Science.gov

Sample records for predicting field performance

  1. Thermal system field performance predictions from laboratory and field measurements

    NASA Astrophysics Data System (ADS)

    Burks, Stephen D.; Haefner, David P.; Teaney, Brian P.; Doe, Joshua M.

    2016-05-01

    Laboratory measurements on thermal imaging systems are critical to understanding their performance in a field environment. However, it is rarely a straightforward process to directly inject thermal measurements into thermal performance modeling software to acquire meaningful results. Some of the sources of discrepancies between laboratory and field measurements are sensor gain and level, dynamic range, sensor display and display brightness, and the environment where the sensor is operating. If measurements for the aforementioned parameters could be performed, a more accurate description of sensor performance in a particular environment is possible. This research will also include the procedure for turning both laboratory and field measurements into a system model.

  2. What Predicts Changes in Useful Field of View Test Performance?

    PubMed Central

    Lunsman, Melissa; Edwards, Jerri D.; Andel, Ross; Small, Brent J.; Ball, Karlene K.; Roenker, Daniel L.

    2015-01-01

    The Useful Field of View Test (UFOV1) has been used to examine age-related changes in visual processing and cognition and as an indicator of everyday performance outcomes, particularly driving, for over 20 years. How UFOV performance changes with age and what may impact such changes have not previously been investigated longitudinally. Predictors of change in UFOV performance over a five-year period among control-group participants (n = 690) from the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study were examined. Random effects models were estimated with four-subtest total UFOV as the outcome and baseline age, education, gender, race, visual acuity, depressive symptoms, mental status, and self-rated health, as well as attrition, as predictors. UFOV performance generally followed a curvilinear pattern, improving and then declining over time. Only increased age was consistently related to greater declines in UFOV performance over time. UFOV and WAIS-R Digit Symbol Substitution (DSS), a standard measure of cognitive speed, had similar trajectories of change. The implications of these results are discussed. PMID:19140660

  3. PREDICTING FIELD PERFORMANCE OF HERBACEOUS SPECIES FOR PHYTOREMEDIATION OF PERCHLORATE

    EPA Science Inventory

    Results of these short-term experiments coupled with ecological knowledge of the nine herbaceous plant species tested suggest that several species may by successful in on-site remediation of perchlorate. The two wetland species which appear to be most suitable for field experimen...

  4. Using percolation theory to predict oil field performance

    NASA Astrophysics Data System (ADS)

    King, P. R.; Buldyrev, S. V.; Dokholyan, N. V.; Havlin, S.; Lopez, E.; Paul, G.; Stanley, H. E.

    2002-11-01

    In this paper, we apply scaling laws from percolation theory to the problem of estimating the time for a fluid injected into an oilfield to breakthrough into a production well. The main contribution is to show that when these previously published results are used on realistic data they are in good agreement with results calculated in a more conventional way but they can be obtained significantly more quickly. As a result they may be used in practical engineering circumstances and aid decision making for real field problems.

  5. A target detection model predicting field observer performance in maritime scenes

    NASA Astrophysics Data System (ADS)

    Culpepper, Joanne B.; Wheaton, Vivienne C.

    2014-10-01

    The U.S. Army's target acquisition models, the ACQUIRE and Target Task Performance (TTP) models, have been employed for many years to assess the performance of thermal infrared sensors. In recent years, ACQUIRE and the TTP models have been adapted to assess the performance of visible sensors. These adaptations have been primarily focused on the performance of an observer viewing a display device. This paper describes an implementation of the TTP model to predict field observer performance in maritime scenes. Predictions of the TTP model implementation were compared to observations of a small watercraft taken in a field trial. In this field trial 11 Australian Navy observers viewed a small watercraft in an open ocean scene. Comparisons of the observed probability of detection to predictions of the TTP model implementation showed the normalised RSS metric overestimated the probability of detection. The normalised Pixel Contrast using a literature value for V50 yielded a correlation of 0.58 between the predicted and observed probability of detection. With a measured value of N50 or V50 for the small watercraft used in this investigation, this implementation of the TTP model may yield stronger correlation with observed probability of detection.

  6. Accomplishments and Compromises in Prediction Research for World Records and Best Performances in Track and Field and Swimming

    ERIC Educational Resources Information Center

    Liu, Yuanlong; Paul, Stanley; Fu, Frank H.

    2012-01-01

    The conductors of this study reviewed prediction research and studied the accomplishments and compromises in predicting world records and best performances in track and field and swimming. The results of the study showed that prediction research only promises to describe the historical trends in track and field and swimming performances, to study…

  7. The Ahuachapan geothermal field, El Salvador: Exploitation model, performance predictions, economic analysis

    SciTech Connect

    Ripperda, M.; Bodvarsson, G.S.; Lippmann, M.J.; Witherspoon, P.A.; Goranson, C.

    1991-05-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL) with funding from the US Agency for International Development (USAID). This report describes the work done during the second year of the study (FY89--90). The first year's report included (1) the development of geological and conceptual models of the field, (2) the evaluation of the reservoir's initial thermodynamic and chemical conditions and their changes during exploitation, (3) the evaluation of interference test data and the observed reservoir pressure decline and (4) the development of a natural state model for the field. In the present report the results of reservoir engineering studies to evaluate different production-injection scenarios for the Ahuachapan geothermal field are discussed. The purpose of the work was to evaluate possible reservoir management options to enhance as well as to maintain the productivity of the field during a 30-year period (1990--2020). The ultimate objective was to determine the feasibility of increasing the electrical power output at Ahuachapan from the current level of about 50 MW{sub e} to the total installed capacity of 95 MW{sub e}. 20 refs., 75 figs., 10 tabs.

  8. Testing the near field/far field model performance for prediction of particulate matter emissions in a paint factory.

    PubMed

    Koivisto, A J; Jensen, A C Ø; Levin, M; Kling, K I; Maso, M Dal; Nielsen, S H; Jensen, K A; Koponen, I K

    2015-01-01

    A Near Field/Far Field (NF/FF) model is a well-accepted tool for precautionary exposure assessment but its capability to estimate particulate matter (PM) concentrations is not well studied. The main concern is related to emission source characterization which is not as well defined for PM emitters compared to e.g. for solvents. One way to characterize PM emission source strength is by using the material dustiness index which is scaled to correspond to industrial use by using modifying factors, such as handling energy factors. In this study we investigate how well the NF/FF model predicts PM concentration levels in a paint factory. PM concentration levels were measured during big bag and small bag powder pouring. Rotating drum dustiness indices were determined for the specific powders used and applied in the NF/FF model to predict mass concentrations. Modeled process specific concentration levels were adjusted to be similar to the measured concentration levels by adjusting the handling energy factor. The handling energy factors were found to vary considerably depending on the material and process even-though they have the same values as modifying factors in the exposure models. This suggests that the PM source characteristics and process-specific handling energies should be studied in more detail to improve the model-based exposure assessment. PMID:25407261

  9. Testing the near field/far field model performance for prediction of particulate matter emissions in a paint factory.

    PubMed

    Koivisto, A J; Jensen, A C Ø; Levin, M; Kling, K I; Maso, M Dal; Nielsen, S H; Jensen, K A; Koponen, I K

    2015-01-01

    A Near Field/Far Field (NF/FF) model is a well-accepted tool for precautionary exposure assessment but its capability to estimate particulate matter (PM) concentrations is not well studied. The main concern is related to emission source characterization which is not as well defined for PM emitters compared to e.g. for solvents. One way to characterize PM emission source strength is by using the material dustiness index which is scaled to correspond to industrial use by using modifying factors, such as handling energy factors. In this study we investigate how well the NF/FF model predicts PM concentration levels in a paint factory. PM concentration levels were measured during big bag and small bag powder pouring. Rotating drum dustiness indices were determined for the specific powders used and applied in the NF/FF model to predict mass concentrations. Modeled process specific concentration levels were adjusted to be similar to the measured concentration levels by adjusting the handling energy factor. The handling energy factors were found to vary considerably depending on the material and process even-though they have the same values as modifying factors in the exposure models. This suggests that the PM source characteristics and process-specific handling energies should be studied in more detail to improve the model-based exposure assessment.

  10. Can laboratory-based tennis profiles predict field tests of tennis performance?

    PubMed

    Perry, Arlette C; Wang, Xuewen; Feldman, Brandon B; Ruth, Tiffany; Signorile, Joseph

    2004-02-01

    The present study examined the impact of physical characteristics of adolescent competitive tennis players (13-18 years) on field tests of tennis performance. Results (n = 33) showed that boys were taller (p = 0.001), possessed greater wingspan (p = 0.030), had greater maximum oxygen consumption (p = 0.001), and performed better on isokinetic strength measurements. Multiple regression analyses controlling for age and sex showed that height (p = 0.025), maximum minute ventilation (p = 0.005), and isokinetic strength measurements significantly and positively affected ball velocity. Knee extension average power was the only variable to positively and significantly affect ball placement (p = 0.040); however, several isokinetic strength measurements negatively affected ball placement. For the nondominant side, down-the-line strokes showed reduced accuracy (p = 0.001) and ball velocity (p = 0.001) compared with cross-court strokes. Given our results, resistance training may be beneficial for the performance of on-court tennis play. PMID:14971970

  11. Macropore flow at the field scale: predictive performance of empirical models and X-ray CT analyzed macropore characteristics

    NASA Astrophysics Data System (ADS)

    Naveed, M.; Moldrup, P.; Schaap, M.; Tuller, M.; Kulkarni, R.; Vögel, H.-J.; Wollesen de Jonge, L.

    2015-11-01

    Predictions of macropore flow is important for maintaining both soil and water quality as it governs key related soil processes e.g. soil erosion and subsurface transport of pollutants. However, macropore flow currently cannot be reliably predicted at the field scale because of inherently large spatial variability. The aim of this study was to perform field scale characterization of macropore flow and investigate the predictive performance of (1) current empirical models for both water and air flow, and (2) X-ray CT derived macropore network characteristics. For this purpose, 65 cylindrical soil columns (6 cm diameter and 3.5 cm height) were extracted from the topsoil (5 to 8.5 cm depth) in a 15 m × 15 m grid from an agricultural loamy field located in Silstrup, Denmark. All soil columns were scanned with an industrial CT scanner (129 μm resolution) and later used for measurements of saturated water permeability, air permeability and gas diffusivity at -30 and -100 cm matric potentials. Distribution maps for both water and air permeabilities and gas diffusivity reflected no spatial correlation irrespective of the soil texture and organic matter maps. Empirical predictive models for both water and air permeabilities showed poor performance as they were not able to realistically capture macropore flow because of poor correlations with soil texture and bulk density. The tested empirical model predicted well gas diffusivity at -100 cm matric potential, but relatively failed at -30 cm matric potential particularly for samples with biopore flow. Image segmentation output of the four employed methods was nearly the same, and matched well with measured air-filled porosity at -30 cm matric potential. Many of the CT derived macropore network characteristics were strongly interrelated. Most of the macropore network characteristics were also strongly correlated with saturated water permeability, air permeability, and gas diffusivity. The correlations between macropore

  12. PREVAPORATION PERFORMANCE PREDICTION SOFTWARE

    EPA Science Inventory

    The Pervaporation, Performance, Prediction Software and Database (PPPS&D) computer software program is currently being developed within the USEPA, NRMRL. The purpose of the PPPS&D program is to educate and assist potential users in identifying opportunities for using pervaporati...

  13. Large-Scale Graphene on Hexagonal-BN Hall Elements: Prediction of Sensor Performance without Magnetic Field.

    PubMed

    Joo, Min-Kyu; Kim, Joonggyu; Park, Ji-Hoon; Nguyen, Van Luan; Kim, Ki Kang; Lee, Young Hee; Suh, Dongseok

    2016-09-27

    A graphene Hall element (GHE) is an optimal system for a magnetic sensor because of its perfect two-dimensional (2-D) structure, high carrier mobility, and widely tunable carrier concentration. Even though several proof-of-concept devices have been proposed, manufacturing them by mechanical exfoliation of 2-D material or electron-beam lithography is of limited feasibility. Here, we demonstrate a high quality GHE array having a graphene on hexagonal-BN (h-BN) heterostructure, fabricated by photolithography and large-area 2-D materials grown by chemical vapor deposition techniques. A superior performance of GHE was achieved with the help of a bottom h-BN layer, and showed a maximum current-normalized sensitivity of 1986 V/AT, a minimum magnetic resolution of 0.5 mG/Hz(0.5) at f = 300 Hz, and an effective dynamic range larger than 74 dB. Furthermore, on the basis of a thorough understanding of the shift of charge neutrality point depending on various parameters, an analytical model that predicts the magnetic sensor operation of a GHE from its transconductance data without magnetic field is proposed, simplifying the evaluation of each GHE design. These results demonstrate the feasibility of this highly performing graphene device using large-scale manufacturing-friendly fabrication methods.

  14. Large-Scale Graphene on Hexagonal-BN Hall Elements: Prediction of Sensor Performance without Magnetic Field.

    PubMed

    Joo, Min-Kyu; Kim, Joonggyu; Park, Ji-Hoon; Nguyen, Van Luan; Kim, Ki Kang; Lee, Young Hee; Suh, Dongseok

    2016-09-27

    A graphene Hall element (GHE) is an optimal system for a magnetic sensor because of its perfect two-dimensional (2-D) structure, high carrier mobility, and widely tunable carrier concentration. Even though several proof-of-concept devices have been proposed, manufacturing them by mechanical exfoliation of 2-D material or electron-beam lithography is of limited feasibility. Here, we demonstrate a high quality GHE array having a graphene on hexagonal-BN (h-BN) heterostructure, fabricated by photolithography and large-area 2-D materials grown by chemical vapor deposition techniques. A superior performance of GHE was achieved with the help of a bottom h-BN layer, and showed a maximum current-normalized sensitivity of 1986 V/AT, a minimum magnetic resolution of 0.5 mG/Hz(0.5) at f = 300 Hz, and an effective dynamic range larger than 74 dB. Furthermore, on the basis of a thorough understanding of the shift of charge neutrality point depending on various parameters, an analytical model that predicts the magnetic sensor operation of a GHE from its transconductance data without magnetic field is proposed, simplifying the evaluation of each GHE design. These results demonstrate the feasibility of this highly performing graphene device using large-scale manufacturing-friendly fabrication methods. PMID:27580305

  15. Uncertainty in Predicted Neighborhood-Scale Green Stormwater Infrastructure Performance Informed by field monitoring of Hydrologic Abstractions

    NASA Astrophysics Data System (ADS)

    Smalls-Mantey, L.; Jeffers, S.; Montalto, F. A.

    2013-12-01

    Human alterations to the environment provide infrastructure for housing and transportation but have drastically changed local hydrology. Excess stormwater runoff from impervious surfaces generates erosion, overburdens sewer infrastructure, and can pollute receiving bodies. Increased attention to green stormwater management controls is based on the premise that some of these issues can be mitigated by capturing or slowing the flow of stormwater. However, our ability to predict actual green infrastructure facility performance using physical or statistical methods needs additional validation, and efforts to incorporate green infrastructure controls into hydrologic models are still in their infancy stages. We use more than three years of field monitoring data to derive facility specific probability density functions characterizing the hydrologic abstractions provided by a stormwater treatment wetland, streetside bioretention facility, and a green roof. The monitoring results are normalized by impervious area treated, and incorporated into a neighborhood-scale agent model allowing probabilistic comparisons of the stormwater capture outcomes associated with alternative urban greening scenarios. Specifically, we compare the uncertainty introduced into the model by facility performance (as represented by the variability in the abstraction), to that introduced by both precipitation variability, and spatial patterns of emergence of different types of green infrastructure. The modeling results are used to update a discussion about the potential effectiveness of urban green infrastructure implementation plans.

  16. EVA Performance Prediction

    NASA Technical Reports Server (NTRS)

    Peacock, Brian; Maida, James; Rajulu, Sudhakar

    2004-01-01

    out for EVA activities are based more on extensive domain experience than any formal analytic structure. Conversely, physical task analysis for industrial and structured evidence from training and EV A contexts. Again on earth there is considerable evidence of human performance degradation due to encumbrance and fatigue. These industrial models generally take the form of a discounting equation. The development of performance estimates for space operations, such as timeline predictions for EVA is generally based on specific input from training activity, for example in the NBL or KC135. uniformed services tasks on earth are much more formalized. Human performance data in the space context has two sources: first there is the micro analysis of performance in structured tasks by the space physiology community and second there is the less structured evidence from training and EV A contexts.

  17. Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field.

    PubMed

    Geck, Christoph; Scharff, Heijo; Pfeiffer, Eva-Maria; Gebert, Julia

    2016-10-01

    On a large scale test field (1060m(2)) methane emissions were monitored over a period of 30months. During this period, the test field was loaded at rates between 14 and 46gCH4m(-2)d(-1). The total area was subdivided into 60 monitoring grid fields at 17.7m(2) each, which were individually surveyed for methane emissions and methane oxidation efficiency. The latter was calculated both from the direct methane mass balance and from the shift of the carbon dioxide - methane ratio between the base of the methane oxidation layer and the emitted gas. The base flux to each grid field was back-calculated from the data on methane oxidation efficiency and emission. Resolution to grid field scale allowed the analysis of the spatial heterogeneity of all considered fluxes. Higher emissions were measured in the upslope area of the test field. This was attributed to the capillary barrier integrated into the test field resulting in a higher diffusivity and gas permeability in the upslope area. Predictions of the methane oxidation potential were estimated with the simple model Methane Oxidation Tool (MOT) using soil temperature, air filled porosity and water tension as input parameters. It was found that the test field could oxidize 84% of the injected methane. The MOT predictions seemed to be realistic albeit the higher range of the predicted oxidations potentials could not be challenged because the load to the field was too low. Spatial and temporal emission patterns were found indicating heterogeneity of fluxes and efficiencies in the test field. No constant share of direct emissions was found as proposed by the MOT albeit the mean share of emissions throughout the monitoring period was in the range of the expected emissions. PMID:27426022

  18. Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field.

    PubMed

    Geck, Christoph; Scharff, Heijo; Pfeiffer, Eva-Maria; Gebert, Julia

    2016-10-01

    On a large scale test field (1060m(2)) methane emissions were monitored over a period of 30months. During this period, the test field was loaded at rates between 14 and 46gCH4m(-2)d(-1). The total area was subdivided into 60 monitoring grid fields at 17.7m(2) each, which were individually surveyed for methane emissions and methane oxidation efficiency. The latter was calculated both from the direct methane mass balance and from the shift of the carbon dioxide - methane ratio between the base of the methane oxidation layer and the emitted gas. The base flux to each grid field was back-calculated from the data on methane oxidation efficiency and emission. Resolution to grid field scale allowed the analysis of the spatial heterogeneity of all considered fluxes. Higher emissions were measured in the upslope area of the test field. This was attributed to the capillary barrier integrated into the test field resulting in a higher diffusivity and gas permeability in the upslope area. Predictions of the methane oxidation potential were estimated with the simple model Methane Oxidation Tool (MOT) using soil temperature, air filled porosity and water tension as input parameters. It was found that the test field could oxidize 84% of the injected methane. The MOT predictions seemed to be realistic albeit the higher range of the predicted oxidations potentials could not be challenged because the load to the field was too low. Spatial and temporal emission patterns were found indicating heterogeneity of fluxes and efficiencies in the test field. No constant share of direct emissions was found as proposed by the MOT albeit the mean share of emissions throughout the monitoring period was in the range of the expected emissions.

  19. Laboratory Performance Predicts the Success of Field Releases in Inbred Lines of the Egg Parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae)

    PubMed Central

    Coelho, Aloisio; Rugman-Jones, Paul F.; Reigada, Carolina; Stouthamer, Richard; Parra, José R. P.

    2016-01-01

    In this study we assessed the relationship between the laboratory and field performance of different isofemale lines of Trichogramma pretiosum Riley. In comparative assays, we used three rare mitochondrial haplotypes as genetic markers of the isofemale lines, and by introgressing these mitochondrial haplotypes into each of 15 genetically different nuclear lines, also tested the assumption that mitochondria are neutral markers. In a laboratory trial, 45 isofemale lines (15 nuclear genotypes x three mitochondrial haplotypes) were ranked in three categories (best, intermediate and worst) according to the mean offspring production and the proportion of female offspring. Subsequently, lines from each of the three categories were selected for field releases to quantify field parasitism on Ephestia kuehniella. Temporally separate releases were done in a transgenic Bt cornfield, with four plots, each with 50 points of recapture. The points of recapture consisted of trap cards with eggs of E. kuehniella collected daily. The trap cards were maintained in the laboratory at 25°C until the adult wasps emerged, and the maternal identity of the wasps was determined using qPCR and high-resolution melt curve analysis to determine the mitochondrial haplotype. The results showed that these measures of laboratory performance (fecundity and offspring sex ratio) were good predictors of field success in T. pretiosum. We also report strong evidence discrediting the assumption that mitochondria are neutral, in view of the correlation between performance and mitochondrial haplotype. PMID:26730735

  20. Laboratory Performance Predicts the Success of Field Releases in Inbred Lines of the Egg Parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae).

    PubMed

    Coelho, Aloisio; Rugman-Jones, Paul F; Reigada, Carolina; Stouthamer, Richard; Parra, José R P

    2016-01-01

    In this study we assessed the relationship between the laboratory and field performance of different isofemale lines of Trichogramma pretiosum Riley. In comparative assays, we used three rare mitochondrial haplotypes as genetic markers of the isofemale lines, and by introgressing these mitochondrial haplotypes into each of 15 genetically different nuclear lines, also tested the assumption that mitochondria are neutral markers. In a laboratory trial, 45 isofemale lines (15 nuclear genotypes x three mitochondrial haplotypes) were ranked in three categories (best, intermediate and worst) according to the mean offspring production and the proportion of female offspring. Subsequently, lines from each of the three categories were selected for field releases to quantify field parasitism on Ephestia kuehniella. Temporally separate releases were done in a transgenic Bt cornfield, with four plots, each with 50 points of recapture. The points of recapture consisted of trap cards with eggs of E. kuehniella collected daily. The trap cards were maintained in the laboratory at 25°C until the adult wasps emerged, and the maternal identity of the wasps was determined using qPCR and high-resolution melt curve analysis to determine the mitochondrial haplotype. The results showed that these measures of laboratory performance (fecundity and offspring sex ratio) were good predictors of field success in T. pretiosum. We also report strong evidence discrediting the assumption that mitochondria are neutral, in view of the correlation between performance and mitochondrial haplotype. PMID:26730735

  1. Laboratory Performance Predicts the Success of Field Releases in Inbred Lines of the Egg Parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae).

    PubMed

    Coelho, Aloisio; Rugman-Jones, Paul F; Reigada, Carolina; Stouthamer, Richard; Parra, José R P

    2016-01-01

    In this study we assessed the relationship between the laboratory and field performance of different isofemale lines of Trichogramma pretiosum Riley. In comparative assays, we used three rare mitochondrial haplotypes as genetic markers of the isofemale lines, and by introgressing these mitochondrial haplotypes into each of 15 genetically different nuclear lines, also tested the assumption that mitochondria are neutral markers. In a laboratory trial, 45 isofemale lines (15 nuclear genotypes x three mitochondrial haplotypes) were ranked in three categories (best, intermediate and worst) according to the mean offspring production and the proportion of female offspring. Subsequently, lines from each of the three categories were selected for field releases to quantify field parasitism on Ephestia kuehniella. Temporally separate releases were done in a transgenic Bt cornfield, with four plots, each with 50 points of recapture. The points of recapture consisted of trap cards with eggs of E. kuehniella collected daily. The trap cards were maintained in the laboratory at 25°C until the adult wasps emerged, and the maternal identity of the wasps was determined using qPCR and high-resolution melt curve analysis to determine the mitochondrial haplotype. The results showed that these measures of laboratory performance (fecundity and offspring sex ratio) were good predictors of field success in T. pretiosum. We also report strong evidence discrediting the assumption that mitochondria are neutral, in view of the correlation between performance and mitochondrial haplotype.

  2. Scaling maximal oxygen uptake to predict cycling time-trial performance in the field: a non-linear approach.

    PubMed

    Nevill, A M; Jobson, S A; Palmer, G S; Olds, T S

    2005-08-01

    The purpose of the present article is to identify the most appropriate method of scaling VO2max for differences in body mass when assessing the energy cost of time-trial cycling. The data from three time-trial cycling studies were analysed (N = 79) using a proportional power-function ANCOVA model. The maximum oxygen uptake-to-mass ratio found to predict cycling speed was VO2max(m)(-0.32) precisely the same as that derived by Swain for sub-maximal cycling speeds (10, 15 and 20 mph). The analysis was also able to confirm a proportional curvilinear association between cycling speed and energy cost, given by (VO2max(m)(-0.32))0.41. The model predicts, for example, that for a male cyclist (72 kg) to increase his average speed from 30 km h(-1) to 35 km h(-1), he would require an increase in VO2max from 2.36 l min(-1) to 3.44 l min(-1), an increase of 1.08 l min(-1). In contrast, for the cyclist to increase his mean speed from 40 km h(-1) to 45 km h(-1), he would require a greater increase in VO2max from 4.77 l min(-1) to 6.36 l min(-1), i.e. an increase of 1.59 l min(-1). The model is also able to accommodate other determinants of time-trial cycling, e.g. the benefit of cycling with a side wind (5% faster) compared with facing a predominately head/tail wind (P<0.05). Future research could explore whether the same scaling approach could be applied to, for example, alternative measures of recording power output to improve the prediction of time-trial cycling performance.

  3. A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green's function simulations

    SciTech Connect

    Salazar, Ramon B. E-mail: hilatikh@purdue.edu; Appenzeller, Joerg; Ilatikhameneh, Hesameddin E-mail: hilatikh@purdue.edu; Rahman, Rajib; Klimeck, Gerhard

    2015-10-28

    A new compact modeling approach is presented which describes the full current-voltage (I-V) characteristic of high-performance (aggressively scaled-down) tunneling field-effect-transistors (TFETs) based on homojunction direct-bandgap semiconductors. The model is based on an analytic description of two key features, which capture the main physical phenomena related to TFETs: (1) the potential profile from source to channel and (2) the elliptic curvature of the complex bands in the bandgap region. It is proposed to use 1D Poisson's equations in the source and the channel to describe the potential profile in homojunction TFETs. This allows to quantify the impact of source/drain doping on device performance, an aspect usually ignored in TFET modeling but highly relevant in ultra-scaled devices. The compact model is validated by comparison with state-of-the-art quantum transport simulations using a 3D full band atomistic approach based on non-equilibrium Green's functions. It is shown that the model reproduces with good accuracy the data obtained from the simulations in all regions of operation: the on/off states and the n/p branches of conduction. This approach allows calculation of energy-dependent band-to-band tunneling currents in TFETs, a feature that allows gaining deep insights into the underlying device physics. The simplicity and accuracy of the approach provide a powerful tool to explore in a quantitatively manner how a wide variety of parameters (material-, size-, and/or geometry-dependent) impact the TFET performance under any bias conditions. The proposed model presents thus a practical complement to computationally expensive simulations such as the 3D NEGF approach.

  4. Prediction of pump cavitation performance

    NASA Technical Reports Server (NTRS)

    Moore, R. D.

    1974-01-01

    A method for predicting pump cavitation performance with various liquids, liquid temperatures, and rotative speeds is presented. Use of the method requires that two sets of test data be available for the pump of interest. Good agreement between predicted and experimental results of cavitation performance was obtained for several pumps operated in liquids which exhibit a wide range of properties. Two cavitation parameters which qualitatively evaluate pump cavitation performance are also presented.

  5. Program Predicts Nonlinear Inverter Performance

    NASA Technical Reports Server (NTRS)

    Al-Ayoubi, R. R.; Oepomo, T. S.

    1985-01-01

    Program developed for ac power distribution system on Shuttle orbiter predicts total load on inverters and node voltages at each of line replaceable units (LRU's). Mathematical model simulates inverter performance at each change of state in power distribution system.

  6. Predictive performance models and multiple task performance

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Larish, Inge; Contorer, Aaron

    1989-01-01

    Five models that predict how performance of multiple tasks will interact in complex task scenarios are discussed. The models are shown in terms of the assumptions they make about human operator divided attention. The different assumptions about attention are then empirically validated in a multitask helicopter flight simulation. It is concluded from this simulation that the most important assumption relates to the coding of demand level of different component tasks.

  7. Action perception predicts action performance

    PubMed Central

    Bailey, Heather R.; Kurby, Christopher A.; Giovannetti, Tania; Zacks, Jeffrey M.

    2013-01-01

    Everyday action impairments often are observed in demented older adults, and they are common potential barriers to functional independence. We evaluated whether the ability to segment and efficiently encode activities is related to the ability to execute activities. Further, we evaluated whether brain regions important for segmentation also were important for action performance. Cognitively healthy older adults and those with very mild or mild dementia of the Alzheimer's type watched and segmented movies of everyday activities and then completed the Naturalistic Action Test. Structural MRI was used to measure volume in the dorsolateral prefrontal cortex (DLPFC), medial temporal lobes (MTL), posterior cortex, and anterior cingulate cortex (ACC). Dementia status and the ability to segment everyday activities strongly predicted naturalistic action performance, and MTL volume largely accounted for this relationship. In addition, the current results supported the Omission-Commission Model: Different cognitive and neurological mechanisms predicted different types of action error. Segmentation, dementia severity, and MTL volume predicted everyday omission errors, DLPFC volume predicted commission errors, and ACC volume predicted action additions. These findings suggest that event segmentation may be critical for effective action production, and that the segmentation and production of activities may recruit the same event representation system. PMID:23851113

  8. Action perception predicts action performance.

    PubMed

    Bailey, Heather R; Kurby, Christopher A; Giovannetti, Tania; Zacks, Jeffrey M

    2013-09-01

    Everyday action impairments often are observed in demented older adults, and they are common potential barriers to functional independence. We evaluated whether the ability to segment and efficiently encode activities is related to the ability to execute activities. Further, we evaluated whether brain regions important for segmentation also were important for action performance. Cognitively healthy older adults and those with very mild or mild dementia of the Alzheimer's type watched and segmented movies of everyday activities and then completed the Naturalistic Action Test. Structural MRI was used to measure volume in the dorsolateral prefrontal cortex (DLPFC), medial temporal lobes (MTL), posterior cortex, and anterior cingulate cortex (ACC). Dementia status and the ability to segment everyday activities strongly predicted naturalistic action performance, and MTL volume largely accounted for this relationship. In addition, the current results supported the Omission-Commission Model: Different cognitive and neurological mechanisms predicted different types of action error. Segmentation, dementia severity, and MTL volume predicted everyday omission errors, DLPFC volume predicted commission errors, and ACC volume predicted action additions. These findings suggest that event segmentation may be critical for effective action production, and that the segmentation and production of activities may recruit the same event representation system.

  9. Prediction of student clinical performance.

    PubMed

    Hobfoll, S E; Benor, D E

    1981-07-01

    The predictive validity of 'traditional' tools utilized in the selection of medical students was evaluated in a 'non-traditional' selection paradigm, where a wide range of previous-academic ability was represented. The validity of the use of pre-academic grades and examination scores in the prediction of success in clinical performance was examined in a medical school which de-emphasizes these indicators and emphasizes personal characteristics assessed via interview ratings in student selection. Grades and examination scores were found to have no relation to clinical ratings which have an added interpersonal and community emphasis during the fourth-sixth years of medical school. A positive trend was found for interview ratings with clinical performance, but the skewed nature of interview scores was seen as limiting investigation of this variable. The meaning of these results vis-à-vis the continued use of academic and examination related selection criteria was discussed. PMID:7253988

  10. Transferable force field for crystal structure predictions, investigation of performance and exploration of different rescoring strategies using DFT-D methods.

    PubMed

    Broo, Anders; Nilsson Lill, Sten O

    2016-08-01

    A new force field, here called AZ-FF, aimed at being used for crystal structure predictions, has been developed. The force field is transferable to a new type of chemistry without additional training or modifications. This makes the force field very useful in the prediction of crystal structures of new drug molecules since the time-consuming step of developing a new force field for each new molecule is circumvented. The accuracy of the force field was tested on a set of 40 drug-like molecules and found to be very good where observed crystal structures are found at the top of the ranked list of tentative crystal structures. Re-ranking with dispersion-corrected density functional theory (DFT-D) methods further improves the scoring. After DFT-D geometry optimization the observed crystal structure is found at the leading top of the ranking list. DFT-D methods and force field methods have been evaluated for use in predicting properties such as phase transitions upon heating, mechanical properties or intrinsic crystalline solubility. The utility of using crystal structure predictions and the associated material properties in risk assessment in connection with form selection in the drug development process is discussed.

  11. A decision-support tool to predict spray deposition of insecticides in commercial potato fields and its implications for their performance.

    PubMed

    Nansen, Christian; Vaughn, Kathy; Xue, Yingen; Rush, Charlie; Workneh, Fekede; Goolsby, John; Troxclair, Noel; Anciso, Juan; Gregory, Ashley; Holman, Daniel; Hammond, Abby; Mirkov, Erik; Tantravahi, Pratyusha; Martini, Xavier

    2011-08-01

    Approximately US $1.3 billion is spent each year on insecticide applications in major row crops. Despite this significant economic importance, there are currently no widely established decision-support tools available to assess suitability of spray application conditions or of the predicted quality or performance of a given commercial insecticide applications. We conducted a field study, involving 14 commercial spray applications with either fixed wing airplane (N=8) or ground rig (N=6), and we used environmental variables as regression fits to obtained spray deposition (coverage in percentage). We showed that (1) ground rig applications provided higher spray deposition than aerial applications, (2) spray deposition was lowest in the bottom portion of the canopy, (3) increase in plant height reduced spray deposition, (4) wind speed increased spray deposition, and (5) higher ambient temperatures and dew point increased spray deposition. Potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), mortality increased asymptotically to approximately 60% in response to abamectin spray depositions exceeding around 20%, whereas mortality of psyllid adults reached an asymptotic response approximately 40% when lambda-cyhalothrin/thiamethoxam spray deposition exceeded 30%. A spray deposition support tool was developed (http://pilcc.tamu.edu/) that may be used to make decisions regarding (1) when is the best time of day to conduct spray applications and (2) selecting which insecticide to spray based on expected spray deposition. The main conclusion from this analysis is that optimization of insecticide spray deposition should be considered a fundamental pillar of successful integrated pest management programs to increase efficiency of sprays (and therefore reduce production costs) and to reduce risk of resistance development in target pest populations. PMID:21882675

  12. Predicting Older Driver On-Road Performance by Means of the Useful Field of View and Trail Making Test Part B

    PubMed Central

    Wang, Yanning; Crizzle, Alexander M.; Winter, Sandra M.; Lanford, Desiree N.

    2013-01-01

    The Useful Field of View® (UFOV) and Trail Making Test Part B (Trails B) are measures of divided attention. We determined which measure was more accurate in predicting on-road outcomes among drivers (N = 198, mean age = 73.86, standard deviation = 6.05). Receiver operating characteristic curves for the UFOV (Risk Index [RI] and Subtests 1–3) and Trails B significantly predicted on-road outcomes. Contrasting Trails B with the UFOV RI and subtests, the only difference was found between the UFOV RI and Trails B, indicating the UFOV RI was the best predictor of on-road outcomes. Misclassifications of drivers totaled 28 for the UFOV RI, 62 for Trails B, and 58 for UFOV Subtest 2. The UFOV RI is a superior test in predicting on-road outcomes, but the Trails B has acceptable accuracy and is comparable to the other UFOV subtests. PMID:23968796

  13. DKIST Polarization Modeling and Performance Predictions

    NASA Astrophysics Data System (ADS)

    Harrington, David

    2016-05-01

    Calibrating the Mueller matrices of large aperture telescopes and associated coude instrumentation requires astronomical sources and several modeling assumptions to predict the behavior of the system polarization with field of view, altitude, azimuth and wavelength. The Daniel K Inouye Solar Telescope (DKIST) polarimetric instrumentation requires very high accuracy calibration of a complex coude path with an off-axis f/2 primary mirror, time dependent optical configurations and substantial field of view. Polarization predictions across a diversity of optical configurations, tracking scenarios, slit geometries and vendor coating formulations are critical to both construction and contined operations efforts. Recent daytime sky based polarization calibrations of the 4m AEOS telescope and HiVIS spectropolarimeter on Haleakala have provided system Mueller matrices over full telescope articulation for a 15-reflection coude system. AEOS and HiVIS are a DKIST analog with a many-fold coude optical feed and similar mirror coatings creating 100% polarization cross-talk with altitude, azimuth and wavelength. Polarization modeling predictions using Zemax have successfully matched the altitude-azimuth-wavelength dependence on HiVIS with the few percent amplitude limitations of several instrument artifacts. Polarization predictions for coude beam paths depend greatly on modeling the angle-of-incidence dependences in powered optics and the mirror coating formulations. A 6 month HiVIS daytime sky calibration plan has been analyzed for accuracy under a wide range of sky conditions and data analysis algorithms. Predictions of polarimetric performance for the DKIST first-light instrumentation suite have been created under a range of configurations. These new modeling tools and polarization predictions have substantial impact for the design, fabrication and calibration process in the presence of manufacturing issues, science use-case requirements and ultimate system calibration

  14. Microgravity Geyser and Flow Field Prediction

    NASA Technical Reports Server (NTRS)

    Hochstein, J. I.; Marchetta, J. G.; Thornton, R. J.

    2006-01-01

    Modeling and prediction of flow fields and geyser formation in microgravity cryogenic propellant tanks was investigated. A computational simulation was used to reproduce the test matrix of experimental results performed by other investigators, as well as to model the flows in a larger tank. An underprediction of geyser height by the model led to a sensitivity study to determine if variations in surface tension coefficient, contact angle, or jet pipe turbulence significantly influence the simulations. It was determined that computational geyser height is not sensitive to slight variations in any of these items. An existing empirical correlation based on dimensionless parameters was re-examined in an effort to improve the accuracy of geyser prediction. This resulted in the proposal for a re-formulation of two dimensionless parameters used in the correlation; the non-dimensional geyser height and the Bond number. It was concluded that the new non-dimensional geyser height shows little promise. Although further data will be required to make a definite judgement, the reformulation of the Bond number provided correlations that are more accurate and appear to be more general than the previously established correlation.

  15. The Real World Significance of Performance Prediction

    ERIC Educational Resources Information Center

    Pardos, Zachary A.; Wang, Qing Yang; Trivedi, Shubhendu

    2012-01-01

    In recent years, the educational data mining and user modeling communities have been aggressively introducing models for predicting student performance on external measures such as standardized tests as well as within-tutor performance. While these models have brought statistically reliable improvement to performance prediction, the real world…

  16. Trends in reservoir performance prediction

    SciTech Connect

    Mackenzie, A.S.

    1994-12-31

    Stronger links between geoscience and petroleum engineering are being fostered by new tools and organizations. These linkages are improving the effectiveness of business decisions concerning reservoir performance, and are generating new challenges for the next generation of tools.

  17. Performance Prediction of Students in Teacher Education.

    ERIC Educational Resources Information Center

    Hoover, Todd

    1979-01-01

    Scores on the Sixteen Personality Factor Questionnaire and grade point average were investigated as predictors of performance in an educational media course. Neither were recommended as tools for predicting course performance. (GDC)

  18. A nozzle internal performance prediction method

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1992-01-01

    A prediction method was written and incorporated into a three-dimensional Navier-Stokes code (PAB3D) for the calculation of nozzle internal performance. The following quantities are calculated: (1) discharge coefficient; (2) normal, side, and axial thrust ratios; (3) rolling, pitching, and yawing moments; and (4) effective pitch and yaw vector angles. Four different case studies are presented to confirm the applicability of the methodology. Internal and, in most situations, external flow-field regions are required to be modeled. The computed nozzle discharge coefficient matches both the level and the trend of the experimental data within quoted experimental data accuracy (0.5 percent). Moment and force ratios are generally within 1 to 2 percent of the absolute level of experimental data, with the trends of data matched accurately.

  19. The Prediction of Long-Term Coating Performance from Short-Term Electrochemical Data. Part 2; Comparison of Electrochemical Data to Field Exposure Results for Coatings on Steel

    NASA Technical Reports Server (NTRS)

    Contu, F.; Taylor, S. R.; Calle, L. M.; Hintze, P. E.; Curran, J. P.; Li, W.

    2009-01-01

    The pace of coatings development is limited by the time required to assess their corrosion protection properties. This study takes a step f orward from Part I in that it correlates the corrosion performance of organic coatings assessed by a series of short-term electrochemical measurement with 18-month beachside exposure results of duplicate pan els. A series of 19 coating systems on A36 steel substrates were test ed in a completely blind study using the damage tolerance test (DTT). In the DTT, a through-film pinhole defect is created, and the electro chemical characteristics of the defect are then monitored over the ne xt 4 to 7 days while immersed in 0.SM NaCl. The open circuit potentia l, anodic potentiostatic polarization tests and electrochemical imped ance spectroscopy were used to study the corrosion behavior of the co ating systems. The beachside exposure tests were conducted at the Ken nedy Space Center according to ASTM D610-01. It was found that for 79 % of the coatings systems examined, the 18 month beachside exposure r esults could be predicted by two independent laboratory tests obtained within 7 days.

