fuel moisture content and fuel loading had significant effects on the flame length, while the interactions of fuel moisture content with fuel loading and fuel bed depth affected the flame residence time significantly. The prediction model of flame length had better prediction effect, which could explain 83.3% of variance, with a mean absolute error of 7.8 cm and a mean relative error of 16.2%, while the prediction model of flame residence time was not good enough, which could only explain 54% of variance, with a mean absolute error of 9.2 s and a mean relative error of 18.6%.

  11. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling].

    PubMed

    Jin, Sen; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Zhang, Ji-Li

    2012-01-01

    Aimed to understand the fire behavior of Mongolian oak leaves fuel-bed under field condition, the leaves of a secondary Mongolian oak forest in Northeast Forestry University experimental forest farm were collected and brought into laboratory to construct fuel-beds with varied loading, height, and moisture content, and a total of 100 experimental fires were burned under no-wind and zero-slope conditions. It was observed that the fire spread rate of the fuel-beds was less than 0.5 m x min(-1). Fuel-bed loading, height, and moisture contents all had significant effects on the fire spread rate. The effect of fuel-bed moisture content on the fire spread had no significant correlations with fuel-bed loading and height, but the effect of fuel-bed height was related to the fuel-bed loading. The packing ratio of fuel-beds had less effect on the fire spread rate. Taking the fuel-bed loading, height, and moisture content as predictive variables, a prediction model for the fire spread rate of Mongolian oak leaves fuel-bed was established, which could explain 83% of the variance of the fire spread rate, with a mean absolute error 0.04 m x min(-1) and a mean relative error less than 17%.

  12. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  13. Scaling relationships between bed load volumes, transport distances, and stream power in steep mountain channels

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.

    2014-03-01

    Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.

  14. Response of bed surface patchiness to reductions in sediment supply

    NASA Astrophysics Data System (ADS)

    Nelson, Peter A.; Venditti, Jeremy G.; Dietrich, William E.; Kirchner, James W.; Ikeda, Hiroshi; Iseya, Fujiko; Sklar, Leonard S.

    2009-06-01

    River beds are often arranged into patches of similar grain size and sorting. Patches can be distinguished into "free patches," which are zones of sorted material that move freely, such as bed load sheets; "forced patches," which are areas of sorting forced by topographic controls; and "fixed patches" of bed material rendered immobile through localized coarsening that remain fairly persistent through time. Two sets of flume experiments (one using bimodal, sand-rich sediment and the other using unimodal, sand-free sediment) are used to explore how fixed and free patches respond to stepwise reductions in sediment supply. At high sediment supply, migrating bed load sheets formed even in unimodal, sand-free sediment, yet grain interactions visibly played a central role in their formation. In both sets of experiments, reductions in supply led to the development of fixed coarse patches, which expanded at the expense of finer, more mobile patches, narrowing the zone of active bed load transport and leading to the eventual disappearance of migrating bed load sheets. Reductions in sediment supply decreased the migration rate of bed load sheets and increased the spacing between successive sheets. One-dimensional morphodynamic models of river channel beds generally are not designed to capture the observed variability, but should be capable of capturing the time-averaged character of the channel. When applied to our experiments, a 1-D morphodynamic model (RTe-bookAgDegNormGravMixPW.xls) predicted the bed load flux well, but overpredicted slope changes and was unable to predict the substantial variability in bed load flux (and load grain size) because of the migration of mobile patches. Our results suggest that (1) the distribution of free and fixed patches is primarily a function of sediment supply, (2) the dynamics of bed load sheets are primarily scaled by sediment supply, (3) channels with reduced sediment supply may inherently be unable to transport sediment uniformly across their width, and (4) cross-stream variability in shear stress and grain size can produce potentially large errors in width-averaged sediment flux calculations.

  15. Exploring the role of flood transience in coarse bed load sediment transport

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Singer, M. B.; Hill, K. M.; Paola, C.

    2015-12-01

    The rate of bed load transport under steady flow is known to vary both spatially and temporally due to various hydrologic and granular phenomena. Grain size distributions and riverbed properties (packing, imbrication, etc.) are known to affect flux for a particular value of applied flow stress, while hydrology is mainly assumed to control the magnitude of the applied bed stress above the threshold for bed material entrainment. The prediction of bed load sediment transport in field settings is further complicated by the inherent transience in flood hydrology, but little is known about how such flood transience influences bed load flux over a range of applied bed stress. Here we investigate the role of flood transience for gravel bed load transport through controlled laboratory experiments in a 28 m long 0.5 meter wide flume. We explore transient flow as the combination of unsteady and intermittent flow, where unsteady flow varies in magnitude over a given duration, and intermittent flow is characterized by turning the flow on and off. We systematically vary these details of flood hydrographs from one experiment to the next, and monitor the bed load as it varies with water discharge in real time by measuring sediment flux and tracking particles. We find that even with a narrow unimodal grain size distribution and constant sediment supply we observe hysteresis in bed load flux, different thresholds for entrainment and distrainment for the rising and falling limbs of a flood, and a threshold of entrainment that can vary one flood hydrograph to the next. Despite these complex phenomena we find that the total bed load transported for each flood plots along a linear trend with the integrated excess stress, consistent with prior field results. These results suggest that while the effects of transient flow and the shape of the hydrograph are measurable, they are second-order compared to the integrated excess stress.

  16. Assessment of a numerical model to reproduce event‐scale erosion and deposition distributions in a braided river

    PubMed Central

    Measures, R.; Hicks, D. M.; Brasington, J.

    2016-01-01

    Abstract Numerical morphological modeling of braided rivers, using a physics‐based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth‐averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high‐flow event. Evaluation of model performance primarily focused upon using high‐resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach‐scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers. PMID:27708477

  17. Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river.

    PubMed

    Williams, R D; Measures, R; Hicks, D M; Brasington, J

    2016-08-01

    Numerical morphological modeling of braided rivers, using a physics-based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth-averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high-flow event. Evaluation of model performance primarily focused upon using high-resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach-scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers.

  18. Computational Modeling of Sinkage of Objects into Porous Bed under Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Sheikh, B.; Qiu, T.; Liu, X.

    2017-12-01

    This work is a companion of another abstract submitted to this session on the computational modeling for the prediction of underwater munitions. In the other abstract, the focus is the hydrodynamics and sediment transport. In this work, the focus is on the geotechnical aspect and granular material behavior when the munitions interact with the porous bed. The final goal of the project is to create and utilize a comprehensive modeling framework, which integrates the flow and granular material models, to simulate and investigate the motion of the munitions. In this work, we present the computational modeling of one important process: the sinkage of rigid-body objects into porous bed under cyclic loading. To model the large deformation of granular bed materials around sinking objects under cyclic loading, a rate-independent elasto-plastic constitutive model is implemented into a Smoothed Particle Hydrodynamics (SPH) model. The effect of loading conditions (e.g., amplitude and frequency of shaking), object properties (e.g., geometry and density), and granular bed material properties (e.g., density) on object singkage is discussed.

  19. Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit

    NASA Astrophysics Data System (ADS)

    Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong

    When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.

  20. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep.

    PubMed

    Houssais, Morgane; Ortiz, Carlos P; Durian, Douglas J; Jerolmack, Douglas J

    2015-03-09

    Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain-grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where 'bed load' is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models.

  1. An analysis of bedload and suspended load interactions

    NASA Astrophysics Data System (ADS)

    Recking, alain; Navratil, Oldrich

    2013-04-01

    Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to standard convection diffusion equations.

  2. Granular controls on the dispersion of bed load tracers

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Martin, R. L.; Phillips, C. B.

    2014-12-01

    Coarse particles are transported in a river as bed load, i.e., they move in frequent contact with and are supported by the granular bed. This movement is typically intermittent and may be described by a series of steps are rests, the distributions of which determine particle dispersion. Laboratory and field studies of bed load tracer dispersion have reported sub- and super-diffusive behavior, both of which have been successfully reproduced with stochastic transport models. Although researchers have invoked heavy-tailed step lengths as the cause of anomalous dispersion, most observations report thin-tailed distributions. Little attention has been paid to rest periods, and stochastic transport models have not been connected to the underlying mechanics of particle motion. Based on theoretical and experimental evidence, we argue that step lengths are thin-tailed and do not control the longterm dispersion of bed load tracers; they are determined by momentum balance between the fluid and solid. Using laboratory experiments with both marbles and natural sediments, we demonstrate that the rest time distribution is power law, and argue that this distribution controls asymptotic dispersion. Observed rest times far exceed any hydrodynamic timescale. Experiments reveal that rest times of deposited particles are governed by fluctuations in river bed elevation; in particular, the return time for the bed to scour to the base of a deposited particle. Stochastic fluctuations in bed elevation are describable by an Ornstein-Uhlenbeck (mean-reverting random walk) model that contains two parameters, which we show are directly related to the granular shear rate and range of bed elevation fluctuations, respectively. Combining these results with the theory of asymmetric random walks (particles only move downstream), we predict superdiffusive behavior that is in quantitative agreement with our observations of tracer dispersion in a natural river.

  3. Fine Sediment Residency in Streambeds in Southeastern Australia.

    NASA Astrophysics Data System (ADS)

    Croke, J. C.; Thompson, C. J.; Rhodes, E.

    2007-12-01

    A detailed understanding of channel forming and maintenance processes in streams requires some measurement and/or prediction of bed load transport and sediment mobility. Traditional field based measurements of such processes are often problematic due to the high discharge characteristics of upland streams. In part to compensate for such difficulties, empirical flow competence equations have also been developed to predict armour or bedform stabilising grain mobility. These equations have been applied to individual reaches to predict the entrainment of a threshold grain size and the vertical extent of flushing. In cobble- and boulder-bed channels the threshold grain size relates to the size of the bedform stabilising grains (eg. D84, D90). This then allows some prediction of when transport of the matrix material occurs. The application of Optically Stimulated Luminescence (OSL) dating is considered here as an alternative and innovative way to determine fine sediment residency times in stream beds. Age estimates derived from the technique are used to assist in calibrating sediment entrainment models to specific channel types and hydrological regimes. The results from a one-dimensional HEC-RAS model indicate that recurrence interval floods exceeding bankfull up to 13 years are competent to mobilise the maximum overlying surface grain sizes at the sites. OSL minimum age model results of well bleached quartz in the fine matrix particles are in general agreement with selected competence equation predictions. The apparent long (100-1400y) burial age of most of the mineral quartz suggests that competent flows are not able to flush all subsurface fine-bed material. Maximum bed load exchange (flushing) depth was limited to twice the depth of the overlying D90 grain size. Application of OSL in this study provides important insight into the nature of matrix material storage and flushing in mountain streams.

  4. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    NASA Technical Reports Server (NTRS)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  5. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, Surendra; Ivins, Erik; Larour, Eric; Seroussi, Helene; Morlighem, Mathieu; Nowicki, Sophie

    2014-05-01

    A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has been generally losing its mass since the last glacial maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that the past loading is relatively less important than future loading on the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years 2100 and 2500 AD, respectively, and that the East Antarctic Ice Sheet (EAIS) is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector of WAIS in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay approaches roughly 45 mm/yr in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is associated with the flattening of reverse bed, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote the stability to marine portions of the ice sheet in the future.

  6. Variability of Bed Load Transport During Six Summers of Continuous Measurements in Two Austrian Mountain Streams (Fischbach and Ruetz)

    NASA Astrophysics Data System (ADS)

    Rickenmann, Dieter

    2018-01-01

    Previous measurements of bed load transport in gravel bed streams revealed a large temporal and spatial variability of bed load transport rates. Using an impact plate geophone system, continuous bed load transport measurements were made during 6 years in two mountain streams in Austria. The two streams have a snow-melt and glacier-melt dominated hydrologic regime resulting in frequent transport activity during the summer half year. Periods of days to weeks were identified which are associated with approximately constant Shields values that indicate quasi-stable bed conditions. Between these stable periods, the position of the bed load transport function varied while its steepness remained approximately constant. For integration time scales of several hours to 1 day, the fluctuations in bed load transport decreased and the correlation between bed load transport and water discharge increased. For integration times of about 70-100 days, bed load transport is determined by discharge or shear stress to within a factor of about 2, relative to the 6 year mean level. Bed load texture increased with increasing mean flow strength and mean transport intensity. Weak and predominantly clockwise daily hysteresis of bed load transport was found for the first half of the summer period.

  7. Structural characterization of a first-generation articulated-truss joint for space crane application

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.

    1992-01-01

    A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.

  8. Marginal bed load transport in a gravel bed stream, Sagehen Creek, California

    USGS Publications Warehouse

    Andrews, E.D.

    1994-01-01

    Marginal bed load transport describes the condition when relatively few bed particles are moving at any time. Bed particles resting in the shallowest bed pockets will move when the dimensionless shear stress т* exceeds a value of about 0.020. As т* increases, the number of bed particles moving increases. Significant motion of bed particles, i.e., when a substantial fraction of the bed particles are moving, occurs when т* exceeds a value of about 0.060. Thus marginal bed load transport occurs over the domain 0.020 < т* < 0.060. Marginal bed load transport rates and associated hydraulic characteristics of Sagehen Creek, a small mountain gravel bed stream, were measured on 55 days at discharges ranging from slightly less than one half of the bank-full discharge to more than 4 times the bank-full discharge. Dimensionless shear stress varied from 0.032 to 0.042, and bed particles as large as the 80th percentile of the bed surface were transported. The relation between reference dimensionless shear stress and relative particle protrusion for Sagehen Creek was determined by varying т*ri to obtain the best fit of the Parker bed load function to the measured transport rates. During the period of record (water years 1954–1991), the mean annual quantity of bed load transported past the Sagehen Creek gage was 24.7 tons. Forty-seven percent of all bed load transported during the 38 years of record occurred in just 6 years. During 10 of the 38 years of record, essentially no bed load was transported. The median diameter of bed load was 26 mm, compared to 58 mm in the surface bed material.

  9. Particle size variations between bed load and bed material in natural gravel bed channels

    Treesearch

    Thomas E. Lisle

    1995-01-01

    Abstract - Particle sizes of bed load and bed material that represent materials transported and stored over a period of years are used to investigate selective transport in 13 previously sampled, natural gravel bed channels. The ratio (D*) of median particle size of bed material to the transport- and frequency-weighted mean of median bed load size decreases to unity...

  10. Field assessment of alternative bed-load transport estimators

    USGS Publications Warehouse

    Gaeuman, G.; Jacobson, R.B.

    2007-01-01

    Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. ?? 2007 ASCE.

  11. Is the Critical Shields Stress for Incipient Sediment Motion Dependent on Bed Slope in Natural Channels? No.

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Jerolmack, D. J.

    2017-12-01

    Understanding when coarse sediment begins to move in a river is essential for linking rivers to the evolution of mountainous landscapes. Unfortunately, the threshold of surface particle motion is notoriously difficult to measure in the field. However, recent studies have shown that the threshold of surface motion is empirically correlated with channel slope, a property that is easy to measure and readily available from the literature. These studies have thoroughly examined the mechanistic underpinnings behind the observed correlation and produced suitably complex models. These models are difficult to implement for natural rivers using widely available data, and thus others have treated the empirical regression between slope and the threshold of motion as a predictive model. We note that none of the authors of the original studies exploring this correlation suggested their empirical regressions be used in a predictive fashion, nevertheless these regressions between slope and the threshold of motion have found their way into numerous recent studies engendering potentially spurious conclusions. We demonstrate that there are two significant problems with using these empirical equations for prediction: (1) the empirical regressions are based on a limited sampling of the phase space of bed-load rivers and (2) the empirical measurements of bankfull and critical shear stresses are paired. The upshot of these problems limits the empirical relations predictive capacity to field sites drawn from the same region of the bed-load river phase space and that the paired nature of the data introduces a spurious correlation when considering the ratio of bankfull to critical shear stress. Using a large compilation of bed-load river hydraulic geometry data, we demonstrate that the variation within independently measured values of the threshold of motion changes systematically with bankfull shields stress and not channel slope. Additionally, we highlight using several recent datasets the potential pitfalls that one can encounter when using simplistic empirical regressions to predict the threshold of motion showing that while these concerns could be construed as subtle the resulting implications can be substantial.

  12. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-06-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  13. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A~recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) is generally losing its mass since the last glacial maximum (LGM). In a sustained warming climate, the AIS is predicted to retreat at a greater pace primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that the past loading is relatively less important than future loading on the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years 2100 and 2500 AD, respectively, and that the East Antarctic Ice Sheet (EAIS) is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay approaches roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is associated with the flattening of reverse bed, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote the stability to marine portions of the ice sheet in future.

  14. Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics

    NASA Technical Reports Server (NTRS)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric Y.; Seroussi, Helene L.; Morlighem, Mathieu; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves.We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS.We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45mmyr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  15. Numerical simulation of large-scale bed load particle tracer advection-dispersion in rivers with free bars

    USGS Publications Warehouse

    Iwasaki, Toshiki; Nelson, Jonathan M.; Shimizu, Yasuyuki; Parker, Gary

    2017-01-01

    Asymptotic characteristics of the transport of bed load tracer particles in rivers have been described by advection-dispersion equations. Here we perform numerical simulations designed to study the role of free bars, and more specifically single-row alternate bars, on streamwise tracer particle dispersion. In treating the conservation of tracer particle mass, we use two alternative formulations for the Exner equation of sediment mass conservation: the flux-based formulation, in which bed elevation varies with the divergence of the bed load transport rate, and the entrainment-based formulation, in which bed elevation changes with the net deposition rate. Under the condition of no net bed aggradation/degradation, a 1-D flux-based deterministic model that does not describe free bars yields no streamwise dispersion. The entrainment-based 1-D formulation, on the other hand, models stochasticity via the probability density function (PDF) of particle step length, and as a result does show tracer dispersion. When the formulation is generalized to 2-D to include free alternate bars, however, both models yield almost identical asymptotic advection-dispersion characteristics, in which streamwise dispersion is dominated by randomness inherent in free bar morphodynamics. This randomness can result in a heavy-tailed PDF of waiting time. In addition, migrating bars may constrain the travel distance through temporary burial, causing a thin-tailed PDF of travel distance. The superdiffusive character of streamwise particle dispersion predicted by the model is attributable to the interaction of these two effects.

  16. Numerical simulation of large-scale bed load particle tracer advection-dispersion in rivers with free bars

    NASA Astrophysics Data System (ADS)

    Iwasaki, Toshiki; Nelson, Jonathan; Shimizu, Yasuyuki; Parker, Gary

    2017-04-01

    Asymptotic characteristics of the transport of bed load tracer particles in rivers have been described by advection-dispersion equations. Here we perform numerical simulations designed to study the role of free bars, and more specifically single-row alternate bars, on streamwise tracer particle dispersion. In treating the conservation of tracer particle mass, we use two alternative formulations for the Exner equation of sediment mass conservation: the flux-based formulation, in which bed elevation varies with the divergence of the bed load transport rate, and the entrainment-based formulation, in which bed elevation changes with the net deposition rate. Under the condition of no net bed aggradation/degradation, a 1-D flux-based deterministic model that does not describe free bars yields no streamwise dispersion. The entrainment-based 1-D formulation, on the other hand, models stochasticity via the probability density function (PDF) of particle step length, and as a result does show tracer dispersion. When the formulation is generalized to 2-D to include free alternate bars, however, both models yield almost identical asymptotic advection-dispersion characteristics, in which streamwise dispersion is dominated by randomness inherent in free bar morphodynamics. This randomness can result in a heavy-tailed PDF of waiting time. In addition, migrating bars may constrain the travel distance through temporary burial, causing a thin-tailed PDF of travel distance. The superdiffusive character of streamwise particle dispersion predicted by the model is attributable to the interaction of these two effects.

  17. Using multiple bed load measurements: Toward the identification of bed dilation and contraction in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Marquis, G. A.; Roy, A. G.

    2012-02-01

    This study examines bed load transport processes in a small gravel-bed river (Béard Creek, Québec) using three complementary methods: bed elevation changes between successive floods, bed activity surveys using tags inserted into the bed, and bed load transport rates from bed load traps. The analysis of 20 flood events capable of mobilizing bed material led to the identification of divergent results among the methods. In particular, bed elevation changes were not consistent with the bed activity surveys. In many cases, bed elevation changes were significant (1 to 2 times the D50) even if the bed surface had not been activated during the flood, leading to the identification of processes of bed dilation and contraction that occurred over 10% to 40% of the bed surface. These dynamics of the river bed prevent accurate derivation of bed load transport rates from topographic changes, especially for low magnitude floods. This paper discusses the mechanisms that could explain the dilation and contraction of particles within the bed and their implications in fluvial dynamics. Bed contraction seems to be the result of the winnowing of the fine sediments under very low gravel transport. Bed dilation seems to occur on patches of the bed at the threshold of motion where various processes such as fine sediment infiltration lead to the maintenance of a larger sediment framework volume. Both processes are also influenced by flood history and the initial local bed state and in turn may have a significant impact on sediment transport and morphological changes in gravel-bed rivers.

  18. Comparative modeling of biological nutrient removal from landfill leachate using a circulating fluidized bed bioreactor (CFBBR).

    PubMed

    Eldyasti, Ahmed; Andalib, Mehran; Hafez, Hisham; Nakhla, George; Zhu, Jesse

    2011-03-15

    Steady state operational data from a pilot scale circulating fluidized bed bioreactor (CFBBR) during biological treatment of landfill leachate, at empty bed contact times (EBCTs) of 0.49, and 0.41 d and volumetric nutrients loading rates of 2.2-2.6 kg COD/(m(3)d), 0.7-0.8 kg N/(m(3)d), and 0.014-0.016 kg P/(m(3)d), was used to calibrate and compare developed process models in BioWin(®) and AQUIFAS(®). BioWin(®) and AQUIFAS(®) were both capable of predicting most of the performance parameters such as effluent TKN, NH(4)-N, NO(3)-N, TP, PO(4)-P, TSS, and VSS with an average percentage error (APE) of 0-20%. BioWin(®) underpredicted the effluent BOD and SBOD values for various runs by 80% while AQUIFAS(®) predicted effluent BOD and SBOD with an APE of 50%. Although both calibrated models, confirmed the advantages of the CFBBR technology in treating the leachate of high volumetric loading and low biomass yields due to the long solid retention time (SRT), both BioWin(®) and AQUIFAS(®) predicted the total biomass and SRT of CFBBR based on active biomass only, whereas in the CFBBR runs both active as well as inactive biomass accumulated. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Flow resistance and suspended load in sand-bed rivers: Simplified stratification model

    USGS Publications Warehouse

    Wright, S.; Parker, G.

    2004-01-01

    New methods are presented for the prediction of the flow depth, grain-size specific near-bed concentration, and bed-material suspended sediment transport rate in sand-bed rivers. The salient improvements delineated here all relate to the need to modify existing formulations in order to encompass the full range of sand-bed rivers, and in particular large, low-slope sand-bed rivers. They can be summarized as follows: (1) the inclusion of density stratification effects in a simplified manner, which have been shown in the companion paper to be particularly relevant for large, low-slope, sand-bed rivers; (2) a new predictor for near-bed entrainment rate into suspension which extends a previous relation to the range of large, low-slope sand-bed rivers; and (3) a new predictor for form drag which again extends a previous relation to include large, low-slope sand-bed rivers. Finally, every attempt has been made to cast the relations in the simplest form possible, including the development of software, so that practicing engineers may easily use the methods. ?? ASCE.

  20. Bed load transport over a broad range of timescales: Determination of three regimes of fluctuations

    NASA Astrophysics Data System (ADS)

    Ma, Hongbo; Heyman, Joris; Fu, Xudong; Mettra, Francois; Ancey, Christophe; Parker, Gary

    2014-12-01

    This paper describes the relationship between the statistics of bed load transport flux and the timescale over which it is sampled. A stochastic formulation is developed for the probability distribution function of bed load transport flux, based on the Ancey et al. (2008) theory. An analytical solution for the variance of bed load transport flux over differing sampling timescales is presented. The solution demonstrates that the timescale dependence of the variance of bed load transport flux reduces to a three-regime relation demarcated by an intermittency timescale (tI) and a memory timescale (tc). As the sampling timescale increases, this variance passes through an intermittent stage (≪tI), an invariant stage (tI < t < tc), and a memoryless stage (≫ tc). We propose a dimensionless number (Ra) to represent the relative strength of fluctuation, which provides a common ground for comparison of fluctuation strength among different experiments, as well as different sampling timescales for each experiment. Our analysis indicates that correlated motion and the discrete nature of bed load particles are responsible for this three-regime behavior. We use the data from three experiments with high temporal resolution of bed load transport flux to validate the proposed three-regime behavior. The theoretical solution for the variance agrees well with all three sets of experimental data. Our findings contribute to the understanding of the observed fluctuations of bed load transport flux over monosize/multiple-size grain beds, to the characterization of an inherent connection between short-term measurements and long-term statistics, and to the design of appropriate sampling strategies for bed load transport flux.

  1. Sand transport in the lower Mississippi River does not yield to dams: Applications for building deltaic land in Louisiana

    NASA Astrophysics Data System (ADS)

    Nittrouer, J. A.; Viparelli, E.

    2013-12-01

    The Mississippi Delta is presently undergoing a catastrophic drowning, whereby 5000 km2 of low-lying wetlands have converted to open water. This land loss is primarily the result of: a) relative sea-level rise, occurring due to the combined effect of rapid subsidence associated with subsurface fluids extraction and eustatic rise; b) leveeing and damming of the river and its tributaries, which restricts sediment delivery to and dispersal within the delta; and c) severe excavation of the delta for navigation channels. It has been argued that continued net land loss of the Mississippi Delta is inevitable due to declining measured total (sand and mud) suspended sediment loads over the past 6 decades. However, recent research has documented that the key to delta growth is deposition of sand, which accounts for ~50-70% of modern and ancient (up to 9 m.a.) Mississippi Delta deposits, but comprises only ~20% of the sampled portion of the total load. Here we present new analysis of existing data to show that sand transport has not diminished since dam construction. Furthermore, we produce a numerical model based on the mass balance of bed material loads over the lower 1600 km of the Mississippi River to show that mining of sand from the channel bed continues to replenish downstream sand loads. For example, our model results indicate that it requires approximately 240 years for a reduced sand load to reach the delta apex. Furthermore, our calculations indicate that sand load at the delta apex is reduced by a noticeable amount (17%) only after about 600 years. We also show how channel bed elevations are predicted to change over the lower 1600 km of the river channel due to channel mining. Channel-bed degradation is greatest at the upstream end of the study reach and decreases downstream. After 300 years the wave of significant degradation has just passed ~800 km downstream, or roughly half of our model domain. These results are in contrast to the measurements which concern the reduction of total suspended sediment load, and here we provide a reasonable hypothesis to help explain: sand possesses a much slower time scale of movement through a sand-bed river compared to mud, because sand exchanges with the bed, building dunes and bars that migrate gradually downstream, whereas the mud travels the length of the system in suspension as washload. This produces orders-of-magnitude difference in transport timescales between mud -- which accounts for ~80% of the total suspended sediment load of the Mississippi River -- and sand (bedload and suspended load). Combined with the abundance and availability of sand to be mined within the main channel, the river effectively buffers the reduction of sand load arising due to main-channel dams. Thus the bed of the lower Mississippi River downstream will provide a stable supply of sand to the delta for the foreseeable future.

  2. Comparison of genetic algorithm and imperialist competitive algorithms in predicting bed load transport in clean pipe.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein

    2014-01-01

    The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.

  3. A generalized threshold model for computing bed load grain size distribution

    NASA Astrophysics Data System (ADS)

    Recking, Alain

    2016-12-01

    For morphodynamic studies, it is important to compute not only the transported volumes of bed load, but also the size of the transported material. A few bed load equations compute fractional transport (i.e., both the volume and grain size distribution), but many equations compute only the bulk transport (a volume) with no consideration of the transported grain sizes. To fill this gap, a method is proposed to compute the bed load grain size distribution separately to the bed load flux. The method is called the Generalized Threshold Model (GTM), because it extends the flow competence method for threshold of motion of the largest transported grain size to the full bed surface grain size distribution. This was achieved by replacing dimensional diameters with their size indices in the standard hiding function, which offers a useful framework for computation, carried out for each indices considered in the range [1, 100]. New functions are also proposed to account for partial transport. The method is very simple to implement and is sufficiently flexible to be tested in many environments. In addition to being a good complement to standard bulk bed load equations, it could also serve as a framework to assist in analyzing the physics of bed load transport in future research.

  4. Test-bed for the remote health monitoring system for bridge structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog

    2009-05-01

    This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.

  5. Bed material transport in the Virgin River, Utah

    USGS Publications Warehouse

    Andrews, E.D.

    2000-01-01

    Detailed information concerning the rate and particle size distribution of bed material transport by streamflows can be very difficult and expensive to obtain, especially where peak streamflows are brief and bed material is poorly sorted, including some very large boulders. Such streams, however, are common in steep, arid watersheds. Any computational approach must consider that (1) only the smaller particle sizes present on the streambed move even during large floods and (2) the largest bed particles exert a significant form drag on the flow. Conventional methods that rely on a single particle size to estimate the skin friction shear stress acting on the mobile fraction of the bed material perform poorly. Instead, for this study, the skin friction shear stress was calculated for the observed range of streamflows by calculating the form drag exerted on the reach‐averaged flow field by all particle sizes. Suspended and bed load transported rates computed from reach‐averaged skin friction shear stress are in excellent agreement with measured transport rates. The computed mean annual bed material load, including both bed load and suspended load, of the East Fork Virgin River for the water years 1992‐1996 was approximately 1.3×10 5 t. A large portion of the bed material load consists of sand‐sized particles, 0.062–1.0 mm in diameter, that are transported in suspension. Such particles, however, constituted only 10% of the surface bed material and less than 25% of the subsurface bed material. The mean annual quantity of bed load transported was 1060 t/yr with a median size of 15 mm.

  6. Peering inside the granular bed: illuminating feedbacks between bed-load transport and bed-structure evolution

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Jerolmack, D. J.; Martin, R. L.

    2013-12-01

    The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and O. Eiff, Erosion and deposition of particles on a bed sheared by a viscous flow, Journal of Fluid Mech., 519, 55-80, 2004 Frey, P. and Church, M. (2011), Bedload: a granular phenomenon. Earth Surf. Process. Landforms, 36: 58-69. doi: 10.1002/esp.2103 Turowski, J. M., A. Badoux, and D. Rickenmann (2011), Start and end of bedload transport in gravel-bed streams, Geophys. Res. Lett., 38, L04401, doi:10.1029/2010GL046558.

  7. The Influence of Relative Submergence on the Near-bed Flow Field: Implications for Bed-load Transport

    NASA Astrophysics Data System (ADS)

    Cooper, J.; Tait, S.; Marion, A.

    2005-12-01

    Bed-load is governed by interdependent mechanisms, the most significant being the interaction between bed roughness, surface layer composition and near-bed flow. Despite this, practically all transport rate equations are described as a function of average bed shear stress. Some workers have examined the role of turbulence in sediment transport (Nelson et al. 1995) but have not explored the potential significance of spatial variations in the near-bed flow field. This is unfortunate considering evidence showing that transport is spatially heterogeneous and could be linked to the spatial nature of the near-bed flow (Drake et al., 1988). An understanding is needed of both the temporal and spatial variability in the near-bed flow field. This paper presents detailed spatial velocity measurements of the near-bed flow field over a gravel-bed, obtained using Particle Image Velocimetry. These data have been collected in a laboratory flume under two regimes: (i) tests with one bed slope and different flow depths; and (ii) tests with a combination of flow depths and slopes at the same average bed shear stress. Results indicate spatial variation in the streamwise velocities of up to 45 per cent from the double-averaged velocity (averaged in both time and space). Under both regimes, as the depth increased, spatial variability in the flow field increased. The probability distributions of near-bed streamwise velocities became progressively more skewed towards the higher velocities. This change was more noticeable under regime (i). This has been combined with data from earlier tests in which the near-bed velocity close to an entraining grain was measured using a PIV/image analysis system (Chegini et al, 2002). This along with data on the shape of the probability density function of velocities capable of entraining individual grains derived from a discrete-particle model (Heald et al., 2004) has been used to estimate the distribution of local velocities required for grain motion in the above tests. The overlap between this distribution and the measured velocities are used to estimate entrainment rates. Predicted entrainment rates increase with relative submergence, even for similar bed shear stress. Assuming bed-load rate is the product of entrainment rate and hop length, and that hop lengths are sensibly stable, suggests that transport rate has a dependence on relative submergence. This demonstrates that transport rate is not a direct function of average bed shear stress. The results describe a mechanism that will cause river channels with contrasting morphologies (and different relative submergence) but similar levels of average bed stress to experience different levels of sediment mobility. Chegini A. Tait S. Heald J. McEwan I. 2002 The development of an automated system for the measurement of near bed turbulence and grain motion. Proc. ASCE Conf. on Hydraulic Measurements and Experimental Methods, ISBN 0-7844-0655-3. Drake T.G. Shreve R.L. Dietrich W.E. Whiting P.J. Leopold L.B. 1988 Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech., 192, 193-217. Heald J. McEwan I. Tait, S. 2004 Sediment transport over a flat bed in a unidirectional flow: simulations and validation, Phil. Trans. Roy. Soc. of London A, 362, 1973-1986. Nelson J.M. Shreve R.L. McLean S.R. Drake T.G. 1995 Role of near-bed turbulence structure in bed-load transport and bed form mechanics, Water. Res. Res., 31, 8, 2071-2086.

  8. Experimental Investigation and Analysis of HEC-6 River Morphological Model

    NASA Astrophysics Data System (ADS)

    Tingsanchali, Tawatchai; Supharatid, Seree

    1996-05-01

    Only comparatively few experimental studies have been carried out to investigate the performance of the HEC-6 river morphological model. The model was developed by the Hydrologic Engineering Center of the US Army Corps of Engineers. In this study, experiments were carried out in a 20 m long concrete flume 0.6 m wide with varying rectangular cross-sections. The channel bed is paved with uniform sand of D50 = 0.9 mm and D90 = 1.2 mm within the test reach of 12 m. Two types of experiments were carried out with sediment transport, one under steady uniform flow and another under steady non-uniform flow conditions. Nine steady uniform flow experiments were carried out to compare the measured equilibrium relationship of flow and sediment transport rate with two bedload formulae, namely, Du Boys and Meyer-Peter and Muller, and with three total load formulae, namely, Toffaleti, Laursen and Yang. It was found that even though the sediment transport consists of a certain portion of bedload, the total load formulae give satisfactory results and better agreement than the two bedload formulae. Five steady non-uniform flow experiments were carried out under various conditions of varying bed profile and channel width and also with sediment addition and withdrawal. The measured transient water surface and bed profiles are compared with the computed results from the HEC-6 model. It was found that the Toffaleti and Yang total load formulae used in the HEC-6 model give the most satisfactory prediction of actual bed profiles under various conditions of non-uniform flow and sediment transport. The effects of Manning's n, variations of sediment inflow, various sediment transport formulae, sediment grain size and the model numerical parameters, i.e. distance interval x and numerical weighting factor, on the computed water surface and bed profiles were determined. It was found that the selection of the sediment transport formulae has the most significant effect on the computed results. It can be concluded that the HEC-6 model can predict satisfactorily a long-term average pattern of local scour and deposition along a channel with either a small abrupt change in geometry or gradually varying cross-sections. However, the accuracy of the model prediction is reduced in the regions where highly non-uniform flow occurs.

  9. Measuring bed load discharge in rivers: bedload-surrogate monitoring workshop Minneapolis, Minnesota, 11-14 April 2007

    USGS Publications Warehouse

    Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2007-01-01

    The International Bedload-Surrogate Monitoring Workshop (http://www.nced.umn.edu/BRIC_2007.html), organized by the Bedload Research International Cooperative (BRIC; www.bedloadresearch.org), was held to assess and abet progress in continuous, semiautomated, or fully automated (surrogate) technologies for monitoring bed load discharge in gravel-, sand-, and mixed gravel-sand-bedded rivers. Direct bed load measurements, particularly at medium and high flows, during which most bed load occurs, tend to be time-consuming, expensive, and potentially hazardous. Surrogate technologies developed largely over the past decade and used at a number of research sites around the world show considerable promise toward providing relatively dense, robust, and quantifiably reliable bed load data sets. However, information on the efficacy of selected technologies for use in monitoring programs is needed, as is identification of the ways and means for bringing the most promising and practical of the technologies to fruition.

  10. Effects of hydraulic roughness on surface textures of gravel‐bed rivers

    USGS Publications Warehouse

    Buffington, John M.; Montgomery, David R.

    1999-01-01

    Field studies of forest gravel‐bed rivers in northwestern Washington and southeastern Alaska demonstrate that bed‐surface grain size is responsive to hydraulic roughness caused by bank irregularities, bars, and wood debris. We evaluate textural response by comparing reach‐average median grain size (D50) to that predicted from the total bank‐full boundary shear stress (т0bf), representing a hypothetical reference condition of low hydraulic roughness. For a given т0bf, channels with progressively greater hydraulic roughness have systematically finer bed surfaces, presumably due to reduced bed shear stress, resulting in lower channel competence and diminished bed load transport capacity, both of which promote textural fining. In channels with significant hydraulic roughness, observed values D50 can be up to 90% smaller than those predicted from т0bf. We find that wood debris plays an important role at our study sites, not only providing hydraulic roughness but also influencing pool spacing, frequency of textural patches, and the amplitude and wavelength of bank and bar topography and their consequent roughness. Our observations also have biological implications. We find that textural fining due to hydraulic roughness can create usable salmonid spawning gravels in channels that otherwise would be too coarse.

  11. Mechanical and Structural Behavior of Granular Material Packed Beds for Space Life Support System Applications

    NASA Technical Reports Server (NTRS)

    Malla, Ramesh B.; Anandakumar, Ganesh

    2005-01-01

    Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of the bed media increased with decrease in initial compaction of the bed media. This effect could be attributed to the greater tendency for inter-particle sliding/rub bing due to smaller internal friction angles, as seen from the shear tests, at lesser initial compacted levels. Upon unloading, it was obse rved that there was no change in displacement (especially rebounding) in the bed media. This effect could be attributed to the fact that th e porous activated alumina particles fracture/break upon increase in applied load (during loading phase) and occupy void spaces in between the material grains; thereby leading to settling of the media. The lo ad-displacement curve becomes more linear with increase in initial compaction of the bed media. It is concluded that compaction considerabl y affects the load-displacement behavior of the bed media. A series of tests were also conducted on the packed bed media to determine the f orce required to mobilize the friction between the bed media and the housing cylinder. The results from these tests showed the existence of significant friction between the bed media and the encasing stainles s steel cylinder. Further, it was found that friction effects were more pronounced for media with higher initial compaction. Internal frict ion of the granular media was measured using direct shear apparatus. It was observed that the internal friction increased with increase in initial compaction of the bed media. In this study, a computational m odel (CM) is also developed using finite element software ANSYS to verify experimental results obtained for the distribution of the axial n ormal stress and axial displacement along the length of the full-scal e activated alumina bed media. In the computational model, the granular material is considered to have appropriate failure and frictional c ontact exists between the wall and the granular media. It is observed that the model predicts results closely with the experimental method. The compational results show that the axial normal stress distribution along the length of the activated alumina media decreases non-linea rly from the loading end and is negligible beyond a certain depth. Th is can be attributed to the existence of friction between the walls and the media and that the friction takes up most of the applied load.

  12. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado

    USDA-ARS?s Scientific Manuscript database

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  13. Study of Nox Emission Characteristics of a 1025t/h Coal-Fired Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Li, Q. Y.; Mi, Z. D.; Zhang, Q. F.

    Measurements of emission are carried out in a 1025t/h CFB boiler. The effect of some factors including coal properties, bed temperature, unit load, excess air on the emission of NOx are investigated. The measurement results show that the N concentration in the coal is dominant parameter to predict the NOx emission from a large-scale CFB boiler. NOx emission from the 1025t/h CFB boiler increases with cyclone temperature and upper pressure drop due to post combustion and external cycle.

  14. Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1983-01-01

    The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.

  15. Manual for computing bed load transport using BAGS (Bedload Assessment for Gravel-bed Streams) Software

    Treesearch

    John Pitlick; Yantao Cui; Peter Wilcock

    2009-01-01

    This manual provides background information and instructions on the use of a spreadsheet-based program for Bedload Assessment in Gravel-bed Streams (BAGS). The program implements six bed load transport equations developed specifically for gravel-bed rivers. Transport capacities are calculated on the basis of field measurements of channel geometry, reach-average slope,...

  16. Flow resistance under conditions of intense gravel transport

    USGS Publications Warehouse

    Pitlick, John

    1992-01-01

    A study of flow resistance was undertaken in a channelized reach of the North Fork Toutle River, downstream of Mount St. Helens, Washington. Hydraulic and sediment transport data were collected in flows with velocities up to 3 m/s and shear stresses up to 7 times the critical value needed for bed load transport. Details of the flow structure as revealed in vertical velocity profiles indicate that weak bed load transport over a plane gravel bed has little effect on flow resistance. The plane gravel bed persists up to stresses ∼3 times critical, at which point, irregular bed forms appear. Bed forms greatly increase flow resistance and cause velocity profiles to become distorted. The latter arises as an effect of flows becoming depth-limited as bed form amplitude increases. At very high rates of bed load transport, an upper stage plane bed appeared. Velocity profiles measured in these flows match the law of the wall closely, with the equivalent roughness being well represented by ks = 3D84 of the bed load. The effects noted here will be important in very large floods or in rivers that are not free to widen, such as those cut into bedrock.

  17. Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales

    Treesearch

    Thomas E. Lisle; Jonathan M. Nelson; John Pitlick; Mary Ann Madej; Brent L. Barkett

    2000-01-01

    Abstract - Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility...

  18. Statistical description of flume experiments on mixed-size bed-load transport and bed armoring processes

    NASA Astrophysics Data System (ADS)

    Chen, D.; Zhang, Y.

    2008-12-01

    The objective of this paper is to describe the statistical properties of experiments on non-uniform bed-load transport as well as the mechanism of bed armoring processes. Despite substantial effort made over the last two decades, the ability to compute the bed-load flux in a turbulent system remains poor. The major obstacles include the poor understanding of the formation of armor lays on bed surfaces. Such a layer is much flow-resistible than the underlying material and therefore significantly inhibits sediment transport from the reach. To study the problem, we conducted a flume study for mixed sand/gravel sediments. We observed that aggregated sediment blocks were the most common characters in armor layers - the largest sizes resist hydraulic forces, while the smaller sizes add interlocking support and prevent loss of fine material through gaps between the larger particles. Fractional transport rates with the existing of armor layers were measured with time by sediment trapping method at the end of flume. To address the intermittent and time-varying behavior of bed-load transport during bed armoring processes, we investigated the probability distribution of the fractional bed-load transport rates, and the underlying dynamic model derived from the continuous time random walk framework. Results indicate that it is critical to consider the impact of armor layers when a flow is sufficient to move some of the finer particles and yet insufficient to move all the larger particles on a channel bed.

  19. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    NASA Astrophysics Data System (ADS)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  20. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep

    PubMed Central

    Houssais, Morgane; Ortiz, Carlos P.; Durian, Douglas J.; Jerolmack, Douglas J.

    2015-01-01

    Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain–grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where ‘bed load’ is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models. PMID:25751296

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, O.L.

    A first-principles model of a nominal 20-MW atmospheric-pressure fluidized-bed coal combustion (AFBC) power plant was developed to provide insight into fundamental dynamic behavior of fluidized-bed systems. The control system included major loops for firing rate, steam pressure and temperature, forced and induced draft air flow, SO/sub 2/ emission, drum water level, evaporator recirculation, and bed level. The model was used to investigate system sensitivity to design features such as the distribution of heat transfer surface among the bed boiler and superheater and the out-of-bed superheater. Also calculated were the sensitivities of temperatures, pressures, and flow rates to changes in throttle,more » attemperator, and feedwater valve settings and forced and induced draft damper settings. The large bed mass, accounting for approx.40% of the active heat capacity, may vary under load change and could impact controller tuning. Model analysis indicated, however, that for the design studied, the change in bed mass does not appear to significantly affect controller tuning even if the bed mass varies appreciably under load-following conditions. Several bed designs are being considered for AFBC plants, some with partitions between bed sections and some without, and these differences may significantly affect the load-following capability of the plant. The results indicated that the slumping mode of operation can cause distortion of the heat source/sink distribution in the bed such that the load-following capability (rate of load change) of the plant may be reduced by as much as a factor of 5 compared with the mode in which tube surface is exposed. 9 refs., 13 figs., 6 tabs.« less

  2. Equal-mobility bed load transport in a small, step-pool channel in the Ouachita Mountains

    Treesearch

    Daniel A. Marion; Frank Weirich

    2003-01-01

    Abstract: Equal-mobility transport (EMT) of bed load is more evident than size-selective transport during near-bankfull flow events in a small, step-pool channel in the Ouachita Mountains of central Arkansas. Bed load transport modes were studied by simulating five separate runoff events with peak discharges between 0.25 and 1.34 m3...

  3. Preparation of tamarind fruit seed activated carbon by microwave heating for the adsorptive treatment of landfill leachate: A laboratory column evaluation.

    PubMed

    Foo, K Y; Lee, L K; Hameed, B H

    2013-04-01

    The preparation of tamarind fruit seed granular activated carbon (TSAC) by microwave induced chemical activation for the adsorptive treatment of semi-aerobic landfill leachate has been attempted. The chemical and physical properties of TSAC were examined. A series of column tests were performed to determine the breakthrough characteristics, by varying the operational parameters, hydraulic loading rate (5-20 mL/min) and adsorbent bed height (15-21 cm). Ammonical nitrogen and chemical oxygen demand (COD), which provide a prerequisite insight into the prediction of leachate quality was quantified. Results illustrated an encouraging performance for the adsorptive removal of ammonical nitrogen and COD, with the highest bed capacity of 84.69 and 55.09 mg/g respectively, at the hydraulic loading rate of 5 mL/min and adsorbent bed height of 21 cm. The dynamic adsorption behavior was satisfactory described by the Thomas and Yoon-Nelson models. The findings demonstrated the applicability of TSAC for the adsorptive treatment of landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. CO2 removal by solid amine sorbents. 1: Experimental studies of amine resin IR-45 with regard to spacecraft applications. 2: Computer program for predicting the transient performance of solid amine sorbent systems

    NASA Technical Reports Server (NTRS)

    Wright, R. M.; Hwang, K. C.

    1973-01-01

    The sorbent behavior of solid amine resin IR-45 with regard to potential use in regenerative CO2-removal systems for manned spacecraft is considered. Measurements of equilibrium sorption capacity of IR-45 for water and for CO2 are reported, and the dynamic mass transfer behavior of IR-45 beds is studied under conditions representative of those expected in a manned spacecraft. A digital computer program was written for the transient performance prediction of CO2 removal systems comprised of solid amine beds. Also evaluated are systems employing inorganic molecular-sieve sorbents. Tests show that there is definitely an effect of water loading on the absorption rate.

  5. Forecasting staffing needs for productivity management in hospital laboratories.

    PubMed

    Pang, C Y; Swint, J M

    1985-12-01

    Daily and weekly prediction models are developed to help forecast hospital laboratory work load for the entire laboratory and individual sections of the laboratory. The models are tested using historical data obtained from hospital census and laboratory log books of a 90-bed southwestern hospital. The results indicate that the predictor variables account for 50%, 81%, 56%, and 82% of the daily work load variation for chemistry, hematology, and microbiology sections, and for the entire laboratory, respectively. Equivalent results for the weekly model are 53%, 72%, 12%, and 78% for the same respective sections. On the basis of the predicted work load, staffing assessment is made and a productivity monitoring system constructed. The purpose of such a system is to assist laboratory management in efforts to utilize laboratory manpower in a more efficient and cost-effective manner.

  6. Bed Load Variability and Morphology of Gravel Bed Rivers Subject to Unsteady Flow: A Laboratory Investigation

    NASA Astrophysics Data System (ADS)

    Redolfi, M.; Bertoldi, W.; Tubino, M.; Welber, M.

    2018-02-01

    Measurement and estimation of bed load transport in gravel bed rivers are highly affected by its temporal fluctuations. Such variability is primarily driven by the flow regime but is also associated with a variety of inherent channel processes, such as flow turbulence, grain entrainment, and bed forms migration. These internal and external controls often act at comparable time scales, and are therefore difficult to disentangle, thus hindering the study of bed load variability under unsteady flow regime. In this paper, we report on laboratory experiments performed in a large, mobile bed flume where typical hydromorphological conditions of gravel bed rivers were reproduced. Data from a large number of replicated runs, including triangular and square-wave hydrographs, were used to build a statistically sound description of sediment transport processes. We found that the inherent variability of bed load flux strongly depends on the sampling interval, and it is significantly higher in complex, wandering or braided channels. This variability can be filtered out by computing the mean response over the experimental replicates, which allows us to highlight two distinctive phenomena: (i) an overshooting (undershooting) response of the mean bed load flux to a sudden increase (decrease) of discharge, and (ii) a clockwise hysteresis in the sediment rating curve. We then provide an interpretation of these findings through a conceptual mathematical model, showing how both phenomena are associated with a lagging morphological adaptation to unsteady flow. Overall, this work provides basic information for evaluating, monitoring, and managing gravel transport in morphologically active rivers.

  7. The Importance of Splat Events to the Spatiotemporal Structure of Near-Bed Fluid Velocity and Bed Load Motion Over Bed Forms: Laboratory Experiments Downstream of a Backward Facing Step

    NASA Astrophysics Data System (ADS)

    Leary, K. C. P.; Schmeeckle, M. W.

    2017-12-01

    Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.

  8. Sediment and Fecal Indicator Bacteria Loading in a Mixed Land Use Watershed: Contributions from Suspended and Bed Load Transport

    EPA Science Inventory

    Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen load...

  9. Modeling flow, sediment transport and morphodynamics in rivers

    USGS Publications Warehouse

    Nelson, Jonathan M.; McDonald, Richard R.; Shimizu, Yasuyuki; Kimura, Ichiro; Nabi, Mohamed; Asahi, Kazutake

    2016-01-01

    Predicting the response of natural or man-made channels to imposed supplies of water and sediment is one of the difficult practical problems commonly addressed by fluvial geomorphologists. This problem typically arises in three situations. In the first situation, geomorphologists are attempting to understand why a channel or class of channels has a certain general form; in a sense, this is the central goal of fluvial geomorphology. In the second situation, geomorphologists are trying to understand and explain how and why a specific channel will evolve or has evolved in response to altered or unusual sediment and water supplies to that channel. For example, this would include explaining the short-term response of a channel to an unusually large flood or predicting the response of a channel to long-term changes in flow or sediment supply due to various human activities such as damming or diversions. Finally, geomorphologists may be called upon to design or assess the design of proposed man-made channels that must carry a certain range of flows and sediment loads in a stable or at least quasi-stable manner. In each of these three situations, the problem is really the same: geomorphologists must understand and predict the interaction of the flow field in the channel, the sediment movement in the channel and the geometry of the channel bed and banks. In general, the flow field, the movement of sediment making up the bed and the morphology of the bed are intricately linked; the flow moves the sediment, the bed is altered by erosion and deposition of sediment and the shape of the bed is critically important for predicting the flow. This complex linkage is precisely what makes understanding channel form and process such a difficult and interesting challenge.

  10. Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs)

    NASA Astrophysics Data System (ADS)

    Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal

    2014-06-01

    This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.

  11. Capture of a recombinant protein from unclarified canola extract using streamline expanded bed anion exchange.

    PubMed

    Bai, Yun; Glatz, Charles E

    2003-03-30

    The feasibility of applying expanded bed adsorption technology to recombinant protein recovery from extracts of transgenic canola (rapeseed) was assessed. The extraction step results in a suspension of high solids content that is difficult to clarify. The coarse portion of the solids can be removed easily, and our aim was to operate the expanded bed in the presence of the recalcitrant particulates. Recombinant beta-glucuronidase (rGUS) produced in transgenic canola seed was the model system. Diethylaminoethyl (DEAE) and Streamline DEAE resin exhibited similar binding and elution properties for both rGUS and native canola proteins. More than 95% of native canola proteins did not bind to DEAE resins at pH 7.5, whereas the bound proteins were fractionated by two-step salt elution into two groups with the first peak, containing 70% of total bound proteins, at 20 mS/cm, followed by elution of rGUS at 50 mS/cm. The adsorption isotherm was only slightly influenced by the presence of up to 14 mg solids/mL extract; C(m) and K(d) changed by -1% and +39%, respectively. Bed expansion was semiquantitatively predictable from physical properties of the fluid together with Stokes's law and the Richardson-Zaki correlation for both clarified and partially clarified extracts. The presence of 1.4% solids did not change rGUS breakthrough behavior of the expanded bed; however, a small difference between expanded bed and packed bed was observed early in the sample loading stage, during which bed expansion adjusts. Canola solids moved through the column in approximately plug flow with no detriment to bed stability. Seventy-two percent recovery of 34-fold purified rGUS was obtained after initial loading of 1.4% (w/w) solids extract to 25% breakthrough. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 855-864, 2003.

  12. The measurement of total sediment load in alluvial streams

    USGS Publications Warehouse

    Benedict, P.C.; Matejka, D.Q.; McNown, John S.; Boyer, M.C.

    1953-01-01

    The measurement of the total sediment load transported by streams that flow in alluvial channels has been a perplexing problem to engineers and geologists for over a century. Until the last decade the development of equipment to measure bed load and suspended load was carried on almost independently, and without primary consideration of the fundamental laws governing the transportation of fluvial sediments. French investigators during the nineteenth century described methods of measurement and a mathematical approach for computing the rate of bed-load movement. The comprehensive laboratory investigations by Gilbert early in this century provided data that are still being used for studies of sediment transport. Detailed laboratory investigations of bed-load movement conducted during the last two decades by a number of investigators have resulted in the development of additional mathematical formulas for computing rates of bed-load movement. Likewise, studies of turbulent flow have provided the turbulence suspension theory for suspended sediment as it is known today.

  13. Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Cao, Z. X.; Pender, G.; Hu, P.

    2011-09-01

    Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.

  14. An extravehicular suit impact load attenuation study to improve astronaut bone fracture prediction.

    PubMed

    Sulkowski, Christina M; Gilkey, Kelly M; Lewandowski, Beth E; Samorezov, Sergey; Myers, Jerry G

    2011-04-01

    Understanding the contributions to the risk of bone fracture during spaceflight is essential for mission success. A pressurized extravehicular activity (EVA) suit analogue test bed was developed, impact load attenuation data were obtained, and the load at the hip of an astronaut who falls to the side during an EVA was characterized. Offset (representing the gap between the EVA suit and the astronaut's body), impact load magnitude, and EVA suit operating pressure were factors varied in the study. The attenuation data were incorporated into a probabilistic model of bone fracture risk during spaceflight, replacing the previous load attenuation value that was based on commercial hip protector data. Load attenuation was more dependent on offset than on pressurization or load magnitude, especially at small offset values. Load attenuation factors for offsets between 0.1-1.5 cm were 0.69 +/- 0.15, 0.49 +/- 0.22, and 0.35 +/- 0.18 for mean impact forces of 4827, 6400, and 8467 N, respectively. Load attenuation factors for offsets of 2.8-5.3 cm were 0.93 +/- 0.2, 0.94 +/- 0.1, and 0.84 +/- 0.5 for the same mean impact forces. The mean and 95th percentile bone fracture risk index predictions were each reduced by 65-83%. The mean and 95th percentile bone fracture probability predictions were both reduced approximately 20-50%. The reduction in uncertainty and improved confidence in bone fracture predictions increased the fidelity and credibility of the fracture risk model and its benefit to mission design and in-flight operational decisions.

  15. Maintenance of an obstruction-forced pool in a gravel-bed channel: streamflow, channel morphology, and sediment transport.

    Treesearch

    Richard D. Woodsmith; Marwan A. Hassan

    2005-01-01

    Maintenance of pool morphology in a stream channel with a mobile bed requires hydraulic conditions at moderate to high flows that route bed load through the pool as it is delivered from upstream. Through field measurements of discharge, vertical velocity profiles, bed load transport, and streambed scour, fill, and grain-size distribution, we found that maintenance of a...

  16. Performance of bed load transport equations in mountain gravel-bed rivers: A re-analysis

    Treesearch

    Jeffrey J. Barry; John M. Buffington; John G. King; Peter Goodwin

    2006-01-01

    Our recent examination of bed load transport data from mountain gravel-bed rivers in the western United States shows that the data can be fit by a simple power function of discharge, with the coefficient being a function of drainage area (a surrogate for basin sediment supply) and the exponent being a function of supply-related channel armoring (transport capacity in...

  17. Advection and dispersion of bed load tracers

    NASA Astrophysics Data System (ADS)

    Lajeunesse, Eric; Devauchelle, Olivier; James, François

    2018-05-01

    We use the erosion-deposition model introduced by Charru et al. (2004) to numerically simulate the evolution of a plume of bed load tracers entrained by a steady flow. In this model, the propagation of the plume results from the stochastic exchange of particles between the bed and the bed load layer. We find a transition between two asymptotic regimes. The tracers, initially at rest, are gradually set into motion by the flow. During this entrainment regime, the plume is strongly skewed in the direction of propagation and continuously accelerates while spreading nonlinearly. With time, the skewness of the plume eventually reaches a maximum value before decreasing. This marks the transition to an advection-diffusion regime in which the plume becomes increasingly symmetrical, spreads linearly, and advances at constant velocity. We analytically derive the expressions of the position, the variance, and the skewness of the plume and investigate their asymptotic regimes. Our model assumes steady state. In the field, however, bed load transport is intermittent. We show that the asymptotic regimes become insensitive to this intermittency when expressed in terms of the distance traveled by the plume. If this finding applies to the field, it might provide an estimate for the average bed load transport rate.

  18. Confirmation of monod model for biofiltration of styrene vapors from waste flue gas.

    PubMed

    Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; Aslhashemi, Ahmad

    2012-01-01

    The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution.

  19. New approach to calibrating bed load samplers

    USGS Publications Warehouse

    Hubbell, D.W.; Stevens, H.H.; Skinner, J.V.; Beverage, J.P.

    1985-01-01

    Cyclic variations in bed load discharge at a point, which are an inherent part of the process of bed load movement, complicate calibration of bed load samplers and preclude the use of average rates to define sampling efficiencies. Calibration curves, rather than efficiencies, are derived by two independent methods using data collected with prototype versions of the Helley‐Smith sampler in a large calibration facility capable of continuously measuring transport rates across a 9 ft (2.7 m) width. Results from both methods agree. Composite calibration curves, based on matching probability distribution functions of samples and measured rates from different hydraulic conditions (runs), are obtained for six different versions of the sampler. Sampled rates corrected by the calibration curves agree with measured rates for individual runs.

  20. Measuring the Bed Load velocity in Laboratory flumes using ADCP and Digital Cameras

    NASA Astrophysics Data System (ADS)

    Conevski, Slaven; Guerrero, Massimo; Rennie, Colin; Bombardier, Josselin

    2017-04-01

    Measuring the transport rate and apparent velocity of the bedload is notoriously hard and there is not a certain technique that would obtain continues data. There are many empirical models, based on the estimation of the shear stress, but only few involve direct measurement of the bed load velocity. The bottom tracking (BT) mode of an acoustic Doppler current profiler (ADCP) has been used many times to estimate the apparent velocity of the bed load. Herein is the basic idea, to exploit the bias of the BT signal towards the bed load movement and to calibrate this signal with traditional measuring techniques. These measurements are quite scarce and seldom reliable since there are not taken in controlled conditions. So far, no clear confirmation has been conducted in laboratory-controlled conditions that would attest the assumptions made in the estimation of the apparent bed load velocity, nor in the calibration of the empirical equations. Therefore, this study explores several experiments under stationary conditions, where the signal of the ADCP BT mode is recorded and compared to the bed load motion recorded by digital camera videography. The experiments have been performed in the hydraulic laboratories of Ottawa and Bologna, using two different ADCPs and two different high resolution cameras. In total, more then 30 experiments were performed for different sediment mixtures and different hydraulic conditions. In general, a good match is documented between the apparent bed load velocity measured by the ADCP and the videography. The slight deviation in single experiments can be explained by gravel particles inhomogeneity, difficult in reproducing the same hydro-sedimentological conditions and the randomness of the backscattering strength.

  1. Wash load and bed-material load transport in the Yellow River

    USGS Publications Warehouse

    Yang, C.T.; Simoes, F.J.M.

    2005-01-01

    It has been the conventional assumption that wash load is supply limited and is only indirectly related to the hydraulics of a river. Hydraulic engineers also assumed that bed-material load concentration is independent of wash load concentration. This paper provides a detailed analysis of the Yellow River sediment transport data to determine whether the above assumptions are true and whether wash load concentration can be computed from the original unit stream power formula and the modified unit stream power formula for sediment-laden flows. A systematic and thorough analysis of 1,160 sets of data collected from 9 gauging stations along the Middle and Lower Yellow River confirmed that the method suggested by the conjunctive use of the two formulas can be used to compute wash load, bed-material load, and total load in the Yellow River with accuracy. Journal of Hydraulic Engineering ?? ASCE.

  2. Breakup and reestablishment of the armour layer in a large gravel-bed river below dams: The lower Ebro

    NASA Astrophysics Data System (ADS)

    Vericat, Damia; Batalla, Ramon J.; Garcia, Celso

    2006-06-01

    Changes in armour layer during floods under supply limited conditions are little known. This paper describes the breakup and the reestablishment of the bed armour layer in the regulated gravel-bed Ebro River during a flooding period. The study was conducted over a 28-km study reach from 2002 to 2004. The surface, subsurface and bed load grain size distribution constitute the bases for the analysis of bed-armouring dynamics. The results indicate that the magnitude of floods controlled the degree of armouring of the river bed. The initial mean armouring ratio was 2.3, with maximum values reaching 4.4. Floods in the winter of 2002-2003 ( Q8) caused the breakup of the armour layer in several sections. This resulted in the erratic bed load pattern observed during the December 2002 flushing flow and in the increase in bed load transport during successive events. Most grain size classes were entrained and transported, causing river bed incision. The mean armouring ratio decreased to 1.9. In contrast, during low magnitude floods in 2003-2004 ( Q2), the coarsest fractions (64 mm) did not take part in the bed load while finer particles were winnowed, thus surface deposits coarsened. As a result, the armour layer was reestablished (i.e., the mean armouring ratio increased to 2.3), and the supply of subsurface sediment decreased. The supply and transport of bed material appear to be in balance in the river reach immediately below the dam. In contrast, the transport of medium and finer size classes in the downstream reaches was higher than their supply from upstream, a phenomenon that progressively reduced their availability in the river bed surface, hence the armour layer reworking.

  3. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (P<0.05). The ratio of dietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  4. Dry method for recycling iodine-loaded silver zeolite

    DOEpatents

    Thomas, Thomas R.; Staples, Bruce A.; Murphy, Llewellyn P.

    1978-05-09

    Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which adsorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine.

  5. Mathematical modeling of the whole expanded bed adsorption process to recover and purify chitosanases from the unclarified fermentation broth of Paenibacillus ehimensis.

    PubMed

    de Araújo Padilha, Carlos Eduardo; Fortunato Dantas, Paulo Victor; de Sousa, Francisco Canindé; de Santana Souza, Domingos Fabiano; de Oliveira, Jackson Araújo; de Macedo, Gorete Ribeiro; Dos Santos, Everaldo Silvino

    2016-12-15

    In this study, a general rate model was applied to the entire process of expanded bed adsorption chromatography (EBAC) for the chitosanases purification protocol from unclarified fermentation broth produced by Paenibacillus ehimensis using the anionic adsorbent Streamline ® DEAE. For the experiments performed using the expanded bed, a homemade column (2.6cm×30.0cm) was specially designed. The proposed model predicted the entire EBA process adequately, giving R 2 values higher than 0.85 and χ 2 as low as 0.351 for the elution step. Using the validated model, a 3 3 factorial design was used to investigate other non-tested conditions as input. It was observed that the superficial velocity during loading and washing steps, as well as the settled bed height, has a strong positive effect on the F objective function used to evaluate the production of the purified chitosanases. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.