  20. Program Predicts Performance of Optical Parametric Oscillators

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bowers, Mark

    2006-01-01

    A computer program predicts the performances of solid-state lasers that operate at wavelengths from ultraviolet through mid-infrared and that comprise various combinations of stable and unstable resonators, optical parametric oscillators (OPOs), and sum-frequency generators (SFGs), including second-harmonic generators (SHGs). The input to the program describes the signal, idler, and pump beams; the SFG and OPO crystals; and the laser geometry. The program calculates the electric fields of the idler, pump, and output beams at three locations (inside the laser resonator, just outside the input mirror, and just outside the output mirror) as functions of time for the duration of the pump beam. For each beam, the electric field is used to calculate the fluence at the output mirror, plus summary parameters that include the centroid location, the radius of curvature of the wavefront leaving through the output mirror, the location and size of the beam waist, and a quantity known, variously, as a propagation constant or beam-quality factor. The program provides a typical Windows interface for entering data and selecting files. The program can include as many as six plot windows, each containing four graphs.

  1. Predicting Turkish Ninth Grade Students' Algebra Performance

    ERIC Educational Resources Information Center

    Erbas, Ayhan Kursat

    2005-01-01

    The prediction of students' achievement in algebra in eighth and ninth grades has become a research interest for practical issues of placement. A group of simple, easily accessible variables was used to predict student performance in algebra after completion of eighth grade. The three variables of school type, grade level, and previous year…

  2. Performance prediction of the LSST secondary mirror

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Liang, Ming; Neill, Douglas R.

    2009-08-01

    The Large Synoptic Survey Telescope (LSST) is an 8.4 meter telescope with a field of view of 10 square degrees. This telescope will be capable of mapping the entire visible sky every few nights via sequential 15-second exposures, opening new windows on the universe from dark energy to time variable objects. The LSST optics calls for an annular 3.5 m diameter Secondary Mirror (M2), which is a large meniscus convex asphere (ellipse). The M2 converts the beam reflected from the f/1.2 primary mirror into a beam for the f/0.83 Tertiary Mirror (M3). The M2 has a mass of approximately 1.5 metric tons and the mirror support system will need to maintain the mirror figure at different gravity orientations. The optical performance evaluations were made based on the optimized support systems consisting of 72 axial supports, mounted at the mirror back surface, and 6 tangent link lateral supports mounted around the outer edge. The predicted print-though errors of the M2 supports are 8nm RMS surface for axial gravity and 10nm RMS surface for lateral gravity. The natural frequencies were calculated for the M2 dynamic performance. In addition, thermo-elastic analyses of M2 for thermal gradient cases were conducted. The LSST M2 support system has an active optics capability to maintain optical figure and its performance to correct low-order aberrations has been demonstrated. The optical image qualities and structure functions for the axial and lateral gravity print-through cases, and thermal gradient effects were calculated.

  3. Predictions of Performance in Career Education.

    ERIC Educational Resources Information Center

    Novick, M. R.; And Others

    Prediction weights for educational programs in 22 vocational and technical fields are provided using ability scores from the American College Testing Program (ACT) Career Planning Profile and a Bayesian regression theory. The criterion variable studies was first-semester grade-point average. Each vocational-technical program analyzed was…

  4. High Performance Field Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Binderbauer, Michl

    2014-10-01

    The field-reversed configuration (FRC) is a prolate compact toroid with poloidal magnetic fields. FRCs could lead to economic fusion reactors with high power density, simple geometry, natural divertor, ease of translation, and possibly capable of burning aneutronic fuels. However, as in other high-beta plasmas, there are stability and confinement concerns. These concerns can be addressed by introducing and maintaining a significant fast ion population in the system. This is the approach adopted by TAE and implemented for the first time in the C-2 device. Studying the physics of FRCs driven by Neutral Beam (NB) injection, significant improvements were made in confinement and stability. Early C-2 discharges had relatively good confinement, but global power losses exceeded the available NB input power. The addition of axially streaming plasma guns, magnetic end plugs as well as advanced surface conditioning leads to dramatic reductions in turbulence driven losses and greatly improved stability. As a result, fast ion confinement significantly improved and allowed for build-up of a dominant fast particle population. Under such appropriate conditions we achieved highly reproducible, long-lived, macroscopically stable FRCs with record lifetimes. This demonstrated many beneficial effects of large orbit particles and their performance impact on FRCs Together these achievements point to the prospect of beam-driven FRCs as a path toward fusion reactors. This presentation will review and expand on key results and present context for their interpretation.

  5. A statistical model for predicting muscle performance

    NASA Astrophysics Data System (ADS)

    Byerly, Diane Leslie De Caix

    The objective of these studies was to develop a capability for predicting muscle performance and fatigue to be utilized for both space- and ground-based applications. To develop this predictive model, healthy test subjects performed a defined, repetitive dynamic exercise to failure using a Lordex spinal machine. Throughout the exercise, surface electromyography (SEMG) data were collected from the erector spinae using a Mega Electronics ME3000 muscle tester and surface electrodes placed on both sides of the back muscle. These data were analyzed using a 5th order Autoregressive (AR) model and statistical regression analysis. It was determined that an AR derived parameter, the mean average magnitude of AR poles, significantly correlated with the maximum number of repetitions (designated Rmax) that a test subject was able to perform. Using the mean average magnitude of AR poles, a test subject's performance to failure could be predicted as early as the sixth repetition of the exercise. This predictive model has the potential to provide a basis for improving post-space flight recovery, monitoring muscle atrophy in astronauts and assessing the effectiveness of countermeasures, monitoring astronaut performance and fatigue during Extravehicular Activity (EVA) operations, providing pre-flight assessment of the ability of an EVA crewmember to perform a given task, improving the design of training protocols and simulations for strenuous International Space Station assembly EVA, and enabling EVA work task sequences to be planned enhancing astronaut performance and safety. Potential ground-based, medical applications of the predictive model include monitoring muscle deterioration and performance resulting from illness, establishing safety guidelines in the industry for repetitive tasks, monitoring the stages of rehabilitation for muscle-related injuries sustained in sports and accidents, and enhancing athletic performance through improved training protocols while reducing

  6. Performance Monitoring in Monkey Frontal Eye Field

    PubMed Central

    Yu, Dian; Ferrera, Vincent P.

    2014-01-01

    The frontal eye fields (FEF) are thought to mediate response selection during oculomotor decision tasks. In addition, many FEF neurons have robust postsaccadic responses, but their role in postchoice evaluative processes (online performance monitoring) is only beginning to become apparent. Here we report error-related neural activity in FEF while monkeys performed a biased speed-categorization task that enticed the animals to make impulsive errors. Twenty-three percent of cells in macaque FEF coded an internally generated error-related signal, and many of the same cells also coded task difficulty. The observed responses are primarily consistent with three related concepts that have been associated with performance monitoring: (1) response conflict; (2) uncertainty; and (3) reward prediction. Overall, our findings suggest a novel role for the FEF as part of the neural network that evaluates the preceding choice to optimize behavior in the future. PMID:24478349

  7. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1984-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  8. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1983-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  9. Evaluation of performance of predictive models for deoxynivalenol in wheat.

    PubMed

    van der Fels-Klerx, H J

    2014-02-01

    The aim of this study was to evaluate the performance of two predictive models for deoxynivalenol contamination of wheat at harvest in the Netherlands, including the use of weather forecast data and external model validation. Data were collected in a different year and from different wheat fields than data used for model development. The two models were run for six preset scenarios, varying in the period for which weather forecast data were used, from zero-day (historical data only) to a 13-day period around wheat flowering. Model predictions using forecast weather data were compared to those using historical data. Furthermore, model predictions using historical weather data were evaluated against observed deoxynivalenol contamination of the wheat fields. Results showed that the use of weather forecast data rather than observed data only slightly influenced model predictions. The percent of correct model predictions, given a threshold of 1,250 μg/kg (legal limit in European Union), was about 95% for the two models. However, only three samples had a deoxynivalenol concentration above this threshold, and the models were not able to predict these samples correctly. It was concluded that two- week weather forecast data can reliable be used in descriptive models for deoxynivalenol contamination of wheat, resulting in more timely model predictions. The two models are able to predict lower deoxynivalenol contamination correctly, but model performance in situations with high deoxynivalenol contamination needs to be further validated. This will need years with conducive environmental conditions for deoxynivalenol contamination of wheat.

  10. Predicting Language Performance in Hearing Impaired Children.

    ERIC Educational Resources Information Center

    Monsees, Edna K.

    The 2-year study evaluated the language performance of 69 hearing impaired, preschool children born following the rubella epidemic of the early 1960's in order to develop an instrument for objectively assessing language achievement and a predictive index of language achievement. Two language rating scales were developed which were tied to the…

  11. Why Do Spatial Abilities Predict Mathematical Performance?

    ERIC Educational Resources Information Center

    Tosto, Maria Grazia; Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Petrill, Stephen A.; Dale, Philip S.; Malykh, Sergey; Plomin, Robert; Kovas, Yulia

    2014-01-01

    Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering. Spatial skills have also been shown to rely on neuronal networks partially shared with mathematics. Understanding the nature of this association can inform educational practices and intervention for mathematical underperformance.…

  12. A decision-support tool to predict spray deposition of insecticides in commercial potato fields and its implications for their performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In conventional and most IPM programs, application of insecticides continues to be the most important responsive pest control tactic. For both immediate and long-term optimization and sustainability of insecticide applications, it is paramount to study the factors affecting the performance of insect...

  13. What predicts performance during clinical psychology training?

    PubMed Central

    Scior, Katrina; Bradley, Caroline E; Potts, Henry W W; Woolf, Katherine; de C Williams, Amanda C

    2014-01-01

    Objectives While the question of who is likely to be selected for clinical psychology training has been studied, evidence on performance during training is scant. This study explored data from seven consecutive intakes of the UK's largest clinical psychology training course, aiming to identify what factors predict better or poorer outcomes. Design Longitudinal cross-sectional study using prospective and retrospective data. Method Characteristics at application were analysed in relation to a range of in-course assessments for 274 trainee clinical psychologists who had completed or were in the final stage of their training. Results Trainees were diverse in age, pre-training experience, and academic performance at A-level (advanced level certificate required for university admission), but not in gender or ethnicity. Failure rates across the three performance domains (academic, clinical, research) were very low, suggesting that selection was successful in screening out less suitable candidates. Key predictors of good performance on the course were better A-levels and better degree class. Non-white students performed less well on two outcomes. Type and extent of pre-training clinical experience on outcomes had varied effects on outcome. Research supervisor ratings emerged as global indicators and predicted nearly all outcomes, but may have been biased as they were retrospective. Referee ratings predicted only one of the seven outcomes examined, and interview ratings predicted none of the outcomes. Conclusions Predicting who will do well or poorly in clinical psychology training is complex. Interview and referee ratings may well be successful in screening out unsuitable candidates, but appear to be a poor guide to performance on the course. Practitioner points While referee and selection interview ratings did not predict performance during training, they may be useful in screening out unsuitable candidates at the application stage High school final academic performance

  14. IR system field performance with superresolution

    NASA Astrophysics Data System (ADS)

    Fanning, Jonathan; Miller, Justin; Park, Jennifer; Tener, Gene; Reynolds, Joseph; O'Shea, Patrick; Halford, Carl; Driggers, Ron

    2007-04-01

    Superresolution processing is currently being used to improve the performance of infrared imagers through an increase in sampling, the removal of aliasing, and the reduction of fixed-pattern noise. The performance improvement of superresolution has not been previously tested on military targets. This paper presents the results of human perception experiments to determine field performance on the NVESD standard military eight (8)-target set using a prototype LWIR camera. These experiments test and compare human performance of both still images and movie clips, each generated with and without superresolution processing. Lockheed Martin's XR® algorithm is tested as a specific example of a modern combined superresolution and image processing algorithm. Basic superresolution with no additional processing is tested to help determine the benefit of separate processes. The superresolution processing is modeled in NVThermIP for comparison to the perception test. The measured range to 70% probability of identification using XR® is increased by approximately 34% while the 50% range is increased by approximately 19% for this camera. A comparison case is modeled using a more undersampled commercial MWIR sensor that predicts a 45% increase in range performance from superresolution.

  15. Computer Program Predicts Turbine-Stage Performance

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Haas, Jeffrey E.; Katsanis, Theodore

    1988-01-01

    MTSBL updated version of flow-analysis programs MERIDL and TSONIC coupled to boundary-layer program BLAYER. Method uses quasi-three-dimensional, inviscid, stream-function flow analysis iteratively coupled to calculated losses so changes in losses result in changes in flow distribution. Manner effects both configuration on flow distribution and flow distribution on losses taken into account in prediction of performance of stage. Written in FORTRAN IV.

  16. Performance predictions for the Keck telescope adaptive optics system

    SciTech Connect

    Gavel, D.T.; Olivier, S.S.

    1995-08-07

    The second Keck ten meter telescope (Keck-11) is slated to have an infrared-optimized adaptive optics system in the 1997--1998 time frame. This system will provide diffraction-limited images in the 1--3 micron region and the ability to use a diffraction-limited spectroscopy slit. The AO system is currently in the preliminary design phase and considerable analysis has been performed in order to predict its performance under various seeing conditions. In particular we have investigated the point-spread function, energy through a spectroscopy slit, crowded field contrast, object limiting magnitude, field of view, and sky coverage with natural and laser guide stars.

  17. Prediction of 200-m sprint kayaking performance.

    PubMed

    van Someren, Ken A; Palmer, Garry S

    2003-08-01

    The aim of this study was to determine the anthropometric and physiological profile of 200-m sprint kayakers and to examine relationships with 200-m race performance. Twenty-six male kayakers who were categorised in two ability groups, international (Int) and national (Nat) level, underwent a battery of anthropometric and physiological tests and a 200-m race. Race time was significantly lower in Int than Nat (39.9 +/- 0.8 s and 42.6 +/- 0.9 s, respectively). Int demonstrated significantly greater measures of mesomorphy, biepycondylar humeral breadth, circumferences of the upper arm, forearm and chest, peak power and total work in a modified Wingate test, total work in a 2-min ergometry test, peak isokinetic power, and peak isometric force. Significant relationships were found between 200-m time and a number of anthropometric variables and anaerobic and dynamometric parameters. Stepwise multiple regression revealed that total work in the modified Wingate alone predicted 200-m race time (R2 = 0.53, SEE = 1.11 s) for all 26 subjects, while biepycondylar humeral breadth alone predicted race time (R2 = 0.54, SEE = 0.52 s) in Int. These results demonstrate that superior upper body dimensions and anaerobic capacities distinguish international-level kayakers from national-level athletes and may be used to predict 200-m performance.

  18. Hypersonic Interceptor Performance Evaluation Center aero-optics performance predictions

    NASA Astrophysics Data System (ADS)

    Sutton, George W.; Pond, John E.; Snow, Ronald; Hwang, Yanfang

    1993-06-01

    This paper describes the Hypersonic Interceptor Performance Evaluation Center's (HIPEC) aerooptics performance predictions capability. It includes code results for three dimensional shapes and comparisons to initial experiments. HIPEC consists of a collection of aerothermal, aerodynamic computational codes which are capable of covering the entire flight regime from subsonic to hypersonic flow and include chemical reactions and turbulence. Heat transfer to the various surfaces is calculated as an input to cooling and ablation processes. HIPEC also has aero-optics codes to determine the effect of the mean flowfield and turbulence on the tracking and imaging capability of on-board optical sensors. The paper concentrates on the latter aspects.

  19. Comparing theories' performance in predicting violence.

    PubMed

    Haas, Henriette; Cusson, Maurice

    2015-01-01

    The stakes of choosing the best theory as a basis for violence prevention and offender rehabilitation are high. However, no single theory of violence has ever been universally accepted by a majority of established researchers. Psychiatry, psychology and sociology are each subdivided into different schools relying upon different premises. All theories can produce empirical evidence for their validity, some of them stating the opposite of each other. Calculating different models with multivariate logistic regression on a dataset of N = 21,312 observations and ninety-two influences allowed a direct comparison of the performance of operationalizations of some of the most important schools. The psychopathology model ranked as the best model in terms of predicting violence right after the comprehensive interdisciplinary model. Next came the rational choice and lifestyle model and third the differential association and learning theory model. Other models namely the control theory model, the childhood-trauma model and the social conflict and reaction model turned out to have low sensitivities for predicting violence. Nevertheless, all models produced acceptable results in predictions of a non-violent outcome.

  20. Comparing theories' performance in predicting violence.

    PubMed

    Haas, Henriette; Cusson, Maurice

    2015-01-01

    The stakes of choosing the best theory as a basis for violence prevention and offender rehabilitation are high. However, no single theory of violence has ever been universally accepted by a majority of established researchers. Psychiatry, psychology and sociology are each subdivided into different schools relying upon different premises. All theories can produce empirical evidence for their validity, some of them stating the opposite of each other. Calculating different models with multivariate logistic regression on a dataset of N = 21,312 observations and ninety-two influences allowed a direct comparison of the performance of operationalizations of some of the most important schools. The psychopathology model ranked as the best model in terms of predicting violence right after the comprehensive interdisciplinary model. Next came the rational choice and lifestyle model and third the differential association and learning theory model. Other models namely the control theory model, the childhood-trauma model and the social conflict and reaction model turned out to have low sensitivities for predicting violence. Nevertheless, all models produced acceptable results in predictions of a non-violent outcome. PMID:25637261

  1. Texture metric that predicts target detection performance

    NASA Astrophysics Data System (ADS)

    Culpepper, Joanne B.

    2015-12-01

    Two texture metrics based on gray level co-occurrence error (GLCE) are used to predict probability of detection and mean search time. The two texture metrics are local clutter metrics and are based on the statistics of GLCE probability distributions. The degree of correlation between various clutter metrics and the target detection performance of the nine military vehicles in complex natural scenes found in the Search_2 dataset are presented. Comparison is also made between four other common clutter metrics found in the literature: root sum of squares, Doyle, statistical variance, and target structure similarity. The experimental results show that the GLCE energy metric is a better predictor of target detection performance when searching for targets in natural scenes than the other clutter metrics studied.

  2. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Franklin M. Orr, Jr; Martin J. Blunt

    1998-03-31

    This project performs research in four main areas: laboratory experiments to measure three-phase relative permeability; network modeling to predict three-phase relative perme- ability; benchmark simulations of gas injection and waterfl ooding at the field scale; and the development of fast streamline techniques to study field-scale oil. The aim of the work is to achieve a comprehensive description of gas injection processes from the pore to the core to the reservoir scale. In this report we provide a detailed description of our measurements of three-phase relative permeability.

  3. The prediction of runoff flow directions on tilled fields

    NASA Astrophysics Data System (ADS)

    Takken, Ingrid; Govers, Gerard; Steegen, An; Nachtergaele, Jeroen; Guérif, Jérome

    2001-07-01

    On tilled fields runoff directions may be affected by tillage induced oriented roughness, causing runoff to flow along tillage lines instead of topographic direction. That this has an important effect on runoff and erosion patterns was already reported [Ludwig et al., Catena 25 (1995); Desmet and Govers, Catena 29 (1997); Souchère et al., J. Hydrol. 206 (1998); Takken et al., Catena 37 (1999)]. However, limited research has been carried out to develop models that can be used to predict whether flow will be in tillage or topographic direction. In this study a wide range of data was collected on runoff patterns observed in an agricultural catchment in the Belgian loess belt. The data show that for more than 75% of the mapped areas on hillslopes the flow was in direction of tillage. The data were analysed to develop two logistic regression models to predict runoff direction. The first model uses topographic slope, the angle between the tillage orientation and aspect direction and the degree of oriented roughness as input. In the second model, the effect of discharge on the flow direction is also considered using unit contributing area as a substitute variable. However, the application of the second model is complicated and error-prone. Furthermore, application of both models to a validation dataset showed only a minor increase in model performance when upslope area is included (95 vs. 93% of correct predictions). Therefore, it may be better to predict flow directions without taking discharge into account. The model without unit contributing area predicted very well the spatial variation of flow directions within a field surveyed by [Desmet and Govers, Catena 29 (1997)]. Including this logistic model in runoff and erosion models will result in much better predictions of runoff and erosion patterns than can be obtained by using the traditional approach of calculating a runoff pattern based on topography only.

  4. Machine characterization and benchmark performance prediction

    NASA Technical Reports Server (NTRS)

    Saavedra-Barrera, Rafael H.

    1988-01-01

    From runs of standard benchmarks or benchmark suites, it is not possible to characterize the machine nor to predict the run time of other benchmarks which have not been run. A new approach to benchmarking and machine characterization is reported. The creation and use of a machine analyzer is described, which measures the performance of a given machine on FORTRAN source language constructs. The machine analyzer yields a set of parameters which characterize the machine and spotlight its strong and weak points. Also described is a program analyzer, which analyzes FORTRAN programs and determines the frequency of execution of each of the same set of source language operations. It is then shown that by combining a machine characterization and a program characterization, we are able to predict with good accuracy the run time of a given benchmark on a given machine. Characterizations are provided for the Cray-X-MP/48, Cyber 205, IBM 3090/200, Amdahl 5840, Convex C-1, VAX 8600, VAX 11/785, VAX 11/780, SUN 3/50, and IBM RT-PC/125, and for the following benchmark programs or suites: Los Alamos (BMK8A1), Baskett, Linpack, Livermore Loops, Madelbrot Set, NAS Kernels, Shell Sort, Smith, Whetstone and Sieve of Erathostenes.

  5. Visual Performance Prediction Using Schematic Eye Models

    NASA Astrophysics Data System (ADS)

    Schwiegerling, James Theodore

    The goal of visual modeling is to predict the visual performance or a change in performance of an individual from a model of the human visual system. In designing a model of the human visual system, two distinct functions are considered. The first is the production of an image incident on the retina by the optical system of the eye, and the second is the conversion of this image into a perceived image by the retina and brain. The eye optics are evaluated using raytracing techniques familiar to the optical engineer. The effect of the retinal and brain function are combined with the raytracing results by analyzing the modulation of the retinal image. Each of these processes is important far evaluating the performance of the entire visual system. Techniques for converting the abstract system performance measures used by optical engineers into clinically -applicable measures such as visual acuity and contrast sensitivity are developed in this dissertation. Furthermore, a methodology for applying videokeratoscopic height data to the visual model is outlined. These tools are useful in modeling the visual effects of corrective lenses, ocular maladies and refractive surgeries. The modeling techniques are applied to examples of soft contact lenses, keratoconus, radial keratotomy, photorefractive keratectomy and automated lamellar keratoplasty. The modeling tools developed in this dissertation are meant to be general and modular. As improvements to the measurements of the properties and functionality of the various visual components are made, the new information can be incorporated into the visual system model. Furthermore, the examples discussed here represent only a small subset of the applications of the visual model. Additional ocular maladies and emerging refractive surgeries can be modeled as well.

  6. Collective hormonal profiles predict group performance.

    PubMed

    Akinola, Modupe; Page-Gould, Elizabeth; Mehta, Pranjal H; Lu, Jackson G

    2016-08-30

    Prior research has shown that an individual's hormonal profile can influence the individual's social standing within a group. We introduce a different construct-a collective hormonal profile-which describes a group's hormonal make-up. We test whether a group's collective hormonal profile is related to its performance. Analysis of 370 individuals randomly assigned to work in 74 groups of three to six individuals revealed that group-level concentrations of testosterone and cortisol interact to predict a group's standing across groups. Groups with a collective hormonal profile characterized by high testosterone and low cortisol exhibited the highest performance. These collective hormonal level results remained reliable when controlling for personality traits and group-level variability in hormones. These findings support the hypothesis that groups with a biological propensity toward status pursuit (high testosterone) coupled with reduced stress-axis activity (low cortisol) engage in profit-maximizing decision-making. The current work extends the dual-hormone hypothesis to the collective level and provides a neurobiological perspective on the factors that determine who rises to the top across, not just within, social hierarchies. PMID:27528679

  7. Optimal speed estimation in natural image movies predicts human performance.

    PubMed

    Burge, Johannes; Geisler, Wilson S

    2015-01-01

    Accurate perception of motion depends critically on accurate estimation of retinal motion speed. Here we first analyse natural image movies to determine the optimal space-time receptive fields (RFs) for encoding local motion speed in a particular direction, given the constraints of the early visual system. Next, from the RF responses to natural stimuli, we determine the neural computations that are optimal for combining and decoding the responses into estimates of speed. The computations show how selective, invariant speed-tuned units might be constructed by the nervous system. Then, in a psychophysical experiment using matched stimuli, we show that human performance is nearly optimal. Indeed, a single efficiency parameter accurately predicts the detailed shapes of a large set of human psychometric functions. We conclude that many properties of speed-selective neurons and human speed discrimination performance are predicted by the optimal computations, and that natural stimulus variation affects optimal and human observers almost identically.

  8. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Blunt, Martin J.; Orr, Jr., Franklin M.

    1999-12-20

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1998 - September 1998 under the third year of a three-year Department of Energy (DOE) grant on the ''Prediction of Gas Injection Performance for Heterogeneous Reservoirs''. The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical simulation. The research is divided into four main areas: (1) Pore scale modeling of three-phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three-phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator.

  9. PREDICTION OF CHEMICAL RESIDUES IN AQUATIC ORGANISMS FOR A FIELD DISCHARGE SITUATION.

    EPA Science Inventory

    A field study was performed which compared predicted and measured concentrations of chemicals in receiving water organisms from three sampling locations on Five Mile Creek, Birmingham, Al. Two point source discharges, both from coke manufacturing facilities, were included in the ...

  10. Why do spatial abilities predict mathematical performance?

    PubMed

    Tosto, Maria Grazia; Hanscombe, Ken B; Haworth, Claire M A; Davis, Oliver S P; Petrill, Stephen A; Dale, Philip S; Malykh, Sergey; Plomin, Robert; Kovas, Yulia

    2014-05-01

    Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering. Spatial skills have also been shown to rely on neuronal networks partially shared with mathematics. Understanding the nature of this association can inform educational practices and intervention for mathematical underperformance. Using data on two aspects of spatial ability and three domains of mathematical ability from 4174 pairs of 12-year-old twins, we examined the relative genetic and environmental contributions to variation in spatial ability and to its relationship with different aspects of mathematics. Environmental effects explained most of the variation in spatial ability (~70%) and in mathematical ability (~60%) at this age, and the effects were the same for boys and girls. Genetic factors explained about 60% of the observed relationship between spatial ability and mathematics, with a substantial portion of the relationship explained by common environmental influences (26% and 14% by shared and non-shared environments respectively). These findings call for further research aimed at identifying specific environmental mediators of the spatial-mathematics relationship. PMID:24410830

  11. How Coriolis meter design affects field performance

    SciTech Connect

    Levien, A.; Dudiak, A.

    1995-12-31

    Although many possibilities exist for the design of Coriolis flowmeters, a common set of fundamental physical principles affect practical meter design. Design criteria such as tube geometry, alloy section, operating frequencies, stress levels, and tubing wall thickness have varying impacts on meter performance. Additionally, field conditions such as changing temperature, pressure, pipeline stress and vibration affect measurement performance. The challenge created in Coriolis flow meter design is to maximize the sensitivity of the meter Coriolis forces, while minimizing the impact of outside environmental influences. Data are presented on the physical principles that affect Coriolis flowmeters, and how the various aspects of meter design influence field performance.

  12. Misleading Performance Reporting in the Supercomputing Field

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Kutler, Paul (Technical Monitor)

    1992-01-01

    In a previous humorous note, I outlined twelve ways in which performance figures for scientific supercomputers can be distorted. In this paper, the problem of potentially misleading performance reporting is discussed in detail. Included are some examples that have appeared in recent published scientific papers. This paper also includes some proposed guidelines for reporting performance, the adoption of which would raise the level of professionalism and reduce the level of confusion in the field of supercomputing.

  13. Pilot Performance With Predictive System Status Information

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.

    1997-01-01

    Research has shown a strong pilot preference for predictive information of aircraft system status in the flight deck. However, the benefits of predictive information have not been quantitatively demonstrated. The study described here attempted to identify and quantify these benefits if they existed. In this simulator experiment, three types of predictive information (none, whether a parameter was changing abnormally, and the time for a parameter to reach an alert range) and four initial times to an alert (1 minute, 5 minutes, 15 minutes, and ETA+ 45 minutes) were found to affect when subjects accomplished certain actions, such as accessing pertinent checklists, declaring emergencies, diverting, and calling the flight attendant and dispatch.

  14. An analytical model for predicting the aerodynamic performance of a turbine cascade with film cooling

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.; Tabakoff, W.

    1977-01-01

    Various analytical approaches to predicting the performance of film cooled turbine blades are reviewed. A two-dimensional cascade flow solution is developed for calculating the effects of the coolant injection on the total flow field. This solution is used with an available analytical performance predicting method to provide an improved method. Comparisons are made with experimental data and other analytical results.

  15. Genomic Prediction of Testcross Performance in Canola (Brassica napus).

    PubMed

    Jan, Habib U; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A; Snowdon, Rod J

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable

  16. Genomic Prediction of Testcross Performance in Canola (Brassica napus)

    PubMed Central

    Jan, Habib U.; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A.; Snowdon, Rod J.

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable

  17. Predictions of H-mode performance in ITER

    SciTech Connect

    Budny, R. V.; Andre, R.; Bateman, G.; Halpern, F.; Kessel, C. E.; Kritz, A.; McCune, D.

    2008-03-03

    Time-dependent integrated predictive modeling is carried out using the PTRANSP code to predict fusion power and parameters such as alpha particle density and pressure in ITER H-mode plasmas. Auxiliary heating by negative ion neutral beam injection and ion cyclotron heating of He3 minority ions are modeled, and the GLF23 transport model is used in the prediction of the evolution of plasma temperature profiles. Effects of beam steering, beam torque, plasma rotation, beam current drive, pedestal temperatures, sawtooth oscillations, magnetic diffusion, and accumulation of He ash are treated self-consistently. Variations in assumptions associated with physics uncertainties for standard base-line DT H-mode plasmas (with Ip=15 MA, BTF=5.3 T, and Greenwald fraction=0.86) lead to a range of predictions for DT fusion power PDT and quasi-steady state fusion QDT (≡ PDT/Paux). Typical predictions assuming Paux = 50-53 MW yield PDT = 250- 720 MW and QDT = 5 - 14. In some cases where Paux is ramped down or shut off after initial flat-top conditions, quasi-steady QDT can be considerably higher, even infinite. Adverse physics assumptions such as existence of an inward pinch of the helium ash and an ash recycling coefficient approaching unity lead to very low values for PDT. Alternative scenarios with different heating and reduced performance regimes are also considered including plasmas with only H or D isotopes, DT plasmas with toroidal field reduced 10 or 20%, and discharges with reduced beam voltage. In full-performance D-only discharges, tritium burn-up is predicted to generate central tritium densities up to 1016/m3 and DT neutron rates up to 5×1016/s, compared with the DD neutron rates of 6×1017/s. Predictions with the toroidal field reduced 10 or 20% below the planned 5.3 T and keeping the same q98, Greenwald fraction, and Βη indicate that the fusion yield PDT and QDT will be lower by about a factor of two (scaling as B3.5).

  18. Standard target sets for field sensor performance measurements

    NASA Astrophysics Data System (ADS)

    O'Connor, John D.; O'Shea, Patrick; Palmer, John E.; Deaver, Dawne M.

    2006-05-01

    The US Army Night Vision and Electronic Sensors Directorate (NVESD) Modeling and Simulation Division develops sensors models (FLIR 92, NV Therm, NV Therm IP) that predict the comparative performance of electro-optical sensors. The NVESD modeling branch developed a 12-vehicle, 12-aspect target signature set in 1998 with a known cycle criteria. It will be referred to as the 12-target set. This 12-target set has and will continue to be the modeling "gold standard" for laboratory human perception experiments supporting sensor performance modeling, and has been employed in dozens of published experiments. The 12-target set is, however, too costly for most acquisition field tests and evaluations. The authors developed an 8-vehicle 3-aspect target set, referred to as the 8- target set, and measured its discrimination task difficulty, (N50 and V50). Target identification (ID) range performance predictions for several sensors were made based on those V50/N50 values. A field collection of the 8-target set using those sensors provided imagery for a human perception study. The human perception study found excellent agreement between predicted and measured range performance. The goal of this development is to create a "silver standard" target set that is as dependable in measuring sensor performance as the "gold standard", and is affordable for Milestone A and other field trials.

  19. Prediction of Mechanical Properties of Polymers With Various Force Fields

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.

  20. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Blunt, Michael J.; Orr, Franklin M.

    1999-05-26

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1996 - September 1997 under the first year of a three-year Department of Energy grant on the Prediction of Gas Injection Performance for Heterogeneous Reservoirs. The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical simulation. The original proposal described research in four main areas; (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each stage of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.

  1. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Blunt, Martin J.; Orr, Franklin M.

    1999-05-17

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1997 - September 1998 under the second year of a three-year grant from the Department of Energy on the "Prediction of Gas Injection Performance for Heterogeneous Reservoirs." The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments, and numerical simulation. The original proposal described research in four areas: (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each state of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.

  2. Specific Mindfulness Skills Differentially Predict Creative Performance.

    PubMed

    Baas, Matthijs; Nevicka, Barbara; Ten Velden, Femke S

    2014-05-23

    Past work has linked mindfulness to improved emotion regulation, interpersonal skills, and basic cognitive abilities, but is unclear about the relation between mindfulness and creativity. Studies examining effects of mindfulness on factors pertinent to creativity suggest a uniform and positive relation, whereas work on specific mindfulness skills suggests that mindfulness skills may differentially predict creativity. To test whether the relation between mindfulness and creativity is positive and uniform (the uniform hypothesis) or differentially depends on particular components of mindfulness (the differential hypothesis), we conducted four studies in which mindfulness skills were measured, extensively trained, or manipulated with a short, incidental meditation session. Results supported a differential relation between mindfulness and creativity: Only the ability to observe and attend to various stimuli consistently and positively predicted creativity. Results regarding other mindfulness skills were less consistent. Implications for theory and practice are discussed.

  3. Individual laboratory-measured discount rates predict field behavior

    PubMed Central

    Chabris, Christopher F.; Laibson, David; Morris, Carrie L.; Schuldt, Jonathon P.; Taubinsky, Dmitry

    2009-01-01

    We estimate discount rates of 555 subjects using a laboratory task and find that these individual discount rates predict inter-individual variation in field behaviors (e.g., exercise, BMI, smoking). The correlation between the discount rate and each field behavior is small: none exceeds 0.28 and many are near 0. However, the discount rate has at least as much predictive power as any variable in our dataset (e.g., sex, age, education). The correlation between the discount rate and field behavior rises when field behaviors are aggregated: these correlations range from 0.09-0.38. We present a model that explains why specific intertemporal choice behaviors are only weakly correlated with discount rates, even though discount rates robustly predict aggregates of intertemporal decisions. PMID:19412359

  4. Rotary-wing aerodynamics. Volume 2: Performance prediction of helicopters

    NASA Technical Reports Server (NTRS)

    Keys, C. N.; Stephniewski, W. Z. (Editor)

    1979-01-01

    Application of theories, as well as, special methods of procedures applicable to performance prediction are illustrated first, on an example of the conventional helicopter and then, winged and tandem configurations. Performance prediction of conventional helicopters in hover and vertical ascent are investigated. Various approaches to performance prediction in forward translation are presented. Performance problems are discussed only this time, a wing is added to the baseline configuration, and both aircraft are compared with respect to their performance. This comparison is extended to a tandem. Appendices on methods for estimating performance guarantees and growth of aircraft concludes this volume.

  5. Does field independence predict visuo-spatial abilities underpinning human navigation? Behavioural evidence.

    PubMed

    Boccia, Maddalena; Piccardi, Laura; Di Marco, Mariangela; Pizzamiglio, Luigi; Guariglia, Cecilia

    2016-10-01

    Field independence (FI) has been defined as the extent to which the individual perceives part of a field as discrete from the surrounding field, rather than embedded in the field. It has been proposed to represent a relatively stable pattern in individuals' predisposition towards information processing. In the present study, we assessed the effect of FI on skills underpinning human navigation. Fifty Healthy individuals took part in this study. FI has been assessed by using the group embedded figures test (GEFT). Participants were also asked to perform several visuo-spatial orientation tasks, including the perspective taking/spatial orientation test (PTSOT), the mental rotation task (MRT) and the vividness task, as well as the Santa Barbara Sense of Direction Scale, a self-reported questionnaire, which has been found to predict environmental spatial orientation ability. We found that performances on the GEFT significantly predicted performances on the PTSOT and the MRT. This result supports the idea that FI predicts human navigation.

  6. Statistical validation of event predictors: A comparative study based on the field of seizure prediction

    SciTech Connect

    Feldwisch-Drentrup, Hinnerk; Schulze-Bonhage, Andreas; Timmer, Jens; Schelter, Bjoern

    2011-06-15

    The prediction of events is of substantial interest in many research areas. To evaluate the performance of prediction methods, the statistical validation of these methods is of utmost importance. Here, we compare an analytical validation method to numerical approaches that are based on Monte Carlo simulations. The comparison is performed in the field of the prediction of epileptic seizures. In contrast to the analytical validation method, we found that for numerical validation methods insufficient but realistic sample sizes can lead to invalid high rates of false positive conclusions. Hence we outline necessary preconditions for sound statistical tests on above chance predictions.

  7. Performance analysis and prediction in triathlon.

    PubMed

    Ofoghi, Bahadorreza; Zeleznikow, John; Macmahon, Clare; Rehula, Jan; Dwyer, Dan B

    2016-01-01

    Performance in triathlon is dependent upon factors that include somatotype, physiological capacity, technical proficiency and race strategy. Given the multidisciplinary nature of triathlon and the interaction between each of the three race components, the identification of target split times that can be used to inform the design of training plans and race pacing strategies is a complex task. The present study uses machine learning techniques to analyse a large database of performances in Olympic distance triathlons (2008-2012). The analysis reveals patterns of performance in five components of triathlon (three race "legs" and two transitions) and the complex relationships between performance in each component and overall performance in a race. The results provide three perspectives on the relationship between performance in each component of triathlon and the final placing in a race. These perspectives allow the identification of target split times that are required to achieve a certain final place in a race and the opportunity to make evidence-based decisions about race tactics in order to optimise performance.

  8. Performance evaluation of infrared imaging system in field test

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Guo, Xiaodong; Ren, Tingting; Zhang, Zhi-jie

    2014-11-01

    Infrared imaging system has been applied widely in both military and civilian fields. Since the infrared imager has various types and different parameters, for system manufacturers and customers, there is great demand for evaluating the performance of IR imaging systems with a standard tool or platform. Since the first generation IR imager was developed, the standard method to assess the performance has been the MRTD or related improved methods which are not perfect adaptable for current linear scanning imager or 2D staring imager based on FPA detector. For this problem, this paper describes an evaluation method based on the triangular orientation discrimination metric which is considered as the effective and emerging method to evaluate the synthesis performance of EO system. To realize the evaluation in field test, an experiment instrument is developed. And considering the importance of operational environment, the field test is carried in practical atmospheric environment. The test imagers include panoramic imaging system and staring imaging systems with different optics and detectors parameters (both cooled and uncooled). After showing the instrument and experiment setup, the experiment results are shown. The target range performance is analyzed and discussed. In data analysis part, the article gives the range prediction values obtained from TOD method, MRTD method and practical experiment, and shows the analysis and results discussion. The experimental results prove the effectiveness of this evaluation tool, and it can be taken as a platform to give the uniform performance prediction reference.

  9. Analysis of factors that predict clinical performance in medical school.

    PubMed

    White, Casey B; Dey, Eric L; Fantone, Joseph C

    2009-10-01

    Academic achievement indices including GPAs and MCAT scores are used to predict the spectrum of medical student academic performance types. However, use of these measures ignores two changes influencing medical school admissions: student diversity and affirmative action, and an increased focus on communication skills. To determine if GPA and MCAT predict performance in medical school consistently across students, and whether either predicts clinical performance in clerkships. A path model was developed to examine relationships among indices of medical student performance during the first three years of medical school for five cohorts of medical students. A structural equation approach was used to calculate the coefficients hypothesized in the model for majority and minority students. Significant differences between majority and minority students were observed. MCAT scores, for example, did not predict performance of minority students in the first year of medical school but did predict performance of majority students. This information may be of use to medical school admissions and resident selection committees. PMID:18030590

  10. Challenges of Student Selection: Predicting Academic Performance

    ERIC Educational Resources Information Center

    van der Merwe, D.; de Beer, M.

    2006-01-01

    Finding accurate predictors of tertiary academic performance, specifically for disadvantaged students, is essential because of budget constraints and the need of the labour market to address employment equity. Increased retention, throughput and decreased dropout rates are vital. When making admission decisions, the under preparedness of students…

  11. Dichotic listening performance predicts language comprehension.

    PubMed

    Asbjørnsen, Arve E; Helland, Turid

    2006-05-01

    Dichotic listening performance is considered a reliable and valid procedure for the assessment of language lateralisation in the brain. However, the documentation of a relationship between language functions and dichotic listening performance is sparse, although it is accepted that dichotic listening measures language perception. In particular, language comprehension should show close correspondence to perception of language stimuli. In the present study, we tested samples of reading-impaired and normally achieving children between 10 and 13 years of age with tests of reading skills, language comprehension, and dichotic listening to consonant-vowel (CV) syllables. A high correlation between the language scores and the dichotic listening performance was expected. However, since the left ear score is believed to be an error when assessing language laterality, covariation was expected for the right ear scores only. In addition, directing attention to one ear input was believed to reduce the influence of random factors, and thus show a more concise estimate of left hemisphere language capacity. Thus, a stronger correlation between language comprehension skills and the dichotic listening performance when attending to the right ear was expected. The analyses yielded a positive correlation between the right ear score in DL and language comprehension, an effect that was stronger when attending to the right ear. The present results confirm the assumption that dichotic listening with CV syllables measures an aspect of language perception and language skills that is related to general language comprehension.

  12. Goal Setting and Expectancy Theory Predictions of Effort and Performance.

    ERIC Educational Resources Information Center

    Dossett, Dennis L.; Luce, Helen E.

    Neither expectancy (VIE) theory nor goal setting alone are effective determinants of individual effort and task performance. To test the combined ability of VIE and goal setting to predict effort and performance, 44 real estate agents and their managers completed questionnaires. Quarterly income goals predicted managers' ratings of agents' effort,…

  13. Third Graders' Performance Predictions: Calibration Deflections and Academic Success

    ERIC Educational Resources Information Center

    Ots, Aivar

    2013-01-01

    This study focuses on third grade pupils' (9 to 10 years old) ability to predict their performance in a given task and on the correspondence between the accuracy and adequacy of the predictions on the one hand, and the academic achievement on the other. The study involved 713 pupils from 29 Estonian schools. The pupils' performance predictions…

  14. Mining Behavior Based Safety Data to Predict Safety Performance

    SciTech Connect

    Jeffrey C. Joe

    2010-06-01

    The Idaho National Laboratory (INL) operates a behavior based safety program called Safety Observations Achieve Results (SOAR). This peer-to-peer observation program encourages employees to perform in-field observations of each other's work practices and habits (i.e., behaviors). The underlying premise of conducting these observations is that more serious accidents are prevented from occurring because lower level “at risk” behaviors are identified and corrected before they can propagate into culturally accepted “unsafe” behaviors that result in injuries or fatalities. Although the approach increases employee involvement in safety, the premise of the program has not been subject to sufficient empirical evaluation. The INL now has a significant amount of SOAR data on these lower level “at risk” behaviors. This paper describes the use of data mining techniques to analyze these data to determine whether they can predict if and when a more serious accident will occur.

  15. Does finger sense predict addition performance?

    PubMed

    Newman, Sharlene D

    2016-05-01

    The impact of fingers on numerical and mathematical cognition has received a great deal of attention recently. However, the precise role that fingers play in numerical cognition is unknown. The current study explores the relationship between finger sense, arithmetic and general cognitive ability. Seventy-six children between the ages of 5 and 12 participated in the study. The results of stepwise multiple regression analyses demonstrated that while general cognitive ability including language processing was a predictor of addition performance, finger sense was not. The impact of age on the relationship between finger sense, and addition was further examined. The participants were separated into two groups based on age. The results showed that finger gnosia score impacted addition performance in the older group but not the younger group. These results appear to support the hypothesis that fingers provide a scaffold for calculation and that if that scaffold is not properly built, it has continued differential consequences to mathematical cognition. PMID:26993292

  16. Driving and Low Vision: Validity of Assessments for Predicting Performance of Drivers

    ERIC Educational Resources Information Center

    Strong, J. Graham; Jutai, Jeffrey W.; Russell-Minda, Elizabeth; Evans, Mal

    2008-01-01

    The authors conducted a systematic review to examine whether vision-related assessments can predict the driving performance of individuals who have low vision. The results indicate that measures of visual field, contrast sensitivity, cognitive and attention-based tests, and driver screening tools have variable utility for predicting real-world…

  17. Predicted thermal performance of triple vacuum glazing

    SciTech Connect

    Fang, Yueping; Hyde, Trevor J.; Hewitt, Neil

    2010-12-15

    The simulated triple vacuum glazing (TVG) consists of three 4 mm thick glass panes with two vacuum gaps, with each internal glass surface coated with a low-emittance coating with an emittance of 0.03. The two vacuum gaps are sealed by an indium based sealant and separated by a stainless steel pillar array with a height of 0.12 mm and a pillar diameter of 0.3 mm spaced at 25 mm. The thermal transmission at the centre-of-glazing area of the TVG was predicted to be 0.26 W m{sup -2} K{sup -1}. The simulation results show that although the thermal conductivity of solder glass (1 W m{sup -1} K{sup -1}) and indium (83.7 W m{sup -1} K{sup -1}) are very different, the difference in thermal transmission of TVGs resulting from the use of an indium and a solder glass edge seal was 0.01 W m{sup -2} K{sup -1}. This is because the edge seal is so thin (0.12 mm), consequently there is a negligible temperature drop across it irrespective of the material that the seal is made from relative to the total temperature difference across the glazing. The results also show that there is a relatively large increase in the overall thermal conductance of glazings without a frame when the width of the indium edge seal is increased. Increasing the rebate depth in a solid wood frame decreased the heat transmission of the TVG. The overall heat transmission of the simulated 0.5 m by 0.5 m TVG was 32.6% greater than that of the 1 m by 1 m TVG, since heat conduction through the edge seal of the small glazing has a larger contribution to the total glazing heat transfer than that of the larger glazing system. (author)

  18. Does IQ Really Predict Job Performance?

    PubMed Central

    Richardson, Ken; Norgate, Sarah H.

    2015-01-01

    IQ has played a prominent part in developmental and adult psychology for decades. In the absence of a clear theoretical model of internal cognitive functions, however, construct validity for IQ tests has always been difficult to establish. Test validity, therefore, has always been indirect, by correlating individual differences in test scores with what are assumed to be other criteria of intelligence. Job performance has, for several reasons, been one such criterion. Correlations of around 0.5 have been regularly cited as evidence of test validity, and as justification for the use of the tests in developmental studies, in educational and occupational selection and in research programs on sources of individual differences. Here, those correlations are examined together with the quality of the original data and the many corrections needed to arrive at them. It is concluded that considerable caution needs to be exercised in citing such correlations for test validation purposes. PMID:26405429

  19. Performance prediction of the Wells self-rectifying air turbine

    NASA Astrophysics Data System (ADS)

    Raghunathan, S.; Tan, C. P.

    An experimental and analytical study of the effects of geometric and aerodynamic variables on the performance of the Wells self-rectifying axial flow air turbine is presented. Experiments were performed in a unidirectional flow rig. Two approaches to the prediction of the performance of the Wells turbine were described, both of which were based on two-dimensional cascade theory and isolated aerofoil data. Finally, comparisons of the predicted results with the experimental results were made.

  20. Reliable predictions of waste performance in a geologic repository

    SciTech Connect

    Pigford, T.H.; Chambre, P.L.

    1985-08-01

    Establishing reliable estimates of long-term performance of a waste repository requires emphasis upon valid theories to predict performance. Predicting rates that radionuclides are released from waste packages cannot rest upon empirical extrapolations of laboratory leach data. Reliable predictions can be based on simple bounding theoretical models, such as solubility-limited bulk-flow, if the assumed parameters are reliably known or defensibly conservative. Wherever possible, performance analysis should proceed beyond simple bounding calculations to obtain more realistic - and usually more favorable - estimates of expected performance. Desire for greater realism must be balanced against increasing uncertainties in prediction and loss of reliability. Theoretical predictions of release rate based on mass-transfer analysis are bounding and the theory can be verified. Postulated repository analogues to simulate laboratory leach experiments introduce arbitrary and fictitious repository parameters and are shown not to agree with well-established theory. 34 refs., 3 figs., 2 tabs.

  1. Performance Reports: Mirror alignment system performance prediction comparison between SAO and EKC

    NASA Technical Reports Server (NTRS)

    Tananbaum, H. D.; Zhang, J. P.

    1994-01-01

    The objective of this study is to perform an independent analysis of the residual high resolution mirror assembly (HRMA) mirror distortions caused by force and moment errors in the mirror alignment system (MAS) to statistically predict the HRMA performance. These performance predictions are then compared with those performed by Kodak to verify their analysis results.

  2. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  3. Decoherence of quantum fields: Pointer states and predictability

    SciTech Connect

    Anglin, J.R.; Zurek, W.H.

    1996-06-01

    We study environmentally induced decoherence of an electromagnetic field in a homogeneous, linear, dielectric medium. We derive an independent oscillator model for such an environment, which is sufficiently realistic to encompass essentially all linear physical optics. Applying the {open_quote}{open_quote}predictability sieve{close_quote}{close_quote} to the quantum field, and introducing the concept of a {open_quote}{open_quote}quantum halo,{close_quote}{close_quote} we recover the familiar dichotomy between background field configurations and photon excitations around them. We are then able to explain why a typical linear environment for the electromagnetic field will effectively render the former classically distinct, but leave the latter fully quantum mechanical. Finally, we suggest how and why quantum matter fields should suffer a very different form of decoherence. {copyright} {ital 1996 The American Physical Society.}

  4. Dual-stroke heat pump field performance

    NASA Astrophysics Data System (ADS)

    Veyo, S. E.

    1984-11-01

    Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.

  5. "Too Complex for Me!" Why Do Performance-Approach and Performance-Avoidance Goals Predict Exam Performance?

    ERIC Educational Resources Information Center

    Darnon, Celine; Butera, Fabrizio; Mugny, Gabriel; Quiamzade, Alain; Hulleman, Chris S.

    2009-01-01

    Classroom research on achievement goals has revealed that performance-approach goals (goals to outperform others) positively predict exam performance whereas performance-avoidance goals (goals not to perform more poorly than others) negatively predict it. Because prior classroom research has primarily utilized multiple-choice exam performance, the…

  6. Mastery and Performance Goals Predict Epistemic and Relational Conflict Regulation

    ERIC Educational Resources Information Center

    Darnon, Celine; Muller, Dominique; Schrager, Sheree M.; Pannuzzo, Nelly; Butera, Fabrizio

    2006-01-01

    The present research examines whether mastery and performance goals predict different ways of reacting to a sociocognitive conflict with another person over materials to be learned, an issue not yet addressed by the achievement goal literature. Results from 2 studies showed that mastery goals predicted epistemic conflict regulation (a conflict…

  7. Predicting ground electric field due to geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Nair, M. C.; Püthe, C.; Kuvshinov, A. V.

    2013-12-01

    Electric field induced in the ground by geomagnetic disturbances drives currents in the power transmission grids, telecommunication lines or buried pipelines. These currents, known as Geomagnetically Induced Currents (GIC) are known to cause service disruptions. This effect is maximal at high latitudes due to the presence of strong polar electrojet currents. However both observations and models show that GIC caused by ring current intensifications also pose a risk at low- and mid-latitude locations, where majority of systems vulnerable to GIC are installed. A technique to model geoelectric field induced by the magnetospheric currents in a 3D conductivity model of the Earth is presented by Püthe & Kuvshinov (2013). We extend this work by predicting the induced geoelectric field solely based on Disturbance storm time index (Dst), a measure of ring current activity. Two major components of this effort are 1) Pre-computed 3D electromagnetic response of the ground to a unit magnetopsheric (P01) source and 2) Forecasted Dst data (Temerin & Li, 2002; 2006) from Advanced Composition Explorer (ACE) satellite at the L1 Lagrange point. Depending on the solar wind speed, the Dst forecasts are available approximately 1 hour in advance. The pre-computed response function for a site is multiplied by the Dst data in frequency domain to obtain predicted electric field for that location. Validating our approach, the predicted geoelectric field compares favorably with observed data from an ocean bottom electromagnetic array in the Pacific Ocean during the geomagnetic storm of April 2000. We also compare data from USArray magnetotelluric stations operational during the geomagnetic storm of October 2011. In this case, the results are site specific, with varying degrees of model fit. This indicates the influence of local surface conductivity inhomogeneities on the observed geoelectric data. Averaging data from adjacent stations seems to improve the fit with the prediction.

  8. FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS

    SciTech Connect

    Coe, Dan; Bradley, Larry; Zitrin, Adi

    2015-02-20

    The Frontier Fields program is obtaining deep Hubble and Spitzer Space Telescope images of new ''blank'' fields and nearby fields gravitationally lensed by massive galaxy clusters. The Hubble images of the lensed fields are revealing nJy sources (AB mag > 31), the faintest galaxies yet observed. The full program will transform our understanding of galaxy evolution in the first 600 million years (z > 9). Previous programs have yielded a dozen or so z > 9 candidates, including perhaps fewer than expected in the Ultra Deep Field and more than expected in shallower Hubble images. In this paper, we present high-redshift (z > 6) number count predictions for the Frontier Fields and candidates in three of the first Hubble images. We show the full Frontier Fields program may yield up to ∼70 z > 9 candidates (∼6 per field). We base this estimate on an extrapolation of luminosity functions observed between 4 < z < 8 and gravitational lensing models submitted by the community. However, in the first two deep infrared Hubble images obtained to date, we find z ∼ 8 candidates but no strong candidates at z > 9. We defer quantitative analysis of the z > 9 deficit (including detection completeness estimates) to future work including additional data. At these redshifts, cosmic variance (field-to-field variation) is expected to be significant (greater than ±50%) and include clustering of early galaxies formed in overdensities. The full Frontier Fields program will significantly mitigate this uncertainty by observing six independent sightlines each with a lensing cluster and nearby blank field.

  9. PREDICTION INTERVALS FOR INTEGRALS OF GAUSSIAN RANDOM FIELDS

    PubMed Central

    De Oliveira, Victor; Kone, Bazoumana

    2014-01-01

    Methodology is proposed for the construction of prediction intervals for integrals of Gaussian random fields over bounded regions (called block averages in the geostatistical literature) based on observations at a finite set of sampling locations. Two bootstrap calibration algorithms are proposed, termed indirect and direct, aimed at improving upon plug-in prediction intervals in terms of coverage probability. A simulation study is carried out that illustrates the effectiveness of both procedures, and these procedures are applied to estimate block averages of chromium traces in a potentially contaminated region in Switzerland. PMID:25431507

  10. Predicted NETD performance of a polarized infrared imaging sensor

    NASA Astrophysics Data System (ADS)

    Preece, Bradley; Hodgkin, Van A.; Thompson, Roger; Leonard, Kevin; Krapels, Keith

    2014-05-01

    Polarization filters are commonly used as a means of increasing the contrast of a scene thereby increasing sensor range performance. The change in the signal to noise ratio (SNR) is a function of the polarization of the target and background, the type and orientation of the polarization filter(s), and the overall transparency of the filter. However, in the mid-wave and longwave infrared bands (MWIR and LWIR), the noise equivalent temperature difference (NETD), which directly affects the SNR, is a function of the filter's re-emission and its reflected temperature radiance. This paper presents a model, by means of a Stokes vector input, that can be incorporated into the Night Vision Integrated Performance Model (NV-IPM) in order to predict the change in SNR, NETD, and noise equivalent irradiance (NEI) for infrared polarimeter imaging systems. The model is then used to conduct a SNR trade study, using a modeled Stokes vector input, for a notional system looking at a reference target. Future laboratory and field measurements conducted at Night Vision Electronic Sensors Directorate (NVESD) will be used to update, validate, and mature the model of conventional infrared systems equipped with polarization filters.

  11. The engine performance prediction by quasi-steady method

    NASA Astrophysics Data System (ADS)

    Ye, Ai-Yun; Zhang, Yanqin

    1995-01-01

    In this paper, the theory of Quasi-steady is applied to the calculations of turbochargers matching to the diesel engines and performance prediction. The engine performance prediction programs written in language C have been used for calculations of various turbocharged diesel engines. It has been confirmed by the comparisons with experimental data that the results of the calculation are reasonable, reliable and satisfied for the engineering applications.

  12. The joint effects of personality and workplace social exchange relationships in predicting task performance and citizenship performance.

    PubMed

    Kamdar, Dishan; Van Dyne, Linn

    2007-09-01

    This field study examines the joint effects of social exchange relationships at work (leader-member exchange and team-member exchange) and employee personality (conscientiousness and agreeableness) in predicting task performance and citizenship performance. Consistent with trait activation theory, matched data on 230 employees, their coworkers, and their supervisors demonstrated interactions in which high quality social exchange relationships weakened the positive relationships between personality and performance. Results demonstrate the benefits of consonant predictions in which predictors and outcomes are matched on the basis of specific targets. We discuss theoretical and practical implications. PMID:17845086

  13. COMPASS: A Framework for Automated Performance Modeling and Prediction

    SciTech Connect

    Lee, Seyong; Meredith, Jeremy S; Vetter, Jeffrey S

    2015-01-01

    Flexible, accurate performance predictions offer numerous benefits such as gaining insight into and optimizing applications and architectures. However, the development and evaluation of such performance predictions has been a major research challenge, due to the architectural complexities. To address this challenge, we have designed and implemented a prototype system, named COMPASS, for automated performance model generation and prediction. COMPASS generates a structured performance model from the target application's source code using automated static analysis, and then, it evaluates this model using various performance prediction techniques. As we demonstrate on several applications, the results of these predictions can be used for a variety of purposes, such as design space exploration, identifying performance tradeoffs for applications, and understanding sensitivities of important parameters. COMPASS can generate these predictions across several types of applications from traditional, sequential CPU applications to GPU-based, heterogeneous, parallel applications. Our empirical evaluation demonstrates a maximum overhead of 4%, flexibility to generate models for 9 applications, speed, ease of creation, and very low relative errors across a diverse set of architectures.

  14. Predicting dynamic performance limits for servosystems with saturating nonlinearities

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Blech, R. A.

    1979-01-01

    A generalized treatment for a system with a single saturating nonlinearity is presented and compared with frequency response plots obtained from an analog model of the system. Once the amplitude dynamics are predicted with the limit lines, an iterative technique is employed to determine the system phase response. The saturation limit line technique is used in conjunction with velocity and acceleration limits to predict the performance of an electro-hydraulic servosystem containing a single-stage servovalve. Good agreement was obtained between predicted performance and experimental data.

  15. Evaluation of abutment scour prediction equations with field data

    USGS Publications Warehouse

    Benedict, S.T.; Deshpande, N.; Aziz, N.M.

    2007-01-01

    The U.S. Geological Survey, in cooperation with FHWA, compared predicted abutment scour depths, computed with selected predictive equations, with field observations collected at 144 bridges in South Carolina and at eight bridges from the National Bridge Scour Database. Predictive equations published in the 4th edition of Evaluating Scour at Bridges (Hydraulic Engineering Circular 18) were used in this comparison, including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. The comparisons showed that most equations tended to provide conservative estimates of scour that at times were excessive (as large as 158 ft). Equations also produced underpredictions of scour, but with less frequency. Although the equations provide an important resource for evaluating abutment scour at bridges, the results of this investigation show the importance of using engineering judgment in conjunction with these equations.

  16. Product component genealogy modeling and field-failure prediction

    DOE PAGESBeta

    King, Caleb; Hong, Yili; Meeker, William Q.

    2016-04-13

    Many industrial products consist of multiple components that are necessary for system operation. There is an abundance of literature on modeling the lifetime of such components through competing risks models. During the life-cycle of a product, it is common for there to be incremental design changes to improve reliability, to reduce costs, or due to changes in availability of certain part numbers. These changes can affect product reliability but are often ignored in system lifetime modeling. By incorporating this information about changes in part numbers over time (information that is readily available in most production databases), better accuracy can bemore » achieved in predicting time to failure, thus yielding more accurate field-failure predictions. This paper presents methods for estimating parameters and predictions for this generational model and a comparison with existing methods through the use of simulation. Our results indicate that the generational model has important practical advantages and outperforms the existing methods in predicting field failures.« less

  17. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    PubMed

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-01

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility. PMID:26752681

  18. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-01

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  19. Field performance of a premium heating oil

    SciTech Connect

    Santa, T.; Jetter, S.M.

    1996-07-01

    As part of our ongoing research to provide quality improvements to heating oil, Mobil Oil together with Santa Fuel, Inc., conducted a field trial to investigate the performance of a new premium heating oil. This premium heating oil contains an additive system designed to minimize sludge related problems in the fuel delivery system of residential home heating systems. The additive used was similar to others reported at this and earlier BNL conferences, but was further developed to enhance its performance in oil heat systems. The premium heating oil was bulk additized and delivered to a subset of the customer base. Fuel related, unscheduled service calls were monitored in this test area, as well as in a similar baseline area that did not receive the premium heating oil. Overall, the premium fuel provided a 45% reduction in the occurrence of fuel related, unscheduled service calls as compared to the baseline area. Within this population, there was a reduction of 38% in systems with 275 gallon tanks, and 55% in systems that had >275 gallon tanks showing that the additive is effective in the various configurations of residential oil heat systems. In addition, photographic documentation collected at two accounts supported this improvement by clearly showing that the equipment remained cleaner with the premium heating oil than with regular heating oil. Based on these results, a full marketing trial of this new product has been initiated by Mobil and Santa Fuel, Inc., during the 1995-1996 heating season.

  20. Prediction of Gymnastic Performance from Arousal and Anxiety Measures.

    ERIC Educational Resources Information Center

    Basler, Marilyn L.; And Others

    This study predicts gymnastic performance, arousal, and anxiety measures from past performances. Pulse rate and the Palmar Sweat Index were utilized as indicants of arousal. Anxiety was assessed by means of the State-Trait Anxiety Inventory. Eighteen members of the Ithaca College women's varsity gymnastic team were tested throughout the 1973-74…

  1. Prediction of Muscle Performance During Dynamic Repetitive Exercise

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2002-01-01

    A method for predicting human muscle performance was developed. Eight test subjects performed a repetitive dynamic exercise to failure using a Lordex spinal machine. Electromyography (EMG) data was collected from the erector spinae. Evaluation of the EMG data using a 5th order Autoregressive (AR) model and statistical regression analysis revealed that an AR parameter, the mean average magnitude of AR poles, can predict performance to failure as early as the second repetition of the exercise. Potential applications to the space program include evaluating on-orbit countermeasure effectiveness, maximizing post-flight recovery, and future real-time monitoring capability during Extravehicular Activity.

  2. On the predictiveness of single-field inflationary models

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Patil, Subodh P.; Trott, Michael

    2014-06-01

    We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the running of Standard Model (SM) parameters and thereby introduces uncertainty into the potential inflationary predictions. We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably the most predictive single-field model on the market, because its predictions for A S , r and n s are made using only one new free parameter beyond those measured in particle physics experiments, and run up to the inflationary regime. We find that this issue can already have observable effects. At the same time, this UV-parameter dependence in the Renormalization Group allows Higgs Inflation to occur (in principle) for a slightly larger range of Higgs masses. We comment on the origin of the various UV scales that arise at large field values for the SM Higgs, clarifying cut off scale arguments by further developing the formalism of a non-linear realization of SU L (2) × U(1) in curved space. We discuss the interesting fact that, outside of Higgs Inflation, the effect of a non-minimal coupling to gravity, even in the SM, results in a non-linear EFT for the Higgs sector. Finally, we briefly comment on post BICEP2 attempts to modify the Higgs Inflation scenario.

  3. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  4. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom. PMID:18642947

  5. Recent progress towards predicting aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    Capability implemented in simulating aircraft ground handling performance is reviewed and areas for further expansion and improvement are identified. Problems associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior are discussed and efforts to improve tire/runway friction definition, and simulator fidelity are described. Aircraft braking performance data obtained on several wet runway surfaces are compared to ground vehicle friction measurements. Research to improve methods of predicting tire friction performance are discussed.

  6. Predicting Performance in Higher Education Using Proximal Predictors.

    PubMed

    Niessen, A Susan M; Meijer, Rob R; Tendeiro, Jorge N

    2016-01-01

    We studied the validity of two methods for predicting academic performance and student-program fit that were proximal to important study criteria. Applicants to an undergraduate psychology program participated in a selection procedure containing a trial-studying test based on a work sample approach, and specific skills tests in English and math. Test scores were used to predict academic achievement and progress after the first year, achievement in specific course types, enrollment, and dropout after the first year. All tests showed positive significant correlations with the criteria. The trial-studying test was consistently the best predictor in the admission procedure. We found no significant differences between the predictive validity of the trial-studying test and prior educational performance, and substantial shared explained variance between the two predictors. Only applicants with lower trial-studying scores were significantly less likely to enroll in the program. In conclusion, the trial-studying test yielded predictive validities similar to that of prior educational performance and possibly enabled self-selection. In admissions aimed at student-program fit, or in admissions in which past educational performance is difficult to use, a trial-studying test is a good instrument to predict academic performance.

  7. Predicting Performance in Higher Education Using Proximal Predictors

    PubMed Central

    Niessen, A. Susan M.; Meijer, Rob R.; Tendeiro, Jorge N.

    2016-01-01

    We studied the validity of two methods for predicting academic performance and student-program fit that were proximal to important study criteria. Applicants to an undergraduate psychology program participated in a selection procedure containing a trial-studying test based on a work sample approach, and specific skills tests in English and math. Test scores were used to predict academic achievement and progress after the first year, achievement in specific course types, enrollment, and dropout after the first year. All tests showed positive significant correlations with the criteria. The trial-studying test was consistently the best predictor in the admission procedure. We found no significant differences between the predictive validity of the trial-studying test and prior educational performance, and substantial shared explained variance between the two predictors. Only applicants with lower trial-studying scores were significantly less likely to enroll in the program. In conclusion, the trial-studying test yielded predictive validities similar to that of prior educational performance and possibly enabled self-selection. In admissions aimed at student-program fit, or in admissions in which past educational performance is difficult to use, a trial-studying test is a good instrument to predict academic performance. PMID:27073859

  8. Field theory and diffusion creep predictions in polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Villani, A.; Busso, E. P.; Forest, S.

    2015-07-01

    In polycrystals, stress-driven vacancy diffusion at high homologous temperatures leads to inelastic deformation. In this work, a novel continuum mechanics framework is proposed to describe the strain fields resulting from such a diffusion-driven process in a polycrystalline aggregate where grains and grain boundaries are explicitly considered. The choice of an anisotropic eigenstrain in the grain boundary region provides the driving force for the diffusive creep processes. The corresponding inelastic strain rate is shown to be related to the gradient of the vacancy flux. Dislocation driven deformation is then introduced as an additional mechanism, through standard crystal plasticity constitutive equations. The fully coupled diffusion-mechanical model is implemented into the finite element method and then used to describe the biaxial creep behaviour of FCC polycrystalline aggregates. The corresponding results revealed for the first time that such a coupled diffusion-stress approach, involving the gradient of the vacancy flux, can accurately predict the well-known macroscopic strain rate dependency on stress and grain size in the diffusion creep regime. They also predict strongly heterogeneous viscoplastic strain fields, especially close to grain boundaries triple junctions. Finally, a smooth transition from Herring and Coble to dislocation creep behaviour is predicted and compared to experimental results for copper.

  9. Performance prediction of the TMT secondary mirror support system

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.

    2008-07-01

    The Ritchey-Chretien (RC) design of the Thirty Meter Telescope (TMT) optics calls for a 3.1 m diameter Secondary Mirror (M2), which is a large meniscus convex hyperboloid. The M2 converts the beam reflected from the f/1 primary mirror into an f/15 beam for the science instruments. The M2 Mirror (M2M) has a mass of approximately two metric tons and the mirror support system will need to maintain the mirror figure at different gravity orientations. Recent changes in the telescope configuration to RC from Aplanatic Gregorian (AG) prescription and reduction of the fully-illuminated field of view to 15 arc minutes required a design change in the M2 mirror figure from a concave radius to a convex radius, with a significant reduction in diameter, which in turn requires re-optimization of the mirror support systems. The optical performance evaluations were made based on the optimized support systems resulting from the change from AG to RC. The M2 optimized support system consists of 60 axial supports, mounted at the mirror back surface, and 24 lateral supports mounted along the outer edge. The predicted print-though errors of the M2M supports are 10nm RMS surface for axial gravity and 2nm RMS surface for lateral gravity. This M2M support system has an active optics capability to accommodate potential mechanical or thermal errors; its performance to correct low-order aberrations has been analyzed. A structure function of the axial gravity support print-through was calculated.

  10. Following Up Performance: Lessons from the Field.

    ERIC Educational Resources Information Center

    Newman, Constance

    2002-01-01

    Presents practices from post-training performance evaluation for continuous quality improvement in developing countries. Highlights include performance specification and analysis of performance factors; guidelines for planning follow-up performance evaluations; human performance models and cross-cultural portability; and an example from Togo, West…

  11. Predicting Road Test Performance in Drivers With Stroke

    PubMed Central

    Barco, Peggy P.; Wallendorf, Michael J.; Snellgrove, Carol A.; Ott, Brian R.

    2014-01-01

    OBJECTIVE. The aim of this study was to develop a brief screening battery to predict the on-road performance of drivers who had experienced a stroke. METHOD. We examined 72 people with stroke referred by community physicians to an academic rehabilitation center. The outcome variable was pass or fail on the modified Washington University Road Test. Predictor measures were tests of visual, motor, and cognitive functioning. RESULTS. The best predictive model for failure on the road test included Trail Making Test Part A and the Snellgrove Maze Task®. CONCLUSION. A screening battery that can be performed in less than 5 min was able to assist in the prediction of road test performance in a sample of drivers with stroke. A probability of failure calculator may be useful for clinicians in their decision to refer clients with stroke for a comprehensive driving evaluation. PMID:24581409

  12. Cardiovascular indices of challenge and threat states predict competitive performance.

    PubMed

    Turner, Martin J; Jones, Marc V; Sheffield, David; Cross, Sophie L

    2012-10-01

    Cardiovascular (CV) reactivity is proposed by both the Biopsychosocial Model and the Theory of Challenge and Threat States in Athletes to predict competitive performance. The association between CV reactivity and competitive performance was examined in cognitive (Study 1) and motor (Study 2) tasks. In Study 1, 25 participants (9 female) completed a modified Stroop Test, and in Study 2, 21 female netballers completed a netball shooting task, under competition. Measures of CV reactivity, self-report measures of self-efficacy, control, achievement-goals and emotions along with baseline and competitive task performance were taken. CV reactivity indicative of a challenge state predicted superior performance in both tasks compared to CV reactivity indicative of a threat state. In both studies the purported relationships between CV reactivity and the psychological and emotional responses were weak or absent. The mechanisms for the observed association between CV reactivity and task performance are discussed alongside implications of the findings for future research and practice.

  13. Effects of environmental uncertainties on sonar detection performance prediction.

    PubMed

    Sha, Liewei; Nolte, Loren W

    2005-04-01

    The development of effective passive sonar systems depends upon the ability to accurately predict the performance of sonar detection algorithms in realistic ocean environments. Such environments are typically characterized by a high degree of uncertainty, thus limiting the usefulness of performance prediction approaches that assume a deterministic environment. Here we derive closed-form receiver operating characteristic (ROC) expressions for an optimal Bayesian detector and for several typical suboptimal detectors, based on a statistical model of environmental uncertainty. Various scenarios extended from an NRL benchmark shallow-water model were used to check the analytical ROC expressions and to illustrate the effect of environmental uncertainty on detection performance. The results showed that (1) optimal detection performance in an uncertain environment in diffuse noise depends primarily on the signal-to-noise ratio at the receivers and the rank of the signal matrix, where the rank is an effective representation of the scale of environmental uncertainty; (2) the ROC expression for the optimal Bayesian detector provides a more realistic performance upper bound than that obtained from conventional sonar equations that do not incorporate environmental uncertainty; and (3) detection performance predictions can be performed much faster than with commonly used numerical methods such as Monte Carlo performance evaluations.

  14. Predictive Potential Field-Based Collision Avoidance for Multicopters

    NASA Astrophysics Data System (ADS)

    Nieuwenhuisen, M.; Schadler, M.; Behnke, S.

    2013-08-01

    Reliable obstacle avoidance is a key to navigating with UAVs in the close vicinity of static and dynamic obstacles. Wheel-based mobile robots are often equipped with 2D or 3D laser range finders that cover the 2D workspace sufficiently accurate and at a high rate. Micro UAV platforms operate in a 3D environment, but the restricted payload prohibits the use of fast state-of-the-art 3D sensors. Thus, perception of small obstacles is often only possible in the vicinity of the UAV and a fast collision avoidance system is necessary. We propose a reactive collision avoidance system based on artificial potential fields, that takes the special dynamics of UAVs into account by predicting the influence of obstacles on the estimated trajectory in the near future using a learned motion model. Experimental evaluation shows that the prediction leads to smoother trajectories and allows to navigate collision-free through passageways.

  15. Proactive supply chain performance management with predictive analytics.

    PubMed

    Stefanovic, Nenad

    2014-01-01

    Today's business climate requires supply chains to be proactive rather than reactive, which demands a new approach that incorporates data mining predictive analytics. This paper introduces a predictive supply chain performance management model which combines process modelling, performance measurement, data mining models, and web portal technologies into a unique model. It presents the supply chain modelling approach based on the specialized metamodel which allows modelling of any supply chain configuration and at different level of details. The paper also presents the supply chain semantic business intelligence (BI) model which encapsulates data sources and business rules and includes the data warehouse model with specific supply chain dimensions, measures, and KPIs (key performance indicators). Next, the paper describes two generic approaches for designing the KPI predictive data mining models based on the BI semantic model. KPI predictive models were trained and tested with a real-world data set. Finally, a specialized analytical web portal which offers collaborative performance monitoring and decision making is presented. The results show that these models give very accurate KPI projections and provide valuable insights into newly emerging trends, opportunities, and problems. This should lead to more intelligent, predictive, and responsive supply chains capable of adapting to future business environment.

  16. Proactive Supply Chain Performance Management with Predictive Analytics

    PubMed Central

    Stefanovic, Nenad

    2014-01-01

    Today's business climate requires supply chains to be proactive rather than reactive, which demands a new approach that incorporates data mining predictive analytics. This paper introduces a predictive supply chain performance management model which combines process modelling, performance measurement, data mining models, and web portal technologies into a unique model. It presents the supply chain modelling approach based on the specialized metamodel which allows modelling of any supply chain configuration and at different level of details. The paper also presents the supply chain semantic business intelligence (BI) model which encapsulates data sources and business rules and includes the data warehouse model with specific supply chain dimensions, measures, and KPIs (key performance indicators). Next, the paper describes two generic approaches for designing the KPI predictive data mining models based on the BI semantic model. KPI predictive models were trained and tested with a real-world data set. Finally, a specialized analytical web portal which offers collaborative performance monitoring and decision making is presented. The results show that these models give very accurate KPI projections and provide valuable insights into newly emerging trends, opportunities, and problems. This should lead to more intelligent, predictive, and responsive supply chains capable of adapting to future business environment. PMID:25386605

  17. Proactive supply chain performance management with predictive analytics.

    PubMed

    Stefanovic, Nenad

    2014-01-01

    Today's business climate requires supply chains to be proactive rather than reactive, which demands a new approach that incorporates data mining predictive analytics. This paper introduces a predictive supply chain performance management model which combines process modelling, performance measurement, data mining models, and web portal technologies into a unique model. It presents the supply chain modelling approach based on the specialized metamodel which allows modelling of any supply chain configuration and at different level of details. The paper also presents the supply chain semantic business intelligence (BI) model which encapsulates data sources and business rules and includes the data warehouse model with specific supply chain dimensions, measures, and KPIs (key performance indicators). Next, the paper describes two generic approaches for designing the KPI predictive data mining models based on the BI semantic model. KPI predictive models were trained and tested with a real-world data set. Finally, a specialized analytical web portal which offers collaborative performance monitoring and decision making is presented. The results show that these models give very accurate KPI projections and provide valuable insights into newly emerging trends, opportunities, and problems. This should lead to more intelligent, predictive, and responsive supply chains capable of adapting to future business environment. PMID:25386605

  18. A free wake method for performance prediction of VAWT

    NASA Astrophysics Data System (ADS)

    Ilin, S.; Dumitrescu, H.; Cardos, V.; Dumitrache, A.

    2012-09-01

    Based on the lifting line theory and a free vortex wake model, a method including dynamic stall effects is presented for predicting the performance of a three-dimensional vertical-axis wind turbine (VAWT). A vortex model is used in which the wake is composed of trailing streamwise and shedding spanwise vortices, whose strengths are equal to the change in the bound vortex strength as dictated by Helmholtz and Kelvin's theorems. Performance parameters are calculated by application of the Biot-Savart law along with the Kutta-Joukowski theorem and a semi-empirical dynamic stall model. Predictions are shown to compare favorably with existing experimental data.

  19. Predicting course performance in freshman and sophomore physics courses: Women are more predictable than men

    NASA Astrophysics Data System (ADS)

    McCammon, Susan; Golden, Jeannie; Wuensch, Karl L.

    This study investigated the extent to which thinking skills and mathematical competency would predict the course performance of freshman and sophomore science majors enrolled in physics courses. Multiple-regression equations revealed that algebra and critical thinking skills were the best overall predictors across several physics courses. Although arithmetic skills, math anxiety, and primary mental abilities scores also correlated with performance, they were redundant with the algebra and critical thinking. The most surprising finding of the study was the differential validity by sex; predictor variables were successful in predicting course performance for women but not for men.

  20. Prediction of Airplane Sonic-Boom Pressure Fields

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; McLean, F. Edward; Middleton, Wilbur D.

    1965-01-01

    This paper presents a discussion of the sensitivity of supersonic-transport design and operation to sonic-boom considerations and shows the necessity for a study of these problems early in the development program. Methods of predicting pressure signatures are outlined and examples of the correlation of these estimates with wind-tunnel and flight measurements are shown. Estimates of sonic-boom characteristics for a representative supersonic transport show that in the critical transonic acceleration portion of the flight, overpressures somewhat lower than estimated by the use of far-field assumptions may be expected. Promising design possibilities for the achievement of further overpressure reductions are explored.

  1. Bayesian Markov Random Field analysis for protein function prediction based on network data.

    PubMed

    Kourmpetis, Yiannis A I; van Dijk, Aalt D J; Bink, Marco C A M; van Ham, Roeland C H J; ter Braak, Cajo J F

    2010-02-24

    Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use sequence or structure similarity to infer functions but those types of data do not suffice to determine the biological context in which proteins act. Current high-throughput biological experiments produce large amounts of data on the interactions between proteins. Such data can be used to infer interaction networks and to predict the biological process that the protein is involved in. Here, we develop a probabilistic approach for protein function prediction using network data, such as protein-protein interaction measurements. We take a Bayesian approach to an existing Markov Random Field method by performing simultaneous estimation of the model parameters and prediction of protein functions. We use an adaptive Markov Chain Monte Carlo algorithm that leads to more accurate parameter estimates and consequently to improved prediction performance compared to the standard Markov Random Fields method. We tested our method using a high quality S. cereviciae validation network with 1622 proteins against 90 Gene Ontology terms of different levels of abstraction. Compared to three other protein function prediction methods, our approach shows very good prediction performance. Our method can be directly applied to protein-protein interaction or coexpression networks, but also can be extended to use multiple data sources. We apply our method to physical protein interaction data from S. cerevisiae and provide novel predictions, using 340 Gene Ontology terms, for 1170 unannotated proteins and we evaluate the predictions using the available literature.

  2. Predicting poor physical performance after total knee arthroplasty.

    PubMed

    Bade, Michael J; Wolfe, Pamela; Zeni, Joseph A; Stevens-Lapsley, Jennifer E; Snyder-Mackler, Lynn

    2012-11-01

    The purpose of this study was to develop a preliminary decision algorithm predicting functional performance outcomes to aid in the decision of when to undergo total knee arthroplasty (TKA). One hundred and nineteen patients undergoing primary unilateral TKA were evaluated before and 6 months after TKA. A regression tree analysis using a recursive partitioning function was performed with the Timed Up and Go (TUG) time, Six-Minute Walk (6MW) distance, and Stair Climbing Test (SCT) time as measured 6 months after TKA as the primary outcomes. Preoperative measures of functional performance, joint performance, anthropometrics, demographics, and self-reported status were evaluated as predictors of the primary outcomes 6 months after surgery. Individuals taking ≥10.1 s on the TUG and aged 72 years or older before surgery had the poorest performance on the TUG 6 months after surgery. Individuals walking <314 meters on the 6MW before surgery had the poorest performance on the 6MW test 6 months after surgery. Individuals taking ≥17 s to complete the SCT and scoring <40 on the SF-36 mental component score before surgery had the poorest performance on the SCT 6 months after surgery. Poorer performance preoperatively on the 6MW, SCT, and TUG, was related to poorer performance in the same measure after TKA. Age and decreased mental health were secondary predictors of poorer performance at 6 months on the TUG and SCT, respectively. These measures may help further develop models predicting thresholds for poor outcomes after TKA.

  3. Predicting Poor Physical Performance after Total Knee Arthroplasty

    PubMed Central

    Bade, Michael J; Wolfe, Pamela; Zeni, Joseph A; Stevens-Lapsley, Jennifer E.; Snyder-Mackler, Lynn

    2012-01-01

    The purpose of this study was to develop a preliminary decision algorithm predicting functional performance outcomes to aid in the decision of when to undergo total knee arthroplasty (TKA). One hundred nineteen patients undergoing primary unilateral TKA were evaluated before and 6 months after TKA. A regression tree analysis using a recursive partitioning function was performed with the Timed Up and Go (TUG) time, Six-Minute Walk (6MW) distance, and Stair Climbing Test (SCT) time as measured 6 months after TKA as the primary outcomes. Preoperative measures of functional performance, joint performance, anthropometrics, demographics, and self reported status were evaluated as predictors of the primary outcomes 6 months after surgery. Individuals taking ≥ 10.1 seconds on the TUG and aged 72 years or older before surgery had the poorest performance on the TUG 6 months after surgery. Individuals walking < 314 meters on the 6MW before surgery had the poorest performance on the 6MW test 6 months after surgery. Individuals taking ≥ 17 seconds to complete the SCT and scoring < 40 on the SF-36 mental component score before surgery had the poorest performance on the SCT 6 months after surgery. Poorer performance preoperatively on the 6MW, SCT, and TUG, was related to poorer performance in the same measure after TKA. Age and decreased mental health were secondary predictors of poorer performance at 6 months on the TUG and SCT, respectively. These measures may help further develop models predicting thresholds for poor outcomes after TKA. PMID:22539338

  4. Prediction of muscle performance during dynamic repetitive movement

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2003-01-01

    BACKGROUND: During long-duration spaceflight, astronauts experience progressive muscle atrophy and often perform strenuous extravehicular activities. Post-flight, there is a lengthy recovery period with an increased risk for injury. Currently, there is a critical need for an enabling tool to optimize muscle performance and to minimize the risk of injury to astronauts while on-orbit and during post-flight recovery. Consequently, these studies were performed to develop a method to address this need. METHODS: Eight test subjects performed a repetitive dynamic exercise to failure at 65% of their upper torso weight using a Lordex spinal machine. Surface electromyography (SEMG) data was collected from the erector spinae back muscle. The SEMG data was evaluated using a 5th order autoregressive (AR) model and linear regression analysis. RESULTS: The best predictor found was an AR parameter, the mean average magnitude of AR poles, with r = 0.75 and p = 0.03. This parameter can predict performance to failure as early as the second repetition of the exercise. CONCLUSION: A method for predicting human muscle performance early during dynamic repetitive exercise was developed. The capability to predict performance to failure has many potential applications to the space program including evaluating countermeasure effectiveness on-orbit, optimizing post-flight recovery, and potential future real-time monitoring capability during extravehicular activity.