  7. Forces on stationary particles in near-bed turbulent flows

    NASA Astrophysics Data System (ADS)

    Schmeeckle, Mark W.; Nelson, Jonathan M.; Shreve, Ronald L.

    2007-06-01

    In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance.

  8. Forces on stationary particles in near-bed turbulent flows

    USGS Publications Warehouse

    Schmeeckle, M.W.; Nelson, J.M.; Shreve, R.L.

    2007-01-01

    In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance. Copyright 2007 by the American Geophysical Union.

  9. Estimating Fuel Bed Loadings in Masticated Areas

    Treesearch

    Sharon Hood; Ros Wu

    2006-01-01

    Masticated fuel treatments that chop small trees, shrubs, and dead woody material into smaller pieces to reduce fuel bed depth are used increasingly as a mechanical means to treat fuels. Fuel loading information is important to monitor changes in fuels. The commonly used planar intercept method however, may not correctly estimate fuel loadings because masticated fuels...

  10. Sediment and Hydraulic Measurements with Computed Bed Load on the Missouri River, Sioux City to Hermann, 2014

    DTIC Science & Technology

    2017-05-01

    large sand bed river, with seven sites representing increasingly larger flows along the river length. The data set will be very useful for additional...quantity, quality , and types of data that can be obtained for the study of natural phenomenon. The study of riverine sedimentation is no exception...detail than in previous years. Additionally, new methodologies have been developed that allow the computation of bed-load transport in large sand bed

  11. Effects of three day bed-rest on circulatory, metabolic and hormonal responses to oral glucose load in endurance trained athletes and untrained subjects

    NASA Technical Reports Server (NTRS)

    Smorawinski, J.; Kubala, P.; Kaciuba-Uociako, H.; Nazar, K.; Titow-Stupnicka, E.; Greenleaf, J. E.

    1996-01-01

    Endurance trained long distance runners and untrained individuals underwent three days of bed rest and oral glucose loading. Before and after bed rest, individuals were given glucose tolerance tests, and their heart rates, blood pressure, blood glucose levels, insulin levels, and catecholamine interactions were measured. Results indicated that glucose tolerance is more affected by bed rest-induced deconditioning in untrained individuals than in trained individuals.

  12. Factors influencing the nitrification efficiency of fluidized bed filter with a plastic bead medium

    USGS Publications Warehouse

    Sandu, S.I.; Boardman, G.D.; Watten, B.J.; Brazil, B.L.

    2002-01-01

    The performance of fluidized bed nitrification filters charged with 2 ?? 4 ABS plastic beads (specific gravity 1.06) was evaluated. Three unique bed-height to diameter ratios were established, in triplicate, using column diameters of 12.7, 15.2 and 17.8 cm. Filters received water spiked with recycled nutrients and ammonia (TAN), from one of the three 500 1 feed tank system. With daily ammonia loading fixed at 8.6 g per system, TAN removal increased with column diameter at each of four tests hydraulic loading rates (6, 8, 10 and 12 Lpm). TAN in recirculated water (influent) rose from 0.5 to 1.0 mg/1 as ammonia loading increased from 180 mg/m2-day to 360 mg/m2-day. When hydraulic loading was fixed at 12 Lpm, TAN removal (%) was maximized with ammonia loadings ranging from 225 to 270 mg/m2-day. Biofilm thickness increased with ammonia loading, but decreased with increased hydraulic loading rates. Fluidized beds of ABS plastic beads were effective in reducing energy costs (head loss) of water treatment. ?? 2002 Elsevier Science B.V. All rights reserved.

  13. Confirmation of Monod Model for Biofiltration of Styrene Vapors from Waste Flue Gas

    PubMed Central

    Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; AslHashemi, Ahmad

    2012-01-01

    Background: The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. Methods: A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. Results: The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. Conclusion: In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution. PMID:24688940

  14. Modeling bed load transport and step-pool morphology with a reduced-complexity approach

    NASA Astrophysics Data System (ADS)

    Saletti, Matteo; Molnar, Peter; Hassan, Marwan A.; Burlando, Paolo

    2016-04-01

    Steep mountain channels are complex fluvial systems, where classical methods developed for lowland streams fail to capture the dynamics of sediment transport and bed morphology. Estimations of sediment transport based on average conditions have more than one order of magnitude of uncertainty because of the wide grain-size distribution of the bed material, the small relative submergence of coarse grains, the episodic character of sediment supply, and the complex boundary conditions. Most notably, bed load transport is modulated by the structure of the bed, where grains are imbricated in steps and similar bedforms and, therefore, they are much more stable then predicted. In this work we propose a new model based on a reduced-complexity (RC) approach focused on the reproduction of the step-pool morphology. In our 2-D cellular-automaton model entrainment, transport and deposition of particles are considered via intuitive rules based on physical principles. A parsimonious set of parameters allows the control of the behavior of the system, and the basic processes can be considered in a deterministic or stochastic way. The probability of entrainment of grains (and, as a consequence, particle travel distances and resting times) is a function of flow conditions and bed topography. Sediment input is fed at the upper boundary of the channel at a constant or variable rate. Our model yields realistic results in terms of longitudinal bed profiles and sediment transport trends. Phases of aggradation and degradation can be observed in the channel even under a constant input and the memory of the morphology can be quantified with long-range persistence indicators. Sediment yield at the channel outlet shows intermittency as observed in natural streams. Steps are self-formed in the channel and their stability is tested against the model parameters. Our results show the potential of RC models as complementary tools to more sophisticated models. They provide a realistic description of complex morphological systems and help to better identify the key physical principles that rule their dynamics.

  15. Comparison of batch sorption tests, pilot studies, and modeling for estimating GAC bed life.

    PubMed

    Scharf, Roger G; Johnston, Robert W; Semmens, Michael J; Hozalski, Raymond M

    2010-02-01

    Saint Paul Regional Water Services (SPRWS) in Saint Paul, MN experiences annual taste and odor episodes during the warm summer months. These episodes are attributed primarily to geosmin that is produced by cyanobacteria growing in the chain of lakes used to convey and store the source water pumped from the Mississippi River. Batch experiments, pilot-scale experiments, and model simulations were performed to determine the geosmin removal performance and bed life of a granular activated carbon (GAC) filter-sorber. Using batch adsorption isotherm parameters, the estimated bed life for the GAC filter-sorber ranged from 920 to 1241 days when challenged with a constant concentration of 100 ng/L of geosmin. The estimated bed life obtained using the AdDesignS model and the actual pilot-plant loading history was 594 days. Based on the pilot-scale GAC column data, the actual bed life (>714 days) was much longer than the simulated values because bed life was extended by biological degradation of geosmin. The continuous feeding of high concentrations of geosmin (100-400 ng/L) in the pilot-scale experiments enriched for a robust geosmin-degrading culture that was sustained when the geosmin feed was turned off for 40 days. It is unclear, however, whether a geosmin-degrading culture can be established in a full-scale filter that experiences taste and odor episodes for only 1 or 2 months per year. The results of this research indicate that care must be exercised in the design and interpretation of pilot-scale experiments and model simulations for predicting taste and odor removal in full-scale GAC filter-sorbers. Adsorption and the potential for biological degradation must be considered to estimate GAC bed life for the conditions of intermittent geosmin loading typically experienced by full-scale systems. (c) 2009 Elsevier Ltd. All rights reserved.

  16. Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream

    NASA Astrophysics Data System (ADS)

    Eaton, B. C.; Hassan, M. A.; Davidson, S. L.

    2012-12-01

    In small and intermediate sized streams, the interaction between wood and bed material transport often determines the nature of the physical habitat, which in turn influences the health of the stream's ecosystem. We present a stochastic model that can be used to simulate the effects on physical habitat of forest fires, climate change, and other environmental disturbances that alter wood recruitment. The model predicts large wood (LW) loads in a stream as well as the volume of sediment stored by the wood; while it is parameterized to describe gravel bed streams similar to a well-studied field prototype, Fishtrap Creek, British Columbia, it can be calibrated to other systems as well. In the model, LW pieces are produced and modified over time as a result of random tree-fall, LW breakage, LW movement, and piece interaction to form LW jams. Each LW piece traps a portion of the annual bed material transport entering the reach and releases the stored sediment when the LW piece is entrained and moved. The equations governing sediment storage are based on a set of flume experiments also scaled to the field prototype. The model predicts wood loads ranging from 70 m3/ha to more than 300 m3/ha, with a mean value of 178 m3/ha: both the range and the mean value are consistent with field data from streams with similar riparian forest types and climate. The model also predicts an LW jam spacing that is consistent with field data. Furthermore, our modeling results demonstrate that the high spatial and temporal variability in sediment storage, sediment transport, and channel morphology associated with LW-dominated streams occurs only when LW pieces interact and form jams. Model runs that do not include jam formation are much less variable. These results suggest that river restoration efforts using engineered LW pieces that are fixed in place and not permitted to interact will be less successful at restoring the geomorphic processes responsible for producing diverse, productive physical habitats than efforts using LW pieces that are free to move, interact, and form LW jams.

  17. Effect of rowing ergometry and oral volume loading on cardiovascular structure and function during bed rest

    PubMed Central

    Hastings, Jeffrey L.; Krainski, Felix; Snell, Peter G.; Pacini, Eric L.; Jain, Manish; Bhella, Paul S.; Shibata, Shigeki; Fu, Qi; Palmer, M. Dean

    2012-01-01

    This study examined the effectiveness of a short-duration but high-intensity exercise countermeasure in combination with a novel oral volume load in preventing bed rest deconditioning and orthostatic intolerance. Bed rest reduces work capacity and orthostatic tolerance due in part to cardiac atrophy and decreased stroke volume. Twenty seven healthy subjects completed 5 wk of −6 degree head down bed rest. Eighteen were randomized to daily rowing ergometry and biweekly strength training while nine remained sedentary. Measurements included cardiac mass, invasive pressure-volume relations, maximal upright exercise capacity, and orthostatic tolerance. Before post-bed rest orthostatic tolerance and exercise testing, nine exercise subjects were given 2 days of fludrocortisone and increased salt. Sedentary bed rest led to cardiac atrophy (125 ± 23 vs. 115 ± 20 g; P < 0.001); however, exercise preserved cardiac mass (128 ± 38 vs. 137 ± 34 g; P = 0.002). Exercise training preserved left ventricular chamber compliance, whereas sedentary bed rest increased stiffness (180 ± 170%, P = 0.032). Orthostatic tolerance was preserved only when exercise was combined with volume loading (−10 ± 22%, P = 0.169) but not with exercise (−14 ± 43%, P = 0.047) or sedentary bed rest (−24 ± 26%, P = 0.035) alone. Rowing and supplemental strength training prevent cardiovascular deconditioning during prolonged bed rest. When combined with an oral volume load, orthostatic tolerance is also preserved. This combined countermeasure may be an ideal strategy for prolonged spaceflight, or patients with orthostatic intolerance. PMID:22345434

  18. Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam

    NASA Astrophysics Data System (ADS)

    Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.

    2016-12-01

    The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.

  19. Phase transition behavior of sediment transport at the sand-mud interface, across scales from flumes to the large rivers

    NASA Astrophysics Data System (ADS)

    Ma, H.; Nittrouer, J. A.; Wu, B.; Zhang, Y.; Mohrig, D. C.; Lamb, M. P.; Wang, Y.; Fu, X.; Moodie, A. J.; Naito, K.; Parker, G.

    2017-12-01

    Sediment dispersal and deposition creates deltaic landscapes, establishes coastlines, and produces fertile floodplains, all of which serve as critical landforms inhabited by a large proportion of humankind. If poorly managed, sediment loads in these environments can elevate and clog channels, thereby enhancing hazards such as severe flooding. Predictive descriptions of sediment loads, however, are not well constrained, especially for fine-grained (silt and very-fine sand) dispersal systems, which often include river deltas and coastlines. Here, we show efforts to collect and analyze an extensive sediment load database for fine-grained channels, spanning from small flume experiments to large rivers, in order to evaluate the nature of sediment flux. Our analyses determined that sediment transport exhibits two distinct transport phases, separated by a discontinuous transition, whereby sediment flux differs by one to two orders of magnitude. It is determined that the transition responds to the bed material grain size, and we propose a phase diagram based on this metric alone. These findings help elucidate why previous theories of sediment transport at the sand-silt interface, which are typically continuous, are not able to give satisfactory predictions across different scales and environments. Our work serves to help evaluate anthropic influences on rivers, deltas, and coastlines, and can be applied to better constrain sediment flux of paleo-fluvial systems found on Earth and Mars. For example, in situ measurements of sediment flux for the silty-sandy bed of the lower Yellow River, China, validate the aforementioned phase transition behavior, and illustrate that the channel resides near the transition of high to low efficiency transport modes. Recent dam construction and resulting downstream coarsening of the bed via armoring, however, might lead to the unintended consequence of enhancing flood risk by driving the system to a low efficiency transport mode with high resistance to sediment-laden flow, which in turn will elevate the water stage under the same flood discharge.

  20. Organochlorine pesticide residues in bed sediments of the San Joaquin River, California

    USGS Publications Warehouse

    Gilliom, Robert J.; Clifton, Daphne G.

    1990-01-01

    Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks.

  1. Literature review for Texas Department of Transportation Research Project 0-4695: Guidance for design in areas of extreme bed-load mobility, Edwards Plateau, Texas

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Asquith, William H.; Fang, Xing; Thompson, David B.; Wang, Keh-Han

    2005-01-01

    A review of the literature addressing sediment transport in gravel-bed river systems and structures designed to control bed-load mobility is provided as part of Texas Department of Transportation research project 0–4695: Guidance for Design in Areas of Extreme Bed-Load Mobility. The study area comprises the western half of the Edwards Plateau in central Texas. Three primary foci of the literature review are journal articles, edited volumes, and government publications. Major themes within the body of literature include deterministic sediment transport theory and equations, development of methods to measure and analyze fluvial sediment, applications and development of theory in natural channels and flume experiments, and recommendations for river management and structural design. The literature review provides an outline and foundation for the research project to characterize extreme bed-load mobility in rivers and streams across the study area. The literature review also provides a basis upon which potential modifications to low-water stream-crossing design in the study area can be made.

  2. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution DC test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.

    1992-01-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF Program design and development phases, a system Power Management and Distribution (PMAD) DC test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  3. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution dc test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.

    1992-01-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF program design and development phases, a system Power Management and Distribution (PMAD) dc test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  4. Development of Standard Fuel Models in Boreal Forests of Northeast China through Calibration and Validation

    PubMed Central

    Cai, Longyan; He, Hong S.; Wu, Zhiwei; Lewis, Benard L.; Liang, Yu

    2014-01-01

    Understanding the fire prediction capabilities of fuel models is vital to forest fire management. Various fuel models have been developed in the Great Xing'an Mountains in Northeast China. However, the performances of these fuel models have not been tested for historical occurrences of wildfires. Consequently, the applicability of these models requires further investigation. Thus, this paper aims to develop standard fuel models. Seven vegetation types were combined into three fuel models according to potential fire behaviors which were clustered using Euclidean distance algorithms. Fuel model parameter sensitivity was analyzed by the Morris screening method. Results showed that the fuel model parameters 1-hour time-lag loading, dead heat content, live heat content, 1-hour time-lag SAV(Surface Area-to-Volume), live shrub SAV, and fuel bed depth have high sensitivity. Two main sensitive fuel parameters: 1-hour time-lag loading and fuel bed depth, were determined as adjustment parameters because of their high spatio-temporal variability. The FARSITE model was then used to test the fire prediction capabilities of the combined fuel models (uncalibrated fuel models). FARSITE was shown to yield an unrealistic prediction of the historical fire. However, the calibrated fuel models significantly improved the capabilities of the fuel models to predict the actual fire with an accuracy of 89%. Validation results also showed that the model can estimate the actual fires with an accuracy exceeding 56% by using the calibrated fuel models. Therefore, these fuel models can be efficiently used to calculate fire behaviors, which can be helpful in forest fire management. PMID:24714164

  5. Persistence of Salmonid Redds

    NASA Astrophysics Data System (ADS)

    Buffington, J. M.; Buxton, T.; Fremier, A. K.; Hassan, M. A.; Yager, E.

    2013-12-01

    The construction of redds by spawning salmonids modifies fluvial processes in ways that are beneficial to egg and embryo survival. Redd topography induces hyporheic flow that oxygenates embryos incubating within the streambed and creates form drag that reduces bed mobility and scour of salmonid eggs. Winnowing of fine material during redd construction also coarsens the streambed, increasing bed porosity and hyporheic flow and reducing bed mobility. In addition to the biological benefits, redds may influence channel morphology by altering channel hydraulics and bed load transport rates depending on the size and extent of redds relative to the size of the channel. A key question is how long do the physical and biological effects of redds last? Field observations indicate that in some basins redds are ephemeral, with redd topography rapidly erased by subsequent floods, while in other basins, redds can persist for years. We hypothesize that redd persistence is a function of basin hydrology, sediment supply, and characteristics of the spawning fish. Hydrology controls the frequency and magnitude of bed mobilizing flows following spawning, while bed load supply (volume and caliber) controls the degree of textural fining and consequent bed mobility after spawning, as well as the potential for burial of redd features. The effectiveness of flows in terms of their magnitude and duration depend on hydroclimate (i.e., snowmelt, rainfall, or transitional hydrographs), while bed load supply depends on basin geology, land use, and natural disturbance regimes (e.g., wildfire). Location within the stream network may also influence redd persistence. In particular, lakes effectively trap sediment and regulate downstream flow, which may promote long-lived redds in stream reaches below lakes. These geomorphic controls are modulated by biological factors: fish species (size of fish controls size of redds and magnitude of streambed coarsening); life history (timing of spawning and incubation relative to high flows); and population size (density of redds and extent of streambed alteration within a given reach). Species and life history also control the location of spawning within the basin, dictating the flow and sediment supply regimes. A theoretical framework is developed for predicting redd persistence as a function of the above physical and biological factors. We expect that long-lived redds will indicate either that the river is not competent to re-work the effects of spawning or that spawning occurs after peak flow events that are capable of modifying redd features. The longevity of redds and their associated effects on fluvial processes also provides a measure of the degree of potential ecological conditioning for future generations of fish. Future work will test the framework in field and laboratory settings.

  6. Paleoslumps in coal-bearing strata of the Breathitt Group (Pennsylvanian), Eastern Kentucky Coal Field, U.S.A

    USGS Publications Warehouse

    Greb, S.F.; Weisenfluh, G.A.

    1996-01-01

    The benefits of geologic analysis for roof-control studies and hazard prediction in coal mines are well documented. Numerous case studies have illustrated the importance of recognizing geologic features such as paleochannels, coal riders, and kettlebottoms in mine roofs. Relatively understudied features, in terms of mining, are paleoslumps. Paleoslumps represent ancient movement and rotation of semi-consolidated sediment. Because bedding in paleoslumps is deformed or inclined, these features cause instability in mine roofs, haul roads, surface highwalls, and other excavations. Various types of paleoslumps above coals in the Eastern Kentucky Coal Field were studied in order to aid in their recognition and prediction in mines. The paleoslumps studied all showed characteristic slump-deformation features, although some differences in magnitude of deformation and overall slump size were noted. Coals beneath slumps often exhibited folding, reverse displacements, truncation, clastic dikes, and locally increased thickness. Slumps are inferred to have been triggered by a wide range of mechanisms, such as loading of water-saturated sediment on rigid substrates, synsedimentary faulting, and over-pressurization of channel margin and bar slopes. Analysis of paleoslumps in underground mines, where paleoslumps are viewed from beneath rather than in profile is difficult, since characteristic bed rotation may not be conspicuous. Sudden increases in bed-dip angle inferred from changes in rock type or bedding contacts in the roof; occurrence of bounding, polished rotation surfaces; or roof irregularity and occurrence of loading features may indicate the presence of paleoslumps. Another key to recognition may be the sudden appearance of over-thickened coal, which can occur because of slump-created paleotopography, synsedimentary faults, and slump-generated overthrusting. In addition, steeply inclined, folded, or transported coal marginal to paleoslumps can create apparent increases in coal thickness in cores. Although thick coals are obviously a target of exploration, anomalously thick coals may actually indicate adjacent paleoslumps accompanied by hazardous roof conditions and loss of seam thickness.

  7. Evaluation of potentially significant increase of lead in the blood during long-term bed rest and space flight.

    PubMed

    Kondrashov, Vladislav; Rothenberg, Stephen J; Chettle, David; Zerwekh, Joseph

    2005-02-01

    We address a gap in the knowledge of lead turnover under conditions of prolonged bed rest and microgravity by developing a quantitative model of the amount of lead returned to blood circulation from bone. We offer the hypothesis that skeletal unloading, such as typically occurs during extended bed rest or microgravity, will result in bone lead being released to the blood, as has already been demonstrated in the case of calcium. We use initial bone lead concentrations to develop predictive models of blood lead elevation. Our theoretical calculations with typical bone lead loads measured in today's 40-60-year-old generation, suggest that the estimated blood lead concentrations in long duration (e.g., 100 days) space flight could average between 20 and 40 microg dl(-1), a range with well-established toxic effects. For a similar duration of bed rest, estimated blood lead concentration could be as high as 10-20 microg dl(-1), which is a level of concern, particularly if we consider females of childbearing age. The preliminary experimental results were obtained under multi-institutional collaborations, with the main outcome received from an on-going bed rest study, Prevention of Microgravity-Induced Stone Risk by KMgCitrate, conducted at the General Clinical Research Center (GCRC) of the University of Texas Southwestern Medical Center, Dallas. Based on theoretical modeling and some preliminary experimental results, this concept may have important clinical implications by allowing prediction of the magnitude of blood lead elevation, thereby establishing the means to prevent lead toxicity during long duration space flight of astronauts and in conditions of prolonged bed rest such as complicated pregnancy, spinal cord injury induced paralysis and comatose patients.

  8. Hydrodynamics study on drying of pepper in swirling fluidized bed dryer (SFBD)

    NASA Astrophysics Data System (ADS)

    Syaif Haron, Nazrul; Hazri Zakaria, Jamal; Faizal Mohideen Batcha, Mohd

    2017-08-01

    Malaysia is one of the pepper producer with exports quantity reaching more than 90000 tonnes between 2010 until 2016. Drying of pepper is mandatory before their export and at present, pepper was dried by sun drying to reduce cost. This conventional drying method was time consuming and may take four days during rainy season, which retards the production of pepper. This paper proposes the swirling fluidized bed drying (SFBD) method, which was known to have high mixing ability and improved solid-gas contact to shorten the drying time of products. A lab scale SFBD system was constructed to carry out this study. Hydrodynamic study was conducted for three beds loadings of 1.0 kg, 1.4 kg at a drying temperature of 90°C. The SFBD has shown excellent potential to dry the pepper with a relatively short drying time compared to the conventional method. Batch drying for the bed loads studied only took 3 hours of drying time only. It was found that bed higher bed loading of wet pepper requires longer drying time due to higher amount of moisture content in the bed. Four distinct regimes of operation were found during drying in the SFBD and these regimes offer flexibility of operation. The total bed pressure drop was relatively low during drying.

  9. Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.

    2017-12-01

    Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.

  10. [Comparison of PAHs distribution in stabilized sludge by sludge drying bed and reed bed].

    PubMed

    Cui, Yu-Bo; Sun, Hong-Jie; Ran, Chun-Qiu; Li, Jin-Feng; Xie, Yao

    2013-03-01

    The difference in the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in planted and unplanted sludge drying bed was investigated. Pilot-scale sludge drying bed and reed bed had the same size of 3.0 m x 1.0 m x 1.3 m (L x W x H), and the bed height consisted of a 65 cm media layer and a 65 cm super height. Both beds had a ventilation pipe which was mounted on the drainage pipes. The experiment lasted for three years, and the first two years was the sludge loading period, and the third year was the natural stabilization period. In the first two years, a total thickness of 8.4 m of sludge was loaded and the average sludge loading rate was 41.3 kg x (m2 x a)(-1). After the three-year stabilization, the contents of the sixteen PAHs decreased with time in both the sludge drying bed and the reed bed. The total PAHs contents in the surface, middle and bottom sludge layers in the sludge drying bed were 4.161, 3.543 and 3.118 mg x kg(-1) (DW), corresponding to 26.91%, 37.77% and 45.23% of removal; and the values in the reed bed were 2.722, 1.648 and 1.218 mg x kg(-1) (DW), corresponding to 52.18%, 71.05% and 78.60% of removal. The average PAHs removal in the reed bed was 29.86% higher than that in the sludge drying bed. In the stabilized sludge, the removal of low-molecular-weight PAHs predominated. The results suggested that reed played a positive role in the removal of PAHs.

  11. Passive acoustic monitoring of bed load for fluvial applications

    USDA-ARS?s Scientific Manuscript database

    The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...

  12. Evaluation of process errors in bed load sampling using a Dune Model

    USGS Publications Warehouse

    Gomez, Basil; Troutman, Brent M.

    1997-01-01

    Reliable estimates of the streamwide bed load discharge obtained using sampling devices are dependent upon good at-a-point knowledge across the full width of the channel. Using field data and information derived from a model that describes the geometric features of a dune train in terms of a spatial process observed at a fixed point in time, we show that sampling errors decrease as the number of samples collected increases, and the number of traverses of the channel over which the samples are collected increases. It also is preferable that bed load sampling be conducted at a pace which allows a number of bed forms to pass through the sampling cross section. The situations we analyze and simulate pertain to moderate transport conditions in small rivers. In such circumstances, bed load sampling schemes typically should involve four or five traverses of a river, and the collection of 20–40 samples at a rate of five or six samples per hour. By ensuring that spatial and temporal variability in the transport process is accounted for, such a sampling design reduces both random and systematic errors and hence minimizes the total error involved in the sampling process.

  13. The impact of benthic fauna on fluvial bed load transport: Challenges of upscaling laboratory experiments to river and landscape scales.

    NASA Astrophysics Data System (ADS)

    Rice, S. P.

    2012-04-01

    The impact on sediment transport processes and channel morphology of several relatively large, iconic animals including beaver and salmon is increasingly well understood. However, many other aquatic fauna are important zoogeomorphic agents and ecosystem engineers. These somewhat overlooked "Cinderella" species include benthic aquatic insect larvae, freshwater crustaceans and many species of fish. Despite relatively modest individual effects, the ubiquity, abundance and cumulative impact of these organisms makes them a potentially significant agency, with as yet undiscovered and unquantified impacts on channel morphology and sediment fluxes. Their actions (digging, foraging, moving, burrowing), constructions and secretions modify bed sediment characteristics (grain size distribution, interlock, imbrication, protrusion), alter bed topography (thence hydraulic roughness) and contribute to biogenic restraints on grain movement. In turn, they can affect the distribution of surface particle entrainment thresholds and bed shear stresses, with implications for bed load transport. Flume experiments have measured some of these impacts and provided direct observations of the mechanisms involved, but many of the most interesting research questions pertain to the impact of these animals at reach, catchment and even landscape scales: Not least, what is the impact of small aquatic animals on bed load flux and yield? This presentation will consider some of the challenges involved in answering this question; that is, of scaling up experimental understanding of how aquatic animals affect bed load transport processes to river scales. Pertinent themes include: (1) the potential impacts of experimental arrangements on the behaviours and activities that affect hydraulic or geomorphological processes; (2) field coincidence of the spatial and temporal distributions of (a) the animals and their behaviours with (b) the physical conditions (substrates, flows) under which those animals are understood to have an effect; (3) the magnitude of any demonstrable net field impact, relative to those other factors that control bed load transport rates.

  14. Influence of Grid Reinforcement Placed In Masonry Bed Joints on Its Flexural Strength

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Adam

    2017-10-01

    The paper presents the test results of the flexural strength of masonry when plane of failure is perpendicular to the bed joints. Comparison tests of unreinforced specimens and specimens reinforced with steel wire, glass and basalt fibre grids applied in masonry bed joints showed the higher flexural strength and crack resistance of masonry reinforced in this manner and so loaded. Reinforced masonry exposed plastic character after cracking allow for large horizontal displacements and transfer the considerable loads perpendicular to their surface. The strengthening of masonry was observed in most tests of reinforced specimens leading to occurrence of the maximum load in after cracking phase.

  15. Fundamental aspects related to batch and fixed-bed sulfate sorption by the macroporous type 1 strong base ion exchange resin Purolite A500.

    PubMed

    Guimarães, Damaris; Leão, Versiane A

    2014-12-01

    Acid mine drainage is a natural process occurring when sulfide minerals such as pyrite are exposed to water and oxygen. The bacterially catalyzed oxidation of pyrite is particularly common in coal mining operations and usually results in a low-pH water polluted with toxic metals and sulfate. Although high sulfate concentrations can be reduced by gypsum precipitation, removing lower concentrations (below 1200 mg/L) remains a challenge. Therefore, this work sought to investigate the application of ion exchange resins for sulfate sorption. The macroporous type 1 strong base IX resin Purolite A500 was selected for bath and fixed-bed sorption experiments using synthetic sulfate solutions. Equilibrium experiments showed that sulfate loading on the resin can be described by the Langmuir isotherm with a maximum uptake of 59 mg mL-resin(-1). The enthalpy of sorption was determined as +2.83 kJ mol(-1), implying an endothermic physisorption process that occurred with decreasing entropy (-15.5 J mol(-1).K(-1)). Fixed-bed experiments were performed at different bed depths, flow rates, and initial sulfate concentrations. The Miura and Hashimoto model predicted a maximum bed loading of 25-30 g L-bed(-1) and indicated that both film diffusion (3.2 × 10(-3) cm s(-1) to 22.6 × 10(-3) cm s(-1)) and surface diffusion (1.46 × 10(-7) cm(2) s(-1) to 5.64 × 10(-7) cm(2) s(-1)) resistances control the sorption process. It was shown that IX resins are an alternative for the removal of sulfate from mine waters; they ensure very low residual concentrations, particularly in effluents where the sulfate concentration is below the gypsum solubility threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Today's sediment budget of the Rhine River channel, focusing on the Upper Rhine Graben and Rhenish Massif

    NASA Astrophysics Data System (ADS)

    Frings, Roy M.; Gehres, Nicole; Promny, Markus; Middelkoop, Hans; Schüttrumpf, Holger; Vollmer, Stefan

    2014-01-01

    The river bed of the Rhine River is subject to severe erosion and sedimentation. Such high geomorphological process rates are unwanted for economical, ecological, and safety reasons. The objectives of this study were (1) to quantify the geomorphological development of the Rhine River between 1985 and 2006; (2) to investigate the bed erosion process; and (3) to distinguish between tectonic, hydrological, and human controls. We used a unique data set with thousands of bedload and suspended-load measurements and quantified the fluxes of gravel, sand, silt, and clay through the northern Upper Rhine Graben and the Rhenish Massif. Furthermore, we calculated bed level changes and evaluated the sediment budget of the channel. Sediment transport rates were found to change in the downstream direction: silt and clay loads increase because of tributary supply; sand loads increase because of erosion of sand from the bed; and gravel loads decrease because of reduced sediment mobility caused by the base-level control exerted by the uplifting Rhenish Massif. This base-level control shows tectonic setting, in addition to hydrology and human interventions, to represent a major control on morphodynamics in the Rhine. The Rhine bed appears to be in a state of disequilibrium, with an average net bed degradation of 3 mm/a. Sand being eroded from the bed is primarily washed away in suspension, indicating a rapid supply of sand to the Rhine delta. The degradation is the result of an increased sediment transport capacity caused by nineteenth and twentieth century's river training works. In order to reduce degradation, huge amounts of sediment are fed into the river by river managers. Bed degradation and artificial sediment feeding represent the major sources of sand and gravel to the study area; only small amounts of sediment are supplied naturally from upstream or by tributaries. Sediment sinks include dredging, abrasion, and the sediment output to the downstream area. Large uncertainties exist about the amounts of sediment deposited on floodplains and in groyne fields. Compared to the natural situation during the middle Holocene, the present-day gravel and sand loads seem to be lower, whereas the silt and clay loads seem to be higher. This is probably caused by the present-day absence of meander migration, the deforestation, and the reduced sediment trapping efficiency of the floodplains. Even under natural conditions no equilibrium bed level existed.

  17. Effect of large wood retention at check dams on sediment continuity

    NASA Astrophysics Data System (ADS)

    Schmocker, Lukas; Schalko, Isabella; Weitbrecht, Volker

    2017-04-01

    Large wood transport during flood events may seriously increase the damage potential due to accumulations at river infrastructures. The large wood is therefore mostly retained upstream of populated areas using retention structures that often combine a check dam with a debris rack. One disadvantages of this structures is, that the bed-load gets retained along with the wood. Especially if large wood blocks the rack early during a flood event, sediment continuity is completely interrupted. This may lead to severe bed erosion downstream of the check dam. So far, no common design to retain large wood but maintain sediment continuity is available. One attempt to separate the large wood from the bed-load was made with the large wood retention structure at River Sihl in Zürich, Switzerland. The retention of the large wood occurs in a bypass channel located along the main river. The bypass is located at an outer river bend, where a separation of bed-load and large wood results due to the secondary currents induced by the river curvature. Large wood floats towards the outer bend due to inertia and the secondary currents whereas bed-load remains at the inner bend. The bypass is separated by a side weir from the main river to ensure that the bed-load remains in the river during bed forming discharges and flood events. New model test are currently carried out at the Laboratory of Hydraulics, Hydrology, and Glaciology (VAW) of ETH Zurich, where sediment continuity should be achieved using an inclined rack. The rack is inclined in flow direction with a degree of 45° to 20°. First results show that the large wood deposits at the upper part of the rack whereas the lower part of the rack remains free for bed-load transport. Furthermore, the backwater rise for the inclined rack due to the accumulated wood is considerably reduced compared to a vertical rack, as a large part of the rack remains clear for the flow to pass. The findings of this studies help to understand the complex interaction between sediment and large wood at a check dam retention structure. Furthermore, new retention structures and rack designs are available, where sediment continuity can partially be maintained to reduce downstream bed erosion.

  18. SLS INTERTANK TEST ARTICLE IS ATTACHED TO CROSSHEAD OF LOAD TEST ANNEX, BLDG. 4619, AND REMOVED FROM BED OF KMAG TRANSPORTER

    NASA Image and Video Library

    2018-03-28

    SLS INTERTANK TEST ARTICLE IS ATTACHED TO CROSSHEAD OF LOAD TEST ANNEX, BLDG. 4619, AND REMOVED FROM BED OF KMAG TRANSPORTER. Matt Cash conducts tag up meeting before lift of ITA from KMAG transporter

  19. Unravelling the relative contribution of bed and suspended sediment load on a large alluvial river

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Hackney, C. R.; Parsons, D. R.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.; Best, J.

    2017-12-01

    The world's largest rivers transport 19 billion tonnes of sediment to the coastal zone annually, often supporting large deltas that rely on this sediment load to maintain their elevation in the face of rising sea level, and to sustain high levels of agricultural productivity and biodiversity. However, the majority of estimates of sediment delivery to coastal regions pertain solely to the suspended fraction of the sediment load, with the bedload fraction often being neglected due to the difficulty in estimating bedload flux and the assumption that bedload contributes a minor (<10%) fraction of the total sediment load. In large rivers, capturing accurate estimates of the suspended- and bed- load fractions is difficult given the large channel widths and depths and the intrusive nature of typical methodologies. Yet, for the successful implementation of sustainable river, and delta, management plans, improved estimates of all fractions of the sediment load are essential. Recent advances in non-intrusive, high-resolution, technology have begun to enable more accurate estimates of bedload transport rates. However, the characterisation of the holistic sediment transport regime of large alluvial rivers is still lacking. Here, we develop a sediment transport rating curve, combining both suspended- and bed- load sediment fractions, for the Lower Mekong River. We define suspended sediment rating curves using the inversion of acoustic return data from a series of acoustic Doppler current profiler surveys conducted through the Lower Mekong River in Cambodia, and into the bifurcating channels of the Mekong delta in Vietnam. Additionally, we detail estimates of bed-load sediment transport determined using repeat multibeam echo sounder surveys of the channel bed. By combining estimates of both fractions of the sediment load, we show the spatial and temporal contribution of bedload to the total sediment load of the Mekong and refine estimates of sediment transport to the Mekong delta. Our results indicate that the time-averaged suspended load transport rates for the Mekong River are 87 MT/yr, whilst bedload transport forms c. < 5% of the total sediment load within the Mekong River. Such estimates are integral to future channel management within this highly threatened river basin.

  20. Land factors affecting soil erosion during snow melting: a case study from Lebanon

    NASA Astrophysics Data System (ADS)

    Darwich, Talal

    2014-05-01

    Soil erosion is one of the major problems facing the mountainous agricultural lands in Lebanon. In order to assess the land factors acting on soil erosion; a study was conducted in the upper watershed of Ibrahim River in the spring months of April, May and June. Water and bed load sediments from six locations alimented by six sub-basins were sampled. Four sub-basins (1, 2, 3 and 6) were dominated by agricultural lands while lands in sub-basins 4 and 7 were occupied by grassland and bare soils. The highest quantities of suspended sediments were found in waters originating from watersheds dominated by agricultural lands, such as Location 2 (713.72 mg L-1 in April 2012). Low clay content and the combination of land occupation (orchards = 71%) and slope (20.7 degrees) caused this ecosystem disturbance. Locations 1, 2, 3 and 6 were alimented by runoff water due to the melting of the snow. For this, the concentrations of sediments decreased by 4 fold between April and May in sub-basin 1 and by 11-14 fold in sub-basins 2, 3 and 6. Globally, some 1669.4 tons of sediments were delivered in the upper river during April. Bed load sediments were separated into 4 classes according to their size. The size of the particles found in the bed load reflected to a large extent the type of soils surrounding the watershed. The range of sand in the regions surrounding locations 6 and 7 was 64% and 82%, while the average in the bed load was 80.9% and 78.25% respectively. The silt content in locations 2, 3 and 5 was well reflected in the concentrations of silt in the bed load. In bed load samples, the exchangeable potassium ranged from 70-250 mg kg-1 in sub-basins dominated by agricultural lands against 20-50 mg kg-1 in sub-basins dominated by grassland and bare rocks. Further quantitative studies need to be conducted especially during the first rains to fully estimate the water load sediments after a prolonged dry season, characterizing the east Mediterranean. Action must be taken for land conservation by improving the farmer's practices, modifying the frequency of plowing and introducing no tillage beside the maintenance of terraces. Keywords: Mountains, erosion, sediments, East Mediterranean, river, bed load quality.

  1. Crack classification and evolution in anisotropic shale during cyclic loading tests by acoustic emission

    NASA Astrophysics Data System (ADS)

    Wang, Miaomiao; Tan, Chengxuan; Meng, Jing; Yang, Baicun; Li, Yuan

    2017-08-01

    Characterization and evolution of the cracking mode in shale formation is significant, as fracture networks are an important element in shale gas exploitation. In this study we determine the crack modes and evolution in anisotropic shale under cyclic loading using the acoustic emission (AE) parameter-analysis method based on the average frequency and RA (rise-time/amplitude) value. Shale specimens with bedding-plane orientations parallel and perpendicular to the axial loading direction were subjected to loading cycles with increasing peak values until failure occurred. When the loading was parallel to the bedding plane, most of the cracks at failure were shear cracks, while tensile cracks were dominant in the specimens that were loaded normal to the bedding direction. The evolution of the crack mode in the shale specimens observed in the loading-unloading sequence except for the first cycle can be divided into three stages: (I) no or several cracks (AE events) form as a result of the Kaiser effect, (II) tensile and shear cracks increase steadily at nearly equal proportions, (III) tensile cracks and shear cracks increase abruptly, with more cracks forming in one mode than in the other. As the dominant crack motion is influenced by the bedding, the failure mechanism is discussed based on the evolution of the different crack modes. Our conclusions can increase our understanding of the formation mechanism of fracture networks in the field.

  2. Space station common module thermal management: Design and construction of a test bed

    NASA Technical Reports Server (NTRS)

    Barile, R. G.

    1986-01-01

    In this project, a thermal test bed was designed, simulated, and planned for construction. The thermal system features interior and exterior thermal loads and interfacing with the central-radiator thermal bus. Components of the test bed include body mounted radiator loop with interface heat exchangers (600 Btu/hr); an internal loop with cabin air-conditioning and cold plates (3400 Btu/hr); interface heat exchangers to the central bus (13,000 Btu/hr); and provisions for new technology including advanced radiators, thermal storage, and refrigeration. The apparatus will be mounted in a chamber, heated with lamps, and tested in a vacuum chamber with LN2-cooled walls. Simulation of the test bed was accomplished using a DEC PRO 350 computer and the software package TK! olver. Key input variables were absorbed solar radiation and cold plate loads. The results indicate temperatures on the two loops will be nominal when the radiation and cold plate loads are in the range of 25% to 75% of peak loads. If all loads fall to zero, except the cabin air system which was fixed, the radiator fluid will drop below -100 F and may cause excessive pressure drop. If all loads reach 100%, the cabin air temperature could rise to 96 F.

  3. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  4. Measurement of gravel bed load using impact plates

    USDA-ARS?s Scientific Manuscript database

    Accurate determinations of the rate of bed load transport are difficult to make but important for determining the fate of sediment released after the removal of a dam. Two dams were removed from the Elwha River in the state of Washington beginning in 2011, and 72 impact plates were installed downst...

  5. Spatially Explicit Estimates of Suspended Sediment and Bedload Transport Rates for Western Oregon and Northwestern California

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.; Wise, D. R.; Mangano, J.; Jones, K.

    2015-12-01

    Empirical analyses of suspended sediment and bedload transport gives estimates of sediment flux for western Oregon and northwestern California. The estimates of both bedload and suspended load are from regression models relating measured annual sediment yield to geologic, physiographic, and climatic properties of contributing basins. The best models include generalized geology and either slope or precipitation. The best-fit suspended-sediment model is based on basin geology, precipitation, and area of recent wildfire. It explains 65% of the variance for 68 suspended sediment measurement sites within the model area. Predicted suspended sediment yields range from no yield from the High Cascades geologic province to 200 tonnes/ km2-yr in the northern Oregon Coast Range and 1000 tonnes/km2-yr in recently burned areas of the northern Klamath terrain. Bed-material yield is similarly estimated from a regression model based on 22 sites of measured bed-material transport, mostly from reservoir accumulation analyses but also from several bedload measurement programs. The resulting best-fit regression is based on basin slope and the presence/absence of the Klamath geologic terrane. For the Klamath terrane, bed-material yield is twice that of the other geologic provinces. This model explains more than 80% of the variance of the better-quality measurements. Predicted bed-material yields range up to 350 tonnes/ km2-yr in steep areas of the Klamath terrane. Applying these regressions to small individual watersheds (mean size; 66 km2 for bed-material; 3 km2 for suspended sediment) and cumulating totals down the hydrologic network (but also decreasing the bed-material flux by experimentally determined attrition rates) gives spatially explicit estimates of both bed-material and suspended sediment flux. This enables assessment of several management issues, including the effects of dams on bedload transport, instream gravel mining, habitat formation processes, and water-quality. The combined fluxes can also be compared to long-term rock uplift and cosmogenically determined landscape erosion rates.

  6. The Impact of Urbanization on Temporal Changes in Sediment Transport in a Gravel Bed Channel in Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Plumb, B. D.; Annable, W. K.; Thompson, P. J.; Hassan, M. A.

    2017-10-01

    A field investigation has been undertaken to characterize the event-based bed load transport dynamics of a highly urbanized gravel bed stream. A combination of direct bed load and tracer particle measurements were taken over a 3 year period during which time approximately 30 sediment mobilizing events occurred. Sediment transport measurements were used to calibrate a fractional bed load transport model and combined with hydrometric data which represent four different land use conditions (ranging from rural to highly urbanized) to analyze the differences in discharge magnitude and frequency and its impact on sediment transport. Fractional transport analysis of the bed load measurements indicates that frequent intermediate discharge events can mobilize sand and fine gravel to an approximate equally mobile condition, however, the transport rates at these discharges exhibit greater variability than at discharges above the bankfull discharge. Path lengths of the coarse fraction, measured using tracer clasts, are insensitive to peak discharge, and instead transport at distances less than those reported in other gravel bed channels, which is attributed to the shorter duration discharge events common to urban streams. The magnitude-frequency analysis reveals that the frequency, time, and volume of competent sediment mobilizing events are increasing with urbanization. Variability in effective discharges suggests that a range of discharges, spanning between frequent, low magnitude events to less frequent, high magnitude events are geomorphically significant. However, trends in the different land use scenarios suggest that urbanization is shifting the geomorphic significance toward more frequent, lower magnitude events.

  7. Bed load transport by submerged jets

    PubMed Central

    Francis, J. R. D.; McCreath, P. S.

    1979-01-01

    Some similarities are presented between the bed load transport of noncohesive grains in long rivers and at a local, jet-induced scour. Experiments are described in which a submerged two-dimensional slot nozzle, inclined downward, eroded a deep sand bed. The rate of erosion at the very beginning of a scour was evaluated and compared with river data by use of the idea of “stream-power.” Empirical relationships for the two cases are similar, although the geometry of the boundaries is quite different. PMID:16592696

  8. Bedload and Total Load Sediment Transport Equations for Rough Open-Channel Flow

    NASA Astrophysics Data System (ADS)

    Abrahams, A. D.; Gao, P.

    2001-12-01

    The total sediment load transported by an open-channel flow may be divided into bedload and suspended load. Bedload transport occurs by saltation at low shear stress and by sheetflow at high shear stress. Dimensional analysis is used to identify the dimensionless variables that control the transport rate of noncohesive sediments over a plane bed, and regression analysis is employed to isolate the significant variables and determine the values of the coefficients. In the general bedload transport equation (i.e. for saltation and sheetflow) the dimensionless bedload transport rate is a function of the dimensionless shear stress, the friction factor, and an efficiency coefficient. For sheetflow the last term approaches 1, so that the bedload transport rate becomes a function of just the dimensionless shear stress and the friction factor. The dimensional analysis indicates that the dimensionless total load transport rate is a function of the dimensionless bedload transport rate and the dimensionless settling velocity of the sediment. Predicted values of the transport rates are graphed against the computed values of these variables for 505 flume experiments reported in the literature. These graphs indicate that the equations developed in this study give good unbiased predictions of both the bedload transport rate and total load transport rate over a wide range of conditions.

  9. Distribution and transport of polychlorinated biphenyls and associated particulates in the Milwaukee River System, Wisconsin, 1993-95

    USGS Publications Warehouse

    Steuer, Jeffrey S.; Fitzgerald, Sharon A.; Hall, David W.

    1999-01-01

    The distribution and transport of polychlorinated biphenyl (PCB) congeners were determined at various sites on Cedar Creek and its receiving stream, the Milwaukee River. PCB congener distributions were determined in the operationally defined dissolved phase, suspended-particle phase, and surficial bed sediments (0?2 centimeters depth). At most sites, the relative abundances of PCB congeners in the suspended particles and surficial bed sediments were similar to each other, and in some cases, to known Aroclor mixtures (1242 and 1260). Dissolved PCB congener distributions were higher in the less chlorinated congeners as predicted by their lower hydrophobicity and higher solubility. Log partition coefficients for the dissolved and the particle-associated organic carbon phases ranged from 5.0 to 5.8 and 6.5 to 7.5, respectively, for SPCB?s (congener summation). Particle-associated PCB?s exhibited two patterns: (1) a general increase in spring and summer associated with algal growth and, (2) episodic increases associated with resuspension of bed sediments during storms. Total suspended solids loads in water year 1994 ranged from 8,700 tons at Pioneer Road to 15,800 tons at Estabrook Park. PCB loads decreased from Highland Road (3.7 kilograms) to Pioneer Road (1.8 kilograms) from August 1994 to August 1995, indicating PCB deposition between those sites. PCB transport at Estabrook Park was 8 to 16 kilograms during this same time period.

  10. Effect of artificial gravity with exercise load by using a short-arm centrifuge with bicycle ergometer as a countermeasure against disused osteoporosis

    NASA Astrophysics Data System (ADS)

    Shiozawa, Youke; Iwase, Satoshi; Kamiya, Atsunori; Takada, Hiroki; Michikami, Daisaku; Hiriayanagi, Kaname; Watanabe, Yoriko; Sugenoya, Jun-ichi; Mano, Tada-aki; Yajima, Kazuyoshi

    2005-08-01

    To evaluate the effectiveness of centrifuge-induced artificial gravity with ergometric exercise to disused osteoporosis, 9 young healthy men were exposed to -6° head-down bed-rest for 14 days. Four out of nine subjects were loaded by intermittent artificial gravity with ergometric workload. The rest of subjects were the control group. The concentrations of urine deoxy-pyridinoline were examined in each subject before and after the bed-rests. The rate of increase of urine deoxy-pyridinoline of the countermeasure group was significantly more suppressed than the control group. This countermeasure can definitely suppress the bone absorption which is caused by 14 days head-down bed-rest; however the effectiveness is still insufficient. More gravitational load or exercise load is still required.

  11. Boulder-Faced Log Dams and other Alternatives for Gabion Check Dams in First-Order Ephemeral Streams with Coarse Bed Load in Ethiopia

    NASA Astrophysics Data System (ADS)

    Nyssen, Jan; Gebreslassie, Seifu; Assefa, Romha; Deckers, Jozef; Guyassa, Etefa; Poesen, Jean; Frankl, Amaury

    2017-04-01

    Many thousands of gabion check dams have been installed to control gully erosion in Ethiopia, but several challenges still remain, such as the issue of gabion failure in ephemeral streams with coarse bed load, that abrades at the chute step. As an alternative for gabion check dams in torrents with coarse bed load, boulder-faced log dams were conceived, installed transversally across torrents and tested (n = 30). For this, logs (22-35 cm across) were embedded in the banks of torrents, 0.5-1 m above the bed and their upstream sides were faced with boulders (0.3-0.7 m across). Similar to gabion check dams, boulder-faced log dams lead to temporary ponding, spreading of peak flow over the entire channel width and sediment deposition. Results of testing under extreme flow conditions (including two storms with return periods of 5.6 and 7 years) show that 18 dams resisted strong floods. Beyond certain flood thresholds, represented by proxies such as Strahler's stream order, catchment area, D95 or channel width), 11 log dams were completely destroyed. Smallholder farmers see much potential in this type of structure to control first-order torrents with coarse bed load, since the technique is cost-effective and can be easily installed.

  12. Universal characteristics of particle shape evolution by bed-load chipping

    PubMed Central

    Sipos, András Árpád; Shaw, Sam; Sarti, Giovanni; Domokos, Gábor

    2018-01-01

    River currents, wind, and waves drive bed-load transport, in which sediment particles collide with each other and Earth’s surface. A generic consequence is impact attrition and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the rounding of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of impact attrition are insensitive to details of collisions and material properties. We present data from fluvial, aeolian, and coastal environments and laboratory experiments that suggest a common relation between circularity and mass attrition for particles transported as bed load. Theory and simulations demonstrate that universal characteristics of shape evolution arise because of three constraints: (i) Initial particles are mildly elongated fragments, (ii) particles collide with similarly-sized particles or the bed, and (iii) collision energy is small enough that chipping dominates over fragmentation but large enough that sliding friction is negligible. We show that bed-load transport selects these constraints, providing the foundation to estimate a particle’s attrition rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of attrition to downstream fining in rivers and deserts and to infer transport conditions using only images of sediment grains. PMID:29670937

  13. Universal characteristics of particle shape evolution by bed-load chipping.

    PubMed

    Novák-Szabó, Tímea; Sipos, András Árpád; Shaw, Sam; Bertoni, Duccio; Pozzebon, Alessandro; Grottoli, Edoardo; Sarti, Giovanni; Ciavola, Paolo; Domokos, Gábor; Jerolmack, Douglas J

    2018-03-01

    River currents, wind, and waves drive bed-load transport, in which sediment particles collide with each other and Earth's surface. A generic consequence is impact attrition and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the rounding of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of impact attrition are insensitive to details of collisions and material properties. We present data from fluvial, aeolian, and coastal environments and laboratory experiments that suggest a common relation between circularity and mass attrition for particles transported as bed load. Theory and simulations demonstrate that universal characteristics of shape evolution arise because of three constraints: (i) Initial particles are mildly elongated fragments, (ii) particles collide with similarly-sized particles or the bed, and (iii) collision energy is small enough that chipping dominates over fragmentation but large enough that sliding friction is negligible. We show that bed-load transport selects these constraints, providing the foundation to estimate a particle's attrition rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of attrition to downstream fining in rivers and deserts and to infer transport conditions using only images of sediment grains.

  14. Rock-bed thermocline storage: A numerical analysis of granular bed behavior and interaction with storage tank

    NASA Astrophysics Data System (ADS)

    Sassine, Nahia; Donzé, Frédéric-Victor; Bruch, Arnaud; Harthong, Barthélemy

    2017-06-01

    Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost-effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogenously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material.

  15. Evaluation of bed load transport subject to high shear stress fluctuations

    NASA Astrophysics Data System (ADS)

    Cheng, Nian-Sheng; Tang, Hongwu; Zhu, Lijun

    2004-05-01

    Many formulas available in the literature for computing sediment transport rates are often expressed in terms of time mean variables such as time mean bed shear stress or flow velocity, while effects of turbulence intensity, e.g., bed shear stress fluctuation, on sediment transport were seldom considered. This may be due to the fact that turbulence fluctuation is relatively limited in laboratory open-channel flows, which are often used for conducting sediment transport experiments. However, turbulence intensity could be markedly enhanced in practice. This note presents an analytical method to compute bed load transport by including effects of fluctuations in the bed shear stress. The analytical results obtained show that the transport rate enhanced by turbulence can be expressed as a simple function of the relative fluctuation of the bed shear stress. The results are also verified using data that were collected recently from specifically designed laboratory experiments. The present analysis is applicable largely for the condition of a flat bed that is comprised of uniform sand particles subject to unidirectional flows.

  16. Distribution and transport of polychlorinated biphenyls and associated particulates in the Hayton Millpond, south branch Manitowoc River, 1993-95

    USGS Publications Warehouse

    Steuer, Jeffrey S.; Hall, David W.; Fitzgerald, Sharon A.

    1999-01-01

    The distribution and transport of polychlorinated biphenyl (PCB) congeners was determined at two sites on Pine Creek and at the Hayton Millpond on the South Branch of the Manitowoc River in Wisconsin during 1993-95. PCB congener compositions were analyzed in the operationally defined dissolved phase, suspended particulate phase, and surficial bed sediments (0-2 centimeters depth) several times throughout the sampling period. The relative abundances of PCB congeners in the suspended particles and in surficial bed sediments were generally similar to each other and to a known Aroclor mixture (1254). PCB congener composites in the operationally defined dissolved phase were higher in the less chlorinated congeners in keeping with their lower hydrophobicity and higher predicted solubility relative to the more chlorinated congeners. Suspended particle-associated PCB concentrations exhibited two patterns: (1) a cyclical variation in spring and summer associated with algal growth, and (2) episodic increases associated with resuspension of bed sediments during storms. Computed total suspended-solids (TSS) load at the millpond outlet was as high as 920 tons over a 3-month period (June 30-Sept. 30, 1993). Annual TSS loads for the following two years were lower, 610 and 500 tons, respectively. Total PCB concentrations in the water column varied at the millpond outlet, ranging from 34 to 302 nanograms per liter, whereas concentrations upstream on Pine Creek were as high as 563 nanograms per liter. In general, 70 percent of PCB's in the water column were associated with suspended particles. The total congener-summation PCB (SPCB) concentration regression equation incorporated the universal soil loss coefficent to represent erosion of assumedly PCB-free sediment from fields upstream from the millpond. The SPCB load based on the regression relation was 3.4 kilograms during the 3-month high-flow interval (June 30-Sept. 30, 1993). Subsequent annual SPCB loads for the next two water years were 3.5 and 2.3 kilograms, respectively.

  17. The transition from intermittent to continuous bed-load transport arises from merger of "bursty" transport events

    NASA Astrophysics Data System (ADS)

    Lee, D. B.; Jerolmack, D. J.

    2017-12-01

    Bed-load transport is notoriously unpredictable, in part due to stochastic fluctuations in grain entrainment and deposition. A general statistical mechanical framework has been proposed by Furbish and colleagues to formally derive average bed-load flux from grain-scale motion, and its application requires an intimate understanding of the probabilistic motion of individual grains. Recent work by Ancey et al. suggests that, near threshold, particles are entrained collectively. If so, understanding the scales of correlation is a necessary step to complete the probabilistic framework describing bed-load flux. We perform a series of experiments in a steep-sloped channel that directly quantifies fluctuations in grain motion as a function of the feed rate of particles (marbles). As the feed rate is increased, the necessary averaging time is decreased (i.e. transport grows less variable in time). Collective grain motion is defined as spatially clustered movement of several grains at once. We find that entrainment of particles is generally collective, but that these entrained particles deposit independently of each other. The size distribution of collective motion events follows an exponential decay that is consistent across sediment feed rates. To first order, changing feed rate does not change the kinematics of mobile grains, just the frequency of motion. For transport within a given region of the bed, we show that the total displacement of all entrained grains is proportional to the kinetic energy deposited into the bed by impacting grains. Individual grain-bed impacts are the likely cause of both collective and individual grain entrainment. The picture that emerges is similar to generic avalanching dynamics in sandpiles: "avalanches" (collective entrainment events) of a characteristic size relax with a characteristic timescale regardless of feed rate, but the frequency of avalanches increases in proportion to the feed rate. At high enough feed rates the avalanches merge, leading to progressively smoother and continuous transport. As most bed-load transport occurs in the intermittent regime, the length scale of collective entrainment should be considered a fundamental addition to a probabilistic framework that hopes to infer flux from grain motion.

  18. Suspended and Bedload Sand dynamics in the Mekong River Channel and Export to the Coastal Ocean

    NASA Astrophysics Data System (ADS)

    Stephens, J. D.; Di Leonardo, D. R.; Weathers, H. D., III; Allison, M. A.

    2016-02-01

    Two field campaigns were conducted in the tidal and estuarine reach of the Song Hau distributary of the Mekong River to examine the dynamics of sand transport and export to the coastal ocean. This study examines variation in suspended sand concentration and net transport with respect to changes in discharge between the October 2014 high discharge and March 2015 low discharge studies, and over semi-diurnal and spring-neap tidal cycles between Can Tho and the Tran De and Dinh An distributary channels in the Mekong Delta. Suspended sand concentrations were measured using a P-61 isokinetic suspended sediment sampler and a Sequoia Scientific LISST-100X used in vertical profiling mode. Stationary ADCP data are used to examine bed stress at cast sites. Bed load transport rates were calculated using a repeat multibeam transect methodology and dune translation rates with flow. Preliminary results indicate that suspended sand concentration increases towards the bed and is positively correlated with increasing shear stress controlled by river discharge and tides. However, sites with non-sandy bottoms, as indicated by multibeam bathymetry, have low suspended sand concentrations, suggesting a close linkage with a bed sand source. Bed load transport rates vary cross-sectionally with shear stress and are linked to dune size. Most bed load transport is taking place in or near the thalweg. The reduction in ebb flows at low discharge and the mantling of sand fields by salinity driven mud deposition, is suspected to control the low suspended sand concentrations observed in March. Results to date suggest that net sand export (suspended plus bed load) to the ocean occurs predominantly during the high discharge monsoon season.

  19. Variation in the reference Shields stress for bed load transport in gravel‐bed streams and rivers

    USGS Publications Warehouse

    Mueller, Erich R.; Pitlick, John; Nelson, Jonathan M.

    2005-01-01

    The present study examines variations in the reference shear stress for bed load transport (τr) using coupled measurements of flow and bed load transport in 45 gravel‐bed streams and rivers. The study streams encompass a wide range in bank‐full discharge (1–2600 m3/s), average channel gradient (0.0003–0.05), and median surface grain size (0.027–0.21 m). A bed load transport relation was formed for each site by plotting individual values of the dimensionless transport rate W* versus the reach‐average dimensionless shear stress τ*. The reference dimensionless shear stress τ*r was then estimated by selecting the value of τ* corresponding to a reference transport rate of W* = 0.002. The results indicate that the discharge corresponding to τ*r averages 67% of the bank‐full discharge, with the variation independent of reach‐scale morphologic and sediment properties. However, values of τ*r increase systematically with average channel gradient, ranging from 0.025–0.035 at sites with slopes of 0.001–0.006 to values greater than 0.10 at sites with slopes greater than 0.02. A corresponding relation for the bank‐full dimensionless shear stress τ*bf, formulated with data from 159 sites in North America and England, mirrors the relation between τ*r and channel gradient, suggesting that the bank‐full channel geometry of gravel‐ and cobble‐bedded streams is adjusted to a relatively constant excess shear stress, τ*bf − τ*r, across a wide range of slopes.

  20. Bed Degradation and Sediment Export from the Missouri River after Dam Construction and River Training: Significance to Lower Mississippi River Sediment Loads

    NASA Astrophysics Data System (ADS)

    Blum, M. D.; Viparelli, E.; Sulaiman, Z. A.; Pettit, B. S.

    2016-12-01

    More than 40,000 dams have been constructed in the Mississippi River drainage basin, which has had a dramatic impact on suspended sediment load for the Mississippi delta. The most significant dams were constructed in the 1950s on the Missouri River in South Dakota, after which total suspended loads for the lower Mississippi River, some 2500 km downstream, were cut in half: gauging station data from the Missouri-Mississippi system show significant load reductions immediately after dam closure, followed by a continued downward trend since that time. The delta region is experiencing tremendous land loss in response to acceleration of global sea-level rise, and load reductions of this magnitude may place severe limits on mitigation efforts. Here we examine sediment export from the Missouri system due to bed scour. The US Army Corps of Engineers has compiled changes in river stage at constant discharge for 8 stations between the lowermost dam at Yankton, South Dakota and the Missouri-Mississippi confluence at St. Louis (a distance of 1250 river km), for the period 1930-2010, which we have updated to 2015. These data show two general reaches of significant bed degradation. The first extends from the last major dam at Yankton, South Dakota downstream 300 km to Omaha, Nebraska, where degradation in response to the dam exceeds 3 m. The second reach, with >2.5 m of degradation, occurs in and around Kansas City, Missouri, and has been attributed to river training activities. The reach between Omaha and Kansas City, as well as the lower Missouri below Kansas City, show <1 m of net bed elevation change over the entire 75-year period of record. Integrating bed elevation changes over the period of record, we estimate a total of 1.1-1.2 billion tons of sediment have been exported from the Missouri River due to bed scour following dam construction and river training. This number equates to 20-25 million tons per year, which is sufficient to account for 30% of the total Missouri River load, and 15% of the total post-dam annual sediment load for the lower Mississippi River. For perspective, the quantity of sediment exported from the Missouri River due to bed scour is greater than the total load for all rivers in the US lower 48 states, except the Mississippi and Colorado Rivers, and would rank in the top 50 of all rivers in the modern world.

  1. The SSM/PMAD automated test bed project

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module/Power Management and Distribution (SSM/PMAD) autonomous subsystem project was initiated in 1984. The project's goal has been to design and develop an autonomous, user-supportive PMAD test bed simulating the SSF Hab/Lab module(s). An eighteen kilowatt SSM/PMAD test bed model with a high degree of automated operation has been developed. This advanced automation test bed contains three expert/knowledge based systems that interact with one another and with other more conventional software residing in up to eight distributed 386-based microcomputers to perform the necessary tasks of real-time and near real-time load scheduling, dynamic load prioritizing, and fault detection, isolation, and recovery (FDIR).

  2. The Extravehicular Suit Impact Load Attenuation Study for Use in Astronaut Bone Fracture Prediction

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Gilkey, Kelly M.; Sulkowski, Christina M.; Samorezov, Sergey; Myers, Jerry G.

    2011-01-01

    The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fracture of the proximal femur is a traumatic injury that would likely result in loss of mission if it were to happen during spaceflight. The low gravity exposure causes decreases in bone mineral density which heightens the concern. Researchers at the NASA Glenn Research Center have quantified bone fracture probability during spaceflight with a probabilistic model. It was assumed that a pressurized extravehicular activity (EVA) suit would attenuate load during a fall, but no supporting data was available. The suit impact load attenuation study was performed to collect analogous data. METHODS: A pressurized EVA suit analog test bed was used to study how the offset, defined as the gap between the suit and the astronaut s body, impact load magnitude and suit operating pressure affects the attenuation of impact load. The attenuation data was incorporated into the probabilistic model of bone fracture as a function of these factors, replacing a load attenuation value based on commercial hip protectors. RESULTS: Load attenuation was more dependent on offset than on pressurization or load magnitude, especially at small offsets. Load attenuation factors for offsets between 0.1 - 1.5 cm were 0.69 +/- 0.15, 0.49 +/- 0.22 and 0.35 +/- 0.18 for mean impact forces of 4827, 6400 and 8467 N, respectively. Load attenuation factors for offsets of 2.8 - 5.3 cm were 0.93 +/- 0.2, 0.94 +/- 0.1 and 0.84 +/- 0.5, for the same mean impact forces. Reductions were observed in the 95th percentile confidence interval of the bone fracture probability predictions. CONCLUSIONS: The reduction in uncertainty and improved confidence in bone fracture predictions increased the fidelity and credibility of the fracture risk model and its benefit to mission design and operational decisions.

  3. 3D Numerical simulation of bed morphological responses to complex in-streamstructures

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Liu, X.

    2017-12-01

    In-stream structures are widely used in stream restoration for both hydraulic and ecologicalpurposes. The geometries of the structures are usually designed to be extremely complex andirregular, so as to provide nature-like physical habitat. The aim of this study is to develop anumerical model to accurately predict the bed-load transport and the morphological changescaused by the complex in-stream structures. This model is developed in the platform ofOpenFOAM. In the hydrodynamics part, it utilizes different turbulence models to capture thedetailed turbulence information near the in-stream structures. The technique of immersedboundary method (IBM) is efficiently implemented in the model to describe the movable bendand the rigid solid body of in-stream structures. With IBM, the difficulty of mesh generation onthe complex geometry is greatly alleviated, and the bed surface deformation is able to becoupled in to flow system. This morphodynamics model is firstly validated by simple structures,such as the morphology of the scour in log-vane structure. Then it is applied in a more complexstructure, engineered log jams (ELJ), which consists of multiple logs piled together. Thenumerical results including turbulence flow information and bed morphological responses areevaluated against the experimental measurement within the exact same flow condition.

  4. A new model for bed load sampler calibration to replace the probability-matching method

    Treesearch

    Robert B. Thomas; Jack Lewis

    1993-01-01

    In 1977 extensive data were collected to calibrate six Helley-Smith bed load samplers with four sediment particle sizes in a flume at the St. Anthony Falls Hydraulic Laboratory at the University of Minnesota. Because sampler data cannot be collected at the same time and place as ""true"" trap measurements, the ""probability-matching...

  5. Modeling the Effects of Reservoir Releases on the Bed Material Sediment Flux of the Colorado River in western Colorado and eastern Utah

    NASA Astrophysics Data System (ADS)

    Pitlick, J.; Bizzi, S.; Schmitt, R. J. P.

    2017-12-01

    Warm-water reaches of the upper Colorado River have historically provided important habitat for four endangered fishes. Over time these habitats have been altered or lost due to reductions in peak flows and sediment loads caused by reservoir operations. In an effort to reverse these trends, controlled reservoir releases are now used to enhance sediment transport and restore channel complexity. In this presentation, we discuss the development of a sediment routing model designed to assess how changes in water and sediment supply can affect the mass balance of sediment. The model is formulated for ten reaches of the Colorado River spanning 250 km where values of bankfull discharge, width, and reach-average slope have been measured. Bed surface grain size distributions (GSDs) have also been measured throughout the study area; these distributions are used as a test of the model, not as input, except as an upstream boundary condition. In modeling fluxes and GSDs, we assume that the bed load transport capacity is determined by local hydraulic conditions and bed surface grain sizes. Estimates of the bankfull bed load transport capacity in each reach are computed for 14 size fractions of the surface bed material, and the fractional transport rates are summed to get the total transport capacity. In the adjacent reach, fluxes of each size fraction from upstream are used to determine the mean grain size, and the fractional transport capacity of that reach. Calculations proceed downstream and illustrate how linked changes in discharge, shear stress and mean grain size affect (1) the total bed load transport capacity, and (2) the size distribution of the bed surface sediment. The results show that model-derived GSDs match measured GSDs very closely, except for two reaches in the lower part of the study area where slope is affected by uplift associated with salt diapirs; here the model significantly overestimates the transport capacity in relation to the supply. Except for these two reaches, the modeled bed load fluxes seem reasonable (0.5-1.0 kg/m/s at bankfull flow), and exhibit downstream trends that are consistent with trends reported in previous studies. Finally, model simulations show that if reservoir releases fall short of target flows (e.g. bankfull) this can have a disproportionately negative effect on the mass balance of sediment.

  6. External Catalyst Breakup Phenomena

    DTIC Science & Technology

    1976-06-01

    catalyst particle can cause high internal pressures which result in particle destruction. Analytical results suggest rhat erosion effects from solid...mechanisms. * Pressure Forces. High G loadings and bed pressure drops should be avoided. Bed pre-loads should be kept at a minimum value. Thruster...5.2.7.1 Failure Theories ............................ 243 5.2.7.2 Maximum Tension Stress Criterion ............ 244 5.2.7.3 Distortion Energy Approach

  7. Variability in Loading of Mechanically Masticated Fuel Beds in Northern California and Southwestern Oregon

    Treesearch

    Jeffrey M. Kane; Eric E. Knapp; J. Morgan Varner

    2006-01-01

    The use of mechanical mastication to treat non-merchantable fuels is becoming increasingly popular, but loadings and other characteristics of masticated fuel beds are unknown. Surveys of eight recently masticated sites in northern California and southwestern Oregon indicate that significant site level differences were detected for 1 hr and 10 hr time-lag classes and...

  8. Characterization of hydrodynamics and solids mixing in fluidized beds involving biomass

    NASA Astrophysics Data System (ADS)

    Fotovat, Farzam

    This thesis focuses on the characterization of hydrodynamics and mixing phenomena in fluidized beds containing mixtures of sand and irregular biomass particles. The first objective of this study is understanding the effect of the large biomass particles on the bubbling characteristics and gas distribution pattern of sand fluidized beds. The second objective is the characterization of mixing/segregation of biomass and sand particles under fluidization conditions. A variety of experimental techniques are employed to study the behavior of two constituting phases of a fluidized bed, i.e., dilute (bubble) and dense (emulsion) phases. Exploring the characteristic fluidization velocities of sand-biomass mixtures unveils that the onset of bubbling in these systems occurs at a higher gas velocity compared to that of the initial fluidization velocity (Uif). The initial bubbling velocity (Uib), the final fluidization velocity ( Uff), and the transition gas velocity from bubbling to turbulent regime (Uc) rise by increasing the fraction of biomass in the mixture. Statistical analysis of the pressure signal at top of the bed reveals that increasing the biomass load hinders the evolution of bubbles at a low gas velocity (U<0.6 m/s), while at high velocities, the bubbling trend of beds containing different fractions of biomass is comparable. The addition of biomass particles to a bed of sand leads to an increase in the mean voidage of the bed; however, the voidage of each phase remains unaffected. It is observed that large biomass particles trigger a break-up of the bubbles, which results in boosting bubbling frequency. The fraction of bubbles at the center of the bed increases with the load of biomass. At the wall region, however, it starts to decrease by adding 2% wt. biomass to pure sand and then increases with the further addition of biomass. The Radioactive Particle Tracking (RPT) technique is implemented in the second section of this work to study the motion and distribution of biomass particles at U=0.36 m/s and U=0.64 m/s. In this regard, an active biomass particle is tracked for a long period of time and its instantaneous position is recorded. The acquired data is then processed to achieve the time-averaged concentration profile of biomass particles. This profile represents the segregation of biomass particles, which tend to accumulate in the upper levels of the bed. Changes in the fraction of biomass with increasing gas velocity are inferred from the local changes of the time-averaged pressure drop values at the top of the bed. To determine the parameters affecting the movement and segregation of biomass particles, their circulatory motion is also scrutinized using the RPT data. The circulation of biomass is impeded when the load of biomass rises at U=0.36 m/s, resulting in a more pronounced segregation of sand and biomass. The opposite trend is observed at U=0.64 m/s. This prompts a more uniform distribution of particles along the bed and brings about a higher degree of mixing. The average rise velocity of biomass is 0.2 times the bubble velocity, regardless of the biomass load or fluidization velocity. A one-dimensional model is proposed to predict the volume fraction of biomass along the bed. Some of the terms of this model are linked to the fluidizing behavior of biomass particles as deduced from the RPT findings. The fluidization of sand and cylindrical biomass particles is also simulated using the BARRACUDA CPFD software, which is based on the Lagrangian-Eulerian approach. Simulation and experimental results are compared in order to evaluate the capability of the numerical approach to predict the bubbling characteristics of the sand-biomass mixture for systems differing in composition and fluidization velocity. The last part of this thesis is devoted to the separation of the main components of the shredded bulky waste. A step-wise process has been developed based on the elutriation and density segregation techniques. After removal of the light and interwoven species of the shredded waste by elutriation, the nonelutriated materials are further separated into two successive fluidization columns. Polypropylene and glass beads are introduced as the fluidization media in these columns in order to make density segregation of the target and not-target components possible. Hence, undesirable combustible matters and hard plastic are separated as the overflow of the first and second fluidization steps. A second elutriation column is also devised to separate and recover fiber and soft plastic. To determine optimal operating conditions, several influential parameters, such as the elutriation velocity and time, the size and density of the fluidization media, and the initial configuration of the feedstock and bed material, are explored. The kinetics of segregation is also derived for both fluidization steps. (Abstract shortened by UMI.).

  9. Biofilm development in fixed bed biofilm reactors: experiments and simple models for engineering design purposes.

    PubMed

    Szilágyi, N; Kovács, R; Kenyeres, I; Csikor, Zs

    2013-01-01

    Biofilm development in a fixed bed biofilm reactor system performing municipal wastewater treatment was monitored aiming at accumulating colonization and maximum biofilm mass data usable in engineering practice for process design purposes. Initially a 6 month experimental period was selected for investigations where the biofilm formation and the performance of the reactors were monitored. The results were analyzed by two methods: for simple, steady-state process design purposes the maximum biofilm mass on carriers versus influent load and a time constant of the biofilm growth were determined, whereas for design approaches using dynamic models a simple biofilm mass prediction model including attachment and detachment mechanisms was selected and fitted to the experimental data. According to a detailed statistical analysis, the collected data have not allowed us to determine both the time constant of biofilm growth and the maximum biofilm mass on carriers at the same time. The observed maximum biofilm mass could be determined with a reasonable error and ranged between 438 gTS/m(2) carrier surface and 843 gTS/m(2), depending on influent load, and hydrodynamic conditions. The parallel analysis of the attachment-detachment model showed that the experimental data set allowed us to determine the attachment rate coefficient which was in the range of 0.05-0.4 m d(-1) depending on influent load and hydrodynamic conditions.

  10. Cardiac atrophy after bed rest and spaceflight.

    PubMed

    Perhonen, M A; Franco, F; Lane, L D; Buckey, J C; Blomqvist, C G; Zerwekh, J E; Peshock, R M; Weatherall, P T; Levine, B D

    2001-08-01

    Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity of cardiac muscle under different loading conditions.

  11. Cardiac atrophy after bed rest and spaceflight

    NASA Technical Reports Server (NTRS)

    Perhonen, M. A.; Franco, F.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.; Zerwekh, J. E.; Peshock, R. M.; Weatherall, P. T.; Levine, B. D.

    2001-01-01

    Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity of cardiac muscle under different loading conditions.

  12. Sorting waves and associated eigenvalues

    NASA Astrophysics Data System (ADS)

    Carbonari, Costanza; Colombini, Marco; Solari, Luca

    2017-04-01

    The presence of mixed sediment always characterizes gravel bed rivers. Sorting processes take place during bed load transport of heterogeneous sediment mixtures. The two main elements necessary to the occurrence of sorting are the heterogeneous character of sediments and the presence of an active sediment transport. When these two key ingredients are simultaneously present, the segregation of bed material is consistently detected both in the field [7] and in laboratory [3] observations. In heterogeneous sediment transport, bed altimetric variations and sorting always coexist and both mechanisms are independently capable of driving the formation of morphological patterns. Indeed, consistent patterns of longitudinal and transverse sorting are identified almost ubiquitously. In some cases, such as bar formation [2] and channel bends [5], sorting acts as a stabilizing effect and therefore the dominant mechanism driving pattern formation is associated with bed altimetric variations. In other cases, such as longitudinal streaks, sorting enhances system instability and can therefore be considered the prevailing mechanism. Bedload sheets, first observed by Khunle and Southard [1], represent another classic example of a morphological pattern essentially triggered by sorting, as theoretical [4] and experimental [3] results suggested. These sorting waves cause strong spatial and temporal fluctuations of bedload transport rate typical observed in gravel bed rivers. The problem of bed load transport of a sediment mixture is formulated in the framework of a 1D linear stability analysis. The base state consists of a uniform flow in an infinitely wide channel with active bed load transport. The behaviour of the eigenvalues associated with fluid motion, bed evolution and sorting processes in the space of the significant flow and sediment parameters is analysed. A comparison is attempted with the results of the theoretical analysis of Seminara Colombini and Parker [4] and Stecca, Siviglia and Blom [6]. [1] Kuhnle, R.A. and Southard, J.B. 1988. Bed Load Transport Fluctuations in a Gravel Bed Laboratory Channel. Water Resources Research, 24(2), 247-260. [2] Lanzoni, S. and Tubino, M. 1999. Grain sorting and bar instability. Journal of Fluid Mechanics. 393, 149-174. [3] Recking, A., Frey, P., Paquier, A. and Belleudy, P. 2009. An experimental investigation of mechanisms involved in bed load sheet production and migration. Journal of Geophysical Research, 114, F03010. [4] Seminara, G., Colombini, M. and Parker, G. 1996. Nearly pure sorting waves and formation of bedload sheets. Journal of Fluid Mechanics. 312, (1996), 253-278. [5] Seminara, G., Solari, L. and Tubino, M. 1997. Finite amplitude scour and grain sorting in wide channel bends. XXVII IAHR Congress, San Francisco, 1445-1450. [6] Stecca, G., Siviglia, A. and Blom, A. 2014. Mathematical analysis of the Saint-Venant-Hirano model for mixed-sediment morphodynamics. Water Resources Research, 50, 7563-7589. [7] Whiting, P.J., Dietrich, W.E., Leopold, L. B., Drake, T. G. and Shreve, R.L. 1988. Bedload sheets in heterogeneous sediment. Geology, 16, 105-108.

  13. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and sand concentrations at the South Yuba River (11417500) gage were typically higher than those at the Middle Yuba River (11410000) gage for a given streamflow throughout the three year project period. Factors contributing to differences in sediment loads and grain-size distributions at the Middle Yuba River (11410000) and South Yuba River (11417500) gages include contributing drainage area, flow diversions, and deposition of bed-material-sized sediment in reservoirs upstream of the Middle Yuba River (11410000) gage. Owing to its larger drainage area, higher flows, and absence of man-made structures that restrict sediment movement in the lower basin, the South Yuba River transports a greater and coarser sediment load.

  14. Fluid dynamics of the unsteady two phase processes leading to DDT in granular solid propellants

    NASA Technical Reports Server (NTRS)

    Krier, H.; Butler, P. B.; Lembeck, M. F.

    1980-01-01

    Deflagration to Detonation (DDT) was predicted to occur in porous beds of high-energy solid propellants by solving the unsteady fluid mechanical convective heat transfer from hot gas products, obtained from the rapid burning at high pressures, provides the impetus to develop a narrow combustion zone and a resulting strong shock. A parametric study clearly indicates that DDT occurs only when a combination of the solids loading fraction, the burning rate constants, the propellant chemical energy, and the particle size provide for critical energy and gas release to support a detonation wave. Predictions for the run-up length to detonation as a function of these parameters are presented.

  15. Coupling fine particle and bedload transport in gravel-bedded streams

    NASA Astrophysics Data System (ADS)

    Park, Jungsu; Hunt, James R.

    2017-09-01

    Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.

  16. Estimating sediment discharge: Appendix D

    USGS Publications Warehouse

    Gray, John R.; Simões, Francisco J. M.

    2008-01-01

    Sediment-discharge measurements usually are available on a discrete or periodic basis. However, estimates of sediment transport often are needed for unmeasured periods, such as when daily or annual sediment-discharge values are sought, or when estimates of transport rates for unmeasured or hypothetical flows are required. Selected methods for estimating suspended-sediment, bed-load, bed- material-load, and total-load discharges have been presented in some detail elsewhere in this volume. The purposes of this contribution are to present some limitations and potential pitfalls associated with obtaining and using the requisite data and equations to estimate sediment discharges and to provide guidance for selecting appropriate estimating equations. Records of sediment discharge are derived from data collected with sufficient frequency to obtain reliable estimates for the computational interval and period. Most sediment- discharge records are computed at daily or annual intervals based on periodically collected data, although some partial records represent discrete or seasonal intervals such as those for flood periods. The method used to calculate sediment- discharge records is dependent on the types and frequency of available data. Records for suspended-sediment discharge computed by methods described by Porterfield (1972) are most prevalent, in part because measurement protocols and computational techniques are well established and because suspended sediment composes the bulk of sediment dis- charges for many rivers. Discharge records for bed load, total load, or in some cases bed-material load plus wash load are less common. Reliable estimation of sediment discharges presupposes that the data on which the estimates are based are comparable and reliable. Unfortunately, data describing a selected characteristic of sediment were not necessarily derived—collected, processed, analyzed, or interpreted—in a consistent manner. For example, bed-load data collected with different types of bed-load samplers may not be comparable (Gray et al. 1991; Childers 1999; Edwards and Glysson 1999). The total suspended solids (TSS) analytical method tends to produce concentration data from open-channel flows that are biased low with respect to their paired suspended-sediment concentration values, particularly when sand-size material composes more than about a quarter of the material in suspension. Instantaneous sediment-discharge values based on TSS data may differ from the more reliable product of suspended- sediment concentration values and the same water-discharge data by an order of magnitude (Gray et al. 2000; Bent et al. 2001; Glysson et al. 2000; 2001). An assessment of data comparability and reliability is an important first step in the estimation of sediment discharges. There are two approaches to obtaining values describing sediment loads in streams. One is based on direct measurement of the quantities of interest, and the other on relations developed between hydraulic parameters and sediment- transport potential. In the next sections, the most common techniques for both approaches are briefly addressed.

  17. Vortex-induced suspension of sediment in the surf zone

    NASA Astrophysics Data System (ADS)

    Otsuka, Junichi; Saruwatari, Ayumi; Watanabe, Yasunori

    2017-12-01

    A major mechanism of sediment suspension by organized vortices produced under violent breaking waves in the surf zone was identified through physical and computational experiments. Counter-rotating flows within obliquely descending eddies produced between adjacent primary roller vortices induce transverse convergent near-bed flows, driving bed load transport to form regular patterns of transverse depositions. The deposited sediment is then rapidly ejected by upward carrier flows induced between the vortices. This mechanism of vortex-induced suspension is supported by experimental evidence that coherent sediment clouds are ejected where the obliquely descending eddies reach the sea bed after the breaking wave front has passed. In addition to the effects of settling and turbulent diffusion caused by breaking waves, the effect of the vortex-induced flows was incorporated into a suspension model on the basis of vorticity dynamics and parametric characteristics of transverse flows in breaking waves. The model proposed here reasonably predicts an exponential attenuation of the measured sediment concentration due to violent plunging waves and significantly improves the underprediction of the concentration produced by previous models.

  18. Functional relationships between vegetation, channel morphology, and flow efficiency in an alluvial (anabranching) river

    NASA Astrophysics Data System (ADS)

    Jansen, John D.; Nanson, Gerald C.

    2010-12-01

    Water and sediment flux interactions are examined in Magela Creek, an alluvial (anabranching) sand bed river in the northern Australian tropics. Dense riparian vegetation stabilizes the channels and floodplains thereby preventing erosional instability at flow depths up to 6.2 times bankfull and discharges up to 15 times bankfull. Narrow anabranching channels characterize >92% of the alluvial reach and transport bed load more efficiently than short reaches of wide single-channels, yet overall 29 ± 12% of the bed load is sequestered and the average vertical accretion rate is 0.41 ± 0.17 mm yr-1 along the 12 km study reach. The most effective discharge for transporting sediment (40-45 m3 s-1) is consistent at all 5 stations (10 channels) examined and is equivalent to the channel-forming discharge. It has an average recurrence interval of 1.01 years, occurs for an exceptionally long portion (13-15%) of the annual flow duration, and averages a remarkable 2.1 times bankfull. The high flow efficiency (i.e., bed load transport rate to stream power ratio) of the anabranches is facilitated by low width/depth channels with banks reinforced by vegetation. Colonnades of bank top trees confine high-velocity flows overbed (i.e., over the channel bed) at stages well above bankfull. At even larger overbank flows, momentum exchange between the channels and forested floodplains restrains overbed velocities, in some cases causing them to decline, thereby limiting erosion. Magela Creek exhibits a complicated set of planform, cross-sectional and vegetative adjustments that boost overbed velocities and enhance bed load yield in multiple channels while restraining velocities and erosion at the largest discharges.

  19. Stability testing and analysis of a PMAD dc test bed for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Brush, Andrew S.

    1992-01-01

    The Power Management and Distribution (PMAD) dc Test Bed at the NASA Lewis Research Center is introduced. Its usefulness to the Space Station Freedom Electrical Power (EPS) development and design are discussed in context of verifying system stability. Stability criteria developed by Middlebrook and Cuk are discussed as they apply to constant power dc to dc converters exhibiting negative input impedance at low frequencies. The utility-type Secondary Subsystem is presented and each component is described. The instrumentation used to measure input and output impedance under load is defined. Test results obtained from input and output impedance measurements of test bed components are presented. It is shown that the PMAD dc Test Bed Secondary Subsystem meets the Middlebrook stability criterion for certain loading conditions.

  20. Stability Testing and Analysis of a PMAD DC Test Bed for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Brush, Andrew S.

    1992-01-01

    The Power Management and Distribution (PMAD) DC Test Bed at the NASA Lewis Research Center is introduced. Its usefulness to the Space Station Freedom Electrical Power (EPS) development and design are discussed in context of verifying system stability. Stability criteria developed by Middlebrook and Cuk are discussed as they apply to constant power DC to DC converters exhibiting negative input impedance at low frequencies. The utility-type Secondary Subsystem is presented and each component is described. The instrumentation used to measure input and output impedance under load is defined. Test results obtained from input and output impedance measurements of test bed components are presented. It is shown that the PMAD DC Test Bed Secondary Subsystem meets the Middlebrook stability criterion for certain loading conditions.

  1. Bed Surface Adjustments to Spatially Variable Flow in Low Relative Submergence Regimes

    NASA Astrophysics Data System (ADS)

    Monsalve, A.; Yager, E. M.

    2017-11-01

    In mountainous rivers, large relatively immobile grains partly control the local and reach-averaged flow hydraulics and sediment fluxes. When the flow depth is similar to the size of these grains (low relative submergence), heterogeneous flow structures and plunging flow cause spatial distributions of bed surface elevations, textures, and sedimentation rates. To explore how the bed surface responds to these flow variations we conducted a set of experiments in which we varied the relative submergence of staggered hemispheres (simulated large boulders) between runs. All experiments had the same average sediment transport capacity, upstream sediment supply, and initial bed thickness and grain size distribution. We combined our laboratory measurements with a 3-D flow model to obtain the detailed flow structure around the hemispheres. The local bed shear stress field displayed substantial variability and controlled the bed load transport rates and direction in which sediment moved. The divergence in bed shear stress caused by the hemispheres promoted size-selective bed load deposition, which formed patches of coarse sediment upstream of the hemisphere. Sediment deposition caused a decrease in local bed shear stress, which combined with the coarser grain size, enhanced the stability of this patch. The region downstream of the hemispheres was largely controlled by a recirculation zone and had little to no change in grain size, bed elevation, and bed shear stress. The formation, development, and stability of sediment patches in mountain streams is controlled by the bed shear stress divergence and magnitude and direction of the local bed shear stress field.

  2. Comment of "Event-based soil loss models for construction sites" by Trenouth and Gharabaghi, J. Hydrol. doi: 10.1016/jhydrol.2015.03.010

    NASA Astrophysics Data System (ADS)

    Kinnell, P. I. A.

    2015-09-01

    Trenouth and Gharabaghi (2015) present two models which replace the EI30 index used as the event erosivity index in the USLE/RUSLE with ones that include runoff and values of EI30 to powers that differ for 1.0 as the event erosivity factor in modelling soil loss for construction sites. Their analysis on the application of these models focused on data from 5 locations as a whole but did not show how the models worked at each location. Practically, the ability to predict sediment yields at a specific location is more relevant than the capacity of a model to predict sediment yields globally. Also, the mathematical structure of their proposed models shows little regard to the physical processes involved in causing erosion and sediment yield. There is still the need to develop event-based empirical models for construction sites that are robust because they give proper consideration to the erosion process involved, and take account of the fact that sediment yield is usually determined from measurements of suspended load whereas soil loss at the scale for which the USLE/RUSLE model was developed includes both suspended load and bed load.

  3. Universal shape evolution of particles by bed-load

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Domokos, G.; Shaw, S.; Sipos, A.; Szabo, T.

    2016-12-01

    River currents, wind and waves drive bed-load transport, in which sediment particles collide with each other and the Earth's surface. A generic consequence is erosion and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the erosion of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of chipping erosion are insensitive to details of collisions and material properties. Here we present data from fluvial, aeolian and coastal environments that suggest a universal relation between particle circularity and mass lost due to bed-load chipping. Simulations and experiments support the diffusion model and demonstrate that three constraints are required to produce this universal curve: (i) initial particles are fragments; (ii) erosion is dominated by collisions among like-sized particles; and (iii) collision energy is small enough that chipping dominates over fragmentation. We show that the mechanics of bedrock weathering and bed-load transport select these constraints, providing the foundation to estimate a particle's erosion rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of chipping to downstream fining in rivers and deserts, and to infer transport conditions using only images of sediment grains.

  4. A probabilistic framework for the cover effect in bedrock erosion

    NASA Astrophysics Data System (ADS)

    Turowski, Jens M.; Hodge, Rebecca

    2017-06-01

    The cover effect in fluvial bedrock erosion is a major control on bedrock channel morphology and long-term channel dynamics. Here, we suggest a probabilistic framework for the description of the cover effect that can be applied to field, laboratory, and modelling data and thus allows the comparison of results from different sources. The framework describes the formation of sediment cover as a function of the probability of sediment being deposited on already alluviated areas of the bed. We define benchmark cases and suggest physical interpretations of deviations from these benchmarks. Furthermore, we develop a reach-scale model for sediment transfer in a bedrock channel and use it to clarify the relations between the sediment mass residing on the bed, the exposed bedrock fraction, and the transport stage. We derive system timescales and investigate cover response to cyclic perturbations. The model predicts that bedrock channels can achieve grade in steady state by adjusting bed cover. Thus, bedrock channels have at least two characteristic timescales of response. Over short timescales, the degree of bed cover is adjusted such that the supplied sediment load can just be transported, while over long timescales, channel morphology evolves such that the bedrock incision rate matches the tectonic uplift or base-level lowering rate.

  5. Lagrangian and Eulerian description of bed-load particle kinematics

    NASA Astrophysics Data System (ADS)

    Ballio, Francesco; Sadabadi, Seyed Abbas Hosseini; Pokrajac, Dubravka; Radice, Alessio

    2016-04-01

    The motion of bed-load sediment particles transported by a flow can be analyzed within a Lagrangian or an Eulerian framework. In the former case, we consider the particles as individual objects in motion and we study their kinematic properties. The latter approach is instead referred to suitably chosen control volumes. Quantities describing sediment motion in the two frameworks are different, and the relationships among the two approaches are not straightforward. In this work, we intend to discuss the kinematic properties of sediment transport: first, a set of quantities is univocally defined; then, relationships among different representations are explored. Proof-of-concept results presented in the study are from a recent experiment involving weak bed-load sediment transport, where the moving particles were released over a fixed rough bed. The bulk flow velocity was 1.4 times the critical value for incipient particle motion, and particles were mostly moving by rolling and sliding, with limited saltation. The particle motion was filmed from the top and the measurements were conducted by image-based methods, obtaining extensive samples of virtually-instantaneous quantities.

  6. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 691,000 pounds per square mile per year. In general, no pronounced changes in channel width were evident at six streamgage sites located upstream from the reservoir. At the Barnes and Marysville streamgage sites, located upstream from the reservoir, long-term channel-bed degradation followed by stability was indicated. At the Frankfort streamgage site, located upstream from the reservoir, channel-bed aggradation of 1.65 feet from 1969 to 1989 followed by channel-bed degradation of 2.4 feet from 1989 to 2010 was indicated and may represent the passage of a sediment pulse caused by historical disturbances (for example, channelization) in the upstream basin. With the exception of the Frankfort streamgage site, current (2010) conditions at four streamgages located upstream from the reservoir were typified by channel-bed stability. At the Manhattan streamgage site, located downstream from the reservoir, high-flow releases associated with the 1993 flood widened the channel about 60 feet (30 percent). The channel bed at this site degraded 4.2 feet from 1960 to 1998 and since has been relatively stable. For the purpose of computing suspended-sediment concentration and load, the use of turbidity data in a regression model can provide more reliable and reproducible estimates than a regression model that uses discharge as the sole independent variable. Moreover, the use of discharge only to compute suspended-sediment concentration and load may result in overprediction. Stream channel banks, compared to channel beds, likely are a more important source of sediment to Kanopolis and Tuttle Creek Lakes from the upstream basins. Other sediment sources include surface-soil erosion in the basins and shoreline erosion in the reservoirs.

  7. Predicting morphological changes DS New Naga-Hammadi Barrage for extreme Nile flood flows: A Monte Carlo analysis

    PubMed Central

    Sattar, Ahmed M.A.; Raslan, Yasser M.

    2013-01-01

    While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude. PMID:25685476

  8. Predicting morphological changes DS New Naga-Hammadi Barrage for extreme Nile flood flows: A Monte Carlo analysis.

    PubMed

    Sattar, Ahmed M A; Raslan, Yasser M

    2014-01-01

    While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude.

  9. Biodegradation of Methyl Tertiary Butyl Ether (MTBE) by a Microbial Consortium in a Continuous Up-Flow Packed-Bed Biofilm Reactor: Kinetic Study, Metabolite Identification and Toxicity Bioassays

    PubMed Central

    Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana

    2016-01-01

    This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater. PMID:27907122

  10. Biodegradation of Methyl Tertiary Butyl Ether (MTBE) by a Microbial Consortium in a Continuous Up-Flow Packed-Bed Biofilm Reactor: Kinetic Study, Metabolite Identification and Toxicity Bioassays.

    PubMed

    Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana; Cristiani-Urbina, Eliseo

    2016-01-01

    This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater.

  11. Estimation of contraction scour in riverbed using SERF

    USGS Publications Warehouse

    Jiang, J.; Ganju, N.K.; Mehta, A.J.

    2004-01-01

    Contraction scour in a firm-clay estuarine riverbed is estimated at an oil-unloading terminal at the Port of Haldia in India, where a scour hole attained a maximum depth greater than 5 m relative to the original bottom. A linear equation for the erosion flux as a function of the excess bed shear stress was semicalibrated in a rotating-cylinder device called SERF (Simulator of Erosion Rate Function) and coupled to a hydrodynamic code to simulate the hole as a clear-water scour process. SERF, whose essential design is based on previous such devices, additionally included a load cell for in situ and rapid measurement of the eroded sediment mass. Based on SERF's performance and the degree of comparison between measured and simulated hole geometry, it appears that this device holds promise as a simple tool for prediction of scour in firm-clay beds. ?? ASCE.

  12. Sampling interval analysis and CDF generation for grain-scale gravel bed topography

    USDA-ARS?s Scientific Manuscript database

    In river hydraulics, there is a continuing need for characterizing bed elevations to arrive at quantitative roughness measures that can be used in predicting flow depth and for improved prediction of fine-sediment transport over and through coarse beds. Recently published prediction methods require...

  13. [Rapid startup and nitrogen removal characteristic of anaerobic ammonium oxidation reactor in packed bed biofilm reactor with suspended carrier].

    PubMed

    Chen, Sheng; Sun, De-zhi; Yu, Guang-lu

    2010-03-01

    Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.

  14. VO2 kinetics of constant-load exercise following bed-rest-induced deconditioning

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Goldwater, D. J.; Sandler, H.

    1984-01-01

    Previous studies have shown that the oxygen uptake kinetics during exercise and recovery may be changed by alterations in work intensity, prior exercise, muscle group involvement, ambient conditions, posture, disease state, and level of physical conditioning. However, the effects of detraining on oxygen uptake kinetics have not been determined. The present investigation has the objective to determine the effects of deconditioning following seven days of continuous head-down bed rest on changes in steady-state oxygen uptake, O2 deficit, and recovery oxygen uptake during the performance of constant-load exercise. The obtained results may provide support for previous proposals that submaximal oxygen uptake was significantly reduced following bed rest. The major finding was that bed-rest deconditioning resulted in a reduction of total O2 transport/utilization capacity during the transient phase of upright but not supine exercise.

  15. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB)

    NASA Astrophysics Data System (ADS)

    Sarzyński, Rafał; Gąszczak, Agnieszka; Janecki, Daniel; Bartelmus, Grażyna

    2017-10-01

    The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene) was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ˜200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution) through packing (polypropylene Ralu rings) covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2). The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 - 84 gm-3 h -1), styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  16. Using an extreme bony prominence anatomical model to examine the influence of bed sheet materials and bed making methods on the distribution of pressure on the support surface.

    PubMed

    Iuchi, Terumi; Nakajima, Yukari; Fukuda, Moriyoshi; Matsuo, Junko; Okamoto, Hiroyuki; Sanada, Hiromi; Sugama, Junko

    2014-05-01

    Bed sheets generate high surface tension across the support surface and increase pressure to the body through a process known as the hammock effect. Using an anatomical model and a loading device characterized by extreme bony prominences, the present study compared pressure distributions on support surfaces across different bed making methods and bed sheet materials to determine the factors that influence pressure distribution. The model was placed on a pressure mapping system (CONFORMat; NITTA Corp., Osaka, Japan), and interface pressure was measured. Bed sheet elasticity and friction between the support surface and the bed sheets were also measured. For maximum interface pressure, the relative values of the following methods were higher than those of the control method, which did not use any bed sheets: cotton sheets with hospital corners (1.28, p = 0.02), polyester with no corners (1.29, p = 0.01), cotton with no corners (1.31, p = 0.003), and fitted polyester sheets (1.35, p = 0.002). Stepwise multiple regression analysis indicated that maximum interface pressure was negatively correlated with bed sheet elasticity (R(2) = 0.74). A statistically significant negative correlation was observed between maximum interface pressure and immersion depth, which was measured using the loading device (r = -0.40 and p = 0.04). We found that several combinations of bed making methods and bed sheet materials induced maximum interface pressures greater than those observed for the control method. Bed sheet materials influenced maximum interface pressure, and bed sheet elasticity was particularly important in reducing maximum interface pressure. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  17. Heel blood flow during loading and off-loading in bedridden older adults with low and normal ankle-brachial pressure index: a quasi-experimental study.

    PubMed

    Masaki, Nami; Sugama, Junko; Okuwa, Mayumi; Inagaki, Misako; Matsuo, Junko; Nakatani, Tosio; Sanada, Hiromi

    2013-07-01

    The purpose of this study was to evaluate the differences in heel blood flow during loading and off-loading in bedridden adults older than 65 years. The patients were divided into three groups based on ankle-brachial pressure index (ABI) and transcutaneous oxygen tension (tcPO₂): (1) patients with an ABI ≥ 0.8 (Group A); (2) patients with an ABI < 0.8 and heel tcPO₂ ≥ 10 mmHg (Group B); and (3) patients with an ABI < 0.8 and heel tcPO₂ < 10 mmHg (Group C). Heel blood flow was monitored using tcPO₂ sensors. Data were collected with the heel (1) suspended above the bed surface (preload), (2) on the bed surface for 30 min (loading), and (3) again suspended above the bed surface for 60 min (off-loading). Heel blood flow during off-loading was assessed using three parameters: oxygen recovery index (ORI), total tcPO₂ for the first 10 min, and change in tcPO₂ after 60 min of off-loading. ORI in Group C (n = 8) was significantly shorter than in Groups A (n = 22) and B (n = 15). Total tcPO₂ for the first 10 min of off-loading in Group C was significantly less than that in Groups A and B. Change in tcPO₂ after 60 min of off-loading in Group C was less than in Group A. Based on these findings, additional preventive care against heel blood flow decrease in older adults with an ABI < 0.8 and heel tcPO₂ < 10 mmHg might be necessary after loading.

  18. Effects of physical interventions on house dust mite allergen levels in carpet, bed, and upholstery dust in low-income, urban homes.

    PubMed Central

    Vojta, P J; Randels, S P; Stout, J; Muilenberg, M; Burge, H A; Lynn, H; Mitchell, H; O'Connor, G T; Zeldin, D C

    2001-01-01

    House dust mite allergen exposure is a postulated risk factor for allergic sensitization, asthma development, and asthma morbidity; however, practical and effective methods to mitigate these allergens from low-income, urban home environments remain elusive. The purpose of this study was to assess the feasibility and effectiveness of physical interventions to mitigate house dust mite allergens in this setting. Homes with high levels of house dust mite allergen (Der f 1 + Der p 1 > or = 10 microg/g dust by enzyme-linked immunosorbent assay) in the bed, bedroom carpet, and/or upholstered furniture were enrolled in the study. Carpets and upholstered furniture were subjected to a single treatment of either dry steam cleaning plus vacuuming (carpet only) or intensive vacuuming alone. Bed interventions consisted of complete encasement of the mattress, box spring, and pillows plus either weekly professional or in-home laundering of nonencased bedding. Dust samples were collected at baseline and again at 3 days (carpet and upholstery only) and 2, 4, and 8 weeks posttreatment. We compared pretreatment mean allergen concentrations and loads to posttreatment values and performed between-group analyses after adjusting for differences in the pretreatment means. Both dry steam cleaning plus vacuuming and vacuuming alone resulted in a significant reduction in carpet house dust mite allergen concentration and load (p < 0.05). Levels approached pretreatment values by 4 weeks posttreatment in the intensive vacuuming group, whereas steam cleaning plus vacuuming effected a decrease that persisted for up to 8 weeks. Significant decreases in bed house dust mite allergen concentration and load were obtained in response to encasement and either professional or in-home laundering (p < 0.001). Between-group analysis revealed significantly less postintervention house dust mite allergen load in professionally laundered compared to home-laundered beds (p < 0.05). Intensive vacuuming and dry steam cleaning both caused a significant reduction in allergen concentration and load in upholstered furniture samples (p < 0.005). Based on these data, we conclude that physical interventions offer practical, effective means of reducing house dust mite allergen levels in low-income, urban home environments. PMID:11564617

  19. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, Charles D.; Petersen, James N.; Davison, Brian H.

    1996-01-01

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  20. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, C.D.; Petersen, J.N.; Davison, B.H.

    1996-07-09

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.

  1. Feasibility Study of a Lunar Analog Bed Rest Model

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.; Platts, Steven H.; Yarbough, Patrice; Buccello-Stout, Regina

    2010-01-01

    The purpose of this study was to determine the feasibility of using a 9.5deg head-up tilt bed rest model to simulate the effects of the 1/6 g load to the human body that exists on the lunar surface. The lunar analog bed rest model utilized a modified hospital bed. The modifications included mounting the mattress on a sled that rolled on bearings to provide freedom of movement. The weight of the sled was off-loaded using a counterweight system to insure that 1/6 body weight was applied along the long axis (z-axis) of the body. Force was verified through use of a force plate mounted at the foot of the bed. A seating assembly was added to the bed to permit periods of sitting. Subjects alternated between standing and sitting positions throughout the day. A total of 35% of the day was spent in the standing position and 65% was spent sitting. In an effort to achieve physiologic fluid shifts expected for a 1/6 G environment, subjects wore compression stockings and performed unloaded foot and ankle exercises. Eight subjects (3 females and 5 males) participated in this study. Subjects spent 13 days in the pre-bed rest phase, 6 days in bed rest and 3 days post bed rest. Subjects consumed a standardized diet throughout the study. To determine feasibility, measures of subject comfort, force and plasma volume were collected. Subject comfort was assessed using a Likert scale. Subjects were asked to assess level of comfort (0-100) for 11 body regions and provide an overall rating. Results indicated minimal to no discomfort as most subjects reported scores of zero. Force measures were performed for each standing position and were validated against subject s calculated 1/6 body weight (r(sup 2) = 0.993). The carbon monoxide rebreathing technique was used to assess plasma volume during pre-bed rest and on the last day of bed rest. Plasma volume results indicated a significant decrease (p = 0.001) from pre to post bed rest values. Subjects lost on average 8.3% (sd = 6.1%) during the bed rest phase. Findings from this feasibility study indicated that 1) the lunar analog bed rest model was well tolerated by subjects; 2) a 1/6 load was accurately applied to the z-axis of the body; and 3) plasma volume losses could be achieved in a head-up tilt bed rest model. Future work to refine this model should include extending the duration of bed rest to mimic longer mission durations and a comprehensive assessment of the physiological responses to this bed rest analog.

  2. Creepy landscapes : river sediment entrainment develops granular flow rheology on creeping bed.

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Chatanantavet, P.; Ortiz, C. P.; Houssais, M.; Durian, D. J.; Jerolmack, D. J.

    2015-12-01

    To predict rates of river sediment transport, one must first address the zeroth-order question: when does sediment move? The concept and determination of the critical fluid shear stress remains hazy, as observing particle motion and determining sediment flux becomes increasingly hard in its vicinity. To tackle this problem, we designed a novel annular flume experiment - reproducing an infinite river channel - where the refractive index of particles and the fluid are matched. The fluid is dyed with a fluorescent powder and a green laser sheet illuminates the fluid only, allowing us to observe particle displacements in a vertical plane. Experiments are designed to highlight the basic granular interactions of sediment transport while suppressing the complicating effects of turbulence; accordingly, particles are uniform spheres and Reynolds numbers are of order 1. We have performed sediment transport measurements close to the onset of particle motion, at steady state, and over long enough time to record averaged rheological behavior of particles. We find that particles entrained by a fluid exhibit successively from top to bottom: a suspension regime, a dense granular flow regime, and - instead of a static bed - a creeping regime. Data from experiments at a range of fluid stresses can be collapsed onto one universal rheologic curve that indicates the effective friction is a monotonic function of a dimensionless number called the viscous number. These data are in remarkable agreement with the local rheology model proposed by Boyer et al., which means that dense granular flows, suspensions and bed-load transport are unified under a common frictional flow law. Importantly, we observe slow creeping of the granular bed even in the absence of bed load, at fluid stresses that are below the apparent critical value. This last observation challenges the classical definition of the onset of sediment transport, and points to a continuous transition from quasi-static deformation to granular flow. These results provide a new perspective to connect the transport laws for soil creep, landslides/debris flows and river transport. Although our experiments are highly idealized, evidence from other studies suggest that our observations may be directly relevant to natural systems. Finally we show that our findings are robust for mixed grain sizes.

  3. Determining Relative Contributions of Eroded Landscape Sediment and Bank Sediment to the Suspended Load of Streams and Wetlands Using 7Be and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Matisoff, G.; Whiting, P.; Kuhnle, R.

    2005-12-01

    The naturally occurring radionuclides, 7Be and 210Pbxs, have been used individually as tracers of sediment particles throughout watersheds. However, use of the two radionuclides together enables eliciting information regarding the major contributors of fine sediment to the suspended load of a stream or wetland. We report on a study that uses these radionuclides to quantify the relative proportion of eroded surface soils, bank material and resuspended bed sediment in the fine suspended sediment load of the Goodwin Creek, MS, and Old Woman Creek, OH watersheds. The eroded surface soil has a unique radionuclide signature relative to the bed sediments in Old Woman Creek and the bank material along Goodwin Creek that allows for the quantification of the relative proportions of the different sediments in the sediment load. In Old Woman Creek, the different signatures are controlled by the differential decay of the two radionuclides. In Goodwin Creek, the different signatures are due to different erosion processes controlling the sediment delivery to streams, namely sheet erosion and bank collapse. The eroded surface soils will have higher activities of the 7Be and 210Pbxs than bed/bank sediments. The fine suspended sediment, which is a mixture of eroded surface soils and resuspended bed sediment or collapsed bank sediment, will have an intermediate radionuclide signature quantified in terms of the relative proportion from both sediments. A simple two-end member mixing model is used to determine the relative proportions of both sediments to the total fine sediment load.

  4. The impact of dairy cows' bedding material and its microbial content on the quality and safety of milk - A cross sectional study of UK farms.

    PubMed

    Bradley, Andrew J; Leach, Katharine A; Green, Martin J; Gibbons, Jenny; Ohnstad, Ian C; Black, David H; Payne, Barbara; Prout, Victoria E; Breen, James E

    2018-03-23

    The introduction of bedding dairy cows on recycled manure solids (RMS) in the UK led to concern by competent authorities that there could be an increased, unacceptable risk to animal and human health. A cross-sectional study was designed to evaluate the microbial content of different bedding materials, when used by dairy cows, and its impact on the microbial content of milk. Data were collected from farms bedding lactating cows on sand (n=41), sawdust (n=44) and RMS (n=40). The mean duration of RMS use prior to sampling was 13months. Total bacterial count, and counts of Streptococcus/Enterococcus spp., Staphylococcus spp., Bacillus cereus, thermophilic, thermoduric and psychrotrophic bacteria were determined in used bedding and milk. Samples were evaluated for the presence/absence of Listeria monocytogenes, Salmonella spp. and Yersinia enterocolitica. Data on milking practices were collected to investigate their potential to reduce microbial transfer from bedding to milk. There were substantial differences in bacterial counts both within and between bedding materials. However, there were no significant differences between bedding groups in counts in milk for any of the organisms studied, and no significant correlations between bacterial load in used bedding and milk. Fore-milking was associated with a reduced total bacterial count in milk. Dipping teats with disinfectant and drying, prior to milking, was associated with lower numbers of Streptococcus/Enterococcus spp. in milk. Disinfecting clusters between milking different cows was associated with a reduction in thermophilic and psychrotrophic counts in milk. This study did not provide evidence that use of RMS bedding increased the risk of presence of Y. enterocolitica, Salmonella spp. or L. monocytogenes in milk. However, the strength of this conclusion should be tempered by the relatively small number of farms on which Y. enterocolitica and Salmonella spp. were isolated. It is concluded that, despite the higher bacterial load of RMS, its use as bedding for lactating dairy cows need not be associated with a higher bacterial load in milk than the use of sand or sawdust. However, this finding must be interpreted in the light of the relatively recent introduction of RMS as a bedding material on the farms studied. Teat preparation provides a control point for the potential transfer of microorganisms from bedding to milk. The detection of zoonotic pathogens in a small proportion of milk samples, independent of bedding type, indicates that pasteurisation of milk prior to human consumption remains an important control measure. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Lattice strain measurements on sandstones under load using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Frischbutter, A.; Neov, D.; Scheffzük, Ch.; Vrána, M.; Walther, K.

    2000-11-01

    Neutron diffraction methods (both time-of-flight- and angle-dispersive diffraction) are applied to intracrystalline strain measurements on geological samples undergoing uniaxial increasing compressional load. The experiments were carried out on Cretaceous sandstones from the Elbezone (East Germany), consisting of >95% quartz which are bedded but without crystallographic preferred orientation of quartz. From the stress-strain relation the Young's modulus for our quartz sample was determined to be (72.2±2.9) GPa using results of the neutron time-of-flight method. The influence of different kinds of bedding in sandstones (laminated and convolute bedding) could be determined. We observed differences of factor 2 (convolute bedding) and 3 (laminated bedding) for the elastic stiffness, determined with angle dispersive neutron diffraction (crystallographic strain) and with strain gauges (mechanical strain). The data indicate which geological conditions may influence the stress-strain behaviour of geological materials. The influence of bedding on the stress-strain behaviour of a laminated bedded sandstone was indicated by direct residual stress measurements using neutron time-of-flight diffraction. The measurements were carried out six days after unloading the sample. Residual strain was measured for three positions from the centre to the periphery and within two radial directions of the cylinder. We observed that residual strain changes from extension to compression in a different manner for two perpendicular directions of the bedding plane.

  6. Solid-state Fermentation of Xylanase from Penicillium canescens 10-10c in a Multi-layer-packed Bed Reactor

    NASA Astrophysics Data System (ADS)

    Assamoi, Antoine A.; Destain, Jacqueline; Delvigne, Frank; Lognay, Georges; Thonart, Philippe

    Xylanase is produced by Penicillium canescens 10-10c from soya oil cake in static conditions using solid-state fermentation. The impact of several parameters such as the nature and the size of inoculum, bed-loading, and aeration is evaluated during the fermentation process. Mycelial inoculum gives more production than conidial inoculum. Increasing the quantity of inoculum enhances slightly xylanase production. Forced aeration induces more sporulation of strain and reduces xylanase production. However, forced moistened air improves the production compared to production obtained with forced dry air. In addition, increasing bed-loading reduces the specific xylanase production likely due to the incapacity of the Penicillium strain to grow deeply in the fermented soya oil cake mass. Thus, the best cultivation conditions involve mycelial inoculum form, a bed loading of 1-cm height and passive aeration. The maximum xylanase activity is obtained after 7 days of fermentation and attains 10,200 U/g of soya oil cake. These levels are higher than those presented in the literature and, therefore, show all the potentialities of this stock and this technique for the production of xylanase.

  7. Image-based Lagrangian Particle Tracking in Bed-load Experiments.

    PubMed

    Radice, Alessio; Sarkar, Sankar; Ballio, Francesco

    2017-07-20

    Image analysis has been increasingly used for the measurement of river flows due to its capabilities to furnish detailed quantitative depictions at a relatively low cost. This manuscript describes an application of particle tracking velocimetry (PTV) to a bed-load experiment with lightweight sediment. The key characteristics of the investigated sediment transport conditions were the presence of a covered flow and of a fixed rough bed above which particles were released in limited number at the flume inlet. Under the applied flow conditions, the motion of the individual bed-load particles was intermittent, with alternating movement and stillness terms. The flow pattern was preliminarily characterized by acoustic measurements of vertical profiles of the stream-wise velocity. During process visualization, a large field of view was obtained using two action-cameras placed at different locations along the flume. The experimental protocol is described in terms of channel calibration, experiment realization, image pre-processing, automatic particle tracking, and post-processing of particle track data from the two cameras. The presented proof-of-concept results include probability distributions of the particle hop length and duration. The achievements of this work are compared to those of existing literature to demonstrate the validity of the protocol.

  8. Numerical simulation of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis

    2012-11-01

    We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.

  9. A sorting mechanism for a riffle-pool sequence

    Treesearch

    Thomas Lisle

    1979-01-01

    Transport of coarse, heterogeneous debris in a natural stream under a wide range of flows usually results in a remarkably stable, undulatory bed profile, which manifests an in transit sorting process of the bed material. In general, finer material representative of the bulk of the normal bed load resides in the deep sections, or pools, below flood stages. At high...

  10. Measurement of the temporal progression of scour in a pool-riffle sequence in a gravel bed stream using an electronic scour monitor

    NASA Astrophysics Data System (ADS)

    Devries, Paul; Burges, Stephen J.; Daigneau, Julie; Stearns, Daniel

    2001-11-01

    A relatively inexpensive prototype monitor was designed and developed to record temporal variation in scour depth and was field-tested in a gravel bed stream. The device consists of plastic practice golf balls that are fitted internally with ring magnets and strung on a two-conductor cable enclosing a small reed switch. The balls are installed and oriented near-vertically in the streambed. As each ball is disturbed and released, it slides along the cable past the reed switch, and the time of circuit closure caused by passage of the magnet is recorded by a data logger. The device can be applied in arrays that span large areas of the streambed, including in wide channels that are inaccessible during a flood. Data obtained from 19 devices installed in an aggrading site described scouring processes in a pool-riffle interface during a bed load transport event. Substantial bed excavation occurred in the region of the pool edge during the rising stage, indicating existence of a local, temporally varying imbalance in bed load transport rate. Bed disturbance in the rest of the site prior to aggradation was limited to the surface and immediate subpavement layer.

  11. Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration.

    PubMed

    Avila, Cristina; Nivala, Jaime; Olsson, Linda; Kassa, Kinfe; Headley, Tom; Mueller, Roland A; Bayona, Josep Maria; García, Joan

    2014-10-01

    Four side-by-side pilot-scale vertical flow (VF) constructed wetlands of different designs were evaluated for the removal of eight widely used emerging organic contaminants from municipal wastewater (i.e. ibuprofen, acetaminophen, diclofenac, tonalide, oxybenzone, triclosan, ethinylestradiol, bisphenol A). Three of the systems were free-draining, with one containing a gravel substrate (VGp), while the other two contained sand substrate (VS1p and VS2p). The fourth system had a saturated gravel substrate and active aeration supplied across the bottom of the bed (VAp). All beds were pulse-loaded on an hourly basis, except VS2p, which was pulse-loaded every 2h. Each system had a surface area of 6.2m(2), received a hydraulic loading rate of 95 mm/day and was planted with Phragmites australis. The beds received an organic loading rate of 7-16 gTOC/m(2)d. The sand-based VF (VS1p) performed significantly better (p<0.05) than the gravel-based wetland (VGp) both in the removal of conventional water quality parameters (TSS, TOC, NH4-N) and studied emerging organic contaminants except for diclofenac (85 ± 17% vs. 74 ± 15% average emerging organic contaminant removal for VS1p and VGp, respectively). Although loading frequency (hourly vs. bi-hourly) was not observed to affect the removal efficiency of the cited conventional water quality parameters, significantly lower removal efficiencies were found for tonalide and bisphenol A for the VF wetland that received bi-hourly dosing (VS2p) (higher volume per pulse), probably due to the more reducing conditions observed in that system. However, diclofenac was the only contaminant showing an opposite trend to the rest of the compounds, achieving higher elimination rates in the wetlands that exhibited less-oxidizing conditions (VS2p and VGp). The use of active aeration in the saturated gravel bed (VAp) generally improved the treatment performance compared to the free-draining gravel bed (VGp) and achieved a similar performance to the free-draining sand-based VF wetlands (VS1p). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Predicting the distribution of bed material accumulation using river network sediment budgets

    NASA Astrophysics Data System (ADS)

    Wilkinson, Scott N.; Prosser, Ian P.; Hughes, Andrew O.

    2006-10-01

    Assessing the spatial distribution of bed material accumulation in river networks is important for determining the impacts of erosion on downstream channel form and habitat and for planning erosion and sediment management. A model that constructs spatially distributed budgets of bed material sediment is developed to predict the locations of accumulation following land use change. For each link in the river network, GIS algorithms are used to predict bed material supply from gullies, river banks, and upstream tributaries and to compare total supply with transport capacity. The model is tested in the 29,000 km2 Murrumbidgee River catchment in southeast Australia. It correctly predicts the presence or absence of accumulation in 71% of river links, which is significantly better performance than previous models, which do not account for spatial variability in sediment supply and transport capacity. Representing transient sediment storage is important for predicting smaller accumulations. Bed material accumulation is predicted in 25% of the river network, indicating its importance as an environmental problem in Australia.

  13. Explosive acceleration of plates using nonconventional explosives heavily loaded with inert and reactive materials

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Petel, Oren; Huneault, Justin; Serge, Matthew; Frost, David; Higgins, Andrew

    2013-06-01

    The detonation behavior of high explosives containing dispersed quantities or packed beds of dense additives has been previously investigated with the observation that such systems depart from the ``gamma law'' behavior typical of homogeneous explosives due to momentum transfer and thermalization between particles and detonation products. However, the influence of this non-ideal detonation behavior on the divergence speed of plates has been far less rigorously studied and existing literature suggests that the effect of dense additives cannot be explained solely through the straightforward application of the Gurney method with energy and density averaging of the explosive. In the current study, the acceleration history and terminal velocity of aluminum flyers launched by packed beds of granular material saturated by amine-sensitized nitromethane is reported. Two experimental configurations are used to study acceleration either by a purely grazing detonation in a finite thickness slab of explosive or by a normal detonation from an effectively infinite thickness of explosive. Flyer acceleration and velocity is measured via Photonic Doppler Velocimetry. Packed beds of plastic, aluminum, glass, iron, and bismuth are considered and the data is compared to Gurney velocity predictions.

  14. Developing a cost effective rock bed thermal energy storage system: Design and modelling

    NASA Astrophysics Data System (ADS)

    Laubscher, Hendrik Frederik; von Backström, Theodor Willem; Dinter, Frank

    2017-06-01

    Thermal energy storage is an integral part of the drive for low cost of concentrated solar power (CSP). Storage of thermal energy enables CSP plants to provide base load power. Alternative, cheaper concepts for storing thermal energy have been conceptually proposed in previous studies. Using rocks as a storage medium and air as a heat transfer fluid, the proposed concept offers the potential of lower cost storage because of the abundance and affordability of rocks. A packed rock bed thermal energy storage (TES) concept is investigated and a design for an experimental rig is done. This paper describes the design and modelling of an experimental test facility for a cost effective packed rock bed thermal energy storage system. Cost effective, simplified designs for the different subsystems of an experimental setup are developed based on the availability of materials and equipment. Modelling of this design to predict the thermal performance of the TES system is covered in this study. If the concept under consideration proves to be successful, a design that is scalable and commercially viable can be proposed for further development of an industrial thermal energy storage system.

  15. SLS Intertank Test Article, ITA, is attached to crosshead of loa

    NASA Image and Video Library

    2018-04-04

    SLS Intertank Test Article, ITA, is attached to crosshead of load test Annex, Bldg. 4619, and removed from bed of KMAG transporter. ITA is slowly raised from bed of KMAG transporter and KMAG is removed.

  16. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion

    NASA Astrophysics Data System (ADS)

    Maldonado, Sergio; Borthwick, Alistair G. L.

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119, 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  17. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion.

    PubMed

    Maldonado, Sergio; Borthwick, Alistair G L

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  18. Simulation of biomass-steam gasification in fluidized bed reactors: Model setup, comparisons and preliminary predictions.

    PubMed

    Yan, Linbo; Lim, C Jim; Yue, Guangxi; He, Boshu; Grace, John R

    2016-12-01

    A user-defined solver integrating the solid-gas surface reactions and the multi-phase particle-in-cell (MP-PIC) approach is built based on the OpenFOAM software. The solver is tested against experiments. Then, biomass-steam gasification in a dual fluidized bed (DFB) gasifier is preliminarily predicted. It is found that the predictions agree well with the experimental results. The bed material circulation loop in the DFB can form automatically and the bed height is about 1m. The voidage gradually increases along the height of the bed zone in the bubbling fluidized bed (BFB) of the DFB. The U-bend and cyclone can separate the syngas in the BFB and the flue gas in the circulating fluidized bed. The concentration of the gasification products is relatively higher in the conical transition section, and the dry and nitrogen-free syngas at the BFB outlet is predicted to be composed of 55% H 2 , 20% CO, 20% CO 2 and 5% CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Mohr-Coulomb criterion for intact rock strength and friction - a re-evaluation and consideration of failure under polyaxial stresses

    NASA Astrophysics Data System (ADS)

    Hackston, Abigail; Rutter, Ernest

    2016-04-01

    Darley Dale and Pennant sandstones were tested under conditions of both axisymmetric shortening and extension normal to bedding. These are the two extremes of loading under polyaxial stress conditions. Failure under generalized stress conditions can be predicted from the Mohr-Coulomb failure criterion under axisymmetric shortening conditions, provided the best form of polyaxial failure criterion is known. The sandstone data are best reconciled using the Mogi (1967) empirical criterion. Fault plane orientations produced vary greatly with respect to the maximum compressive stress direction in the two loading configurations. The normals to the Mohr-Coulomb failure envelopes do not predict the orientations of the fault planes eventually produced. Frictional sliding on variously inclined saw cuts and failure surfaces produced in intact rock samples was also investigated. Friction coefficient is not affected by fault plane orientation in a given loading configuration, but friction coefficients in extension were systematically lower than in compression for both rock types. Friction data for these and other porous sandstones accord well with the Byerlee (1978) generalization about rock friction being largely independent of rock type. For engineering and geodynamic modelling purposes, the stress-state-dependent friction coefficient should be used for sandstones, but it is not known to what extent this might apply to other rock types.

  20. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  1. Data compilation for assessing sediment and toxic chemical loads from the Green River to the lower Duwamish Waterway, Washington

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.

    2014-01-01

    Between February and June 2013, the U.S. Geological Survey collected representative samples of whole water, suspended sediment, and (or) bed sediment from a single strategically located site on the Duwamish River, Washington, during seven periods of different flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including polycyclic aromatic hydrocarbons and other semivolatile compounds, polychlorinated biphenyl Aroclors and the 209 congeners, metals, dioxins/furans, volatile organic compounds, pesticides, butyltins, hexavalent chromium, and total organic carbon. Chemical concentrations associated with bulk bed sediment (<2 mm) and fine bed sediment (<62.5 μm) fractions were compared to chemical concentrations associated with suspended sediment. Bulk bed sediment concentrations generally were lower than fine bed sediment and suspended-sediment concentrations. Concurrent with the chemistry sampling, additional parameters were measured, including instantaneous river discharge, suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters. From these data, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated.

  2. Modeling environmental contamination in hospital single- and four-bed rooms.

    PubMed

    King, M-F; Noakes, C J; Sleigh, P A

    2015-12-01

    Aerial dispersion of pathogens is recognized as a potential transmission route for hospital acquired infections; however, little is known about the link between healthcare worker (HCW) contacts' with contaminated surfaces, the transmission of infections and hospital room design. We combine computational fluid dynamics (CFD) simulations of bioaerosol deposition with a validated probabilistic HCW-surface contact model to estimate the relative quantity of pathogens accrued on hands during six types of care procedures in two room types. Results demonstrate that care type is most influential (P < 0.001), followed by the number of surface contacts (P < 0.001) and the distribution of surface pathogens (P = 0.05). Highest hand contamination was predicted during Personal care despite the highest levels of hand hygiene. Ventilation rates of 6 ac/h vs. 4 ac/h showed only minor reductions in predicted hand colonization. Pathogens accrued on hands decreased monotonically after patient care in single rooms due to the physical barrier of bioaerosol transmission between rooms and subsequent hand sanitation. Conversely, contamination was predicted to increase during contact with patients in four-bed rooms due to spatial spread of pathogens. Location of the infectious patient with respect to ventilation played a key role in determining pathogen loadings (P = 0.05). We present the first quantitative model predicting the surface contacts by HCW and the subsequent accretion of pathogenic material as they perform standard patient care. This model indicates that single rooms may significantly reduce the risk of cross-contamination due to indirect infection transmission. Not all care types pose the same risks to patients, and housekeeping performed by HCWs may be an important contribution in the transmission of pathogens between patients. Ventilation rates and positioning of infectious patients within four-bed rooms can mitigate the accretion of pathogens, whereby reducing the risk of missed hand hygiene opportunities. The model provides a tool to quantitatively evaluate the influence of hospital room design on infection risk. © 2015 The Authors. Indoor Air Published by John Wiley & Sons Ltd.