  5. [The quality control based on the predictable performance].

    PubMed

    Zheng, D X

    2016-09-01

    The clinical performance can only be evaluated when it comes to the last step in the conventional way of prosthesis. However, it often causes the failure because of the unconformity between the expectation and final performance. Resulting from this kind of situation, quality control based on the predictable results has been suggested. It is a new idea based on the way of reverse thinking, and focuses on the need of patient and puts the final performance of the prosthesis to the first place. With the prosthodontically driven prodedure, dentists can complete the unification with the expectation and the final performance. PMID:27596338

  6. The Predictive Performance and Stability of Six Species Distribution Models

    PubMed Central

    Huang, Min-Yi; Fan, Wei-Yi; Wang, Zhi-Gao

    2014-01-01

    Background Predicting species’ potential geographical range by species distribution models (SDMs) is central to understand their ecological requirements. However, the effects of using different modeling techniques need further investigation. In order to improve the prediction effect, we need to assess the predictive performance and stability of different SDMs. Methodology We collected the distribution data of five common tree species (Pinus massoniana, Betula platyphylla, Quercus wutaishanica, Quercus mongolica and Quercus variabilis) and simulated their potential distribution area using 13 environmental variables and six widely used SDMs: BIOCLIM, DOMAIN, MAHAL, RF, MAXENT, and SVM. Each model run was repeated 100 times (trials). We compared the predictive performance by testing the consistency between observations and simulated distributions and assessed the stability by the standard deviation, coefficient of variation, and the 99% confidence interval of Kappa and AUC values. Results The mean values of AUC and Kappa from MAHAL, RF, MAXENT, and SVM trials were similar and significantly higher than those from BIOCLIM and DOMAIN trials (p<0.05), while the associated standard deviations and coefficients of variation were larger for BIOCLIM and DOMAIN trials (p<0.05), and the 99% confidence intervals for AUC and Kappa values were narrower for MAHAL, RF, MAXENT, and SVM. Compared to BIOCLIM and DOMAIN, other SDMs (MAHAL, RF, MAXENT, and SVM) had higher prediction accuracy, smaller confidence intervals, and were more stable and less affected by the random variable (randomly selected pseudo-absence points). Conclusions According to the prediction performance and stability of SDMs, we can divide these six SDMs into two categories: a high performance and stability group including MAHAL, RF, MAXENT, and SVM, and a low performance and stability group consisting of BIOCLIM, and DOMAIN. We highlight that choosing appropriate SDMs to address a specific problem is an important

  7. Predictive Bias and Sensitivity in NRC Fuel Performance Codes

    SciTech Connect

    Geelhood, Kenneth J.; Luscher, Walter G.; Senor, David J.; Cunningham, Mitchel E.; Lanning, Donald D.; Adkins, Harold E.

    2009-10-01

    The latest versions of the fuel performance codes, FRAPCON-3 and FRAPTRAN were examined to determine if the codes are intrinsically conservative. Each individual model and type of code prediction was examined and compared to the data that was used to develop the model. In addition, a brief literature search was performed to determine if more recent data have become available since the original model development for model comparison.

  8. Performance prediction for 3D filtering of multichannel images

    NASA Astrophysics Data System (ADS)

    Rubel, Oleksii; Kozhemiakin, Ruslan A.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2015-10-01

    Performance of denoising based on discrete cosine transform applied to multichannel remote sensing images corrupted by additive white Gaussian noise is analyzed. Images obtained by satellite Earth Observing-1 (EO-1) mission using hyperspectral imager instrument (Hyperion) that have high input SNR are taken as test images. Denoising performance is characterized by improvement of PSNR. For hard-thresholding 3D DCT-based denoising, simple statistics (probabilities to be less than a certain threshold) are used to predict denoising efficiency using curves fitted into scatterplots. It is shown that the obtained curves (approximations) provide prediction of denoising efficiency with high accuracy. Analysis is carried out for different numbers of channels processed jointly. Universality of prediction for different number of channels is proven.

  9. Predicting waste stabilization pond performance using an ecological simulation model

    SciTech Connect

    New, G.R.

    1987-01-01

    Waste stabilization ponds (lagoons) are often favored in small communities because of their low cost and ease of operation. Most models currently used to predict performance are empirical or fail to address the primary lagoon cell. Empirical methods for predicting lagoon performance have been found to be off as much as 248 percent when used on a system other than the one they were developed for. Also, the present models developed for the primary cell lack the ability to predict parameters other than biochemical oxygen demand (BOD) and nitrogen. Oxygen consumption is usually estimated from BOD utilization. LAGOON is a fortran program which models the biogeochemical processes characteristic of the primary cell of facultative lagoons. Model parameters can be measured from lagoons in the vicinity of a proposed lagoon or estimated from laboratory studies. The model was calibrated utilizing a subset of the Corinne Utah lagoon data then validated utilizing a subset of the Corinne Utah data.

  10. Internal performance predictions for Langley scramjet engine module

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.

    1978-01-01

    A one dimensional theoretical method for the prediction of the internal performance of a scramjet engine is presented. The effects of changes in vehicle forebody flow parameters and characteristics on predicted thrust for the scramjet engine were evaluated using this method, and results are presented. A theoretical evaluation of the effects of changes in the scramjet engine's internal parameters is also presented. Theoretical internal performance predictions, in terms thrust coefficient and specific impulse, are provided for the scramjet engine for free stream Mach numbers of 5, 6, and 7 free stream dynamic pressure of 23,940 N/sq m forebody surface angles of 4.6 deg to 14.6 deg, and fuel equivalence ratio of 1.0.

  11. Performance and evaluation of the Viking lander camera performance prediction program

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Taylor, E. J.; Jobson, D. J.; Rowland, C. W.

    1975-01-01

    A computer program is described for predicting the performance of the Viking lander cameras. The predictions are primarily concerned with two objectives: (1) the picture quality of a reference test chart (of which there are three on each lander) to aid in diagnosing camera performance; and (2) the picture quality of cones with surface properties of a natural terrain to aid in predicting favorable illumination and viewing geometries and operational camera commands. Predictions made with this program are verified by experimental data obtained with a Viking-like laboratory facsimile camera.

  12. Gesture Performance in Schizophrenia Predicts Functional Outcome After 6 Months

    PubMed Central

    Walther, Sebastian; Eisenhardt, Sarah; Bohlhalter, Stephan; Vanbellingen, Tim; Müri, René; Strik, Werner; Stegmayer, Katharina

    2016-01-01

    The functional outcome of schizophrenia is heterogeneous and markers of the course are missing. Functional outcome is associated with social cognition and negative symptoms. Gesture performance and nonverbal social perception are critically impaired in schizophrenia. Here, we tested whether gesture performance or nonverbal social perception could predict functional outcome and the ability to adequately perform relevant skills of everyday function (functional capacity) after 6 months. In a naturalistic longitudinal study, 28 patients with schizophrenia completed tests of nonverbal communication at baseline and follow-up. In addition, functional outcome, social and occupational functioning, as well as functional capacity at follow-up were assessed. Gesture performance and nonverbal social perception at baseline predicted negative symptoms, functional outcome, and functional capacity at 6-month follow-up. Gesture performance predicted functional outcome beyond the baseline measure of functioning. Patients with gesture deficits at baseline had stable negative symptoms and experienced a decline in social functioning. While in patients without gesture deficits, negative symptom severity decreased and social functioning remained stable. Thus, a simple test of hand gesture performance at baseline may indicate favorable outcomes in short-term follow-up. The results further support the importance of nonverbal communication skills in subjects with schizophrenia. PMID:27566843

  13. Classification performance prediction using parametric scattering feature models

    NASA Astrophysics Data System (ADS)

    Chiang, Hung-Chih; Moses, Randolph L.; Potter, Lee C.

    2000-08-01

    We consider a method for estimating classification performance of a model-based synthetic aperture radar (SAR) automatic target recognition system. Target classification is performed by comparing an unordered feature set extracted from a measured SAR image chip with an unordered feature set predicted from a hypothesized target class and pose. A Bayes likelihood metric that incorporates uncertainty in both the predicted and extracted feature vectors is used to compute the match score. Evaluation of the match likelihoods requires a correspondence between the unordered predicted and extracted feature sets. This is a bipartite graph matching problem with insertions and deletions; we show that the optimal match can be found in polynomial time. We extend the results in 1 to estimate classification performance for a ten-class SAR ATR problem. We consider a synthetic classification problem to validate the classifier and to address resolution and robustness questions in the likelihood scoring method. Specifically, we consider performance versus SAR resolution, performance degradation due to mismatch between the assumed and actual feature statistics, and performance impact of correlated feature attributes.

  14. Numerical predictions of EML (electromagnetic launcher) system performance

    SciTech Connect

    Schnurr, N.M.; Kerrisk, J.F.; Davidson, R.F.

    1987-01-01

    The performance of an electromagnetic launcher (EML) depends on a large number of parameters, including the characteristics of the power supply, rail geometry, rail and insulator material properties, injection velocity, and projectile mass. EML system performance is frequently limited by structural or thermal effects in the launcher (railgun). A series of computer codes has been developed at the Los Alamos National Laboratory to predict EML system performance and to determine the structural and thermal constraints on barrel design. These codes include FLD, a two-dimensional electrostatic code used to calculate the high-frequency inductance gradient and surface current density distribution for the rails; TOPAZRG, a two-dimensional finite-element code that simultaneously analyzes thermal and electromagnetic diffusion in the rails; and LARGE, a code that predicts the performance of the entire EML system. Trhe NIKE2D code, developed at the Lawrence Livermore National Laboratory, is used to perform structural analyses of the rails. These codes have been instrumental in the design of the Lethality Test System (LTS) at Los Alamos, which has an ultimate goal of accelerating a 30-g projectile to a velocity of 15 km/s. The capabilities of the individual codes and the coupling of these codes to perform a comprehensive analysis is discussed in relation to the LTS design. Numerical predictions are compared with experimental data and presented for the LTS prototype tests.

  15. A model for analytical performance prediction of hypervapotron

    SciTech Connect

    Baxi, C.B.; Falter, H.

    1992-07-01

    A hypervapotron is a water-cooled device which combines the advantages of finned surfaces with the large heat transfer rates possible during boiling heat transfer. Hypervapotrons have been used as beam dumps in the past and plans are under way to use them for divertor cooling in the Joint European Torus (JET). Experiments at JET have shows that a surface heat flux of 25 MW/m{sup 2} can be achieved in hypervapotrons. This performance makes such a device very attractive for cooling of divertor of the International Thermonuclear Experimental Reactor (ITER). This paper presents an analytical method to predict the thermal performance of the hypervapotrons. Preliminary results show an excellent agreement between experimental results and analytical prediction over a wide range of flow velocities, pressures, subcooling temperatures and heat fluxes. This paper also presents the predicted performance of hypervapotron made of materials other than copper. After further development and verification, the analytical method could be used for optimizing designs and performance prediction.

  16. Image processing system performance prediction and product quality evaluation

    NASA Technical Reports Server (NTRS)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  17. Process for predicting structural performance of mechanical systems

    DOEpatents

    Gardner, David R.; Hendrickson, Bruce A.; Plimpton, Steven J.; Attaway, Stephen W.; Heinstein, Martin W.; Vaughan, Courtenay T.

    1998-01-01

    A process for predicting the structural performance of a mechanical system represents the mechanical system by a plurality of surface elements. The surface elements are grouped according to their location in the volume occupied by the mechanical system so that contacts between surface elements can be efficiently located. The process is well suited for efficient practice on multiprocessor computers.

  18. Process for predicting structural performance of mechanical systems

    DOEpatents

    Gardner, D.R.; Hendrickson, B.A.; Plimpton, S.J.; Attaway, S.W.; Heinstein, M.W.; Vaughan, C.T.

    1998-05-19

    A process for predicting the structural performance of a mechanical system represents the mechanical system by a plurality of surface elements. The surface elements are grouped according to their location in the volume occupied by the mechanical system so that contacts between surface elements can be efficiently located. The process is well suited for efficient practice on multiprocessor computers. 12 figs.

  19. The Role of Means Efficacy When Predicting Creative Performance

    ERIC Educational Resources Information Center

    Simmons, Aneika L.; Payne, Stephanie C.; Pariyothorn, Matthew M.

    2014-01-01

    According to the "Internal-External Efficacy model", self-efficacy is an insufficient explanation for self-regulated behavior because it ignores the influence of external resources. Applying this theory of motivation to the prediction of creative performance, the extent to which means efficacy or the belief in the utility of external…

  20. Predicting School Performance with the Early Screening Inventory.

    ERIC Educational Resources Information Center

    Meisels, Samuel J.; And Others

    1984-01-01

    Proposes criteria for defining and selecting preschool developmental screening instruments and describes the Early Screening Inventory (ESI), a developmental screening instrument designed to satisfy these criteria. Presents results of several studies demonstrating that the ESI predicts school performance with moderate to excellent accuracy through…

  1. Analysis of Factors that Predict Clinical Performance in Medical School

    ERIC Educational Resources Information Center

    White, Casey B.; Dey, Eric L.; Fantone, Joseph C.

    2009-01-01

    Academic achievement indices including GPAs and MCAT scores are used to predict the spectrum of medical student academic performance types. However, use of these measures ignores two changes influencing medical school admissions: student diversity and affirmative action, and an increased focus on communication skills. To determine if GPA and MCAT…

  2. Prediction of Nine Month Performance from Neonatal and Developmental Criteria.

    ERIC Educational Resources Information Center

    Sweet, John F., Jr.; And Others

    This study investigated the ability of the Neonatal Behavioral Assessment Scale (NBAS), in combination with neonatal histories and developmental assessments, to predict mental and motor performance of 9-month-old infants on the Bayley Scales of Infant Development (BSID). Fourteen normal, full-term infants and 10 average-for-gestational-age,…

  3. Prediction and Quantification of Individual Athletic Performance of Runners

    PubMed Central

    2016-01-01

    We present a novel, quantitative view on the human athletic performance of individual runners. We obtain a predictor for running performance, a parsimonious model and a training state summary consisting of three numbers by application of modern validation techniques and recent advances in machine learning to the thepowerof10 database of British runners’ performances (164,746 individuals, 1,417,432 performances). Our predictor achieves an average prediction error (out-of-sample) of e.g. 3.6 min on elite Marathon performances and 0.3 seconds on 100 metres performances, and a lower error than the state-of-the-art in performance prediction (30% improvement, RMSE) over a range of distances. We are also the first to report on a systematic comparison of predictors for running performance. Our model has three parameters per runner, and three components which are the same for all runners. The first component of the model corresponds to a power law with exponent dependent on the runner which achieves a better goodness-of-fit than known power laws in the study of running. Many documented phenomena in quantitative sports science, such as the form of scoring tables, the success of existing prediction methods including Riegel’s formula, the Purdy points scheme, the power law for world records performances and the broken power law for world record speeds may be explained on the basis of our findings in a unified way. We provide strong evidence that the three parameters per runner are related to physiological and behavioural parameters, such as training state, event specialization and age, which allows us to derive novel physiological hypotheses relating to athletic performance. We conjecture on this basis that our findings will be vital in exercise physiology, race planning, the study of aging and training regime design. PMID:27336162

  4. Prediction and Quantification of Individual Athletic Performance of Runners.

    PubMed

    Blythe, Duncan A J; Király, Franz J

    2016-01-01

    We present a novel, quantitative view on the human athletic performance of individual runners. We obtain a predictor for running performance, a parsimonious model and a training state summary consisting of three numbers by application of modern validation techniques and recent advances in machine learning to the thepowerof10 database of British runners' performances (164,746 individuals, 1,417,432 performances). Our predictor achieves an average prediction error (out-of-sample) of e.g. 3.6 min on elite Marathon performances and 0.3 seconds on 100 metres performances, and a lower error than the state-of-the-art in performance prediction (30% improvement, RMSE) over a range of distances. We are also the first to report on a systematic comparison of predictors for running performance. Our model has three parameters per runner, and three components which are the same for all runners. The first component of the model corresponds to a power law with exponent dependent on the runner which achieves a better goodness-of-fit than known power laws in the study of running. Many documented phenomena in quantitative sports science, such as the form of scoring tables, the success of existing prediction methods including Riegel's formula, the Purdy points scheme, the power law for world records performances and the broken power law for world record speeds may be explained on the basis of our findings in a unified way. We provide strong evidence that the three parameters per runner are related to physiological and behavioural parameters, such as training state, event specialization and age, which allows us to derive novel physiological hypotheses relating to athletic performance. We conjecture on this basis that our findings will be vital in exercise physiology, race planning, the study of aging and training regime design. PMID:27336162

  5. Prediction of Warfarin Dose in Pediatric Patients: An Evaluation of the Predictive Performance of Several Models

    PubMed Central

    Marek, Elizabeth; Momper, Jeremiah D.; Hines, Ronald N.; Takao, Cheryl M.; Gill, Joan C.; Pravica, Vera; Gaedigk, Andrea; Neville, Kathleen A.

    2016-01-01

    OBJECTIVES: The objective of this study was to evaluate the performance of pediatric pharmacogenetic-based dose prediction models by using an independent cohort of pediatric patients from a multicenter trial. METHODS: Clinical and genetic data (CYP2C9 [cytochrome P450 2C9] and VKORC1 [vitamin K epoxide reductase]) were collected from pediatric patients aged 3 months to 17 years who were receiving warfarin as part of standard care at 3 separate clinical sites. The accuracy of 8 previously published pediatric pharmacogenetic-based dose models was evaluated in the validation cohort by comparing predicted maintenance doses to actual stable warfarin doses. The predictive ability was assessed by using the proportion of variance (R2), mean prediction error (MPE), and the percentage of predictions that fell within 20% of the actual maintenance dose. RESULTS: Thirty-two children reached a stable international normalized ratio and were included in the validation cohort. The pharmacogenetic-based warfarin dose models showed a proportion of variance ranging from 35% to 78% and an MPE ranging from −2.67 to 0.85 mg/day in the validation cohort. Overall, the model developed by Hamberg et al showed the best performance in the validation cohort (R2 = 78%; MPE = 0.15 mg/day) with 38% of the predictions falling within 20% of observed doses. CONCLUSIONS: Pharmacogenetic-based algorithms provide better predictions than a fixed-dose approach, although an optimal dose algorithm has not yet been developed. PMID:27453700

  6. Does field independence predict visuo-spatial abilities underpinning human navigation? Behavioural evidence.

    PubMed

    Boccia, Maddalena; Piccardi, Laura; Di Marco, Mariangela; Pizzamiglio, Luigi; Guariglia, Cecilia

    2016-10-01

    Field independence (FI) has been defined as the extent to which the individual perceives part of a field as discrete from the surrounding field, rather than embedded in the field. It has been proposed to represent a relatively stable pattern in individuals' predisposition towards information processing. In the present study, we assessed the effect of FI on skills underpinning human navigation. Fifty Healthy individuals took part in this study. FI has been assessed by using the group embedded figures test (GEFT). Participants were also asked to perform several visuo-spatial orientation tasks, including the perspective taking/spatial orientation test (PTSOT), the mental rotation task (MRT) and the vividness task, as well as the Santa Barbara Sense of Direction Scale, a self-reported questionnaire, which has been found to predict environmental spatial orientation ability. We found that performances on the GEFT significantly predicted performances on the PTSOT and the MRT. This result supports the idea that FI predicts human navigation. PMID:27225254

  7. Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks

    PubMed Central

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism. PMID:23864830

  8. Entity versus incremental theories predict older adults' memory performance.

    PubMed

    Plaks, Jason E; Chasteen, Alison L

    2013-12-01

    The authors examined whether older adults' implicit theories regarding the modifiability of memory in particular (Studies 1 and 3) and abilities in general (Study 2) would predict memory performance. In Study 1, individual differences in older adults' endorsement of the "entity theory" (a belief that one's ability is fixed) or "incremental theory" (a belief that one's ability is malleable) of memory were measured using a version of the Implicit Theories Measure (Dweck, 1999). Memory performance was assessed with a free-recall task. Results indicated that the higher the endorsement of the incremental theory, the better the free recall. In Study 2, older and younger adults' theories were measured using a more general version of the Implicit Theories Measure that focused on the modifiability of abilities in general. Again, for older adults, the higher the incremental endorsement, the better the free recall. Moreover, as predicted, implicit theories did not predict younger adults' memory performance. In Study 3, participants read mock news articles reporting evidence in favor of either the entity or incremental theory. Those in the incremental condition outperformed those in the entity condition on reading span and free-recall tasks. These effects were mediated by pretask worry such that, for those in the entity condition, higher worry was associated with lower performance. Taken together, these studies suggest that variation in entity versus incremental endorsement represents a key predictor of older adults' memory performance. PMID:24128076

  9. Entity versus incremental theories predict older adults' memory performance.

    PubMed

    Plaks, Jason E; Chasteen, Alison L

    2013-12-01

    The authors examined whether older adults' implicit theories regarding the modifiability of memory in particular (Studies 1 and 3) and abilities in general (Study 2) would predict memory performance. In Study 1, individual differences in older adults' endorsement of the "entity theory" (a belief that one's ability is fixed) or "incremental theory" (a belief that one's ability is malleable) of memory were measured using a version of the Implicit Theories Measure (Dweck, 1999). Memory performance was assessed with a free-recall task. Results indicated that the higher the endorsement of the incremental theory, the better the free recall. In Study 2, older and younger adults' theories were measured using a more general version of the Implicit Theories Measure that focused on the modifiability of abilities in general. Again, for older adults, the higher the incremental endorsement, the better the free recall. Moreover, as predicted, implicit theories did not predict younger adults' memory performance. In Study 3, participants read mock news articles reporting evidence in favor of either the entity or incremental theory. Those in the incremental condition outperformed those in the entity condition on reading span and free-recall tasks. These effects were mediated by pretask worry such that, for those in the entity condition, higher worry was associated with lower performance. Taken together, these studies suggest that variation in entity versus incremental endorsement represents a key predictor of older adults' memory performance.

  10. Performance predictions for an SSME configuration with an enlarged throat

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dang, L. D.

    1985-01-01

    The Two Dimensional Kinetics (TDK) computer program that was recently developed for NASA was used to predict the performance of a Large Throat Configuration of the Space Shuttle Main Engine (SSME). Calculations indicate that the current design SSME contains a shock wave that is induced by the nozzle wall shape. In the Large Throat design an even stronger shock wave is predicted. Because of the presence of this shock wave, earlier performance predictions that have neglected shock wave effects have been questioned. The JANNAF thrust chamber performance prediction procedures given in a reference were applied. The analysis includes the effects of two dimensional reacting flow with a shock wave. The effects of the boundary layer with a regenatively cooled wall are also included. A Purdue computer program was used to compute axially symmetric supersonic nozzle flows with an induced shock, but is restricted to flows with a constant ratio of specific heats. Thus, the TDK program was also run with ths assumption and the results of the two programs were compared.

  11. A comparison of SAR ATR performance with information theoretic predictions

    NASA Astrophysics Data System (ADS)

    Blacknell, David

    2003-09-01

    Performance assessment of automatic target detection and recognition algorithms for SAR systems (or indeed any other sensors) is essential if the military utility of the system / algorithm mix is to be quantified. This is a relatively straightforward task if extensive trials data from an existing system is used. However, a crucial requirement is to assess the potential performance of novel systems as a guide to procurement decisions. This task is no longer straightforward since a hypothetical system cannot provide experimental trials data. QinetiQ has previously developed a theoretical technique for classification algorithm performance assessment based on information theory. The purpose of the study presented here has been to validate this approach. To this end, experimental SAR imagery of targets has been collected using the QinetiQ Enhanced Surveillance Radar to allow algorithm performance assessments as a number of parameters are varied. In particular, performance comparisons can be made for (i) resolutions up to 0.1m, (ii) single channel versus polarimetric (iii) targets in the open versus targets in scrubland and (iv) use versus non-use of camouflage. The change in performance as these parameters are varied has been quantified from the experimental imagery whilst the information theoretic approach has been used to predict the expected variation of performance with parameter value. A comparison of these measured and predicted assessments has revealed the strengths and weaknesses of the theoretical technique as will be discussed in the paper.

  12. Prediction of Gas Lubricated Foil Journal Bearing Performance

    NASA Technical Reports Server (NTRS)

    Carpino, Marc; Talmage, Gita

    2003-01-01

    This report summarizes the progress in the first eight months of the project. The objectives of this research project are to theoretically predict the steady operating conditions and the rotor dynamic coefficients of gas foil journal bearings. The project is currently on or ahead of schedule with the development of a finite element code that predicts steady bearing performance characteristics such as film thickness, pressure, load, and drag. Graphical results for a typical bearing are presented in the report. Project plans for the next year are discussed.

  13. Predictive Measures of Locomotor Performance on an Unstable Walking Surface

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Caldwell, E. E.; Batson, C. D.; De Dios, Y. E.; Gadd, N. E.; Goel, R.; Wood, S. J.; Cohen, H. S.; Oddsson, L. I.; Seidler, R. D.

    2016-01-01

    Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.

  14. Real-time Tsunami Inundation Prediction Using High Performance Computers

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  15. Gatekeeping in Field Performance: Is Grade Inflation a Given?

    ERIC Educational Resources Information Center

    Sowbel, Lynda R.

    2011-01-01

    This field note presents the results of a pilot study that explored the use of a new non-numerically rated field performance tool, a vignette matching measure for MSW students. Evaluation of performance in the field has proved to be a difficult task because few if any measures, including competency-based measures, have known levels of reliability…

  16. A novel prediction method about single components of analog circuits based on complex field modeling.

    PubMed

    Zhou, Jingyu; Tian, Shulin; Yang, Chenglin

    2014-01-01

    Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits' single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits' single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments. PMID:25147853

  17. A comprehensive performance evaluation on the prediction results of existing cooperative transcription factors identification algorithms

    PubMed Central

    2014-01-01

    Background Eukaryotic transcriptional regulation is known to be highly connected through the networks of cooperative transcription factors (TFs). Measuring the cooperativity of TFs is helpful for understanding the biological relevance of these TFs in regulating genes. The recent advances in computational techniques led to various predictions of cooperative TF pairs in yeast. As each algorithm integrated different data resources and was developed based on different rationales, it possessed its own merit and claimed outperforming others. However, the claim was prone to subjectivity because each algorithm compared with only a few other algorithms and only used a small set of performance indices for comparison. This motivated us to propose a series of indices to objectively evaluate the prediction performance of existing algorithms. And based on the proposed performance indices, we conducted a comprehensive performance evaluation. Results We collected 14 sets of predicted cooperative TF pairs (PCTFPs) in yeast from 14 existing algorithms in the literature. Using the eight performance indices we adopted/proposed, the cooperativity of each PCTFP was measured and a ranking score according to the mean cooperativity of the set was given to each set of PCTFPs under evaluation for each performance index. It was seen that the ranking scores of a set of PCTFPs vary with different performance indices, implying that an algorithm used in predicting cooperative TF pairs is of strength somewhere but may be of weakness elsewhere. We finally made a comprehensive ranking for these 14 sets. The results showed that Wang J's study obtained the best performance evaluation on the prediction of cooperative TF pairs in yeast. Conclusions In this study, we adopted/proposed eight performance indices to make a comprehensive performance evaluation on the prediction results of 14 existing cooperative TFs identification algorithms. Most importantly, these proposed indices can be easily applied to

  18. Temporal prediction errors modulate task-switching performance.

    PubMed

    Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña

    2015-01-01

    We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching. PMID:26379568

  19. Temporal prediction errors modulate task-switching performance

    PubMed Central

    Limongi, Roberto; Silva, Angélica M.; Góngora-Costa, Begoña

    2015-01-01

    We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as “executive control” is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching. PMID:26379568

  20. Temporal prediction errors modulate task-switching performance.

    PubMed

    Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña

    2015-01-01

    We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.

  1. Prediction of the far field noise from wind energy farms

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Hubbard, H. H.

    1986-01-01

    The basic physical factors involved in making predictions of wind turbine noise and an approach which allows for differences in the machines, the wind energy farm configurations and propagation conditions are reviewed. Example calculations to illustrate the sensitivity of the radiated noise to such variables as machine size, spacing and numbers, and such atmosphere variables as absorption and wind direction are presented. It is found that calculated far field distances to particular sound level contours are greater for lower values of atmospheric absorption, for a larger total number of machines, for additional rows of machines and for more powerful machines. At short and intermediate distances, higher sound pressure levels are calculated for closer machine spacings, for more powerful machines, for longer row lengths and for closer row spacings.

  2. Evaluation of PV Module Field Performance

    SciTech Connect

    Wohlgemuth, John; Silverman, Timothy; Miller, David C.; McNutt, Peter; Kempe, Michael; Deceglie, Michael

    2015-06-14

    This paper describes an effort to inspect and evaluate PV modules in order to determine what failure or degradation modes are occurring in field installations. This paper will report on the results of six site visits, including the Sacramento Municipal Utility District (SMUD) Hedge Array, Tucson Electric Power (TEP) Springerville, Central Florida Utility, Florida Solar Energy Center (FSEC), the TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification. TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification. TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification.

  3. Prediction and performance of radome-covered reflector antennas

    NASA Astrophysics Data System (ADS)

    Clarricoats, P. J. B.; Parini, C. G.; Rizk, M. S. A. S.

    1981-11-01

    The return loss (reflection coefficient) of a paraboloidal reflector antenna covered by a paraboloidal radome is predicted using a physical-optics method based on the power-coupling theorem. An asymptotic form of the expression is found to be a good approximation. The performance of the antenna has been measured and results are in good agreement with those predicted theoretically. A method for reducing the return loss is investigated using a hemispherical iris-loaded sandwich section at the center of the radome. An improvement in return loss of approximately 5 dB is observed over a useful frequency bandwidth. Contributions of the radome to the radiation pattern of the antenna have been identified and those near to boresight have been predicted. Computed values in that region agree well with measurements.

  4. Roadmap Toward a Predictive Performance-based Commercial Energy Code

    SciTech Connect

    Rosenberg, Michael I.; Hart, Philip R.

    2014-10-01

    Energy codes have provided significant increases in building efficiency over the last 38 years, since the first national energy model code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, and the inability to handle control optimization that is specific to building type and use. This paper provides a high level review of different options for energy codes, including prescriptive, prescriptive packages, EUI Target, outcome-based, and predictive performance approaches. This paper also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria. A vision is outlined to serve as a roadmap for future commercial code development. That vision is based on code development being led by a specific approach to predictive energy performance combined with building specific prescriptive packages that are designed to be both cost-effective and to achieve a desired level of performance. Compliance with this new approach can be achieved by either meeting the performance target as demonstrated by whole building energy modeling, or by choosing one of the prescriptive packages.

  5. Alkaline flood prediction studies, Ranger VII pilot, Wilmington Field, California

    SciTech Connect

    Mayer, E.H.; Breit, V.S.

    1982-01-01

    The paper discusses: (1) The design of a simulator to model alkaline displacement mechanisms and the current state-of-the-art understanding of in-situ caustic consumption. (2) Assimilation of laboratory core flood and rock consumption data. Use of this data in 1-D and 2-D limited area simulations, and a 3-D model of the entire pilot project. (3) Simulation studies of alkaline flood behavior in a small 2-D area of the field for various concentrations, slug sizes, long term consumption functions and two relative permeability adjustment mechanisms. (4) Scale up of 2-D simulation results, and their use in a 271 acre 1.097 x 10/sup 6/m/sup 2/), 7 layered 3-D model of the pilot. (5) Comparison of 3-D simulator results with initial field alkaline flood performance. (6) Recommended additional application of the simulator methods developed in this pilot and in other alkaline floods. 10 refs.

  6. Computational prediction of isolated performance of an axisymmetric nozzle at Mach number 0.90

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1994-01-01

    An improved ability to predict external propulsive performance was incorporated into the three-dimensional Navier-Stokes code PAB3D. The improvements are the ability to account for skin friction and external pressure forces. Performance parameters for two axisymmetric supersonic cruise nozzle configurations were calculated to test the improved methodology. Internal and external flow-field regions were computed using a two-equation kappa-epsilon turbulent viscous-stress model. The computed thrust-minus-drag ratios were within 1 percent of the absolute level of experimental data and the trends of data were predicted accurately. The predicted trend of integrated nozzle pressure drag matched the trend of the integrated experimental pressure drag over a range of nozzle pressure ratios, but absolute drag levels were not accurately predicted.

  7. Contextual predictability enhances reading performance in patients with schizophrenia.

    PubMed

    Fernández, Gerardo; Guinjoan, Salvador; Sapognikoff, Marcelo; Orozco, David; Agamennoni, Osvaldo

    2016-07-30

    In the present work we analyzed fixation duration in 40 healthy individuals and 18 patients with chronic, stable SZ during reading of regular sentences and proverbs. While they read, their eye movements were recorded. We used lineal mixed models to analyze fixation durations. The predictability of words N-1, N, and N+1 exerted a strong influence on controls and SZ patients. The influence of the predictabilities of preceding, current, and upcoming words on SZ was clearly reduced for proverbs in comparison to regular sentences. Both controls and SZ readers were able to use highly predictable fixated words for an easier reading. Our results suggest that SZ readers might compensate attentional and working memory deficiencies by using stored information of familiar texts for enhancing their reading performance. The predictabilities of words in proverbs serve as task-appropriate cues that are used by SZ readers. To the best of our knowledge, this is the first study using eyetracking for measuring how patients with SZ process well-defined words embedded in regular sentences and proverbs. Evaluation of the resulting changes in fixation durations might provide a useful tool for understanding how SZ patients could enhance their reading performance. PMID:27236087

  8. The Development and Prediction of Athletic Performance in Freestyle Swimming

    PubMed Central

    Stanula, Arkadiusz; Maszczyk, Adam; Roczniok, Robert; Pietraszewski, Przemysław; Ostrowski, Andrzej; Zając, Adam; Strzała, Marek

    2012-01-01

    This paper analyses the dynamics of changes between the performances of elite freestyle swimmers recorded at particular Olympic Games. It also uses a set of chronologically ordered results to predict probable times of swimmers at the 2012 Olympic Games in London. The analysis of past performances of freestyle swimmers and their prediction have revealed a number of interesting tendencies within separately examined results of men and women. Women’s results improve more dynamically compared with men’s. Moreover, the difference between women’s and men’s results is smaller, the longer the swimming distance. As both male and female athletes tend to compete more and more vigorously within their groups, the gap between the gold medallist and the last finisher in the final is constantly decreasing, which provides significant evidence that this sport discipline continues to develop. PMID:23486223

  9. The ensemble performance index: an improved measure for assessing ensemble pose prediction performance.

    PubMed

    Korb, Oliver; McCabe, Patrick; Cole, Jason

    2011-11-28

    We present a theoretical study on the performance of ensemble docking methodologies considering multiple protein structures. We perform a theoretical analysis of pose prediction experiments which is completely unbiased, as we make no assumptions about specific scoring functions, search paradigms, protein structures, or ligand data sets. We introduce a novel interpretable measure, the ensemble performance index (EPI), for the assessment of scoring performance in ensemble docking, which will be applied to simulated and real data sets. PMID:21962010

  10. Annual performance prediction for off-axis aligned Lugo heliostats at Solar Two

    SciTech Connect

    Jones, S.A.

    1996-02-01

    The DELSOL computer code was used to model the annual Performance for numerous off-axis alignments of the Lugo heliostats located at the Solar Two site in Dagget, California. Recommended canting times are presented for the Lugo heliostats based upon their location in the field. Predicted annual performance of an off-axis alignment was actually higher than for on-axis alignment in some cases, and approximately equal if the recommended times are used. The annual performances of Solar One heliostats located nearby were also calculated, and illustrated the poorer performance expected of the Lugo heliostats.

  11. Reading performance and central field loss.

    PubMed

    Kanonidou, E

    2011-04-01

    Age-related macular degeneration is a major cause of blindness in Europe and the U.S. and a leading cause of significant loss of visual acuity in elderly patients. Reading is a key visual task in everyday living involving a synthesis of a number of different motor, sensory and cognitive functions. When the centre of a reader's visual field is obscured, reading speed declines and oculomotor pattern differs, compared to normal reading. Improvement in the generation of visual stimuli using computer-generated images and projection/display systems as well as advances in eye movement recording techniques, including infrared pupil tracking and magnetic search coils, have contributed greatly to our understanding of these sensorimotor abnormalities. The developed reading strategies have been thoroughly investigated in individuals with central field loss either induced artificially or related to eye pathology.The following review aims at presenting the contemporary literature regarding the sensory and oculomotor deficits in reading ability, resulting from central field loss and should contribute to a greater understanding of the functional visual deficit caused by this visual impairment.

  12. Reading performance and central field loss.

    PubMed

    Kanonidou, E

    2011-04-01

    Age-related macular degeneration is a major cause of blindness in Europe and the U.S. and a leading cause of significant loss of visual acuity in elderly patients. Reading is a key visual task in everyday living involving a synthesis of a number of different motor, sensory and cognitive functions. When the centre of a reader's visual field is obscured, reading speed declines and oculomotor pattern differs, compared to normal reading. Improvement in the generation of visual stimuli using computer-generated images and projection/display systems as well as advances in eye movement recording techniques, including infrared pupil tracking and magnetic search coils, have contributed greatly to our understanding of these sensorimotor abnormalities. The developed reading strategies have been thoroughly investigated in individuals with central field loss either induced artificially or related to eye pathology.The following review aims at presenting the contemporary literature regarding the sensory and oculomotor deficits in reading ability, resulting from central field loss and should contribute to a greater understanding of the functional visual deficit caused by this visual impairment. PMID:22110289

  13. Probabilistic Analysis of Gas Turbine Field Performance

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2002-01-01

    A gas turbine thermodynamic cycle was computationally simulated and probabilistically evaluated in view of the several uncertainties in the performance parameters, which are indices of gas turbine health. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design, enhance performance, increase system availability and make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in the gas turbine health determination and to the identification of both the most critical measurements and parameters. Probabilistic analysis aims at unifying and improving the control and health monitoring of gas turbine aero-engines by increasing the quality and quantity of information available about the engine's health and performance.

  14. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    NASA Astrophysics Data System (ADS)

    Ko, P.; Kurosawa, S.

    2014-03-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.

  15. Predicting BCI subject performance using probabilistic spatio-temporal filters.

    PubMed

    Suk, Heung-Il; Fazli, Siamac; Mehnert, Jan; Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI) has become increasingly popular. In this work, we discuss a novel, fully Bayesian-and thereby probabilistic-framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO) and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for communication, due to their missing ability to modulate their brain rhythms-a phenomenon sometimes denoted as BCI-illiteracy or inability. Predicting individual subjects' performance preceding the actual, time-consuming BCI-experiment enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified them into the subject 'prototypes' (like μ - or β -rhythm type subjects) or users without ability to communicate with a BCI, and then by further building a linear regression model based on the grouping we could predict subjects' performance with the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session.

  16. Predicting bioremediation of hydrocarbons: laboratory to field scale.

    PubMed

    Diplock, E E; Mardlin, D P; Killham, K S; Paton, G I

    2009-06-01

    There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions. PMID:19232804

  17. A high performance field-reversed configuration

    SciTech Connect

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; and others

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  18. A high performance field-reversed configurationa)

    NASA Astrophysics Data System (ADS)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Schmitz, L.; Guo, H. Y.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; Cheung, A. H.; Conroy, K. D.; Dettrick, S. A.; Douglass, J. D.; Feng, P.; Galeotti, L.; Giammanco, F.; Granstedt, E.; Gupta, D.; Gupta, S.; Ivanov, A. A.; Kinley, J. S.; Knapp, K.; Korepanov, S.; Hollins, M.; Magee, R.; Mendoza, R.; Mok, Y.; Necas, A.; Primavera, S.; Onofri, M.; Osin, D.; Rath, N.; Roche, T.; Romero, J.; Schroeder, J. H.; Sevier, L.; Sibley, A.; Song, Y.; Van Drie, A. D.; Walters, J. K.; Waggoner, W.; Yushmanov, P.; Zhai, K.

    2015-05-01

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ˜1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  19. Trends of Abutment-Scour Prediction Equations Applied to 144 Field Sites in South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Deshpande, Nikhil; Aziz, Nadim M.; Conrads, Paul A.