  3. A 3D smoothed particle hydrodynamics model for erosional dam-break floods

    NASA Astrophysics Data System (ADS)

    Amicarelli, Andrea; Kocak, Bozhana; Sibilla, Stefano; Grabe, Jürgen

    2017-11-01

    A mesh-less smoothed particle hydrodynamics (SPH) model for bed-load transport on erosional dam-break floods is presented. This mixture model describes both the liquid phase and the solid granular material. The model is validated on the results from several experiments on erosional dam breaks. A comparison between the present model and a 2-phase SPH model for geotechnical applications (Gadget Soil; TUHH) is performed. A demonstrative 3D erosional dam break on complex topography is investigated. The present 3D mixture model is characterised by: no tuning parameter for the mixture viscosity; consistency with the Kinetic Theory of Granular Flow; ability to reproduce the evolution of the free surface and the bed-load transport layer; applicability to practical problems in civil engineering. The numerical developments of this study are represented by a new SPH scheme for bed-load transport, which is implemented in the SPH code SPHERA v.8.0 (RSE SpA), distributed as FOSS on GitHub.

  4. Cognitive Rationalizations for Tanning-Bed Use: A Preliminary Exploration

    PubMed Central

    Banerjee, Smita C.; Hay, Jennifer L.; Greene, Kathryn

    2016-01-01

    Objectives To examine construct and predictive utility of an adapted cognitive rationalization scale for tanning-bed use. Methods Current/former tanning-bed-using undergraduate students (N = 216; 87.6% females; 78.4% white) at a large northeastern university participated in a survey. A cognitive rationalization for tanning-bed use scale was adapted. Standardized self-report measures of past tanning-bed use, advantages of tanning, perceived vulnerability to photoaging, tanning-bed use dependence, and tanning- bed use intention were also administered. Results The cognitive rationalization scale exhibited strong construct and predictive validity. Current tanners and tanning-bed-use-dependent participants endorsed rationalizations more strongly than did former tanners and not-tanning-bed-use-dependent participants respectively. Conclusions Findings indicate that cognitive rationalizations help explain discrepancy between inconsistent cognitions. PMID:23985280

  5. Description of the PMAD systems test bed facility and data system

    NASA Technical Reports Server (NTRS)

    Trase, Larry; Fong, Don; Adkins, Vicki; Birchenough, Arthur

    1992-01-01

    The power management and distribution (PMAD) systems test bed facility, including the power sources and loads available, is discussed, and the PMAD data system (PDS) is described. The PDS controls the test-bed facility hardware, and monitors and records the electric power system control data bus and external data. The PDS architecture is discussed, and each of the subsystems is described.

  6. Durable terrestrial bedrock predicts submarine canyon formation

    USGS Publications Warehouse

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  7. Groundwater Arsenic Adsorption on Granular TiO2: Integrating Atomic Structure, Filtration, and Health Impact.

    PubMed

    Hu, Shan; Shi, Qiantao; Jing, Chuanyong

    2015-08-18

    A pressing challenge in arsenic (As) adsorptive filtration is to decipher how the As atomic surface structure obtained in the laboratory can be used to accurately predict the field filtration cycle. The motivation of this study was therefore to integrate molecular level As adsorption mechanisms and capacities to predict effluent As from granular TiO2 columns in the field as well as its health impacts. Approximately 2,955 bed volumes of groundwater with an average of 542 μg/L As were filtered before the effluent As concentration exceeded 10 μg/L, corresponding to an adsorption capacity of 1.53 mg As/g TiO2. After regeneration, the TiO2 column could treat 2,563 bed volumes of groundwater, resulting in an As load of 1.36 mg/g TiO2. Column filtration and EXAFS results showed that among coexisting ions present in groundwater, only Ca(2+), Si(OH)4, and HCO3(-) would interfere with As adsorption. The compound effects of coexisting ions and molecular level structural information were incorporated in the PHREEQC program to satisfactorily predict the As breakthrough curves. The total urinary As concentration from four volunteers of local residences, ranging from 972 to 2,080 μg/L before groundwater treatment, decreased to the range 31.7-73.3 μg/L at the end of the experimental cycle (15-33 days).

  8. Increasing the capacity for treatment of chemical plant wastewater by replacing existing suspended carrier media with Kaldnes Moving Bed media at a plant in Singapore.

    PubMed

    Wessman, F G; Yan Yuegen, E; Zheng, Q; He, G; Welander, T; Rusten, B

    2004-01-01

    The Kaldnes biomedia K1, which is used in the patented Kaldnes Moving Bed biofilm process, has been tested along with other types of biofilm carriers for biological pretreatment of a complex chemical industry wastewater. The main objective of the test was to find a biofilm carrier that could replace the existing suspended carrier media and at the same time increase the capacity of the existing roughing filter-activated sludge plant by 20% or more. At volumetric organic loads of 7.1 kg COD/m3/d the Kaldnes Moving Bed process achieved much higher removal rates and much lower effluent concentrations than roughing filters using other carriers. The Kaldnes roughing stage achieved more than 85% removal of organic carbon and more than 90% removal of BOD5 at the tested organic load, which was equivalent to a specific biofilm surface area load of 24 g COD/m2/d. Even for the combined roughing filter-activated sludge process, the Kaldnes carriers outperformed the other carriers, with 98% removal of organic carbon and 99.6% removal of BOD5. The Kaldnes train final effluent concentrations were only 22 mg FOC/L and 7 mg BOD5/L. Based on the successful pilot testing, the full-scale plant was upgraded with Kaldnes Moving Bed roughing filters. During normal operation the upgraded plant has easily met the discharge limits of 100 mg COD/L and 50 mg SS/L. For the month of September 2002, with organic loads between 100 and 115% of the design load for the second half of the month, average effluent concentrations were as low as 9 mg FOC/L, 51 mg COD/L and 12 mg SS/L.

  9. Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot Weather

    PubMed Central

    Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John

    2014-01-01

    Simple Summary Transport is an inevitable process in the modern, multi-site swine industry. Pigs do not have efficient physiological means (such as sweating) to cool themselves. Therefore, being transported in hot weather can cause heat stress and even death. Sprinkling the pigs and/or bedding may facilitate cooling, thereby improving well-being and survivability of pigs arriving at the plant. Abstract This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons. PMID:26480035

  10. Indoor tanning and problem behavior.

    PubMed

    Bagdasarov, Zhanna; Banerjee, Smita; Greene, Kathryn; Campo, Shelly

    2008-01-01

    The authors examined factors predicting college students' use of tanning beds. Undergraduate students (N = 745) at a large Northeastern university participated in the study by answering a survey measuring tanning behavior and other psychosocial variables, including sensation seeking, self-esteem, tanning image beliefs, and friends' tanning bed use. All 3 systems from problem behavior theory predicted past tanning bed use and intention to use tanning beds. The authors observed a positive association between sensation seeking and intention to use tanning beds. Tanning image beliefs were positively associated with both past tanning behavior and intention to use tanning beds. Interventions focusing on friend and acquaintance social network influences may be more effective than health-risk campaigns in reducing tanning bed use.

  11. The relative contribution of near-bed vs. intragravel horizontal transport to fine sediment accumulation processes in river gravel beds

    NASA Astrophysics Data System (ADS)

    Casas-Mulet, Roser; Lakhanpal, Garima; Stewardson, Michael J.

    2018-02-01

    Understanding flow-sediment interactions is important for comprehending river functioning. Fine sediment accumulation processes, in particular, have key implications for ecosystem health. However, the amount of fines generated by intragravel flows and later accumulated in gravel streambeds may have been underestimated, as the hydraulic-related driving transport mechanisms in play are not clearly identified. Specifically, the relative contribution of fines from upper vs. lower sediment layers in gravel beds is not well understood. By recreating flooded and dewatered conditions in an experimental flume filled with natural sediment, we estimated such contributions by observing and collecting intragravel transported fines that were later accumulated into a void in the middle of the sediment matrix. Near-bed transport in the upper sediment layers (named Brinkman load) during flooded conditions accounted for most (90%) of the accumulated fines. Intragravel transport in the lower sediment layers (named Interstitial load) was the sole source of transport and accumulation during dewatered conditions with steeper hydraulic gradients. Interstitial load accounted for 10% of the total transport during flooded conditions. Although small, such estimations demonstrate that hydraulic-gradient transport in the lower sediment layers occurs in spite of the contradicting analytical assessments. We provide a case study to challenge the traditional approaches of assessing intragravel transport, and a useful framework to understand the origin and relative contribution of fine sediment accumulation in gravel beds. Such knowledge will be highly useful for the design of monitoring programs aiding river management, particularly in regulated rivers.

  12. Phytoremediation of selenium by two helophyte species in subsurface flow constructed wetland.

    PubMed

    Shardendu; Salhani, N; Boulyga, S F; Stengel, E

    2003-03-01

    The phytoremediation of selenium by two different wetland species was investigated. Selenium (20.4 microg/l) was supplied continuously to subsurface flow constructed wetlands, one vegetated with Typha latifolia L. and the other with Phragmites australis (Cav.) Trin. ex Steud. The beds of both species had same hydraulic loading rate (0.079 m(3)/m(2)/d) and water retention time (24 h). However, the mass loading rate was 1.27 mg Se/m(2)/d for Phragmites and 1.35 mg Se/m(2)/d for Typha. In the Typha bed Se migrated faster than in the Phragmites bed. After 25 d of Se supplementation in the Typha bed about 54% of the Se inlet concentration remained in the outlet water. In the Phragmites bed Se was removed completely from the water after passing through 3/4 of the bed length. After 65 d of Se supplementation the highest amount of Se (2.8 microg/g dry matter) was determined in the organic material of the Typha bed. Roots and rhizomes accumulated 2.2 and 1.8 microg/g dry matter respectively. Phragmites accumulated Se in the leaves and stems, but not in the rhizomes. The accumulation in the leaves (1.8 microg Se/g dry matter) was three times higher than in the stems (0.6 microg Se/g dry matter). Copyright 2002 Elsevier Science Ltd.

  13. Amino-functionalized mesoporous MCM-41 silica as an efficient adsorbent for water treatment: batch and fixed-bed column adsorption of the nitrate anion

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Gatkash, Mehdi; Younesi, Habibollah; Shahbazi, Afsaneh; Heidari, Ava

    2017-07-01

    In the present study, amino-functionalized Mobil Composite Material No. 41 (MCM-41) was used as an adsorbent to remove nitrate anions from aqueous solutions. Mono-, di- and tri-amino functioned silicas (N-MCM-41, NN-MCM-41 and NNN-MCM-41) were prepared by post-synthesis grafting method. The samples were characterized by means of X-ray powder diffraction, FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy and nitrogen adsorption-desorption. The effects of pH, initial concentration of anions, and adsorbent loading were examined in batch adsorption system. Results of adsorption experiments showed that the adsorption capacity increased with increasing adsorbent loading and initial anion concentration. It was found that the Langmuir mathematical model indicated better fit to the experimental data than the Freundlich. According to the constants of the Langmuir equation, the maximum adsorption capacity for nitrate anion by N-MCM-41, NN-MCM-41 and NNN-MCM-41 was found to be 31.68, 38.58 and 36.81 mg/g, respectively. The adsorption kinetics were investigated with pseudo-first-order and pseudo-second-order model. Adsorption followed the pseudo-second-order rate kinetics. The coefficients of determination for pseudo-second-order kinetic model are >0.99. For continuous adsorption experiments, NNN-MCM-41 adsorbent was used for the removal of nitrate anion from solutions. Breakthrough curves were investigated at different bed heights, flow rates and initial nitrate anion concentrations. The Thomas and Yan models were utilized to calculate the kinetic parameters and to predict the breakthrough curves of different bed height. Results from this study illustrated the potential utility of these adsorbents for nitrate removal from water solution.

  14. SLS Intertank Test Article, ITA, is attached to crosshead of loa

    NASA Image and Video Library

    2018-04-04

    SLS Intertank Test Article, ITA, is attached to crosshead of load test Annex, Bldg. 4619, and removed from bed of KMAG transporter. Rob Ziegler, L, and Roger Myrick, R, of Aerie Aerospace attach load lines to Aft Load Ring of Intertank Test Articlle

  15. SLS Intertank Test Article, ITA, is attached to crosshead of loa

    NASA Image and Video Library

    2018-04-04

    SLS Intertank Test Article, ITA, is attached to crosshead of load test Annex, Bldg. 4619, and removed from bed of KMAG transporter. Rob Ziegler, (L), and Roger Myrick (R), of Aerie Aerospace attach load lines to Aft Load Ring of Intertank Test Article.

  16. Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

    NASA Astrophysics Data System (ADS)

    Yadollahi, Aref

    This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval--i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel)--on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation--i.e. the orientation in which AM parts are built--on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing--here, as-built versus machined--on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defect-free AM product--immediately after fabrication--has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept. Using the FASTRAN code, the fatigue-life of L-PBF Inconel 718 was accurately calculated using the size and shape of process-induced voids in the material. In addition, the maximum valley depth of the surface profile was found to be an appropriate representative of the initial surface flaw for fatigue-life prediction of AM materials in an as-built surface condition.

  17. Investigation of Anaerobic Fluidized Bed Reactor/ Aerobic Moving Bed Bio Reactor (AFBR/MMBR) System for Treatment of Currant Wastewater

    PubMed Central

    JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein

    2013-01-01

    Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640

  18. Aircraft tire behavior during high-speed operations in soil

    NASA Technical Reports Server (NTRS)

    Leland, T. J. W.; Smith, E. G.

    1972-01-01

    An investigation to determine aircraft tire behavior and operating problems in soil of different characteristics was conducted at the Langley landing-loads track with a 29 x 110.0-10, 8-ply-rating, type 3 tire. Four clay test beds of different moisture content and one sand test bed were used to explore the effects on axle drag loads developed during operation at different tire inflation pressures in free rolling, locked-wheel braking, and yawed (cornering) modes, all at forward speeds up to 95 knots. The test results indicated a complicated drag-load--velocity relationship, with a peak in the drag-load curve occurring near 40 knots for most test conditions. The magnitude of this peak was found to vary with tire inflation pressure and soil character and, in certain cases, might prove large enough to make take-off hazardous.

  19. Active member vibration control for a 4 meter primary reflector support structure

    NASA Technical Reports Server (NTRS)

    Umland, J. W.; Chen, G.-S.

    1992-01-01

    The design and testing of a new low voltage piezoelectric active member with integrated load cell and displacement sensor is described. This active member is intended for micron level vibration and structural shape control of the Precision Segmented Reflector test-bed. The test-bed is an erectable 4 meter diameter backup support truss for a 2.4 meter focal length parabolic reflector. Active damping of the test-bed is then demonstrated using the newly developed active members. The control technique used is referred to as bridge feedback. With this technique the internal sensors are used in a local feedback loop to match the active member's input impedance to the structure's load impedance, which then maximizes vibrational energy dissipation. The active damping effectiveness is then evaluated from closed loop frequency responses.

  20. Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot Weather.

    PubMed

    Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John

    2014-04-11

    This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons.

  1. Electric versus hydraulic hospital beds: differences in use during basic nursing tasks.

    PubMed

    Capodaglio, Edda Maria

    2013-01-01

    Biomechanical, postural and ergonomic aspects during real patient-assisting tasks performed by nurses using an electric versus a hydraulic hospital bed were observed. While there were no differences in the flexed postures the nurses adopted, longer performance times were recorded when electric beds were used. Subjective effort, force exertion and lumbar shear forces exceeding safety limits proved electric beds were superior. Patients' dependency level seemed to influence the type of nurses' intervention (duration and force actions), irrespective of the bed used. The nurses greatly appreciated the electric bed. Its use seemed to reduce the level of effort perceived during care giving and the postural load during critical subtasks. Ergonomics and organizational problems related to adopting electric beds in hospital wards should be addressed further to make their use more efficient.

  2. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, U.S.A. 2. Mathematical modeling

    USGS Publications Warehouse

    Jackman, A.P.; Walters, R.A.; Kennedy, V.C.

    1984-01-01

    Three models describing solute transport of conservative ion species and another describing transport of species which adsorb linearly and reversibly on bed sediments are developed and tested. The conservative models are based on three different conceptual models of the transient storage of solute in the bed. One model assumes the bed to be a well-mixed zone with flux of solute into the bed proportional to the difference between stream concentration and bed concentration. The second model assumes solute in the bed is transported by a vertical diffusion process described by Fick's law. The third model assumes that convection occurs in a selected portion of the bed while the mechanism of the first model functions everywhere. The model for adsorbing species assumes that the bed consists of particles of uniform size with the rate of uptake controlled by an intraparticle diffusion process. All models are tested using data collected before, during and after a 24-hr. pulse injection of chloride, strontium, potassium and lead ions into Uvas Creek near Morgan Hill, California, U.S.A. All three conservative models accurately predict chloride ion concentrations in the stream. The model employing the diffusion mechanism for bed transport predicts better than the others. The adsorption model predicts both strontium and potassium ion concentrations well during the injection of the pulse but somewhat overestimates the observed concentrations after the injection ceases. The overestimation may be due to the convection of solute deep into the bed where it is retained longer than the 3-week post-injection observation period. The model, when calibrated for strontium, predicts potassium equally well when the adsorption equilibrium constant for strontium is replaced by that for potassium. ?? 1984.

  3. A progress report on suspended sediment in several western Oregon and western Washington streams.

    Treesearch

    Manes Barton

    1951-01-01

    Streams transport their loads by traction (the bed load) in suspension (the suspended load) and as salts in solution (the solution load). The total load is the sum of these three and is commonly called the water quality. The amounts of and variation in stream flow and water quality have become in the past few years accepted criteria for evaluating watershed conditions...

  4. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA

    PubMed Central

    Hutchinson, Todd F.; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P.

    2016-01-01

    Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline intensity for oak fuel beds and unexpected interactions between litter source and topography. A spread index, which synthesizes a suite of fuel bed, particle, and combustion characteristics to indicate spread (vs extinction) potential, was primarily affected by litter source and, secondarily, by the low spread potentials on mesic landscape positions early in the 5-day dry-down period. A similar result was obtained for modeled fireline intensity. Our results suggest that the continuing transition from oaks to mesophytic species in the Ohio Hills will reduce fire spread potentials and fire intensities. PMID:27536964

  5. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA.

    PubMed

    Dickinson, Matthew B; Hutchinson, Todd F; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P

    2016-01-01

    Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline intensity for oak fuel beds and unexpected interactions between litter source and topography. A spread index, which synthesizes a suite of fuel bed, particle, and combustion characteristics to indicate spread (vs extinction) potential, was primarily affected by litter source and, secondarily, by the low spread potentials on mesic landscape positions early in the 5-day dry-down period. A similar result was obtained for modeled fireline intensity. Our results suggest that the continuing transition from oaks to mesophytic species in the Ohio Hills will reduce fire spread potentials and fire intensities.

  6. Updraft Fixed Bed Gasification Aspen Plus Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2007-09-27

    The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability of the process model.

  7. Toward a unifying constitutive relation for sediment transport across environments

    NASA Astrophysics Data System (ADS)

    Houssais, Morgane; Jerolmack, Douglas J.

    2017-01-01

    Landscape evolution models typically parse the environment into different process domains, each with its own sediment transport law: e.g., soil creep, landslides and debris flows, and river bed-load and suspended-sediment transport. Sediment transport in all environments, however, contains many of the same physical ingredients, albeit in varying proportions: grain entrainment due to a shear force, that is a combination of fluid flow, particle-particle friction and gravity. We present a new take on the perspective originally advanced by Bagnold, that views the long profile of a hillsope-river-shelf system as a continuous gradient of decreasing granular friction dominance and increasing fluid drag dominance on transport capacity. Recent advances in understanding the behavior and regime transitions of dense granular systems suggest that the entire span of granular-to-fluid regimes may be accommodated by a single-phase rheology. This model predicts a material-flow effective friction (or viscosity) that changes with the degree of shear rate and confining pressure. We present experimental results confirming that fluid-driven sediment transport follows this same rheology, for bed and suspended load. Surprisingly, below the apparent threshold of motion we observe that sediment particles creep, in a manner characteristic of glassy systems. We argue that this mechanism is relevant for both hillslopes and rivers. We discuss the possibilities of unifying sediment transport across environments and disciplines, and the potential consequences for modeling landscape evolution.

  8. Towards a better understanding on how large wood is controlling longitudinal sediment (dis)connectivity in mountain streams - concepts and first results

    NASA Astrophysics Data System (ADS)

    Schuchardt, Anne; Pöppl, Ronald; Morche, David

    2016-04-01

    Large wood (LW) provides various ecological and morphological functions. Recent research has focused on habitat diversity and abundance, effects on channel planforms, pool formation, flow regimes and increased storage of organic matter as well as storage of fine sediment. While LW studies and sediment transport rates are the focus of numerous research questions, the influence of large channel blocking barriers (e.g. LW) and their impact on sediment trapping and decoupling transportation pathways is less studied. This project tries to diminish the obvious gap and deals with the modifications of the sediment connectivity by LW. To investigate the influence of large wood on sediment transporting processes and sediment connectivity, the spatial distribution and characterization of LW (>1 m in length and >10 cm in diameter) in channels is examined by field mapping and dGPS measurements. Channel hydraulic parameters are determined by field measurements of channel long profiles and cross sections. To quantify the direct effects of LW on discharge and bed load transport the flow velocity and bed load up- and downstream of LW is measured using an Ott-Nautilus and a portable Helley-Smith bed load sampler during different water stages. Sediment storages behind LWD accumulations will be monitored with dGPS. While accumulation of sediment indicates in-channel sediment storage and thus disconnection from downstream bed load transport, erosion of sediment evidences downstream sediment connectivity. First results will be presented from two study areas in mountain ranges in Germany (Wetterstein Mountain Range) and Austria (Bohemian Massif).

  9. Amino acid supplementation alters bone metabolism during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.

    2005-01-01

    High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.

  10. Evaluation of INL Supplied MOOSE/OSPREY Model: Modeling Water Adsorption on Type 3A Molecular Sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pompilio, L. M.; DePaoli, D. W.; Spencer, B. B.

    The purpose of this study was to evaluate Idaho National Lab’s Multiphysics Object-Oriented Simulation Environment (MOOSE) software in modeling the adsorption of water onto type 3A molecular sieve (3AMS). MOOSE can be thought-of as a computing framework within which applications modeling specific coupled-phenomena can be developed and run. The application titled Off-gas SeParation and REcoverY (OSPREY) has been developed to model gas sorption in packed columns. The sorbate breakthrough curve calculated by MOOSE/OSPREY was compared to results previously obtained in the deep bed hydration tests conducted at Oak Ridge National Laboratory. The coding framework permits selection of various options, whenmore » they exist, for modeling a process. For example, the OSPREY module includes options to model the adsorption equilibrium with a Langmuir model or a generalized statistical thermodynamic adsorption (GSTA) model. The vapor solid equilibria and the operating conditions of the process (e.g., gas phase concentration) are required to calculate the concentration gradient driving the mass transfer between phases. Both the Langmuir and GSTA models were tested in this evaluation. Input variables were either known from experimental conditions, or were available (e.g., density) or were estimated (e.g., thermal conductivity of sorbent) from the literature. Variables were considered independent of time, i.e., rather than having a mass transfer coefficient that varied with time or position in the bed, the parameter was set to remain constant. The calculated results did not coincide with data from laboratory tests. The model accurately estimated the number of bed volumes processed for the given operating parameters, but breakthrough times were not accurately predicted, varying 50% or more from the data. The shape of the breakthrough curves also differed from the experimental data, indicating a much wider sorption band. Model modifications are needed to improve its utility and predictive capability. Recommended improvements include: greater flexibility for input of mass transfer parameters, time-variable gas inlet concentration, direct output of loading and temperature profiles along the bed, and capability to conduct simulations of beds in series.« less

  11. Paracetamol removal in subsurface flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Ranieri, Ezio; Verlicchi, Paola; Young, Thomas M.

    2011-07-01

    SummaryIn this study two pilot scale Horizontal Subsurface Flow Constructed Wetlands (HSFCWs) near Lecce, Italy, planted with different macrophytes ( Phragmites australis and Typha latifolia) and an unplanted control were assessed for their effectiveness in removing paracetamol. Residence time distributions (RTDs) for the two beds indicated that the Typha bed was characterized by a void volume fraction (porosity) of 0.16 and exhibited more ideal plug flow behavior (Pe = 29.7) than the Phragmites bed (Pe = 26.7), which had similar porosity. The measured hydraulic residence times in the planted beds were 35.8 and 36.7 h when the flow was equal to 1 m 3/d. The Phragmites bed exhibited a range of paracetamol removals from 51.7% for a Hydraulic Loading Rate (HLR) of 240 mm/d to 87% with 120 mm/d HLR and 99.9% with 30 mm/d. The Typha bed showed a similar behavior with percentages of removal slightly lower, ranging from 46.7% (HLR of 240 mm/d) to >99.9% (hydraulic loading rate of 30 mm/d). At the same HLR values the unplanted bed removed between 51.3% and 97.6% of the paracetamol. In all three treatments the paracetamol removal was higher with flow of 1 m 3/d and an area of approx. 7.5 m 2 (half bed) than in the case of flow equal to 0.5 m 3/d with a surface treatment of approx. 3.75 m 2. A first order model for paracetamol removal was evaluated and half lives of 5.16 to 10.2 h were obtained.

  12. The effect of bedding system selected by manual muscle testing on sleep-related cardiovascular functions.

    PubMed

    Kuo, Terry B J; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C H

    2013-01-01

    Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT.

  13. The Effect of Bedding System Selected by Manual Muscle Testing on Sleep-Related Cardiovascular Functions

    PubMed Central

    Kuo, Terry B. J.; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C. H.

    2013-01-01

    Background. Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. Methods. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Results and Conclusion. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT. PMID:24371836

  14. Quantifying entrainment in pyroclastic density currents from the Tungurahua eruption, Ecuador: Integrating field proxies with numerical simulations

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2016-07-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.

  15. Fluoride removal from water using a magnesia-pullulan composite in a continuous fixed-bed column.

    PubMed

    Ye, Yuanyao; Yang, Jing; Jiang, Wei; Kang, Jianxiong; Hu, Ying; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen

    2018-01-15

    A magnesia-pullulan composite (MgOP) was previously shown to effectively remove fluoride from water. In the present study, a continuous fixed-bed column was used to examine the application of the composite at an industrial scale. The influencing parameters included bed mass (4.0, 6.0 and 8.0 g), influent flow rate (8, 16 and 32 mL/min), inlet fluoride concentration (5, 10 and 20 mg/L), reaction temperature (20, 30 and 40 °C), influent pH (4, 7 and 10) and other existing anions (HCO 3 - , SO 4 2- , Cl - and NO 3 - ), through which the breakthrough curves could be depicted for the experimental data analysis. The results indicated that MgOP is promising for fluoride removal with a defluoridation capacity of 16.6 mg/g at the bed mass of 6.0 g, influent flow rate of 16 mL/min and inlet fluoride concentration of 10 mg/L. The dynamics of the fluoride adsorption process were modeled using the Thomas and Yan models, in which the Yan model presented better predictions for the breakthrough curves than the Thomas model. Moreover, the concentration of magnesium in the effluent was monitored to determine Mg stability in the MgOP composite. Results indicated the effluent concentration of Mg 2+ ions could be kept at a safe level. Calcination of fluoride-loaded MgOP effectively regenerated the material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Development of a Decision Support System of Mattress Patterns Based on Users' Body Characteristics

    NASA Astrophysics Data System (ADS)

    Kato, Mitsue; Yamamoto, Toru; Matsui, Itsuo; Hamamura, Norihisa; Iwamura, Noriki

    This paper describes a mattress decision system based on users' characteristics. Generally, the comfortable bed means what sleeping habits and body pressure keep a good condition. The term “good condition” is that sleeping habits are close to the standing position and the wide body pressure. Therefore, the proposed system makes use of these as the evaluation indexes. In the past, they have been actually measuring that sleeping habits and body pressure. However, this way takes a lot of time and physical load. Consequently, we propose a way to predict users' sleeping habits and body pressures using neural networks.

  17. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins.

    PubMed

    Zwart, Sara R; Hargens, Alan R; Lee, Stuart M C; Macias, Brandon R; Watenpaugh, Donald E; Tse, Kevin; Smith, Scott M

    2007-02-01

    Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined this potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest and on bed rest days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated-measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P<0.001); parathyroid hormone (P=0.06), bone-specific alkaline phosphatase (P=0.06), and 1,25-dihydroxyvitamin D (P=0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 in the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers.

  18. CHARACTERISTICS OF MERCURY DESORPTION FROM SORBENTS AT ELEVATED TEMPERATURES. (R822721C697)

    EPA Science Inventory

    This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. ...

  19. CHARACTERISTICS OF MERCURY DESORPTION FROM SORBENTS AT ELEVATED TEMPERATURES. (R826694C697)

    EPA Science Inventory

    This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. ...

  20. Plastic biofilm carrier after corn cobs reduces nitrate loading in laboratory denitrifying bioreactors

    USDA-ARS?s Scientific Manuscript database

    Nitrate-nitrogen removal rates can be increased substantially in denitrifying bioreactors with a corn cob bed medium compared to woodchips; however, additional organic carbon (C) is released into the effluent. This laboratory column experiment was conducted to test the performance of a post-bed cha...

  1. Large sized non-uniform sediment transport at high capacity on steep slopes

    NASA Astrophysics Data System (ADS)

    Fu, X.; Zhang, L.; Duan, J. G.

    2015-12-01

    Transport of large-sized particles such as cobbles in steep streams still remains poorly understood in spite of its importance in mountain stream morphdynamics. Here we explored the law of cobble transport and the effect of cobble existence on gravel bed material transport, using flume experiments with a steep slope (4.9%) and water and sediment constantly supplying. The experiments were conducted in an 8 m long and 0.6 m wide circulating flume with the maximal size up to 90 mm and cobble concentrations in the sediment bed ranging from 22 percent to 6 percent. The sediment transport rate is on the order of 1000 g/m/s, which could be taken as high rate transport compared with existing researches. Bed load transport rate and flow variables were measured after the flume reached an equilibrium state. Bed surface topography was also measured by applying Kinect range camera before and after each run in order to analyze the fractal characteristics of the bed surface under different flow conditions. Critical shear stress of each size friction was estimated from the reference transport method (RTM) and a new hiding function was recommended. Preliminary results show that the bed was nearly in an equal mobility transport regime. We then plot dimensionless fractional transport rate versus dimensionless shear stress and assess the existing bed load transport formulas of non-uniform sediments for their applicability at high sediment transport capacity. This study contributes to the comprehension of high rate sediment transport on steep slopes.

  2. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.

    PubMed

    Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim

    2015-01-01

    Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.

  3. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process.

    PubMed

    Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing

    2014-05-01

    Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.

  4. Comparing particle-size distributions in modern and ancient sand-bed rivers

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical particle-size analysis, and statistical characterization in both modern and ancient settings. We consider potential error contributions and evaluate the degree to which this uncertainty might be significant in modern sediment-transport studies and ancient paleomorphodynamic reconstructions.

  5. Effects of Surface and Subsurface Bed Material Composition on Gravel Transport and Flow Competence Relations—Possibilities for Prediction

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Gaeuman, D. A.

    2014-12-01

    Bedload transport and flow competence relations are difficult to predict in coarse-bedded steep streams where widely differing sediment supply, bed stability, and complex flow hydraulics greatly affect amounts and sizes of transported gravel particles. This study explains how properties of bed material surface and subsurface size distributions are directly related to gravel transport and may be used for prediction of gravel transport and flow competence relations. Gravel transport, flow competence, and bed material size were measured in step-pool and plane-bed streams. Power functions were fitted to gravel transport QB=aQb and flow competence Dmax=cQd relations; Q is water discharge. Frequency distributions of surface FDsurf and subsurface FDsub bed material were likewise described by power functions FDsurf=hD j and FDsub=kDm fitted over six 0.5-phi size classes within 4 to 22.4 mm. Those gravel sizes are typically mobile even in moderate floods. Study results show that steeper subsurface bed material size distributions lead to steeper gravel transport and flow competence relations, whereas larger amounts of sediment contained in those 6 size bedmaterial classes (larger h and k) flatten the relations. Similarly, steeper surface size distributions decrease the coefficients of the gravel transport and flow competence relations, whereas larger amounts of sediment within the six bed material classes increase the intercepts of gravel transport and flow competence relations. Those relations are likely causative in streams where bedload stems almost entirely from the channel bed as opposed to direct (unworked) contributions from hillslopes and tributaries. The exponent of the subsurface bed material distribution m predicted the gravel transport exponent b with r2 near 0.7 and flow competence exponent d with r2 near 0.5. The intercept of bed surface distributions h increased the intercept a of gravel transport and c of the flow competence relations with r2 near 0.6.

  6. The Mohr-Coulomb criterion for intact rock strength and friction - a re-evaluation and consideration of failure under polyaxial stresses

    NASA Astrophysics Data System (ADS)

    Hackston, A.; Rutter, E.

    2015-12-01

    Abstract Darley Dale and Pennant sandstones were tested under conditions of both axisymmetric shortening and extension normal to bedding. These are the two extremes of loading under polyaxial stress conditions. Failure under generalized stress conditions can be predicted from the Mohr-Coulomb failure criterion under axisymmetric compression conditions provided the best form of polyaxial failure criterion is known. The sandstone data are best reconciled using the Mogi (1967) empirical criterion. Fault plane orientations produced vary greatly with respect to the maximum compression direction in the two loading configurations. The normals to the Mohr-Coulomb failure envelopes do not predict the orientations of the fault planes eventually produced. Frictional sliding on variously inclined sawcuts and failure surfaces produced in intact rock samples was also investigated. Friction coefficient is not affected by fault plane orientation in a given loading configuration, but friction coefficients in extension were systematically lower than in compression for both rock types and could be reconciled by a variant on the Mogi (1967) failure criterion. Friction data for these and other porous sandstones accord well with the Byerlee (1977) generalization about rock friction being largely independent of rock type. For engineering and geodynamic modelling purposes, the stress-state dependent friction coefficient should be used for sandstones, but it is not known to what extent this might apply to other rock types.

  7. Numerical simulation of dune-flat bed transition and stage‐discharge relationship with hysteresis effect

    USGS Publications Warehouse

    Shimizu, Yasuyuki; Giri, Sanjay; Yamaguchi, Satomi; Nelson, Jonathan M.

    2009-01-01

    This work presents recent advances on morphodynamic modeling of bed forms under unsteady discharge. This paper includes further development of a morphodynamic model proposed earlier by Giri and Shimizu (2006a). This model reproduces the temporal development of river dunes and accurately replicates the physical properties associated with bed form evolution. Model results appear to provide accurate predictions of bed form geometry and form drag over bed forms for arbitrary steady flows. However, accurate predictions of temporal changes of form drag are key to the prediction of stage‐discharge relation during flood events. Herein, the model capability is extended to replicate the dune–flat bed transition, and in turn, the variation of form drag produced by the temporal growth or decay of bed forms under unsteady flow conditions. Some numerical experiments are performed to analyze hysteresis of the stage‐discharge relationship caused by the transition between dune and flat bed regimes during rising and falling stages of varying flows. The numerical model successfully simulates dune–flat bed transition and the associated hysteresis of the stage‐discharge relationship; this is in good agreement with physical observations but has been treated in the past only using empirical methods. A hypothetical relationship for a sediment parameter (the mean step length) is proposed to a first level of approximation that enables reproduction of the dune–flat bed transition. The proposed numerical model demonstrates its ability to address an important practical problem associated with bed form evolution and flow resistance in varying flows.

  8. The influence of sediment transport rate on the development of structure in gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo

    2013-04-01

    Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this research is pertinent to developing new methods of linking the development of bed surface organisation with near bed flow characteristics and bed load transport in gravel bed rivers. Keywords: Graded, Sediment, Structure

  9. Depth resolved granular transport driven by shearing fluid flow

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Kudrolli, Arshad

    2017-02-01

    We investigate granular transport by a fluid flow under steady-state driving conditions, from the bed-load regime to the suspension regime, with an experimental system based on a conical rheometer. The mean granular volume fraction ϕg, the mean granular velocity ug, and the fluid velocity uf are obtained as a function of depth inside the bed using refractive index matching and particle-tracking techniques. A torque sensor is utilized to measure the applied shear stress to complement estimates obtained from measured strain rates high above the bed where ϕg≈0 . The flow is found to be transitional at the onset of transport and the shear stress required to transport grains rises sharply as grains are increasingly entrained by the fluid flow. A significant slip velocity between the fluid and the granular phases is observed at the bed surface before the onset of transport as well as in the bed-load transport regime. We show that ug decays exponentially deep into the bed for ϕg>0.45 with a decay constant which is described by a nonlocal rheology model of granular flow that neglects fluid stress. Further, we show that uf and ug can be described using the applied shear stress and the Krieger-Dougherty model for the effective viscosity in the suspension regime, where 0 <ϕg<0.45 and where ug≈uf .

  10. The Effectiveness of a Wireless Modular Bed Absence Sensor Device for Fall Prevention among Older Inpatients.

    PubMed

    Subermaniam, Kogilavani; Welfred, Ridgwan; Subramanian, Pathmawathi; Chinna, Karuthan; Ibrahim, Fatimah; Mohktar, Mas S; Tan, Maw Pin

    2016-01-01

    Falls and fall-related injuries are increasingly serious issues among elderly inpatients due to population aging. The bed-exit alarm has only previously been evaluated in a handful of studies with mixed results. Therefore, we evaluated the effectiveness of a modular bed absence sensor device (M-BAS) in detecting bed exits among older inpatients in a middle income nation in East Asia. Patients aged ≥65 years on an acute geriatric ward who were able to mobilize with or without walking aids and physical assistance were recruited to the study. The total number of alarms and the numbers of true and false alarms were recorded by ward nurses. The M-BAS device is placed across the mattress of all consenting participants. Nurses' workload was assessed using the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) score, while nurses' perceptions were surveyed. The sensitivity of the M-BAS was 100% with a positive predictive value of 68% and a nuisance alarm rate of 31%. There was a significant reduction in total NASA-TLX workload score (mean difference = 14.34 ± 13.96 SD, p  < 0.001) at the end of the intervention period. 83% of the nurses found the device useful for falls prevention, 97% found it user friendly, and 87% would use it in future. The M-BAS was able to accurately detect bed absence episodes among geriatric inpatients and alert nurses accordingly. The use of the device significantly reduced the total workload score, while the acceptability of the device was high among our nurses. A larger, cluster randomized study to measure actual falls outcome associated with the use of the device is now indicated.

  11. The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xuejun; College of Biology and Chemical Engineering, Panzhihua University, Panzhihua 617000; Ye, Shichao

    2008-05-15

    A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model ismore » able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)« less

  12. Prediction of Suspended Sediment in Rivers Using Artificial Neural Networks: Implications for Development of Sediment Budgets

    NASA Astrophysics Data System (ADS)

    Hamshaw, S. D.; Underwood, K.; Rizzo, D.; Wemple, B. C.; Dewoolkar, M.

    2013-12-01

    Over 1,000 river miles in Vermont are either impaired or stressed by excessive sedimentation. The higher streamflows and incised river channels have resulted in increased bed and bank erosion. As the climate in Vermont is expected to feature greater and more frequent precipitation events and winter rainfall, the potential for increased sediment loading from erosion processes in the watershed and along the channel are high and a major concern for water resource managers. Typical sediment monitoring comprises periodic sampling during storm events and is often limited to gauged streams with flow data. Continuous turbidity monitoring enhances our understanding of river dynamics by offering high-resolution, temporal measurements to better quantify the total sediment loading occurring during and between storm events. Artificial neural networks, that mimic learning patterns of the human brain, have been effective at predicting flow in small, ungauged rivers using local climate data. This study advances this technology by using an ANN algorithm known as a counter-propagation neural network (CPNN) to predict discharge and suspended sediment in small streams. The first distributed network of continuous turbidity sensors (DTS-12) was deployed in Vermont in the Mad River Watershed, located in Central Vermont. The Mad River and five tributaries were selected as a test bed because seven years of periodic turbidity sampling data are available, it represents a range of watershed characteristics, and because the watershed is also being used for hydrologic model development using the Distributed-Hydrology-Soils-Vegetation Model (DHSVM). Comparison with the DHSVM simulations will allow estimation of the most-likely sources of sediment from the entire watershed and individual subwatersheds. In addition, recent field studies have commenced the quantification of erosion occurring from unpaved roads and streambanks in the same watershed. Periodic water quality sampling during storm events enabled turbidity versus TSS relationships to be established. Sub-watersheds with monitored turbidity and stage also have 15-minute precipitation, soil moisture and air and water temperature data being collected. Stage sensors and theoretical rating curves developed using HEC-RAS and calibrated with discharge measurements are used to validate the flow predictions from the CPNN. The real-time turbidity data are used to train and test the suspended sediment predictions from the CPNN network at each site. The turbidity data are also used to train the CPNN on a subset of tributaries and test on the remaining subwatersheds. Reasonable estimates of suspended sediment discharged from the tributaries and the main stem of the Mad River are calculated and compared enabling a more accurate foundation for building a sediment budget. Results of this study will assist managers in prioritizing mitigation projects to reduce impacts of sediment loading.

  13. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  14. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlisch, Jeffery J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  15. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by United Technologies Corp. Aerospace Systems (UTAS, formerly Hamilton Sundstrand) and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle (MPCV). In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure testing with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight project computer model predictions with specific operating conditions.

  16. Developing Sediment Transport and Dredging Prediction Model of Ohio River at Olmsted Locks and Dams Area using HEC-RAS (1D/2D)By Ganesh Raj Ghimire1 and Bruce A. Devantier 2

    NASA Astrophysics Data System (ADS)

    Ghimire, G. R.

    2015-12-01

    Sediment deposition is a serious issue in the construction and operation of large reservoir and inland navigation projects in the United States and around the world. Olmsted Locks and Dams in the Ohio River navigation system is facing similar challenges of huge sediment deposition during the ongoing in-wet construction methodology since 1993. HEC-RAS 5.0 integrated with ArcGIS, will be used to yield unsteady 2D hydrodynamic model of Ohio River at Olmsted area. Velocity, suspended sediment, bed sediment and hydrographic survey data acquired from public archives of USGS and USACE Louisville District will be input into the model. Calibration and validation of model will be performed against the measured stage, flow and velocity data. It will be subjected to completely unsteady 1D sediment transport modeling new to HEC-RAS 5.0 which incorporates sediment load and bed gradation via a DSS file, commercial dredging and BSTEM model. Sediment model will be calibrated to replicate the historical bed volume changes. Excavated cross-sections at Olmsted area will also be used to predict the sediment volume trapped inside the ditch over the period between excavations and placement of dam shells at site. Model will attempt to replicate historical dredging volume data and compare with the deposition volume from simulation model to formulate the dredging prediction model. Hence, the results of this research will generate a model that can form a basis for scheduling the dredging event prior to the placement of off-shore cast shells replacing the current as and when required approach of dredging plan. 1 Graduate Student, Department of Civil Engineering, Southern Illinois University Carbondale Carbondale, Illinois, 62901-6603 2 Professor, Department of Civil Engineering, Southern Illinois University Carbondale Carbondale, Illinois, 62901-6603

  17. FURTHER EVALUATION OF TRICKLE BED BIOFILTER PERFORMANCE AS A FUNCTION OF LADING, RESIDENCE TIME, AND BIOMASS CONTROL

    EPA Science Inventory

    The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical engineered control of VOCs in effluent air streams. rickle bed air biofilters (TBABS) are especially applicable for treating VOCs at high loadings. or long term...

  18. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins

    PubMed Central

    Zwart, Sara R.; Hargens, Alan R.; Lee, Stuart M. C.; Macias, Brandon R.; Watenpaugh, Donald E.; Tse, Kevin; Smith, Scott M.

    2007-01-01

    Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined the potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest (BR) and on BR days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism, and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P < 0.001); parathyroid hormone (P = 0.06), bone-specific alkaline phosphatase (P = 0.06), and 1,25-dihydroxyvitamin D (P = 0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 for the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously-published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers. PMID:17070743

  19. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals.

    PubMed

    Santos, Lúcia H M L M; Gros, Meritxell; Rodriguez-Mozaz, Sara; Delerue-Matos, Cristina; Pena, Angelina; Barceló, Damià; Montenegro, M Conceição B S M

    2013-09-01

    The impact of effluent wastewaters from four different hospitals: a university (1456 beds), a general (350 beds), a pediatric (110 beds) and a maternity hospital (96 beds), which are conveyed to the same wastewater treatment plant (WWTP), was evaluated in the receiving urban wastewaters. The occurrence of 78 pharmaceuticals belonging to several therapeutic classes was assessed in hospital effluents and WWTP wastewaters (influent and effluent) as well as the contribution of each hospital in WWTP influent in terms of pharmaceutical load. Results indicate that pharmaceuticals are widespread pollutants in both hospital and urban wastewaters. The contribution of hospitals to the input of pharmaceuticals in urban wastewaters widely varies, according to their dimension. The estimated total mass loadings were 306 g d(-1) for the university hospital, 155 g d(-1) for the general one, 14 g d(-1) for the pediatric hospital and 1.5 g d(-1) for the maternity hospital, showing that the biggest hospitals have a greater contribution to the total mass load of pharmaceuticals. Furthermore, analysis of individual contributions of each therapeutic group showed that NSAIDs, analgesics and antibiotics are among the groups with the highest inputs. Removal efficiency can go from over 90% for pharmaceuticals like acetaminophen and ibuprofen to not removal for β-blockers and salbutamol. Total mass load of pharmaceuticals into receiving surface waters was estimated between 5 and 14 g/d/1000 inhabitants. Finally, the environmental risk posed by pharmaceuticals detected in hospital and WWTP effluents was assessed by means of hazard quotients toward different trophic levels (algae, daphnids and fish). Several pharmaceuticals present in the different matrices were identified as potentially hazardous to aquatic organisms, showing that especial attention should be paid to antibiotics such as ciprofloxacin, ofloxacin, sulfamethoxazole, azithromycin and clarithromycin, since their hazard quotients in WWTP effluent revealed that they could pose an ecotoxicological risk to algae. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Limited effect of fly-wheel and spinal mobilization exercise countermeasures on lumbar spine deconditioning during 90 d bed-rest in the Toulouse LTBR study

    NASA Astrophysics Data System (ADS)

    Belavý, Daniel L.; Ohshima, Hiroshi; Bareille, Marie-Pierre; Rittweger, Jörn; Felsenberg, Dieter

    2011-09-01

    We examined the effect of high-load fly-wheel (targeting the lower-limb musculature and concurrent loading of the spine via shoulder restraints) and spinal movement countermeasures against lumbar spine muscle atrophy, disc and spinal morphology changes and trunk isokinetic torque loss during prolonged bed-rest. Twenty-four male subjects underwent 90 d head-down tilt bed-rest and performed either fly-wheel (FW) exercises every three days, spinal movement exercises in lying five times daily (SpMob), or no exercise (Ctrl). There was no significant impact of countermeasures on losses of isokinetic trunk flexion/extension ( p≥0.65). Muscle volume change by day-89 of bed-rest in the psoas, iliacus, lumbar erector spinae, lumbar multifidus and quadratus lumborum, as measured via magnetic resonance imaging (MRI), was statistically similar in all three groups ( p≥0.33). No significant effect on MRI-measures of lumbar intervertebral disc volume, spinal length and lordosis ( p≥0.09) were seen either, but there was some impact ( p≤0.048) on axial plane disc dimensions (greater reduction than in Ctrl) and disc height (greater increases than in Ctrl). MRI-data from subjects measured 13 and 90-days after bed-rest showed partial recovery of the spinal extensor musculature by day-13 after bed-rest with this process complete by day-90. Some changes in lumbar spine and disc morphology parameters were still persistent 90-days after bed-rest. The present results indicate that the countermeasures tested were not optimal to maintain integrity of the spine and trunk musculature during bed rest.

  1. Low shear stress gravel-bed river

    USGS Publications Warehouse

    Milhous, Robert T.

    1997-01-01

    A low stress gravel bed river is a river where the cross-sectional average dimensionless shear stress (??*) rarely exceeds 0.047. That is the case for the Gunnison River below Delta in Western Colorado. The cross-sectional average ??* in the Gunnison River has not exceeded 0.047, except at one cross section during one year, in the 87 years of record. A ??* of 0.047 is the critical ??* in the bed-load equation considered to be most applicable to gravel/cobble bed rivers (the Meyer-Peter, Mueller equation). According to this equation, there has been no bed-material movement in the Gunnison River since 1920; in fact there has been bed-material movement and this movement is biologically important. Bed-material is moved when the ??* is 0.016 or larger. Streamflows that cause a ??* of at least 0.016 maintain the aquatic habitat in a low shear stress river.

  2. A laboratory-scale comparison of rate of spread model predictions using chaparral fuel beds – preliminary results

    Treesearch

    D.R. Weise; E. Koo; X. Zhou; S. Mahalingam

    2011-01-01

    Observed fire spread rates from 240 laboratory fires in horizontally-oriented single-species live fuel beds were compared to predictions from various implementations and modifications of the Rothermel rate of spread model and a physical fire spread model developed by Pagni and Koo. Packing ratio of the laboratory fuel beds was generally greater than that observed in...

  3. Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system.

    PubMed

    Gervin, L; Brix, H

    2001-01-01

    Lake Utterslev is situated in a densely built-up area of Copenhagen, and is heavily eutrophicated from combined sewer overflows. At the same time the lake suffers from lack of water. Therefore, a 5,000 m2 vertical flow wetland system was constructed in 1998 to reduce the phosphorus discharge from combined sewer overflows without reducing the water supply to the lake. During dry periods the constructed wetland is used to remove phosphorus from the lake water. The system is designed as a 90 m diameter circular bed with a bed depth of c. 2 m. The system is isolated from the surroundings by a polyethylene membrane. The bed medium consists of a mixture of gravel and crushed marble, which has a high binding capacity for phosphorus. The bed is located within the natural littoral zone of the lake and is planted with common reed (Phragmites australis). The constructed wetland is intermittently loaded with combined sewer overflow water or lake water and, after percolation through the bed medium, the water is collected in a network of drainage pipes at the bottom of the bed and pumped to the lake. The fully automated loading cycle results in alternating wet and dry periods. During the initial two years of operation, the phosphorus removal for combined sewer overflows has been consistently high (94-99% of inflow concentrations). When loaded with lake water, the phosphorus removal has been high during summer (71-97%) and lower during winter (53-75%) partly because of lower inlet concentrations. Effluent phosphorus concentrations are consistently low (0.03-0.04 mg/L). Ammonium nitrogen is nitrified in the constructed wetland, and total suspended solids and COD are generally reduced to concentrations below 5 mg/L and 25 mg/L, respectively. The study documents that a subsurface flow constructed wetland system can be designed and operated to effectively remove phosphorus and other pollutants from combined sewer overflows and eutrophicated lake water.

  4. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    PubMed

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  5. Nutrient Removal through Oyster Habitat Restoration in the Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Gallagher, S. M.; Schmidt, C. A.; Walters, L.; Blank, R.

    2017-12-01

    In 2016, an algae bloom in the Indian River Lagoon (IRL) caused a state of emergency in Florida. As with many estuaries, nutrient loading in the IRL has led to periodic eutrophication. While previous studies have shown oyster bed restoration reduces suspended organic matter in estuaries, similar reductions to net nutrient loads are not well established. In addition, previous studies have focused on seasonal variation rather than ongoing yearly effects. Here, we determine the net nitrogen and phosphorus effects of oyster restoration in the IRL over seven years. Analysis of aerial images from 1943 and 2009 showed 14.7 ha of oyster beds were destroyed by boat traffic in the IRL (40% loss). According to our measurements of restored oyster bed sediment, this equates to a maximum of 1,580,000 kg•N•yr-1 of lost denitrification potential; this is equivalent to 150% of estimated current nitrogen loading in the IRL. Oyster restoration began in the IRL in 2007 and has recovered 7.7% of the lost beds and denitrification potential (1.13 ha and 107,000 kg•N•yr-1•ha-1). In all cases, denitrification reached a maximum within two years and remained significantly higher than open sediment for at least the seven years observed. Denitrification benefits came at the cost of mobilizing a maximum of 3450 kg ha-1 of recalcitrant phosphorus from restored bed sediment. This effect was limited to the two years following restoration, whereas increased denitrification was ongoing. Overall, our results show oyster restoration achieved maximum denitrification within two years and maintained significant denitrification benefits for at least seven years. In addition, our results are useful for future oyster restoration projects since they quantify nitrogen benefits in terms of phosphorus mobilization.

  6. Elementary theory of bed-sediment entrainment by debris flows and avalanches

    USGS Publications Warehouse

    Iverson, Richard M.

    2012-01-01

    Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.

  7. Fire spread in chaparral – a comparison of laboratory data and model predictions in burning live fuels

    Treesearch

    David R. Weise; Eunmo Koo; Xiangyang Zhou; Shankar Mahalingam; Frédéric Morandini; Jacques-Henri Balbi

    2016-01-01

    Fire behaviour data from 240 laboratory fires in high-density live chaparral fuel beds were compared with model predictions. Logistic regression was used to develop a model to predict fire spread success in the fuel beds and linear regression was used to predict rate of spread. Predictions from the Rothermel equation and three proposed changes as well as two physically...

  8. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  9. Fuel deposition rates of montane and subalpine conifers in the central Sierra Nevada, California, USA

    USGS Publications Warehouse

    van Wagtendonk, J.W.; Moore, P.E.

    2010-01-01

    Fire managers and researchers need information on fuel deposition rates to estimate future changes in fuel bed characteristics, determine when forests transition to another fire behavior fuel model, estimate future changes in fuel bed characteristics, and parameterize and validate ecosystem process models. This information is lacking for many ecosystems including the Sierra Nevada in California, USA. We investigated fuel deposition rates and stand characteristics of seven montane and four subalpine conifers in the Sierra Nevada. We collected foliage, miscellaneous bark and crown fragments, cones, and woody fuel classes from four replicate plots each in four stem diameter size classes for each species, for a total of 176 sampling sites. We used these data to develop predictive equations for each fuel class and diameter size class of each species based on stem and crown characteristics. There were consistent species and diameter class differences in the annual amount of foliage and fragments deposited. Foliage deposition rates ranged from just over 50 g m-2 year-1 in small diameter mountain hemlock stands to ???300 g m-2 year-1 for the three largest diameter classes of giant sequoia. The deposition rate for most woody fuel classes increased from the smallest diameter class stands to the largest diameter class stands. Woody fuel deposition rates varied among species as well. The rates for the smallest woody fuels ranged from 0.8 g m-2 year-1 for small diameter stands of Jeffrey pine to 126.9 g m-2 year-1 for very large diameter stands of mountain hemlock. Crown height and live crown ratio were the best predictors of fuel deposition rates for most fuel classes and species. Both characteristics reflect the amount of crown biomass including foliage and woody fuels. Relationships established in this study allow predictions of fuel loads to be made on a stand basis for each of these species under current and possible future conditions. These predictions can be used to estimate fuel treatment longevity, assist in determining fuel model transitions, and predict future changes in fuel bed characteristics.

  10. Bed-based instrumentation for unobtrusive sleep quality assessment in severely disabled autistic children.

    PubMed

    Carlson, Charles; Suliman, Ahmad; Prakash, Punit; Thompson, David; Shangxian Wang; Natarajan, Bala; Warren, Steve

    2016-08-01

    The relationship between sleep quality and daytime wellness and performance in severely disabled, autistic children is not well understood. While polysomnography and, more recently, actigraphy serve as means to obtain sleep assessment data from neurotypical children and adults, these techniques are not well-suited to severely autistic children. This paper presents recent progress on a bed sensor suite that can unobtrusively track physiological and behavioral parameters used to assess sleep quality. Electromechanical films and load cells provide data that yield heart rate, respiration rate, center of position, in-and-out-of-bed activity, and general movement, while thermocouples are used to detect bed-wetting events.

  11. Dimensional Analysis on Forest Fuel Bed Fire Spread.

    PubMed

    Yang, Jiann C

    2018-01-01

    A dimensional analysis was performed to correlate the fuel bed fire rate of spread data previously reported in the literature. Under wind condition, six pertinent dimensionless groups were identified, namely dimensionless fire spread rate, dimensionless fuel particle size, fuel moisture content, dimensionless fuel bed depth or dimensionless fuel loading density, dimensionless wind speed, and angle of inclination of fuel bed. Under no-wind condition, five similar dimensionless groups resulted. Given the uncertainties associated with some of the parameters used to estimate the dimensionless groups, the dimensionless correlations using the resulting dimensionless groups correlate the fire rates of spread reasonably well under wind and no-wind conditions.

  12. The Relationship between Parent-Infant Bed Sharing and Marital Satisfaction for Mothers of Infants

    ERIC Educational Resources Information Center

    Messmer, Rosemary; Miller, Lynn D.; Yu, Christine M.

    2012-01-01

    This study investigated the relationship between marital satisfaction and time spent bed sharing with infants in a community sample of 81 bed sharing mothers. Time spent bed sharing did not significantly predict variance in marital satisfaction when considering bed sharers as a whole. Moderation analysis, however, showed the interaction between…

  13. Computational modeling of bedform evolution in rivers with implications for predictions of flood stage and bed evolution

    USGS Publications Warehouse

    Nelson, Jonathan M.; Shimizu, Yasuyuki; Giri, Sanjay; McDonald, Richard R.

    2010-01-01

    Uncertainties in flood stage prediction and bed evolution in rivers are frequently associated with the evolution of bedforms over a hydrograph. For the case of flood prediction, the evolution of the bedforms may alter the effective bed roughness, so predictions of stage and velocity based on assuming bedforms retain the same size and shape over a hydrograph will be incorrect. These same effects will produce errors in the prediction of the sediment transport and bed evolution, but in this latter case the errors are typically larger, as even small errors in the prediction of bedform form drag can make very large errors in predicting the rates of sediment motion and the associated erosion and deposition. In situations where flows change slowly, it may be possible to use empirical results that relate bedform morphology to roughness and effective form drag to avoid these errors; but in many cases where the bedforms evolve rapidly and are in disequilibrium with the instantaneous flow, these empirical methods cannot be accurately applied. Over the past few years, computational models for bedform development, migration, and adjustment to varying flows have been developed and tested with a variety of laboratory and field data. These models, which are based on detailed multidimensional flow modeling incorporating large eddy simulation, appear to be capable of predicting bedform dimensions during steady flows as well as their time dependence during discharge variations. In the work presented here, models of this type are used to investigate the impacts of bedform on stage and bed evolution in rivers during flood hydrographs. The method is shown to reproduce hysteresis in rating curves as well as other more subtle effects in the shape of flood waves. Techniques for combining the bedform evolution models with larger-scale models for river reach flow, sediment transport, and bed evolution are described and used to show the importance of including dynamic bedform effects in river modeling. For example calculations for a flood on the Kootenai River, errors of almost 1m in predicted stage and errors of about a factor of two in the predicted maximum depths of erosion can be attributed to bedform evolution. Thus, treating bedforms explicitly in flood and bed evolution models can decrease uncertainty and increase the accuracy of predictions.

  14. Probability distributions of bed load particle velocities, accelerations, hop distances, and travel times informed by Jaynes's principle of maximum entropy

    USGS Publications Warehouse

    Furbish, David; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan

    2016-01-01

    We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.

  15. Anomalies in Trace Metal and Rare-Earth Loads below a Waste-Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Antweiler, R.; Writer, J. H.; Murphy, S.

    2013-12-01

    The changes in chemical loads were examined for 54 inorganic elements and compounds in a 5.4-km reach of Boulder Creek, Colorado downstream of a waste water treatment plant (WWTP) outfall. Elements were partitioned into three categories: those showing a decrease in loading downstream, those showing an increase, and those which were conservative, at least over the length of the study reach. Dissolved loads which declined - generally indicative of in-stream loss via precipitation or sorption - were typically rapid (occurring largely before the first sampling site, 2.3 km downstream); elements showing this behavior were Bi, Cr, Cs, Ga, Ge, Hg, Se and Sn. These results were as expected before the experiment was performed. However, a large group (28 elements, including all the rare-earth elements, REE, except Gd) exhibited dissolved load increases indicating in-stream gains. These gains may be due to particulate matter dissolving or disaggregating, or that desorption is occurring below the WWTP. As with the in-stream loss group, the processes tended to be rapid, typically occurring before the first sampling site. Whole-water samples collected concurrently also had a large group of elements which showed an increase in load downstream of the WWTP. Among these were most of the group which had increases in the dissolved load, including all the REE (except Gd). Because whole-water samples include both dissolved and suspended particulates within them, increases in loads cannot be accounted for by invoking desorption or disaggregation mechanisms; thus, the only source for these increases is from the bed load of the stream. Further, the difference between the whole-water and dissolved loads is a measure of the particulate load, and calculations show that not only did the dissolved and whole-water loads increase, but so did the particulate loads. This implies that at the time of sampling the bed sediment was supplying a significant contribution to the suspended load. In general, it seems untenable as a hypothesis to suppose that the stream bed material can permanently supply the source of the in-stream load increases of a large group of inorganic elements. We propose that the anomalous increase in loads was more a function of the time of sampling (both diurnally and seasonally) and that sampling at different times of day or different seasons during the year would give contradictory results to those seen here. If this is so, inorganic loading studies must include multiple sampling both over the course of a day and during different seasons and flow regimes.

  16. Characterization of bacterial structures in two-stage moving-bed biofilm reactor (MBBR) during nitrification of the landfill leachate.

    PubMed

    Ciesielski, Slawomir; Kulikowska, Dorota; Kaczowka, Ewelina; Kowal, Przemysław

    2010-07-01

    Differences in DNA banding patterns, obtained by ribosomal intergenic spacer analysis (RISA), and nitrification were followed in a moving-bed biofilm reactor (MBBR) receiving municipal landfill leachate. Complete nitrification (> 99%) to nitrate was obtained in the two-stage MBBR system with an ammonium load of 1.09 g N-NH(4)/m(2).d. Increasing the ammonium load to 2.03 g N-NH(4)/m(2).d or more caused a decline in process efficiency to 70-86%. Moreover, at the highest ammonium load (3.76 g N-NH(4)/m(2).d), nitrite was the predominant product of nitrification. Community succession was evident in both compartments in response to changes in ammonium load. Non-metric multidimensional scaling (NMDS) supported by similarity analysis (ANOSIM) showed that microbial biofilm communities differed between compartments. The microbial biofilm was composed mainly of ammonia-oxidizing bacteria (AOB), with Nitrosomonas europeae and N. eutropha being most abundant. These results suggest that high ammonium concentrations select for particular AOB strains.

  17. Chemical concentrations and instantaneous loads, Green River to the Lower Duwamish Waterway near Seattle, Washington, 2013–15

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.; Vanderpool-Kimura, Ann M.; Foreman, James R.; Peterson, Norman T.; Senter, Craig A.; Sissel, Stephen K.

    2015-12-23

    Median chemical concentrations in suspended-sediment samples were greater than median chemical concentrations in fine bed sediment (less than 62.5 µm) samples, which were greater than median chemical concentrations in paired bulk bed sediment (less than 2 mm) samples. Suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters were measured concurrent with the chemistry sampling. From this discrete data, combined with the continuous streamflow record, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated. For most compounds, loads were higher during storms than during baseline conditions because of high streamflow and high chemical concentrations. The highest loads occurred during dam releases (periods when stored runoff from a prior storm is released from the Howard Hanson Dam into the upper Green River) because of the high river streamflow and high suspended-sediment concentration, even when chemical concentrations were lower than concentrations measured during storm events. 

  18. Radial pressure profiles in a cold‐flow gas‐solid vortex reactor

    PubMed Central

    Pantzali, Maria N.; Kovacevic, Jelena Z.; Marin, Guy B.; Shtern, Vladimir N.

    2015-01-01

    A unique normalized radial pressure profile characterizes the bed of a gas‐solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950–1240 kg/m3, 1–2 mm, 2 kg to maximum solids capacity, and 0.4–0.8 Nm3/s (corresponding to gas injection velocities of 55–110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized—with respect to the overall pressure drop—pressure profiles for different gas injection velocities in particle‐free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 61: 4114–4125, 2015 PMID:27667827

  19. Reduction of Dietary Acid Load as a Potential Countermeasure for Bone Loss Associated with Spaceflight

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Watts, S. M.; Sams, C. F.; Whitson, P. A.; Smith, S. M.

    2006-01-01

    In several studies we tested the concepts that diet can alter acid-base balance and that reducing the dietary acid load has a positive effect on maintenance of bone. In study 1, (n = 11, 60-90 d bed rest), the renal acid load of the diet was estimated from its chemical composition, and was positively correlated with urinary markers of bone resorption (P less than 0.05); that is, the greater the acid load, the greater the excretion of bone resorption markers. In study 2, in males (n = 8, 30 d bed rest), an estimate of the ratio of nonvolatile acid precursors to base precursors in the diet was positively correlated (P less than 0.05) with markers of bone resorption. In study 3, for 28 d subjects received either a placebo (n = 6) or an essential amino acid supplement (n = 7) that included methionine, a known acid precursor. During bed rest (28 d), urinary calcium was greater than baseline levels in the supplemented group but not the control group (P less than 0.05), and in the supplemented group, urinary pH decreased (P less than 0.05). In study 4, less bone resorption occurred in space crew members who received potassium citrate (n = 6) during spaceflight of 4-6 months than in crew members who received placebo or were not in the study (n = 8) (P less than 0.05). Reducing acid load has the potential to mitigate increased bone resorption during spaceflight, and may serve as a bone loss countermeasure.

  20. Influence of internal biogas production on hydrodynamic behavior of anaerobic fluidized-bed reactors.

    PubMed

    Wu, Chun-Sheng; Huang, Ju-Sheng; Chou, Hsin-Hsien

    2006-01-01

    Predictive models for describing the hydrodynamic behavior (bed-expansion and bed-pressure gradient) of a three-phase anaerobic fluidized bed reactor (AFBR) was developed according to wake theory together with more realistic dynamic bed-expansion experiments (with and without internal biogas production). A reliable correlation equation for the parameter k (mean volume ratio of wakes to bubbles) was also established, which is of help in estimating liquid hold up of fluidized beds. The experimental expansion ratio of three-phase fluidized beds (E(GLS)) was approximately 18% higher than that of two-phase fluidized beds (E(LS)); whereas the experimental bed-pressure gradient of the former [(-DeltaP/H)(GLS)] was approximately 9.3% lower than that of the latter [(-DeltaP/H)(LS)]. Both the experimental and modeling results indicated that a higher superficial gas velocity (u(g)) gave a higher E(GLS) and a higher E(GLS) to E(LS) ratio as well as a lower (-DeltaP/H)(GLS) and a lower (-DeltaP/H)(GLS) to (-DeltaP/H)(LS) ratio. As for the operation stability of the AFBR, the sensitivity of u(g) to expansion height (H(GLS)) and (-DeltaP/H)(GLS) is between the sensitivity of superficial liquid velocity and biofilm thickness. The model predictions of E(GLS), (-DeltaP)(GLS), and (-DeltaP/H)(GLS) agreed well the experimental measurements. Accordingly, the predictive models accounting for internal biogas production described fairly well the hydrodynamic behavior of the AFBR.

  1. The prevalence and correlates of binge eating disorder in the WHO World Mental Health Surveys

    PubMed Central

    Kessler, Ronald C.; Berglund, Patricia A.; Chiu, Wai Tat; Deitz, Anne C.; Hudson, James I.; Shahly, Victoria; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Angermeyer, Matthias C.; Benjet, Corina; Bruffaerts, Ronny; de Girolamo, Giovanni; de Graaf, Ron; Haro, Josep Maria; Kovess-Masfety, Viviane; O’Neill, Siobhan; Posada-Villa, Jose; Sasu, Carmen; Scott, Kate; Viana, Maria Carmen; Xavier, Miguel

    2013-01-01

    Background Little population-based data exist outside the United States on the epidemiology of binge eating disorder (BED). Cross-national data on BED are presented and compared to bulimia nervosa (BN) based on the WHO World Mental Health Surveys. Methods Community surveys with 24,124 respondents (ages 18+) across 14 mostly upper-middle and high income countries assessed lifetime and 12-month DSM-IV mental disorders with the WHO Composite International Diagnostic Interview. Physical disorders were assessed with a chronic conditions checklist. Results Country-specific lifetime prevalence estimates are consistently (median; inter-quartile range) higher for BED (1.4%;0.8–1.9%) than BN (0.8%;0.4–1.0%). Median age-of-onset is in the late teens to early 20s for both disorders but slightly younger for BN. Persistence is slightly higher for BN (6.5 years; 2.2–15.4) than BED (4.3 years; 1.0–11.7). Lifetime risk of both disorders is elevated for women and recent cohorts. Retrospective reports suggest that comorbid anxiety, mood, and disruptive behavior disorders predict subsequent onset of BN somewhat more strongly than BED and that BN predicts subsequent comorbid psychiatric disorders somewhat more strongly than does BED. Significant comorbidities with physical conditions are due almost entirely to BN and BED predicting subsequent onset of these conditions, again with BN somewhat stronger than BED. Role impairments are similar for BN and BED. Fewer than half of lifetime BN or BED cases receive treatment. Conclusions BED represents a public health problem at least equal to BN. Low treatment rates highlight the clinical importance of questioning patients about eating problems even when not included among presenting complaints. PMID:23290497

  2. Bed structure and bedload transport: Sediment grain reorientation in response to high and low flows in an experimental flume

    NASA Astrophysics Data System (ADS)

    Gurer, M.; Sullivan, S.; Masteller, C.

    2016-12-01

    Bedload is a regime of sediment transport that occurs when particles roll, hop, or bounce downstream. This mode of transport represents an important portion of the sediment load in a gravel river. Despite numerous studies focused on bedload transport, it still remains difficult to predict accurately due to the complex arrangement of riverbed particles. The formation of gravel clusters, stones being imbricated, or streamlined, and other interlocked arrangements, as well as grains armoring the bed, all tend to stabilize gravel channels and decrease bed mobility. Typically, the development of bed structure usually occurs as sediment moves downstream. However, it is unclear that gravel bed structure can be developed during weaker flows that do not generate significant sediment transport. We examine how individual sediment grains reorient themselves during low flow conditions, in the absence of sediment transport, and during high flow conditions, as bedload transport occurs. We then perform flume experiments where we expose a gravel bed to varying durations of low flow and raise the water level, simulating a flood and transporting sediment. We also compare the long-axis orientations of grains before and after each low flow period and transport. We find that sediment grains reorient themselves differently during low and high flows. During low flow, grains appear to reorient themselves with the long-axes towards cross-stream direction, or perpendicular to the flow, with longer duration flows resulting in more pronounced cross-stream orientation. During high flow, grains orient themselves with their long-axes facing downstream or parallel to the flow, similar to imbricated grains observed in the sedimentary record. Further, when transport occurs, we find that median grain orientation is strongly correlated with bedload transport rates (R^2 = 0.98). We also observe that median grain orientations more perpendicular to downstream flow result in reduced transport rates. This new result suggests that the low flow reorientation of grains perpendicular to downstream flow drives observed differences in bedload transport during high flows. We conclude that low flow periods are important for the creation of bed structure and the stabilization of gravel river channels.

  3. Distribution of basic sediments (bedload transport) on changes in coastal coastline Donggala, Central Sulawesi Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Amiruddin

    2018-03-01

    This study entitled "Distribution of Bedload Transport Against Coastline Changes in Donggala Coast", the formulation of the problem (1) how much of the estimated bedload transport in Donggala Bodies; (2) where were the location of erosion and sedimentation strong point based on the estimation of bed load transport; (3) the extent to which the prediction of shoreline change rate of transport of sediments in coastal areas Donggala. This study aims to: (1) the calculation of estimated bed load transport in Donggala waters; (2) determining the location of the point of erosion and sedimentation strong basis of estimated bedload transport; (3) the prediction of shoreline change rate of transport of sediments in coastal areas Donggala.The survey method used in this research to collect primary data include: (1) decision point waypoint coordinates of each location of measurement; (2) measurement of height, period and direction of the waves; (3) a large measurement of sediment transport; (4) The angle measurement coastline, angle of attack and wave direction, and secondary data include: (1) information from the public; (2) the physical condition data field. The results showed that: (1) general estimate sediment transport base in each location data collection is varied. This is due to the different points of the coastline as well as the angle of attack of the shoreline waters broke Donggala; (2) strong abrasion at the study site occurs at the point Ts4 (622.75 m3/yr) and TS11 (755.25 m3/yr) located in the Village Tosale and point Tw7 and Tw17 (649.25 m3/yr) in Village of Towale. As for the strong sedimentation occurs at the point Ts3 (450.50 m3/yr) located in the Village Tosale and Tg3 point (357.75 m3/yr) located in the Village Tolonggano; (3) of the predicted outcome coastline changes based on the input data estimate sediment transport, beaches and waves parameters is seen that the changes in the location prophyl coastline tends toward research into or undergo a process of abrasion.

  4. The Transportation of Debris by Running Water

    USGS Publications Warehouse

    Gilbert, Grove Karl; Murphy, Edward Charles

    1914-01-01

    Scope.-The finer debris transported by a stream is borne in suspension. The coarser is swept along the channel bed. The suspended load is readily sampled and estimated, and much is known as to its quantity. The bed load is inaccessible and we are without definite information as to its amount. The primary purpose of the investigation was to learn the laws which control the movement of bed load, and especially to determine how the quantity of load is related to the stream's slope and discharge and to the degree of comminution of the debris. Method.-To this end a laboratory was equipped at Berkeley, Cal., and experiments were performed in which each of the three conditions mentioned was separately varied and the resulting variations of load were observed and measured. Sand and gravel were sorted by sieves into grades of uniform size. Determinate discharges were used. In each experiment a specific load was fed to a stream of specific width and discharge, and measurement was made of the slope to which the stream automatically adjusted its bed so as to enable the current to transport the load. The slope factor.-For each combination of discharge, width, and grade of debris there is a slope, called competent slope, which limits transportation. With lower slopes there is no load, or the stream has no capacity for load. With higher slopes capacity exists; and increase of slope gives increase of capacity. The value of capacity is approximately proportional to a power of the excess of slope above competent slope. If S equal the stream's slope and sigma equal competent slope, then the stream's capacity varies as (S - sigma)n. This is not a deductive, but an empiric law. The exponent n has not a fixed value, but an indefinite series of values depending on conditions. Its range of values in the experience of the laboratory is from 0.93 to 2.37, the values being greater as the discharges are smaller or the debris is coarser. The discharge factor.-For each combination of width, slope, and grade of debris there is a competent discharge, k. Calling the stream's discharge Q, the stream's capacity varies as (Q - k)o. The observed range of values for o is from 0.81 to 1.24, the values being greater as the slopes are smaller or the debris is coarser. Under like conditions o is less than n; or, in other words, capacity is less sensitive to change3 of discharge than to changes of slope. The fineness factor.-For each combination of width, slope, and discharge there is a limiting fineness of debris below which no transportation takes place. Calling fineness (or degree of comminution) F and competent fineness o, the stream's capacity varies with (F - o)p. The observed range of values for p is from 0.50 to 0.62, the values being greater as slopes and discharges are smaller. Capacity is less sensitive to changes in fineness of debris than to changes in discharge or slope. The form factor.-Most of the experiments were with straight channels. A few with crooked channels yielded nearly the same estimates of capacity. The ratio of depth to width is a more important factor. For any combination of slope, discharge, and fineness it is possible to reduce capacity to zero by making the stream very wide and shallow or very narrow and deep. Between these extremes is a particular ratio of depth to width, p, corresponding to a maximum capacity. The values of p range, under laboratory conditions, from 0.5 to 0.04, being greater as slope, discharge, and fineness are less. Velocity.-The velocity which determines capacity for bed load is that near the stream's bed, but attempts to measure bed velocity were not successful. Mean velocity was measured instead. To make a definite comparison between capacity and mean velocity it is necessary to postulate constancy in some accessory condition. If slope be the constant, in which case velocity changes with discharge, capacity varies on the average with the 3.2 power of velocity. If discharge be the constant, in w

  5. Effluent characterization from a conical pressurized fluid bed

    NASA Technical Reports Server (NTRS)

    Priem, R. J.; Rollbuhler, R. J.; Patch, R. W.

    1977-01-01

    To obtain useable corrosion and erosion results it was necessary to have data with several levels of particulate matter in the hot gases. One level of particulate loading was as low as possible so that ideally no erosion and only corrosion occurred. A conical fluidized bed was used to obtain some degree of filtration through the top of the bed which would not be highly fluidized. This would minimize the filtration required for the hot gases or conversely the amount of particulate matter in the hot gases after a given level of filtration by cyclones and/or filters. The data obtained during testing characterized the effluent from the bed at different test conditions. A range of bed heights, coal flows, air flows, limestone flows, and pressure are represented. These tests were made to determine the best operating conditions prior to using the bed to determine erosion and corrosion rates of typical turbine blade materials.

  6. Temporal Variability of Suspended Sediment Load, Dissolved Load, and Bedload for Two Small Oak Forested Catchments with Contrasting Disturbance Levels in the Lesser Himalaya of North-West India

    NASA Astrophysics Data System (ADS)

    Qazi, N. U. Q.; Rai, S. P.; Bruijnzeel, L. A.

    2014-12-01

    Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bed load) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and stream flow and showed a 23-fold range between wet and dry years. Of the annual load, some 92% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 2.6-fold (suspended sediment) to 5.9-fold (bed load) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.2 times and 4.7 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.59 and 1.05 mm per 1000 years, respectively.

  7. Preliminary evaluation of an aqueous wax emulsion for controlled-release coating.

    PubMed

    Walia, P S; Stout, P J; Turton, R

    1998-02-01

    The purpose of this work was to evaluate the use of an aqueous carnauba wax emulsion (Primafresh HS, Johnson Wax) in a spray-coating process. This involved assessing the effectiveness of the wax in sustaining the release of the drug, theophylline. Second, the process by which the drug was released from the wax-coated pellets was modeled. Finally, a method to determine the optimum blend of pellets with different wax thicknesses, in order to yield a zero-order release profile of the drug, was addressed. Nonpareil pellets were loaded with theophylline using a novel powder coating technique. These drug-loaded pellets were then coated with different levels of carnauba wax in a 6-in. diameter Plexiglas fluid bed with a 3.5-in. diameter Wurster partition. Drug release was measured using a spin-filter dissolution device. The study resulted in continuous carnauba wax coatings which showed sustained drug release profile characteristics typical of a barrier-type, diffusion-controlled system. The effect of varying wax thickness on the release profiles was investigated. It was observed that very high wax loadings would be required to achieve long sustained-release times. The diffusion model, developed to predict the release of the drug, showed good agreement with the experimental data. However, the data exhibited an initial lag-time for drug release which could not be predicted a priori based on the wax coating thickness. A method of mixing pellets with different wax thicknesses was proposed as a way to approximate zero-order release.

  8. [Evaluation of ergonomic load of clinical nursing procedures].

    PubMed

    Yan, P; Zhang, L; Li, F Y; Yang, Y; Wang, Y N; Huang, A M; Dai, Y L; Yao, H

    2017-08-20

    Objective: To evaluate the ergonomic load of clinical nursing procedures and to provide evidence for the prevention and management of work-related musculoskeletal disorders (WMSDs) in nurses. Methods: Based on the nursing unit characteristics and the common departments involving patient-turning procedures, 552 nurses were selected from 6 clinical departments from July to September, 2016. The ergonomic load of four types of patient-turning procedures, i.e., turning the patient's body, changing the bed linen of in-bed patients, moving patients, and chest physiotherapy, was evaluated by the on-site inspectors and self-evaluated by the operators using the Quick Exposure Check. The exposure value, exposure level, and exposure rate of WMSDs were assessed based on the procedure-related physical loads on the back, shoulders/arms, wrists/hands and neck, as well as the loads from work rhythm and work pressure. Results: All surveyed subjects were females who were aged mostly between 26-30 years (49.46%) , with a mean age of 29.66±5.28 years. These nurses were mainly from the Department of Infection (28.99%) and Spine Surgery (21.56%) . There were significant differences in the back, shoulders/arms, neck, work rhythm, and work pressure scores between different nursing procedures ( F =16.613, 5.884, 3.431, 3.222, and 5.085, respectively; P <0.05) . Patient-turning nursing procedures resulted in high to intermediate physical load in nurses. Procedures with high to low level of WMSDs exposure were patient turning (72.69%) , bed linen changing (67.15%) , patient transfer (65.82%) , and chest physiotherapy (58.34%) . In particular, patient turning was considered as very high-risk procedure, whereas others were considered as high-risk procedures. Conclusion: Patient-turning nursing procedures result in high ergonomic load in the operators. Therefore, more focus should be placed on the ergonomics of the caretakers and nurses.

  9. Fast response to fast-forwarding nature: instream large wood habitat restoration

    Treesearch

    Cheryl A. Hayhurst; William R. Short

    2017-01-01

    How quickly and in what way does a channel bed respond when large wood elements are introduced in a way that imitates natural wood loading processes (un-anchored or anchored by burial)? Using a design streamflow threshold for determining the size of key large wood elements, what changes in channel bed and habitat complexity occur after streamflow events above...

  10. Evaluation of three types of structured floating plastic media in moving bed biofilters for total ammonia nitrogen removal in a low salinity hatchery recirculating aquaculture system

    USDA-ARS?s Scientific Manuscript database

    Three different commercially available structural plastic media were evaluated in triplicate in moving bed toriod filters under low salinity (11-12 ppt) warm water culture conditions and two different feed loading rates. The culture system consisted of nine separate modules that include a double dra...

  11. The dependence of the CO2 removal efficiency of LiOH on humidity and mesh size. [in spacecraft life support systems

    NASA Technical Reports Server (NTRS)

    Davis, S. H.; Kissinger, L. D.

    1978-01-01

    The effect of humidity on the CO2 removal efficiency of small beds of anhydrous LiOH has been studied. Experimental data taken in this small bed system clearly show that there is an optimum humidity for beds loaded with LiOH from a single lot. The CO2 efficiency falls rapidly under dry conditions, but this behavior is approximately the same in all samples. The behavior of the bed under wet conditions is quite dependent on material size distribution. The presence of large particles in a sample can lead to rapid fall off in the CO2 efficiency as the humidity increases.

  12. Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor.

    PubMed

    Lou, S J; Tartakovsky, B; Zeng, Y; Wu, P; Guiot, S R

    2006-11-01

    In this work, rhodamine-related fluorescence was measured on-line at four reactor heights in order to study hydrodynamics within an upflow anaerobic sludge bed reactor. A linear dependence of the dispersion coefficient (D) on the upflow velocity was observed, while the influence of the organic loading rate (OLR) was insignificant. Furthermore, the Bodenstein number of the reactor loaded with granulated sludge was found to be position-dependent with the largest values measured at the bottom of the sludge bed. This trend was not observed in the reactor without sludge. Chemical oxygen demand (COD) and volatile fatty acid (VFA) concentrations were measured at the same reactor heights as in rhodamine tests using conventional off-line analytical methods and on-line multiwavelength fluorometry. Significant spatial COD and VFA gradients were observed at organic loading rates above 6g COD l(R)(-1)d(-1) and linear upflow velocities below 0.8m h(-1).

  13. Biological treatment of toxic petroleum spent caustic in fluidized bed bioreactor using immobilized cells of Thiobacillus RAI01.

    PubMed

    Potumarthi, Ravichandra; Mugeraya, Gopal; Jetty, Annapurna

    2008-12-01

    In the present studies, newly isolated Thiobacillus sp was used for the treatment of synthetic spent sulfide caustic in a laboratory-scale fluidized bed bioreactor. The sulfide oxidation was tested using Ca-alginate immobilized Thiobacillus sp. Initially, response surface methodology was applied for the optimization of four parameters to check the sulfide oxidation efficiency in batch mode. Further, reactor was operated in continuous mode for 51 days at different sulfide loading rates and retention times to test the sulfide oxidation and sulfate and thiosulfate formation. Sulfide conversions in the range of 90-98% were obtained at almost all sulfide loading rates and hydraulic retention times. However, increased loading rates resulted in lower sulfide oxidation capacity. All the experiments were conducted at constant pH of around 6 and temperature of 30 +/- 5 degrees C.

  14. Dynamic longitudinal relations between binge eating symptoms and severity and style of interpersonal problems.

    PubMed

    Luo, Xiaochen; Nuttall, Amy K; Locke, Kenneth D; Hopwood, Christopher J

    2018-01-01

    Despite wide recognition of the importance of interpersonal problems in binge eating disorder (BED), the nature of this association remains unclear. Examining the direction of this longitudinal relationship is necessary to clarify the role that interpersonal problems play in the course of binge eating problems, and thus to specify treatment targets and mechanisms. This study aimed to articulate the bidirectional, longitudinal associations between BED and both the general severity of interpersonal problems as well as warm and dominant interpersonal styles. Severity and styles of interpersonal problems and BED symptoms were measured at baseline, 12 weeks, 24 weeks, and 36 weeks in a sample of 107 women in treatment for BED. Results from bivariate latent change score models indicated that interpersonal problem severity and BED symptoms are associated longitudinally but do not directly influence each other. The results indicated a bidirectional interrelation between binge eating symptoms and dominance such that less dominance predicted greater decreases in binge eating problems, and less binge eating symptoms predicted greater increases in dominance. We also found that binge eating symptoms positively predicted changes in warmth (i.e., less binge eating symptoms predicted less increases or more decreases in warmth). These findings highlight the importance of using dynamic models to examine directionality and delineate the distinct roles of interpersonal severity and styles in BED trajectories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Hotspots within the Transboundary Selenga River Basin

    NASA Astrophysics Data System (ADS)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems. Hot spot assessment included 100 gauge stations in the river basin with discharge measurement by ADCP, turbidity (T) and suspended sediment concentration (SSC), bed load by bed load traps, composition of salt, biochemical oxidation, nitrogen and phosphorous content in water, pH, redox and conductivity values, and also content of heavy metals in water, suspended matter and sediments. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu, and Mo in the Selenga River water which often are higher than MPC for water fishery. Most contrast distribution is characteristic for W and Mo, which is caused by mineral deposits in the Selenga basin. The most severe pollution of aquatic systems in the basin caused by mining activities is characteristic for a small river Modonkul, which flows into Dzhida River (left tributary of Selenga).

  16. Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin (Northern Patagonia)

    NASA Astrophysics Data System (ADS)

    Moretti, M.; Ronchi, A.

    2011-04-01

    Superbly exposed soft-sediment deformation structures in Pleistocene fluvio-lacustrine deposits along the southern border of the depression area called Bajo de Añelo (Departamento de Añelo, Neuquén Basin) have been analysed. In the study area, five stratigraphic sections were measured in detail: facies distributions and stacking patterns show that these sediments result from the interaction between fluvial and lacustrine systems, represented by cross-bedded and rippled strata, and varved deposits. The lateral extent of the deformation is some hundred metres and the deformed bed involves the lower-mid part of the 30-metre-thick succession. Deformation affects about 1.5 m of coarse-grained sand, fine-grained sand and rare gravel alternations. The base and top of the deformed layer are defined by planar surfaces: undeformed beds of similar thickness, lithology and facies to the deformed layer occur above and below. Deformation is represented by a complex vertical succession of disturbed layers: each layer shows a general load-structure morphology. It can be described as a multilayered unstable density gradient system: in each bed a partial gravitational re-adjustment occurred after liquefaction. Unequal loading related to lateral variation of both bed thickness and grain packing and porosity is a probable additional driving force that can be described in the undeformed beds. Trigger mechanism recognition for the observed liquefaction features can be based on the study of the geometry of deformed beds and on facies analysis results. Two key factors drive our interpretation: (1) the occurrence of undeformed beds below and above the deformed bed; (2) deformed and undeformed beds showing the same sedimentological features. These field data allow us to exclude the action of internal erosive and/or sedimentary processes (such as overloading, wave action, etc.) as possible trigger agents for liquefaction since deformation is totally absent in beds with similar sedimentary features. Furthermore, each internal erosive and/or sedimentary process can be discussed and easily excluded by analysing its specific signature in the geological record. Having excluded every possible internal trigger (autokinetic processes), the observed liquefaction effects can reasonably be interpreted as seismically induced (allokinetic trigger). From this point of view, this deformed bed is an important record of seismic activity in this sector of the Neuquén Basin during the Pleistocene.

  17. Earthquake-induced soft-sediment deformation structures in Late Pleistocene lacustrine deposits of Issyk-Kul lake (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Gladkov, A. S.; Lobova, E. U.; Deev, E. V.; Korzhenkov, A. M.; Mazeika, J. V.; Abdieva, S. V.; Rogozhin, E. A.; Rodkin, M. V.; Fortuna, A. B.; Charimov, T. A.; Yudakhin, A. S.

    2016-10-01

    This paper discusses the composition and distribution of soft-sediment deformation structures induced by liquefaction in Late Pleistocene lacustrine terrace deposits on the southern shore of Issyk-Kul Lake in the northern Tien Shan mountains of Kyrgyzstan. The section contains seven deformed beds grouped in two intervals. Five deformed beds in the upper interval contain load structures (load casts and flame structures), convolute lamination, ball-and-pillow structures, folds and slumps. Deformation patterns indicate that a seismic trigger generated a multiple slump on a gentle slope. The dating of overlying subaerial deposits suggests correlation between the deformation features and strong earthquakes in the Late Pleistocene.

  18. A transient performance method for CO2 removal with regenerable adsorbents

    NASA Technical Reports Server (NTRS)

    Hwang, K. C.

    1972-01-01

    A computer program is described which can be used to predict the transient performance of vacuum-desorbed sorbent beds for CO2 or water removal, and composite beds of two sorbents for simultaneous humidity control and CO2 removal. The program was written primarily for silica gel and molecular sieve inorganic sorbents, but can be used for a variety of adsorbent materials. Part 2 of this report describes a computer program which can be used to predict performance for multiple-bed CO2-removal sorbent systems. This program is an expanded version of the composite sorbent bed program described in Part 1.

  19. A novel lunar bed rest analogue.

    PubMed

    Cavanagh, Peter R; Rice, Andrea J; Licata, Angelo A; Kuklis, Matthew M; Novotny, Sara C; Genc, Kerim O; Englehaupt, Ricki K; Hanson, Andrea M

    2013-11-01

    Humans will eventually return to the Moon and thus there is a need for a ground-based analogue to enable the study of physiological adaptations to lunar gravity. An important unanswered question is whether or not living on the lunar surface will provide adequate loading of the musculoskeletal system to prevent or attenuate the bone loss that is seen in microgravity. Previous simulations have involved tilting subjects to an approximately 9.5 degrees angle to achieve a lunar gravity component parallel to the long-axis of the body. However, subjects in these earlier simulations were not weight-bearing, and thus these protocols did not provide an analogue for load on the musculoskeletal system. We present a novel analogue which includes the capability to simulate standing and sitting in a lunar loading environment. A bed oriented at a 9.5 degrees angle was mounted on six linear bearings and was free to travel with one degree of freedom along rails. This allowed approximately 1/6 body weight loading of the feet during standing. "Lunar" sitting was also successfully simulated. A feasibility study demonstrated that the analogue was tolerated by subjects for 6 d of continuous bed rest and that the reaction forces at the feet during periods of standing were a reasonable simulation of lunar standing. During the 6 d, mean change in the volume of the quadriceps muscles was -1.6% +/- 1.7%. The proposed analogue would appear to be an acceptable simulation of lunar gravity and deserves further exploration in studies of longer duration.

  20. Wastewater treatment using a novel bioreactor with submerged packing bed of polyethylene tape.

    PubMed

    Mijaylova Nacheva, P; Moeller Chávez, G

    2010-01-01

    The performance of a novel aerobic bioreactor with a specially designed submerged packing bed of high specific surface area density, made of polyethylene tape, was studied for the treatment of domestic wastewater. The reactor has a volume of 0.71 m(3) and the specific area of the packing bed was 1,098 m(2)/m(3). The operation was performed with and without effluent recycling, applying different organic loads in the range of 4.0-17.6 g COD m(-2) d(-1). No back-washings were carried out. Overall BOD(5) removals of 90-95% were obtained with organic loads of 4.0-17.6 g COD m(-2) d(-1) and HRT of 0.2-1.1 h. Overall TN removal of 69-72% was obtained at loads of 0.8-4.6 g TN m(-2) d(-1) when effluent recycling was used. The reactor allowed obtaining high quality water for urban reuse and demonstrated an effective process performance and resistance to load variations. The developed biofilm was completely penetrated by the organic matter, ammonia and oxygen, providing high removal rates. Large biomass quantities, up to 13 g dry VS/m(2), were reached in the reactor and the determined sludge yield coefficient was relatively low, of 0.25 g VSS/g COD. These results allow obtaining compact treatment systems with low sludge production and make the technology a suitable option for small wastewater treatment plants.

  1. Unique Aeolian Transport Mechanisms on Mars: Respective Roles of Percussive and Repercussive Grain Populations in the Sediment Load

    NASA Technical Reports Server (NTRS)

    Marshall, John R.

    1999-01-01

    Experiments show that when sand-size grains impact a sediment surface with energy levels commensurate for Mars, small craters are formed by the ejection of several hundred grains from the bed. The experiments were conducted with a modified crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism. Individual grains of sand could be fired at loose sand targets to observe ballistic effects unhindered by aerodynamic mobilization of the bed. Impact trajectories simulated the saltation process on dune surfaces. Impact craters were not elongated despite glancing (15 deg.) bed impact; the craters were very close to being circular. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 micron-diameter grains into similar material. This behavior is explained by deposition of elastic energy in the bed by the "percussive" grain. Impact creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains to open packing and they consequently become forcefully ejected from the site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. A stress model based on repercussive bed dilatancy and interparticle adhesive forces (for smaller grains) predicts, to first order, the observed crater volumes for various impact conditions. On earth, only a few grains are mobilized by a percussive saltating grain; some grains are "knudged" along the ground, and some are partly expelled on short trajectories. These motions constitute reptation transport. On Mars, saltation and reptation become indistinct: secondary or "repercussive" trajectories have sufficient vertical impulse to create a dense saltation population of many tens or hundreds of grains for each single high-speed saltation percussion of the bed. Impact cascading will lead to near-surface distortion of the boundary layer, and choked flow formed by a dense "slurry" of sand, with the majority of grains mobilized by repercussive forces rather than by aerodynamic lift. This proceeds until a fully-matured transport layer imposes self- limitations as grain-population density constrains the free-path motion of individual grains.

  2. Unique Aeolian Transport Mechanisms on Mars: Respective Roles of Percussive and Repercussive Grain Populations in the Sediment Load

    NASA Technical Reports Server (NTRS)

    Marshall, John R.

    1999-01-01

    Experiments show that when sand-size grains impact a sediment surface with energy levels commensurate for Mars, small craters are formed by the ejection of several hundred grains from the bed. The experiments were conducted with a modified crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism. Individual grains of sand could be fired at loose sand targets to observe ballistic effects unhindered by aerodynamic mobilization of the bed. Impact trajectories simulated the saltation process on dune surfaces. Impact craters were not elongated despite glancing (15 deg.) bed impact; the craters were very close to being circular. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 um-diameter grains into similar material. This behavior is explained by deposition of elastic energy in the bed by the "percussive" grain. Impact creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains to open packing and they consequently become forcefully ejected from the site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. A stress model based on repercussive bed dilatancy and interparticle adhesive forces (for smaller grains) predicts, to first order, the observed crater volumes for various impact conditions. On earth, only a few grains are mobilized by a percussive saltating grain; some grains are "knudged" along the ground, and some are partly expelled on short trajectories. These motions constitute reptation transport. On Mars, saltation and reptation become indistinct: secondary or "repercussive" trajectories have sufficient vertical impulse to create a dense saltation population of many tens or hundreds of grains for each single high-speed saltation percussion of the bed. Impact cascading will lead to near-surface distortion of the boundary layer, and choked flow formed by a dense "slurry" of sand, with the majority of grains mobilized by repercussive forces rather than by aerodynamic lift. This proceeds until a fully-matured transport layer imposes self-limitations as grain-population density constrains the free-path motion of individial grains.

  3. Mechanical Vibrations Reduce the Intervertebral Disc Swelling and Muscle Atrophy from Bed Rest

    NASA Technical Reports Server (NTRS)

    Holguin, Nilsson; Muir, Jesse; Evans, Harlan J.; Qin, Yi-Xian; Rubin, Clinton; Wagshul, Mark; Judex, Stefan

    2007-01-01

    Loss of functional weight bearing, such as experienced during space flight or bed rest (BR), distorts intervertebral disc (IVD) and muscle morphology. IVDs are avascular structures consisting of cells that may derive their nutrition and waste removal from the load induced fluid flow into and out of the disc. A diurnal cycle is produced by forces related to weight bearing and muscular activity, and comprised of a supine and erect posture over a 24 hr period. A diurnal cycle will include a disc volume change of approx. 10-13%. However, in space there are little or no diurnal changes because of the microgravity, which removes the gravitational load and compressive forces to the back muscles. The BR model and the etiology of the disc swelling and muscle atrophy could provide insight into those subjects confined to bed for chronic disease/injury and aging. We hypothesize that extremely low-magnitude, high frequency mechanical vibrations will abate the disc degeneration and muscle loss associated with long-term BR.

  4. Responses of biofilm characteristics to variations in temperature and NH4(+)-N loading in a moving-bed biofilm reactor treating micro-polluted raw water.

    PubMed

    Zhang, Shuangfu; Wang, Yayi; He, Weitao; Wu, Min; Xing, Meiyan; Yang, Jian; Gao, Naiyun; Yin, Daqiang

    2013-03-01

    A pilot-scale moving-bed biofilm reactor (MBBR) for biological treatment of micro-polluted raw water was operated over 400days to investigate the responses of biofilm characteristics and nitrification performance to variations in temperature and NH4(+)-N loading. The mean removal efficiency of NH4(+)-N in the MBBR reached 71.4±26.9%, and batch experiments were performed to study nitrification kinetics for better process understanding. Seven physical-chemical parameters, including volatile solids (VS), polysaccharides (PS) and phospholipids (PL) increased firstly, and then rapidly decreased with increasing temperature and NH4(+)-N loading, and properly characterized the attached biomass during biofilm development and detachment in the MBBR. The biofilm compositions were described by six ratios, e.g., PS/VS and PL/VS ratios showed different variation trends, indicating different responses of PS and PL to the changes in temperature and NH4(+)-N loading. Furthermore, fluorescent in situ hybridization (FISH) analysis revealed that increased NH4(+)-N loadings caused an enrichment of the nitrifying biofilm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture.

    PubMed

    Malhautier, Luc; Gracian, Catherine; Roux, Jean-Claude; Fanlo, Jean-Louis; Le Cloirec, Pierre

    2003-01-01

    The physico-chemical characteristics of granulated sludge lead us to develop its use as a packing material in air biofiltration. Then, the aim of this study is to investigate the potential of unit systems packed with this support in terms of ammonia and hydrogen sulfide emissions treatment. Two laboratory scale pilot biofilters were used. A volumetric load of 680 g H2S m(-3) empty bed day(-1) and 85 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to a unit called BGSn (column packed with granulated sludge and mainly supplied with hydrogen sulfide); a volumetric load of 170 g H2S m(-3) empty bed day(-1) and 340 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to the other called BGNs (column packed with granulated sludge and mainly supplied with ammonia). Ammonia and hydrogen sulfide elimination occur in the biofilters simultaneously. The hydrogen sulphide and ammonia removal efficiencies reached are very high: 100% and 80% for BGSn; 100% and 80% for BGNs respectively. Hydrogen sulfide is oxidized into sulphate and sulfur. The ammonia oxidation products are nitrite and nitrate. The nitrogen error mass balance is high for BGSn (60%) and BGNs (36%). This result could be explained by the denitrification process which would have occurred in anaerobic zones. High percentages of ammonia or hydrogen sulfide are oxidized on the first half of the column. The oxidation of high amounts of hydrogen sulfide would involve some environmental stress on nitrifying bacterial growth and activity.

  6. Effects of sediment transport on survival of salmonid embryos in a natural stream: A simulation approach

    Treesearch

    Thomas E. Lisle; Jack Lewis

    1992-01-01

    A model is presented that simulates the effects of streamflow and sediment transport on survival of salmonid embryos incubating in spawning gravels in a natural channel. Components of the model include a 6-yr streamflow record, an empirical bed load-transport function, a relation between transport and infiltration of sandy bedload into a gravel bed, effects of fine-...

  7. The volume of fine sediment in pools: An index of sediment supply in gravel-bed streams

    Treesearch

    Thomas E. Lisle; Sue Hilton

    1992-01-01

    Abstract - During waning flood flows in gravel-bed streams, fine-grained bedload sediment (sand and fine gravel) is commonly winnowed from zones of high shear stress, such as riffles, and deposited in pools, where it mantles an underlying coarse layer. As sediment load increases, more fine sediment becomes availabe to fill pools. The volume of fine sediment in pools...

  8. Analysis/test correlation using VAWT-SDS on a step-relaxation test for the rotating Sandia 34 m test bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argueello, J.G.; Dohrmann, C.R.; Carne, T.G.

    The combined analysis/test effort described in this paper compares predictions with measured data from a step-relaxation test in the absence of significant wind-driven aerodynamic loading. The process described here is intended to illustrate a method for validation of time domain codes for structural analysis of wind turbine structures. Preliminary analyses were performed to investigate the transient dynamic response that the rotating Sandia 34 m Vertical Axis Wind Turbine (VAWT) would undergo when one of the two blades was excited by step-relaxation. The calculations served two purposes. The first was for pretest planning to evaluate the relative importance of the variousmore » forces that would be acting on the structure during the test and to determine if the applied force in the step-relaxation would be sufficient to produce an excitation that was distinguishable from that produced by the aerodynamic loads. The second was to provide predictions that could subsequently be compared to the data from the test. The test was carried out specifically to help in the validation of the time-domain structural dynamics code, VAWT-SDS, which predicts the dynamic response of VAWTs subject to transient events. Post-test comparisons with the data were performed and showed a qualitative agreement between pretest predictions and measured response. However, they also showed that there was significantly more damping in the measurements than included in the predictions. Efforts to resolve this difference, including post-test analyses, were undertaken and are reported herein. The overall effort described in this paper represents a major step in the process of arriving at a validated structural dynamics code.« less

  9. Updated Performance Evaluation of the ISS Water Processor Multifiltration Beds

    NASA Technical Reports Server (NTRS)

    Bowman, Elizabeth M.; Carter, Layne; Carpenter, Joyce; Orozco, Nicole; Weir, Natalee; Wilson, Mark

    2014-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Beds, which include adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. Two Multifiltration Beds (MF Beds) were replaced on ISS in July 2010 after initial indication of inorganic breakthrough of the first bed and an increasing Total Organic Carbon (TOC) trend in the product water. The first bed was sampled and analyzed Sept 2011 through March 2012. The second MF Bed was sampled and analyzed June 2012 through August 2012. The water resident in the both beds was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed in addition to microbial analysis. Analysis of the second bed will be compared to results from the first bed to provide a comprehensive overview of how the Multifiltration Beds function on orbit. New data from the second bed supplements the analysis of the first bed (previously reported) and gives a more complete picture of breakthrough compounds, resin breakdown products, microbial activity, and difficult to remove compounds. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  10. One-dimensional wave bottom boundary layer model comparison: specific eddy viscosity and turbulence closure models

    USGS Publications Warehouse

    Puleo, J.A.; Mouraenko, O.; Hanes, D.M.

    2004-01-01

    Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.

  11. Understanding Stream Channel Sediment Source Contributions For The Paradise Creek Watershed In Northern Idaho

    NASA Astrophysics Data System (ADS)

    Rittenburg, R.; Boll, J.; Brooks, E. S.

    2013-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. In-stream contributions are not well understood, and are a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to differentiate stream bank and stream bed sediment contributions and better understand the role of legacy sediments. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was composed predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 39% of the total annual sediment load for the basin, with a 19-year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term cross sectional data in the watershed, and a sediment fingerprinting analysis will be presented to better understand sediment contributions from within the stream channel system.

  12. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    PubMed

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  13. A Comparison of Tandem Walk Performance Between Bed Rest Subjects and Astronauts

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Peters, Brian; Kofman, Igor; Philips, Tiffany; Batson, Crystal; Cerisano, Jody; Fisher, Elizabeth; Mulavara, Ajitkumar; Feiveson, Alan; Reschke, Millard; hide

    2015-01-01

    Astronauts experience a microgravity environment during spaceflight, which results in a central reinterpretation of both vestibular and body axial-loading information by the sensorimotor system. Subjects in bed rest studies lie at 6deg head-down in strict bed rest to simulate the fluid shift and gravity-unloading of the microgravity environment. However, bed rest subjects still sense gravity in the vestibular organs. Therefore, bed rest isolates the axial-unloading component, thus allowing for the direct study of its effects. The Tandem Walk is a standard sensorimotor test of dynamic postural stability. In a previous abstract, we compared performance on a Tandem Walk test between bed rest control subjects, and short- and long-duration astronauts both before and after flight/bed rest using a composite index of performance, called the Tandem Walk Parameter (TWP), that takes into account speed, accuracy, and balance control. This new study extends the previous data set to include bed rest subjects who performed exercise countermeasures. The purpose of this study was to compare performance during the Tandem Walk test between bed rest subjects (with and without exercise), short-duration (Space Shuttle) crewmembers, and long-duration International Space Station (ISS) crewmembers at various time points during their recovery from bed rest or spaceflight.

  14. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China

    NASA Astrophysics Data System (ADS)

    Xian, Benzhong; Wang, Junhui; Gong, Chenglin; Yin, Yu; Chao, Chuzhi; Liu, Jianping; Zhang, Guodong; Yan, Qi

    2018-06-01

    Subaquatic channels are known as active conduits for the delivery of terrigenous sediments into related marine and lacustrine basins, as well as important targets for hydrocarbon exploration. Compared to submarine channels, lacustrine subaqueous channels created by hyperpycnal flows are understudied. Using well-exposed outcrops collected from three different locations in the southern Ordos Basin, central China, morphologies and architecture of a channelized hyperpycnal system were studied and classified. Six facies associations represent sedimentary processes from strong erosion by bedload dominated hyperpycnal flows, to transitional deposition jointly controlled by bedload and suspended-load dominated hyperpycnal flows, finally to deposition from suspended-load dominated hyperpycnal flows. On the basis of channel morphologies, infilling sediments and sedimentary processes, the documented channels can be classified into four main categories, which are erosional, bedload dominated, suspended-load dominated, and depositional channels. In very proximal and very distal locations, erosional channels and depositional channels serve as two end-members, while in middle areas, bedload-dominated channels and suspended-load dominated channels are transitional types. Erosional channels, as a response to strong erosion from bedload dominated hyperpycnal flows on upper slope, were mainly filled by mud interbedded with thin sand beds. As flow energy decreases, bedload dominated channels develop on middle slopes, which are characterized mainly by under- to balanced sediment infillings with cross-bedded sandstones and/or minor massive sandstones. Compared to bedload dominated channels, suspended-load dominated channels mainly develop in deeper water, and were filled mainly by massive or planar-laminated sandstones. Depositional channels, as a response to suspended-load dominated hyperpycnal flows in deep-water areas, are characterized by thin-medium bed classical turbidites with Bouma sequences and thin- to thick massive sandstones. Such evolution patterns of hyperpycnal channel systems are ascribed to the progressive decrease in flow capacity of hyperpycnal flows, and provide an adequate explanation for the basinward channelization behavior of hyperpycnal systems.

  15. Deep particle bed dryout model based on flooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, P.

    1987-01-01

    Examination of the damaged Three Mile island Unit 2 (TMI-2) reactor indicates that a deep (approx. 1-m) bed of relatively large (approx. 1-mm) particles was formed in the core. Cooling of such beds is crucial to the arrest of core damage progression. The Lipinski model, based on flows in the bed, has been used to predict the coolability, but uncertainties exist in the turbulent permeability. Models based on flooding at the top of the bed either have a dimensional viscosity term, or no viscosity dependence, thus limiting their applicability. This paper presents a dimensionless correlation based on flooding data thatmore » involves a liquid Reynolds number. The derived dryout model from this correlation is compared with data for deep beds of large particles at atmospheric pressure, and with other models over a wide pressure range. It is concluded that the present model can give quite accurate predictions for the dryout heat flux of particle beds formed during a light water reactor accident and it is easy to use and agrees with the Lipinski n = 5 model, which requires iterative calculations.« less

  16. Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement

    NASA Astrophysics Data System (ADS)

    Conklin, M. H.; Martin, S.

    2017-12-01

    This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada, headwater streams, to collect high temporal resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and baseflow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term, storm events. We propose conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, based on this and earlier work showing in-stream sources for bedload material. The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like, downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining both the accumulation rate of sediment stores at the margins, and the redistribution of sediment from margins to thalweg that "feeds" the conveyor-belt. Disturbance and recovery cycles are observed at multiple temporal scales, but long term, the channel beds are stable, suggesting the beds act as short-term storage for sediment, but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This type of high-temporal-resolution data provides insight into short term cycles of bedload movement in high gradient, forested, mountain streams.

  17. Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement

    NASA Astrophysics Data System (ADS)

    Martin, Sarah E.; Conklin, Martha H.

    2018-01-01

    This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada headwater streams to collect high-temporal-resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and base flow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term storm events. A conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, is proposed building on the results of Martin et al. (2014). The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining the accumulation rate of sediment stores at the margins and the redistribution of sediment from margins to thalweg that feeds the conveyor belt. Disturbance and recovery cycles are observed at multiple temporal scales; but long term, the channel beds are stable, suggesting that the beds act as short-term storage for sediment but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This type of high-temporal-resolution data provides insight into short-term cycles of bedload movement in high gradient, forested mountain streams.

  18. Species removal from aqueous radioactive waste by deep-bed filtration.

    PubMed

    Dobre, Tănase; Zicman, Laura Ruxandra; Pârvulescu, Oana Cristina; Neacşu, Elena; Ciobanu, Cătălin; Drăgolici, Felicia Nicoleta

    2018-05-26

    Performances of aqueous suspension treatment by deep-bed sand filtration were experimentally studied and simulated. A semiempirical deterministic model and a stochastic model were used to predict the removal of clay particles (20 μm) from diluted suspensions. Model parameters, which were fitted based on experimental data, were linked by multiple linear correlations to the process factors, i.e., sand grain size (0.5 and 0.8 mm), bed depth (0.2 and 0.4 m), clay concentration in the feed suspension (1 and 2 kg p /m 3 ), suspension superficial velocity (0.015 and 0.020 m/s), and operating temperature (25 and 45 °C). These relationships were used to predict the bed radioactivity determined by the deposition of radioactive suspended particles (>50 nm) from low and medium level aqueous radioactive waste. A deterministic model based on mass balance, kinetic, and interface equilibrium equations was developed to predict the multicomponent sorption of 60 Co, 137 Cs, 241 Am, and 3 H radionuclides (0.1-0.3 nm). A removal of 98.7% of radioactive particles was attained by filtering a radioactive wastewater volume of 10 m 3 (0.5 mm sand grain size, 0.3 m bed depth, 0.223 kg p /m 3 suspended solid concentration in the feed suspension, 0.003 m/s suspension superficial velocity, and 25 °C operating temperature). Predicted results revealed that the bed radioactivity determined by the sorption of radionuclides (0.01 kBq/kg b ) was significantly lower than the bed radioactivities caused by the deposition of radioactive particles (0.5-1.8 kBq/kg b ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The role of mesopores in MTBE removal with granular activated carbon.

    PubMed

    Redding, Adam M; Cannon, Fred S

    2014-06-01

    This activated carbon research appraised how pore size and empty-bed contact time influenced the removal of methyl tert-butyl ether (MTBE) at part-per-billion (ppb) concentrations when MTBE was the sole organic impurity. The study compared six granular activated carbons (GACs) from three parent sources; these GACs contained a range of pore volume distributions and had uniform slurry pHs of 9.7-10.4 (i.e. the carbons' bulk surface chemistries were basic). Several of these activated carbons had been specifically tailored for enhanced sorption of trace organic compounds. In these tests, MTBE was spiked into deionized-distilled water (∼pH 7); MTBE loading was measured by isotherms and by rapid small-scale column tests (RSSCTs) that simulated full-scale empty-bed contact times of 7, 14, and 28 min. The results showed that both ultra-fine micropores and small-diameter mesopores were important for MTBE adsorption. Specifically, full MTBE loading during RSSCTs bore a strong correlation (R(2) = 0.94) to the product (mL/g × mL/g) of pore volume ≤4.06 Å wide and pore volume between ∼22 Å and ∼59 Å wide. This correlation was greater than for the product of any other pore volume combinations. Also, this product exhibited a stronger correlation than for just one or the other of these two pore ranges. This multiplicative relationship implied that both of these pore sizes were important for the optimum GAC performance of these six carbons (i.e. favorable mass transfer coupled with favorable sorption). The authors also compared MTBE mass loading during RSSCTs (μg MTBE/g GAC) to isotherm capacity (μg MTBE/g GAC). This RSSCT loading "efficiency" ranged from 28% to 96% for the six GACs; this efficiency correlated most strongly to pores that were 14-200 Å wide (R(2) = 0.94). This correlation indicated that only those carbons with a sufficient volume of 14-200 Å pores could adsorb MTBE to the extent that would be predicted from isotherm data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Countermeasures against lumbar spine deconditioning in prolonged bed rest: resistive exercise with and without whole body vibration.

    PubMed

    Belavý, Daniel L; Armbrecht, Gabriele; Gast, Ulf; Richardson, Carolyn A; Hides, Julie A; Felsenberg, Dieter

    2010-12-01

    To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.

  1. Grand Forks - East Grand Forks Urban Water Resources Study. Wastewater Management Appendix.

    DTIC Science & Technology

    1981-07-01

    SLUIGES FROM AEROBIC DIGESTION . 2. LOADING RATE OF 20 LB/FT 2/YR APPLICABLE TO BIOLOGICAL SLUDGES FROM ANAEROBIC DIGESTION. 3. EXPECTED PERFORMANCE...plant size as follows: Sludge Handling Facilities Flow Range Biological Sludge Lime Sludge Flow <_ 3 MCD Flotation thickening, Gravity thicken & aerobic ... digestion , & drying beds. drying beds. 3 MGD < Mot; < 10 MGD Flotation thickening, Gravity thicken & anaerobic digestion, & vacuum filter. vacuum

  2. Lunar Analog Feasibility Study Results

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.; Neigut, Joe

    2009-01-01

    This slide presentation reviews a study designed to determine the feasibility of using a 9.5 deg head-up tilt bed rest model to simulate the effects of the 1/6 g load to the human body that exists on the lunar surface. The effect of different types of compression stockings, the pre-bed rest diet, and the use of a specific exercise program were reviewed for comfort, force verification and plasma volume shift

  3. Investigations of Sediment Transportation, Middle Loup River at Dunning, Nebraska: With Application of Data from Turbulence Flume

    USGS Publications Warehouse

    Hubbell, David Wellington; Matejka, Donald Quintin

    1959-01-01

    An investigation of fluvial sediments of the Middle Loup River at Dunning, Nebr., was begun in 1946 and expanded in 1949 to provide information on sediment transportation. Construction of an artificial turbulence flume at which the total sediment discharge of the Middle Loup River at Dunning, Nebr., could be measured with suspended-sediment sampling equipment was completed in 1949. Since that time. measurements have been made at the turbulence flume and at several selected sections in a reach upstream and downstream from the flume. The Middle Loup River upstream from Dunning traverses the sandhills region of north-central Nebraska and has a drainage area of approximately 1,760 square miles. The sandhills are underlain by the Ogallala formation of Tertiary age and are mantled by loess and dune sand. The topography is characterized by northwest-trending sand dunes, which are stabilized by grass cover. The valley floor upstream from Dunning is generally about half a mile wide, is about 80 feet lower than the uplands, and is composed of sand that was mostly stream deposited. The channel is defined by low banks. Bank erosion is prevalent and is the source of most of the sediment load. The flow originates mostly from ground-water accretion and varies between about 200 and 600 cfs (cubic feet per second). Measured suspended-sediment loads vary from about 200 to 2,000 tons per day, of which about 20 percent is finer than 0.062 millimeter and 100 percent is finer than 0.50 millimeter. Total sediment discharges vary from about 500 to 3,500 tons per day, of which about 10 percent is finer than 0.062 millimeter, about 90 percent is finer than 0.50 millimeter, and about 98 percent is finer than 2.0 millimeters. The measured suspended-sediment discharge in the reach near Dunning averages about one-half of the total sediment discharge as measured at the turbulence flume. This report contains information collected during the period October 1, 1948, to September 30, 1952. The information includes sediment discharges; particle-size analyses of total load, of measured suspended sediment, and of bed material; water discharges and other hydraulic data for the turbulence flume and the selected sections. Sediment discharges have been computed with several different formulas, and insofar as possible, each computed load has been compared with data from the turbulence flume. Sediment discharges computed with the Einstein procedure did not agree well, in general, with comparable measured loads. However, a satisfactory representative cross section for the reach could not be determined with the cross sections that were selected for this investigation. If the computed cross section was narrower and deeper than a representative cross section for the reach, computed loads were high; and if the computed cross section was wider and shallower than a representative cross section for the reach, computed loads were low. Total sediment discharges computed with the modified Einstein procedure compared very well with the loads of individual size ranges and the measured total loads at the turbulence flume. Sediment discharges computed with the Straub equation averaged about twice the measured total sediment discharge at the turbulence flume. Bed-load discharges computed with the Kalinske equation were of about the right magnitude; however, high computed loads were associated with low total loads, low unmeasured loads, and low concentrations of measured suspended sediment coarser than 0.125 millimeter. Bed-load discharges computed with the Schoklitsch equation seemed somewhat high; about one-third of the computed loads were slightly higher than comparable unmeasured loads. Although, in general, high computed discharges with the Schoklitsch equation were associated with high measured total loads, high unmeasured loads, and high concentrations of measured suspended sediment coarser than 0.125 millimeter, the trend was not consistent. Bed-load discharges computed

  4. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    USGS Publications Warehouse

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to determine fluxes of suspended sediment for the median particle size and for the measured range of particle sizes in the channel. Three different techniques were investigated for making the suspended-sediment predictions; these techniques have varying degrees of reliance on measured data and also have greatly differing degrees of complexity. Based on these data, the calibrated Rouse method provided the best balance between accuracy and both computational and data collection costs; the presence of substantial washload was the primary factor in eliminating the simpler and the more complex techniques. Based on this work, using the selected technique at additional sites in the watershed to determine relative loads and source areas appears plausible. However, to ensure that the methodology presented in this report yields reasonable results at other selected sites in the basin, it is necessary to collect additional verification data sets at those locations.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavignet, A.A.; Sobey, I.J.

    At present, drilling of highly deviated wells is complicated by the possibility of the formation of a thick bed of cuttings at low flow rates. The bed of cuttings can cause large torque loads on drill pipe and can fall back around the bit resulting in a stuck bit. Previous investigators have made experimental observations which show that bed formation is characterized by a relatively rapid increase in bed thickness as either the flow rate is lowered past some critical value, or as the deviation from the vertical increases. The authors present a simple model which explains these observations. Themore » model shows that the bed thickness is controlled by the interfacial stress caused by the different velocities of the mud and the cuttings layer. The results confirm previous observations that bed formation is relatively insensitive to mud rheology. Eccentricity of the drill pipe in the hole is an important factor. The model is used to determine critical flow rate needed to prevent the formation of a thick bed of cuttings and the inclination, hole size and rate of penetration are varied.« less

  6. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    PubMed

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.

  7. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  8. WE-H-BRA-02: Radiobiological Modeling of Tumor Control Probability (TCP) and Radiation-Induced Pneumonitis (RP) for Lung Cancer Patients Treated with Monte Carlo-Based Lung SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Sood, S; Shen, X

    2016-06-15

    Purpose: To present radiobiological modeling of TCP using tumor size-adjusted BED(s-BED)and PTV(D99) to lung SBRT patients treated with X-ray Voxel Monte Carlo(XVMC) algorithm, apply parameterized Lyman-NTCP model to predict grade-2 RP and subsequently, compare with clinical outcomes/observations. Methods: Dosimetric parameters and clinical follow-up for XVMC-based lung-SBRT patients were retrospectively evaluated. Patients were treated at Novalis-TX with hybrid(2 non-coplanar partial-arcs plus 3–6 static-beams)plan using HD-MLC/6MV-SRS-beam.For TCP,s-BED modelling was utilized: TCP=EXP[sBED-TCD50]/k/(1.0+EXP[sBED-TCD50]/k), where k=31Gy corresponding to TCD50=0Gy and s-BED was defined as BED10 minus 10 times the tumor diameter(in centimeters)by Ohri et al.(IJROBP,2012). For 2-yr local-control, we used more-realistic MC-computed PTVD99 as amore » predictive parameter, s-BED(D99).Due to relatively shorter median follow-up interval(12-months),Kaplan-Meier curves were generated to estimate 2-yr observed local-control and compared to predicted-rate by TCP modeling. For NTCP, we employed parameterized Lyman-NTCP model utilizing normal-lung DVH and α/β=3Gy fitted to predict grade-2 RP after lung-SBRT. Results: Total 108 patients (137 tumors) treated for 35–70Gy in 3–5 fractions, either primary-lung(n=74)or metastatic-lung(n=53)tumors were included.F or the given prescription dose with MC-computed MUs, 2-yr local-control rates with s-BED(D99) was 87±8%. Kaplan-Meier generated observed local-control rate at 2-yr was 87.5%,suggesting that PTV(D99) could be a potential predictor (p-value=0.38). Observed vs predicted TCP for primary-lung tumors and metastatic tumors were 97% vs 88±7% and 94% vs 86±9%.NTCP model predicted well for symptomatic-RP with predicted vs observed (3±5% vs 2%). Radiographic and clinically significant RP was observed in 13% and 2% of patients. Higher rates of radiographic change were observed in patients who received >50Gy compared to ≤50Gy(24% vs 10%). Conclusion: Utilizing MC-computed PTVD99, our TCP results were well correlated with clinical outcome. The predicted grade-2 RP rate was comparable to clinical observations. Clinical application of these radiobiological models may potentially allow for target dose escalation and/or lung-toxicity reduction. Further validation of these radiobiological models with longer follow up interval for large cohorts of lung-SBRT patients is anticipated.« less

  9. Artificial Gravity as a Multi-System Countermeasure to Bed Rest Deconditioning: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Warren, L. E.; Paloski, William H.; Young, L. R.

    2006-01-01

    Artificial gravity paradigms may offer effective, efficient, multi-system protection from the untoward effects of adaptation to the microgravity of space or the hypogravity of planetary surfaces. Intermittent artificial gravity (AG) produced by a horizontal short-radius centrifuge (SRC) has recently been utilized on human test subjects deconditioned by bed rest. This presentation will review preliminary results of a 41 day study conducted at the University of Texas Medical Branch, Galveston, TX bed rest facility. During the first eleven days of the protocol, subjects were ambulatory, but confined to the facility. They began a carefully controlled diet, and participated in multiple baseline tests of bone, muscle, cardiovascular, sensory-motor, immunological, and psychological function. On the twelfth day, subjects entered the bed rest phase of the study, during which they were confined to strict 6deg head down tilt bed rest for 21 days. Beginning 24 hrs into this period, treatment subjects received one hour daily exposures to artificial gravity which was produced by spinning the subjects on a 3.0 m radius SRC. They were oriented radially in the supine position so that the centrifugal force was aligned with their long body axis, and while spinning, they "stood" on a force plate, supporting the centrifugal loading (2.5 g at the feet, 1.0 g at the heart). The subject station allowed free translation over approximately 10 cm to ensure full loading of the lower extremities and to allow for anti-orthostatic muscle contractions. Control subjects were positioned on the centrifuge but did not spin. Following the bed rest phase, subjects were allowed to ambulate again, but remained within the facility for an additional 9 days and participated in multiple follow-up tests of physiological function.

  10. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying.

    PubMed

    Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi

    2018-07-01

    This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Process integration for biological sulfate reduction in a carbon monoxide fed packed bed reactor.

    PubMed

    Kumar, Manoj; Sinharoy, Arindam; Pakshirajan, Kannan

    2018-08-01

    This study examined immobilized anaerobic biomass for sulfate reduction using carbon monoxide (CO) as the sole carbon source under batch and continuous fed conditions. The immobilized bacteria with beads made of 10% polyvinyl alcohol (PVA) showed best results in terms of sulfate reduction (84 ± 3.52%) and CO utilization (98 ± 1.67%). The effect of hydraulic retention time (HRT), sulfate loading rate and CO loading rate on sulfate and CO removal was investigated employing a 1L packed bed bioreactor containing the immobilized biomass. At 48, 24 and 12 h HRT, the sulfate removal was 94.42 ± 0.15%, 89.75 ± 0.47% and 61.08 ± 0.34%, respectively, along with a CO utilization of more than 90%. The analysis of variance (ANOVA) of the results obtained showed that only the initial CO concentration significantly affected the sulfate reduction process. The reactor effluent sulfate concentrations were 27.41 ± 0.44, 59.16 ± 1.08, 315.83 ± 7.33 mg/L for 250, 500 and 1000 mg/L of influent sulfate concentrations respectively, under the optimum operating conditions. The sulfate reduction rates matched well with low inlet sulfate loading rates, indicating stable performance of the bioreactor system. Overall, this study yielded very high sulfate reduction efficiency by the immobilized anaerobic biomass under high CO loading condition using the packed bed reactor system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. An assessment of the impact of upland afforestation on lowland river reaches: the Afon Trannon, mid-Wales

    NASA Astrophysics Data System (ADS)

    Mount, N. J.; Sambrook Smith, G. H.; Stott, T. A.

    2005-01-01

    Upland afforestation in the UK was the largest rural land-use change last century. As a consequence, the bed load yields of upland catchments increased substantially. Circumstantial evidence suggests that, when this increased load reaches the lowland catchment, it is deposited, triggering flow diversion and channel instability. However, despite the widespread adoption of this theory, it remains to be properly tested. This paper uses aerial photograph analysis and contemporary channel digital terrain models (DTMs) to assess this concept on the Afon Trannon, mid-Wales, the upper catchment of which was afforested between 1948 and 1978. Construction of a sediment budget demonstrates that upland catchment bed load yields are only equivalent to localized inputs of gravel from bank erosion and are therefore unlikely to be totally responsible for producing the high rates of channel change observed in some lowland reaches. Channel instability appears to be more related to the nature of the local bank input as those reaches where gravel is not present in the bank material are stable. Additionally, flood magnitude and frequency are shown to have increased since 1988, a factor of at least equal importance to that of bed load yields from either upland catchments or local bank erosion. It is concluded that, in contrast to previous work, afforestation in the uplands has only a minor influence on downstream reaches of the Afon Trannon. Situations where upland afforestation may have a greater impact on downstream reaches are discussed and the implications for best management practice explored.