    2006-01-01

    The U.S. Geological Survey conducted a study in cooperation with the Federal Highway Administration in which predicted abutment-scour depths computed with selected predictive equations were compared with field measurements of abutment-scour depth made at 144 bridges in South Carolina. The assessment used five equations published in the Fourth Edition of 'Evaluating Scour at Bridges,' (Hydraulic Engineering Circular 18), including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. An additional unpublished equation also was assessed. Comparisons between predicted and observed scour depths are intended to illustrate general trends and order-of-magnitude differences for the prediction equations. Field measurements were taken during non-flood conditions when the hydraulic conditions that caused the scour generally are unknown. The predicted scour depths are based on hydraulic conditions associated with the 100-year flow at all sites and the flood of record for 35 sites. Comparisons showed that predicted scour depths frequently overpredict observed scour and at times were excessive. The comparison also showed that underprediction occurred, but with less frequency. The performance of these equations indicates that they are poor predictors of abutment-scour depth in South Carolina, and it is probable that poor performance will occur when the equations are applied in other geographic regions. Extensive data and graphs used to compare predicted and observed scour depths in this study were compiled into spreadsheets and are included in digital format with this report. In addition to the equation-comparison data, Water-Surface Profile Model tube-velocity data, soil-boring data, and selected abutment-scour data are included in digital format with this report. The digital database was developed as a resource for future researchers and is especially valuable for evaluating the reasonableness of future equations that may be developed.

  20. Lessons from application of the UNRES force field to predictions of structures of CASP10 targets

    PubMed Central

    He, Yi; Mozolewska, Magdalena A.; Krupa, Paweł; Sieradzan, Adam K.; Wirecki, Tomasz K.; Liwo, Adam; Kachlishvili, Khatuna; Rackovsky, Shalom; Jagieła, Dawid; Ślusarz, Rafał; Czaplewski, Cezary R.; Ołdziej, Stanisław; Scheraga, Harold A.

    2013-01-01

    The performance of the physics-based protocol, whose main component is the United Residue (UNRES) physics-based coarse-grained force field, developed in our laboratory for the prediction of protein structure from amino acid sequence, is illustrated. Candidate models are selected, based on probabilities of the conformational families determined by multiplexed replica-exchange simulations, from the 10th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP10). For target T0663, classified as a new fold, which consists of two domains homologous to those of known proteins, UNRES predicted the correct symmetry of packing, in which the domains are rotated with respect to each other by 180° in the experimental structure. By contrast, models obtained by knowledge-based methods, in which each domain is modeled very accurately but not rotated, resulted in incorrect packing. Two UNRES models of this target were featured by the assessors. Correct domain packing was also predicted by UNRES for the homologous target T0644, which has a similar structure to that of T0663, except that the two domains are not rotated. Predictions for two other targets, T0668 and T0684_D2, are among the best ones by global distance test score. These results suggest that our physics-based method has substantial predictive power. In particular, it has the ability to predict domain–domain orientations, which is a significant advance in the state of the art. PMID:23980156

  1. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  2. Fuzzy regression modeling for tool performance prediction and degradation detection.

    PubMed

    Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L

    2010-10-01

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.

  3. Performance and wake predictions of HAWTs in wind farms

    SciTech Connect

    Leclerc, C.; Masson, C.; Paraschivoiu, I.

    1997-12-31

    The present contribution proposes and describes a promising way towards performance prediction of an arbitrary array of turbines. It is based on the solution of the time-averaged, steady-state, incompressible Navier-Stokes equations with an appropriate turbulence closure model. The turbines are represented by distributions of momentum sources in the Navier-Stokes equations. In this paper, the applicability and viability of the proposed methodology is demonstrated using an axisymmetric implementation. The k-{epsilon} model has been chosen for the closure of the time-averaged, turbulent flow equations and the properties of the incident flow correspond to those of a neutral atmospheric boundary layer. The proposed mathematical model is solved using a Control-Volume Finite Element Method (CVFEM). Detailed results have been obtained using the proposed method for an isolated wind turbine and for two turbines one behind another. In the case of an isolated turbine, accurate wake velocity deficit predictions are obtained and an increase in power due to atmospheric turbulence is found in agreement with measurements. In the case of two turbines, the proposed methodology provides an appropriate modelling of the wind-turbine wake and a realistic prediction of the performance degradation of the downstream turbine.

  4. Foraging Ecology Predicts Learning Performance in Insectivorous Bats

    PubMed Central

    Clarin, Theresa M. A.; Ruczyński, Ireneusz; Page, Rachel A.

    2013-01-01

    Bats are unusual among mammals in showing great ecological diversity even among closely related species and are thus well suited for studies of adaptation to the ecological background. Here we investigate whether behavioral flexibility and simple- and complex-rule learning performance can be predicted by foraging ecology. We predict faster learning and higher flexibility in animals hunting in more complex, variable environments than in animals hunting in more simple, stable environments. To test this hypothesis, we studied three closely related insectivorous European bat species of the genus Myotis that belong to three different functional groups based on foraging habitats: M. capaccinii, an open water forager, M. myotis, a passive listening gleaner, and M. emarginatus, a clutter specialist. We predicted that M. capaccinii would show the least flexibility and slowest learning reflecting its relatively unstructured foraging habitat and the stereotypy of its natural foraging behavior, while the other two species would show greater flexibility and more rapid learning reflecting the complexity of their natural foraging tasks. We used a purposefully unnatural and thus species-fair crawling maze to test simple- and complex-rule learning, flexibility and re-learning performance. We found that M. capaccinii learned a simple rule as fast as the other species, but was slower in complex rule learning and was less flexible in response to changes in reward location. We found no differences in re-learning ability among species. Our results corroborate the hypothesis that animals’ cognitive skills reflect the demands of their ecological niche. PMID:23755146

  5. Development of a massively parallel parachute performance prediction code

    SciTech Connect

    Peterson, C.W.; Strickland, J.H.; Wolfe, W.P.; Sundberg, W.D.; McBride, D.D.

    1997-04-01

    The Department of Energy has given Sandia full responsibility for the complete life cycle (cradle to grave) of all nuclear weapon parachutes. Sandia National Laboratories is initiating development of a complete numerical simulation of parachute performance, beginning with parachute deployment and continuing through inflation and steady state descent. The purpose of the parachute performance code is to predict the performance of stockpile weapon parachutes as these parachutes continue to age well beyond their intended service life. A new massively parallel computer will provide unprecedented speed and memory for solving this complex problem, and new software will be written to treat the coupled fluid, structure and trajectory calculations as part of a single code. Verification and validation experiments have been proposed to provide the necessary confidence in the computations.

  6. Field performance of the Gallagher flow conditioner

    SciTech Connect

    Gallagher, J.E.; LaNasa, P.J.

    1995-12-31

    This paper contains a summary of the current {open_quotes}state of the art{close_quotes} for flow conditioners, the basis for the Gallagher Flow Conditioner (GFC), and experimental results from several evaluations. Experimental results for the GFC indicate a maximum metering uncertainty of approximately plus or minus one-tenth of one percent ({+-} 0.10%) due to upstream flow disturbances for orifice meters and virtually zero for other inferential flowmeters. Experiments have been conducted at five commercial laboratories, seven field laboratories, line sizes form 25 to 460 mm (1 to 18 inch), over a Reynolds number range of 2,000 to 3,000,000, for three inferential flowmeters -orifice, turbine and vortex. The GFC has been tested in a multitude of fluid applications --- natural gas, dry air, nine different crude oils, polymer-grade ethylene, etcetera. In these applications the flowing stream has ranged from clean to very dirty. Based on independently conducted research results, it is the authors` opinions that the GFC {open_quotes}isolates{close_quotes} flowmeters from piping-induced disturbances and, thereby, allows more accurate metering of fluids flowing in pipelines. The device achieves the optimal flow conditioner objectives and maintains pseudofully developed flow in a pipe with respect to the axial position.

  7. A simplified model for hybrid rocket performance prediction

    NASA Astrophysics Data System (ADS)

    Wolf, Robert S.; Wagner, John W.

    1992-02-01

    A computer code to predict hybrid rocket performance was developed and validated. The algorithm used is a simplification of the model derived by Marxman and Wooldridge. This model assumes the fuel regression rate to be controlled by convective heat transfer to the solid fuel from a relatively thin diffusion flame in a turbulent boundary layer. The model further assumes that the Reynolds analogy applies with mass addition at the wall. The computer code incorporates variable combustion product properties (temperature, molecular weight, and ratio of specific heats) as a function of the instantaneous global oxidizer/fuel ratio. The code was validated by constructing and firing a hybrid rocket motor. This motor used gaseous oxygen and hydroxyl-terminated polybutadiene as propellants. The oxygen flow rate used in the test was given as an input to the computer code, which then calculated chamber pressures and thrust. The agreement between test data and computer predictions was excellent.

  8. Predicting introductory programming performance: A multi-institutional multivariate study

    NASA Astrophysics Data System (ADS)

    Bergin, Susan; Reilly, Ronan

    2006-12-01

    A model for predicting student performance on introductory programming modules is presented. The model uses attributes identified in a study carried out at four third-level institutions in the Republic of Ireland. Four instruments were used to collect the data and over 25 attributes were examined. A data reduction technique was applied and a logistic regression model using 10-fold stratified cross validation was developed. The model used three attributes: Leaving Certificate Mathematics result (final mathematics examination at second level), number of hours playing computer games while taking the module and programming self-esteem. Prediction success was significant with 80% of students correctly classified. The model also works well on a per-institution level. A discussion on the implications of the model is provided and future work is outlined.

  9. Fundamental SAR ATR performance predictions for design trade-offs

    NASA Astrophysics Data System (ADS)

    Horowitz, Larry L.; Brendel, Gary F.

    1997-07-01

    This paper discusses work toward a fundamental, algorithm- independent view of the ATR performance that can be achieved using SAR data. Such ATR performance predictions are intended to enable evaluation of performance tradeoffs for SAR designs, including both parameter selections and added domains of SAR observation, such as 3D, full polarimetry, multiaspect and/or multifrequency. In the paper we evaluate the classification error for two tactical targets using a Monte Carlo technique. A number of approximations are made and are detailed in the paper. Data on target signatures come from pencil-beam laser data and target photographs, which determine shadowing of the ground clutter. A single aspect angle is used for each target in the initial results. A layer of radar netting is modeled on both targets. This information is used as 'ground truth', to compute the average power that would be seen in each pixel of a SAR image, for each target. SAR image trials are then generated using independent Rayleigh amplitude fades in each pixel. In an optimal Bayesian fashion, the smaller of the probabilities of target (T1) or T2 given the trial image data is the error probability for that trial. An average over the Monte Carlo image trials yields the overall classification error probability. Comments are given on reducing the number of required trials in such a Monte Carlo. THree results of the work are shown. First, a tradeoff is made of ATR performance versus SAR resolution. ATR improves as the resolution is made finer, and physical reasons for this are discussed. Second, the relative ATR utility is determined for those pixels where at least one target has scatterer as compared with those pixels where the targets differ only in the degree to which they shadow the ground clutter. Third, an early analytical result is given for interferometric SAR, showing the physical reason behind the potential of height-sensing SAR to improve ATR - the possibility of canceling the background

  10. The Influence of Viscous Effects on Ice Accretion Prediction and Airfoil Performance Predictions

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Wright, William B.

    2005-01-01

    A computational study was conducted to evaluate the effectiveness of using a viscous flow solution in an ice accretion code and the resulting accuracy of aerodynamic performance prediction. Ice shapes were obtained for one single-element and one multi-element airfoil using both potential flow and Navier-Stokes flowfields in the LEWICE ice accretion code. Aerodynamics were then calculated using a Navier-Stokes flow solver.

  11. System performance predictions for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.

    1993-01-01

    Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.

  12. Evaluation of the gaussian beam model for prediction of LDV fringe fields

    SciTech Connect

    Miles, P.C.; Witze, P.O.

    1996-12-31

    A simple model is developed to estimate the fringe field geometry at the intersection of two Gaussian laser beams. Comparison of the model results to experimentally measured fringe spacing demonstrates that while the model predicts the fringe geometry well when the beam waists are far from the intersection volume, it performs poorly under nominally ideal conditions- when the beam waists are located at the intersection. Data obtained with two different laser sources indicate that the discrepancies between the theory and experiment are likely due to deviations of the laser beam from an ideal Gaussian beam. With a high quality laser, the details of the fringe field geometry are still not well duplicated by the Gaussian beam model, although the magnitude of the variation in fringe spacing and the effect of the controlling system parameters are correctly predicted.

  13. Analytical Prediction and Optimization of Far-Field Pyroshock Test Procedures

    NASA Astrophysics Data System (ADS)

    Lacher, Alexander; Jungel, Nikolas; von Wagner, Utz; Bager, Annette

    2012-07-01

    The simulation of far-field pyroshocks is mainly performed by the use of mechanical or mechatronic devices such as hammer pendulums, shakers and piezoactors. Latter show limitations concerning frequency and acceleration ranges which does not hold for hammer pendulums or bolt guns. Their controllability, however, is rather unsatisfactory and there still exists a general lack of computational prediction tools for usually time consuming and costly far-field pyroshock tests. Mechanical minimal models of existing hammer test devices are presented and investigated by the use of the finite element and analytical methods. The tedious mechanical impact problem is reduced by introducing a nonlinear compressive spring connecting striking partners. Computational test results are verified by experiments and optimized by an evolution strategy allowing for determination of optimum test parameters. The algorithms developed are the basis for fast and efficient predictions of pyroshock tests.

  14. Cortical structure predicts success in performing musical transformation judgments.

    PubMed

    Foster, Nicholas E V; Zatorre, Robert J

    2010-10-15

    Recognizing melodies by their interval structure, or "relative pitch," is a fundamental aspect of musical perception. By using relative pitch, we are able to recognize tunes regardless of the key in which they are played. We sought to determine the cortical areas important for relative pitch processing using two morphometric techniques. Cortical differences have been reported in musicians within right auditory cortex (AC), a region considered important for pitch-based processing, and we have previously reported a functional correlation between relative pitch processing in the anterior intraparietal sulcus (IPS). We addressed the hypothesis that regional variation of cortical structure within AC and IPS is related to relative pitch ability using two anatomical techniques, cortical thickness (CT) analysis and voxel-based morphometry (VBM) of magnetic resonance imaging data. Persons with variable amounts of formal musical training were tested on a melody transposition task, as well as two musical control tasks and a speech control task. We found that gray matter concentration and cortical thickness in right Heschl's sulcus and bilateral IPS both predicted relative pitch task performance and correlated to a lesser extent with performance on the two musical control tasks. After factoring out variance explained by musical training, only relative pitch performance was predicted by cortical structure in these regions. These results directly demonstrate the functional relevance of previously reported anatomical differences in the auditory cortex of musicians. The findings in the IPS provide further support for the existence of a multimodal network for systematic transformation of stimulus information in this region. PMID:20600982

  15. Numerical simulation of a twin screw expander for performance prediction

    NASA Astrophysics Data System (ADS)

    Papes, Iva; Degroote, Joris; Vierendeels, Jan

    2015-08-01

    With the increasing use of twin screw expanders in waste heat recovery applications, the performance prediction of these machines plays an important role. This paper presents a mathematical model for calculating the performance of a twin screw expander. From the mass and energy conservation laws, differential equations are derived which are then solved together with the appropriate Equation of State in the instantaneous control volumes. Different flow processes that occur inside the screw expander such as filling (accompanied by a substantial pressure loss) and leakage flows through the clearances are accounted for in the model. The mathematical model employs all geometrical parameters such as chamber volume, suction and leakage areas. With R245fa as working fluid, the Aungier Redlich-Kwong Equation of State has been used in order to include real gas effects. To calculate the mass flow rates through the leakage paths formed inside the screw expander, flow coefficients are considered as constant and they are derived from 3D Computational Fluid Dynamic calculations at given working conditions and applied to all other working conditions. The outcome of the mathematical model is the P-V indicator diagram which is compared to CFD results of the same twin screw expander. Since CFD calculations require significant computational time, developed mathematical model can be used for the faster performance prediction.

  16. Neighborhood Integration and Connectivity Predict Cognitive Performance and Decline

    PubMed Central

    Watts, Amber; Ferdous, Farhana; Moore, Keith Diaz; Burns, Jeffrey M.

    2015-01-01

    Objective Neighborhood characteristics may be important for promoting walking, but little research has focused on older adults, especially those with cognitive impairment. We evaluated the role of neighborhood characteristics on cognitive function and decline over a 2-year period adjusting for measures of walking. Method In a study of 64 older adults with and without mild Alzheimer's disease (AD), we evaluated neighborhood integration and connectivity using geographical information systems data and space syntax analysis. In multiple regression analyses, we used these characteristics to predict 2-year declines in factor analytically derived cognitive scores (attention, verbal memory, mental status) adjusting for age, sex, education, and self-reported walking. Results Neighborhood integration and connectivity predicted cognitive performance at baseline, and changes in cognitive performance over 2 years. The relationships between neighborhood characteristics and cognitive performance were not fully explained by self-reported walking. Discussion Clearer definitions of specific neighborhood characteristics associated with walkability are needed to better understand the mechanisms by which neighborhoods may impact cognitive outcomes. These results have implications for measuring neighborhood characteristics, design and maintenance of living spaces, and interventions to increase walking among older adults. We offer suggestions for future research measuring neighborhood characteristics and cognitive function. PMID:26504889

  17. Theoretical Approach to Predict the Performance of Thermoelectric Generator Modules

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem H.; Fagehi, Hassan; Lee, Hosung; Attar, Alaa

    2016-10-01

    The aim of this work was to examine the validity of the thermoelectric modules' performance predicted by formulating the effective thermoelectric material properties. The three maximum parameters (output power, current, and efficiency) are defined in terms of the average temperature of the thermoelectric generator (TEG). These three maximum parameters, which are either taken from commercial TEG modules or measurements for particular operating conditions, are used to define the effective material properties (Seebeck coefficient, thermal conductivity, and electrical resistivity). The commercial performance curves provided by the manufacturer were compared with the results obtained here by the effective material properties with the simple standard thermoelectric equations. It has been found that this technique predicts the performance of four commercial thermoelectric modules with fair to good accuracy. The characteristics of the TEGs were represented using the normalized charts constructed by formulating the parameters as a fraction of over the maximum parameters. The normalized charts would be universal for any given TEG module once the thermoelectric material is known.

  18. WRF Performance Skills in Predicting Rainfall Over the Philippines

    NASA Astrophysics Data System (ADS)

    Perez, G. J. P.; Combinido, J. S.

    2014-12-01

    The Weather Research and Forecasting (WRF) model has been used for predicting rainfall over the Philippines. The period of October 2013 to May 2014 is chosen for the evaluation because of the unprecedented number of new ground instruments (300 to 500 automated rain gauges). It also gives us a good statistical representation of wet and dry seasons in the country. The WRF model configuration makes use of NCEP FNL for the initial boundary condition. Hindcasts are produced at 12-km resolution with 12 hours up to 144 hours lead-time. To assess the predictability of rainfall, we look at the dichotomous case, wherein we evaluate if the model is able to predict correctly the number of rainfall events. The left column in Figure 1 shows the monthly Percent Correct and Critical Success Index (CSI) for different lead-time. Percent Correct represents how well the model performs, 1 being the highest score, with equal bearing on correct positives and correct negatives. On the other hand, CSI is a balanced score that accounts for false alarm and missed events - it has a range of 0 to 1, where 1 means perfect forecast. Results show that during the wet season (October, November and December), PC is approximately 0.7 while in dry season (January, February and March), PC reaches values of around 0.9, which suggests improvement in the performance from wet to dry season. The increase in performance is attributed to the increase in number of correct negatives during the dry season. The CSI score, which excludes the correct negatives, shows that the ability of WRF to predict rainfall events drastically decline in December or during the transition from wet to dry season. This is due to the inability of WRF to pinpoint exact locations of small convective rainfall events. The predictability of actual rainfall values is indicated by the Mean Absolute Errors (MAE) and Root Mean Square Errors (RMSE) in Figure 1. The MAE for 3-hour accumulated rainfall is smallest during the dry season.

  19. Alkaline flood prediction studies, Ranger VII pilot, Wilmington Field, California

    SciTech Connect

    Mayer, E.H.; Breit, V.S.

    1986-01-01

    This paper discusses the design of a simulator to model alkaline displacement mechanisms, along with the current understanding of in-situ caustic consumption. Assimilation of laboratory coreflood and rock consumption data, and their use in one- and two-dimensional (1D and 2D) limited area simulations and in three-dimensional (3D) models of the entire pilot project are given. This paper also reports simulation studies of alkaline flood behavior in a small 2D area of a field for various concentrations, slug sizes, long-term consumption functions, and two relative-permeability adjustment mechanisms. The scale-up of 2D simulation results and their use in a 271-acre (1096.7-ha), seven-layered, 3D model of the pilot are also discussed and 3D simulator results are compared with initial field alkaline flood performance. Finally, recommended additional applications of the simulator methods developed in this pilot and in other alkaline floods are discussed.

  20. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  1. Predictions of airfoil aerodynamic performance degradation due to icing

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Potapezuk, Mark G.; Bidwell, Colin S.

    1988-01-01

    An overview of NASA's ongoing efforts to develop an airfoil icing analysis capability is developed. An indication is given to the approaches being followed to calculate the water droplet trajectories past the airfoil, the buildup of ice on the airfoil, and the resultant changes in aerodynamic performance due to the leading edge ice accretion. Examples are given of current code capabilities/limitations through comparisons of predictions with experimental data gathered in various calibration/validation experiments. A brief discussion of future efforts to extend the analysis to handle three dimensional components is included.

  2. Planetary Suit Hip Bearing Model for Predicting Design vs. Performance

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar

    2011-01-01

    , the suited performance trends were comparable between the model and the suited subjects. With the three off-nominal bearing configurations compared to the nominal bearing configurations, human subjects showed decreases in hip flexion of 64%, 6%, and 13% and in hip abduction of 59%, 2%, and 20%. Likewise the solid model showed decreases in hip flexion of 58%, 1%, and 25% and in hip abduction of 56%, 0%, and 30%, under the same condition changes from the nominal configuration. Differences seen between the model predictions and the human subject performance data could be attributed to the model lacking dynamic elements and performing kinematic analysis only, the level of fit of the subjects with the suit, the levels of the subject s suit experience.

  3. Performance and Prediction: Bayesian Modelling of Fallible Choice in Chess

    NASA Astrophysics Data System (ADS)

    Haworth, Guy; Regan, Ken; di Fatta, Giuseppe

    Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.

  4. The Use of Learning Styles and Admission Criteria in Predicting Academic Performance and Retention of College Freshmen.

    ERIC Educational Resources Information Center

    Garton, Bryan L.; Dyer, James E.; King, Brad O.

    2000-01-01

    College freshmen (n=326) who preferred field-independent and field-neutral learning styles had higher grade point averages. High school grade point average and ACT scores were the best predictors of freshman academic performance. Learning style and ACT scores best predicted student retention. (SK)

  5. The prediction of the hydrodynamic performance of tidal current turbines

    NASA Astrophysics Data System (ADS)

    Y Xiao, B.; Zhou, L. J.; Xiao, Y. X.; Wang, Z. W.

    2013-12-01

    Nowadays tidal current energy is considered to be one of the most promising alternative green energy resources and tidal current turbines are used for power generation. Prediction of the open water performance around tidal turbines is important for the reason that it can give some advice on installation and array of tidal current turbines. This paper presents numerical computations of tidal current turbines by using a numerical model which is constructed to simulate an isolated turbine. This paper aims at studying the installation of marine current turbine of which the hydro-environmental impacts influence by means of numerical simulation. Such impacts include free-stream velocity magnitude, seabed and inflow direction of velocity. The results of the open water performance prediction show that the power output and efficiency of marine current turbine varies from different marine environments. The velocity distribution should be clearly and the suitable unit installation depth and direction be clearly chosen, which can ensure the most effective strategy for energy capture before installing the marine current turbine. The findings of this paper are expected to be beneficial in developing tidal current turbines and array in the future.

  6. Performance predictions of RF heated plasma in EAST

    NASA Astrophysics Data System (ADS)

    Ding, S.; Wan, B.; Zhang, X.; Budny, R. V.; Guo, Y.; McCune, D.; Xu, P.; Yang, J.; Qian, J.; Shi, Y.; Wang, F.; Kaye, S. M.

    2011-01-01

    Scenario development of high power L- and H-mode plasmas in the Experimental Advanced Superconducting Tokamak (EAST) tokamak is reported. The simulations use PTRANSP in combination with TSC to explore EAST plasmas with various radio frequency (RF) auxiliary heating methods, including ion cyclotron resonant heating (ICRH) and lower hybrid current drive. The GLF23 transport model is found to give a better fit to temperature measurements compared with the MMM95 and MMM08 models. A series of ICRH simulations are performed to optimize parameters of a new ICRH system in EAST. The highest plasma stored energy and other related plasma parameters using the current auxiliary power limits are predicted. The discharge length of high power plasma can be 8-200 s, depending on the volt-second consumption in different scenarios. Various phenomena are reported including the influence of different fractions of RF power on their deposition behavior, and on thermal diffusivity, the linear relation between q0 and LHW power fraction, different behavior of fast ions between L- and H-mode plasmas. The scenario development is predicted to improve the performance of EAST.

  7. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  8. Predictive hydrogeochemical modelling of bauxite residue sand in field conditions.

    PubMed

    Wissmeier, Laurin; Barry, David A; Phillips, Ian R

    2011-07-15

    The suitability of residue sand (the coarse fraction remaining from Bayer's process of bauxite refining) for constructing the surface cover of closed bauxite residue storage areas was investigated. Specifically, its properties as a medium for plant growth are of interest to ensure residue sand can support a sustainable ecosystem following site closure. The geochemical evolution of the residue sand under field conditions, its plant nutrient status and soil moisture retention were studied by integrated modelling of geochemical and hydrological processes. For the parameterization of mineral reactions, amounts and reaction kinetics of the mineral phases natron, calcite, tricalcium aluminate, sodalite, muscovite and analcime were derived from measured acid neutralization curves. The effective exchange capacity for ion adsorption was measured using three independent exchange methods. The geochemical model, which accounts for mineral reactions, cation exchange and activity corrected solution speciation, was formulated in the geochemical modelling framework PHREEQC, and partially validated in a saturated-flow column experiment. For the integration of variably saturated flow with multi-component solute transport in heterogeneous 2D domains, a coupling of PHREEQC with the multi-purpose finite-element solver COMSOL was established. The integrated hydrogeochemical model was applied to predict water availability and quality in a vertical flow lysimeter and a cover design for a storage facility using measured time series of rainfall and evaporation from southwest Western Australia. In both scenarios the sand was fertigated and gypsum-amended. Results show poor long-term retention of fertilizer ions and buffering of the pH around 10 for more than 5 y of leaching. It was concluded that fertigation, gypsum amendment and rainfall leaching alone were insufficient to render the geochemical conditions of residue sand suitable for optimal plant growth within the given timeframe. The

  9. Prediction of the Aero-Acoustic Performance of Open Rotors

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Envia, Edmane

    2014-01-01

    The rising cost of jet fuel has renewed interest in contrarotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980's designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.

  10. Predicting performance in competitive apnea diving. Part III: deep diving.

    PubMed

    Schagatay, Erika

    2011-12-01

    The first of these reviews described the physiological factors defining the limits of static apnea, while the second examined performance in apneic distance swimming. This paper reviews the factors determining performance in depth disciplines, where hydrostatic pressure is added to the stressors associated with apnea duration and physical work. Apneic duration is essential for performance in all disciplines, and is prolonged by any means that increases gas storage or tolerance to asphyxia or reduces metabolic rate. For underwater distance swimming, the main challenge is to restrict metabolism despite the work of swimming, and to redirect blood flow to allow the most vital functions. Here, work economy, local tissue energy and oxygen stores, anaerobic capacity of the muscles, and possibly technical improvements will be essential for further development. In the depth disciplines, direct pressure effects causing barotrauma, the narcotic effects of gases, decompression sickness (DCS) and possibly air embolism during ascent need to be taken into account, as does the risk of hypoxia when the dive cannot be rapidly interrupted before the surface is reached again. While in most deep divers apneic duration is not the main limitation thus far, greater depths may call for exceptionally long apneas and slower ascents to avoid DCS. Narcotic effects may also affect the ultimate depth limit, which the divers currently performing 'constant weight with fins' dives predict to be around 156 metres' sea water. To reach these depths, serious physiological challenges have to be met, technical developments needed and safety procedures developed concomitantly.

  11. Predicting the Impacts of Intravehicular Displays on Driving Performance with Human Performance Modeling

    NASA Technical Reports Server (NTRS)

    Mitchell, Diane Kuhl; Wojciechowski, Josephine; Samms, Charneta

    2012-01-01

    A challenge facing the U.S. National Highway Traffic Safety Administration (NHTSA), as well as international safety experts, is the need to educate car drivers about the dangers associated with performing distraction tasks while driving. Researchers working for the U.S. Army Research Laboratory have developed a technique for predicting the increase in mental workload that results when distraction tasks are combined with driving. They implement this technique using human performance modeling. They have predicted workload associated with driving combined with cell phone use. In addition, they have predicted the workload associated with driving military vehicles combined with threat detection. Their technique can be used by safety personnel internationally to demonstrate the dangers of combining distracter tasks with driving and to mitigate the safety risks.

  12. Burst muscle performance predicts the speed, acceleration, and turning performance of Anna's hummingbirds.

    PubMed

    Segre, Paolo S; Dakin, Roslyn; Zordan, Victor B; Dickinson, Michael H; Straw, Andrew D; Altshuler, Douglas L

    2015-11-19

    Despite recent advances in the study of animal flight, the biomechanical determinants of maneuverability are poorly understood. It is thought that maneuverability may be influenced by intrinsic body mass and wing morphology, and by physiological muscle capacity, but this hypothesis has not yet been evaluated because it requires tracking a large number of free flight maneuvers from known individuals. We used an automated tracking system to record flight sequences from 20 Anna's hummingbirds flying solo and in competition in a large chamber. We found that burst muscle capacity predicted most performance metrics. Hummingbirds with higher burst capacity flew with faster velocities, accelerations, and rotations, and they used more demanding complex turns. In contrast, body mass did not predict variation in maneuvering performance, and wing morphology predicted only the use of arcing turns and high centripetal accelerations. Collectively, our results indicate that burst muscle capacity is a key predictor of maneuverability.

  13. Performance Prediction of the NCAT Test Track Pavements Using Mechanistic Models

    NASA Astrophysics Data System (ADS)

    LaCroix, Andrew Thomas

    In the pavement industry in the United States of America, there is an increasing desire to improve the pavement construction quality and life for new and rehabilitated pavements. In order to improve the quality of the pavements, the Federal Highway Administration (FHWA) has pursued a performance-related specification (PRS) for over 20 years. The goal of PRS is to provide material and construction (M/C) properties that correlate well with pavement performance. In order to improve upon the PRS projects developed in WesTrack (NCHRP 9-20) and the MEPDG-based PRS (NCHRP 9-22), a set of PRS tests and models are proposed to provide a critical link between pavement performance and M/C properties. The PRS testing is done using the asphalt mixture performance tester (AMPT). The proposed PRS focuses on rutting and fatigue cracking of asphalt mixtures. The mixtures are characterized for their stiffness, fatigue behavior, and rutting resistance using a dynamic modulus (|E*|) test, a fatigue test, and a triaxial stress sweep (TSS) test, respectively. Information from the fatigue test characterizes the simplified viscoelastic continuum damage (S-VECD) model. Once the stiffness is reduced to a certain level, the material develops macro-cracks and fails. The TSS test is used to characterize a viscoplastic (VP) model. The VP model allows the prediction of the rut depth beneath the center of the wheel. The VECD and VP models are used within a layered viscoelastic (LVE) pavement model to predict fatigue and rutting performance of pavements. The PRS is evaluated by comparing the predictions to the field performance at the NCAT pavement test track in Opelika, Alabama. The test track sections evaluated are part of the 2009 test cycle group experiment, which focused on WMA, high RAP (50%), and a combination of both. The fatigue evaluation shows that all sections would last at least 18 years at the same traffic rate. The sections do not show any cracking, suggesting the sections are well

  14. Metamaterial magnetoinductive lens performance as a function of field strength.

    PubMed

    Algarín, José M; Freire, Manuel J; Breuer, Felix; Behr, Volker C

    2014-10-01

    Metamaterials are artificial composites that exhibit exotic electromagnetic properties, as the ability of metamaterial slabs to behave like lenses with sub-wavelength resolution for the electric or the magnetic field. In previous works, the authors investigated magnetic resonance imaging (MRI) applications of metamaterial slabs that behave like lenses for the radiofrequency magnetic field. In particular, the authors investigated the ability of MRI metamaterial lenses to increase the signal-to-noise ratio (SNR) of surface coils, and to localize the field of view (FOV) of the coils, which is of interest for parallel MRI (pMRI) applications. A metamaterial lens placed between a surface coil and the tissue enhances the sensitivity of the coil. Although the metamaterial lens introduces losses which add to the losses of the tissue, the enhancement of the sensitivity can compensate these additional losses and the SNR of the coil is increased. In a previous work, an optimization procedure was followed to find a metamaterial structure with minimum losses that will maximize the SNR. This structure was termed magnetoinductive (MI) lens by the authors. The properties of surface coils in the presence of MI lenses were investigated in previous works at the proton frequency of 1.5 T systems. The different frequency dependence of the losses in both the MI lenses and the tissue encouraged us to investigate the performance of MI lenses at different frequencies. Thus, in the present work, the SNR and the pMRI ability of MI lenses are investigated as a function of field strength. A numerical analysis is carried out with an algorithm developed by the authors to predict the SNR behavior of a surface coil loaded with a MI lens at the proton frequencies of 0.5 T, 1.5 T and 3 T systems. The results show that, at 0.5 T, there is a gain in the SNR for short distances, but the SNR is highly degraded at deeper distances. However, at 1.5 T and 3T, the MI lenses provide a gain in the SNR up to a

  15. Performance of FFT methods in local gravity field modelling

    NASA Technical Reports Server (NTRS)

    Forsberg, Rene; Solheim, Dag

    1989-01-01

    Fast Fourier transform (FFT) methods provide a fast and efficient means of processing large amounts of gravity or geoid data in local gravity field modelling. The FFT methods, however, has a number of theoretical and practical limitations, especially the use of flat-earth approximation, and the requirements for gridded data. In spite of this the method often yields excellent results in practice when compared to other more rigorous (and computationally expensive) methods, such as least-squares collocation. The good performance of the FFT methods illustrate that the theoretical approximations are offset by the capability of taking into account more data in larger areas, especially important for geoid predictions. For best results good data gridding algorithms are essential. In practice truncated collocation approaches may be used. For large areas at high latitudes the gridding must be done using suitable map projections such as UTM, to avoid trivial errors caused by the meridian convergence. The FFT methods are compared to ground truth data in New Mexico (xi, eta from delta g), Scandinavia (N from delta g, the geoid fits to 15 cm over 2000 km), and areas of the Atlantic (delta g from satellite altimetry using Wiener filtering). In all cases the FFT methods yields results comparable or superior to other methods.

  16. Resilience does not predict academic performance in gross anatomy.

    PubMed

    Elizondo-Omaña, Rodrigo Enrique; García-Rodríguez, María de los Angeles; Hinojosa-Amaya, José Miguel; Villarreal-Silva, Eliud Enrique; Avilan, Rosa Ivette Guzmán; Cruz, Juan José Bazaldúa; Guzmán-López, Santos

    2010-01-01

    Few studies have evaluated resilience in an academic environment as it relates to academic success or failure. This work sought to assess resilience in regular and remedial students of gross anatomy during the first and second semesters of medical school and to correlate this personal trait with academic performance. Two groups of students were compared: the first group included first-year medical students in the regular course, and the second group included first-year medical students who did not pass the regular anatomy course and so were enrolled in the remedial course. Both groups completed anonymous surveys designed to gather demographic data and establish scores on the Connor-Davidson resilience scale, which includes 25 statements rated zero to four on a Likert scale (maximum score 100). The average resilience score was the same for both groups, 80 +/- 9. The average anatomy grades differed significantly between regular students (67+/- 15.0) and remedial students (61 +/- 12.0). While there was no overall correlation between resilience score and anatomy grade, regular students with resilience scores of 75 or greater showed slightly better academic performance than their classmates. Similarly, remedial students with resilience scores of 87 or greater faired better academically. Resilience does not predict academic performance in gross anatomy, and further work is necessary to identify those intrinsic and extrinsic factors that influence students' achievements.

  17. Geoscience Laser Ranging System design and performance predictions

    NASA Technical Reports Server (NTRS)

    Anderson, Kent L.

    1991-01-01

    The Geoscience Laser System (GLRS) will be a high-precision distance-measuring instrument planned for deployment on the EOS-B platform. Its primary objectives are to perform ranging measurements to ground targets to monitor crustal deformation and tectonic plate motions, and nadir-looking altimetry to determine ice sheet thicknesses, surface topography, and vertical profiles of clouds and aerosols. The system uses a mode-locked, 3-color Nd:YAG laser source, a Microchannel Plate-PMT for absolute time-of-flight (TOF) measurement (at 532 nm), a streak camera for TOF 2-color dispersion measurement (532 nm and 355 nm), and a Si avalanche photodiode for altimeter waveform detection (1064 nm). The performance goals are to make ranging measurements to ground targets with about 1 cm accuracy, and altimetry height measurements over ice with 10 cm accuracy. This paper presents an overview of the design concept developed during a phase B study. System engineering issues and trade studies are discussed, with particular attention to error budgets and performance predictions.

  18. Investigation and Prediction of RF Window Performance in APT Accelerators

    SciTech Connect

    Humphries, S. Jr.

    1997-05-01

    The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate {beta} superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electron multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak{_}RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak{_}RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak{_}RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics.

  19. Lesion Location-Based Prediction of Visual Field Improvement after Cerebral Infarction

    PubMed Central

    Kim, Namkug; Kwon, Sun U.; Kim, Sang Joon; Kim, Jong S.; Kang, Dong-Wha

    2015-01-01

    Background Although the prognosis of ischemic stroke is highly dependent on the lesion location, it has rarely been quantitatively utilized. We investigated the usefulness of regional extent of ischemic lesion (rEIL) predicting the improvement of visual field defect (VFD) in patients with posterior cerebral artery infarction. Methods The rEILs were measured in each individual cortex after transforming the lesions to a standard atlas. Significant improvement of VFD was tentatively defined as 20% improvement at 3 months after stroke. The performances of clinical and imaging variables predicting significant improvement were measured by support vector machine. The maximum performance of variables predicting the significant improvement was compared between subgroups of variables (clinical, baseline severity and lesion volume) and the effect of adding rEIL to those subgroups of variables was evaluated. Results A total of 35 patients were enrolled in this study. Left PCA infarct, MR-time from onset, rEILs in the lingual, calcarine, and cuneus cortices were good prognostic indicators of hemi-VFD (performance for predicting the significant improvement: 72.8±11.8%, 66.1±11.2%, respectively). A combination of the rEILs of each cortical subregions demonstrated a better predictive performance for hemi-VFD (83.8±9.5%) compared to a combination of clinical variables (72.8±11.8; p<0.001), baseline severity (63.0±11.9%; p<0.001), or lesion volume (62.6±12.7%; p<0.001). Adding a rEIL to other variables improved the prognostic prediction for hemi-VFD (74.4±11.6% to 91.3±7.7%; p<0.001). Conclusions An estimation of rEIL provides useful information regarding the ischemic lesion location. rEIL accurately predicts the significant improvement of VFD and enhances the prediction power when combined with other variables. PMID:26606516

  20. Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance.

    PubMed

    Matthews, Percival G; Lewis, Mark Rose; Hubbard, Edward M

    2016-02-01

    What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approximate number system (ANS), are ill-suited for learning fraction concepts. However, recent research in developmental psychology and neuroscience has revealed a ratio-processing system (RPS) that is sensitive to magnitudes of nonsymbolic ratios and may be ideally suited for supporting fraction concepts. We provide evidence for this hypothesis by showing that individual differences in RPS acuity predict performance on four measures of mathematical competence, including a university entrance exam in algebra. We suggest that the nonsymbolic RPS may support symbolic fraction understanding much as the ANS supports whole-number concepts. Thus, even abstract mathematical concepts, such as fractions, may be grounded not only in higher-order logic and language, but also in basic nonsymbolic processing abilities.

  1. Zero-G Thermodynamic Venting System (TVS) Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Nguyen, Han

    1994-01-01

    This report documents the Zero-g Thermodynamic Venting System (TVS) performance prediction computer program. The zero-g TVS is a device that destratifies and rejects environmentally induced zero-g thermal gradients in the LH2 storage transfer system. A recirculation pump and spray injection manifold recirculates liquid throughout the length of the tank thereby destratifying both the ullage gas and liquid bulk. Heat rejection is accomplished by the opening of the TVS control valve which allows a small flow rate to expand to a low pressure thereby producing a low temperature heat sink which is used to absorb heat from the recirculating liquid flow. The program was written in FORTRAN 77 language on the HP-9000 and IBM PC computers. It can be run on various platforms with a FORTRAN compiler.

  2. Coded aperture imaging - Predicted performance of uniformly redundant arrays

    NASA Technical Reports Server (NTRS)

    Fenimore, E. E.

    1978-01-01

    It is noted that uniformly redundant arrays (URAs) have autocorrelation functions with perfectly flat sidelobes. A generalized signal-to-noise equation has been developed to predict URA performance. The signal-to-noise value is formulated as a function of aperture transmission or density, the ratio of the intensity of a resolution element to the integrated source intensity, and the ratio of detector background noise to the integrated intensity. It is shown that the only two-dimensional URAs known have a transmission of one half. This is not a great limitation because a nonoptimum transmission of one half never reduces the signal-to-noise ratio more than 30%. The reconstructed URA image contains practically uniform noise, regardless of the object structure. URA's improvement over the single-pinhole camera is much larger for high-intensity points than for low-intensity points.

  3. Geothermal Field Case Studies that Document the Usefulness of Models in Predicting Reservoir and Well Behavior

    SciTech Connect

    Lippmann, Marcelo J.

    1989-03-21

    The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant part of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Fall in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources.