  13. Performance Evaluation of the ISS Water Processor Multifiltration Beds

    NASA Technical Reports Server (NTRS)

    Bowman, Elizabeth M.; Carter, Layne; Wilson, Mark; Cole, Harold; Orozco, Nicole; Snowdon, Doug

    2012-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Bed, which includes adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. The first Multifiltration Bed was replaced on ISS in July 2010 after initial indication of inorganic breakthrough. This bed was returned to ground in July 2011 for an engineering investigation. The water resident in the bed was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed. In addition, an unused Multifiltration Bed was evaluated after two years in storage to assess the generation of leachates during storage. This assessment was performed to evaluate the possibility that these leachates are impacting performance of the Catalytic Reactor located downstream of the Multifiltration Bed. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  14. Dosimetric quality endpoints for low-dose-rate prostate brachytherapy using biological effective dose (bed) vs. conventional dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rachana; Al-Hallaq, Hania; Pelizzari, Charles A.

    2003-12-31

    The purpose of this study was to compare conventional low-dose-rate prostate brachytherapy dosimetric quality parameters with their biological effective dose (BED) counterparts. To validate a model for transformation from conventional dose to BED, the postimplant plans of 31 prostate brachytherapy patients were evaluated using conventional dose-volume histogram (DVH) quality endpoints and analogous BED-DVH endpoints. Based on CT scans obtained 4 weeks after implantation, DVHs were computed and standard dosimetric endpoints V100 (volume receiving 100% of the prescribed dose), V150, V200, HI (1-[V150/V100]), and D90 (dose that 90% of the target volume received) were obtained for quality analysis. Using known andmore » reported transformations, dose grids were transformed to BED-early ({alpha}/{beta} = 10 Gy) and BED-late ({alpha}/{beta} = 3 Gy) grids, and the same dosimetric endpoints were analyzed. For conventional, BED-early and BED-late DVHs, no differences in V100 were seen (0.896, 0.893, and 0.894, respectively). However, V150 and V200 were significantly higher for both BED-early (0.582 and 0.316) and BED-late (0.595 and 0.337), compared with the conventional (0.539 and 0.255) DVHs. D90 was significantly lower for the BED-early (103.1 Gy) and BED-late transformations (106.9 Gy) as compared with the conventional (119.5 Gy) DVHs. The conventional prescription parameter V100 is the same for the corresponding BED-early and BED-late transformed DVHs. The toxicity parameters V150 and V200 are slightly higher using the BED transformations, suggesting that the BED doses are somewhat higher than predicted using conventional DVHs. The prescription/quality parameter D90 is slightly lower, implying that target coverage is lower than predicted using conventional DVHs. This methodology can be applied to analyze BED dosimetric endpoints to improve clinical outcome and reduce complications of prostate brachytherapy.« less

  15. The propulsive capability of explosives heavily loaded with inert materials

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Georges, W.; Frost, D. L.; Higgins, A. J.

    2018-01-01

    The effect of inert dilution on the accelerating ability of high explosives for both grazing and normal detonations was studied. The explosives considered were: (1) neat, amine-sensitized nitromethane (NM), (2) packed beds of glass, steel, or tungsten particles saturated with amine-sensitized NM, (3) NM gelled with PMMA containing dispersed glass microballoons, (4) NM gelled with PMMA containing glass microballoons and steel particles, and (5) C-4 containing varying mass fractions of glass or steel particles. Flyer velocity was measured via photonic Doppler velocimetry, and the results were analysed using a Gurney model augmented to include the influence of the diluent. Reduction in accelerating ability with increasing dilution for the amine-sensitized NM, gelled NM, and C-4 was measured experimentally. Variation of flyer terminal velocity with the ratio of flyer mass to charge mass (M/C) was measured for both grazing and normally incident detonations in gelled NM containing 10% microballoons by mass and for steel beads saturated with amine-sensitized NM. Finally, flyer velocity was measured in grazing versus normal loading for a number of explosive admixtures. The augmented Gurney model predicted the effect of dilution on accelerating ability and the scaling of flyer velocity with M/C for mixtures containing low-density diluents. The augmented Gurney model failed to predict the scaling of flyer velocity with M/C for mixtures heavily loaded with dense diluents. In all cases, normally incident detonations propelled flyers to higher velocity than the equivalent grazing detonations because of material velocity imparted by the incident shock wave and momentum/energy transfer from the slapper used to uniformly initiate the charge.

  16. The propulsive capability of explosives heavily loaded with inert materials

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Georges, W.; Frost, D. L.; Higgins, A. J.

    2018-07-01

    The effect of inert dilution on the accelerating ability of high explosives for both grazing and normal detonations was studied. The explosives considered were: (1) neat, amine-sensitized nitromethane (NM), (2) packed beds of glass, steel, or tungsten particles saturated with amine-sensitized NM, (3) NM gelled with PMMA containing dispersed glass microballoons, (4) NM gelled with PMMA containing glass microballoons and steel particles, and (5) C-4 containing varying mass fractions of glass or steel particles. Flyer velocity was measured via photonic Doppler velocimetry, and the results were analysed using a Gurney model augmented to include the influence of the diluent. Reduction in accelerating ability with increasing dilution for the amine-sensitized NM, gelled NM, and C-4 was measured experimentally. Variation of flyer terminal velocity with the ratio of flyer mass to charge mass ( M/ C) was measured for both grazing and normally incident detonations in gelled NM containing 10% microballoons by mass and for steel beads saturated with amine-sensitized NM. Finally, flyer velocity was measured in grazing versus normal loading for a number of explosive admixtures. The augmented Gurney model predicted the effect of dilution on accelerating ability and the scaling of flyer velocity with M/ C for mixtures containing low-density diluents. The augmented Gurney model failed to predict the scaling of flyer velocity with M/ C for mixtures heavily loaded with dense diluents. In all cases, normally incident detonations propelled flyers to higher velocity than the equivalent grazing detonations because of material velocity imparted by the incident shock wave and momentum/energy transfer from the slapper used to uniformly initiate the charge.

  17. NASA's Functional Task Test: Providing Information for an Integrated Countermeasure System

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Feiveson, A. H.; Laurie, S. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; hide

    2015-01-01

    Exposure to the microgravity conditions of spaceflight causes astronauts to experience alterations in multiple physiological systems. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. Some or all of these changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on a planetary surface. The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the key physiological factors that contribute to decrements in performance. The FTT was comprised of seven functional tests and a corresponding set of interdisciplinary physiological measures targeting the sensorimotor, cardiovascular and muscular changes associated with exposure to spaceflight. Both Shuttle and ISS crewmembers participated in this study. Additionally, we conducted a supporting study using the FTT protocol on subjects before and after 70 days of 6? head-down bed rest. The bed rest analog allowed us to investigate the impact of body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance, and then to compare them with the results obtained in our spaceflight study. Spaceflight data were collected on three sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Bed rest subjects were tested three times before bed rest and immediately after getting up from bed rest as well as 1, 6, and 12 days after reambulation. We have shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. Bed rest subjects experienced similar deficits both in functional tests with balance challenges and in sensorimotor tests designed to evaluate postural and gait control as spaceflight subjects indicating that body support unloading experienced during spaceflight plays a central role in post-flight alteration of functional task performance. To determine how differences in body-support loading experienced during in-flight treadmill exercise affect postflight functional performance, the loading history for each subject during in-flight treadmill (T2) exercise was correlated with postflight measures of performance. ISS crewmembers who walked on the treadmill with higher pull-down loads had enhanced post-flight performance on tests requiring mobility. Taken together the spaceflight and bed rest data point to the importance of supplementing inflight exercise countermeasures with balance and sensorimotor adaptability training. These data also support the notion that inflight treadmill exercise performed with higher body loading provides sensorimotor benefits leading to improved performance on functional tasks that require dynamic postural stability and mobility.

  18. Organochlorine pesticide residues in bed sediments of the San Joaquin River and its tributary streams, California

    USGS Publications Warehouse

    Gilliom, R.J.; Clifton, D.G.

    1987-01-01

    The distribution and concentrations of organochlorine pesticide residues in bed sediments were assessed from samples collected at 24 sites in the San Joaquin River and its tributaries in the San Joaquin Valley, California. Sampling was designed to collect the finest grained bed sediments present in the vicinity of each site. One or more of the 14 pesticides analyzed were detected at every site. Pesticides detected at one or more sites were chlordane, DDD, DDE, DDT, dieldrin, endosulfan, mirex, and toxaphene. Pesticides not detected were endrin, heptachlor, heptachlor epoxide, lindane, methoxychlor, and perthane. The most frequently detected pesticides were DDD (83% of sites), DDE (all sites), DDT (33% of sites), and dieldrin (58% of sites). Maximum concentrations of these pesticides, which were correlated with each other and with the amount of organic carbon in the sample, were DDD, 260 micrograms/kg; DDE, 430 micrograms/kg; DDT, 420 micrograms/kg; and dieldrin, 8.9 micrograms/kg. Six small tributary streams that drain agricultural areas west of the San Joaquin River had the highest concentrations. Water concentrations and loads were estimated for each pesticide from its concentration in bed sediments, the concentration of suspended sediment, and streamflow. Estimated loadings of DDD, DDE, DDT, and dieldrin from tributaries to the San Joaquin River indicate that most of the loading to the river at the time of the study was probably from the westside tributaries. Estimated water concentrations exceeded the aquatic life criterion for the sum of DDD, DDE, and DDt of 0.001 microgram/L at nine of the 24 sites sampled. Five of the nine sites are westside tributaries and one is the San Joaquin River near Vernalis. (Author 's abstract)

  19. Experimental study on the signs of particulate structures formation in annular geometry of rapid granular shear flows

    NASA Astrophysics Data System (ADS)

    Ritvanen, J.; Jalali, P.

    2009-06-01

    Rapid granular shear flow is a classical example in granular materials which exhibits both fluid-like and solid-like behaviors. Another interesting feature of rapid granular shear flows is the formation of ordered structures upon shearing. Certain amount of granular material, with uniform size distribution, is required to be loaded in the container in order to shear it under stable conditions. This work concerns the experimental study of rapid granular shear flows in annular Couette geometry. The flow is induced by continuous rotation of the plate over the top of the granular bed in an annulus. The compressive pressure, driving torque, instantaneous bed height from three symmetric locations and rotational speed of the shearing plate are measured. The annulus has a capacity of up to 15 kg of spherical steel balls of 3 mm in diameter. Rapid shear flow experiments are performed in one compressive force and rotation rate. The sensitivity of fluctuations is then investigated by different means through monodisperse packing. In this work, we present the results of the experiments showing how the flow properties depend on the amount of loaded granular material which is varied by small amounts between different experiments. The flow can exist in stable (fixed behavior) and unstable (time-dependent behavior) regimes as a function of the loaded material. We present the characteristics of flow to detect the formation of any additional structured layer in the annulus. As a result, an evolution graph for the bed height has been obtained as material is gradually added. This graph shows how the bed height grows when material increases. Using these results, the structure inside the medium can be estimated at extreme stable and unstable conditions.

  20. Multi-System Effects of Daily Artificial Gravity Exposures in Humans Deconditioned by Bed Rest

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2007-01-01

    We have begun to explore the utility of intermittent artificial gravity (AG) as a multi-system countermeasure to the untoward health and performance effects of adaptation to decreased gravity during prolonged space flight. The first study in this exploration was jointly designed by an international, multi-disciplinary team of scientists interested in standardizing an approach so that comparable data could be obtained from follow-on studies performed in multiple international locations. Fifteen rigorously screened male volunteers participated in the study after providing written informed consent. All were subjected to 21 days of 6deg head-down-tilt (HDT) bed rest. Eight were treated with daily 1hr AG exposures (2.5g at the feet decreasing to 1.0g at the heart) aboard a short radius (3m) centrifuge, while the other seven served as controls. Multiple observations were made of dependent measures in the bone, muscle, cardiovascular, sensory-motor, immune, and behavioral systems during a 10 day acclimatization period prior to HDT bed rest and again during an 8 day recovery period after the bed rest period. Comparisons between the treatment and control subjects demonstrated salutary effects of the AG exposure on aspects of the muscle and cardiovascular systems, with no untoward effects on the vestibular system, the immune system, or cognitive function. Bone deconditioning was similar between the treatment and control groups, suggesting that the loading provided by this specific AG paradigm was insufficient to protect that system from deconditioning. Future work will be devoted to varying the loading duty cycle and/or coupling the AG loading with exercise to provide maximum physiological protection across all systems. Testing will also be extended to female subjects. The results of this study suggest that intermittent AG could be an effective multi-system countermeasure.

  1. Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2014-04-23

    The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatialmore » resolution of meso-scale clustering heterogeneities is sacrificed.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Garrett N.; Russell, Renee L.; Peterson, Reid A.

    This report summarizes the work performed to evaluate multiple, cesium loading, and elution cycles for small columns containing SRF resin using a simple, high-level waste (HLW) simulant. Cesium ion exchange loading and elution curves were generated for a nominal 5 M Na, 2.4E-05 M Cs, 0.115 M Al loading solution traced with 134Cs followed by elution with variable HNO3 (0.02, 0.07, 0.15, 0.23, and 0.28 M) containing variable CsNO3 (5.0E-09, 5.0E-08, and 5.0E-07 M) and traced with 137Cs. The ion exchange system consisted of a pump, tubing, process solutions, and a single, small ({approx}15.7 mL) bed of SRF resin withmore » a water-jacketed column for temperature-control. The columns were loaded with approximately 250 bed volumes (BVs) of feed solution at 45 C and at 1.5 to 12 BV per hour (0.15 to 1.2 cm/min). The columns were then eluted with 29+ BVs of HNO3 processed at 25 C and at 1.4 BV/h. The two independent tracers allowed analysis of the on-column cesium interaction between the loading and elution solutions. The objective of these tests was to improve the correlation between the spent resin cesium content and cesium leached out of the resin in subsequent loading cycles (cesium leakage) to help establish acid strength and purity requirements.« less

  3. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  4. A novel fast mass transfer anaerobic inner loop fluidized bed biofilm reactor for PTA wastewater treatment.

    PubMed

    Chen, Yingwen; Zhao, Jinlong; Li, Kai; Xie, Shitao

    In this paper, a fast mass transfer anaerobic inner loop fluidized bed biofilm reactor (ILFBBR) was developed to improve purified terephthalic acid (PTA) wastewater treatment. The emphasis of this study was on the start-up mode of the anaerobic ILFBBR, the hydraulic loadings and the operation stability. The biological morphology of the anaerobic biofilm in the reactors was also analyzed. The anaerobic column could operate successfully for 46 days due to the pre-aerating process. The anaerobic column had the capacity to resist shock loadings and maintained a high stable chemical oxygen demand (COD) and terephthalic acid removal rates at a hydraulic retention time of 5-10 h, even under conditions of organic volumetric loadings as high as 28.8 kg COD·m(-3).d(-1). The scanning electron microscope analysis of the anaerobic carrier demonstrated that clusters of prokaryotes grew inside of pores and that the filaments generated by pre-aeration contributed to the anaerobic biofilm formation and stability.

  5. Performance of a novel two-phase continuously fed leach bed reactor for demand-based biogas production from maize silage.

    PubMed

    Linke, Bernd; Rodríguez-Abalde, Ángela; Jost, Carsten; Krieg, Andreas

    2015-02-01

    This study investigated the potential of producing biogas on demand from maize silage using a novel two-phase continuously fed leach bed reactor (LBR) which is connected to an anaerobic filter (AF). Six different feeding patterns, each for 1week, were studied at a weekly average of a volatile solids (VS) loading rate of 4.5 g L(-1) d(-1) and a temperature of 38°C. Methane production from the LBR and AF responded directly proportional to the VS load from the different daily feeding and resulted in an increase up to 50-60% per day, compared to constant feeding each day. The feeding patterns had no impact on VS methane yield which corresponded on average to 330 L kg(-1). In spite of some daily shock loadings, carried out during the different feeding patterns study, the reactor performance was not affected. A robust and reliable biogas production from stalky biomass was demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Long-term bed degradation in Maryland streams (phase 2) : Blue Ridge and Western Piedmont provinces.

    DOT National Transportation Integrated Search

    2012-03-01

    Estimation of potential long-term down-cutting of the stream bed is necessary for evaluation and design of bridges for scour and culverts for fish passage. The purpose of this study has been to improve predictions of this potential long-term bed degr...

  7. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Sweterlitsch, Jeffrey; Cox, Marlon

    2009-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated human metabolic loads. Another paper at this year s conference discusses similar testing with real human metabolic loads, including some closed-loop testing with emergency breathing masks. The Orion ARS is designed to also support extravehicular activity operations from a depressurized cabin. The next step in developmental testing at JSC was, therefore, to test this ARS technology in a typical closed space suit loop environment with low-pressure pure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure oxygen loop testing of a new Orion ARS technology, and was conducted with simulated human metabolic loads in December 2008. The test investigated pressure drops through two different styles of prototype suit umbilical connectors and general swing-bed performance with both umbilical configurations as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable atmospheric CO2 and moisture levels.

  8. Geologic, geotechnical, and geophysical properties of core from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming

    USGS Publications Warehouse

    Collins, Donley S.

    1983-01-01

    A preliminary core study from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming, revealed that the upper portion of the core had been baked by a fire confined to the underlying Monarch coal bed. The baked (clinkered) sediment above the Monarch coal bed was determined to have higher point-load strength values (greater than 2 MPa) than the sediment under the burned coal

  9. Orlistat with behavioral weight loss for obesity with versus without binge eating disorder: randomized placebo-controlled trial at a community mental health center serving educationally and economically disadvantaged Latino/as.

    PubMed

    Grilo, Carlos M; White, Marney A

    2013-03-01

    This study was a randomized placebo-controlled trial testing the addition of orlistat to behavioral weight loss for obesity in Spanish-speaking-only Latino/as with versus without binge eating disorder (BED) performed at a community mental health center serving educationally- and economically-disadvantaged patients. Latino/as have high rates of obesity but are under-represented in obesity treatment studies and despite comparable-to-or-higher rates of BED than Whites, Latino/as are under-represented in BED treatment studies. BED is associated with obesity but whether it predicts/moderates treatment outcomes remains uncertain. Thus, this study also tested whether BED prospectively predicts/moderates outcomes. Seventy-nine obese Spanish-speaking-only Latino/as with BED (N=40) versus without BED (N=39) at a community mental health center were randomly assigned to four-months of orlistat-plus-BWL or placebo-plus-BWL. BWL was culturally-enhanced modification of Diabetes-Prevention-Program delivered in weekly sessions in Spanish. Orlistat (120 mg tid) and matching-placebo delivered with standard clinical-management. Participants were assessed independently throughout treatment, post-treatment, and six-month follow-up. 78% completed treatments; completion rates did not differ significantly by medication or BED. Intent-to-treat mixed-models analyses revealed significant improvements in binge eating, eating-psychopathology, and depression, and significant--albeit modest--weight-loss. Overall, the addition of orlistat to BWL was not associated with greater improvements; however, BED moderated weight-loss: orlistat-plus-BWL produced significantly greater weight-loss in non-BED group but not in BED. Improvements were maintained through 6-month follow-up; BED significantly predicted/moderated increases in eating concerns and depression following treatment. Within BED-group, binge-eating remission rates were 65% (post-treatment) and 50% (follow-up). In this controlled trial performed at community mental health center serving educationally- and economically-disadvantaged Spanish-speaking-only Latino/as with co-morbid psychiatric needs, we observed outcomes for the BWL plus orlistat/placebo medication that approximate or are slightly dampened relative to the literature for efficacy trials with much more restrictive obese and BED samples. In this complex patient group, adding orlistat to BWL produced greater weight-loss than adding placebo among obese patients without BED but not among those with BED. Although 50% of BED patients maintained abstinence from binge-eating following these specific obesity treatments (BWL plus orlistat/placebo), BED was a negative prognostic indicator for some outcome variables. clinicaltrials.gov Identifier: NCT00516919. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. An experimental model of COD abatement in MBBR based on biofilm growth dynamic and on substrates' removal kinetics.

    PubMed

    Siciliano, Alessio; De Rosa, Salvatore

    2016-08-01

    In this study, the performance of a lab-scale Moving Bed Biofilm Reactor (MBBR) under different operating conditions was analysed. Moreover, the dependence of the reaction rates both from the concentration and biodegradability of substrates and from the biofilm surface density, by means of several batch kinetic tests, was investigated. The reactor controls exhibited an increasing COD (Chemical Oxygen Demand) removal, reaching maximum yields (close to 90%) for influent loadings of up to12.5 gCOD/m(2)d. From this value, the pilot plant performance decreased to yields of only about 55% for influent loadings greater than 16 gCOD/m(2)d. In response to the influent loading increase, the biofilm surface density exhibited a logistic growing trend until reaching a maximum amount of total attached solids of about 9.5 g/m(2). The kinetic test results indicated that the COD removal rates for rapidly biodegradable, rapidly hydrolysable and slowly biodegradable substrates were not affected by the organic matter concentrations. Instead, first-order kinetics were detected with respect to biofilm surface density. The experimental results permitted the formulation of a mathematical model to predict the MBBR organic matter removal efficiency. The validity of the model was successfully tested in the lab-scale plant.

  11. Effective cluster model of dielectric enhancement in metal-insulator composites

    NASA Astrophysics Data System (ADS)

    Doyle, W. T.; Jacobs, I. S.

    1990-11-01

    The electrical permittivity of a suspension of conducting spheres at high volume loading exhibits a large enhancement above the value predicted by the Clausius-Mossotti approximation. The permittivity enhancement is a dielectric anomaly accompanying a metallization transition that occurs when conducting particles are close packed. In disordered suspensions, close encounters can cause a permittivity enhancement at any volume loading. We attribute the permittivity enhancements typically observed in monodisperse disordered suspensions of conducting spheres to local metallized regions of high density produced by density fluctuations. We model a disordered suspension as a mixture, or mesosuspension, of isolated spheres and random close-packed spherical clusters of arbitrary size. Multipole interactions within the clusters are treated exactly. External interactions between clusters and isolated spheres are treated in the dipole approximation. Model permittivities are compared with Guillien's experimental permittivity measurements [Ann. Phys. (Paris) Ser. 11, 16, 205 (1941)] on liquid suspensions of Hg droplets in oil and with Turner's conductivity measurements [Chem. Eng. Sci. 31, 487 (1976)] on fluidized bed suspensions of ion-exchange resin beads in aqueous solution. New permittivity measurements at 10 GHz on solid suspensions of monodisperse metal spheres in polyurethane are presented and compared with the model permittivities. The effective spherical cluster model is in excellent agreement with the experiments over the entire accessible range of volume loading.

  12. Controls on the abruptness of gravel-sand transitions

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Church, M. A.; Lamb, M. P.; Domarad, N.; Rennie, C. D.

    2014-12-01

    As gravel-bedded rivers fine downstream, they characteristically exhibit an abrupt transition from gravel- to sand-bed. This is the only abrupt transition in grain-size that occurs in the fluvial system and has attracted considerable attention. A number of competing theories have been proposed to account for the abruptness of the transition, including base-level control, attrition of ~10mm gravel to produce sand, and sediment sorting processes. The prevailing theory for the emergence of abrupt transitions is size selective sorting of bimodal sediment wherein gravel deposits due to downstream declining shear stress, fining the bedload until a sand-bed emerges. We explored this hypothesis by examining grain-size, shear stress, gravel mobility and sand suspension thresholds through the gravel-sand transition (GST) of the Fraser River, British Columbia. The Fraser GST is an arrested gravel wedge with patches of gravel downstream of the wedge forming a diffuse extension. There is an abrupt change in bed slope through the transition that leads to an abrupt change in shear stress. The GST, bed-slope change and backwater caused by the ocean are all coincident spatially, which enhances the sharpness of the GST. Interestingly, the bimodal reach of the river occurs downstream of the GST and exhibits no downstream gradients in shear stress, suspended sediment flux, gravel mobility or sand suspension thresholds. This calls into question the prevailing theory for the emergence of an abrupt GST by size selective sorting. We provide evidence, both empirical and theoretical, that suggests the emergence of an abrupt GST is caused by rapid deposition of sand when fine gravel deposits. We argue that the emergence of gravel-sand transitions is a consequence of gravel-bedded rivers adopting a steeper slope than sand-bedded rivers. The abruptness arises because the bed slope required to convey the gravel load fixes the distal location of a terminal gravel wedge, and once the river has lost the capacity to carry the gravel mixture, the river adopts the lower slope required to pass the sand load. Progressive downstream fining of a gravel-sand mixture is not a necessary condition for the emergence of a gravel-sand transition.

  13. Reductive dehalogenation of haloacetic acids by hemoglobin-loaded carbon nanotube electrode.

    PubMed

    Li, Yu-Ping; Cao, Hong-Bin; Zhang, Yi

    2007-01-01

    Hemoglobin (Hb) was immobilized on carbon nanotube (CNT) electrode to catalyze the dehalogenation of haloacetic acids (HAAs). FTIR and UV measurements were performed to investigate the activity-keep of Hb after immobilization on CNT. The electrocatalytic behaviors of the Hb-loaded electrode for the dehalogenation of HAAs were studied by cyclic voltammmetry and constant-potential electrolysis technique. An Hb-loaded packed-bed flow reactor was also constructed for bioelectrocatalytic dehalogenation of HAAs. The results showed that Hb retained its nature, the essential features of its native secondary structure, and its biocatalytic activity after immobilization on CNT. Chloroacetic acids and bromoacetic acids could be dehalogenated completely with Hb catalysis through a stepwise dehalogenation process at -0.400V (vs. saturated calomel electrode (SCE)) and -0.200V (vs. SCE), respectively. The removal of 10.5mM trichloroacetic acid and dichloroacetic acid is ca. 97% and 63%, respectively, with electrolysis for 300min at -0.400V (vs. SCE) using the Hb-loaded packed-bed flow reactor, and almost 100% of tribromoacetic acid and dibromoacetic acid was removed with electrolysis for 40min at -0.200V (vs. SCE). The average current efficiency of Hb-catalytic dehalogenation almost reaches 100%.

  14. [Remodeling simulation of human femur under bed rest and spaceflight circumstances based on three dimensional finite element analysis].

    PubMed

    Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang

    2017-12-01

    Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.

  15. User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels

    USGS Publications Warehouse

    Bennett, James P.

    2001-01-01

    This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.

  16. Long-term bed degradation in Maryland streams (phase 3, part I) : urban streams in the Piedmont Plateau province.

    DOT National Transportation Integrated Search

    2014-05-01

    Estimation of potential long-term down-cutting of the stream bed is necessary for evaluation and design of bridges for scour and culverts for fish passage. The purpose of this study has been to improve predictions of this potential long-term bed degr...

  17. Squeeze-film flow between a flat impermeable bearing and an anisotropic porous bed

    NASA Astrophysics Data System (ADS)

    Karmakar, Timir; Raja Sekhar, G. P.

    2018-04-01

    We consider a theoretical model of the squeeze film in the presence of a porous bed. The gap between the porous bed and the bearing is assumed to be filled with a Newtonian fluid. We use the Navier-Stokes equation in the fluid region and the Darcy equation in the fluid filled porous region. Lubrication approximation is used to derive the corresponding evolution equation for the film thickness. We use G. S. Beavers and D. D. Joseph ["Boundary conditions at a naturally permeable wall," J. Fluid. Mech. 30, 197-207 (1967)] and M. Le Bars and M. G. Worster ["Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification," J. Fluid. Mech. 550, 149-173 (2006)] condition at the liquid porous interface and present a detailed analysis on the corresponding impact. We assume that the porous bed is anisotropic in nature with permeabilities K2 and K1 along the principal axes. Accordingly, the anisotropic angle ϕ is taken as the angle between the horizontal direction and principal axis with permeability K2. We show that the anisotropic permeability ratio and the anisotropic angle make a significant influence on the contact time, flux, velocity, etc. Contact time to meet the porous bed when a bearing approaches under a constant prescribed load is estimated. We present some important findings (relevant to the knee joint) based on the anisotropic properties of the human cartilage. For a prescribed constant load, we have estimated the time duration, during which a healthy human knee remains fluid lubricated.

  18. Validating the MFiX-DEM Model for Flow Regime Prediction in a 3D Spouted Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Subhodeep; Guenther, Chris; Rogers, William A.

    The spout-fluidized bed reactor with relatively large oxygen carrier particles offers several advantages in chemical looping combustion operation using solid fuels. The large difference in size and weight between the oxygen carrier particles and the smaller coal or ash particles allows the oxygen carrier to be easily segregated for recirculation; the increased solids mixing due to dynamic flow pattern in the spout-fluidization regime prevents agglomeration. The primary objective in this work is to determine the effectiveness of the MFiX-DEM model in predicting the flow regime in a spouted bed. Successful validation of the code will allow the user to finemore » tune the operating conditions of a spouted bed to achieve the desired operating condition.« less

  19. Replacement of daily load attenuates but does not prevent changes to the musculoskeletal system during bed rest.

    PubMed

    Cavanagh, Peter R; Rice, Andrea J; Novotny, Sara C; Genc, Kerim O; Englehaupt, Ricki K; Owings, Tammy M; Comstock, Bryan; Cardoso, Tamre; Ilaslan, Hakan; Smith, Scott M; Licata, Angelo A

    2016-12-01

    The dose-response effects of exercise in reduced gravity on musculoskeletal health have not been well documented. It is not known whether or not individualized exercise prescriptions can be effective in preventing the substantial loss in bone mineral density and muscle function that have been observed in space flight and in bed rest. In this study, typical daily loads to the lower extremities were quantified in free-living subjects who were then randomly assigned to control or exercise groups. Subjects were confined to 6-degree head-down bed rest for 84 days. The exercise group performed individually prescribed 1 g loaded locomotor exercise to replace their free-living daily load. Eleven subjects (5 exercise, 6 control) completed the protocol. Volumetric bone mineral density results from quantitative computed tomography demonstrated that control subjects lost significant amounts of bone in the intertrochanteric and total hip regions ( p  < 0.0125), whereas the exercise group showed no significant change from baseline in any region ( p  > 0.0125). Pre-and post-bed rest muscle volumes were calculated from analysis of magnetic resonance imaging data. The exercise group retained a larger percentage of their total quadriceps and gastrocnemius muscle volume (- 7.2% ± 5.9, - 13.8% ± 6.1, respectively) than their control counterparts (- 23.3% ± 5.9, - 33.0 ± 8.2, respectively; p  < 0.01). Both groups significantly lost strength in several measured activities ( p  < 0.05). The declines in peak torque during repeated exertions of knee flexion and knee extension were significantly less in the exercise group than in the control group ( p  < 0.05) but work done was not significantly different between groups ( p  > 0.05). The decline in VO 2max was 17% ± 18 in exercising subjects ( p  < 0.05) and 31% ± 13 in control subjects ( p  = 0.003; difference between groups was not significant p  = 0.26). Changes in blood and urine measures showed trends but no significant differences between groups ( p  > 0.05). In summary, the decline in a number of important measures of musculoskeletal and cardiovascular health was attenuated but not eliminated by a subject-specific program of locomotor exercise designed to replace daily load accumulated during free living. We conclude that single daily bouts of exposure to locomotor exercise can play a role in a countermeasures program during bed rest, and perhaps space flight, but are not sufficient in their own right to ensure musculoskeletal or cardiovascular health.

  20. Predictive model for local scour downstream of hydrokinetic turbines in erodible channels

    NASA Astrophysics Data System (ADS)

    Musa, Mirko; Heisel, Michael; Guala, Michele

    2018-02-01

    A modeling framework is derived to predict the scour induced by marine hydrokinetic turbines installed on fluvial or tidal erodible bed surfaces. Following recent advances in bridge scour formulation, the phenomenological theory of turbulence is applied to describe the flow structures that dictate the equilibrium scour depth condition at the turbine base. Using scaling arguments, we link the turbine operating conditions to the flow structures and scour depth through the drag force exerted by the device on the flow. The resulting theoretical model predicts scour depth using dimensionless parameters and considers two potential scenarios depending on the proximity of the turbine rotor to the erodible bed. The model is validated at the laboratory scale with experimental data comprising the two sediment mobility regimes (clear water and live bed), different turbine configurations, hydraulic settings, bed material compositions, and migrating bedform types. The present work provides future developers of flow energy conversion technologies with a physics-based predictive formula for local scour depth beneficial to feasibility studies and anchoring system design. A potential prototype-scale deployment in a large sandy river is also considered with our model to quantify how the expected scour depth varies as a function of the flow discharge and rotor diameter.

  1. Character of shell beds flanking Herod Point shoal, southeastern Long Island Sound, New York

    USGS Publications Warehouse

    Poppe, L.J.; Williams, S.J.; Babb, Ivar G.

    2011-01-01

    High biogenic productivity, strong tidal currents, shoal topography, and short transport distances combine to favor shell-bed formation along the lower flanks of a cape-associated shoal off Herod Point on Long Island, New York. This shell bed has a densely packed, clast-supported fabric composed largely of undegraded surf clam (Spisula solidissima) valves. It is widest along the central part of the western flank of the shoal where topographic gradients are steep and a stronger flood tide results in residual flow. The bed is narrower and thinner toward the landward margins where currents are too weak to transport larger valves and topographic gradients are gentle, limiting bed-load transport mechanisms by which the shells are concentrated. Reconnaissance mapping off Roanoke Point suggests that shell beds are also present at the other cape-associated shoals off northeastern Long Island, where relatively similar geomorphic and oceanographic conditions exist. These shell beds are important to the Long Island Sound ecosystem because they provide complex benthic habitats of rough and hard substrates at the boundary between the muddy basin floor and mobile sand of the shoals. ?? 2011, the Coastal Education & Research Foundation (CERF).

  2. Prediction of mass transfer coefficient in rotating bed contactor (Higee) using artificial neural network

    NASA Astrophysics Data System (ADS)

    Saha, Dipendu

    2009-02-01

    The feasibility of drastically reducing the contactor size in mass transfer processes utilizing centrifugal field has generated a lot of interest in rotating packed bed (Higee). Various investigators have proposed correlations to predict mass transfer coefficients in Higee, but, none of the correlations was more than 20-30% accurate. In this work, artificial neural network (ANN) is employed for predicting mass transfer coefficient data. Results show that ANN provides better estimation of mass transfer coefficient with accuracy 5-15%.

  3. Effect of filter media thickness on the performance of sand drying beds used for faecal sludge management.

    PubMed

    Manga, M; Evans, B E; Camargo-Valero, M A; Horan, N J

    2016-12-01

    The effect of sand filter media thickness on the performance of faecal sludge (FS) drying beds was determined in terms of: dewatering time, contaminant load removal efficiency, solids generation rate, nutrient content and helminth eggs viability in the dried sludge. A mixture of ventilated improved pit latrine sludge and septage in the ratio 1:2 was dewatered using three pilot-scale sludge drying beds with sand media thicknesses of 150, 250 and 350 mm. Five dewatering cycles were conducted and monitored for each drying bed. Although the 150 mm filter had the shortest average dewatering time of 3.65 days followed by 250 mm and 350 mm filters with 3.83 and 4.02 days, respectively, there was no significant difference (p > 0.05) attributable to filter media thickness configurations. However, there was a significant difference for the percolate contaminant loads in the removal and recovery efficiency of suspended solids, total solids, total volatile solids, nitrogen species, total phosphorus, chemical oxygen demand, dissolved chemical oxygen demand and biochemical oxygen demand, with the highest removal efficiency for each parameter achieved by the 350 mm filter. There were also significant differences in the nutrient content (NPK) and helminth eggs viability of the solids generated by the tested filters. Filtering media configurations similar to 350 mm have the greatest potential for optimising nutrient recovery from FS.

  4. The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Moes, Timothy R.; Mizukami, Masashi; Hass, Neal E.; Jones, Daniel; Monaghan, Richard C.; Ray, Ronald J.; Jarvis, Michele L.; Palumbo, Nathan

    2000-01-01

    The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.

  5. Exploring the Early Structure of a Rapidly Decompressed Particle Bed

    NASA Astrophysics Data System (ADS)

    Zunino, Heather; Adrian, R. J.; Clarke, Amanda; Johnson, Blair; Arizona State University Collaboration

    2017-11-01

    Rapid expansion of dense, pressurized beds of fine particles subjected to rapid reduction of the external pressure is studied in a vertical shock tube. A near-sonic expansion wave impinges on the particle bed-gas interface and rapidly unloads the particle bed. A high-speed video camera captures events occurring during bed expansion. The particle bed does not expand homogeneously, but breaks down into horizontal slabs and then transforms into a cellular-type structure. There are several key parameters that affect the particle bed evolution, including particle size and initial bed height. Analyses of this bed structure evolution from experiments with varying particle sizes and initial bed heights is presented. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.

  6. Interactions of frazil and anchor ice with sedimentary particles in a flume

    USGS Publications Warehouse

    Kempema, E.W.; Reimnitz, E.; Clayton, J.R.; Payne, J.R.

    1993-01-01

    Frazil and anchor ice forming in turbulent, supercooled water have been studied extensively because of problems posed to man-made hydraulic structures. In spite of many incidental observations of interactions of these ice forms with sediment, their geologic effects remain unknown. The present flume study was designed to learn about the effects of salinity, current speed, and sediment type on sediment dynamics in supercooled water. In fresh-water, frazil ice formed flocs as large as 8 cm in diameter that tended to roll along a sandy bottom and collect material from the bed. The heavy flocs often came to rest in the shelter of ripples, forming anchor ice that subsequently was buried by migrating ripples. Burial compressed porous anchor ice into ice-bonded, sediment-rich masses. This process disrupts normal ripple cross-bedding and may produce unique sedimentary structures. Salt-water flocs were smaller, incorporated less bed load, and formed less anchor ice than their fresh-water counterparts. In four experiments, frazil carried a high sediment load only for a short period in supercooled salt water, but released it with slight warming. This suggests that salt-water frazil is either sticky or traps particles only while surrounded by supercooled water (0.05 to 0.1 ??C supercooling), a short-lived phase in simple, small tanks. Salt water anchor ice formed readily on blocks of ice-bonded sediment, which may be common in nature. The theoretical maximum sediment load in neutrally-buoyant ice/sediment mixture is 122 g/l, never reported in nature so far. The maximum sediment load measured in this laboratory study was 88 g/l. Such high theoretical and measured sediment concentrations suggest that frazil and anchor ice are important sediment transport agents in rivers and oceans. ?? 1993.

  7. Attrition of limestone by impact loading in fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrizio Scala; Fabio Montagnaro; Piero Salatino

    2007-09-15

    The present study addresses limestone attrition and fragmentation associated with impact loading, a process which may occur extensively in various regions of fluidized bed (FB) combustors/gasifiers, primarily the jetting region of the bottom bed, the exit region of the riser, and the cyclone. An experimental protocol for the characterization of the propensity of limestone to undergo attrition/fragmentation by impact loading is reported. The application of the protocol is demonstrated with reference to an Italian limestone whose primary fragmentation and attrition by surface wear have already been characterized in previous studies. The experimental procedure is based on the characterization of themore » amount and particle size distribution of the debris generated upon the impact of samples of sorbent particles against a target. Experiments were carried out at a range of particle impact velocities between 10 and 45 m/s, consistent with jet velocities corresponding to typical pressure drops across FB gas distributors. The protocol has been applied to either raw or preprocessed limestone samples. In particular, the effect of calcination, sulfation, and calcination/recarbonation cycles on the impact damage suffered by sorbent particles has been assessed. The measurement of particle voidage and pore size distribution by mercury intrusion was also accomplished to correlate fragmentation with the structural properties of the sorbent samples. Fragmentation by impact loading of the limestone is significant. Lime displays the largest propensity to undergo impact damage, followed by the sorbent sulfated to exhaustion, the recarbonated sorbent, and the raw limestone. Fragmentation of the raw limestone and of the sulfated lime follows a pattern typical of the failure of brittle materials. The fragmentation behavior of lime and recarbonated lime better conforms to a disintegration failure mode, with an extensive generation of very fine fragments. 27 refs., 9 figs. 1 tab.« less

  8. Bedload transport rates in a gravel bedded-river derived from high-resolution monitoring using seismic impact plates

    NASA Astrophysics Data System (ADS)

    Downs, Peter; Soar, Philip

    2015-04-01

    Accurate characterisation of bedload transport rates is critical for a better understanding of geomorphological process dynamics, aquatic habitats, sediment budgets and strategies for catchment-scale initiatives in sediment management under conditions of climate change. However, rate estimation is challenging in practice: direct measurements are costly and logistically difficult to achieve with acceptable accuracy over geomorphologically-relevant time periods, and the uncertainty in transport rates predicted from empirical formulae and numerical simulation is rarely below 50 per cent. Partly reflecting these issues, passive technologies for continuous bedload monitoring are becoming increasingly popular. Sensors such as seismic impact plates offer the opportunity to characterise bedload activity at exceptionally high resolution - monitoring from the River Avon, (Devon, UK) indicated that despite significant intra-event and between-plate differences in apparent bedload transport aggregated over 5-minute periods, the magnitude-frequency product of discharge and impact frequency result in a highly plausible effective discharge, supporting the potential value of impact plates as indicators of relative sediment transport loads over annual timescales. Whereas the focus in bedload rate estimation to date has been on developing satisfactory sediment rating curves from detection signals, we instead develop a method for directly estimating bedload transport rates from impact plate data as a function of intensity of transport (count, n, per second), bed material mass (kg) and cross-stream transport variability. Bulk sediment samples are converted to a mass in transit for each instantaneous discharge according to the intensity of transport and a Monte Carlo simulation of the load in transit determined at random from the bed material particle size distribution. The lower detection threshold is determined using experimental calibration and the upper size limit is determined from incipient motion estimates thereby establishing the fraction of transported material sensed by the plates. The lateral variability in transport rates across the cross-section is estimated empirically using multiple plates or by interpolation. This procedure provides a potentially affordable and robust method of achieving uncertainty-bound indicative measures of bedload transport with the potential for wide-ranging practical applications.

  9. Adolescent Eating Disorders Predict Psychiatric, High-Risk Behaviors and Weight Outcomes in Young Adulthood

    PubMed Central

    Micali, Nadia; Solmi, Francesca; Horton, Nicholas J.; Crosby, Ross D.; Eddy, Kamryn T.; Calzo, Jerel P.; Sonneville, Kendrin R.; Swanson, Sonja A.; Field, Alison E.

    2015-01-01

    Objective To investigate whether anorexia nervosa (AN), bulimia nervosa (BN), binge eating disorder (BED), and other specified feeding and eating disorders (OSFED), including purging disorder (PD), subthreshold BN, and BED at ages 14 and 16, are prospectively associated with later depression, anxiety disorders, alcohol and substance use, and self-harm. Method Eating disorders were ascertained at 14 and 16 years of age in 6,140 youth at age 14 (58% of those eligible) and 5,069 at age 16 (52% of those eligible) as part of the prospective Avon Longitudinal Study of Parents and Children (ALSPAC). Outcomes (depression, anxiety disorders, binge drinking, drug use, deliberate self-harm, weight status) were measured using interviews and questionnaires about 2 years following predictors. Generalized estimating equation models adjusting for gender, socio-demographic variables, and prior outcome were used to examine prospective associations between eating disorders and each outcome. Results All eating disorders were predictive of later anxiety disorders. AN, BN, BED, PD, and OSFED were prospectively associated with depression (respectively AN: odds ratio [OR]=1.39 [95% CIs: 1.00-1.94]; BN: OR=3.39[1.25-9.20]; BED: OR=2.00 [1.06-3.75]; PD: OR=2.56 [1.38-4.74]). All eating disorders but AN predicted drug use and deliberate self-harm (BN: OR=5.72[2.22-14.72], PD: OR=4.88[2.78-8.57], subthreshold BN: OR=3.97[1.44-10.98], subthreshold BED: OR=2.32[1.43-3.75]). Whilst BED and BN predicted obesity (respectively OR=3.58 [1.06-12.14] and OR=6.42 [1.69-24.30]), AN was prospectively associated with underweight. Conclusions Adolescent eating disorders, including subthreshold presentations, predict negative outcomes, including mental health disorders, substance use, deliberate self-harm, and weight outcomes. This study highlights the high public health and clinical burden of eating disorders among adolescents. PMID:26210334

  10. Experimental study of the effect of grain sizes in a bimodal mixture on bed slope, bed texture, and the transition to washload

    NASA Astrophysics Data System (ADS)

    Hill, Kimberly M.; Gaffney, John; Baumgardner, Sarah; Wilcock, Peter; Paola, Chris

    2017-01-01

    When fine sediment is added to a coarse-grained system, the mobility and composition of the bed can change dramatically. We conducted a series of flume experiments to determine how the size of fine particles introduced to an active gravel bed influences the mobility and composition of the bed. We initiated our experiments using a constant water discharge and feed rate of gravel. After the system reached steady state, we doubled the feed rate by supplying a second sediment of equal or lesser size, creating size ratios from 1:1 to 1:150. As we decreased the relative size of the fine particles, the system transitioned among three regimes: (1) For particle size ratios close to one, the bed slope increased to transport the additional load of similar-sized particles. The bed surface remained planar and unchanged. (2) For intermediate particle size ratios, the bed slope decreased with the additional fines. The bed surface became patchy with regions of fine and coarse grains. (3) For the largest particle size ratios (the smallest fines), the bed slope remained relatively unchanged. The subsurface became clogged with fine sediment, but fine particles were not present in the surface layer. This third regime constitutes washload, defined by those fractions that do not affect bed-material transport conditions. Our results indicate washload should be defined in terms of three conditions: small grain size relative to that of the bed material, full suspension based on the Rouse number, and a small rate of fine sediment supply relative to transport capacity.

  11. Transport of fine sediment over a coarse, immobile riverbed

    USGS Publications Warehouse

    Grams, Paul E.; Wilcock, Peter R.

    2014-01-01

    Sediment transport in cobble-boulder rivers consists mostly of fine sediment moving over a coarse, immobile bed. Transport rate depends on several interrelated factors: boundary shear stress, the grain size and volume of fine sediment, and the configuration of fine sediment into interstitial deposits and bed forms. Existing models do not incorporate all of these factors. Approaches that partition stress face a daunting challenge because most of the boundary shear is exerted on immobile grains. We present an alternative approach that divides the bed into sand patches and interstitial deposits and is well constrained by two clear end-member cases: full sand cover and absence of sand. Entrainment from sand patches is a function of their aerial coverage. Entrainment from interstices among immobile grains is a function of sand elevation relative to the size of the immobile grains. The bed-sand coverage function is used to predict the ratio of the rate of entrainment from a partially covered bed to the rate of entrainment from a completely sand-covered bed, which is determined using a standard sand transport model. We implement the bed-sand coverage function in a morphodynamic routing model and test it against observations of sand bed elevation and suspended sand concentration for conditions of nonuniform fine sediment transport in a large flume with steady uniform flow over immobile hemispheres. The results suggest that this approach may provide a simple and robust method for predicting the transport and migration of fine sediment through rivers with coarse, immobile beds.

  12. Application of geocomposite placed beneath ballast bed to improve ballast quality and track stability

    NASA Astrophysics Data System (ADS)

    Horníček, Leoš; Břešt'ovský, Petr; Jasanský, Petr

    2017-09-01

    The article deals with the application of a stabilization hexagonal geocomposite for the improvement of poor stability of railway tracks caused by undesirable migration of fine soil particles from the subgrade into the ballast bed. The establishment of a test railway section on a single-line track situated near Domazlice and its long-term monitoring programme are described. Evaluation is aimed especially at track geometry parameters, the load-bearing capacity of the ballast bed, elastic rail deflection during train passages and the durability of geocomposite’s physical properties. The data taken from the test section during five measurement campaigns are compared with both adjacent sections. In one of them, only the ballast bed renovation was carried out, whereas in the second one no intervention was performed at all. The usage of a pioneering geosynthetic product in combination with new trends in ballast bed restoration seems to be an innovative as well as effective solution to analogous problematic spots on railway tracks in the Czech Republic.

  13. Testing predictions of the emotion regulation model of binge-eating disorder.

    PubMed

    Kenny, Therese E; Singleton, Christopher; Carter, Jacqueline C

    2017-11-01

    The emotion regulation (ER) model of binge eating posits that individuals with binge-eating disorder (BED) experience more intense emotions and greater difficulties in ER than individuals without BED, leading them to binge eat as a means of regulating emotions. According to this model, individuals with BED should report greater difficulties in ER than their non-BED counterparts, the severity of these difficulties should be positively associated with BED symptoms, and this association should be stronger when individuals experience persistent negative emotions (i.e., depression). Studies examining these hypotheses, however, have been limited. Data were collected from adults meeting the DSM 5 criteria for BED (n = 71; 93% female) and no history of an eating disorder (NED; n =  79; 83.5% female). Participants completed self-report measures of difficulties in ER, eating disorder (ED) psychopathology, and depression. Individuals with BED reported greater difficulties in ER compared to those with NED. Moreover, difficulties in ER predicted unique variance in binge frequency and ED psychopathology in BED. Depression moderated the association between ER difficulties and binge frequency such that emotion dysregulation and binge frequency were positively associated in those reporting high, but not low, depression levels. The association between difficulties in ER and ED pathology in BED suggests that treatments focusing on improving ER skills may be effective in treating this ED; however, the moderating effect of depression underscores the need for research on individual differences and treatment moderators. These findings suggest the importance of ER in understanding and treating BED. © 2017 Wiley Periodicals, Inc.

  14. Long-term bed degradation in Maryland streams (Phase III Part 2) : urban streams in the Piedmont Plateau Province : research report : final report.

    DOT National Transportation Integrated Search

    2017-02-01

    Estimation of potential long-term down-cutting of the stream bed is necessary for evaluation and design of bridges for scour and culverts for fish passage. The purpose of this study has been to improve predictions of this potential long-term bed degr...

  15. The geomorphic response of gravel-bed rivers to dams: perspectives and prospects

    Treesearch

    Gordon E. Grant

    2012-01-01

    The paper summarizes over 40 years of research on the downstream geomorphic responses of rivers to dams, with a particular emphasis on gravel-bed rivers, and evaluates the state if the science with respect to predicting channel adjustments: channel incision, lateral adjustments, and bed textural changes. Effects of vegetation and implications for management are also...

  16. Effects of hydraulic roughness on surface textures of gravel-bed rivers

    Treesearch

    John M. Buffington; David R. Montgomery

    1999-01-01

    Field studies of forest gravel-bed rivers in northwestern Washington and southeastern Alaska demonstrate that bed-surface grain size is responsive to hydraulic roughness caused by bank irregularities, bars, and wood debris. We evaluate textural response by comparing reach-average median grain size (D50) to that predicted from the total bank-full boundary shear stress (...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmundson, Evan C.; Wu, Yufan; Luxton, Gary

    Purpose: To identify dosimetric predictors of hepatobiliary (HB) toxicity associated with stereotactic body radiation therapy (SBRT) for liver tumors. Methods and Materials: We retrospectively reviewed 96 patients treated with SBRT for primary (53%) or metastatic (47%) liver tumors between March 2006 and November 2013. The central HB tract (cHBT) was defined by a 15-mm expansion of the portal vein from the splenic confluence to the first bifurcation of left and right portal veins. Patients were censored for toxicity upon local progression or additional liver-directed therapy. HB toxicities were graded according to Common Terminology Criteria for Adverse Events version 4.0. Tomore » compare different SBRT fractionations, doses were converted to biologically effective doses (BED) by using the standard linear quadratic model α/β = 10 (BED10). Results: Median follow-up was 12.7 months after SBRT. Median BED10 was 85.5 Gy (range: 37.5-151.2). The median number of fractions was 5 (range: 1-5), with 51 patients (53.1%) receiving 5 fractions and 29 patients (30.2%) receiving 3 fractions. In total, there were 23 (24.0%) grade 2+ and 18 (18.8%) grade 3+ HB toxicities. Nondosimetric factors predictive of grade 3+ HB toxicity included cholangiocarcinoma (CCA) histology (P<.0001), primary liver tumor (P=.0087), and biliary stent (P<.0001). Dosimetric parameters most predictive of grade 3+ HB toxicity were volume receiving above BED10 of 72 Gy (V{sub BED10}72) ≥ 21 cm{sup 3} (relative risk [RR]: 11.6, P<.0001), V{sub BED10}66 ≥ 24 cm{sup 3} (RR: 10.5, P<.0001), and mean BED10 (Dmean{sub BED10}) cHBT ≥14 Gy (RR: 9.2, P<.0001), with V{sub BED10}72 and V{sub BED10}66 corresponding to V40 and V37.7 for 5 fractions and V33.8 and V32.0 for 3 fractions, respectively. V{sub BED10}72 ≥ 21 cm{sup 3}, V{sub BED10}66 ≥ 24 cm{sup 3}, and Dmean{sub BED10} cHBT ≥14 Gy were consistently predictive of grade 3+ toxicity on multivariate analysis. Conclusions: V{sub BED10}72, V{sub BED10}66, and Dmean{sub BED10} to cHBT are associated with HB toxicity. We suggest V{sub BED10}72 < 21 cm{sup 3} (5-fraction: V40 < 21 cm{sup 3}; 3-fraction: V33.8 < 21 cm{sup 3}), V{sub BED10}66 < 24 cm{sup 3} (5-fraction: V37.7 < 24 cm{sup 3}; 3-fraction: V32 < 24 cm{sup 3}) as potential dose constraints for the cHBT when clinically indicated.« less

  18. Enhanced stability of steep channel beds to mass failure and debris flow initiation

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.

    2015-12-01

    Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.

  19. Performance of a solar augmented heat pump

    NASA Astrophysics Data System (ADS)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  20. Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency

    USGS Publications Warehouse

    Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.

    2013-01-01

    Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.

  1. Using autoregressive integrated moving average (ARIMA) models to predict and monitor the number of beds occupied during a SARS outbreak in a tertiary hospital in Singapore.

    PubMed

    Earnest, Arul; Chen, Mark I; Ng, Donald; Sin, Leo Yee

    2005-05-11

    The main objective of this study is to apply autoregressive integrated moving average (ARIMA) models to make real-time predictions on the number of beds occupied in Tan Tock Seng Hospital, during the recent SARS outbreak. This is a retrospective study design. Hospital admission and occupancy data for isolation beds was collected from Tan Tock Seng hospital for the period 14th March 2003 to 31st May 2003. The main outcome measure was daily number of isolation beds occupied by SARS patients. Among the covariates considered were daily number of people screened, daily number of people admitted (including observation, suspect and probable cases) and days from the most recent significant event discovery. We utilized the following strategy for the analysis. Firstly, we split the outbreak data into two. Data from 14th March to 21st April 2003 was used for model development. We used structural ARIMA models in an attempt to model the number of beds occupied. Estimation is via the maximum likelihood method using the Kalman filter. For the ARIMA model parameters, we considered the simplest parsimonious lowest order model. We found that the ARIMA (1,0,3) model was able to describe and predict the number of beds occupied during the SARS outbreak well. The mean absolute percentage error (MAPE) for the training set and validation set were 5.7% and 8.6% respectively, which we found was reasonable for use in the hospital setting. Furthermore, the model also provided three-day forecasts of the number of beds required. Total number of admissions and probable cases admitted on the previous day were also found to be independent prognostic factors of bed occupancy. ARIMA models provide useful tools for administrators and clinicians in planning for real-time bed capacity during an outbreak of an infectious disease such as SARS. The model could well be used in planning for bed-capacity during outbreaks of other infectious diseases as well.

  2. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    NASA Astrophysics Data System (ADS)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  3. Evaluating the use of side-scan sonar for detecting freshwater mussel beds in turbid river environments

    USGS Publications Warehouse

    Powers, Jarrod; Brewer, Shannon K.; Long, James M.; Campbell, Thomas

    2015-01-01

    Side-scan sonar is a valuable tool for mapping habitat features in many aquatic systems suggesting it may also be useful for locating sedentary biota. The objective of this study was to determine if side-scan sonar could be used to identify freshwater mussel (unionid) beds and the required environmental conditions. We used side-scan sonar to develop a series of mussel-bed reference images by placing mussel shells within homogenous areas of fine and coarse substrates. We then used side-scan sonar to map a 32-km river reach during spring and summer. Using our mussel-bed reference images, several river locations were identified where mussel beds appeared to exist in the scanned images and we chose a subset of sites (n = 17) for field validation. The validation confirmed that ~60% of the sites had mussel beds and ~80% had some mussels or shells present. Water depth was significantly related to our ability to predict mussel-bed locations: predictive ability was greatest at depths of 1–2 m, but decreased in water >2-m deep. We determined side-scan sonar is an effective tool for preliminary assessments of mussel presence during times when they are located at or above the substrate surface and in relatively fine substrates excluding fine silt.

  4. A wave model test bed study for wave energy resource characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at themore » test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.« less

  5. Effects of Sediment Patches on Sediment Transport Predictions in Steep Mountain Channels

    NASA Astrophysics Data System (ADS)

    Monsalve Sepulveda, A.; Yager, E.

    2013-12-01

    Bed surface patches occur in most gravel-bedded rivers and in steep streams can be divided between relatively immobile boulders and more mobile patches of cobbles and gravel. This spatial variability in grain size, roughness and sorting impact bed load transport by altering the relative local mobility of different grain sizes and creating complex local flow fields. Large boulders also bear a significant part of the total shear stress and we hypothesize that the remaining shear stress on a given mobile patch is a distribution of values that depend on the local topography, patch type and location relative to the large roughness elements and thalweg. Current sediment transport equations do not account for the variation in roughness, local flow and grain size distributions on and between patches and often use an area-weighted approach to obtain a representative grain size distribution and reach-averaged shear stress. Such equations also do not distinguish between active (patches where at least one grain size is in motion) and inactive patches or include the difference in mobility between patch classes as result of spatial shear stress distributions. To understand the effects of sediment patches on sediment transport in steep channels, we calculated the shear stress distributions over a range of patch classes in a 10% gradient step-pool stream. We surveyed the bed with a high density resolution (every 5 cm in horizontal and vertical directions over a 40 m long reach) using a total station and terrestrial LiDAR, mapped and classified patches by their grain size distributions, and measured water surface elevations and mean velocities for low to moderate flow events. Using these data we calibrated a quasi-three dimensional model (FaSTMECH) to obtain shear stress distributions over each patch for a range of flow discharges. We modified Parker's (1990) equations to use the calculated shear stress distribution, measured grain sizes, and a specific hiding function for each patch class, and then added the bedload fluxes for each patch to calculate the reach-averaged sediment transport rate. Sediment mobility in patches was highly dependent on the patch's class and location relative to the thalweg and large roughness elements. Compared to deterministic formulations, the use of distributions of shear stress improved predictions of bedload transport in steep mountain channels.

  6. [Predicting spread of new pandemic swine-origin influenza A (H1N1) in local mid-size city: evaluation of hospital bed shortage and effectiveness of vaccination].

    PubMed

    Takeuchi, Shouhei; Kuroda, Yoshiki

    2010-01-01

    On April 24th, 2009, a new swine-origin influenza A (H1N1) was first reported in Mexico. Japan confirmed cases of the flu on May 9th, and the pandemic in Japan has become full-scale. The Ministry of Health, Labor and Welfare of Japan announced that the first peak of this pandemic was predicted to occur in October, 2009. Therefore, it is most important to predict the progress of this pandemic to be able to use medical resources effectively in Japan. We used a modified susceptible-exposed-infected-recovered (SEIR) model to calculate the number of infected people and hospital bed shortage during this pandemic. In this model, available medical resources were investigated on the basis of four vaccination scenarios. Our model showed that it would take a further six months for the pandemic to peak than was predicted by the Ministry of Health, Labor and Welfare of Japan. Without vaccination, at the peak of the pandemic 23,689 out of 400,000 people would be infected and the hospital bed shortage would reach 7,349 in total. We suggest that mathematical models are strong tools to predict the spread of infectious diseases. According to our model, it is possible to prevent hospital bed shortage by vaccination.

  7. 40 CFR 227.13 - Dredged materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal or industrial wastes or by runoff from terrestrial sources such as agricultural lands. (b) Dredged... energy such as streams with large bed loads or coastal areas with shifting bars and channels; or (2...

  8. 40 CFR 227.13 - Dredged materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal or industrial wastes or by runoff from terrestrial sources such as agricultural lands. (b) Dredged... energy such as streams with large bed loads or coastal areas with shifting bars and channels; or (2...

  9. 40 CFR 227.13 - Dredged materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal or industrial wastes or by runoff from terrestrial sources such as agricultural lands. (b) Dredged... energy such as streams with large bed loads or coastal areas with shifting bars and channels; or (2...

  10. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soria, José, E-mail: jose.soria@probien.gob.ar; Gauthier, Daniel; Flamant, Gilles

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with themore » flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.« less

  11. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1983-01-01

    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  12. Using repeat lidar to estimate sediment transport in a steep stream

    NASA Astrophysics Data System (ADS)

    Anderson, Scott; Pitlick, John

    2014-03-01

    Sediment fluxes in steep mountain streams remain difficult to quantify, despite their importance in geomorphology, ecology, and hazard analysis. In this work, aerial lidar surveys, acquired in 2002, 2008, and 2012, are used to quantify such fluxes in Tahoma Creek, a proglacial stream on Mount Rainier, Washington. As these surveys encompass all coarse sediment sources in the basin, we are able to translate geomorphic change into total bed material transport volumes for the time steps between surveys. By assuming that the relationship between daily sediment transport and daily mean discharge is of the form Qs=a(Q-Qc)b, our two observed total loads and estimates of daily mean discharge allow us to numerically solve for values of a and b to create a bed material sediment rating curve. Comparisons of our transport estimates with sediment deposition in a downstream reservoir indicate that our transport estimates and derived rating curve are reasonable. The method we present thus represents a plausible means of estimating transport rates in energetic settings or during extreme events, applicable whenever at least two cumulative sediment loads and the driving hydrology are known. We use these results to assess the performance of several bed load transport equations. The equations generally overpredict transport at low to moderate flows but significantly underpredict transport rates during an extreme event. Using a critical shear stress value appropriate for steep streams improves agreement at lower flows, whereas a shear-partitioning technique accounting for form drag losses significantly underpredicts transport at all flows.

  13. A quantitative analysis of microcirculation in sore-prone pressure areas on conventional and pressure relief hospital mattresses using laser Doppler flowmetry and tissue spectrophotometry.

    PubMed

    Rothenberger, Jens; Krauss, Sabrina; Held, Manuel; Bender, Dominik; Schaller, Hans-Eberhard; Rahmanian-Schwarz, Afshin; Constantinescu, Mihai Adrian; Jaminet, Patrick

    2014-11-01

    Pressure ulcers are associated with severe impairment for the patients and high economic load. With this study we wanted to gain more insight to the skin perfusion dynamics due to external loading. Furthermore, we evaluated the effect of different types of pressure relief mattresses. A total of 25 healthy volunteers were enrolled in the study. Perfusion dynamics of the sacral and the heel area were assessed using the O2C-device, which combines a laser light, to determine blood flow, and white light to determine the relative amount of hemoglobin. Three mattresses were evaluated compared to a hard surface: a standard hospital foam mattress bed, a visco-elastic foam mattress, and an air-fluidized bed. In the heel area, only the air-fluidized bed was able to maintain the blood circulation (mean blood flow of 13.6 ± 6 versus 3.9 ± 3 AU and mean relative amount of hemoglobin of 44.0 ± 14 versus 32.7 ± 12 AU.) In the sacral area, all used mattresses revealed an improvement of blood circulation compared to the hard surface. The results of this study form a more precise pattern of perfusion changes due to external loading on various pressure relief mattresses. This knowledge may reduce the incidence of pressure ulcers and may be an influencing factor in pressure relief mattress selection. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  14. Optimal design of high-speed loading spindle based on ABAQUS

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  15. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve themore » 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.« less

  16. Intrawave sand suspension in the shoaling and surf zone of a field-scale laboratory beach

    NASA Astrophysics Data System (ADS)

    Brinkkemper, J. A.; de Bakker, A. T. M.; Ruessink, B. G.

    2017-01-01

    Short-wave sand transport in morphodynamic models is often based solely on the near-bed wave-orbital motion, thereby neglecting the effect of ripple-induced and surface-induced turbulence on sand transport processes. Here sand stirring was studied using measurements of the wave-orbital motion, turbulence, ripple characteristics, and sand concentration collected on a field-scale laboratory beach under conditions ranging from irregular nonbreaking waves above vortex ripples to plunging waves and bores above subdued bed forms. Turbulence and sand concentration were analyzed as individual events and in a wave phase-averaged sense. The fraction of turbulence events related to suspension events is relatively high (˜50%), especially beneath plunging waves. Beneath nonbreaking waves with vortex ripples, the sand concentration close to the bed peaks right after the maximum positive wave-orbital motion and shows a marked phase lag in the vertical, although the peak in concentration at higher elevations does not shift to beyond the positive to negative flow reversal. Under plunging waves, concentration peaks beneath the wavefront without any notable phase lags in the vertical. In the inner-surf zone (bores), the sand concentration remains phase coupled to positive wave-orbital motion, but the concentration decreases with distance toward the shoreline. On the whole, our observations demonstrate that the wave-driven suspended load transport is onshore and largest beneath plunging waves, while it is small and can also be offshore beneath shoaling waves. To accurately predict wave-driven sand transport in morphodynamic models, the effect of surface-induced turbulence beneath plunging waves should thus be included.

  17. Soft-sediment deformations (convolute lamination and load structures) in turbidites as indicators of flow reflections against bounding slopes

    NASA Astrophysics Data System (ADS)

    Tinterri, Roberto; Muzzi Magalhaes, Pierre; Tagliaferri, Alessio; Cunha, Rogerio S.; Laporta, Michele

    2015-04-01

    Soft-sediment deformations, such as convolute laminations, load structures and water escapes are very rapid deformations that occur in unconsolidated sediments near the depositional surface during or shortly after deposition and before significant diagenesis. These types of deformations develop when primary stratifications are deformed by a system of driving forces, while the sediment is temporarily in a weakened state due to the action of a deformation mechanism know as liquidization. This deformation occurs if the applied stress exceeds the sediment strength, either through an increase in the applied stress or through a temporary reduction in sediment strength. Liquidization mechanisms can be triggered by several agents, such as seismic shaking, rapid sedimentation with high-fallout rates or cyclic-pressure variations associated with storm waves or breaking waves. Consequently, soft-sediment deformations can be produced by different processes and form ubiquitous sedimentary structures characterizing many sedimentary environments. However, even though these types of structures are relatively well-known in terms of geometry and sedimentary characteristics, many doubts arise when the understanding of deformation and trigger mechanisms is attempted. As stressed also by the recent literature, the main problem lies in the fact that the existing approaches for the identification of triggering agents rely on criteria that are not diagnostic or not applicable to outcrop-based studies, because they are not always based on detailed facies analysis related to a paleoenvironmental-context approach. For this reason, this work discusses the significance of particular types of soft-sediment deformations that are very common in turbidite deposits, namely convolute laminations and load structures, especially on the basis of a deep knowledge of the stratigraphic framework and geological setting in which these structures are inserted. More precisely, detailed facies analyses of the turbidites containing these deformative structures show that they are genetically linked to contained-reflected beds in structurally-confined basins, suggesting a trigger mechanism associated with the cyclic-wave loading produced by flow impacts or reflected bores and internal waves related to ponded turbidity currents. The data that can demonstrate this hypothesis come from the foredeep turbidites of the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southwestern France), where a basin scale high-resolution stratigraphic framework with bed-by-bed correlations is now available. These data show that the lateral and vertical distribution of convolute laminae and load structures is not random but has an evident depositional logic related to reflection processes against bounding slopes. Therefore, the main objectives of this work are: 1) to show that convolute laminae and load structures are strictly associated with other sedimentary structures that are unequivocally related to reflection and rebound processes of turbidity currents against morphological obstacles; 2) to show that their lateral and vertical distribution increases concomitantly with the number of contained-reflected beds in the proximity of structurally-controlled morphological highs; 3) to show that the increase in contained-reflected beds with convolute laminae is strictly related to the increase in the synsedimentary-structural uplifts producing more pronounced morphologic highs; 4) to discuss the processes that link soft-sediment deformations with cyclic-wave loading related to internal waves and bores produced by reflection processes.

  18. Four Bed Molecular Sieve - Exploration (4BMS-X) Virtual Heater Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schunk, R. Gregory; Peters, Warren T.; Thomas, John T., Jr.

    2017-01-01

    A 4BMS-X (Four Bed Molecular Sieve - Exploration) design and heater optimization study for CO2 sorbent beds in proposed exploration system architectures is presented. The primary objectives of the study are to reduce heater power and thermal gradients within the CO2 sorbent beds while minimizing channeling effects. Some of the notable changes from the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) to the proposed exploration system architecture include cylindrical beds, alternate sorbents and an improved heater core. Results from both 2D and 3D sorbent bed thermal models with integrated heaters are presented. The 2D sorbent bed models are used to optimize heater power and fin geometry while the 3D models address end effects in the beds for more realistic thermal gradient and heater power predictions.

  19. Removal of oxytetracycline (OTC) in a synthetic pharmaceutical wastewater by a sequential anaerobic multichamber bed reactor (AMCBR)/completely stirred tank reactor (CSTR) system: biodegradation and inhibition kinetics.

    PubMed

    Sponza, Delia Teresa; Çelebi, Hakan

    2012-01-01

    An anaerobic multichamber bed reactor (AMCBR) was effective in removing both molasses-chemical oxygen demand (COD), and the antibiotic oxytetracycline (OTC). The maximum COD and OTC removals were 99% in sequential AMCBR/completely stirred tank reactor (CSTR) at an OTC concentration of 300 mg L(-1). 51%, 29% and 9% of the total volatile fatty acid (TVFA) was composed of acetic, propionic acid and butyric acids, respectively. The OTC loading rates at between 22.22 and 133.33 g OTC m(-3) d(-1) improved the hydrolysis of molasses-COD (k), the maximum specific utilization of molasses-COD (k(mh)) and the maximum specific utilization rate of TVFA (k(TVFA)). The direct effect of high OTC loadings (155.56 and -177.78 g OTC m(-3) d(-1)) on acidogens and methanogens were evaluated with Haldane inhibition kinetic. A significant decrease of the Haldane inhibition constant was indicative of increases in toxicity at increasing loading rates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater.

    PubMed

    Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C

    2013-12-01

    Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The efficacy of subsurface flow reed bed treatment in the removal of Campylobacter spp., faecal coliforms and Escherichia coli from poultry litter.

    PubMed

    Duggan, J; Bates, M P; Phillips, C A

    2001-06-01

    The use of poultry waste as a fertiliser on arable land is an accepted method of waste treatment. However, run-off from such practices may result in contamination of the watercourse by human pathogens. In this study the effectiveness of using constructed wetlands as an alternative treatment for poultry manure waste was evaluated. Enumeration of Campylobacter spp., Escherichia coli, total coliforms and total aerobes were carried out on influent and effluent samples from reed beds loaded with poultry waste. For both sequential loading and continuous loading there was a statistically significant mean log reduction of 3.56 and 4.25 for E. coli, 3.2 and 3.88 for coliforms, 3.85 and 4.2 for total aerobic counts and 3.13 and 2.96 for Campylobacter spp., respectively. This method, which has been previously recognised as cost-effective and environmentally acceptable, provides an efficient method for reducing numbers of these bacteria in poultry waste and therefore an effective alternative treatment for such waste or waters containing run off from land previously spread with poultry manure.

  2. Experimental Exploration of Scale Effects and Factors Controlling Bed Load Sediment Entrainment

    NASA Astrophysics Data System (ADS)

    Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.

    2015-12-01

    Detailed measurements of individual sand grains moving on a streambed allow us to obtain a deeper understanding of the characteristics of incipient motion and evaluate spatial and temporal trends in particle entrainment. We use bed load particle motions measured from high-speed imaging (250 Hz) of uniform, coarse grained sand from two flume experiments, which have different mean fluid velocities near the bed. Particle tracking reveals more than 6,000 entrainment events in 5 seconds (Run 1) and over 5,000 events in 2 seconds (Run 2). We manually track particles, at sub-pixel resolution, from entrainment to either disentrainment or until the particle leaves the frame. Within these experiments we find that over 90% of all initial motions contain a cross-stream component of motion where approximately a third of the motions may be cross-stream dominated, and furthermore, up to 7% of the motions may be negative (i.e. move backwards). We propose that the variability in the direction of initial motion is, in part, a product of the bed topography, where we find that with increasing mean fluid velocity, the initial motion of the sand particles are less sensitive to bed topography, and are more likely to be dominated by the fluid. The high resolution of this data set, containing positions of particles measured start-to-stop, allows us to calculate the characteristic timescale required for a particle to become streamwise, or fluid, dominated in these systems. We also evaluate these data to further show whether the nature of entrainment is a memoryless, uncorrelated process, a correlated process related to the number of particles already in motion (i.e., possibly reflecting collective entrainment), or some combination of the two. This work suggests that the probability of entrainment depends on physical factors such as bed microtopography and the magnitude of the fluid velocity, in addition to varying with space and time scales.

  3. Catalyst Development for Hydrogen Peroxide Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.

    1999-01-01

    The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.

  4. Stochastic Predictions of Cell Kill During Stereotactic Ablative Radiation Therapy: Do Hypoxia and Reoxygenation Really Matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harriss-Phillips, Wendy M., E-mail: wharrphil@gmail.com; School of Chemistry and Physics, University of Adelaide, Adelaide, South Australia; Bezak, Eva

    Purpose: To simulate stereotactic ablative radiation therapy on hypoxic and well-oxygenated in silico tumors, incorporating probabilistic parameter distributions and linear-quadratic versus linear-quadratic-cubic methodology and the evaluation of optimal fractionation schemes using biological effective dose (BED{sub α/β=10} {sub or} {sub 3}) comparisons. Methods and Materials: A temporal tumor growth and radiation therapy algorithm simulated high-dose external beam radiation therapy using stochastic methods. Realistic biological proliferative cellular hierarchy and pO{sub 2} histograms were incorporated into the 10{sup 8}-cell tumor model, with randomized radiation therapy applied during continual cell proliferation and volume-based gradual tumor reoxygenation. Dose fractions ranged from 6-35 Gy, with predictive outcomes presentedmore » in terms of the total doses (converted to BED) required to eliminate all cells that could potentially regenerate the tumor. Results: Well-oxygenated tumor control BED{sub 10} outcomes were not significantly different for high-dose versus conventional radiation therapy (BED{sub 10}: 79-84 Gy; Equivalent Dose in 2 Gy fractions with α/β of 10: 66-70 Gy); however, total treatment times decreased from 7 down to 1-3 weeks. For hypoxic tumors, an additional 28 Gy (51 Gy BED{sub 10}) was required, with BED{sub 10} increasing with dose per fraction due to wasted dose in the final fraction. Fractions of 9 Gy compromised well for total treatment time and BED, with BED{sub 10}:BED{sub 3} of 84:176 Gy for oxic and 132:278 Gy for non-reoxygenating hypoxic tumors. Initial doses of 12 Gy followed by 6 Gy further increased the therapeutic ratio. When delivering ≥9 Gy per fraction, applying reoxygenation and/or linear-quadratic-cubic cell survival both affected tumor control doses by a significant 1-2 fractions. Conclusions: The complex temporal dynamics of tumor oxygenation combined with probabilistic cell kinetics in the modeling of radiation therapy requires sophisticated stochastic modeling to predict tumor cell kill. For stereotactic ablative radiation therapy, high doses in the first week followed by doses that are more moderate may be beneficial because a high percentage of hypoxic cells could be eradicated early while keeping the required BED{sub 10} relatively low and BED{sub 3} toxicity to tolerable levels.« less

  5. Bed-material entrainment and associated transportation infrastructure problems in streams of the Edwards Plateau, central Texas

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Asquith, William H.

    2008-01-01

    The Texas Department of Transportation commonly builds and maintains low-water crossings (LWCs) over streams in the Edwards Plateau in Central Texas. LWCs are low-height structures, typically constructed of concrete and asphalt, that provide acceptable passage over seasonal rivers or streams with relatively low normal-depth flow. They are designed to accommodate flow by roadway overtopping during high-flow events. The streams of the Edwards Plateau are characterized by cobble- and gravel-sized bed material and highly variable flow regimes. Low base flows that occur most of the time occasionally are interrupted by severe floods. The floods entrain and transport substantial loads of bed material in the stream channels. As a result, LWCs over streams in the Edwards Plateau are bombarded and abraded by bed material during floods and periodically must be maintained or even replaced.

  6. Automation of the space station core module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1988-01-01

    Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.

  7. On a criterion of incipient motion and entrainment into suspension of a particle from cuttings bed in shear flow of non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland

    2017-10-01

    Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.

  8. Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River

    NASA Astrophysics Data System (ADS)

    Gran, K. B.

    2015-12-01

    Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a series of inset terraces within the valley. The importance of sand on channel behavior thus extends beyond transport rates, affecting the depth of incision and volume of material excavated during a rainy to dry season transition.

  9. Temporally Dynamic, Spatially Static, Cobble Bedforms In Reversing Subtidal Currents

    NASA Astrophysics Data System (ADS)

    Abdulkade, Akirat; Carling, Paul; Zong, Quanli; Leyland, Julian; Thompson, Charlie

    2016-04-01

    Cobble bedforms, transverse to the reversing tidal currents, are exposed at extreme low-water Spring tides on an inter-tidal bedrock shelf in the macro-tidal Severn Estuary, UK. Near-bed flow velocities during Spring tides can exceed 1.5m/s, with water depths varying from zero to in excess of 10m. During neap tides the bedforms are not exposed, and sediment is expected to be of limited mobility. When exposed, the bedform geometry tends to be asymmetric; orientated down estuary with the ebb current. During Spring tides, vigorous bedload transport of gravel (including large cobbles) occurs during both flood and ebb over the crests and yet, despite this temporal dynamism, the bedforms remain spatially static over long time periods or show weak down-estuary migration. Stasis implies that the tidal bedload transport vectors are essentially in balance. Near-bed shear stress and bed roughness values vary systematically with the Spring-tide current speeds and the predicted grain-size of the bed load using the Shields criterion is in accord with observed coarser grain-sizes in transport. These hydrodynamic data, delimited by estimates of the threshold of motion, and integrated over either flood or ebb tides are being used to explain the apparent stability of the bedforms. The bulk hydraulic data are supplemented by particle tracer studies and laser-scanning of bed configurations between tides. The high-energy environment results in two forms of armouring. Pronounced steep imbrication of platy-cobbles visible on the exposed up-estuary side of dunes is probably disrupted during flood tides leading to rapid reworking of the toe deposits facing up-estuary. In contrast, some crest and leeside locations have been stable for prolonged periods such that closely-fitted fabrics result; these portions of the bedforms are static and effectively are 'armour-plated'. Ebb-tide deposits of finer, ephemeral sandy-units occur on the down estuary side of the bedforms. Sandy-units (although not observed at low tide) presumably also are deposited on the up estuary side during flooding tides but these deposits are destroyed by ebb flows. The implication of these sediment transport processes on the stratification of the bedforms is considered.

  10. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix E: Pressure-fed booster test bed for the liquid rocket booster study

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The stress analysis/structural design of the Pressure-Fed Booster Engine Test Bed using the existing F-1 Test Facility Test Stand at Huntsville, Alabama is described. The analysis has been coded and set up for solution on NASTRAN. A separate stress program was established to take the NASTRAN output and perform stress checks on the members. Joint checks and other necessary additional checks were performed by hand. The notes include a brief description of other programs which assist in reproducing and reviewing the NASTRAN results. The redesign of the test stand members and the stress analysis was performed per the A.I.S.C. Code. Loads on the stand consist of the loaded run tanks; wind loads; seismic loads; live loads consisting of snow and ice: live and dead loads of steel; and loaded pressurant bottle. In combining loads, wind loads and seismic loads were each combined with full live loads. Wind and seismic loads were not combined. No one third increase in allowables was taken for the environmental loads except at decks 147 and 214, where the increase was used when considering the stay rods, brackets and stay beams. Wind and seismic loads were considered from each of the four coordinate directions (i.e. N,S,E,W) to give eight basic conditions. The analysis was run with the pressurant tank mounted at level 125. One seismic condition was also run with the tank mounted at levels 169 and 214. No failures were noted with mounting at level 169, but extensive deck failure with mounting at level 214 (the loadsets used are included on the tape, but no detailed results are included in the package). Decking support beams at levels 147 and 214 are not included in the model. The stress program thus does not reduce strut lengths to the length between support beams (the struts are attached to the beams at intersection points) and gives stress ratios larger than one for some of the struts. The affected members were therefore checked by hand.

  11. Channel responses to varying sediment input: A flume experiment modeled after Redwood Creek, California

    USGS Publications Warehouse

    Madej, Mary Ann; Sutherland, D.G.; Lisle, T.E.; Pryor, B.

    2009-01-01

    At the reach scale, a channel adjusts to sediment supply and flow through mutual interactions among channel form, bed particle size, and flow dynamics that govern river bed mobility. Sediment can impair the beneficial uses of a river, but the timescales for studying recovery following high sediment loading in the field setting make flume experiments appealing. We use a flume experiment, coupled with field measurements in a gravel-bed river, to explore sediment transport, storage, and mobility relations under various sediment supply conditions. Our flume experiment modeled adjustments of channel morphology, slope, and armoring in a gravel-bed channel. Under moderate sediment increases, channel bed elevation increased and sediment output increased, but channel planform remained similar to pre-feed conditions. During the following degradational cycle, most of the excess sediment was evacuated from the flume and the bed became armored. Under high sediment feed, channel bed elevation increased, the bed became smoother, mid-channel bars and bedload sheets formed, and water surface slope increased. Concurrently, output increased and became more poorly sorted. During the last degradational cycle, the channel became armored and channel incision ceased before all excess sediment was removed. Selective transport of finer material was evident throughout the aggradational cycles and became more pronounced during degradational cycles as the bed became armored. Our flume results of changes in bed elevation, sediment storage, channel morphology, and bed texture parallel those from field surveys of Redwood Creek, northern California, which has exhibited channel bed degradation for 30??years following a large aggradation event in the 1970s. The flume experiment suggested that channel recovery in terms of reestablishing a specific morphology may not occur, but the channel may return to a state of balancing sediment supply and transport capacity.

  12. The varying stability of benthic homes: hydrologic regime and sediment supply control the timing and intensity of bed mobility

    NASA Astrophysics Data System (ADS)

    Pfeiffer, A.; Finnegan, N. J.

    2017-12-01

    Gravel river beds provide an ephemeral architecture for the benthic inhabitants of river ecosystems. Periphyton and benthic macroinvertebrates that live on or within the gravel are subject to catastrophic disruption upon mobilization of the surface gravel during floods. Because sediment supply varies by orders of magnitude across North America, and rivers have adjusted to convey their imposed loads, river bed surface mobility varies enormously. Climate also varies widely across the continent, yielding a range of flood timing, duration, and intermittency. Together, the differences in sediment supply and hydrologic patterns result in diverse regimes of benthic habitat stability. To quantitatively characterize these regimes, we calculate decades-scale time series of estimated bed surface mobility using sediment transport equations (Wilcock and Crowe, 2003). The method requires measurements of the bed surface grainsize distribution, channel slope, and standard USGS stream gauging records. We calculate the fraction of the bed surface grain size distribution that is mobile at any given flow, as well as the intensity of transport. We use the time series of bed mobility to compare between rivers and regions. In many snowmelt-dominated rivers in Idaho, a period of moderate bed mobility (W* > 0.002) generally occurs during the annual melt, and can last for days. In rivers draining the central and northern Appalachians, bed mobility is comparatively rare and occurs during short duration floods. Rivers on the tectonically active West Coast tend to experience bed mobility during most winter storms, with brief (hours long) periods of high transport rates (W* > 0.02) during storm peaks. The timing and intensity of bed mobility varies with hydrologic regime and sediment supply; these contrasts in bed mobility lead to diverse structural templates for river ecosystems.

  13. Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing

    NASA Astrophysics Data System (ADS)

    Yin, Peng-Fei; Yang, Sheng-Qi

    2018-05-01

    As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.

  14. Stick-Slip of Lightly Loaded Rock. Part 1. Dilatancy and Shearing Behavior of Assemblages of Rods. Part 2

    DTIC Science & Technology

    1975-02-04

    perceiving some thing which resem.- bles nothing within the limits of one’s kowledge , a name is a matter of great difficulty. I have called this unique...of the test bed by a screw and jack arrangement powered by a 1/6 h.p. motor, the axial force being monitored with a Dillon load cell (Fig. 2). Axial

  15. Program Evaluation of Outcomes Based Orthotic and Prosthetic Education

    DTIC Science & Technology

    2006-12-01

    Rheumatoid Arthritis; synovial joints ; tendon sheaths. b. Osteoarthritis; weight bearing joints ; loading areas. c. Osteoporosis; cancellous bone...flexion. 32. The desirable length of a thumb post is: a. to the thumb IP joint . b. proximal to the IP joint . c. to the nail bed. d. just...assist hyperextension of the thoracic spine. b. eliminate motion. c. prevent lumbar flexion. d. reduce axial load on lumbar vertebrae. 44

  16. Organic matter degradation in a greywater recycling system using a multistage moving bed biofilm reactor (MBBR).

    PubMed

    Saidi, Assia; Masmoudi, Khaoula; Nolde, Erwin; El Amrani, Btissam; Amraoui, Fouad

    2017-12-01

    Greywater is an important non-conventional water resource which can be treated and recycled in buildings. A decentralized greywater recycling system for 223 inhabitants started operating in 2006 in Berlin, Germany. High load greywater undergoes advanced treatment in a multistage moving bed biofilm reactor (MBBR) followed by sand filtration and UV disinfection. The treated water is used safely as service water for toilet flushing. Monitoring of the organic matter degradation was pursued to describe the degradation processes in each stage and optimize the system. Results showed that organic matter reduction was achieved for the most part in the first three reactors, whereas the highest reduction rate was observed in the third reactor in terms of COD (chemical oxygen demand), dissolved organic carbon and BOD 7 (biological oxygen demand). The results also showed that the average loading rate entering the system was 3.7 kg COD/d, while the removal rate was 3.4 kg COD/d in a total bioreactor volume of 11.7 m³. In terms of BOD, the loading rate was 2.8 kg BOD/d and it was almost totally removed. This system requires little space (0.15 m²/person) and maintenance work of less than one hour per month and it shows operational stability under peak loads.

  17. [Comparison between porous polymer carrier and activated carbon carrier used for treating organic wastewater in anaerobic fluidized-bed reactor].

    PubMed

    Yang, P; Fang, Z; Shi, Y

    2001-01-01

    A comparative performance between porous polymer carriers (HP) and granular activated carbon carriers (GAC) in anaerobic fluidied-bed reactors was undertaken to evaluate their characters. The results showed that the COD removal and the biogas volume yield rate were 84% and 16.5 m3/(m3.d) respectively when HP was used as carrier to treat synthetic wastewater, at the top COD organic load rate of 65.5 kg/(m3.d), however those were 74.2% and 14.5% respectively for GAC carrier at the top load rate of 63.25 kg/(m3.d). The COD removal and biogas volume yield rate were 64.7%-54.5% and 1.89-2.7 m3/(m3.d) respectively when HP was used as carriers to treat straw pulping wastewater, at the load rate of 14.5-36.15 kg/(m3.d), and those were 61.0%-52.1% and 0.73-2.0 m3/(m3.d) respectively for GAC carriers at the load rate 9.16-19.06 kg/(m3.d). The study revealed that the HP carriers reactor is more efficient than the GAC carriers reactor in microbial immobilization and the wastewater treatment.

  18. Numerical model of the lowermost Mississippi River as an alluvial-bedrock reach: preliminary results

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Nittrouer, J. A.; Mohrig, D. C.; Parker, G.

    2012-12-01

    Recent field studies reveal that the river bed of the Lower Mississippi River is characterized by a transition from alluvium (upstream) to bedrock (downstream). In particular, in the downstream 250 km of the river, fields of actively migrating bedforms alternate with deep zones where a consolidated substratum is exposed. Here we present a first version of a one-dimensional numerical model able to capture the alluvial-bedrock transition in the lowermost Mississippi River, defined herein as the 500-km reach between the Old River Control Structure and the Gulf of Mexico. The flow is assumed to be steady, and the cross-section is divided in two regions, the river channel and the floodplain. The streamwise variation of channel and floodplain geometry is described with synthetic relations derived from field observations. Flow resistance in the river channel is computed with the formulation for low-slope, large sand bed rivers due to Wright and Parker, while a Chezy-type formulation is implemented on the floodplain. Sediment is modeled in terms of bed material and wash load. Suspended load is computed with the Wright-Parker formulation. This treatment allows either uniform sediment or a mixture of different grain sizes, and accounts for stratification effects. Bedload transport rates are estimated with the relation for sediment mixtures of Ashida and Michiue. Previous work documents reasonable agreement between these load relations and field measurements. Washload is routed through the system solving the equation of mass conservation of sediment in suspension in the water column. The gradual transition from the alluvial reach to the bedrock reach is modeled in terms of a "mushy" layer of specified thickness overlying the non-erodible substrate. In the case of a fully alluvial reach, the channel bed elevation is above this mushy layer, while in the case of partial alluvial cover of the substratum, the channel bed elevation is within the mushy layer. Variations in base level are accounted for in terms of a specified rate of sea level rise. In addition, the model allows a subsidence rate that varies in space and time. The time rate of change of channel bed elevation is computed solving the equation of mass conservation of the bed material. Validation of the model against field data is currently in progress in a relatively simplified setting, in which the bed material is characterized in terms of a single grain size. In addition, due to the lack of information on the geometry and the grain size characteristics of the floodplain, the modeling effort is restricted to the channel bed, and the procedure to route the washload through the system is not implemented. Having clearly in mind that the present Lowermost Mississippi River is not in equilibrium, validation runs are performed in two steps. The model is first run under pre-1930 conditions, under the assumption that the natural Mississippi River was not too far from long-term steady-state. The model is then run from the 1930s to the 2010s with the prevailing inputs of water and sediment and the model results are compared against field data. In the near future we plan to test the model with non-uniform bed material, and extend it to include inundation of the floodplain, and deposition of washload on it.

  19. Model-based identification of optimal operating conditions for amino acid simulated moving bed enantioseparation using a macrocyclic glycopeptide stationary phase.

    PubMed

    Fuereder, Markus; Majeed, Imthiyas N; Panke, Sven; Bechtold, Matthias

    2014-06-13

    Teicoplanin aglycone columns allow efficient separation of amino acid enantiomers in aqueous mobile phases and enable robust and predictable simulated moving bed (SMB) separation of racemic methionine despite a dependency of the adsorption behavior on the column history (memory effect). In this work we systematically investigated the influence of the mobile phase (methanol content) and temperature on SMB performance using a model-based optimization approach that accounts for methionine solubility, adsorption behavior and back pressure. Adsorption isotherms became more favorable with increasing methanol content but methionine solubility was decreased and back pressure increased. Numerical optimization suggested a moderate methanol content (25-35%) for most efficient operation. Higher temperature had a positive effect on specific productivity and desorbent requirement due to higher methionine solubility, lower back pressure and virtually invariant selectivity at high loadings of racemic methionine. However, process robustness (defined as a difference in flow rate ratios) decreased strongly with increasing temperature to the extent that any significant increase in temperature over 32°C will likely result in operating points that cannot be realized technically even with the lab-scale piston pump SMB system employed in this study. Copyright © 2014. Published by Elsevier B.V.

  20. Dietary acid load and bone turnover during long-duration spaceflight and bed rest.

    PubMed

    Zwart, Sara R; Rice, Barbara L; Dlouhy, Holly; Shackelford, Linda C; Heer, Martina; Koslovsky, Matthew D; Smith, Scott M

    2018-05-01

    Bed rest studies document that a lower dietary acid load is associated with lower bone resorption. We tested the effect of dietary acid load on bone metabolism during spaceflight. Controlled 4-d diets with a high or low animal protein-to-potassium (APro:K) ratio (High and Low diets, respectively) were given to 17 astronauts before and during spaceflight. Each astronaut had 1 High and 1 Low diet session before flight and 2 High and 2 Low sessions during flight, in addition to a 4-d session around flight day 30 (FD30), when crew members were to consume their typical in-flight intake. At the end of each session, blood and urine samples were collected. Calcium, total protein, energy, and sodium were maintained in each crew member's preflight and in-flight controlled diets. Relative to preflight values, N-telopeptide (NTX) and urinary calcium were higher during flight, and bone-specific alkaline phosphatase (BSAP) was higher toward the end of flight. The High and Low diets did not affect NTX, BSAP, or urinary calcium. Dietary sulfur and age were significantly associated with changes in NTX. Dietary sodium and flight day were significantly associated with urinary calcium during flight. The net endogenous acid production (NEAP) estimated from the typical dietary intake at FD30 was associated with loss of bone mineral content in the lumbar spine after the mission. The results were compared with data from a 70-d bed rest study, in which control (but not exercising) subjects' APro:K was associated with higher NTX during bed rest. Long-term lowering of NEAP by increasing vegetable and fruit intake may protect against changes in loss of bone mineral content during spaceflight when adequate calcium is consumed, particularly if resistive exercise is not being performed. This trial was registered at clinicaltrials.gov as NCT01713634.

  1. Independent Predictors of Prognosis Based on Oral Cavity Squamous Cell Carcinoma Surgical Margins.

    PubMed

    Buchakjian, Marisa R; Ginader, Timothy; Tasche, Kendall K; Pagedar, Nitin A; Smith, Brian J; Sperry, Steven M

    2018-05-01

    Objective To conduct a multivariate analysis of a large cohort of oral cavity squamous cell carcinoma (OCSCC) cases for independent predictors of local recurrence (LR) and overall survival (OS), with emphasis on the relationship between (1) prognosis and (2) main specimen permanent margins and intraoperative tumor bed frozen margins. Study Design Retrospective cohort study. Setting Tertiary academic head and neck cancer program. Subjects and Methods This study included 426 patients treated with OCSCC resection between 2005 and 2014 at University of Iowa Hospitals and Clinics. Patients underwent excision of OCSCC with intraoperative tumor bed frozen margin sampling and main specimen permanent margin assessment. Multivariate analysis of the data set to predict LR and OS was performed. Results Independent predictors of LR included nodal involvement, histologic grade, and main specimen permanent margin status. Specifically, the presence of a positive margin (odds ratio, 6.21; 95% CI, 3.3-11.9) or <1-mm/carcinoma in situ margin (odds ratio, 2.41; 95% CI, 1.19-4.87) on the main specimen was an independent predictor of LR, whereas intraoperative tumor bed margins were not predictive of LR on multivariate analysis. Similarly, independent predictors of OS on multivariate analysis included nodal involvement, extracapsular extension, and a positive main specimen margin. Tumor bed margins did not independently predict OS. Conclusion The main specimen margin is a strong independent predictor of LR and OS on multivariate analysis. Intraoperative tumor bed frozen margins do not independently predict prognosis. We conclude that emphasis should be placed on evaluating the main specimen margins when estimating prognosis after OCSCC resection.

  2. Lithologic and hydraulic controls on network-scale variations in sediment yield: Big Wood and North Fork Big Lost Rivers, Idaho

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Pitlick, J.; Smith, M. E.

    2008-12-01

    Channel morphology and sediment textures in streams and rivers are a product of the flux of sediment and water conveyed to channel networks. Differences in sediment supply between watersheds should thus be reflected by differences in channel and bed-material properties. In order to address this directly, field measurements of channel morphology, substrate lithology, and bed sediment textures were made at 35 sites distributed evenly across two adjacent watersheds in south-central Idaho, the Big Wood River (BW) and N. Fork Big Lost River (NBL). Measurements of sediment transport indicate a five-fold difference in sediment yields between these basins, despite their geographic proximity. Three dominant lithologic modes (an intrusive and extrusive volcanic suite and a sedimentary suite) exist in different proportions between these basins. The spatial distribution of lithologies exhibits a first-order control on the variation in sediment supply, bed sediment textures, and size distribution of the bed load at the basin outlet. Here we document the coupled hydraulic and sedimentologic structuring of these stream channel networks to differences in sediment supply. The results show that width and depth are remarkably similar between the two basins across a range in channel gradient and drainage area, with the primary difference being decreased bed armoring in the NBL. As a result, dimensionless shear stress (τ*) increases downstream in the NBL with an average value of 0.073, despite declining slope. The opposite is true in the BW where τ* averages 0.048. Lithologic characterization of the substrate indicates that much of the discrepancy in bed armoring can be attributed to an increasing downstream supply of resistant intrusive granitic rocks to the BW, whereas the NBL is dominated by erodible extrusive volcanic and sedimentary rocks. A simple modeling approach using an excess shear stress-based bed load transport equation and observed channel geometry shows that subtle changes in sediment texture can reproduce the marked difference in sediment yield between basins. This suggests that in gravel-bed streams the flux of sediment through the channel network is governed as much by textural changes as by morphological changes, and that these textural changes are tightly coupled to source area lithology.

  3. Investigation of pier scour in coarse-bed streams in Montana, 2001 through 2007

    USGS Publications Warehouse

    Holnbeck, Stephen R.

    2011-01-01

    A primary goal of ongoing field research of bridge scour is improvement of scour-prediction equations so that pier-scour depth is predicted accurately-an important element of hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways. Scour depth for piers in streambeds with a mixture of sand, gravel, cobbles, and boulders (coarse-bed streams, which are common in Montana) generally is less than the scour depth in finer-grained (sandy) streambeds under similar conditions. That difference is attributed to an armor layer of coarser material. Pier-scour data from the U.S. Geological Survey were used in this study to develop a bed-material correction factor, which was incorporated into the Federal Highway Administration's recommended equation for computing pier scour. This report describes results of a study of pier scour in coarse-bed streams at 59 bridge sites during 2001-2007 in the mountain and foothill regions of western Montana. Respective drainage areas ranged from about 3 square miles (mi2) to almost 20,000 mi2. Data collected and analyzed for this study included 103 pier-scour measurements; the report further describes data collection, shows expansion of the national coarse pier-scour database, discusses use of the new data in evaluation of relative accuracy of various predictive equations, and demonstrates how differences in size and gradation between surface bed material and shallow-subsurface bed material might relate to pier scour. Nearly all measurements were made under clear-water conditions with no incoming sediment supply to the bridge opening. Half of the measurements showed approach velocities that equaled or surpassed the critical velocity for incipient motion of bed material, possibly indicating that measurements were made very near the threshold between clear-water and live-bed scour, where maximum scour was shown in laboratory studies. Data collected in this study were compared to selected pier-scour data from the nationwide Bridge Scour Data Management System (BSDMS), to show the effect of bed-material size and gradation on scour depth. Unsteady field flow conditions and armoring by coarser material reduced scour relative to the clear-water/sandy-bed laboratory results at steady flow. The new correction factor and the standard scour equation produced the most accurate estimates of scour depth in armored, coarse-bed conditions. Maximum relative scour occurred at similar velocity across variations in bed material and gradation. Pier scour decreased with increased variation in particle size and gradation.

  4. Development of reliable predictive heat transfer correlations for low-rank coal-fired fluid bed combustors. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.

    (1) The proposed correlation of Equation (5) is recommended to predict the maximum value of heat transfer coefficient between a horzontal tube and a gas-solid fluidized bed of small particles under the conditions given. For high temperature applications (T/sub B/ > 600/sup 0/C), the radiative component is important and was estimated following Baskakov et al. (2) The proposed correlation of Equation (8) was found reliable to predict the existing data on the maximum value of heat transfer coefficient between a horizontal tube bundle and a gas-solid fluidized bed of small particles under the conditions given. At high temperatures, the radiativemore » component was estimated from the experimental data of Baskakov et al. (3) The correlation of Equation (8) predicted the GFETC data taken during the combustion of low-rank coal very well, when the contribution due to radiation was estimated following Baskakov et al. (4) The correlations proposed by Grewal and Bansal et al. were found to predict the data taken during low-rank coal combustion within +-25%, when the contribution due to radiation was included and estimated following Baskakov et al. (5) Finally, the correlations for large particles (anti d/sub p/ > 1mm) as proposed by Glicksman and Decker, Catipovic et al., Xavier and Davidson, and Zabrodsky et al. also predicted the data for low-rank coal fluidized bed combustor quite well, when the radiative component was estimated from the data of Baskakov et al. 64 references, 19 figures, 10 tables.« less

  5. Plausibility and parameter sensitivity of micro-finite element-based joint load prediction at the proximal femur.

    PubMed

    Synek, Alexander; Pahr, Dieter H

    2018-06-01

    A micro-finite element-based method to estimate the bone loading history based on bone architecture was recently presented in the literature. However, a thorough investigation of the parameter sensitivity and plausibility of this method to predict joint loads is still missing. The goals of this study were (1) to analyse the parameter sensitivity of the joint load predictions at one proximal femur and (2) to assess the plausibility of the results by comparing load predictions of ten proximal femora to in vivo hip joint forces measured with instrumented prostheses (available from www.orthoload.com ). Joint loads were predicted by optimally scaling the magnitude of four unit loads (inclined [Formula: see text] to [Formula: see text] with respect to the vertical axis) applied to micro-finite element models created from high-resolution computed tomography scans ([Formula: see text]m voxel size). Parameter sensitivity analysis was performed by varying a total of nine parameters and showed that predictions of the peak load directions (range 10[Formula: see text]-[Formula: see text]) are more robust than the predicted peak load magnitudes (range 2344.8-4689.5 N). Comparing the results of all ten femora with the in vivo loading data of ten subjects showed that peak loads are plausible both in terms of the load direction (in vivo: [Formula: see text], predicted: [Formula: see text]) and magnitude (in vivo: [Formula: see text], predicted: [Formula: see text]). Overall, this study suggests that micro-finite element-based joint load predictions are both plausible and robust in terms of the predicted peak load direction, but predicted load magnitudes should be interpreted with caution.

  6. Effects of potential surface coal mining on dissolved solids in Otter Creek and in the Otter Creek alluvial aquifer, southeastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1985-01-01

    Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)

  7. Predicting bed shear stress and its role in sediment dynamics and restoration potential of the Everglades and other vegetated flow systems

    USGS Publications Warehouse

    Larsen, Laurel G.; Harvey, Judson; Crimaldi, John P.

    2009-01-01

    Entrainment of sediment by flowing water affects topography, habitat suitability, and nutrient cycling in vegetated floodplains and wetlands, impacting ecosystem evolution and the success of restoration projects. Nonetheless, restoration managers lack simple decision-support tools for predicting shear stresses and sediment redistribution potential in different vegetation communities. Using a field-validated numerical model, we developed state-space diagrams that provide these predictions over a range of water-surface slopes, depths, and associated velocities in Everglades ridge and slough vegetation communities. Diminished bed shear stresses and a consequent decrease in bed sediment redistribution are hypothesized causes of a recent reduction in the topographic and vegetation heterogeneity of this ecosystem. Results confirmed the inability of present-day flows to entrain bed sediment. Further, our diagrams showed bed shear stresses to be highly sensitive to emergent vegetation density and water-surface slope but less sensitive to water depth and periphyton or floating vegetation abundance. These findings suggested that instituting a pulsing flow regime could be the most effective means to restore sediment redistribution to the Everglades. However, pulsing flows will not be sufficient to erode sediment from sloughs with abundant spikerush, unless spikerush density first decreases by natural or managed processes. Our methods provide a novel tool for identifying restoration parameters and performance measures in many types of vegetated aquatic environments where sediment erosion and deposition are involved.

  8. Bed load transport and boundary roughness changes as competing causes of hysteresis in the relationship between river discharge and seismic amplitude recorded near a steep mountain stream

    NASA Astrophysics Data System (ADS)

    Roth, Danica L.; Finnegan, Noah J.; Brodsky, Emily E.; Rickenmann, Dieter; Turowski, Jens M.; Badoux, Alexandre; Gimbert, Florent