  4. Geothermal field case studies that document the usefulness of models in predicting reservoir and well behavior

    SciTech Connect

    Lippmann, M.J.

    1989-03-01

    The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant art of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Falls in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources. 14 refs., 6 figs.

  5. Photovoltaic performance models: an evaluation with actual field data

    NASA Astrophysics Data System (ADS)

    TamizhMani, Govindasamy; Ishioye, John-Paul; Voropayev, Arseniy; Kang, Yi

    2008-08-01

    Prediction of energy production is crucial to the design and installation of the building integrated photovoltaic systems. This prediction should be attainable based on the commonly available parameters such as system size, orientation and tilt angle. Several commercially available as well as free downloadable software tools exist to predict energy production. Six software models have been evaluated in this study and they are: PV Watts, PVsyst, MAUI, Clean Power Estimator, Solar Advisor Model (SAM) and RETScreen. This evaluation has been done by comparing the monthly, seasonaly and annually predicted data with the actual, field data obtained over a year period on a large number of residential PV systems ranging between 2 and 3 kWdc. All the systems are located in Arizona, within the Phoenix metropolitan area which lies at latitude 33° North, and longitude 112 West, and are all connected to the electrical grid.

  6. Predicting plant invasions under climate change: are species distribution models validated by field trials?

    PubMed

    Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C

    2014-09-01

    Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced

  7. Predicting plant invasions under climate change: are species distribution models validated by field trials?

    PubMed

    Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C

    2014-09-01

    Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced

  8. Computational Predictions of the Performance Wright 'Bent End' Propellers

    NASA Technical Reports Server (NTRS)

    Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)

    2002-01-01

    Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.

  9. Predicting Undergraduates' Persistence in Science, Technology, Engineering, and Math Fields

    ERIC Educational Resources Information Center

    Koch, Amanda Joy

    2013-01-01

    A national shortage of workers in Science, Technology, Engineering, and Math (STEM) occupations has led to efforts to identify why people leave these fields. Lower persistence rates in STEM for females than for males have also led to examinations of features that cause females to leave STEM fields. The current study examines individual- and…

  10. Predictions of boiler performance when firing fine grind coal fuels

    SciTech Connect

    Hargrove, M.J.; Liljedahl, G.N.; Miemiec, L.S.

    1996-12-31

    The development of advanced coal beneficiation and utilization technologies is being sponsored by the US Department of Energy`s Pittsburgh Energy Technology Center, to encourage the use of the abundant coal reserves. A comprehensive program is being conducted by Combustion Engineering, Inc. (ABB CE), regarding the use of these fuels in existing utility boilers. The preparation process can change the original fuel particle size distribution and hence can affect the combustion and ash deposition behaviors. To evaluate the effects of fine particles independent of the beneficiation process, a Pittsburgh No. 8 coal at three degrees of fineness was selected. Physical, chemical, combustion and fireside characteristics of these fuels were evaluated in laboratory testing. Characterization tests provide the information required to predict the performance and economic impacts of firing these fuels in existing coal and oil-designed utility boilers. Two utility steam generators designed for either coal or oil-firing were selected for performance evaluation. The study units were selected to be representative of a large portion of the current boiler population: a 560 MW coal-designed boiler purchased in 1973; and a 600 MW oil-designed boiler purchased in 1970. Each of these units was previously studied in the DOE Beneficiated Coal Fuels (BCF) evaluation of Spherical Oil Agglomeration Products (SOAP). Both of these units were built by ABB CE, but the fuel related design parameters are similar to those used by other manufacturers. This paper summarizes the results of the performance analysis and describes the economic impacts that can be expected when firing this coal ground to different fineness levels in two utility steam generators.

  11. Predicting Student Academic Performance in an Engineering Dynamics Course: A Comparison of Four Types of Predictive Mathematical Models

    ERIC Educational Resources Information Center

    Huang, Shaobo; Fang, Ning

    2013-01-01

    Predicting student academic performance has long been an important research topic in many academic disciplines. The present study is the first study that develops and compares four types of mathematical models to predict student academic performance in engineering dynamics--a high-enrollment, high-impact, and core course that many engineering…

  12. Use of Boundary Layer Transition Detection to Validate Full-Scale Flight Performance Predictions

    NASA Technical Reports Server (NTRS)

    Hamner, Marvine; Owens, L. R., Jr.; Wahls, R. A.; Yeh, David

    1999-01-01

    Full-scale flight performance predictions can be made using CFD or a combination of CFD and analytical skin-friction predictions. However, no matter what method is used to obtain full-scale flight performance predictions knowledge of the boundary layer state is critical. The implementation of CFD codes solving the Navier-Stokes equations to obtain these predictions is still a time consuming, expensive process. In addition, to ultimately obtain accurate performance predictions the transition location must be fixed in the CFD model. An example, using the M2.4-7A geometry, of the change in Navier-Stokes solution with changes in transition and in turbulence model will be shown. Oil flow visualization using the M2.4-7A 4.0% scale model in the 14'x22' wind tunnel shows that fixing transition at 10% x/c in the CFD model best captures the flow physics of the wing flow field. A less costly method of obtaining full-scale performance predictions is the use of non-linear Euler codes or linear CFD codes, such as panel methods, combined with analytical skin-friction predictions. Again, knowledge of the boundary layer state is critical to the accurate determination of full-scale flight performance. Boundary layer transition detection has been performed at 0.3 and 0.9 Mach numbers over an extensive Reynolds number range using the 2.2% scale Reference H model in the NTF. A temperature sensitive paint system was used to determine the boundary layer state for these conditions. Data was obtained for three configurations: the baseline, undeflected flaps configuration; the transonic cruise configuration; and, the high-lift configuration. It was determined that at low Reynolds number conditions, in the 8 to 10 million Reynolds number range, the baseline configuration has extensive regions of laminar flow, in fact significantly more than analytical skin-friction methods predict. This configuration is fully turbulent at about 30 million Reynolds number for both 0.3 and 0.9, Mach numbers

  13. Frontoparietal white matter integrity predicts haptic performance in chronic stroke.

    PubMed

    Borstad, Alexandra L; Choi, Seongjin; Schmalbrock, Petra; Nichols-Larsen, Deborah S

    2016-01-01

    strongly correlated with the shared variance across tracts in the control, but not in the poststroke participants. A moderate to good relationship was found between ipsilesional T-M1 MD and affected hand HASTe score (r = - 0.62, p = 0.006) and less affected hand HASTe score (r = - 0.53, p = 0.022). Regression analysis revealed approximately 90% of the variance in affected hand HASTe score was predicted by the white matter integrity in the frontoparietal network (as indexed by MD) in poststroke participants while 87% of the variance in HASTe score was predicted in control participants. This study demonstrates the importance of frontoparietal white matter in mediating haptic performance and specifically identifies that T-M1 and precuneus interhemispheric tracts may be appropriate targets for piloting rehabilitation interventions, such as noninvasive brain stimulation, when the goal is to improve poststroke haptic performance.

  14. Sprint running performance: comparison between treadmill and field conditions.

    PubMed

    Morin, Jean-Benoît; Sève, Pierrick

    2011-08-01

    We investigated the differences in performance between 100-m sprints performed on a sprint treadmill recently validated versus on a standard track. To date, studies comparing overground and treadmill running have mainly focused on constant and not maximal "free" running speed, and compared running kinetics and kinematics over a limited number of steps, but not overall sprint performance. Eleven male physical education students including two sprinters performed one 100-m on the treadmill and one on a standard athletics track in a randomized order, separated by 30 min. Performance data were derived in both cases from speed-time relationships measured with a radar and with the instrumented sprint treadmill, which allowed subjects to run and produce speed "freely", i.e. with no predetermined belt speed imposed. Field and treadmill typical speed-distance curves and data of maximal and mean speed, 100-m time and acceleration/deceleration time constants were compared using t tests and field-treadmill correlations were tested. All the performance parameters but time to reach top speed and deceleration time constant differed significantly, by about 20% on average, between field and treadmill (e.g. top speed of 8.84 ± 0.51 vs. 6.90 ± 0.39 m s(-1)). However, significant correlations were found (r > 0.63; P < 0.05) for all the performance parameters except time to reach top speed. Treadmill and field 100-m sprint performances are different, despite the fact that subjects could freely accelerate the belt. However, the significant correlations found make it possible to investigate and interpret inter-individual differences in field performance from treadmill measurements.

  15. Sprint running performance: comparison between treadmill and field conditions.

    PubMed

    Morin, Jean-Benoît; Sève, Pierrick

    2011-08-01

    We investigated the differences in performance between 100-m sprints performed on a sprint treadmill recently validated versus on a standard track. To date, studies comparing overground and treadmill running have mainly focused on constant and not maximal "free" running speed, and compared running kinetics and kinematics over a limited number of steps, but not overall sprint performance. Eleven male physical education students including two sprinters performed one 100-m on the treadmill and one on a standard athletics track in a randomized order, separated by 30 min. Performance data were derived in both cases from speed-time relationships measured with a radar and with the instrumented sprint treadmill, which allowed subjects to run and produce speed "freely", i.e. with no predetermined belt speed imposed. Field and treadmill typical speed-distance curves and data of maximal and mean speed, 100-m time and acceleration/deceleration time constants were compared using t tests and field-treadmill correlations were tested. All the performance parameters but time to reach top speed and deceleration time constant differed significantly, by about 20% on average, between field and treadmill (e.g. top speed of 8.84 ± 0.51 vs. 6.90 ± 0.39 m s(-1)). However, significant correlations were found (r > 0.63; P < 0.05) for all the performance parameters except time to reach top speed. Treadmill and field 100-m sprint performances are different, despite the fact that subjects could freely accelerate the belt. However, the significant correlations found make it possible to investigate and interpret inter-individual differences in field performance from treadmill measurements. PMID:21210279

  16. Predicting cotton yield of small field plots in a cotton breeding program using UAV imagery data

    NASA Astrophysics Data System (ADS)

    Maja, Joe Mari J.; Campbell, Todd; Camargo Neto, Joao; Astillo, Philip

    2016-05-01

    One of the major criteria used for advancing experimental lines in a breeding program is yield performance. Obtaining yield performance data requires machine picking each plot with a cotton picker, modified to weigh individual plots. Harvesting thousands of small field plots requires a great deal of time and resources. The efficiency of cotton breeding could be increased significantly while the cost could be decreased with the availability of accurate methods to predict yield performance. This work is investigating the feasibility of using an image processing technique using a commercial off-the-shelf (COTS) camera mounted on a small Unmanned Aerial Vehicle (sUAV) to collect normal RGB images in predicting cotton yield on small plot. An orthonormal image was generated from multiple images and used to process multiple, segmented plots. A Gaussian blur was used to eliminate the high frequency component of the images, which corresponds to the cotton pixels, and used image subtraction technique to generate high frequency pixel images. The cotton pixels were then separated using k-means cluster with 5 classes. Based on the current work, the calculated percentage cotton area was computed using the generated high frequency image (cotton pixels) divided by the total area of the plot. Preliminary results showed (five flights, 3 altitudes) that cotton cover on multiple pre-selected 227 sq. m. plots produce an average of 8% which translate to approximately 22.3 kgs. of cotton. The yield prediction equation generated from the test site was then use on a separate validation site and produced a prediction error of less than 10%. In summary, the results indicate that a COTS camera with an appropriate image processing technique can produce results that are comparable to expensive sensors.

  17. Estimating the magnitude of prediction uncertainties for field-scale P loss models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study, an uncertainty analysis for the Annual P Loss Estima...

  18. Performance predictions of VAWTs with NLF airfoil blades

    SciTech Connect

    Masson, C.; Leclerc, C.; Paraschivoiu, I.

    1997-02-01

    The successful design of an efficient Vertical Axis Wind Turbine (VAWT) can be obtained only when appropriate airfoil sections have been selected. Most VAWTs currently operating worldwide use blades of symmetrical NACA airfoil series. As these blades were designed for aviation applications, Sandia National Laboratories developed a family of airfoils specifically designed for VAWTs in order to decrease the Cost of Energy (COE) of the VAWT (Berg, 1990). Objectives formulated for the blade profile were: modest values of maximum lift coefficient, low drag at low angle of attack, high drag at high angle of attack, sharp stall, and low thickness-to-chord ratio. These features are similar to those of Natural Laminar Flow airfoils (NLF) and gave birth to the SNLA airfoil series. This technical brief illustrates the benefits and losses resulting from using NLF airfoils on VAWT blades. To achieve this goal, the streamtube model of Paraschivoiu (1988) is used to predict the performance of VAWTs equipped with blades of various airfoil shapes. The airfoil shapes considered are the conventional airfoils NACA 0018 and NACA 0021, and the SNLA 0018/50 airfoil designed at Sandia. Furthermore, the potential benefit of reducing the airfoil drag is clearly illustrated by the presentation of the individual contributions of lift and drag to power.

  19. Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance.

    PubMed

    Matthews, Percival G; Lewis, Mark Rose; Hubbard, Edward M

    2016-02-01

    What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approximate number system (ANS), are ill-suited for learning fraction concepts. However, recent research in developmental psychology and neuroscience has revealed a ratio-processing system (RPS) that is sensitive to magnitudes of nonsymbolic ratios and may be ideally suited for supporting fraction concepts. We provide evidence for this hypothesis by showing that individual differences in RPS acuity predict performance on four measures of mathematical competence, including a university entrance exam in algebra. We suggest that the nonsymbolic RPS may support symbolic fraction understanding much as the ANS supports whole-number concepts. Thus, even abstract mathematical concepts, such as fractions, may be grounded not only in higher-order logic and language, but also in basic nonsymbolic processing abilities. PMID:26710824

  20. Hydrogen recombination kinetics and nuclear thermal rocket performance prediction

    SciTech Connect

    Wetzel, K.K.; Solomon, W.C.

    1994-07-01

    The rate constants for the hydrogen three-body collisional recombination reaction with atomic and molecular hydrogen acting as third bodies have been determined by numerous investigators during the past 30 yr, but these rates exhibit significant scatter. The discrepancies in the rate constants determined by different investigators are as great as two orders of magnitude in the temperature range of interest for nuclear thermal rocket (NTR) operation, namely, 2000-3300 K. The impact of this scatter on our ability to predict the specific impulse (I(sub sp)) delivered by a 30-klbf NTR has been determined for chamber pressures and temperatures from, respectively, 20-1000 psia and 2700-3300 K. The variation in I(sub sp) produced by using the different rate constants is as great as 10%, or 100 s. This variation also obscures the influence of chamber pressure on I(sub sp); using fast kinetics, low pressures yield significantly improved performance, while using slow or nominal kinetics, the pressure dependence of I(sub sp) is negligible. Because the flow composition freezes at very small area ratios, optimization of the nozzle contour in the near-throat region maximizes recombination. Vibrational relaxation is found to produce negligible losses in I(sub sp). 36 refs.

  1. Hydrogen recombination kinetics and nuclear thermal rocket performance prediction

    NASA Astrophysics Data System (ADS)

    Wetzel, Kyle K.; Solomon, Wayne C.

    1994-07-01

    The rate constants for the hydrogen three-body collisional recombination reaction with atomic and molecular hydrogen acting as third bodies have been determined by numerous investigators during the past 30 yr, but these rates exhibit significant scatter. The discrepancies in the rate constants determined by different investigators are as great as two orders of magnitude in the temperature range of interest for nuclear thermal rocket (NTR) operation, namely, 2000-3300 K. The impact of this scatter on our ability to predict the specific impulse (I(sub sp)) delivered by a 30-klbf NTR has been determined for chamber pressures and temperatures from, respectively, 20-1000 psia and 2700-3300 K. The variation in I(sub sp) produced by using the different rate constants is as great as 10%, or 100 s. This variation also obscures the influence of chamber pressure on I(sub sp); using fast kinetics, low pressures yield significantly improved performance, while using slow or nominal kinetics, the pressure dependence of I(sub sp) is negligible. Because the flow composition freezes at very small area ratios, optimization of the nozzle contour in the near-throat region maximizes recombination. Vibrational relaxation is found to produce negligible losses in I(sub sp).

  2. Burst muscle performance predicts the speed, acceleration, and turning performance of Anna’s hummingbirds

    PubMed Central

    Segre, Paolo S; Dakin, Roslyn; Zordan, Victor B; Dickinson, Michael H; Straw, Andrew D; Altshuler, Douglas L

    2015-01-01

    Despite recent advances in the study of animal flight, the biomechanical determinants of maneuverability are poorly understood. It is thought that maneuverability may be influenced by intrinsic body mass and wing morphology, and by physiological muscle capacity, but this hypothesis has not yet been evaluated because it requires tracking a large number of free flight maneuvers from known individuals. We used an automated tracking system to record flight sequences from 20 Anna's hummingbirds flying solo and in competition in a large chamber. We found that burst muscle capacity predicted most performance metrics. Hummingbirds with higher burst capacity flew with faster velocities, accelerations, and rotations, and they used more demanding complex turns. In contrast, body mass did not predict variation in maneuvering performance, and wing morphology predicted only the use of arcing turns and high centripetal accelerations. Collectively, our results indicate that burst muscle capacity is a key predictor of maneuverability. DOI: http://dx.doi.org/10.7554/eLife.11159.001 PMID:26583753

  3. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    SciTech Connect

    Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A.; Geer, S. B. van der

    2014-12-28

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  4. Field theoretical prediction of a property of the tropical cyclone

    NASA Astrophysics Data System (ADS)

    Spineanu, F.; Vlad, M.

    2014-01-01

    The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems combining thermodynamics and fluid-mechanical processes. The late phase of the evolution towards stationarity consists of the vorticity concentration, a well known tendency to self-organization , an universal property of the two-dimensional fluids. It may then be expected that the stationary state of the tropical cyclone has the same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors, Bose-Einsetin condensate, cosmic strings, etc. Indeed it was found that there is a description of the atmospheric vortex in terms of a classical field theory. It is compatible with the more conventional treatment based on conservation laws, but the field theoretical model reveals properties that are almost inaccessible to the conventional formulation: it identifies the stationary states as being close to self-duality. This is of highest importance: the self-duality is known to be the origin of all coherent structures known in natural systems. Therefore the field theoretical (FT) formulation finds that the cuasi-coherent form of the atmospheric vortex (tropical cyclone) at stationarity is an expression of this particular property. In the present work we examine a strong property of the tropical cyclone, which arises in the FT formulation in a natural way: the equality of the masses of the particles associated to the matter field and respectively to the gauge field in the FT model is translated into the equality between the maximum radial extension of the tropical cyclone and the Rossby radius. For the cases where the FT model is a good approximation we calculate characteristic quantities of the tropical cyclone and find good comparison with observational data.

  5. Wind field estimation and its utilization in trajectory and input prediction

    NASA Astrophysics Data System (ADS)

    Kampoon, Jane-Wit

    This dissertation work develops a method for onboard estimation of wind field with spatial and temporal variation based on local wind vector estimation and/or measurements from multiple aircraft flying in the same airspace. Aircraft flying in the same airspace of operation are considered airborne wind sensors scattered over the airspace because of the fact that aircraft carry along with them wind information inherent in their dynamics and kinematics. The onboard wind field estimation is formulated in the framework of parameter estimation based on various wind field models, which are different function of position and time. The online wind field estimation is utilized in trajectory prediction of aircraft in spatially and temporally varying wind. Various simulation cases are presented to demonstrate the feasibility of wind field estimation and the benefit of using such information in trajectory prediction. Further this dissertation presents a method of input prediction for and aircraft flying in spatially and temporally varying wind field. Input prediction is done using inverse simulation to compute the required control variables (control surface deflections and thrust level) for an aircraft to fly through a prescribed trajectory. Estimated wind field is also used in inverse simulation for input prediction as in the trajectory prediction case. Various simulation cases are presented to demonstrate the feasibility of input prediction method and the importance of including wind field information in inverse simulations.

  6. MRS Photodiode, LED and extruded scintillator performance in magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Zutshi, V.; /Northern Illinois U.

    2005-05-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported. In addition, the experimental results on the performance of the extruded scintillator and WLS fiber, and various LEDs in the magnetic fields of 1.8T and 2.3T respectively, are detailed. The measurement method used is being described.

  7. Video Guidance Sensor: Optical Performance Predictions and Results from STS-95 Experiment

    NASA Technical Reports Server (NTRS)

    Jackson, John L.; Cole, Helen J.; Howard, Richard T.

    1999-01-01

    The Video Guidance Sensor is a key component of NASA's Automated Rendezvous & Capture Program. The Video Guidance Sensor Uses laser illumination of a passive target in the field of view of an on-board camera and signal processor to determine the relative position and attitude between the target and sensor. The Video Guidance Sensor flew on space shuttle mission STS-95 in November of 1998 and was a marked success. Comparisons of experimental results from that mission and theoretical models predicting the optical performance will be discussed.

  8. Predicting polarization performance of high-numerical aperture inspection lenses

    NASA Astrophysics Data System (ADS)

    Fahr, Stephan; Werschnik, Jan; Bening, Matthias; Uhlendorf, Kristina

    2015-09-01

    Along the course of increasing through-put and improving signal to noise ratio in optical wafer and mask inspection, demands on wave front aberrations and polarization characteristics are ever increasing. The system engineers and optical designers involved in the development of such optical systems will be responsible for specifying the quality of the optical material and the mechanical tolerances. Among optical designers it is well established how to estimate the wave front error of assembled and adjusted optical devices via sensitivity or Monte-Carlo analysis. However, when compared with the scalar problem of wave front estimation, the field of polarization control deems to pose a more complex problem due to its vectorial nature. Here we show our latest results in how to model polarization affecting aspects. In the realm of high numerical aperture (NA) inspection optics we will focus on the impact of coatings, stress induced birefringence due to non-perfect lens mounting, and finally the birefringence of the optical material. With all these tools at hand, we have a more complete understanding of the optical performance of our assembled optical systems. Moreover, we are able to coherently develop optical systems meeting demanding wave front criteria as well as high end polarization specifications.

  9. Pallidal spiking activity reflects learning dynamics and predicts performance

    PubMed Central

    Noblejas, Maria Imelda; Mizrahi, Aviv D.; Dauber, Omer; Bergman, Hagai

    2016-01-01

    The basal ganglia (BG) network has been divided into interacting actor and critic components, modulating the probabilities of different state–action combinations through learning. Most models of learning and decision making in the BG focus on the roles of the striatum and its dopaminergic inputs, commonly overlooking the complexities and interactions of BG downstream nuclei. In this study, we aimed to reveal the learning-related activity of the external segment of the globus pallidus (GPe), a downstream structure whose computational role has remained relatively unexplored. Recording from monkeys engaged in a deterministic three-choice reversal learning task, we found that changes in GPe discharge rates predicted subsequent behavioral shifts on a trial-by-trial basis. Furthermore, the activity following the shift encoded whether it resulted in reward or not. The frequent changes in stimulus–outcome contingencies (i.e., reversals) allowed us to examine the learning-related neural activity and show that GPe discharge rates closely matched across-trial learning dynamics. Additionally, firing rates exhibited a linear decrease in sequences of correct responses, possibly reflecting a gradual shift from goal-directed execution to automaticity. Thus, modulations in GPe spiking activity are highest for attention-demanding aspects of behavior (i.e., switching choices) and decrease as attentional demands decline (i.e., as performance becomes automatic). These findings are contrasted with results from striatal tonically active neurons, which show none of these task-related modulations. Our results demonstrate that GPe, commonly studied in motor contexts, takes part in cognitive functions, in which movement plays a marginal role. PMID:27671661

  10. Does High School Performance Predict College Math Placement?

    ERIC Educational Resources Information Center

    Kowski, Lynne E.

    2013-01-01

    Predicting student success has long been a question of interest for postsecondary admission counselors throughout the United States. Past research has examined the validity of several methods designed for predicting undergraduate success. High school record, standardized test scores, extracurricular activities, and combinations of all three have…

  11. Does Quantum Cosmology Predict a Constant Dilatonic Field?

    NASA Astrophysics Data System (ADS)

    Alvarenga, F. G.; Batista, A. B.; Fabris, J. C.

    Quantum cosmology may permit to determine the initial conditions of the Universe. In particular, it may select a specific model between many possible classical models. In this work, we study a quantum cosmological model based on the string effective action coupled to matter. The Schutz's formalism is employed in the description of the fluid. A radiation fluid is considered. In this way, a time coordinate may be identified and the Wheeler-DeWitt equation reduces in the minisuperspace to a Schrödinger-like equation. It is shown that, under some quite natural assumptions, the expectation values indicate a null axionic field and a constant dilatonic field. At the same time the scale factor exhibits a bounce revealing a singularity-free cosmological model. In some cases, the mininum value of the scale factor can be related to the value of gravitational coupling.

  12. Magnetic field of the planet Uranus: predictions, measurements, and interpretation

    SciTech Connect

    Dolginov, S.S.

    1987-09-01

    The magnitude and tilt of the eccentric dipole of Uranus are examined in the framework of a processing dynamo model. It is shown that the unique parameters of the magnetic field of Uranus are connected with the fact that, unlike the other planets, the magnetic field of Uranus is generated in two bordering regions whose highly conducting materials differ sharply in density: the density anti rho = 12 g x cm/sup -3/ in a core with an upper boundary r = 0.3R/sub U/, and anti rho = 3.1 g x cm/sup -3/ in an ocean with an upper boundary r = 0.6R/sub U/. The upper boundary of the magnetically active region in the ocean is determined by the magnetic pressure P = 1.9 Mbar, at which the ocean material is metallized.

  13. Advanced bit establishes superior performance in Ceuta field

    SciTech Connect

    Mensa-Wilmot, G.

    1999-11-01

    A new-generation polycrystalline diamond compact (PDC) bit is redefining operational efficiency and reducing drilling costs in the Ceuta field, in the Lago de Maracaibo area of Venezuela. Its unique cutting structure and advancements in PDC cutter technology have established superior performance in this challenging application. The paper describes the new-generation PDC bit, advanced technology PDC cutters, and performance. A table gives cost per foot evaluation.

  14. In-Flight Performance of Wide Field Camera 3

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2010-01-01

    Wide Field Camera 3 (WFC3), a powerful new UVNisible/IR imager, was installed into HST during Servicing Mission 4. After a successful commissioning in the Servicing Mission Orbital Verification program, WFC3 has been engaged in an exciting program of scientific observations. I review here the in-flight scientific performance of the instrument, addressing such topics as image quality, sensitivity, detector performance, and stability.

  15. Soil and Nitrogen redistribution in a small Mediterranean cereal field: modelling predictions and field measurements

    NASA Astrophysics Data System (ADS)

    López-Vicente, Manuel, , Dr.; Quijano, M. Sc. Laura; Gaspar, Leticia, , Dr.; Palazón, M. Sc. Leticia; Navas, Ana, , Dr.

    2015-04-01

    Cultivation is one of the main factors triggering soil erosion and the loss of fertile soil accelerates and in some cases causes soil degradation and crop yield reduction. Patterns of erosion, delivery and deposition of soil particles appear to be closely linked to that of soil nutrients. In this study, we assess the rates of soil and nutrient (soil nitrogen) redistribution and budget in a rain-fed cereal experimental plot (0.65 ha; Ebro river basin, NE Spain) caused by water erosion. The study area has a mean slope of 7%, it is classed as a closed-hydrological unit due to the cutting-connectivity effect of the landscape linear elements (LLEs), it has only one outlet and runoff directly reach La Reina gully. Climate is continental Mediterranean with two humid periods (average annual rainfall depth of 556 mm). Rainfall events of high intensity happen in June, July, September and October, with average values of maximum rainfall intensity in 30 min higher than 4 mm h-1 and above 6 mm h-1 in October. Soils are classified as Haplic Calcisols with an average and maximum values of soil organic matter of 1.5% and 2.4% respectively, high carbonate contents (ca. 39%) and texture is silt loam. The field has been cultivated for more than 150 years and consequently the soil is thoroughly mixed in the plough layer (25-30 cm). The cereal field was last harvested in June 2007 and from that date onwards the field has remained fallow for research purposes. Before fallowing the field was managed with minimum tillage during 15 years. Vegetation clearance practices were implemented to prevent scrub growth and so the soil surface has remained almost bare since that date. A total of 222 topsoil (5 cm depth) samples were collected following a regular 5x5 metre grid. Soil nitrogen content (%) was determined by the dry combustion method using a Leco TruSpec carbon and nitrogen analyzer (LECO Corporation, St. Joseph, MI, USA). Soil nitrogen was detected by determining the NOx gas evolved

  16. Diagnostic Performance 1 H after Simulation Training Predicts Learning

    ERIC Educational Resources Information Center

    Consoli, Anna; Fraser, Kristin; Ma, Irene; Sobczak, Matthew; Wright, Bruce; McLaughlin, Kevin

    2013-01-01

    Although simulation training improves post-training performance, it is unclear how well performance soon after simulation training predicts longer term outcomes (i.e., learning). Here our objective was to assess the predictive value of performance 1 h post-training of performance 6 weeks later. We trained 84 first year medical students a simulated…

  17. A paradigm for data-driven predictive modeling using field inversion and machine learning

    NASA Astrophysics Data System (ADS)

    Parish, Eric J.; Duraisamy, Karthik

    2016-01-01

    We propose a modeling paradigm, termed field inversion and machine learning (FIML), that seeks to comprehensively harness data from sources such as high-fidelity simulations and experiments to aid the creation of improved closure models for computational physics applications. In contrast to inferring model parameters, this work uses inverse modeling to obtain corrective, spatially distributed functional terms, offering a route to directly address model-form errors. Once the inference has been performed over a number of problems that are representative of the deficient physics in the closure model, machine learning techniques are used to reconstruct the model corrections in terms of variables that appear in the closure model. These reconstructed functional forms are then used to augment the closure model in a predictive computational setting. As a first demonstrative example, a scalar ordinary differential equation is considered, wherein the model equation has missing and deficient terms. Following this, the methodology is extended to the prediction of turbulent channel flow. In both of these applications, the approach is demonstrated to be able to successfully reconstruct functional corrections and yield accurate predictive solutions while providing a measure of model form uncertainties.

  18. The Effect of Stress and Recovery on Field-test Performance in Floorball.

    PubMed

    van der Does, H T D; Brink, M S; Visscher, C; Huijgen, B C H; Frencken, W G P; Lemmink, K A P M

    2015-06-01

    Physical and psychosocial stress and recovery are important performance determinants. A holistic approach that monitors these performance determinants over a longer period of time is lacking. Therefore this study aims to investigate the effect of a player's physical and psychosocial stress and recovery on field-test performance. In a prospective non-experimental cohort design 10 female Dutch floorball players were monitored over 6 months. To monitor physical and psychosocial stress and recovery, daily training-logs and 3-weekly the Recovery-Stress Questionnaire for Athletes (RESTQ-Sport) were filled out respectively. To determine field-test performance 6 Heart rate Interval Monitoring System (HIMS) and 4 Repeated Modified Agility T-test (RMAT) measurements were performed. Multilevel prediction models were applied to account for within-players and between-players field-test performance changes. The results show that more psychosocial stress and less psychosocial recovery over 3-6 weeks before testing decrease HIMS performance (p≤0.05). More physical stress over 6 weeks before testing improves RMAT performance (p≤0.05). In conclusion, physical and psychosocial stress and recovery affect submaximal interval-based running performance and agility up to 6 weeks before testing. Therefore both physical and psychosocial stress and recovery should be monitored in daily routines to optimize performance.

  19. Ion Thruster Discharge Performance Per Magnetic Field Topography

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Goebel, Dan

    2006-01-01

    DC-ION is a detailed computational model for predicting the plasma characteristics of rain-cusp ion thrusters. The advanced magnetic field meshing algorithm used by DC-ION allows precise treatment of the secondary electron flow. This capability allows self-consistent estimates of plasma potential that improves the overall consistency of the results of the discharge model described in Reference [refJPC05mod1]. Plasma potential estimates allow the model to predict the onset of plasma instabilities, and important shortcoming of the previous model for optimizing the design of discharge chambers. A magnetic field mesh simplifies the plasma flow calculations, for both the ions and the secondary electrons, and significantly reduces numerical diffusion that can occur with meshes not aligned with the magnetic field. Comparing the results of this model to experimental data shows that the behavior of the primary electrons, and the precise manner of their confinement, dictates the fundamental efficiency of ring-cusp. This correlation is evident in simulations of the conventionally sized NSTAR thruster (30 cm diameter) and the miniature MiXI thruster (3 cm diameter).

  20. First Assessments of Predicted ICESat-2 Performance Using Aircraft Data

    NASA Technical Reports Server (NTRS)

    Neumann, Thomas; Markus, Thorsten; Cook, William; Hancock, David; Brenner, Anita; Kelly, Brunt; DeMarco, Eugenia; Reed, Daniel; Walsh, Kaitlin

    2012-01-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key observations of ice sheet elevation change, sea ice freeboard, vegetation canopy height, earth surface elevation, and sea surface height. Scheduled for launch in mid-2016, ICESat-2 will use a high repetition rate (10 kHz), small footprint (10 m nominal ground diameter) laser, and a single-photon-sensitive detection strategy (photon counting) to measure precise range to the earth's surface. Using green light (532 nm), the six beams of ICESat-2 will provide improved spatial coverage compared with the single beam of ICESat, while the differences in transmit energy among the beams provide a large dynamic range. The six beams are arranged into three pairs of beams which allow slopes to measured on an orbit-by-orbit basis. In order to evaluate models of predicted ICESat-2 performance and provide ICESat-2-like data for algorithm development, an airborne ICESat-2 simulator was developed and first flown in 2010. This simulator, the Multiple Altimeter Beam Experimental Lidar (MABEL) was most recently deployed to Iceland in April 2012 and collected approx 85 hours of science data over land ice, sea ice, and calibration targets. MABEL uses a similar photon-counting measurement strategy to what will be used on ICESat-2. MABEL collects data in 16 green channels and an additional 8 channels in the infrared aligned across the direction of flight. By using NASA's ER-2 aircraft flying at 20km altitude, MABEL flies as close to space as is practical, and collects data through approx 95% of the atmosphere. We present background on the MABEL instrument, and data from the April 2012 deployment to Iceland. Among the 13 MABEL flights, we collected data over the Greenland ice sheet interior and outlet glaciers in the southwest and western Greenland, sea ice data over the Nares Strait and Greenland Sea, and a number of small glaciers and ice caps in Iceland and Svalbard

  1. Flow Field and Acoustic Predictions for Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  2. Theoretical Predictions and Experimental Assessments of the Performance of Alumina RF Windows

    SciTech Connect

    Karen Ann Cummings

    1998-07-01

    Radio frequency (RF) windows are the most likely place for catastrophic failure to occur in input power couplers for particle accelerators. Reliable RF windows are essential for the success of the Accelerator Production of Tritium (APT) program because there are over 1000 windows on the accelerator, and it takes more than one day to recover from a window failure. The goals of this research are to analytically predict the lifetime of the windows, to develop a conditioning procedure, and to evaluate the performance of the RF windows. The analytical goal is to predict the lifetime of the windows. The probability of failure is predicted by the combination of a finite element model of the window, Weibull probabilistic analysis, and fracture mechanics. The window assembly is modeled in a finite element electromagnetic code in order to calculate the electric fields in the window. The geometry (i.e. mesh) and electric fields are input into a translator program to generate the mesh and boundary conditions for a finite element thermal structural code. The temperatures and stresses are determined in the thermal/structural code. The geometry and thermal structural results are input into another translator program to generate an input file for the reliability code. Material, geometry and service data are also input into the reliability code. To obtain accurate Weibull and fatigue data for the analytical model, four point bend tests were done. The analytical model is validated by comparing the measurements to the calculations. The lifetime of the windows is then determined using the reliability code. The analytical model shows the window has a good thermal mechanical design and that fast fracture is unlikely to occur below a power level of 9 Mw. The experimental goal is to develop a conditioning procedure and evaluate the performance of RF windows. During the experimental evaluation, much was learned about processing of the windows to improve the RF performance. Methods of

  3. Field Performance of a Genetically Engineered Strain of Pink Bollworm

    PubMed Central

    Simmons, Gregory S.; McKemey, Andrew R.; Morrison, Neil I.; O'Connell, Sinead; Tabashnik, Bruce E.; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S.; Phillips, Caroline E.; Miller, Ernie D.; Rose, Robert I.; Staten, Robert T.; Donnelly, Christl A.; Alphey, Luke

    2011-01-01

    Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT) – mass-release of sterile insects to mate with, and thereby control, their wild counterparts – has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field – ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area – were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests. PMID:21931649

  4. Predicting Undergraduates' Persistence in Science, Technology, Engineering, and Math Fields

    NASA Astrophysics Data System (ADS)

    Koch, Amanda Joy

    A national shortage of workers in Science, Technology, Engineering, and Math (STEM) occupations has led to efforts to identify why people leave these fields. Lower persistence rates in STEM for females than for males have also led to examinations of features that cause females to leave STEM fields. The current study examines individual- and school-level features that influence undergraduate students' decisions to leave STEM majors, focusing on potential explanations for why females are more likely than males to leave. Persistence in STEM was examined in three samples: (a) persistence through the second year of college in a sample of high school seniors interested in STEM majors; (b) persistence through the fourth year of college in a sample of second year undergraduate STEM majors; and (c) persistence through the second, third, and fourth years of college in a sample of high school seniors interested in STEM majors. Differences between persistence in male-dominated and non-male-dominated STEM majors were also examined. In all samples, gender differences were found for most individual-level predictors, with males tending to score higher than females on measures such as SAT-Math, self-rated STEM ability, and high school extracurricular activities and awards in STEM. On the other hand, females earned better high school grades and had stronger relative non-STEM ability and achievement than males. Bivariate analyses indicated that those who persisted in STEM majors typically had higher scores than those who did not persist for SAT-Math, high school achievement, STEM course taking, undergraduate STEM grades, self-rated STEM ability, interest in STEM, extracurricular activities and awards in STEM, degree goals, and socioeconomic status. Multivariate analyses identified SAT-Math as one of the best predictors of persistence in high school samples, and undergraduate STEM GPA was one of the best predictors in the samples of second year undergraduates. In several samples, a

  5. Performance of Jay/LEC Fields Unit under mature waterflood and early tertiary operations

    SciTech Connect

    Langston, E.P.; Shirer, J.A.

    1983-10-01

    Secondary oil recovery for the Jay/Little Escambia Creek (LEC) Fields Unit will exceed initial estimates by 27 MMB (4.3 x 10 m) due to innovative reservoir management based on a comprehensive surveillance program and detailed reservoir description data. The mature waterflood was phased-in to a tertiary recovery project in 1981 and early performance is generally consistent with the planning study which predicted that 47 MMB (7.5 x 10 m) of tertiary oil will be recovered.

  6. Performance of Jay/LEC fields unit under mature waterflood and early tertiary operations

    SciTech Connect

    Langston, E.P.; Shirer, J.A.

    1983-01-01

    Secondary oil recovery for the Jay/Little Escambia Creek (LEC) fields unit will exceed initial estimates by 27 million bbl due to innovative reservoir management based on a comprehensive surveillance program and detailed reservoir description data. The mature waterflood was phased-in to a tertiary recovery project in 1981 and early performance is generally consistent with the planning study which predicted that 47 million bbl of tertiary oil will be recovered.

  7. Aerodynamic Performance Predictions of Single and Twin Jet Afterbodies

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Pao, S. Paul; Abdol-Hamid, Khaled S.; Jones, William T.

    1995-01-01

    The multiblock three-dimensional Navier-Stokes method PAB3D was utilized by the Component Integration Branch (formerly Propulsion Aerodynamics Branch) at the NASA-Langley Research Center in an international study sponsored by AGARD Working Group #17 for the assessment of the state-of-the-art of propulsion-airframe integration testing techniques and CFD prediction technologies. Three test geometries from ONERA involving fundamental flow physics and four geometries from NASA-LaRC involving realistic flow interactions of wing, body, tail, and jet plumes were chosen by the Working Group. An overview of results on four (1 ONERA and 3 LaRC) of the seven test cases is presented. External static pressures, integrated pressure drag and total drag were calculated for the Langley test cases and jet plume velocity profiles and turbulent viscous stresses were calculated for the ONERA test case. Only selected data from these calculations are presented in this paper. The complete data sets calculated by the participants will be presented in an AGARD summary report. Predicted surface static pressures compared favorably with experimental data for the Langley geometries. Predicted afterbody drag compared well with experiment. Predicted nozzle drag was typically low due to over-compression of the flow near the trailing edge. Total drag was typically high. Predicted jet plume quantities on the ONERA case compared generally well with data.

  8. Field measurement and model prediction of infiltration in treated wastewater irrigated clayey soil

    NASA Astrophysics Data System (ADS)

    Albalasmeh, Ammar; Gharaibeh, Mamoun; Ghezzehei, Teamrat

    2016-04-01

    Soil water infiltration is a critical process in designing irrigation systems, especially if traded wastewater (TWW) is being used. In this study, the ability of seven different infiltration models (Kostiakov, Modified Kostiakov, Philip, Horton, Holaton, SCS (US-Soil Conservation Service) and Huggins and Monke) were compared to estimate and assess those models' parameters, and to evaluate their prediction ability for TWW irrigated soils. The field measurements were conducted in TWW irrigated soils using a hood infiltrometer. Six comparison criteria including Mean error, Geometric mean error, Root mean square error, Coefficient of determination, F-Statistic and Akaike information criterion were used to determine the best performing model with the least number of fitting parameters. The research indicated that three-parameter models had the best description of the relationship between cumulative infiltration and time in the researched TWW irrigated soils.