    2017-05-01

    Hysteresis in the relationship between bed load transport and river stage is a well-documented phenomenon with multiple known causes. Consequently, numerous studies have interpreted hysteresis in the relationship between seismic ground motion near rivers and some measure of flow strength (i.e., discharge or stage) as the signature of bed load transport. Here we test this hypothesis in the Erlenbach stream (Swiss Prealps) using a metric to quantitatively compare hysteresis in seismic data with hysteresis recorded by geophones attached beneath steel plates within the streambed, a well-calibrated proxy for direct sediment transport measurements. We find that while both the geophones and seismometers demonstrate hysteresis, the magnitude and direction of hysteresis are not significantly correlated between these data, indicating that the seismic signal at this site is primarily reflecting hysteresis in processes other than sediment transport. Seismic hysteresis also does not correlate significantly with the magnitude of sediment transport recorded by the geophones, contrary to previous studies' assumptions. We suggest that hydrologic sources and changes in water turbulence, for instance due to evolving boundary conditions at the bed, rather than changes in sediment transport rates, may sometimes contribute to or even dominate the hysteresis observed in seismic amplitudes near steep mountain rivers.Plain Language SummaryAn increasing number of studies have recently observed changes in the amount of seismic shaking (hysteresis) recorded near a river at a given discharge during floods. Most studies have assumed that this hysteresis was caused by changes in the amount of sediment being transported in the river and have therefore used the hysteresis to assess sediment transport rates and patterns. We examine concurrent seismic and sediment transport data from a steep mountain stream in the Swiss Prealps and find that changes in seismic shaking are unrelated and even opposed (increasing versus decreasing) to changes in sediment transport rates for four out of five transport events. Water turbulence, rather than sediment transport, appears to be the strongest source of seismic shaking, and changes in seismic shaking are most likely caused by changes in turbulence or how turbulence transmits energy through the river bed. These effects may be due to rearrangement of sediment around large boulders on the bed or slight shifting of the boulders themselves. Our results have significant implications for the growing field of fluvial seismology and the evaluation of seismic data near rivers, as previous interpretations of seismic hysteresis as evidence for sediment transport may not always be accurate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol25/pdf/CFR-2014-title40-vol25-sec230-60.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol25/pdf/CFR-2014-title40-vol25-sec230-60.pdf"><span>40 CFR 230.60 - General evaluation of dredged or fill material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... generally found in areas of high current or wave energy such as streams with large bed loads or coastal... show watercourses, surface relief, proximity to tidal movement, private and public roads, location of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol26/pdf/CFR-2013-title40-vol26-sec230-60.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol26/pdf/CFR-2013-title40-vol26-sec230-60.pdf"><span>40 CFR 230.60 - General evaluation of dredged or fill material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... generally found in areas of high current or wave energy such as streams with large bed loads or coastal... show watercourses, surface relief, proximity to tidal movement, private and public roads, location of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol26/pdf/CFR-2012-title40-vol26-sec230-60.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol26/pdf/CFR-2012-title40-vol26-sec230-60.pdf"><span>40 CFR 230.60 - General evaluation of dredged or fill material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... generally found in areas of high current or wave energy such as streams with large bed loads or coastal... show watercourses, surface relief, proximity to tidal movement, private and public roads, location of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol24/pdf/CFR-2010-title40-vol24-sec230-60.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol24/pdf/CFR-2010-title40-vol24-sec230-60.pdf"><span>40 CFR 230.60 - General evaluation of dredged or fill material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... generally found in areas of high current or wave energy such as streams with large bed loads or coastal... show watercourses, surface relief, proximity to tidal movement, private and public roads, location of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol25/pdf/CFR-2011-title40-vol25-sec230-60.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol25/pdf/CFR-2011-title40-vol25-sec230-60.pdf"><span>40 CFR 230.60 - General evaluation of dredged or fill material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... generally found in areas of high current or wave energy such as streams with large bed loads or coastal... show watercourses, surface relief, proximity to tidal movement, private and public roads, location of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JaJAP..52gHE04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JaJAP..52gHE04S"><span>Characteristics of Ultrasonic Linear Motor that Incorporates Two Transducers at an Acute Angle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, Atsuyuki; Tsunoji, Masaki; Tsujino, Jiromaru</p> <p>2013-07-01</p> <p>In this study, we have developed an ultrasonic linear motor that incorporates two transducers at an acute angle. The two transducers are used to generate the vertical and horizontal vibration components. The complex vibration is excited using two electrical sources with a phase shift. Ultrasonic motors have unique characteristics such as silent motion and absence of magnetic noise. These characteristics are suitable for use in hospitals and so on. Therefore, we focus on developing actuators for use in a medical bed, specifically a bedsore prevention bed. A study of the vibration characteristics of the motor showed that the resonant frequencies of the transducers were appropriate, although the vibration amplitude of one transducer was less than that of the other. A study of the load characteristics showed that a no-load speed of 267 mm/s and a maximum thrust of 40 N were obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5510369-model-aids-cuttings-transport-prediction','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5510369-model-aids-cuttings-transport-prediction"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gavignet, A.A.; Sobey, I.J.</p> <p></p> <p>Drilling of highly deviated wells can be complicated by the formation of a thick bed of cuttings at low flow rates. The model proposed in this paper shows what mechanisms control the thickness of such a bed, and the model predictions are compared with experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3367779','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3367779"><span>Alternative mechanisms alter the emergent properties of self-organization in mussel beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Quan-Xing; Weerman, Ellen J.; Herman, Peter M. J.; Olff, Han; van de Koppel, Johan</p> <p>2012-01-01</p> <p>Theoretical models predict that spatial self-organization can have important, unexpected implications by affecting the functioning of ecosystems in terms of resilience and productivity. Whether and how these emergent effects depend on specific formulations of the underlying mechanisms are questions that are often ignored. Here, we compare two alternative models of regular spatial pattern formation in mussel beds that have different mechanistic descriptions of the facilitative interactions between mussels. The first mechanism involves a reduced mussel loss rate at high density owing to mutual protection between the mussels, which is the basis of prior studies on the pattern formation in mussels. The second mechanism assumes, based on novel experimental evidence, that mussels feed more efficiently on top of mussel-generated hummocks. Model simulations point out that the second mechanism produces very similar types of spatial patterns in mussel beds. Yet the mechanisms predict a strikingly contrasting effect of these spatial patterns on ecosystem functioning, in terms of productivity and resilience. In the first model, where high mussel densities reduce mussel loss rates, patterns are predicted to strongly increase productivity and decrease the recovery time of the bed following a disturbance. When pattern formation is generated by increased feeding efficiency on hummocks, only minor emergent effects of pattern formation on ecosystem functioning are predicted. Our results provide a warning against predictions of the implications and emergent properties of spatial self-organization, when the mechanisms that underlie self-organization are incompletely understood and not based on the experimental study. PMID:22418256</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910020953','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910020953"><span>Test and evaluation of load converter topologies used in the Space Station Freedom Power Management and distribution DC test bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.</p> <p>1991-01-01</p> <p>Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010004279','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010004279"><span>Drop Breakup in Fixed Bed Flows as Model Stochastic Flow Fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shaqfeh, Eric S. G.; Mosler, Alisa B.; Patel, Prateek</p> <p>1999-01-01</p> <p>We examine drop breakup in a class of stochastic flow fields as a model for the flow through fixed fiber beds and to elucidate the general mechanisms whereby drops breakup in disordered, Lagrangian unsteady flows. Our study consists of two parallel streams of investigation. First, large scale numerical simulations of drop breakup in a class of anisotropic Gaussian fields will be presented. These fields are generated spectrally and have been shown in a previous publication to be exact representations of the flow in a dilute disordered bed of fibers if close interactions between the fibers and the drops are dynamically unimportant. In these simulations the drop shape is represented by second and third order small deformation theories which have been shown to be excellent for the prediction of drop breakup in steady strong flows. We show via these simulations that the mechanisms of drop breakup in these flows are quite different than in steady flows. The predominant mechanism of breakup appears to be very short lived twist breakups. Moreover, the occurrence of breakup events is poorly predicted by either the strength of the local flow in which the drop finds itself at breakup, or the degree of deformation that the drop achieves prior to breakup. It is suggested that a correlation function of both is necessary to be predictive of breakup events. In the second part of our research experiments are presented where the drop deformation and breakup in PDMS/polyisobutylene emulsions is considered. We consider very dilute emulsions such that coalescence is unimportant. The flows considered are simple shear and the flow through fixed fiber beds. Turbidity, small angle light scattering, dichroism and microscopy are used to interrogate the drop deformation process in both flows. It is demonstrated that breakup at very low capillary numbers occurs in both flows but larger drop deformation occurs in the fixed bed flow. Moreover, it is witnessed that breakup in the bed occurs continuously during flow and apparently with uniform probability through the bed length. The drop deformations witnessed in our experiments are larger than those predicted by the numerical simulations, and future plans to investigate these differences are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26210334','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26210334"><span>Adolescent Eating Disorders Predict Psychiatric, High-Risk Behaviors and Weight Outcomes in Young Adulthood.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Micali, Nadia; Solmi, Francesca; Horton, Nicholas J; Crosby, Ross D; Eddy, Kamryn T; Calzo, Jerel P; Sonneville, Kendrin R; Swanson, Sonja A; Field, Alison E</p> <p>2015-08-01</p> <p>To investigate whether anorexia nervosa (AN), bulimia nervosa (BN), binge eating disorder (BED), and other specified feeding and eating disorders (OSFED), including purging disorder (PD), subthreshold BN, and BED at ages 14 and 16 years, are prospectively associated with later depression, anxiety disorders, alcohol and substance use, and self-harm. Eating disorders were ascertained at ages 14 and 16 years in 6,140 youth at age 14 (58% of those eligible) and 5,069 at age 16 (52% of those eligible) as part of the prospective Avon Longitudinal Study of Parents and Children (ALSPAC). Outcomes (depression, anxiety disorders, binge drinking, drug use, deliberate self-harm, weight status) were measured using interviews and questionnaires about 2 years after predictors. Generalized estimating equation models adjusting for gender, socio-demographic variables, and prior outcome were used to examine prospective associations between eating disorders and each outcome. All eating disorders were predictive of later anxiety disorders. AN, BN, BED, PD, and OSFED were prospectively associated with depression (respectively AN: odds ratio [OR] = 1.39, 95% CI = 1.00-1.94; BN: OR = 3.39, 95% CI = 1.25-9.20; BED: OR = 2.00, 95% CI = 1.06-3.75; and PD: OR = 2.56, 95% CI = 1.38-4.74). All eating disorders but AN predicted drug use and deliberate self-harm (BN: OR = 5.72, 95% CI = 2.22-14.72; PD: OR = 4.88, 95% CI = 2.78-8.57; subthreshold BN: OR = 3.97, 95% CI = 1.44-10.98; and subthreshold BED: OR = 2.32, 95% CI = 1.43-3.75). Although BED and BN predicted obesity (respectively OR = 3.58, 95% CI = 1.06-12.14 and OR = 6.42, 95% CI = 1.69-24.30), AN was prospectively associated with underweight. Adolescent eating disorders, including subthreshold presentations, predict negative outcomes, including mental health disorders, substance use, deliberate self-harm, and weight outcomes. This study highlights the high public health and clinical burden of eating disorders among adolescents. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12882288','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12882288"><span>H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Kuo-Shing; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu</p> <p>2003-01-01</p> <p>Packed-bed bioreactors containing activated carbon as support carrier were used to produce H2 anaerobically from a sucrose-limiting medium while acclimated sewage sludge was used as the H2 producer. The effects of bed porosity (epsilon(b)) and substrate loading rate on H2 fermentation were examined using packed beds with epsilon(b) of 70-90% being operated at hydraulic retention times (HRT) of 0.5-4 h. Higher epsilon(b) and lower HRT favored H2 production. With 20 g COD l(-1) of sucrose in the feed, the optimal H2 production rate (7.4 l h(-1) l(-1)) was obtained when the bed with epsilon(b) = 90% was operated at HRT = 0.5 h. Flocculation of cells enhanced the retention of sludge for stable operations of the bioreactor at low HRTs. The gas products resulting from fermentative H2 production consisted of 30-40% H2 and 60-70% CO2. Butyric acid was the primary soluble product, followed by propionic acid and valeric acid.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28365350','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28365350"><span>Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: Structured vs. randomic biomass immobilization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Aquino, Samuel; Fuess, Lucas Tadeu; Pires, Eduardo Cleto</p> <p>2017-07-01</p> <p>This study reports on the application of an innovative structured-bed reactor (FVR) as an alternative to conventional packed-bed reactors (PBRs) to treat high-strength solid-rich wastewaters. Using the FVR prevents solids from accumulating within the fixed-bed, while maintaining the advantages of the biomass immobilization. The long-term operation (330days) of a FVR and a PBR applied to sugarcane vinasse under increasing organic loads (2.4-18.0kgCODm -3 day -1 ) was assessed, focusing on the impacts of the different media arrangements over the production and retention of biomass. Much higher organic matter degradation rates, as well as long-term operational stability and high conversion efficiencies (>80%) confirmed that the FVR performed better than the PBR. Despite the equivalent operating conditions, the biomass growth yield was different in both reactors, i.e., 0.095gVSSg -1 COD (FVR) and 0.066gVSSg -1 COD (PBR), indicating a clear control of the media arrangement over the biomass production in fixed-bed reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......155D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......155D"><span>Spectrally-Based Bathymetric Mapping of a Dynamic, Sand-Bedded Channel: Niobrara River, Nebraska, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dilbone, Elizabeth K.</p> <p></p> <p>Methods for spectrally-based bathymetric mapping of rivers mainly have been developed and tested on clear-flowing, gravel bedded channels, with limited application to turbid, sand-bedded rivers. Using hyperspectral images of the Niobrara River, Nebraska, and field-surveyed depth data, this study evaluated three methods of retrieving depth from remotely sensed data in a dynamic, sand-bedded channel. The first regression-based approach paired in situ depth measurements and image pixel values to predict depth via Optimal Band Ratio Analysis (OBRA). The second approach used ground-based reflectance measurements to calibrate an OBRA relationship. For this approach, CASI images were atmospherically corrected to units of apparent surface reflectance using an empirical line calibration. For the final technique, we used Image-to-Depth Quantile Transformation (IDQT) to predict depth by linking the cumulative distribution function (CDF) of depth to the CDF of an image derived variable. OBRA yielded the lowest overall depth retrieval error (0.0047 m) and highest observed versus predicted R2 (0.81). Although misalignment between field and image data were not problematic to OBRA's performance in this study, such issues present potential limitations to standard regression-based approaches like OBRA in dynamic, sand-bedded rivers. Field spectroscopy-based maps exhibited a slight shallow bias (0.0652 m) but provided reliable depth estimates for most of the study reach. IDQT had a strong deep bias, but still provided informative relative depth maps that portrayed general patterns of shallow and deep areas of the channel. The over-prediction of depth by IDQT highlights the need for an unbiased sampling strategy to define the CDF of depth. While each of the techniques tested in this study demonstrated the potential to provide accurate depth estimates in sand-bedded rivers, each method also was subject to certain constraints and limitations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP33D1010J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP33D1010J"><span>The balance between keystone clustering and bed roughness in experimental step-pool stabilization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, J. P.</p> <p>2016-12-01</p> <p>Predicting how mountain channels will respond to environmental perturbations such as floods requires an improved quantitative understanding of morphodynamic feedbacks among bed topography, surface grain size and sediment sorting. In boulder-rich gravel streams, transport and sorting often lead to the development of step pool morphologies, which are expressed both in bed topography and coarse grain clustering. Bed stability is difficult to measure, and is sometimes inferred from the presence of step pools. I use scaled flume experiments to explore feedbacks among surface grain sizes, coarse grain clustering, bed roughness and hydraulic roughness during progressive bed stabilization and over a range of sediment transport rates. While grain clusters are sometimes identified by subjective interpretation, I quantify the degree of coarse surface grain clustering using spatial statistics, including a novel normalization of Ripley's K function. This approach is objective and provides information on the strength of clustering over a range of length scales. Flume experiments start with an initial bed surface with a broad grain size distribution and spatially random positions. Flow causes the bed surface to progressively stabilize in response to erosion, surface coarsening, roughening and grain reorganization. At 95% confidence, many but not all beds stabilized with coarse grains becoming more clustered than complete spatial randomness (CSR). I observe a tradeoff between topographic roughness and clustering. Beds that stabilized with higher degrees of coarse-grain clustering were topographically smoother, and vice-versa. Initial conditions influenced the degree of clustering at stability: Beds that happened to have fewer initial coarse grains had more coarse grain reorganization during stabilization, leading to more clustering. Finally, regressions demonstrate that clustering statistics actually predict hydraulic roughness significantly better than does D84 (the size at which 84% of grains are smaller). In the experimental data, the spatial organization of surface grains is a stronger control on flow characteristics than the size of surface grains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..SHK.M9034L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..SHK.M9034L"><span>Non-Gurney Scaling of Explosives Heavily Loaded with Dense Inert Additives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loiseau, Jason; Higgins, Andrew; Frost, David</p> <p>2017-06-01</p> <p>For most high explosives, the ability to accelerate material to some terminal velocity scales with the ratio of material-mass to charge-mass (M/C) according to the Gurney equations. Generally, the Gurney equation for planar geometry accurately predicts the terminal velocity of the driven material until the M/C ratio is reduced to roughly 0.15 or lower; at which point gasdynamic departures from the assumptions in the model result in systematic underpredictions of the material velocity. The authors conducted a series of open-face sandwich flyer plate experiments to measure the scaling of flyer terminal velocity with M/C for a heterogeneous explosive composed of a packed bed of 280 μm steel particles saturated with amine-sensitized nitromethane (90% NM, 10% diethylenetriamine). The propulsive capability of this explosive did not scale according to a modified form of the Gurney equation. Rather, propulsive efficiency increased as the flyer plate became relatively thicker. In the present study the authors have conducted further experiments using this explosive in symmetric sandwiches as well as for normally-incident detonations initiated via a slapping foil to examine how flyer terminal velocity scales with M/C for alternative geometries and loading conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1255216','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1255216"><span>Fluidized bed and method and system for gas component capture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Krutka, Holly; Wilson, Cody; Starns, Travis</p> <p>2016-05-31</p> <p>The present disclosure is directed to a process that allows dry sorbents to remove a target constituent, such as carbon dioxide (CO.sub.2), from a gas stream. A staged fluidized bed separator enables gas and sorbent to move in opposite directions. The sorbent is loaded with target constituent in the separator. It is then transferred to a regenerator where the target constituent is stripped. The temperature of the separator and regenerator are controlled. After it is removed from the regenerator, the sorbent is then transferred back to the separator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24282157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24282157"><span>Bulimia nervosa-nonpurging subtype: closer to the bulimia nervosa-purging subtype or to binge eating disorder?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jordan, Jennifer; McIntosh, Virginia V W; Carter, Janet D; Rowe, Sarah; Taylor, Kathryn; Frampton, Christopher M A; McKenzie, Janice M; Latner, Janet; Joyce, Peter R</p> <p>2014-04-01</p> <p>DSM-5 has dropped subtyping of bulimia nervosa (BN), opting to continue inclusion of the somewhat contentious diagnosis of BN-nonpurging subtype (BN-NP) within a broad BN category. Some contend however that BN-NP is more like binge eating disorder (BED) than BN-P. This study examines clinical characteristics, eating disorder symptomatology, and Axis I comorbidity in BN-NP, BN-P, and BED groups to establish whether BN-NP more closely resembles BN-P or BED. Women with BN-P (n = 29), BN-NP (n = 29), and BED (n = 54) were assessed at baseline in an outpatient psychotherapy trial for those with binge eating. Measures included the Structured Clinical Interviews for DSM-IV, Eating Disorder Examination, and Eating Disorder Inventory-2. The BN-NP subtype had BMIs between those with BN-P and BED. Both BN subtypes had higher Restraint and Drive for Thinness scores than BED. Body Dissatisfaction was highest in BN-NP and predicted BN-NP compared to BN-P. Higher Restraint and lower BMI predicted BN-NP relative to BED. BN-NP resembled BED with higher lifetime BMIs; and weight-loss clinic than eating disorder clinic attendances relative to the BN-P subtype. Psychiatric comorbidity was comparable except for higher lifetime cannabis use disorder in the BN-NP than BN-P subtype These results suggest that BN-NP sits between BN-P and BED however the high distress driving inappropriate compensatory behaviors in BN-P requires specialist eating disorder treatment. These results support retaining the BN-NP group within the BN category. Further research is needed to determine whether there are meaningful differences in outcome over follow-up. Copyright © 2013 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSG....95..160M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSG....95..160M"><span>Mechanical stratigraphic controls on natural fracture spacing and penetration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGinnis, Ronald N.; Ferrill, David A.; Morris, Alan P.; Smart, Kevin J.; Lehrmann, Daniel</p> <p>2017-02-01</p> <p>Fine-grained low permeability sedimentary rocks, such as shale and mudrock, have drawn attention as unconventional hydrocarbon reservoirs. Fracturing - both natural and induced - is extremely important for increasing permeability in otherwise low-permeability rock. We analyze natural extension fracture networks within a complete measured outcrop section of the Ernst Member of the Boquillas Formation in Big Bend National Park, west Texas. Results of bed-center, dip-parallel scanline surveys demonstrate nearly identical fracture strikes and slight variation in dip between mudrock, chalk, and limestone beds. Fracture spacing tends to increase proportional to bed thickness in limestone and chalk beds; however, dramatic differences in fracture spacing are observed in mudrock. A direct relationship is observed between fracture spacing/thickness ratio and rock competence. Vertical fracture penetrations measured from the middle of chalk and limestone beds generally extend to and often beyond bed boundaries into the vertically adjacent mudrock beds. In contrast, fractures in the mudrock beds rarely penetrate beyond the bed boundaries into the adjacent carbonate beds. Consequently, natural bed-perpendicular fracture connectivity through the mechanically layered sequence generally is poor. Fracture connectivity strongly influences permeability architecture, and fracture prediction should consider thin bed-scale control on fracture heights and the strong lithologic control on fracture spacing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP41E..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP41E..04B"><span>Numerical Modeling of Scour at the Head of a Vertical-Wall Breakwater in Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baykal, C.; Balcı, H. B.; Sumer, B. M.; Fuhrman, D. R.</p> <p>2017-12-01</p> <p>This study presents a 3D numerical modeling study on the flow and scour at the head of a vertical-wall breakwater in regular waves. The numerical model utilized in the study is based on that given by Jacobsen (2011). The present model has been applied successfully to the scour and backfilling beneath submarine pipelines by Fuhrman et al. (2014), and around a vertical cylindrical pile mounted on a horizontal plane sediment bed by Baykal et al. (2015, 2017). The model is composed of two main modules. The first module is the hydrodynamic model where Reynolds Averaged Navier Stokes (RANS) equations are solved with a k-ω turbulence closure. The second module is the morphologic model which comprises five sub-modules, namely; bed load, suspended load, sand slide, bed evolution and 3D mesh motion. The model is constructed in open-source CFD toolbox OpenFOAM. In this study, the model is applied to experimental data sets of Sumer and Fredsoe (1997) on the scour around a vertical-wall breakwater with a circular round head. Here, it is given the preliminary results of bed evolution of Test-8 of Sumer and Fredsoe (1997) in which a vertical-wall breakwater head with a width of B=140 mm is subjected to oscillatory flow with Tw=2.0 s and maximum orbital velocity at the bed Um=22cm/s, resulting in a Keulegan-Carpenter number, KC=3.14, close to KC experienced in real-life situations (KC = O(1)). The grain size is d=0.17 mm. The Shields parameter in the test case is given as θc=0.11, larger than the critical value for the initiation of motion implying that the scour is in the live-bed regime. The computational domain used in the simulations has the following dimensions: Length, l=40B, Width, w=20B, and Height, h=2B. The total number of cells is O(105) in the simulations. The scoured bed profile computed at the end of 3 periods of oscillatory flow of Test-8 is given in the figure below. The color scale in the figure is given for the ratio of bed elevation to the width of breakwater. Early results show that bed shear stress amplifications are as high as O(10) near the structure and the scoured bed profile looks similar in shape as observed in the experiments. The simulation results will be presented with special focus on the flow structures around the structure and the time scale of the scour development.<img src="/data/abstract/agu/fm17/4/2/Paper_269224_abstract_310456_0.png" class="documentimage" ></p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930094780','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930094780"><span>Experiments with airplane brakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Michael, Franz</p> <p>1931-01-01</p> <p>This report begins by examining the forces on the brake shoes. For the determination of the load distribution over the shoes it was assumed that the brake linings follow Hooke's law, are neatly fitted and bedded in by wear. The assumption of Hooke's law, that is, the proportionality between compression of the lining and the absorption of force, is fulfilled to a certain extent for the loading, as becomes apparent from the load tests described further on. But there is a material discrepancy at unloading. From the load distribution we merely defined the position of the normal force resultant, while for the rest, the effect of the distribution was disregarded in the comparison of the different shoe dispositions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/862999','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/862999"><span>Method for loading resin beds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.</p> <p>1978-01-01</p> <p>An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..241P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..241P"><span>Soft-sediment deformation structures in Cambrian Series 2 tidal deposits (NW Estonia): implications for identifying endogenic triggering mechanisms in ancient sedimentary record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Põldsaar, Kairi</p> <p>2015-04-01</p> <p>Soft-sediment deformation structures (SSDS) are documented in several horizons within silt- and sandstones of the Cambrian Series 2 (Dominopolian Stage) Tiskre Formation, and some in the below-deposited argillaceous deposits of the Lükati Formation (northern part of the Baltoscandian Palaeobasin, NW Estonia). The aim of this study was to map, describe, and analyze these deformation features, discuss their deformation mechanism and possible triggers. Load structures (simple load casts, pillows, flame structures, convoluted lamination) with varying shapes and sizes occur in the Tiskre Fm in sedimentary interfaces within medium-bedded peritidal rhythmites (siltstone-argillaceous material) as well as within up to 3 m thick slightly seaward inclined stacked sandstone sequences. Homogenized beds, dish-and-pillar structures, and severely deformed bedding are also found within these stacked units and within a large tidal runoff channel infill. Autoclastic breccias and water-escape channels are rare and occur only in small-scale -- always related to thin, horizontal tidal laminae. Profound sedimentary dykes, sand volcanoes, and thrust faults, which are often related to earthquake triggered soft sediment deformation, were not observed within the studied intervals. Deformation horizon or horizons with large flat-topped pillows often with elongated morphologies occur at or near the boundary between the Tiskre and Lükati formations. Deformation mechanisms identified in this study for the various deformation types are gravitationally unstable reversed density gradient (especially in case of load features that are related to profound sedimentary interfaces) and lateral shear stress due to sediment current drag (in case of deformation structures that not related to loading at any apparent sedimentary interface). Synsedimentary liquefaction was identified as the primary driving force in most of the observed deformation horizons. Clay thixotropy may have contributed in the formation of large sandstone pillows within the Tiskre-Lükati boundary interval at some localities. It is discussed here that the formation of the observed SSDS is genetically related to the restless dynamics of the storm-influenced open marine tidal depositional environment. The most obvious causes of deformation were rapid-deposition, shear and slumping caused by tidal surges, and storm-wave loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237261','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237261"><span>Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>LeVan, M. Douglas; Finn, John E.</p> <p>1997-01-01</p> <p>The goal of this research was to develop a dynamic model which can predict the effect of humidity swings on activated carbon adsorption beds used to remove trace contaminants from the atmosphere in spacecraft. Specifically, the model was to be incorporated into a computer simulation to predict contaminant concentrations exiting the bed as a function of time after a humidity swing occurs. Predicted breakthrough curves were to be compared to experimentally measured results. In all respects the research was successful. The two major aspects of this research were the mathematical model and the experiments. Experiments were conducted by Mr. Appel using a fixed-bed apparatus at NASA-Ames Research Center during the summers of 1994 and 1995 and during the first 8 months of 1996. Mr. Appel conducted most of his mathematical modeling work at the University of Virginia. The simulation code was used to predict breakthrough curves using adsorption equilibrium correlations developed previously by M. D. LeVan's research group at the University of Virginia. These predictions were compared with the experimental measurements, and this led to improvements in both the simulation code and the apparatus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28427318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28427318"><span>Load application for the contact mechanics analysis and wear prediction of total knee replacement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Jing; Chen, Zhenxian; Wang, Ling; Li, Dichen; Jin, Zhongmin</p> <p>2017-05-01</p> <p>Tibiofemoral contact forces in total knee replacement have been measured at the medial and lateral sites respectively using an instrumented prosthesis, and predicted from musculoskeletal multibody dynamics models with a reasonable accuracy. However, it is uncommon that the medial and lateral forces are applied separately to replace a total axial load according to the ISO standard in the majority of current finite element analyses. In this study, we quantified the different effects of applying the medial and lateral loads separately versus the traditional total axial load application on contact mechanics and wear prediction of a patient-specific knee prosthesis. The load application position played an important role under the medial-lateral load application. The loading set which produced the closest load distribution to the multibody dynamics model was used to predict the contact mechanics and wear for the prosthesis and compared with the total axial load application. The medial-lateral load distribution using the present method was found to be closer to the multibody dynamics prediction than the traditional total axial load application, and the maximum contact pressure and contact area were consistent with the corresponding load variation. The predicted total volumetric wear rate and area were similar between the two load applications. However, the split of the predicted wear volumes on the medial and the lateral sides was different. The lateral volumetric wear rate was 31.46% smaller than the medial from the traditional load application prediction, while from the medial-lateral load application, the lateral side was only 11.8% smaller than the medial. The medial-lateral load application could provide a new and more accurate method of load application for patient-specific preclinical contact mechanics and wear prediction of knee implants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20510597','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20510597"><span>Waste tyre pyrolysis: modelling of a moving bed reactor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M</p> <p>2010-12-01</p> <p>This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3097P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3097P"><span>Regional Variation in Gravel Riverbed Mobility, Controlled by Hydrologic Regime and Sediment Supply</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pfeiffer, Allison M.; Finnegan, Noah J.</p> <p>2018-04-01</p> <p>The frequency and intensity of riverbed mobility are of paramount importance to the inhabitants of river ecosystems as well as to the evolution of bed surface structure. Because sediment supply varies by orders of magnitude across North America, the intensity of bedload transport varies by over an order of magnitude. Climate also varies widely across the continent, yielding a range of flood timing, duration, and intermittency. Together, the differences in sediment supply and hydroclimate result in diverse regimes of bed surface stability. To quantitatively characterize this regional variation, we calculate multidecadal time series of estimated bed surface mobility for 29 rivers using sediment transport equations. We use these data to compare predicted bed mobility between rivers and regions. There are statistically significant regional differences in the (a) exceedance probability of bed-mobilizing flows (W* > 0.002), (b) maximum bed mobility, and (c) number of discrete bed-mobilizing events in a year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16428153','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16428153"><span>The role of commercial tanning beds and ultraviolet A light in the treatment of psoriasis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Su, Johanna; Pearce, Daniel J; Feldman, Steven R</p> <p>2005-01-01</p> <p>Phototherapy is an effective, safe psoriasis treatment administered via office-based units or home devices. There is controversy over the use of commercial tanning beds; ultraviolet B (UVB) has documented efficacy although commercial beds emit largely UVA. To determine the efficacy of UVA and the role of commercial tanning beds in treating psoriasis. A literature search of UVA and commercial tanning was performed. UVA can be effective for psoriasis, but achieving the high doses required may not be practical. Tanning beds do emit UVB although amounts are variable. Because of variability in UVA and UVB output in different tanning bulbs, it is difficult to predict response rates using commercial tanning beds. UVA can be used to treat psoriasis but may not be practical. Commercial tanning beds, emitting both UVA and UVB, have a role in treating psoriasis as an alternative to office-based therapy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12079502','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12079502"><span>House dust mite barrier bedding for childhood asthma: randomised placebo controlled trial in primary care [ISRCTN63308372].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sheikh, Aziz; Hurwitz, Brian; Sibbald, Bonnie; Barnes, Greta; Howe, Maggie; Durham, Stephen</p> <p>2002-06-18</p> <p>The house dust mite is the most important environmental allergen implicated in the aetiology of childhood asthma in the UK. Dust mite barrier bedding is relatively inexpensive, convenient to use, and of proven effectiveness in reducing mattress house dust mite load, but no studies have evaluated its clinical effectiveness in the control of childhood asthma when dispensed in primary care. We therefore aimed to evaluate the effectiveness of house dust mite barrier bedding in children with asthma treated in primary care. Pragmatic, randomised, double-blind, placebo controlled trial conducted in eight family practices in England. Forty-seven children aged 5 to 14 years with confirmed house dust mite sensitive asthma were randomised to receive six months treatment with either house dust mite barrier or placebo bedding. Peak expiratory flow was the main outcome measure of interest; secondary outcome measures included asthma symptom scores and asthma medication usage. No difference was noted in mean monthly peak expiratory flow, asthma symptom score, medication usage or asthma consultations, between children who received active bedding and those who received placebo bedding. Treating house dust mite sensitive asthmatic children in primary care with house dust mite barrier bedding for six months failed to improve peak expiratory flow. Results strongly suggest that the intervention made no impact upon other clinical features of asthma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=116603','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=116603"><span>House dust mite barrier bedding for childhood asthma: randomised placebo controlled trial in primary care [ISRCTN63308372</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sheikh, Aziz; Hurwitz, Brian; Sibbald, Bonnie; Barnes, Greta; Howe, Maggie; Durham, Stephen</p> <p>2002-01-01</p> <p>Background The house dust mite is the most important environmental allergen implicated in the aetiology of childhood asthma in the UK. Dust mite barrier bedding is relatively inexpensive, convenient to use, and of proven effectiveness in reducing mattress house dust mite load, but no studies have evaluated its clinical effectiveness in the control of childhood asthma when dispensed in primary care. We therefore aimed to evaluate the effectiveness of house dust mite barrier bedding in children with asthma treated in primary care. Methods Pragmatic, randomised, double-blind, placebo controlled trial conducted in eight family practices in England. Forty-seven children aged 5 to 14 years with confirmed house dust mite sensitive asthma were randomised to receive six months treatment with either house dust mite barrier or placebo bedding. Peak expiratory flow was the main outcome measure of interest; secondary outcome measures included asthma symptom scores and asthma medication usage. Results No difference was noted in mean monthly peak expiratory flow, asthma symptom score, medication usage or asthma consultations, between children who received active bedding and those who received placebo bedding. Conclusions Treating house dust mite sensitive asthmatic children in primary care with house dust mite barrier bedding for six months failed to improve peak expiratory flow. Results strongly suggest that the intervention made no impact upon other clinical features of asthma. PMID:12079502</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28787618','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28787618"><span>Fixed-bed column performances of azure-II and auramine-O adsorption by Pinus eldarica stalks activated carbon and its composite with zno nanoparticles: Optimization by response surface methodology based on central composite design.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jafari, Maryam; Rahimi, Mahmood Reza; Ghaedi, Mehrorang; Javadian, Hamedreza; Asfaram, Arash</p> <p>2017-12-01</p> <p>A continuous adsorption was used for removal of azure II (AZ II) and auramine O (AO) from aqueous solutions using Pinus eldarica stalks activated carbon (PES-AC) from aqueous solutions. The effects of initial dye concentration, flow rate, bed height and contact time on removal percentage of AO and AZ II were evaluated and optimized by central composite design (CCD) at optimum pH = 7.0. ZnO nanoparticles loaded on activated carbon were also used to remove AO and AZ II at pH = 7.0 and other optimum conditions. The breakthrough curves were obtained at different flow rates, initial dye concentrations and bed heights and the experimental data were fitted by Thomas, Adams-Bohart and Yoon-Nelson models. The main parameters of fixed-bed column including its adsorption capacity at breakthrough point (q b ), adsorption capacity at saturation point (q s ), mass transfer zone (MTZ), total removal percentage (R%), and empty bed contact time (EBCT) were calculated. The removal percentages calculated for AZ II and AO II were in the range of 51.6-61.1% and 40.6-61.6%, respectively. Bed adsorption capacity (N 0 ) and critical bed depth (Z 0 ) were obtained by BDST model. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1414344','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1414344"><span>Mechanical Behavior of Additively Manufactured Uranium-6 wt. pct. Niobium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wu, A. S.; Wraith, M. W.; Burke, S. C.</p> <p></p> <p>This report describes an effort to process uranium-6 weight% niobium using laser powder bed fusion. The chemistry, crystallography, microstructure and mechanical response resulting from this process are discussed with particular emphasis on the effect of the laser powder bed fusion process on impurities. In an effort to achieve homogenization and uniform mechanical behavior from different builds, as well as to induce a more conventional loading response, we explore post-processing heat treatments on this complex alloy. Elevated temperature heat treatment for recrystallization is evaluated and the effect of recrystallization on mechanical behavior in laser powder bed fusion processed U-6Nb is discussed.more » Wrought-like mechanical behavior and grain sizes are achieved through post-processing and are reported herein.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP52A..05O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP52A..05O"><span>A Laboratory Experiment on the Evolution of a Sand Gravel Reach Under a Lack of Sediment Supply</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orru, C.; Chavarrias, V.; Ferrara, V.; Blom, A.</p> <p>2014-12-01</p> <p>A flume experiment was conducted to examine the evolution of a sand-gravel reach under a lack of sediment supply. The experimental data are used to validate a numerical sand-gravel model. A bed composed of a bi-modal sediment mixture is installed with a uniform slope and an imposed gradual fining pattern. Initially, the sand fraction gradually increases in streamwise direction until the bed is fully composed of sand. The water discharge and downstream water level were constant, and the sediment feed rate was equal to zero. The experiment was dominated by bed load, partial transport, and a subcritical flow regime was imposed. The flow rate was such that only sand was mobile (partial transport), which led to a coarsening over the upstream reach and a gradual reduction of the sediment transport rate during the experiment. New equipment was used to measure the evolution of the grain size distribution of the bed surface during the experiment over the entire flume using image analysis. In the upstream reach we observed a gradual coarsening over time and the formation of an armour layer, which resulted in a more abrupt transition in grain size of the bed surface. Bed degradation increased in streamwise direction. This is due to the initial streamwise increase in the availability of sand in the bed. The different volume fraction content of sand in the bed allowed for the gravel to sink more in the downstream part of the upstream reach. The sand reach suffered from a larger degradation. Finally, we see one reach dominated by sand, small bedforms, and a small bed slope, and a gravel reach dominated by a larger bed slope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26381205','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26381205"><span>Microbial community dynamics and biogas production from manure fractions in sludge bed anaerobic digestion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I</p> <p>2015-12-01</p> <p>To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..251a2097F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..251a2097F"><span>Glass Masonry - Experimental Verification of Bed Joint under Shear</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fíla, J.; Eliášová, M.; Sokol, Z.</p> <p>2017-10-01</p> <p>Glass is considered as a traditional material for building industry but was mostly used for glazing of the windows. At present, glass is an integral part of contemporary architecture where glass structural elements such as beams, stairs, railing ribs or columns became popular in the last two decades. However, using glass as structural material started at the beginning of 20th century, when masonry from hollow glass blocks were used. Using solid glass brick is very rare and only a few structures with solid glass bricks walls have been built in the last years. Pillars and walls made from solid glass bricks are mainly loaded by compression and/or bending from the eccentricity of vertical load or wind load. Due to high compressive strength of glass, the limiting factor of the glass masonry is the joint between the glass bricks as the smooth surface requires another type of mortar / glue compared to traditional masonry. Shear resistance and failure modes of brick bed joint was determined during series of tests using various mortars, two types of surface treatment and different thickness of the mortar joint. Shear tests were completed by small scale tests for mortar - determination of flexural and compressive strength of hardened mortar.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..334a2030S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..334a2030S"><span>Adsorption performance of fixed-bed column for the removal of Fe (II) in groundwater using activated carbon made from palm kernel shells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sylvia, N.; Hakim, L.; Fardian, N.; Yunardi</p> <p>2018-03-01</p> <p>When the manganese is under the acceptable limit, then the removal of Fe (II) ion, the common metallic compound contained in groundwater, is one of the most important stages in the processing of groundwater to become potable water. This study was aimed at investigating the performance of a fixed-bed adsorption column filled, with activated carbon prepared from palm kernel shells, in the removal of Fe (II) ion from groundwater. The influence of important parameters such as bed depth and the flow rate was investigated. The bed depth adsorbent was varied at 7.5, 10 and 12 cm. At a different flow rate of 6, 10 and 14 L/minute. The Atomic Absorb Spectrophotometer was used to measure the Fe (II) ion concentration, thereafter the results were confirmed using a breakthrough curve showing that flow rate and bed depth affected the curve. The mathematical model that used to predict the result was the Thomas and Adams-Bohart model. This model is used to process design, in which predicting time and bed depth needed to meet the breakthrough. This study reveals that the Thomas model was the most appropriate one, including the use of Palm Kernel Shell for processing groundwater. According to the Thomas Model, the highest capacity of adsorption (66.189 mg/g) of 0.169-mg/L of groundwater was achieved with a flow rate of 6 L/minute, with the bed depth at 14 cm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/25394','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/25394"><span>Performance of geogrid reinforced ballast under dynamic loading.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2012-07-01</p> <p>Railroad ballast consists of open graded crushed stone used as a bed for railroad track to provide stability. Over time, : ballast degrades and loses its strength. Fouling of ballast with fines has been a major issue of railway engineering. In this :...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920068038&hterms=topology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dtopology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920068038&hterms=topology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dtopology"><span>Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.</p> <p>1991-01-01</p> <p>Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA183770','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA183770"><span>Uniaxial Tensile Test for Soil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-04-01</p> <p>2.0 by 5.0 cm. This test was also performed on a horizontal specimen; however loading was applied through small metal plates that were embedded in the 6...i. enlarged ends. The specimen was supported by a bed of mercury and had two small ceramic markers mounted in the gage length that were monitored...with a cathetometer to determine displacements. It was found that most tests failed near the location of the embedded metal loading plates making their</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29339602','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29339602"><span>Performance and stability of an expanded granular sludge bed reactor modified with zeolite addition subjected to step increases of organic loading rate (OLR) and to organic shock load (OSL).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pérez-Pérez, T; Pereda-Reyes, I; Pozzi, E; Oliva-Merencio, D; Zaiat, M</p> <p>2018-01-01</p> <p>This paper shows the effect of organic shock loads (OSLs) on the anaerobic digestion (AD) of synthetic swine wastewater using an expanded granular sludge bed (EGSB) reactor modified with zeolite. Two reactors (R1 and R2), each with an effective volume of 3.04 L, were operated for 180 days at a controlled temperature of 30 °C and hydraulic retention time of 12 h. In the case of R2, 120 g of zeolite was added. The reactors were operated with an up-flow velocity of 6 m/h. The evolution of pH, total Kjeldahl nitrogen, chemical oxygen demand (COD) and volatile fatty acids (VFAs) was monitored during the AD process with OSL and increases in the organic loading rate (OLR). In addition, the microbial composition and changes in the structure of the bacterial and archaeal communities were assessed. The principal results demonstrate that the presence of zeolite in an EGSB reactor provides a more stable process at higher OLRs and after applying OSL, based on both COD and VFA accumulation, which presented with significant differences compared to the control. Denaturing gradient gel electrophoresis band profiles indicated differences in the populations of Bacteria and Archaea between the R1 and R2 reactors, attributed to the presence of zeolite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1362208-powder-bed-charging-during-electron-beam-additive-manufacturing','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1362208-powder-bed-charging-during-electron-beam-additive-manufacturing"><span>Powder bed charging during electron-beam additive manufacturing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush; ...</p> <p>2016-11-18</p> <p>Electrons injected into the build envelope during powder-bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Furthermore, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as smoking. Here, a model of powder bed charging is formulated and used to develop criteria that predict the conditions under which the powder bed will smoke. These criteria suggest dependences on particle size, pre-heat temperature, and process parameters that align closely with those observed in practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26893030','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26893030"><span>WISE 2005: Aerobic and resistive countermeasures prevent paraspinal muscle deconditioning during 60-day bed rest in women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Holt, Jacquelyn A; Macias, Brandon R; Schneider, Suzanne M; Watenpaugh, Donald E; Lee, Stuart M C; Chang, Douglas G; Hargens, Alan R</p> <p>2016-05-15</p> <p>Microgravity-induced lumbar paraspinal muscle deconditioning may contribute to back pain commonly experienced by astronauts and may increase the risk of postflight injury. We hypothesized that a combined resistive and aerobic exercise countermeasure protocol that included spinal loading would mitigate lumbar paraspinal muscle deconditioning during 60 days of bed rest in women. Sixteen women underwent 60-day, 6° head-down-tilt bed rest (BR) and were randomized into control and exercise groups. During bed rest the control group performed no exercise. The exercise group performed supine treadmill exercise within lower body negative pressure (LBNP) for 3-4 days/wk and flywheel resistive exercise for 2-3 days/wk. Paraspinal muscle cross-sectional area (CSA) was measured using a lumbar spine MRI sequence before and after BR. In addition, isokinetic spinal flexion and extension strengths were measured before and after BR. Data are presented as means ± SD. Total lumbar paraspinal muscle CSA decreased significantly more in controls (10.9 ± 3.4%) than in exercisers (4.3 ± 3.4%; P < 0.05). The erector spinae was the primary contributor (76%) to total lumbar paraspinal muscle loss. Moreover, exercise attenuated isokinetic spinal extension loss (-4.3 ± 4.5%), compared with controls (-16.6 ± 11.2%; P < 0.05). In conclusion, LBNP treadmill and flywheel resistive exercises during simulated microgravity mitigate decrements in lumbar paraspinal muscle structure and spine function. Therefore spaceflight exercise countermeasures that attempt to reproduce spinal loads experienced on Earth may mitigate spinal deconditioning during long-duration space travel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/2000/4126/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/2000/4126/report.pdf"><span>Regression analysis and real-time water-quality monitoring to estimate constituent concentrations, loads, and yields in the Little Arkansas River, south-central Kansas, 1995-99</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Christensen, Victoria G.; Jian, Xiaodong; Ziegler, Andrew C.</p> <p>2000-01-01</p> <p>Water from the Little Arkansas River is used as source water for artificial recharge to the Equus Beds aquifer, which provides water for the city of Wichita in south-central Kansas. To assess the quality of the source water, continuous in-stream water-quality monitors were installed at two U.S. Geological Survey stream-gaging stations to provide real-time measurement of specific conductance, pH, water temperature, dissolved oxygen, and turbidity in the Little Arkansas River. In addition, periodic water samples were collected manually and analyzed for selected constituents, including alkalinity, dissolved solids, total suspended solids, chloride, sulfate, atrazine, and fecal coliform bacteria. However, these periodic samples do not provide real-time data on which to base aquifer-recharge operational decisions to prevent degradation of the Equus Beds aquifer. Continuous and periodic monitoring enabled identification of seasonal trends in selected physical properties and chemical constituents and estimation of chemical mass transported in the Little Arkansas River. Identification of seasonal trends was especially important because high streamflows have a substantial effect on chemical loads and because concentration data from manually collected samples often were not available. Therefore, real-time water-quality monitoring of surrogates for the estimation of selected chemical constituents in streamflow can increase the accuracy of load and yield estimates and can decrease some manual data-collection activities. Regression equations, which were based on physical properties and analysis of water samples collected from 1995 through 1998 throughout 95 percent of the stream's flow duration, were developed to estimate alkalinity, dissolved solids, total suspended solids, chloride, sulfate, atrazine, and fecal coliform bacteria concentrations. Error was evaluated for the first year of data collection and each subsequent year, and a decrease in error was observed as the number of samples increased. Generally, 2 years of data (35 to 55 samples) collected throughout 90 to 95 percent of the stream's flow duration were sufficient to define the relation between a constituent and its surrogate(s). Relations and resulting equations were site specific. To test the regression equations developed from the first 3 years of data collection (1995-98), the equations were applied to the fourth year of data collection (1999) to calculate estimated constituent loads and the errors associated with these loads. Median relative percentage differences between measured constituent loads determined using the analysis of periodic, manual water samples and estimated constituent loads were less than 25 percent for alkalinity, dissolved solids, chloride, and sulfate. The percentage differences for total suspended solids, atrazine, and bacteria loads were more than 25 percent. Even for those constituents with large relative percentage differences between the measured and estimated loads, the estimation of constituent concentrations with regression analysis and real-time water-quality monitoring has numerous advantages over periodic manual sampling. The timely availability of bacteria and other constituent data may be important when considering recreation and the whole-body contact criteria established by the Kansas Department of Health and Environment for a specific water body. In addition, water suppliers would have timely information to use in adjusting water-treatment strategies; environmental changes could be assessed in time to prevent negative effects on fish or other aquatic life; and officials for the Equus Beds Ground-Water Recharge Demonstration project could use this information to prevent the possible degradation of the Equus Beds aquifer by choosing not to recharge when constituent concentrations in the source water are large. Constituent loads calculated from the regression equations may be useful for calculating total maximum daily loads (TMDL's), wh</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..251H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..251H"><span>Microplastic contamination of river beds significantly reduced by catchment-wide flooding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hurley, Rachel; Woodward, Jamie; Rothwell, James J.</p> <p>2018-04-01</p> <p>Microplastic contamination of the oceans is one of the world's most pressing environmental concerns. The terrestrial component of the global microplastic budget is not well understood because sources, stores and fluxes are poorly quantified. We report catchment-wide patterns of microplastic contamination, classified by type, size and density, in channel bed sediments at 40 sites across urban, suburban and rural river catchments in northwest England. Microplastic contamination was pervasive on all river channel beds. We found multiple urban contamination hotspots with a maximum microplastic concentration of approximately 517,000 particles m-2. After a period of severe flooding in winter 2015/16, all sites were resampled. Microplastic concentrations had fallen at 28 sites and 18 saw a decrease of one order of magnitude. The flooding exported approximately 70% of the microplastic load stored on these river beds (equivalent to 0.85 ± 0.27 tonnes or 43 ± 14 billion particles) and eradicated microbead contamination at 7 sites. We conclude that microplastic contamination is efficiently flushed from river catchments during flooding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JOUC...16..738F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JOUC...16..738F"><span>Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun</p> <p>2017-10-01</p> <p>Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ijege.uniroma1.it/rivista/5th-international-conference-on-debris-flow-hazards-mitigation-mechanics-prediction-and-assessment/','USGSPUBS'); return false;" href="http://www.ijege.uniroma1.it/rivista/5th-international-conference-on-debris-flow-hazards-mitigation-mechanics-prediction-and-assessment/"><span>Entrainment of bed sediment by debris flows: results from large-scale experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.</p> <p>2011-01-01</p> <p>When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100037231','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100037231"><span>Squat Ground Reaction Force on a Horizontal Squat Device, Free Weights, and Smith Machine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scott-Pandorf, Melissa M.; Newby, Nathaniel J.; Caldwell, Erin; DeWitt, John K.; Peters, Brian T.</p> <p>2010-01-01</p> <p>Bed rest is an analog to spaceflight and advancement of exercise countermeasures is dependent on the development of exercise equipment that closely mimic actual upright exercise. The Horizontal Squat Device (HSD) was developed to allow a supine exerciser to perform squats that mimic upright squat exercise. PURPOSE: To compare vertical ground reaction force (GRFv) on the HSD with Free Weight (FW) or Smith Machine (SM) during squat exercise. METHODS: Subjects (3F, 3M) performed sets of squat exercise with increasing loads up to 1-repetition (rep) maximum. GRF data were collected and compared with previous GRF data for squat exercise performed with FW & SM. Loads on the HSD were adjusted to magnitudes comparable with FW & SM by subtracting the subject s body weight (BW). Peak GRFv for 45-, 55-, 64-, & 73-kg loads above BW were calculated. Percent (%) difference between HSD and the two upright conditions were computed. Effect size was calculated for the 45-kg load. RESULTS: Most subjects were unable to lift >45 kg on the HSD; however, 1 subject completed all loads. Anecdotal evidence suggested that most subjects shoulders or back failed before their legs. The mean % difference are shown. In the 45-kg condition, effect sizes were 0.37 & 0.83 (p>0.05) for HSD vs. FW and HSD vs. SM, respectively, indicating no differences between exercise modes. CONCLUSION: When BW was added to the target load, results indicated that vertical forces were similar to those in FW and SM exercise. The exercise prescription for the HSD should include a total external resistance equivalent to goal load plus subject BW. The HSD may be used as an analog to upright exercise in bed rest studies, but because most subjects were unable to lift >45 kg, it may be necessary to prescribe higher reps and lower loads to better target the leg musculature</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V53C1586R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V53C1586R"><span>A Mechanism for Stratifying Lava Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rice, A.</p> <p>2005-12-01</p> <p>Relict lava flows (e.g., komatiites) are often reported to be zoned in the vertical, each zone separated by a sharp contact. Such stratifications in igneous flows, both intrusive and extrusive, can be treated as analogues of suspended loads of sediments in rivers and streams, and hence amenable to quantitative treatment derived for the hydraulic environment as long as dynamic similitude is assured. Situations typically encountered in the hydraulic environment are streams carrying a bed load at the bottom of the stream, the bed load separated by a sharp horizon from a sediment load carried above it. This sediment load may be topped by others of decreasing density as one moves to the surface of the flow, with perhaps the uppermost layer clear of any suspended matter. Rules exist for estimating the thickness D of these loads: one of them is given by D ~ 4.4V3/rgcvs where V is the shear velocity or average velocity of the flow, r = (ρs - ρl)/ρl where ρs is the density of the suspended solid matter, ρl the density of the fluid, g the acceleration of gravity, c the concentration of the particulate content and vs the settling velocity. The settling velocity is secured through Stoke's Law and the velocity of the flow is given by V = R2/3S1/2/n where R is the hydraulic radius, S the gradient along which the fluid flows and n is the Manning Coefficient. In the igneous case, the bed load would be composed of primocrysts, i.e., of the first crystals to come out of solution as the flow cools along its run. This would leave the upper portions of the flow more evolved except perhaps for a quenched crust riding atop the flow. As the viscosity of the flow is dependent not only on temperature but on composition and crystal content, the mean velocity of each layer will be different from the layer above and below it. This requires shear at the interface of adjoining stratifications, which brings into play another mechanism: dispersive pressure (the Bagnold effect). Dispersive pressure will drive primocrysts into boundary layers such as that attending the bottom of the flow and at those separating stratifications. For instance, if the primocrysts were spinals, then a Cr high might be expected at the interfaces separating stratifications. Since the melt throughout is evolving as it moves down stream, compositional variations along strike (as well is in the vertical) might be expected. Application of the above notions falls within the confines of field observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18635315','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18635315"><span>Treatment of phenolic wastewater in an anaerobic fixed bed reactor (AFBR) - recovery after shock loading.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bajaj, Mini; Gallert, Claudia; Winter, Josef</p> <p>2009-03-15</p> <p>An anaerobic fixed bed reactor (AFBR) was run for 550 days with a mixed microbial flora to stabilize synthetic wastewater that contained glucose and phenol as main carbon sources. The influent phenol concentration was gradually increased from 2 to 40 mmol/l within 221 days. The microbial flora was able to adapt to this high phenol concentration with an average of 94% phenol removal. Microbial adaptation at such a high phenol concentration is not reported elsewhere. The maximum phenol removal observed before the phenol shock load was 39.47 mmol/l or 3.7 g phenol/l at a hydraulic retention time (HRT) of 2.5 days and an organic loading rate (OLR) of 5.3 g/l.d which amounts to a phenol removal rate of ca. 15.8 mmol phenol/l.d. The chemical oxygen demand (COD) removal before exposing the reactor to a shock load corresponded with phenol removal. A shock load was induced in the reactor by increasing the phenol concentration from 40 to 50 mmol/l in the influent. The maximum phenol removal rate observed after shock load was 18 mmol/l.d at 5.7 g COD/l.d. But this was not a stable rate and a consistent drop in COD and phenol removal was observed for 1 week, followed by a sharp decline and production of fatty acids. Recovery of the reactor was possible only when no feed was provided to the reactor for 1 month and the phenol concentration was increased gradually. When glucose was omitted from the influent, unknown intermediates of anaerobic phenol metabolism were observed for some time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/642313-innovative-moving-bed-biofilm-reactor-solids-contact-reaeration-process-secondary-treatment-municipal-wastewater','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/642313-innovative-moving-bed-biofilm-reactor-solids-contact-reaeration-process-secondary-treatment-municipal-wastewater"><span>The innovative moving bed biofilm reactor/solids contact reaeration process for secondary treatment of municipal wastewater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rusten, B.; McCoy, M.; Proctor, R.</p> <p>1998-07-01</p> <p>The innovative moving bed biofilm reactor/solids contact reaeration (MBBR/SCR) process has been chosen for a new wastewater treatment plant serving a population of 200,000 at Moa Point, Wellington, New Zealand. Because the MBBR/SCR combination was new, a pilot-scale demonstration project was made part of the contract. Thorough pilot tests using a wide range of organic loads under both steady and transient-flow conditions demonstrated that the MBBR/SCR process produced the required effluent quality at loads higher than used in the original design. At 3 days mean cell residence time (MCRT) in the SCR stage, a final effluent with a 5-day biochemicalmore » oxygen demand (BOD{sub 5}) of less than 10 mg/L was achieved at an organic load on the MBBR of 15 g BOD{sub 5}/m{sup 2}{center_dot}d (5.0 kg BOD{sub 5}/m{sup 3}{center_dot}d). With the same MCRT, a final effluent of less than 15 mg BOD{sub 5}/L was achieved at an organic load on the MBBR of 20 g BOD{sub 5}/m{sup 2}{center_dot}d (6.7 kg BOD{sub 5}/m{sup 3}{center_dot}d). Dynamic loading tests demonstrated that a good-quality effluent was produced with a diurnal peak-hour load on the MBBR of more than 40 g BOD{sub 5}/m{sup 2}{center_dot}d (13.3 kg BOD{sub 5}/m{sup 3}{center_dot}d). The MBBR/SCR process was more compact and significantly cheaper than a conventional trickling filter/solids contact or activated-sludge process at the Moa Point site.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/991897','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/991897"><span>AGC-2 Graphite Pre-irradiation Data Package</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>David Swank; Joseph Lord; David Rohrbaugh</p> <p>2010-08-01</p> <p>The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41E..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41E..03G"><span>Geomechanical Modeling of Deformation Banding in the Navajo Sandstone, San Rafael Monocline, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutierrez, M.; Sundal, A.; Petrie, E. S.</p> <p>2017-12-01</p> <p>Deformation bands are ubiquitous geological features in many types of rocks. Depending on their micro-structure, they can act either as conduits or barriers to fluid flow. Given the significant roles deformation bands play in fluid flow and chemical transport in rocks, it is important to develop fundamental understanding of their origin, and their characteristics as they relate with the host rock properties and their depositional and structural-geological history. We present a forward-modeling technique based on the geomechanical Bifurcation Theory (BT) to predict the formation of deformation bands in sandstone. According to BT, the formation of deformation bands is a result of strain location, which in turn stems from instability in the stress-strain response of materials during loading. Due to bifurcation, a material which undergoes homogeneous deformation can reach a point at which the material experiences instability and deformation starts to become non-homogenous. We implemented BT in the commercially-available geomechanical code FLAC (Fast Langragian Analysis of Continua) and applied it in the field-scale modeling of deformation banding in the Navajo Sandstone in the San Rafael Monocline in Utah induced by fault propagation folding. The results show that geomechanical modeling using BT has a powerful potential to simulate the physical processes in the formation of deformation banding in rocks. Predicted deformation bands, specifically the pervasive bedding-parallel bands in the Navajo sandstone formation, normal faulting in the upper limb and reverse faulting in the lower limb, are generally in agreement with field observations. Predictions indicate that the pervasive bedding-parallel bands in the Navajo Sandstone are transitional compaction-shear bands with alternating zones of volumetric compaction and dilation. These predictions are consistent with petrographic analysis of thin sections of rock samples from the Navajo Sandstone. The most important parameter in the geomechanical modeling is the dilation angle in relation to the friction angle of the host rock. These parameters, as well the elastic properties, should evolve during the geologic history of a site, thus, the main challenge in the modeling is how to calibrate these parameters to yield consistent results.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7245P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7245P"><span>What controls channel form in steep mountain streams?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palucis, M. C.; Lamb, M. P.</p> <p>2017-07-01</p> <p>Steep mountain streams have channel morphologies that transition from alternate bar to step-pool to cascade with increasing bed slope, which affect stream habitat, flow resistance, and sediment transport. Experimental and theoretical studies suggest that alternate bars form under large channel width-to-depth ratios, step-pools form in near supercritical flow or when channel width is narrow compared to bed grain size, and cascade morphology is related to debris flows. However, the connection between these process variables and bed slope—the apparent dominant variable for natural stream types—is unclear. Combining field data and theory, we find that certain bed slopes have unique channel morphologies because the process variables covary systematically with bed slope. Multiple stable states are predicted for other ranges in bed slope, suggesting that a competition of underlying processes leads to the emergence of the most stable channel form.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC23B1059P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC23B1059P"><span>Quantifying morphological changes of cape-related shoals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paniagua-Arroyave, J. F.; Adams, P. N.; Parra, S. M.; Valle-Levinson, A.</p> <p>2017-12-01</p> <p>The rising demand for marine resources has motivated the study of inner shelf transport processes, especially in locations with highly-developed coastlines, endangered-species habitats, and valuable economic resources. These characteristics are found at Cape Canaveral shoals, on the Florida Atlantic coast, where transport dynamics and morphological evolution are not well understood. To study morphological changes at these shoals, two sets of paired upward- and downward-pointing acoustic Doppler current profilers (ADCPs) were deployed in winter 2015-2016. One set was deployed at the inner swale of Shoal E, 20 km southeast of the cape tip in 13 m depth, while the other set was located at the edge of Southeast shoal in 5 m deep. Upward-pointing velocity profiles and suspended particle concentrations were implemented in the Exner equation to quantify instantaneous rates of change in bed elevation. This computation includes changes in sediment concentration and the advection of suspended particles, but does not account for spatial gradients in bed-load fluxes and water velocities. The results of the computation were then compared to bed change rates measured directly by the downward-pointing ADCPs. At the easternmost ridge, quantified bed elevation change rates ranged from -7×10-7 to 4×10-7 m/s, and those at the inner swale ranged from -4×10-7 to 8×10-7 m/s. These values were two orders of magnitude smaller than rates measured by downward-pointing ADCPs. Moreover, the cumulative changes were two orders of magnitude larger at the ridge (-0.33 m, downward, and -0.13, m upward) than at the inner swale (cf. -6×10-3 m, downward, and 3×10-3 m, upward). These values suggest that bedform migration may be occurring at the ridge, that suspended sediments account for up to 30% of total bed changes, and that gradients in bed-load fluxes exert control on morphological change over the shoals. Despite uncertainties related to the ADCP-derived sediment concentrations, these findings provide preliminary evidence about the spatial variability in morphological changes over cape-related shoals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916014C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916014C"><span>Morphodynamics modelling of bars in channels with graded sediment and sediment supply variation with the Telemac-Mascaret System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cordier, Florian; Tassi, Pablo; Claude, Nicolas; Crosato, Alessandra; Rodrigues, Stéphane; Pham van Bang, Damien</p> <p>2017-04-01</p> <p>Numerical modelling of graded sediment transport in rivers remains a challenge [Siviglia and Crosato, 2016] and only few studies have considered the non-uniform distribution of sediment, although sediment grading is an inherent characteristic of natural rivers. The present work aims at revisiting the morphodynamics module of the Telemac-Mascaret modelling system and to integrate the latest developments to model the effects of non-uniform sediment on i) the sediment transport capacity estimated at the interface between the flow and the riverbed and on ii) the vertical sorting of sediment deposits in response to sediment supply changes. The implementation of these two processes has a key role on the modelling of bar dynamics in aggrading/degrading channels [Blom, 2008]. Numerical modelling of graded sediment transport remains a challenge due to the difficulty to reproduce the non-linear interactions between grains of different shape and size. Application of classical bedload equations usually fails in reproducing relevant transport rates [Recking, 2010 and references therein]. In this work, the graded sediment transport model of Wilcock and Crowe [2003] and the active layer concept of Hirano [1971] for the formulation of the exchange layer are implemented. The ability to reproduce the formation and evolution of graded-sediment bars is assessed on the basis of laboratory experiences from the literature. References: Blom, A., Ribberink, J. S., and Parker, G. 2008. Vertical sorting and the morphodynamics of bed form-dominated rivers: A sorting evolution model. Journal of Geophysical Research: Earth Surface, 113(F1). Lauer, J. W., Viparelli, E., and Piégay, H. 2016. Morphodynamics and sediment tracers in 1-d (mast-1d): 1-d sediment transport that includes exchange with an off-channel sediment reservoir. Advances in Water Resources. Recking, A. 2010. A comparison between flume and field bed load transport data and consequences for surface-based bed load transport prediction. Water Resources Research, 46(3). W03518. Siviglia, A. and Crosato, A. 2016. Numerical modelling of river morphodynamics: latest developments and remaining challenges. Advances in Water Resources, 90:1-9. Wilcock, P. R. and Crowe, J. C. 2003. Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering, 129(2):120-128.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=60914&keyword=image+AND+processing&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=60914&keyword=image+AND+processing&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>SUBMERSED AQUATIC VEGETATION MAPPING USING HYPERSPECTRAL IMAGERY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Submersed aquatic vegetation (SAV) beds are an important resources for aquatic life and<br>wildfowl in the Potomac River and Chesapeake Bay region. SAV habitat is threatened in part by nitrogen loadings from human activities. Monitoring and assessing this resource using field bas...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170008960','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170008960"><span>4BMS-X Design and Test Activation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peters, Warren T.; Knox, James C.</p> <p>2017-01-01</p> <p>In support of the NASA goals to reduce power, volume and mass requirements on future CO2 (Carbon Dioxide) removal systems for exploration missions, a 4BMS (Four Bed Molecular Sieve) test bed was fabricated and activated at the NASA Marshall Space Flight Center. The 4BMS-X (Four Bed Molecular Sieve-Exploration) test bed used components similar in size, spacing, and function to those on the flight ISS flight CDRA system, but were assembled in an open framework. This open framework allows for quick integration of changes to components, beds and material systems. The test stand is highly instrumented to provide data necessary to anchor predictive modeling efforts occurring in parallel to testing. System architecture and test data collected on the initial configurations will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28623853','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28623853"><span>The validity of DSM-5 severity specifiers for anorexia nervosa, bulimia nervosa, and binge-eating disorder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Kathryn E; Ellison, Jo M; Crosby, Ross D; Engel, Scott G; Mitchell, James E; Crow, Scott J; Peterson, Carol B; Le Grange, Daniel; Wonderlich, Stephen A</p> <p>2017-09-01</p> <p>The DSM-5 includes severity specifiers (i.e., mild, moderate, severe, extreme) for anorexia nervosa (AN), bulimia nervosa (BN), and binge-eating disorder (BED), which are determined by weight status (AN) and frequencies of binge-eating episodes (BED) or inappropriate compensatory behaviors (BN). Given limited data regarding the validity of eating disorder (ED) severity specifiers, this study examined the concurrent and predictive validity of severity specifiers in AN, BN, and BED. Adults with AN (n = 109), BN (n = 76), and BED (n = 216) were identified from previous datasets. Concurrent validity was assessed by measures of ED psychopathology, depression, anxiety, quality of life, and physical health. Predictive validity was assessed by ED symptoms at the end of the treatment in BN and BED. Severity categories did not differ in baseline validators, though the mild AN group evidenced greater ED symptoms compared to the severe group. In BN, greater severity was related to greater end of treatment binge-eating and compensatory behaviors, and lower likelihood of abstinence; however, in BED, greater severity was related to lower ED symptoms at the end of the treatment. Results demonstrated limited support for the validity of DSM-5 severity specifiers. Future research is warranted to explore additional validators and possible alternative indicators of severity in EDs. © 2017 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22458757-methionine-uptake-required-radiation-dose-control-glioblastoma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22458757-methionine-uptake-required-radiation-dose-control-glioblastoma"><span>Methionine Uptake and Required Radiation Dose to Control Glioblastoma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Iuchi, Toshihiko, E-mail: tiuchi@chiba-cc.jp; Hatano, Kazuo; Uchino, Yoshio</p> <p></p> <p>Purpose: The purpose of this study was to retrospectively assess the feasibility of radiation therapy planning for glioblastoma multiforme (GBM) based on the use of methionine (MET) positron emission tomography (PET), and the correlation among MET uptake, radiation dose, and tumor control. Methods and Materials: Twenty-two patients with GBM who underwent MET-PET prior to radiation therapy were enrolled. MET uptake in 30 regions of interest (ROIs) from 22 GBMs, biologically effective doses (BEDs) for the ROIs and their ratios (MET uptake:BED) were compared in terms of whether the ROIs were controlled for >12 months. Results: MET uptake was significantly correlated withmore » tumor control (odds ratio [OR], 10.0; P=.005); however, there was a higher level of correlation between MET uptake:BED ratio and tumor control (OR, 40.0; P<.0001). These data indicated that the required BEDs for controlling the ROIs could be predicted in terms of MET uptake; BED could be calculated as [34.0 × MET uptake] Gy from the optimal threshold of the MET uptake:BED ratio for tumor control. Conclusions: Target delineation based on MET-PET was demonstrated to be feasible for radiation therapy treatment planning. MET-PET could not only provide precise visualization of infiltrating tumor cells but also predict the required radiation doses to control target regions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27899295','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27899295"><span>Prevalence and correlates of binge eating disorder related features in the community.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mustelin, Linda; Bulik, Cynthia M; Kaprio, Jaakko; Keski-Rahkonen, Anna</p> <p>2017-02-01</p> <p>Binge eating disorder (BED) is associated with high levels of obesity and psychological suffering, but little is known about 1) the distribution of features of BED in the general population and 2) their consequences for weight development and psychological distress in young adulthood. We investigated the prevalence of features of BED and their association with body mass index (BMI) and psychological distress among men (n = 2423) and women (n = 2825) from the longitudinal community-based FinnTwin16 cohort (born 1975-1979). Seven eating-related cognitions and behaviors similar to the defining features of BED were extracted from the Eating Disorder Inventory-2 and were assessed at a mean age of 24. BMI and psychological distress, measured with the General Health Questionnaire, were assessed at ages 24 and 34. We assessed prevalence of the features and their association with BMI and psychological distress cross-sectionally and prospectively. More than half of our participants reported at least one feature of BED; clustering of several features in one individual was less common, particularly among men. The most frequently reported feature was 'stuffing oneself with food', whereas the least common was 'eating or drinking in secrecy'. All individual features of BED and their clustering particularly were associated with higher BMI and more psychological distress cross-sectionally. Prospectively, the clustering of features of BED predicted increase in psychological distress but not additional weight gain when baseline BMI was accounted for. In summary, although some features of BED were common, the clustering of several features in one individual was not. The features were cumulatively associated with BMI and psychological distress and predicted further increase in psychological distress over ten years of follow-up. Copyright © 2016. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22648739-planning-target-volume-d95-mean-dose-should-considered-optimal-local-control-stereotactic-ablative-radiation-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22648739-planning-target-volume-d95-mean-dose-should-considered-optimal-local-control-stereotactic-ablative-radiation-therapy"><span>Planning Target Volume D95 and Mean Dose Should Be Considered for Optimal Local Control for Stereotactic Ablative Radiation Therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Lina; Zhou, Shouhao; Balter, Peter</p> <p></p> <p>Purpose: To identify the optimal dose parameters predictive for local/lobar control after stereotactic ablative radiation therapy (SABR) in early-stage non-small cell lung cancer (NSCLC). Methods and Materials: This study encompassed a total of 1092 patients (1200 lesions) with NSCLC of clinical stage T1-T2 N0M0 who were treated with SABR of 50 Gy in 4 fractions or 70 Gy in 10 fractions, depending on tumor location/size, using computed tomography-based heterogeneity corrections and a convolution superposition calculation algorithm. Patients were monitored by chest CT or positron emission tomography/CT and/or biopsy after SABR. Factors predicting local/lobar recurrence (LR) were determined by competing risk multivariate analysis.more » Continuous variables were divided into 2 subgroups at cutoff values identified by receiver operating characteristic curves. Results: At a median follow-up time of 31.7 months (interquartile range, 14.8-51.3 months), the 5-year time to local recurrence within the same lobe and overall survival rates were 93.8% and 44.8%, respectively. Total cumulative number of patients experiencing LR was 40 (3.7%), occurring at a median time of 14.4 months (range, 4.8-46 months). Using multivariate competing risk analysis, independent predictive factors for LR after SABR were minimum biologically effective dose (BED{sub 10}) to 95% of planning target volume (PTVD95 BED{sub 10}) ≤86 Gy (corresponding to PTV D95 physics dose of 42 Gy in 4 fractions or 55 Gy in 10 fractions) and gross tumor volume ≥8.3 cm{sup 3}. The PTVmean BED{sub 10} was highly correlated with PTVD95 BED{sub 10.} In univariate analysis, a cutoff of 130 Gy for PTVmean BED{sub 10} (corresponding to PTVmean physics dose of 55 Gy in 4 fractions or 75 Gy in 10 fractions) was also significantly associated with LR. Conclusions: In addition to gross tumor volume, higher radiation dose delivered to the PTV predicts for better local/lobar control. We recommend that both PTVD95 BED{sub 10} >86 Gy and PTVmean BED{sub 10} >130 Gy should be considered for SABR plan optimization.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.3660G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.3660G"><span>Channel morphology and patterns of bedload transport in fluvial, formerly-glaciated, forested headwater streams of the Columbia Mountains, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Green, Kim; Brardinoni, Francesco; Alila, Younes</p> <p>2013-04-01</p> <p>This study examines channel-reach morphology and bedload transport dynamics in relation to landscape structure and snowmelt hydrology in Cotton and Elk Creek, two headwater streams of the southern Columbia Mountains, Canada. Data collection is based on field surveys and GIS analysis in conjunction with a nested monitoring network of water discharge and bed load transfer. The nested monitoring network is designed to examine the effects of channel bed texture, and the influence of free-formed (i.e., boulder cascades, step pools, and riffle pools) and forced-alluvial morphologies (i.e., forced step pools) on bedload entrainment and transport. The landscape is characterized by subdued glaciated topography in which sediment is primarily supplied by bank failures and fluvial transfer dominates the channelized sediment cascade. The spatial distribution of channel types is mainly controlled by glacially imposed local slope together with availability of wood and glacigenic materials. Interestingly, downstream hydraulic geometry as well as downstream patterns of the coarse channel bed fraction and stream power are all insensitive to systematic changes of local slope along the typically stepped longitudinal profiles. An indication that the study alluvial systems are adjusted to the contemporary hydrologic and sedimentary regimes, and as such through post-LGM times have been able to compensate for the glacially-imposed boundary conditions. Stepwise multiple regression indicates that annual bedload yield is chiefly controlled by the number of peak events over threshold discharge. During such high flows, repeated destabilization of channel bed armouring and re-mobilization of sediment stored behind logjams can ensure sediment supply for bedload transport across the entire snowmelt season. In particular, channel morphology affects distinctively the variability of bed load response to hydrologic forcing. The observed spatial variability in annual bedload yield appears to correlate with inter-basin differences in basic morphometric attributes, among which slope aspect plays a prominent role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27522025','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27522025"><span>A super high-rate sulfidogenic system for saline sewage treatment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsui, To-Hung; Chen, Lin; Hao, Tianwei; Chen, Guang-Hao</p> <p>2016-11-01</p> <p>This study proposes a novel approach to resolve the challenging issue of sludge bed clogging in a granular sulfate-reducing upflow sludge bed (GSRUSB) reactor by means of introducing intermittent gas sparging to advance it into a super high-rate anaerobic bioreactor. Over a 196-day lab-scale trial, the GSRUSB system was operated from nominal hydraulic retention time of 4-hr to 40-min and achieved the highest organic loading rate of 13.31 kg COD/m 3 ·day which is substantially greater than the typical loading of 2.0-3.5 kg COD/m 3 ·day in a conventional upflow anaerobic sludge bed reactor treating dilute organic strength wastewater. The average organic removal efficiency and total dissolved sulfide of this system were 90 ± 4.2% and 158 ± 28 mg S/L, while organics residual in the effluent was 34 ± 14 mg COD/L. The control stage (without gas sparging) revealed that the sludge bed clogging happened concomitantly with the significant drop in extracellular polymeric substance content of granular sludge, through relevant chemical measurements and confocal laser scanning microscopy analyses. On the other hand, compared with increasing the effluent recirculation ratio (from 1.4 to 5), the three-dimensional computational fluid dynamics modeling in combination with energy dissipation analysis demonstrated that the gas sparging (at a superficial gas velocity of 0.8 m s -1 ) can create a 23 times higher liquid shear as well as enhanced particle attrition. Overall, this study not only developed a super high-rate anaerobic bioreactor for saline sewage treatment, but also shed light on the role of intermittent gas sparging in control of sludge bed clogging for anaerobic bioreactors. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP51A0899M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP51A0899M"><span>Spatio-temporal variation in bed-material load using dune topography collected during a severe flood on the coastal Trinity River, east TX, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mason, J.; Mohrig, D. C.</p> <p>2015-12-01</p> <p>A series of six repeat surveys along 27 kilometers of the coastal Trinity River in east Texas, USA, reveal the temporal and spatial changes in bed material load during and following a historically large flood. The river event was above the National Weather Service flood stage for 55 days at the Liberty USGS station, and had a maximum discharge of about 80,000 cfs. As a community, we are beginning to understand how fluvial geomorphology is influenced by the backwater effect, but we still lack an understanding of how the bed-material transport adjusts to accommodate larger-scale changes in river bend pattern and kinematics. Survey data from this project includes sidescan sonar along the channel centerline, multibeam bathymetry, and channel bed sediment samples. In combination, this data set provides new insight into how and when bed material, primarily medium sand with some pebbles, moves through this region, and how this connects to previously observed changes in channel geometry (including downstream decreases in channel width to depth ratio, bar form volume and surface area, and lateral migration rates of river bends). Preliminary examination of sidescan sonar of two bends within the survey area, one upstream and one downstream, reveal a striking difference in bedform behavior in response to the changing hydrograph. Upstream, bedforms decrease 80% in height and 83% in length and increase in 3-dimensionality throughout the extended peak flow. During the falling limb of the flood these same bedforms increase in size as they become more laterally continuous and straight-crested. Downstream, 3-dimensional bedforms decrease 80% in height and 87% in length throughout the extended peak flow and then remain this size during the falling limb of the flood. This presentation will discuss these results with respect to backwater dynamics, sediment supply and transport, implications for coastal geomorphology as well as sediment delivery into deltaic systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029937','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029937"><span>Paleovalley fills: Trunk vs. tributary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kvale, E.P.; Archer, A.W.</p> <p>2007-01-01</p> <p>A late Mississippian-early Pennsylvanian eustatic sea level drop resulted in a complex lowstand drainage network being eroded across the Illinois Basin in the eastern United States. This drainage system was filled during the early part of the Pennsylvanian. Distinct differences can be recognized between the trunk and tributary paleovalley fills. Fills preserved within the trunk systems tend to be fluvially dominated and consist of bed-load deposits of coarse- to medium-grained sandstone and conglomerate. Conversely, the incised valleys of tributary systems tend to be filled with dark mudstone, thinly interbedded sandstones, and mudstones and siltstones. These finer grained facies exhibit marine influences manifested by tidal rhythmites, certain traces fossils, and macro- and microfauna. Examples of tributary and trunk systems, separated by no more than 7 km (4.3 mi) along strike, exhibit these styles of highly contrasting fills. Useful analogs for understanding this Pennsylvanian system include the Quaternary glacial sluiceways present in the lower Ohio, White, and Wabash river valleys of Indiana (United States) and the modern Amazon River (Brazil). Both the Amazon River and the Quaternary rivers of Indiana have (or had) trunk rivers that are (were) dominated by large quantities of bed load relative to their tributaries. The trunk valley systems of these analogs aggraded much more rapidly than their tributary valleys, which evolved into lakes because depositional rates along the trunk are (were) so high that the mouths of the tributaries have been dammed by bed-load deposits. These Holocene systems illustrate that sediment yields can significantly influence the nature of fill successions within incised valleys independent of rates of sea level changes or proximity to highstand coastlines. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25776915','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25776915"><span>High rate manure supernatant digestion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bergland, Wenche Hennie; Dinamarca, Carlos; Toradzadegan, Mehrdad; Nordgård, Anna Synnøve Røstad; Bakke, Ingrid; Bakke, Rune</p> <p>2015-06-01</p> <p>The study shows that high rate anaerobic digestion may be an efficient way to obtain sustainable energy recovery from slurries such as pig manure. High process capacity and robustness to 5% daily load increases are observed in the 370 mL sludge bed AD reactors investigated. The supernatant from partly settled, stored pig manure was fed at rates giving hydraulic retention times, HRT, gradually decreased from 42 to 1.7 h imposing a maximum organic load of 400 g COD L(-1) reactor d(-1). The reactors reached a biogas production rate of 97 g COD L(-1) reactor d(-1) at the highest load at which process stress signs were apparent. The yield was ∼0.47 g COD methane g(-1) CODT feed at HRT above 17 h, gradually decreasing to 0.24 at the lowest HRT (0.166 NL CH4 g(-1) CODT feed decreasing to 0.086). Reactor pH was innately stable at 8.0 ± 0.1 at all HRTs with alkalinity between 9 and 11 g L(-1). The first stress symptom occurred as reduced methane yield when HRT dropped below 17 h. When HRT dropped below 4 h the propionate removal stopped. The yield from acetate removal was constant at 0.17 g COD acetate removed per g CODT substrate. This robust methanogenesis implies that pig manure supernatant, and probably other similar slurries, can be digested for methane production in compact and effective sludge bed reactors. Denaturing gradient gel electrophoresis (DGGE) analysis indicated a relatively fast adaptation of the microbial communities to manure and implies that non-adapted granular sludge can be used to start such sludge bed bioreactors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...129....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...129....1S"><span>Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sherman, C.; Schmidt, W.; Appeldoorn, R.; Hutchinson, Y.; Ruiz, H.; Nemeth, M.; Bejarano, I.; Motta, J. J. Cruz; Xu, H.</p> <p>2016-10-01</p> <p>Although sediment dynamics exert a fundamental control on the character and distribution of reefs, data on sediment dynamics in mesophotic systems are scarce. In this study, sediment traps and benthic photo-transects were used to document spatial and temporal patterns of suspended-sediment and bed-load dynamics at two geomorphically distinct mesophotic coral ecosystems (MCEs) on the upper insular slope of southwest Puerto Rico. Trap accumulation rates of suspended sediment were relatively low and spatiotemporally uniform, averaging <1 mg cm-2 d-1 and never exceeding 3 mg cm-2 d-1 over the sampled period. In contrast, trap accumulation rates of downslope bed-load movement were orders of magnitude higher than suspended-sediment accumulation rates and highly variable, by orders of magnitude, both spatially and temporally. Percent sand cover within photo-transects varied over time from 10% to more than 40% providing further evidence of downslope sediment movement. In general, the more exposed, lower gradient site had higher rates of downslope sediment movement, higher sand cover and lower coral cover than the more sheltered and steep site that exhibited lower rates of downslope sediment movement, lower sand cover and higher coral cover. In most cases, trap accumulation rates of suspended sediment and bed load varied together and peaks in trap accumulation rates correspond to peaks in SWAN-modeled wave-orbital velocities, suggesting that surface waves may influence sediment dynamics even in mesophotic settings. Though variable, off-shelf transport of sediment is a continuous process occurring even during non-storm conditions. Continuous downslope sediment movement in conjunction with degree of exposure to prevailing seas and slope geomorphology are proposed to exert an important influence on the character and distribution of insular-slope MCEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDR29011K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDR29011K"><span>Large-eddy simulation of sand dune morphodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khosronejad, Ali; Sotiropoulos, Fotis; St. Anthony Falls Laboratory, University of Minnesota Team</p> <p>2015-11-01</p> <p>Sand dunes are natural features that form under complex interaction between turbulent flow and bed morphodynamics. We employ a fully-coupled 3D numerical model (Khosronejad and Sotiropoulos, 2014, Journal of Fluid Mechanics, 753:150-216) to perform high-resolution large-eddy simulations of turbulence and bed morphodynamics in a laboratory scale mobile-bed channel to investigate initiation, evolution and quasi-equilibrium of sand dunes (Venditti and Church, 2005, J. Geophysical Research, 110:F01009). We employ a curvilinear immersed boundary method along with convection-diffusion and bed-morphodynamics modules to simulate the suspended sediment and the bed-load transports respectively. The coupled simulation were carried out on a grid with more than 100 million grid nodes and simulated about 3 hours of physical time of dune evolution. The simulations provide the first complete description of sand dune formation and long-term evolution. The geometric characteristics of the simulated dunes are shown to be in excellent agreement with observed data obtained across a broad range of scales. This work was supported by NSF Grants EAR-0120914 (as part of the National Center for Earth-Surface Dynamics). Computational resources were provided by the University of Minnesota Supercomputing Institute.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985STIN...8534341C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985STIN...8534341C"><span>Test plan for performance testing of the Eaton AC-3 electric vehicle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crumley, R.; Heiselmann, H. W.</p> <p>1985-04-01</p> <p>An alternating current (ac) propulsion system for an electric vehicle was developed and tested. The test bed vehicle is a modified 1981 Mercury Lynx. The test plan was prepared specifically for the third modification to this test bed and identified as the Eaton AC-3. The scope of the testing done on the Eaton AC-3 includes coastdown and dynamometer tests but does not include environmental, on-road, or track testing. Coastdown testing is performed in accordance with SAE J-1263 (SAE Recommended Practice for Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19043976','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19043976"><span>[Special beds. Pulmonary therapy system].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Calixto Rodríguez, Joaquín; Rodríguez Martínez, Xavier; Marín i Vivó, Gemma; Paunellas Albert, Josep</p> <p>2008-10-01</p> <p>To be bedridden reduces one's capacity to move and produces muscular debility that affects the respiratory system leading to a decreased effectiveness in expectoration, the ability to spit up sputum. The pulmonary therapy system integrated in a bed is the result of applying motorized elements to the articulation points of the bad in order to achieve safe positions at therapeutic angles, which improve the breathing-perfusion (blood flow) relationship. This system also makes it possible to apply vibration waves to the patient which favor the elimination of bronchial-pulmonary secretions, the rehabilitation of the bedridden patient and decrease the work load for nursing personnel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA173712','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA173712"><span>Lightning Warning and Protection for DNA High Explosive Test-Bed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1986-08-01</p> <p>begins, personnel should be evacuated from the test-bed and the amonium nitrate fuel oil loading area. A safe distance will depend on the size of the...typically, P = -40 C, N = - 0 C, and D = ’-1O C. and ~whgive observed electric field intensity in the vicintv oa :t thundercloud. (Ref. 4, p. 3.) 4. 2...12 16 2 12 S-P •N=40C N -- • N=-40 C > 14 p= 10 CD z OI- 1 0 - 0 4 8 12 16 20 DISTANCE D (kin) Figure 2. Electric field intensity at the ground versus</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=254485','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=254485"><span>Sand Transport, Flow Turbulence, and Bed Forms over an Immobile Gravel Bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Channels downstream of dams often become armored because the sediment supply from upstream is cut off. Sand is generally supplied to these armored reaches intermittently from tributaries downstream of the dam or from sand bypassing. Accurate predictions of the rate of transport of sand over and th...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>