  9. Predicted Effect of Geomagnetic Field on CALET Measurements

    NASA Astrophysics Data System (ADS)

    Rauch, Brian

    2014-03-01

    The CALorimetric Electron Telescope (CALET), comprised of the main calorimeter (CAL) and Gamma-ray Burst Monitor (CGBM) subsystem, is under construction for launch to the ISS. CAL consists of a scintillator Charge Detector (CHD), a 3 radiation length (X0) deep scintillating fiber Imaging Calorimeter (IMC), and a 27 X0 deep PWO Total Absorption Calorimeter (TASC). The primary objectives of CAL are to measure energy spectra of electrons from 1GeV to 20 TeV and nuclei through iron up to 1,000 TeV, and to detect gamma-rays above 10 GeV. Earth's geomagnetic field in the 51.6° inclination ISS orbit will affect the observed fluxes of charged particles. Rigidity cutoffs based on geomagnetic latitude and East-West angle will introduce structure to the charged particle energy spectra. They can also be exploited to facilitate the measurement of distinct positron and electron fluxes between ~3-20 GeV, and the relative abundances of the rare ultra-heavy (UH) nuclei (30 <= Z <= 40) by using the cutoffs to select nuclei near and above the CHD minimum ionization threshold so that they can be identified using the CHD and top IMC layers without requiring energy determination in the TASC. In 5-years CAL would collect ~2 × the UH statistics of TIGER. This research was supported by NASA at Washington University under Grant Number NNX11AE02G.

  10. Predicting compaction and subsidence for an immature gas bearing carbonate field

    SciTech Connect

    Prins, M.; Smits, R.M.M.; Schutjens, P.M.T.M.

    1995-10-01

    Reservoir compaction and associated surface subsidence levels can be significant when high porosity carbonate gas reservoirs are depleted. A well known example is the Ekofisk field in the North Sea. Therefore these phenomena are incorporated when designing offshore platform constructions. Because the design and the construction part of development takes place well before the field production starts (i.e. when only little is known about the field), uncertainties exist in the parameters that are required for the prediction of surface subsidence. This paper describes the prediction of subsidence for the M1 field, offshore Sarawak, East Malaysia and shows that although many uncertainties may exist in the parameters required for the predictions, investigation into the effects of these uncertainties provides useful insight in the possible range of subsidence levels. The predicted range of subsidence levels can subsequently be used as input for the platform design.

  11. Holland Type as a Moderator of Personality-Performance Predictions.

    ERIC Educational Resources Information Center

    Fritzsche, Barbara A.; McIntire, Sandra A.; Yost, Amy Powell

    2002-01-01

    Data from 559 undergraduates provided modest evidence that Holland's taxonomy of work environments moderated the relationship between personality and performance. The traits of agreeableness and conscientiousness were better predictors of performance in certain environments. The important relationship between personality and performance may be…

  12. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    PubMed

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-01-29

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.

  13. Wind field near complex terrain using numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Chim, Kin-Sang

    The PennState/NCAR MM5 model was modified to simulate an idealized flow pass through a 3D obstacle in the Micro- Alpha Scale domain. The obstacle used were the idealized Gaussian obstacle and the real topography of Lantau Island of Hong Kong. The Froude number under study is ranged from 0.22 to 1.5. Regime diagrams for both the idealized Gaussian obstacle and Lantau island were constructed. This work is divided into five parts. The first part is the problem definition and the literature review of the related publications. The second part briefly discuss as the PennState/NCAR MM5 model and a case study of long- range transport is included. The third part is devoted to the modification and the verification of the PennState/NCAR MM5 model on the Micro-Alpha Scale domain. The implementation of the Orlanski (1976) open boundary condition is included with the method of single sounding initialization of the model. Moreover, an upper dissipative layer, Klemp and Lilly (1978), is implemented on the model. The simulated result is verified by the Automatic Weather Station (AWS) data and the Wind Profiler data. Four different types of Planetary Boundary Layer (PBL) parameterization schemes have been investigated in order to find out the most suitable one for Micro-Alpha Scale domain in terms of both accuracy and efficiency. Bulk Aerodynamic type of PBL parameterization scheme is found to be the most suitable PBL parameterization scheme. Investigation of the free- slip lower boundary condition is performed and the simulated result is compared with that with friction. The fourth part is the use of the modified PennState/NCAR MM5 model for an idealized flow simulation. The idealized uniform flow used is nonhydrostatic and has constant Froude number. Sensitivity test is performed by varying the Froude number and the regime diagram is constructed. Moreover, nondimensional drag is found to be useful for regime identification. The model result is also compared with the analytic

  14. Predicting Student Performance in a Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Olsen, Jennifer K.; Aleven, Vincent; Rummel, Nikol

    2015-01-01

    Student models for adaptive systems may not model collaborative learning optimally. Past research has either focused on modeling individual learning or for collaboration, has focused on group dynamics or group processes without predicting learning. In the current paper, we adjust the Additive Factors Model (AFM), a standard logistic regression…

  15. Academic Performance, Popularity, and Depression Predict Adolescent Substance Use.

    ERIC Educational Resources Information Center

    Diego, Miguel A.; Field, Tiffany M.; Sanders, Christopher E.

    2003-01-01

    Eighty-nine high school seniors completed a questionnaire on their feelings and activities, including their use of drugs. Adolescents with a low grade point average, high popularity, and high depression were more likely to smoke cigarettes, drink alcohol, and smoke marijuana than were their peers. Cigarette and alcohol use predicted marijuana use,…

  16. Predictive Effects of Online Peer Feedback Types on Performance Quality

    ERIC Educational Resources Information Center

    Yu, Fu-Yun; Wu, Chun-Ping

    2013-01-01

    This study examined the individual and combined predictive effects of two types of feedback (i.e., quantitative ratings and descriptive comments) in online peer-assessment learning systems on the quality of produced work. A total of 233 students participated in the study for six weeks. An online learning system that allows students to contribute…

  17. Prediction of performance of centrifugal pumps during starts under pressure

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1969-01-01

    Method which calculates start-up characteristics of centrifugal pumps reveals a capacity to predict pressure drop characteristics of pumps with vaned diffusers. Calculations are based on pump geometry, design-point flow, speed, and pressure rise, and the pump characteristic within range of approximately ten percent of the design-point flow.

  18. The use of high-resolution terrain data in gravity field prediction

    NASA Technical Reports Server (NTRS)

    Groten, E.; Becker, M.; Euler, H.-J.; Hausch, W.; Kling, TH.

    1989-01-01

    Different types of gravity prediction methods for local and regional gravity evaluation are developed, tested, and compared. Four different test areas were particularly selected in view of different prediction requirements. Also different parts of the spectrum of the gravity field were considered.

  19. Assessing Discriminative Performance at External Validation of Clinical Prediction Models

    PubMed Central

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.

    2016-01-01

    Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect

  20. Performance of field measuring probes for SSC magnets

    SciTech Connect

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1993-12-31

    Several years of experience have been acquired on the operation of probes (``moles``) constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device-the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. We describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the hewn tube of the magnet is also described.

  1. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Jensen, R. N.; Knoll, R. H.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  2. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  3. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 1: Theory and application

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A computer program, the Propeller Nacelle Aerodynamic Performance Prediction Analysis (PANPER), was developed for the prediction and analysis of the performance and airflow of propeller-nacelle configurations operating over a forward speed range inclusive of high speed flight typical of recent propfan designs. A propeller lifting line, wake program was combined with a compressible, viscous center body interaction program, originally developed for diffusers, to compute the propeller-nacelle flow field, blade loading distribution, propeller performance, and the nacelle forebody pressure and viscous drag distributions. The computer analysis is applicable to single and coaxial counterrotating propellers. The blade geometries can include spanwise variations in sweep, droop, taper, thickness, and airfoil section type. In the coaxial mode of operation the analysis can treat both equal and unequal blade number and rotational speeds on the propeller disks. The nacelle portion of the analysis can treat both free air and tunnel wall configurations including wall bleed. The analysis was applied to many different sets of flight conditions using selected aerodynamic modeling options. The influence of different propeller nacelle-tunnel wall configurations was studied. Comparisons with available test data for both single and coaxial propeller configurations are presented along with a discussion of the results.

  4. Personality and attention: Levels of neuroticism and extraversion can predict attentional performance during a change detection task.

    PubMed

    Hahn, Sowon; Buttaccio, Daniel R; Hahn, Jungwon; Lee, Taehun

    2015-01-01

    The present study demonstrates that levels of extraversion and neuroticism can predict attentional performance during a change detection task. After completing a change detection task built on the flicker paradigm, participants were assessed for personality traits using the Revised Eysenck Personality Questionnaire (EPQ-R). Multiple regression analyses revealed that higher levels of extraversion predict increased change detection accuracies, while higher levels of neuroticism predict decreased change detection accuracies. In addition, neurotic individuals exhibited decreased sensitivity A' and increased fixation dwell times. Hierarchical regression analyses further revealed that eye movement measures mediate the relationship between neuroticism and change detection accuracies. Based on the current results, we propose that neuroticism is associated with decreased attentional control over the visual field, presumably due to decreased attentional disengagement. Extraversion can predict increased attentional performance, but the effect is smaller than the relationship between neuroticism and attention.

  5. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Developed for predicting the behavior of cryogenic liquids inside propellant tanks under various environmental and operating conditions. Provides a multi-node analysis of pressurization, ullage venting and thermodynamic venting systems (TVS) pressure control using axial jet or spray bar TVS. Allows user to combine several different phases for predicting the liquid behavior for the entire flight mission timeline or part of it. Is a NASA in-house code, based on FORTRAN 90-95 and Intel Visual FORTRAN compiler, but can be used on any other platform (Unix-Linux, Compaq Visual FORTRAN, etc.). The last Version 7, released on December 2014, included detailed User's Manual. Includes the use of several RefPROP subroutines for calculating fluid properties.

  6. Work Ethic and Academic Performance: Predicting Citizenship and Counterproductive Behavior

    ERIC Educational Resources Information Center

    Meriac, John P.

    2012-01-01

    In this study, work ethic was examined as a predictor of academic performance, compared with standardized test scores and high school grade point average (GPA). Academic performance was expanded to include student organizational citizenship behavior (OCB) and student counterproductive behavior, comprised of cheating and disengagement, in addition…

  7. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Annable, Michael D.; Jawitz, James W.

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important

  8. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Blunt, M.J.; Orr, F.M. Jr.

    2001-03-26

    This report was an integrated study of the physics and chemistry affecting gas injection, from the pore scale to the field scale, and involved theoretical analysis, laboratory experiments and numerical simulation. Specifically, advances were made on streamline-based simulation, analytical solutions to 1D compositional displacements, and modeling and experimental measures of three-phase flow.

  9. REVIEW OF MECHANISTIC UNDERSTANDING AND MODELING AND UNCERTAINTY ANALYSIS METHODS FOR PREDICTING CEMENTITIOUS BARRIER PERFORMANCE

    SciTech Connect

    Langton, C.; Kosson, D.

    2009-11-30

    Cementitious barriers for nuclear applications are one of the primary controls for preventing or limiting radionuclide release into the environment. At the present time, performance and risk assessments do not fully incorporate the effectiveness of engineered barriers because the processes that influence performance are coupled and complicated. Better understanding the behavior of cementitious barriers is necessary to evaluate and improve the design of materials and structures used for radioactive waste containment, life extension of current nuclear facilities, and design of future nuclear facilities, including those needed for nuclear fuel storage and processing, nuclear power production and waste management. The focus of the Cementitious Barriers Partnership (CBP) literature review is to document the current level of knowledge with respect to: (1) mechanisms and processes that directly influence the performance of cementitious materials (2) methodologies for modeling the performance of these mechanisms and processes and (3) approaches to addressing and quantifying uncertainties associated with performance predictions. This will serve as an important reference document for the professional community responsible for the design and performance assessment of cementitious materials in nuclear applications. This review also provides a multi-disciplinary foundation for identification, research, development and demonstration of improvements in conceptual understanding, measurements and performance modeling that would be lead to significant reductions in the uncertainties and improved confidence in the estimating the long-term performance of cementitious materials in nuclear applications. This report identifies: (1) technology gaps that may be filled by the CBP project and also (2) information and computational methods that are in currently being applied in related fields but have not yet been incorporated into performance assessments of cementitious barriers. The various

  10. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  11. Prediction of sonic boom from experimental near-field overpressure data. Volume 1: Method and results

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hague, D. S.; Reiners, S. J.

    1975-01-01

    A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.

  12. Field Verification of Structural Performance of Thermoplastic Pipe Under Deep Backfill Conditions

    NASA Astrophysics Data System (ADS)

    Sargand, S.

    2002-05-01

    This report provides information regarding the structural performance of thermoplastic pipes under relatively deep soil cover conditions. The eighteen (12 HDPE, 6 PVC) thermoplastic pipes, with diameter ranging from 30 to 60 in., were instrumented with sensors, embedded with granular backfill in shallow trenches, and subjected to 20-ft or 40-ft high soil fill for about 10 months. Their installation plans involved two types of backfill soil, three relative compactions, and varying bedding thickness to study the effects of these installation parameters on the pipe performance. Once the field performance of each test pipe was presented and discussed, comparative cross examinations of the entire field data were made to identify the effects of various installation parameters on the pipe deformations/deflections and soil pressure against pipe. A comprehensive set of soil testing was performed in the laboratory to characterize each of the three soil types that existed in the field. Results from the shear strength tests were analyzed further to obtain hyperbolic model parameter values for these soils. Three analytical methods (modified Iowa formula, elastic solutions, and finite element) were applied to evaluate their abilities to predict the field performance of the thermoplastic pipes under relatively deep soil cover. In their applications, material properties measured in the laboratory were utilized as much as possible.

  13. Nursing students' confidence in medication calculations predicts math exam performance.

    PubMed

    Andrew, Sharon; Salamonson, Yenna; Halcomb, Elizabeth J

    2009-02-01

    The aim of this study was to examine the psychometric properties, including predictive validity, of the newly-developed nursing self-efficacy for mathematics (NSE-Math). The NSE-Math is a 12 item scale that comprises items related to mathematic and arithmetic concepts underpinning medication calculations. The NSE-Math instrument was administered to second year Bachelor of Nursing students enrolled in a nursing practice subject. Students' academic results for a compulsory medication calculation examination for this subject were collected. One-hundred and twelve students (73%) completed both the NSE-Math instrument and the drug calculation assessment task. The NSE-Math demonstrated two factors 'Confidence in application of mathematic concepts to nursing practice' and 'Confidence in arithmetic concepts' with 63.5% of variance explained. Cronbach alpha for the scale was 0.90. The NSE-Math demonstrated predictive validity with the medication calculation examination results (p=0.009). Psychometric testing suggests the NSE-Math is a valid measure of mathematics self-efficacy of second year nursing students.

  14. Automated Performance Prediction of Message-Passing Parallel Programs

    NASA Technical Reports Server (NTRS)

    Block, Robert J.; Sarukkai, Sekhar; Mehra, Pankaj; Woodrow, Thomas S. (Technical Monitor)

    1995-01-01

    The increasing use of massively parallel supercomputers to solve large-scale scientific problems has generated a need for tools that can predict scalability trends of applications written for these machines. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require substantial manual effort to represent an application in the model's format. The NIK toolkit described in this paper is the result of an on-going effort to automate the formation of analytic expressions of program execution time, with a minimum of programmer assistance. In this paper we demonstrate the feasibility of our approach, by extending previous work to detect and model communication patterns automatically, with and without overlapped computations. The predictions derived from these models agree, within reasonable limits, with execution times of programs measured on the Intel iPSC/860 and Paragon. Further, we demonstrate the use of MK in selecting optimal computational grain size and studying various scalability metrics.

  15. Transport of simazine in unsaturated sandy soil and predictions of its leaching under hypothetical field conditions.

    PubMed

    Suárez, Francisco; Bachmann, Jaime; Muñoz, José F; Ortiz, Cristian; Tyler, Scott W; Alister, Claudio; Kogan, Marcelo

    2007-12-01

    The potential contamination of groundwater by herbicides is often controlled by processes in the vadose zone, through which herbicides travel before entering groundwater. In the vadose zone, both physical and chemical processes affect the fate and transport of herbicides, therefore it is important to represent these processes by mathematical models to predict contaminant movement. To simulate the movement of simazine, a herbicide commonly used in Chilean vineyards, batch and miscible displacement column experiments were performed on a disturbed sandy soil to quantify the primary parameters and processes of simazine transport. Chloride (Cl(-)) was used as a non-reactive tracer, and simazine as the reactive tracer. The Hydrus-1D model was used to estimate the parameters by inversion from the breakthrough curves of the columns and to evaluate the potential groundwater contamination in a sandy soil from the Casablanca Valley, Chile. The two-site, chemical non-equilibrium model was observed to best represent the experimental results of the miscible displacement experiments in laboratory soil columns. Predictions of transport under hypothetical field conditions using the same soil from the column experiments were made for 40 years by applying herbicide during the first 20 years, and then halting the application and considering different rates of groundwater recharge. For recharge rates smaller than 84 mm year(-1), the predicted concentration of simazine at a depth of 1 m is below the U.S. EPA's maximum contaminant levels (4 microg L(-1)). After eight years of application at a groundwater recharge rate of 180 mm year(-1) (approximately 50% of the annual rainfall), simazine was found to reach the groundwater (located at 1 m depth) at a higher concentration (more than 40 microg L(-1)) than the existing guidelines in the USA and Europe.

  16. Could the deep squat jump predict weightlifting performance?

    PubMed

    Vizcaya, Francisco J; Viana, Oscar; del Olmo, Miguel Fernandez; Acero, Rafael Martin

    2009-05-01

    This research was carried out with the aim of describing the deep squat jump (DSJ) and comparing it with the squat (SJ) and countermovement (CMJ) jumps, to introduce it as a strength testing tool in the monitoring and control of training in strength and power sports. Forty-eight male subjects (21 weightlifters, 12 triathletes, and 15 physical education students) performed 3 trials of DSJ, SJ, and CMJ with a 1-minute rest among them. For the weightlifters, snatch and clean and jerk results during the Spanish Championship 2004 and the 35th EU Championships 2007 were collected to study the relationship among vertical jumps and weightlifters' performance. A 1-way analysis of variance (ANOVA) showed significant differences between groups in the vertical jumps, with the highest jumps for the weightlifters and the lowest for the triathletes. An ANOVA for repeated measures (type of jump) showed better results for DSJ and CMJ than SJ in all groups. A linear regression analysis was performed to determine the association between weightlifting and vertical jump performances. Correlations among the weightlifting performance and the vertical jumps were also calculated and determined using Pearson r. Results have shown that both CMJ and DSJ are strongly correlated with weightlifting ability. Therefore, both measures can be useful for coaches as a strength testing tool in the monitoring and control of training in weightlifting.

  17. Status and Performance of HSTNVide Field Camera 3

    NASA Technical Reports Server (NTRS)

    Kimble, Randy; MacKenty, J. W.; OConnell, R. W.

    2004-01-01

    The HST Wide Field Camera 3 is a panchromatic UV-visible-near infrared camera whose development is currently nearing completion, for a planned installation into the Hubble Space Telescope during Servicing Mission 4. WFC3 provides two imaging channels. The UVIS channel features a 4096 x 4096 pixel CCD focal plane with sensitivity from 200 to 1000 nm and a 160 x 160 arcsec field of view. The UVIS channel provides unprecedented sensitivity and field of view in the near ultraviolet for HST. The IR channel features a 1014 x 1014 pixel HgCdTe focal plane covering 850 to 1700 nm with a 135 x 135 arcsec field of view, providing an order of magnitude increase in J+H band surveying efficiency for HST. WFC3 offers a rich complement of filters and grisms in each channel. The construction of WFC3 is nearly complete, and the instrument is well into its integration and test program. We present the current status of the instrument and its projected scientific performance.

  18. Predicted performance of an integrated modular engine system

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Felder, James L.

    1993-01-01

    Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.

  19. Performance Prediction of Cross-finned Tube Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Kondou, Chieko; Senshu, Takao; Matsumura, Kenji; Oguni, Kensaku

    An important issue in heat pumps is increasing their efficiency, in order to achieve a significant optimization for heat exchangers. Techniques to simulate the flow length averaged heat transfer coefficient and static pressure drop through the flow passage are presented in this paper. In addition, an analytical evaluation of the cost reduction for a cross-fined tube heat exchanger of outdoor heat pump units is instantiated. The dimensionless factors, Colburn's factor j and Fanning's friction factor f, express the heat transfer performance and frictional characteristics, as a function of Reynolds number. These depend on slit possession, an original parameter used in this study. Further, this paper describes an approximate expression of the fin efficiency, which can be used for to survey the fin parameters. The above three concepts were necessary to forecast the performance on the airside. In the results, the cost minimum point was obtained with a comparable performance.

  20. Predicting subsequent task performance from goal motivation and goal failure

    PubMed Central

    Healy, Laura C.; Ntoumanis, Nikos; Stewart, Brandon D.; Duda, Joan L.

    2015-01-01

    Recent research has demonstrated that the cognitive processes associated with goal pursuit can continue to interfere with unrelated tasks when a goal is unfulfilled. Drawing from the self-regulation and goal-striving literatures, the present study explored the impact of goal failure on subsequent cognitive and physical task performance. Furthermore, we examined if the autonomous or controlled motivation underpinning goal striving moderates the responses to goal failure. Athletes (75 male, 59 female, Mage = 19.90 years, SDage = 3.50) completed a cycling trial with the goal of covering a given distance in 8 min. Prior to the trial, their motivation was primed using a video. During the trial they were provided with manipulated performance feedback, thus creating conditions of goal success or failure. No differences emerged in the responses to goal failure between the primed motivation or performance feedback conditions. We make recommendations for future research into how individuals can deal with failure in goal striving. PMID:26191029

  1. Prediction of STN-DBS Electrode Implantation Track in Parkinson's Disease by Using Local Field Potentials

    PubMed Central

    Telkes, Ilknur; Jimenez-Shahed, Joohi; Viswanathan, Ashwin; Abosch, Aviva; Ince, Nuri F.

    2016-01-01

    Optimal electrophysiological placement of the DBS electrode may lead to better long term clinical outcomes. Inter-subject anatomical variability and limitations in stereotaxic neuroimaging increase the complexity of physiological mapping performed in the operating room. Microelectrode single unit neuronal recording remains the most common intraoperative mapping technique, but requires significant expertise and is fraught by potential technical difficulties including robust measurement of the signal. In contrast, local field potentials (LFPs), owing to their oscillatory and robust nature and being more correlated with the disease symptoms, can overcome these technical issues. Therefore, we hypothesized that multiple spectral features extracted from microelectrode-recorded LFPs could be used to automate the identification of the optimal track and the STN localization. In this regard, we recorded LFPs from microelectrodes in three tracks from 22 patients during DBS electrode implantation surgery at different depths and aimed to predict the track selected by the neurosurgeon based on the interpretation of single unit recordings. A least mean square (LMS) algorithm was used to de-correlate LFPs in each track, in order to remove common activity between channels and increase their spatial specificity. Subband power in the beta band (11–32 Hz) and high frequency range (200–450 Hz) were extracted from the de-correlated LFP data and used as features. A linear discriminant analysis (LDA) method was applied both for the localization of the dorsal border of STN and the prediction of the optimal track. By fusing the information from these low and high frequency bands, the dorsal border of STN was localized with a root mean square (RMS) error of 1.22 mm. The prediction accuracy for the optimal track was 80%. Individual beta band (11–32 Hz) and the range of high frequency oscillations (200–450 Hz) provided prediction accuracies of 72 and 68% respectively. The best

  2. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    SciTech Connect

    Franklin M. Orr, Jr.

    2001-03-31

    This report outlines progress in the second 3 months of the first year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs.'' The development of an automatic technique for analytical solution of one-dimensional gas flow problems with volume change on mixing is described. The aim of this work is to develop a set of ultra-fast compositional simulation tools that can be used to make field-scale predictions of the performance of gas injection processes. To achieve the necessary accuracy, these tools must satisfy the fundamental physics and chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses on four main research areas: (1) determination of the most appropriate methods of mapping multicomponent solutions to streamlines and streamtubes in 3D; (2) development of techniques for automatic generation of analytical solutions for one-dimensional flow along a streamline; (3) experimental investigations to improve the representation of physical mechanisms that govern displacement efficiency along a streamline; and (4) theoretical and experimental investigations to establish the limitations of the streamline/streamtube approach. In this report they briefly review the status of the research effort in each area. They then give a more in depth discussion of their development of techniques for analytic solutions along a streamline including volume change on mixing for arbitrary numbers of components.

  3. Performance of a municipal solid waste (MSW) incinerator predicted with a computational fluid dynamics (CFD) code

    SciTech Connect

    Anglesio, P.; Negreanu, G.P.

    1998-07-01

    The purpose of this paper is to investigate by the means of numerical simulation the performance of the MSW incinerator with of Vercelli (Italy). FLUENT, a finite-volumes commercial code for Fluid Dynamics has been used to predict the 3-D reacting flows (gaseous phase) within the incinerator geometry, in order to estimate if the three conditions settled by the Italian law (P.D. 915 / 82) are respected: (a) Flue gas temperature at the input of the secondary combustion chamber must exceed 950 C. (b) Oxygen concentration in the same section must exceed 6 %. (c) Residence time for the flue gas in the secondary combustion chamber must exceed 2 seconds. The model of the incinerator has been created using the software pre-processing facilities (wall, input, outlet and live cells), together with the set-up of boundary conditions. There are also imposed the combustion constants (stoichiometry, heat of combustion, air excess). The solving procedure transforms at the level of each live cell the partial derivative equations in algebraic equations, computing the velocities field, the temperatures, gases concentration, etc. These predicted values were compared with the design properties, and the conclusion was that the conditions (a), (b), (c), are respected in normal operation. The powerful graphic interface helps the user to visualize the magnitude of the computed parameters. These results may be successfully used for the design and operation improvements for MSW incinerators. This fact will substantially increase the efficiency, reduce pollutant emissions and optimize the plant overall performance.

  4. Tactical HF field expedient antenna performance, volume 2

    NASA Astrophysics Data System (ADS)

    Turkes, Gurkan

    1990-03-01

    This thesis investigates the performance of various configurations of tactical high frequency (HF) field deployable antennas in the presence of lossy earth. Antennas investigated include horizontal dipoles, short sloping wires, inverted vees, and monopoles with buried and elevated radials. Numerical models of the antennas are exercised via the Numerical Electromagnetic Code (NEC) for radiation pattern performance. Antennas are analyzed for applicability to the following: (1) short-range near vertical incident skywave (NVIS), where high elevation radiation angles are required; (2) medium- and long-range low radiation angle use; and (3) vertically polarized low-angle radiation for ground wave communication. Good NVIS and ground wave performance occurs for horizontal dipoles. Sloping wires and sloping dipoles are similar to horizontal dipoles but exhibit a moderate amount of azimuth plane directivity. Vertical monopoles with at least 15 buried radials produce medium- and long-range skywave coverage and good ground wave performance. Four elevated radials for quarter-wavelength monopoles are shown to out-perform 15 buried radials and are much easier to erect. The larger and more difficult-to-erect inverted vee dipole slightly outperforms a monopole by virtue of modest azimuth plane directivity. The results of this study can be included in an antenna engineering handbook and can be used to interface with existing ionospheric propagation codes in order to obtain optimum communication effectiveness

  5. Tactical HF field expedient antenna performance, volume 1

    NASA Astrophysics Data System (ADS)

    Turkes, Gurkan

    1990-03-01

    This thesis investigates the performance of various configurations of tactical High Frequency (HF) field deployable antennas in the presence of lossy earth. Antennas investigated include horizontal dipoles, short sloping wires, inverted vees, and monopoles with buried and elevated radials. Numerical models of the antennas are exercised via the Numerical Electromagnetics Code (NEC) for radiation pattern performance. Antennas are analyzed for applicability to (1) short-range Near Vertical Incident Skywave (NVIS), where high elevation radiation angles are required; (2) medium-and long-range low radiation angle use; and (3) vertically polarized low-angle radiation for ground wave communication. Good NVIS and ground wave performance occurs for horizontal dipoles. Sloping wires and sloping dipoles are similar to horizontal dipoles but exhibit a moderate amount of azimuth plane directivity. Vertical monopoles with at least 15 buried radials produce medium-and long-range skywave coverage and good ground wave performance. Four elevated radials for quarter-wavelength monopoles are shown to out-perform 15 buried radials and are much easier to erect. The larger and more difficult-to-erect inverted vee dipole slightly outperforms a monopole by virtue of modest azimuth plane directivity. The results of this study can be included in an antenna engineering handbook and can be used to interface with existing ionospheric propagation codes in order to obtain optimum communication effectiveness.

  6. Autonomous Path-Following by Approximate Inverse Dynamics and Vector Field Prediction

    NASA Astrophysics Data System (ADS)

    Gerlach, Adam R.

    In this dissertation, we develop two general frameworks for the navigation and control of autonomous vehicles that must follow predefined paths. These frameworks are designed such that they inherently provide accurate navigation and control of a wide class of systems directly from a model of the vehicle's dynamics. The first framework introduced is the inverse dynamics by radial basis function (IDRBF) algorithm, which exploits the best approximation property of radial basis functions to accurately approximate the inverse dynamics of non-linear systems. This approximation is then used with the known, desired state of the system at a future time point to generate the system input that must be applied to reach the desired state in the specified time interval. The IDRBF algorithm is then tested on two non-linear dynamic systems, and accurate path-following is demonstrated. The second framework introduced is the predictive vector field (PVF) algorithm. The PVF algorithm uses the equations of motion and constraints of the system to predict a set of reachable states by sampling the system's configuration space. By finding and minimizing a continuous mapping between the system's configuration space and a cost space relating the reachable states of the system with a vector field (VF), one can determine the system inputs required to follow the VF. The PVF algorithm is then tested on the Dubin's vehicle and aircraft models, and accurate path-following is demonstrated. As the PVF algorithm's performance is dependent on the quality of the underlying system model and VF, algorithms are introduced for automatically generating VFs for constant altitude paths defined by a series of waypoints and for handling modeling uncertainties. Additionally, we provide a mathematical proof showing that this method can automatically produce VFs of the desired form. To handle modeling uncertainties, we enhance the PVF algorithm with the Gaussian process machine learning framework, enabling the

  7. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  8. The development of a tool to predict team performance.

    PubMed

    Sinclair, M A; Siemieniuch, C E; Haslam, R A; Henshaw, M J D C; Evans, L

    2012-01-01

    The paper describes the development of a tool to predict quantitatively the success of a team when executing a process. The tool was developed for the UK defence industry, though it may be useful in other domains. It is expected to be used by systems engineers in initial stages of systems design, when concepts are still fluid, including the structure of the team(s) which are expected to be operators within the system. It enables answers to be calculated for questions such as "What happens if I reduce team size?" and "Can I reduce the qualifications necessary to execute this process and still achieve the required level of success?". The tool has undergone verification and validation; it predicts fairly well and shows promise. An unexpected finding is that the tool creates a good a priori argument for significant attention to Human Factors Integration in systems projects. The simulations show that if a systems project takes full account of human factors integration (selection, training, process design, interaction design, culture, etc.) then the likelihood of team success will be in excess of 0.95. As the project derogates from this state, the likelihood of team success will drop as low as 0.05. If the team has good internal communications and good individuals in key roles, the likelihood of success rises towards 0.25. Even with a team comprising the best individuals, p(success) will not be greater than 0.35. It is hoped that these results will be useful for human factors professionals involved in systems design.

  9. An Evaluation of Methods for Predicting Job Performance of Personnelmen.

    ERIC Educational Resources Information Center

    Thomas, Patricia J.

    The Personnelman (PN) Rating was the subject of a recent study in which selection test scores were found to correlate satisfactorily with school grades. The purpose of this followup study was to determine whether correlations exist between selection test scores and job performance measures, and whether the experimental tests taken by PN students…

  10. Predicting Performance on a Firefighter's Ability Test from Fitness Parameters

    ERIC Educational Resources Information Center

    Michaelides, Marcos A.; Parpa, Koulla M.; Thompson, Jerald; Brown, Barry

    2008-01-01

    The purpose of this project was to identify the relationships between various fitness parameters such as upper body muscular endurance, upper and lower body strength, flexibility, body composition and performance on an ability test (AT) that included simulated firefighting tasks. A second intent was to create a regression model that would predict…

  11. Goal Orientations Predict Academic Performance beyond Intelligence and Personality

    ERIC Educational Resources Information Center

    Steinmayr, Ricarda; Bipp, Tanja; Spinath, Birgit

    2011-01-01

    Goal orientations are thought to be an important predictor of scholastic achievement. The present paper investigated the joint influence of goal orientations, intelligence, and personality on school performance in a sample of N=520 11th and 12th graders (303 female; mean age M=16.94 years). Intelligence, the Big Five factors of personality…

  12. Competitive Learning Neural Network Ensemble Weighted by Predicted Performance

    ERIC Educational Resources Information Center

    Ye, Qiang

    2010-01-01

    Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…

  13. Inhibitory Control Predicts Language Switching Performance in Trilingual Speech Production

    ERIC Educational Resources Information Center

    Linck, Jared A.; Schwieter, John W.; Sunderman, Gretchen

    2012-01-01

    This study investigated the role of domain-general inhibitory control in trilingual speech production. Taking an individual differences approach, we examined the relationship between performance on a non-linguistic measure of inhibitory control (the Simon task) and a multilingual language switching task for a group of fifty-six native English (L1)…

  14. Leadership Styles and Organizational Performance: A Predictive Analysis

    ERIC Educational Resources Information Center

    Kieu, Hung Q.

    2010-01-01

    Leadership is critically important because it affects the health of the organization. Research has found that leadership is one of the most significant contributors to organizational performance. Expanding and replicating previous research, and focusing on the specific telecommunications sector, this study used multiple correlation and regression…

  15. Resilience Does Not Predict Academic Performance in Gross Anatomy

    ERIC Educational Resources Information Center

    Elizondo-Omana, Rodrigo Enrique; Garcia-Rodriguez, Maria de los Angeles; Hinojosa-Amaya, Jose Miguel; Villarreal-Silva, Eliud Enrique; Avilan, Rosa Ivette Guzman; Cruz, Juan Jose Bazaldua; Guzman-Lopez, Santos

    2010-01-01

    Few studies have evaluated resilience in an academic environment as it relates to academic success or failure. This work sought to assess resilience in regular and remedial students of gross anatomy during the first and second semesters of medical school and to correlate this personal trait with academic performance. Two groups of students were…

  16. Field-scale Prediction of Enhanced DNAPL Dissolution Using Partitioning Tracers and Flow Pattern Effects

    NASA Astrophysics Data System (ADS)

    Wang, F.; Annable, M. D.; Jawitz, J. W.

    2012-12-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.

  17. Scale factors to quantify and predict the field scale variability of heavy metal sorption in soil

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Boettcher, Juergen; Utermann, Jens

    2013-04-01

    Many studies report the close relationship between heavy metal sorption in soil and physicochemical soil properties. Since 1980s pedotransfer functions (PTF) were developed to predict the heavy metal sorption in soil, based on the Freundlich sorption isotherm with parameters K and n, and physicochemical soil properties. An important application of PTFs is to predict sorption behavior at larger scales (e.g. soil units) from easily measurable soil properties, but PTFs were also applied to predict the spatial variability of sorption at the field scale. A new method to quantify the spatial variability of heavy metal sorption in soils at the field scale is the calculation of scale factors (SF). This method reduces the broad spread of the sorption isotherms into an average relation, but saves the variation through the scale factors. For physicochemical soil properties scale factors can also be calculated. Scale factors from sorption isotherms and physicochemical soil properties are correlated. SF of isotherms are indirectly related to the Freundlich parameters K and n, but PTF directly and solely predict K. That is the reason, why SF in contrast to PTF were found in an earlier study with an acidic sandy soil under forest to increase the accuracy of model predictions. The two prediction methods, SF and PTF, were both evaluated for an agricultural field on a more or less homogeneous Luvisol developed in loess near Hannover, Germany. Samples were taken from the A and B horizon (each 50 samples) along a 250 m transect. Sorption isotherms for heavy metals (Cd, Cu, Pb and Zn) and soil properties as pH, CEC, organic carbon content, texture were measured, and scale factors were calculated. In our contribution we will present results on (1) the accuracy of PTF and SF to predict the field average sorption behavior of the soil, (2) a comparative numerical simulation of field scale heavy metal transport with spatially variable sorption behavior in unsaturated soil described by both

  18. Prediction of oxidation performance of reinforced carbon-carbon material for Space Shuttle leading edges

    NASA Technical Reports Server (NTRS)

    Medford, J. E.

    1975-01-01

    A method was developed for predicting oxidation performance, in an earth atmospheric entry environment, of reinforced carbon-carbon material, coated for oxidation resistance. A model was developed which describes oxidation control mechanisms, and the equations defining these mechanisms were derived. These relations were used to correlate oxidation test data, and to infer pertinent rate constants. Predictions were made of material oxidation performance in a representative entry environment, and the predictions were compared with ground test data. Results indicate that the method can be successfully used for predicting material oxidation performance.

  19. Using the 2 x 2 Framework of Achievement Goals to Predict Achievement Emotions and Academic Performance

    ERIC Educational Resources Information Center

    Putwain, David W.; Sander, Paul; Larkin, Derek

    2013-01-01

    Previous work has established how achievement emotions are related to the trichotomous model of achievement goals, and how they predict academic performance. In our study we examine relations using an additional, mastery-avoidance goal, and whether outcome-focused emotions are predicted by mastery as well as performance goals. Results showed that…

  20. Improved Fuzzy Modelling to Predict the Academic Performance of Distance Education Students

    ERIC Educational Resources Information Center

    Yildiz, Osman; Bal, Abdullah; Gulsecen, Sevinc

    2013-01-01

    It is essential to predict distance education students' year-end academic performance early during the course of the semester and to take precautions using such prediction-based information. This will, in particular, help enhance their academic performance and, therefore, improve the overall educational quality. The present study was on the…

  1. Power and Performance Management in Nonlinear Virtualized Computing Systems via Predictive Control

    PubMed Central

    Wen, Chengjian; Mu, Yifen

    2015-01-01

    The problem of power and performance management captures growing research interest in both academic and industrial field. Virtulization, as an advanced technology to conserve energy, has become basic architecture for most data centers. Accordingly, more sophisticated and finer control are desired in virtualized computing systems, where multiple types of control actions exist as well as time delay effect, which make it complicated to formulate and solve the problem. Furthermore, because of improvement on chips and reduction of idle power, power consumption in modern machines shows significant nonlinearity, making linear power models(which is commonly adopted in previous work) no longer suitable. To deal with this, we build a discrete system state model, in which all control actions and time delay effect are included by state transition and performance and power can be defined on each state. Then, we design the predictive controller, via which the quadratic cost function integrating performance and power can be dynamically optimized. Experiment results show the effectiveness of the controller. By choosing a moderate weight, a good balance can be achieved between performance and power: 99.76% requirements can be dealt with and power consumption can be saved by 33% comparing to the case with open loop controller. PMID:26225769

  2. Evaluation of Turbulence-Model Performance as Applied to Jet-Noise Prediction

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    1998-01-01

    The accurate prediction of jet noise is possible only if the jet flow field can be predicted accurately. Predictions for the mean velocity and turbulence quantities in the jet flowfield are typically the product of a Reynolds-averaged Navier-Stokes solver coupled with a turbulence model. To evaluate the effectiveness of solvers and turbulence models in predicting those quantities most important to jet noise prediction, two CFD codes and several turbulence models were applied to a jet configuration over a range of jet temperatures for which experimental data is available.

  3. From field to region yield predictions in response to pedo-climatic variations in Eastern Canada

    NASA Astrophysics Data System (ADS)

    JÉGO, G.; Pattey, E.; Liu, J.

    2013-12-01

    The increase in global population coupled with new pressures to produce energy and bioproducts from agricultural land requires an increase in crop productivity. However, the influence of climate and soil variations on crop production and environmental performance is not fully understood and accounted for to define more sustainable and economical management strategies. Regional crop modeling can be a great tool for understanding the impact of climate variations on crop production, for planning grain handling and for assessing the impact of agriculture on the environment, but it is often limited by the availability of input data. The STICS ("Simulateur mulTIdisciplinaire pour les Cultures Standard") crop model, developed by INRA (France) is a functional crop model which has a built-in module to optimize several input parameters by minimizing the difference between calculated and measured output variables, such as Leaf Area Index (LAI). STICS crop model was adapted to the short growing season of the Mixedwood Plains Ecozone using field experiments results, to predict biomass and yield of soybean, spring wheat and corn. To minimize the numbers of inference required for regional applications, 'generic' cultivars rather than specific ones have been calibrated in STICS. After the calibration of several model parameters, the root mean square error (RMSE) of yield and biomass predictions ranged from 10% to 30% for the three crops. A bit more scattering was obtained for LAI (20%performed the best in STICS and to make a preliminary verification of the sensitivity of the biomass prediction to climate variations. Using RS data to re-initialize input parameters that are not readily available (e.g. seeding date) is considered an effective way

  4. An improved model for TPV performance predictions and optimization

    NASA Astrophysics Data System (ADS)

    Schroeder, K. L.; Rose, M. F.; Burkhalter, J. E.

    1997-03-01

    Previously a model has been presented for calculating the performance of a TPV system. This model has been revised into a general purpose algorithm, improved in fidelity, and is presented here. The basic model is an energy based formulation and evaluates both the radiant and heat source elements of a combustion based system. Improvements in the radiant calculations include the use of ray tracking formulations and view factors for evaluating various flat plate and cylindrical configurations. Calculation of photocell temperature and performance parameters as a function of position and incident power have also been incorporated. Heat source calculations have been fully integrated into the code by the incorporation of a modified version of the NASA Complex Chemical Equilibrium Compositions and Applications (CEA) code. Additionally, coding has been incorporated to allow optimization of various system parameters and configurations. Several examples cases are presented and compared, and an optimum flat plate emitter/filter/photovoltaic configuration is also described.

  5. Bisecting and behavior: lateral inattention predicts 8-week academic performance.

    PubMed

    Drake, Roger A

    2002-10-01

    Converging evidence supports a left hemisphere role in defensive repression and sensation seeking. This led to the hypothesis that students with a relatively active left hemisphere would perform poorly during 8 weeks of a college class. The measure of relative hemispheric activation was the visual line-bisecting task given early in the course. The hypothesis was supported. Previous evidence that activation asymmetry is stable over time was supported because the single measurement of line bisecting was a longitudinal predictor of multiple behaviors. A temporal pattern of increasing correlation between the bisecting and performance measures favors a feedback repression model. Alternative explanations based on sensation seeking, subject-matter repression, and cooperation were considered but not eliminated.

  6. Predicting intermittent running performance: critical velocity versus endurance index.

    PubMed

    Buchheit, M; Laursen, P B; Millet, G P; Pactat, F; Ahmaidi, S

    2008-04-01

    The aim of the present study was to examine the ability of the critical velocity (CV) and the endurance index (EI) to assess endurance performance during intermittent exercise. Thirteen subjects performed two intermittent runs: 15-s runs intersected with 15 s of passive recovery (15/15) and 30-s runs with 30-s rest (30/30). Runs were performed until exhaustion at three intensities (100, 95 and 90 % of the speed reached at the end of the 30 - 15 intermittent fitness test, V (IFT)) to calculate i) CV from the slope of the linear relationship between the total covered distance and exhaustion time (ET) (iCV); ii) anaerobic distance capacity from the Y-intercept of the distance/duration relationship (iADC); and iii) EI from the relationship between the fraction of V (IFT) at which the runs were performed and the log-transformed ET (iEI). Anaerobic capacity was indirectly assessed by the final velocity achieved during the Maximal Anaerobic Running Test (VMART). ET was longer for 15/15 than for 30/30 runs at similar intensities. iCV (15/15) and iCV (30/30) were not influenced by changes in ET and were highly dependent on V (IFT). Neither iADC (15/15) nor iADC (30/30) were related to VMART. In contrast, iEI (15/15) was higher than iEI (30/30), and corresponded with the higher ET. In conclusion, only iEI estimated endurance capacity during repeated intermittent running.

  7. Performance Predictions of Supersonic Intakes with Isentropic-Compression Forebody

    NASA Astrophysics Data System (ADS)

    Nakashima, K.; Saito, Tsutomu

    Intake is an important component of next generation air-breathing engines such as Ram/Scram jet engines, as well as conventional jet-propulsion systems. The supersonic intake decelerates compresses the air inflow by shocks or compression waves to appropriate flow conditions for a specific engine system. The performance of supersonic intakes is evaluated mainly by the mass flow rate and the total pressure recovery rate.

  8. Active Control of Environmental Noise, Vi: Performance of a Fundamental Free-Field Sound Cancelling System

    NASA Astrophysics Data System (ADS)

    WRIGHT, S. E.; ATMOKO, H.

    2001-08-01

    Before the adaptive cancellation performance of multichannel free-field acoustic systems could be evaluated in detail, it was considered prudent to establish first the performance of a single channel free-field cancelling system. The adaptive theory for this basic system, including the stability process, is described. Measured adaptive performance is given confirming the theory.The concept of stability bands and their prediction is considered. The bands are a consequence of phase differences between the primary source and secondary cancelling field, generated by the transfer functions of the control system. At the edge of these stability bands satellite pole frequencies “beat” with the cancelling frequency, generated by the zeros, to produce side bands. The relation between the stability bandwidth and the adaptive speed, in terms of reference signal strength and adaptive step size, are investigated.The sound generation and cancellation performance of this basic canceller are then considered. The acoustic sound field directivity characteristics are similar to that of a dipole, tripole or quadrupole type source, depending on the primary-secondary source separation distance. The acoustic shadow characteristics are established in detail and compared with measurement. Good agreement is obtained.

  9. Effectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments

    PubMed Central

    Windhausen, Vanessa S.; Atlin, Gary N.; Hickey, John M.; Crossa, Jose; Jannink, Jean-Luc; Sorrells, Mark E.; Raman, Babu; Cairns, Jill E.; Tarekegne, Amsal; Semagn, Kassa; Beyene, Yoseph; Grudloyma, Pichet; Technow, Frank; Riedelsheimer, Christian; Melchinger, Albrecht E.

    2012-01-01

    Genomic prediction is expected to considerably increase genetic gains by increasing selection intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize (Zea mays L.) hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F2-derived lines from each of five populations. Although up to 25% of the genetic variance could be explained by cross validation within the diversity panel, the prediction of testcross performance of F2-derived lines using marker effects estimated in the diversity panel was on average zero. Hybrids in the diversity panel could be grouped into eight breeding populations differing in mean performance. When performance was predicted separately for each breeding population on the basis of marker effects estimated in the other populations, predictive ability was low (i.e., 0.12 for grain yield). These results suggest that prediction resulted mostly from differences in mean performance of the breeding populations and less from the relationship between the training and validation sets or linkage disequilibrium with causal variants underlying the predicted traits. Potential uses for genomic prediction in maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario in which genomic prediction should be applied (i.e., prediction among or within populations), (2) a detailed analysis of the population structure before performing cross validation, and (3) larger training sets with strong genetic relationship to the validation set. PMID:23173094

  10. Simplified Predictive Models for CO2 Sequestration Performance Assessment

    NASA Astrophysics Data System (ADS)

    Mishra, Srikanta; RaviGanesh, Priya; Schuetter, Jared; Mooney, Douglas; He, Jincong; Durlofsky, Louis

    2014-05-01

    We present results from an ongoing research project that seeks to develop and validate a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formation. The overall research goal is to provide tools for predicting: (a) injection well and formation pressure buildup, and (b) lateral and vertical CO2 plume migration. Simplified modeling approaches that are being developed in this research fall under three categories: (1) Simplified physics-based modeling (SPM), where only the most relevant physical processes are modeled, (2) Statistical-learning based modeling (SLM), where the simulator is replaced with a "response surface", and (3) Reduced-order method based modeling (RMM), where mathematical approximations reduce the computational burden. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. In the first category (SPM), we use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. In the second category (SLM), we develop statistical "proxy models" using the simulation domain described previously with two different approaches: (a) classical Box-Behnken experimental design with a quadratic response surface fit, and (b) maximin Latin Hypercube sampling (LHS) based design with a Kriging metamodel fit using a quadratic trend and Gaussian correlation structure. For roughly the same number of

  11. Potential of preliminary test methods to predict biodegradation performance of petroleum hydrocarbons in soil.

    PubMed

    Aichberger, H; Hasinger, Marion; Braun, Rudolf; Loibner, Andreas P

    2005-03-01

    Preliminary tests at different scales such as degradation experiments (laboratory) in shaking flasks, soil columns and lysimeters as well as in situ respiration tests (field) were performed with soil from two hydrocarbon contaminated sites. Tests have been evaluated in terms of their potential to provide information on feasibility, degradation rates and residual concentration of bioremediation in the vadose zone. Sample size, costs and duration increased with experimental scale in the order shaking flasks - soil columns - lysimeter - in situ respiration tests, only time demand of respiration tests was relatively low. First-order rate constants observed in degradation experiments exhibited significant differences between both, different experimental sizes and different soils. Rates were in line with type and history of contamination at the sites, but somewhat overestimated field rates particularly in small scale experiments. All laboratory experiments allowed an estimation of residual concentrations after remediation. In situ respiration tests were found to be an appropriate pre-testing and monitoring tool for bioventing although residual concentrations cannot be predicted from in situ respiration tests. Moreover, this method does not account for potential limitations that might hamper biodegradation in the longer term but only reflects the actual degradation potential when the test is performed.

  12. High performance ultrasonic field simulation on complex geometries

    NASA Astrophysics Data System (ADS)

    Chouh, H.; Rougeron, G.; Chatillon, S.; Iehl, J. C.; Farrugia, J. P.; Ostromoukhov, V.

    2016-02-01

    Ultrasonic field simulation is a key ingredient for the design of new testing methods as well as a crucial step for NDT inspection simulation. As presented in a previous paper [1], CEA-LIST has worked on the acceleration of these simulations focusing on simple geometries (planar interfaces, isotropic materials). In this context, significant accelerations were achieved on multicore processors and GPUs (Graphics Processing Units), bringing the execution time of realistic computations in the 0.1 s range. In this paper, we present recent works that aim at similar performances on a wider range of configurations. We adapted the physical model used by the CIVA platform to design and implement a new algorithm providing a fast ultrasonic field simulation that yields nearly interactive results for complex cases. The improvements over the CIVA pencil-tracing method include adaptive strategies for pencil subdivisions to achieve a good refinement of the sensor geometry while keeping a reasonable number of ray-tracing operations. Also, interpolation of the times of flight was used to avoid time consuming computations in the impulse response reconstruction stage. To achieve the best performance, our algorithm runs on multi-core superscalar CPUs and uses high performance specialized libraries such as Intel Embree for ray-tracing, Intel MKL for signal processing and Intel TBB for parallelization. We validated the simulation results by comparing them to the ones produced by CIVA on identical test configurations including mono-element and multiple-element transducers, homogeneous, meshed 3D CAD specimens, isotropic and anisotropic materials and wave paths that can involve several interactions with interfaces. We show performance results on complete simulations that achieve computation times in the 1s range.

  13. SEISMIC RESPONSE PREDICTION OF NUPEC'S FIELD MODEL TESTS OF NPP STRUCTURES WITH ADJACENT BUILDING EFFECT.

    SciTech Connect

    XU,J.COSTANTINO,C.HOFMAYER,C.ALI,S.

    2004-03-04

    As part of a verification test program for seismic analysis computer codes for Nuclear Power Plant (NPP) structures, the Nuclear Power Engineering Corporation (NUPEC) of Japan has conducted a series of field model tests to address the dynamic cross interaction (DCI) effect on the seismic response of NPP structures built in close proximity to each other. The program provided field data to study the methodologies commonly associated with seismic analyses considering the DCI effect. As part of a collaborative program between the United States and Japan on seismic issues related to NPP applications, the U.S. Nuclear Regulatory Commission sponsored a program at Brookhaven National Laboratory (BNL) to perform independent seismic analyses which applied common analysis procedures to predict the building response to recorded earthquake events for the test models with DCI effect. In this study, two large-scale DCI test model configurations were analyzed: (1) twin reactor buildings in close proximity and (2) adjacent reactor and turbine buildings. This paper describes the NUPEC DCI test models, the BNL analysis using the SASSI 2000 program, and comparisons between the BNL analysis results and recorded field responses. To account for large variability in the soil properties, the conventional approach of computing seismic responses with the mean, mean plus and minus one-standard deviation soil profiles is adopted in the BNL analysis and the three sets of analysis results were used in the comparisons with the test data. A discussion is also provided in the paper to address (1) the capability of the analysis methods to capture the DCI effect, and (2) the conservatism of the practice for considering soil variability in seismic response analysis for adjacent NPP structures.

  14. Research of performance prediction to energy on hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Quan, H.; Li, R. N.; Li, Q. F.; Han, W.; Su, Q. M.

    2012-11-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  15. Which psychosocial factors best predict cognitive performance in older adults?

    PubMed

    Zahodne, Laura B; Nowinski, Cindy J; Gershon, Richard C; Manly, Jennifer J

    2014-05-01

    Negative affect (e.g., depression) is associated with accelerated age-related cognitive decline and heightened dementia risk. Fewer studies examine positive psychosocial factors (e.g., emotional support, self-efficacy) in cognitive aging. Preliminary reports suggest that these variables predict slower cognitive decline independent of negative affect. No reports have examined these factors in a single model to determine which best relate to cognition. Data from 482 individuals 55 and older came from the normative sample for the NIH Toolbox for the Assessment of Neurological and Behavioral Function. Negative and positive psychosocial factors, executive functioning, working memory, processing speed, and episodic memory were measured with the NIH Toolbox Emotion and Cognition modules. Confirmatory factor analysis and structural equation modeling characterized independent relations between psychosocial factors and cognition. Psychosocial variables loaded onto negative and positive factors. Independent of education, negative affect and health status, greater emotional support was associated with better task-switching and processing speed. Greater self-efficacy was associated with better working memory. Negative affect was not independently associated with any cognitive variables. Findings support the conceptual distinctness of negative and positive psychosocial factors in older adults. Emotional support and self-efficacy may be more closely tied to cognition than other psychosocial variables.

  16. Revised MITG design, fabrication procedure, and performance predictions

    SciTech Connect

    Schock, A.

    1983-01-01

    The design, analysis, and key features of the Modular Isotopic Thermoelectric Generator (MITG) were described in a 1981 IECEC paper; and the design, fabrication, testing, and post-test analysis of test assemblies simulating prototypical MITG modules were described in preceding papers in these proceedings. These analyses succeeded in identifying and explaining the principal causes of thermal-stress problems encountered in the tests, and in confirming the effectiveness of design changes for alleviating them. The present paper presents additional design improvements for solving these and other problems, and describes new thermoelectric material properties generated by independent laboratories over the past two years. Based on these changes and on a revised fabrication procedure, it presents a reoptimization of the MITG design and computes the power-to-weight ratio for the revised design. That ratio is appreciably lower than the 1981 prediction, primarily because of changes in material properties; but it is still much higher than the specific power of current-generation RTGs.

  17. Off-Design Performance Prediction of Gas Turbines without the use of Compressor or Turbine Characteristics

    NASA Astrophysics Data System (ADS)

    Suraweera, Janitha Kanishka

    A new method of predicting gas turbine off-design performance is presented. This method, referred to as the core control method, is based on the idea that performance across a gas turbine depends on a single parameter that controls the energy input to the said gas turbine. It is shown that only the design-point performance of a gas turbine is needed to predict its off-design performance, and that neither compressor nor turbine characteristics are required. A thermodynamic model is developed for predicting the off-design performance of a single-spool turbojet and a two-spool gas generator with a free power turbine. This model is further developed to simulate the effects of handling bleed schedules, performance limiters and performance deterioration. The core control method is then used to predict the off-design performance of a Rolls-Royce Viper Mark 521 as a proof-of-concept, after which, the new and deteriorated off-design performance of three Rolls-Royce RB211-24GT gas turbines is predicted. In addition to the discussions on the involved theories and the performance predictions, the process by which the deteriorated RB211-24GT performance data was analyzed, and the sources and propagation of measurement uncertainties are also discussed.

  18. Field of view selection for optimal airborne imaging sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Barnard, P. Werner; Fildis, Halidun; Erbudak, Mustafa; Senger, Tolga; Alpman, Mehmet E.

    2014-05-01

    The choice of the Field of View (FOV) of imaging sensors used in airborne targeting applications has major impact on the overall performance of the system. Conducting a market survey from published data on sensors used in stabilized airborne targeting systems shows a trend of ever narrowing FOVs housed in smaller and lighter volumes. This approach promotes the ever increasing geometric resolution provided by narrower FOVs, while it seemingly ignores the influences the FOV selection has on the sensor's sensitivity, the effects of diffraction, the influences of sight line jitter and collectively the overall system performance. This paper presents a trade-off methodology to select the optimal FOV for an imaging sensor that is limited in aperture diameter by mechanical constraints (such as space/volume available and window size) by balancing the influences FOV has on sensitivity and resolution and thereby optimizing the system's performance. The methodology may be applied to staring array based imaging sensors across all wavebands from visible/day cameras through to long wave infrared thermal imagers. Some examples of sensor analysis applying the trade-off methodology are given that highlights the performance advantages that can be gained by maximizing the aperture diameters and choosing the optimal FOV for an imaging sensor used in airborne targeting applications.

  19. Cognition and procedure representational requirements for predictive human performance models

    NASA Technical Reports Server (NTRS)

    Corker, K.

    1992-01-01

    Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods

  20. Carbon diffusion in supersaturated ferrite: a comparison of mean-field and atomistic predictions

    NASA Astrophysics Data System (ADS)

    Lawrence, B.; Sinclair, C. W.; Perez, M.

    2014-09-01

    Hillert's mean-field elastic prediction of the diffusivity of carbon in ferrite is regularly used to explain the experimental observation of slow diffusion of carbon in supersaturated ferrite. With increasing carbon supersaturation, the appropriateness of assuming that many-body carbon interactions can be ignored needs to be re-examined. In this work, we have sought to evaluate the limits of such mean-field predictions for activation barrier prediction by comparing such models with molecular dynamics simulations. The results of this analysis show that even at extremely high levels of supersaturation (up to 8 at% C), mean-field elasticity models can be used with confidence when the effects of carbon concentration on the energy of carbon at octahedral and tetrahedral sites are considered. The reasons for this finding and its consequences are discussed.

  1. The Hurricane Imaging Radiometer (HIRAD): Instrument Status and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Ruf, Christopher; Bailey, M. C.; Gross, Steven; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Uhlhorn, Eric

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative radiometer which offers new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR) [Uhlhorn and Black, 2004]. The HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology [Ruf et al., 1988]. This sensor operates over 4-7 GHz, where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometer [Bettenhausen et al., 2006; Brown et al., 2006]. HIRAD incorporates a new and unique array antenna design along with several technologies successfully demonstrated by the Lightweight Rain Radiometer instrument [Ruf et al., 2002; Ruf and Principe, 2003]. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean winds and rain in hurricane conditions. Accurate observations of surface ocean vector winds (OVW) with high spatial and temporal resolution are required for understanding and predicting tropical cyclones. The Hurricane Imaging Radiometer (HIRAD) is an innovative architecture which offers new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven remote sensing technique for observing tropical cyclone (TC) ocean surface wind speeds and rain rates. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology combined with a a unique array antenna design. The overarching design concept of HIRAD is to combine the multi-frequency C-band observing strategy of the SFMR with STAR technology to

  2. A new modeling and simulation method for important statistical performance prediction of single photon avalanche diode detectors

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Xiang, Ping; Xie, Xiaopeng; Huang, Yang

    2016-06-01

    This paper presents a new modeling and simulation method to predict the important statistical performance of single photon avalanche diode (SPAD) detectors, including photon detection efficiency (PDE), dark count rate (DCR) and afterpulsing probability (AP). Three local electric field models are derived for the PDE, DCR and AP calculations, which show analytical dependence of key parameters such as avalanche triggering probability, impact ionization rate and electric field distributions that can be directly obtained from Geiger mode Technology Computer Aided Design (TCAD) simulation. The model calculation results are proven to be in good agreement with the reported experimental data in the open literature, suggesting that the proposed modeling and simulation method is very suitable for the prediction of SPAD statistical performance.

  3. Prediction of natural disasters basing of chrono-and-information field characters

    NASA Astrophysics Data System (ADS)

    Sapunov, Valentin

    2013-04-01

    Living organisms are able to predict some future events particular catastrophic incidents. This is adaptive characters producing by evolution. The more energy produces incident the more possibility to predict one. Wild animals escaped natural hazards including tsunami (e.g. extremal tsunami in Asia December 2004). Living animals are able to predict strong phenomena of obscure nature. For example majority of animals escaped Tungus catastrophe taking place in Siberia at 1908. Wild animals are able to predict nuclear weapon experiences. The obscure characters are not typical for human, but they are fixed under probability 15%. Such were summarized by L.Vasiliev (1961). Effective theory describing such a characters is absent till now. N.Kozyrev (1991) suggested existence of unknown physical field (but gravitation and electro magnetic). The field was named "time" or "chrono". Some characters of the field appeared to be object of physical experiment. Kozyrev suggested specific role of the field for function of living organisms. Transition of biological information throw space (telepathy) and time (proscopy) may be based on characters of such a field. Hence physical chrono-and-information field is under consideration. Animals are more familiar with such a field than human. Evolutionary process experienced with possibility of extremal development of contact with such a field using highest primates. This mode of evolution appeared to stay obscure producing probable species "Wildman" (Bigfoot). Specific adaptive fitches suggest impossibility to study of such a species by usual ecological approaches. The perspective way for study of mysterious phenomena of physic is researches of this field characters.

  4. Predicting the sun's polar magnetic fields with a surface flux transport model

    SciTech Connect

    Upton, Lisa; Hathaway, David H. E-mail: lar0009@uah.edu

    2014-01-01

    The Sun's polar magnetic fields are directly related to solar cycle variability. The strength of the polar fields at the start (minimum) of a cycle determine the subsequent amplitude of that cycle. In addition, the polar field reversals at cycle maximum alter the propagation of galactic cosmic rays throughout the heliosphere in fundamental ways. We describe a surface magnetic flux transport model that advects the magnetic flux emerging in active regions (sunspots) using detailed observations of the near-surface flows that transport the magnetic elements. These flows include the axisymmetric differential rotation and meridional flow and the non-axisymmetric cellular convective flows (supergranules), all of which vary in time in the model as indicated by direct observations. We use this model with data assimilated from full-disk magnetograms to produce full surface maps of the Sun's magnetic field at 15 minute intervals from 1996 May to 2013 July (all of sunspot cycle 23 and the rise to maximum of cycle 24). We tested the predictability of this model using these maps as initial conditions, but with daily sunspot area data used to give the sources of new magnetic flux. We find that the strength of the polar fields at cycle minimum and the polar field reversals at cycle maximum can be reliably predicted up to 3 yr in advance. We include a prediction for the cycle 24 polar field reversal.

  5. Performance prediction of the TMT tertiary mirror support system

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.

    2008-07-01

    The Ritchey-Chretien (RC) optical design of Thirty Meter Telescope (TMT) calls for a 3.1m diameter secondary mirror (M2M) and an elliptical tertiary mirror (M3M) of 3.5m along its major axis and 2.5m along its minor axis. The M3M is a thin, large, flat, solid elliptical mirror which directs the f/15 beam from the M2M to the multiple instruments on both Nasmyth platforms. The M3M will weigh approximately two metric tons and the mirror support system will maintain the mirror figure at different gravity orientations. A recent reduction of the field of view to 15 arc minutes allows a reduction in the size of the M3M, which in turn requires re-optimization of the mirror support system. The proposed M3M optimized support system consists of 60 tri-axial supports mounted at the mirror back surface. These tri-axial supports accommodate motions of M3M in three gravity directions. The print-though RMS surface errors of M3M are 10nm for axial gravity loadings and 1nm for lateral gravity loadings. The M3 system (M3S) has an active optics (aO) capability to accommodate potential mechanical or thermal errors; its ability to correct low-order aberrations has been analyzed. A structure function (SF) of the axial gravity support print-through was calculated.

  6. Performance prediction of electrohydrodynamic thrusters by the perturbation method

    NASA Astrophysics Data System (ADS)

    Shibata, H.; Watanabe, Y.; Suzuki, K.

    2016-05-01

    In this paper, we present a novel method for analyzing electrohydrodynamic (EHD) thrusters. The method is based on a perturbation technique applied to a set of drift-diffusion equations, similar to the one introduced in our previous study on estimating breakdown voltage. The thrust-to-current ratio is generalized to represent the performance of EHD thrusters. We have compared the thrust-to-current ratio obtained theoretically with that obtained from the proposed method under atmospheric air conditions, and we have obtained good quantitative agreement. Also, we have conducted a numerical simulation in more complex thruster geometries, such as the dual-stage thruster developed by Masuyama and Barrett [Proc. R. Soc. A 469, 20120623 (2013)]. We quantitatively clarify the fact that if the magnitude of a third electrode voltage is low, the effective gap distance shortens, whereas if the magnitude of the third electrode voltage is sufficiently high, the effective gap distance lengthens.

  7. Spatial load factor in prediction of reading performance.

    PubMed

    Larter, S C; Herse, P R; Naduvilath, T J; Dain, S J

    2004-09-01

    Abstract This study investigated whether there is a relationship between reading age and clinical optometric tests that have varying degrees of spatial loading in their design. Spatial loading in this context is the demand on the visual system to process information about the relative position and orientation of stimuli. A total of 112 children aged 8-11 years were assessed using saccadic eye movement and rapid naming tasks with varying spatial loads. All were subtests of Garzia's Developmental Eye Movement test and Liubinas' SeeRite Reading Diagnostic Programme. Variability in load was achieved by comparing rapid naming of numerals vs the spatially loaded letters p, d, b, q; and by comparing the speed of reading numerals presented in increasingly complex arrays. Reading Age was assessed independently and results were analysed by multiple logistic regression. Spatially loaded naming tasks performed at speed exposed a Spatial Loading Factor which clearly differentiates children at risk with reading.

  8. Spatial load factor in prediction of reading performance.

    PubMed

    Larter, S C; Herse, P R; Naduvilath, T J; Dain, S J

    2004-09-01

    Abstract This study investigated whether there is a relationship between reading age and clinical optometric tests that have varying degrees of spatial loading in their design. Spatial loading in this context is the demand on the visual system to process information about the relative position and orientation of stimuli. A total of 112 children aged 8-11 years were assessed using saccadic eye movement and rapid naming tasks with varying spatial loads. All were subtests of Garzia's Developmental Eye Movement test and Liubinas' SeeRite Reading Diagnostic Programme. Variability in load was achieved by comparing rapid naming of numerals vs the spatially loaded letters p, d, b, q; and by comparing the speed of reading numerals presented in increasingly complex arrays. Reading Age was assessed independently and results were analysed by multiple logistic regression. Spatially loaded naming tasks performed at speed exposed a Spatial Loading Factor which clearly differentiates children at risk with reading. PMID:15315659

  9. Predicting neuropsychological test performance on the basis of temporal orientation.

    PubMed

    Ryan, Joseph J; Glass, Laura A; Bartels, Jared M; Bergner, CariAnn M; Paolo, Anthony M

    2009-05-01

    Temporal orientation is often disrupted in the context of psychiatric or neurological disease; tests assessing this function are included in most mental status examinations. The present study examined the relationship between scores on the Temporal Orientation Scale (TOS) and performance on a battery of tests that assess memory, language, and cognitive functioning in a sample of patients with Alzheimer's disease (N = 55). Pearson-product moment correlations showed that, in all but two instances, the TOS was significantly correlated with each neuropsychological measure, p values < or = .05. Also, severely disoriented (i.e., TOS score < or = -8) patients were consistently 'impaired' on memory tests but not on tests of language and general cognitive functioning.

  10. Event related brain electrical and magnetic activity: toward predicting on-job performance.

    PubMed

    Lewis, G W

    1983-01-01

    Personnel assessment has depended on paper and pencil tests. These tests are able to predict academic performance fairly well, but have been criticized for their ineffectiveness in predicting on-job performance. Research on brain function which emphasizes "process" rather than "content" variables, may be able to predict on-job performance better than traditional tests. Relationships have been found between event related brain potentials (ERPs) and performance in fighter aircraft and on a sonar simulator, as well as enlistees promotions and attrition. Research has suggested that ERP records are better able to discriminate and classify performance groups than paper-and-pencil test scores. Biomagnetic data are described from heart and brain. These data suggest increased sensitivity to individual differences, and may offer greater opportunity for improving prediction of on-job performance, than ERP records or paper-and-pencil tests.

  11. An Euler code prediction of near field to midfield sonic boom pressure signatures

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.; Darden, C. M.

    1990-01-01

    A new approach is presented for computing sonic boom pressure signatures in the near field to midfield that utilizes a fully three-dimensional Euler finite volume code capable of analyzing complex geometries. Both linear and nonlinear sonic boom methodologies exist but for the most part rely primarily on equivalent area distributions for the prediction of far field pressure signatures. This is due to the absence of a flexible nonlinear methodology that can predict near field pressure signatures generated by three-dimensional aircraft geometries. It is the intention of the present study to present a nonlinear Euler method than can fill this gap and supply the needed near field signature data for many of the existing sonic boom codes.

  12. Validation of a Previously Developed Geospatial Model That Predicts the Prevalence of Listeria monocytogenes in New York State Produce Fields.

    PubMed

    Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin; Strawn, Laura K

    2016-02-01

    Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. PMID:26590280

  13. Validation of a Previously Developed Geospatial Model That Predicts the Prevalence of Listeria monocytogenes in New York State Produce Fields

    PubMed Central

    Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin

    2015-01-01

    Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. PMID:26590280

  14. A Complete Procedure for Predicting and Improving the Performance of HAWT's

    NASA Astrophysics Data System (ADS)

    Al-Abadi, Ali; Ertunç, Özgür; Sittig, Florian; Delgado, Antonio

    2014-06-01

    A complete procedure for predicting and improving the performance of the horizontal axis wind turbine (HAWT) has been developed. The first process is predicting the power extracted by the turbine and the derived rotor torque, which should be identical to that of the drive unit. The BEM method and a developed post-stall treatment for resolving stall-regulated HAWT is incorporated in the prediction. For that, a modified stall-regulated prediction model, which can predict the HAWT performance over the operating range of oncoming wind velocity, is derived from existing models. The model involves radius and chord, which has made it more general in applications for predicting the performance of different scales and rotor shapes of HAWTs. The second process is modifying the rotor shape by an optimization process, which can be applied to any existing HAWT, to improve its performance. A gradient- based optimization is used for adjusting the chord and twist angle distribution of the rotor blade to increase the extraction of the power while keeping the drive torque constant, thus the same drive unit can be kept. The final process is testing the modified turbine to predict its enhanced performance. The procedure is applied to NREL phase-VI 10kW as a baseline turbine. The study has proven the applicability of the developed model in predicting the performance of the baseline as well as the optimized turbine. In addition, the optimization method has shown that the power coefficient can be increased while keeping same design rotational speed.

  15. Nebulous Art of Using Wind-Tunnel Airfoil Data for Predicting Rotor Performance: Preprint

    SciTech Connect

    Tangler, J. L.

    2002-01-01

    The objective of this study was threefold: to evaluate different two-dimensional S809 airfoil data sets in the prediction of rotor performance; to compare blade-element momentum rotor predicted results to lifting-surface, prescribed-wake results; and to compare the NASA Ames combined experiment rotor measured data with the two different performance prediction methods. The S809 airfoil data sets evaluated included those from Delft University of Technology, Ohio State University, and Colorado State University. The performance prediction comparison with NASA Ames data documents shortcomings of these performance prediction methods and recommends the use of the lifting-surface, prescribed-wake method over blade-element momentum theory for future analytical improvements.

  16. Relationships Between Anaerobic Performance, Field Tests and Game Performance of Sitting Volleyball Players.

    PubMed

    Marszalek, Jolanta; Molik, Bartosz; Gomez, Miguel Angel; Skučas, Kęstutis; Lencse-Mucha, Judit; Rekowski, Witold; Pokvytyte, Vaida; Rutkowska, Izabela; Kaźmierska-Kowalewska, Kalina

    2015-11-22

    The aim of this study was to evaluate relationships between anaerobic performance, field tests, game performance and anthropometric variables of sitting volleyball players. Twenty elite Polish sitting volleyball players were tested using the 30 s Wingate Anaerobic Test for arm crank ergometer and participated in six physical field tests. Heights in position to block and to spike, as well as arm reach were measured. Players were observed during the game on the court in terms of effectiveness of the serve, block, attack, receive and defense. Pearson analysis and the Spearman's rank correlation coefficient were used. The strongest correlations were found between the chest pass test and mean power and peak power (r=.846; p=.001 and r=.708; p=.0005, respectively), and also between the T-test and peak power (r= -.718; p=.001). Mean power correlated with the 3 m test (r= -.540; p=.014), the 5 m test (r= -.592; p=.006), and the T-test (r= -.582; p=.007). Peak power correlated with the 3 m test (r= -.632; p=.003), the 5 m test (r= -.613; p=.004), speed & agility (r= -.552; p=.012) and speed & endurance (r=-.546; p=.013). Significant correlations were observed between anthropometric parameters and anaerobic performance variables (p≤.001), and also between anthropometric parameters and field tests (p≤.05). Game performance and physical fitness of sitting volleyball players depended on their anthropometric variables: reach of arms, the position to block and to spike. The chest pass test could be used as a non-laboratory field test of anaerobic performance of sitting volleyball players. PMID:26834870

  17. Premium performance heating oil - Part 2, Field trial results

    SciTech Connect

    Jetter, S.M.; Hoskin, D.; McClintock, W.R.

    1996-07-01

    Limited field trial results of a heating oil additive package developed to minimize unscheduled maintenance indicate that it achieves its goal of keeping heating oil systems cleaner. The multifunctional additive package was developed to provide improved fuel oxidation stability, improved corrosion protection, and dispersency. This combination of performance benefits was chosen because we believed it would retard the formation of sludge, as well as allow sludge already present to be carried through the system without fouling the fuel system components (dispersency should keep sludge particles small so they pass through the filtering system). Since many unscheduled maintenance calls are linked to fouling of the fuel filtering system, the overall goal of this technology is to reduce these maintenance calls. Photographic evidence shows that the additive package not only reduces the amount of sludge formed, but even removes existing sludge from filters and pump strainers. This {open_quotes}clean-up{close_quotes} performance is provided trouble free: we found no indication that nozzle/burner performance was impaired by dispersing sludge from filters and pump strainers. Qualitative assessments from specific accounts that used the premium heating oil also show marked reductions in unscheduled maintenance.

  18. A mathematical procedure to predict optical performance of CPCs

    NASA Astrophysics Data System (ADS)

    Yu, Y. M.; Yu, M. J.; Tang, R. S.

    2016-08-01

    To evaluate the optical performance of a CPC based concentrating photovoltaic system, it is essential to find the angular dependence of optical efficiency of compound parabolic concentrator (CPC-θe ) where the incident angle of solar rays on solar cells is restricted within θe for the radiation over its acceptance angle. In this work, a mathematical procedure was developed to calculate the optical efficiency of CPC-θe for radiation incident at any angle based radiation transfer within CPC-θe . Calculations show that, given the acceptance half-angle (θa ), the annual radiation of full CPC-θe increases with the increase of θe and the CPC without restriction of exit angle (CPC-90) annually collects the most radiation due to large geometry (Ct ); whereas for truncated CPCs with identical θa and Ct , the annual radiation collected by CPC-θe is almost identical to that by CPC-90, even slightly higher. Calculations also indicate that the annual radiation on the absorber of CPC-θe at the angle larger than θe decrease with the increase of θe but always less than that of CPC-90, and this implies that the CPC-θe based PV system is more efficient than CPC-90 based PV system because the radiation on solar cells incident at large angle is poorly converted into electricity.

  19. Performance Prediction Method of CO2 Cycle for Air Cooling

    NASA Astrophysics Data System (ADS)

    Koyama, Shigeru; Xue, Jun; Kuwahara, Ken

    From the perspective of global environmental protection and energy-saving, the research and development on high-efficiency heat pump and refrigeration systems using environment-friendly refrigerants have become one of the most important issues in the air-conditioning and refrigeration sector. In the present work, a steady-state model of the CO2 transcritical cycle for air cooling, which consists of a rotary compressor, a fin-tube gas cooler,a fin-tube evaporator and an expansion valve, has been developed. The detailed model of fin-tube heat exchanger has been constructed by means of the finite volume method, in which the local heat transfer and flow characteristics are evaluated. It should be noted that the effects of the dew condensation generated on the cooling surface are considered in the evaporator model. As a calculation example, the effects of the indoor air wet-bulb temperature on the cycle performance have been examined with this developed simulator.

  20. Working memory capacity predicts conflict-task performance.

    PubMed

    Gulbinaite, Rasa; Johnson, Addie

    2014-01-01

    The relationship between the ability to maintain task goals and working memory capacity (WMC) is firmly established, but evidence for WMC-related differences in conflict processing is mixed. We investigated whether WMC (measured using two complex-span tasks) mediates differences in adjustments of cognitive control in response to conflict. Participants performed a Simon task in which congruent and incongruent trials were equiprobable, but in which the proportion of congruency repetitions (congruent trials followed by congruent trials or incongruent trials followed by incongruent trials) and thus the need for trial-by-trial adjustments in cognitive control varied by block. The overall Simon effect did not depend on WMC capacity. However, for the low-WMC participants the Simon effect decreased as the proportion of congruency repetitions decreased, whereas for the high- and average-WMC participants it was relatively constant across conditions. Distribution analysis of the Simon effect showed more evidence for the inhibition of stimulus location in the low- than in the high-WMC participants, especially when the proportion of congruency repetitions was low. We hypothesize that low-WMC individuals exhibit more interference from task-irrelevant information due to weaker preparatory control prior to stimulus presentation and, thus, stronger reliance on reactive recruitment of cognitive control. PMID:24199908

  1. Working memory capacity predicts conflict-task performance.

    PubMed

    Gulbinaite, Rasa; Johnson, Addie

    2014-01-01

    The relationship between the ability to maintain task goals and working memory capacity (WMC) is firmly established, but evidence for WMC-related differences in conflict processing is mixed. We investigated whether WMC (measured using two complex-span tasks) mediates differences in adjustments of cognitive control in response to conflict. Participants performed a Simon task in which congruent and incongruent trials were equiprobable, but in which the proportion of congruency repetitions (congruent trials followed by congruent trials or incongruent trials followed by incongruent trials) and thus the need for trial-by-trial adjustments in cognitive control varied by block. The overall Simon effect did not depend on WMC capacity. However, for the low-WMC participants the Simon effect decreased as the proportion of congruency repetitions decreased, whereas for the high- and average-WMC participants it was relatively constant across conditions. Distribution analysis of the Simon effect showed more evidence for the inhibition of stimulus location in the low- than in the high-WMC participants, especially when the proportion of congruency repetitions was low. We hypothesize that low-WMC individuals exhibit more interference from task-irrelevant information due to weaker preparatory control prior to stimulus presentation and, thus, stronger reliance on reactive recruitment of cognitive control.

  2. Lift-Off Acoustics Prediction of Clustered Rocket Engines in the Near Field

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Plotkin, Ken

    2010-01-01

    This slide presentation presents a method of predicting acoustics during lift-off of the clustered rocket engines in the near field. Included is a definition of the near field, and the use of deflectors and shielding. There is discussion about the use of PAD, a software system designed to calculate the acoustic levels from the lift of of clustered rocket enginee, including updates to extend the calculation to directivity, water suppression, and clustered nozzles.

  3. Performance prediction of four-contact vertical Hall-devices using a conformal mapping technique

    NASA Astrophysics Data System (ADS)

    Yang, Huang; Yue, Xu; Yufeng, Guo

    2015-12-01

    Instead of the conventional design with five contacts in the sensor active area, innovative vertical Hall devices (VHDs) with four contacts and six contacts are asymmetrical in structural design but symmetrical in the current flow that can be well fit for the spinning current technique for offset elimination. In this article, a conformal mapping calculation method is used to predict the performance of asymmetrical VHD embedded in a deep n-well with four contacts. Furthermore, to make the calculation more accurate, the junction field effect is also involved into the conformal mapping method. The error between calculated and simulated results is less than 5% for the current-related sensitivity, and approximately 13% for the voltage-related sensitivity. This proves that such calculations can be used to predict the optimal structure of the vertical Hall-devices. Project supported by the Natural Science Foundation of Jiangsu Province, China (Nos. BK20131379, BK20141431) and the Graduate Research and Innovation Projects of Jiangsu Province (No. SJLX_0373).

  4. Noise predictions of a high bypass turbofan engine using the Lockheed Near-Field Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Rawls, J. W., Jr.

    1986-01-01

    The prediction of engine noise during cruise using the Near-Field Noise Prediction Program developed by Lockheed is examined. Test conditions were established which simulate the operation of a high bypass turbofan engine under a wide range of operating conditions. These test conditions include variations in altitude, flight Mach number and thrust setting. Based on the results of noise prediction made using the Lockheed program, an evaluation of the impact of these test conditions on the overall sound pressure level(OASPL)and the one-third octave band spectra is made. An evaluation of the sensitivity of flight condition parameters is also made. The primary noise source from a high bypass turbofan was determined to be fan broadband shock noise. This noise source can be expected to be present during normal cruising conditions. When present, fan broadband shock noise usually dominates at all frequencies and all directivity angles. Other noise sources of importance are broadband shock noise from the primary jet, fan noise, fan mixing noise and turbine noise.

  5. Noise predictions of a high bypass turbofan engine using the Lockheed Near-Field Noise Prediction Program

    NASA Astrophysics Data System (ADS)

    Rawls, J. W., Jr.

    1986-07-01

    The prediction of engine noise during cruise using the Near-Field Noise Prediction Program developed by Lockheed is examined. Test conditions were established which simulate the operation of a high bypass turbofan engine under a wide range of operating conditions. These test conditions include variations in altitude, flight Mach number and thrust setting. Based on the results of noise prediction made using the Lockheed program, an evaluation of the impact of these test conditions on the overall sound pressure level(OASPL)and the one-third octave band spectra is made. An evaluation of the sensitivity of flight condition parameters is also made. The primary noise source from a high bypass turbofan was determined to be fan broadband shock noise. This noise source can be expected to be present during normal cruising conditions. When present, fan broadband shock noise usually dominates at all frequencies and all directivity angles. Other noise sources of importance are broadband shock noise from the primary jet, fan noise, fan mixing noise and turbine noise.

  6. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules

    PubMed Central

    Ramakrishnan, Sridhar; Wesensten, Nancy J.; Balkin, Thomas J.; Reifman, Jaques

    2016-01-01

    Study Objectives: Historically, mathematical models of human neurobehavioral performance developed on data from one sleep study were limited to predicting performance in similar studies, restricting their practical utility. We recently developed a unified model of performance (UMP) to predict the effects of the continuum of sleep loss—from chronic sleep restriction (CSR) to total sleep deprivation (TSD) challenges—and validated it using data from two studies of one laboratory. Here, we significantly extended this effort by validating the UMP predictions across a wide range of sleep/wake schedules from different studies and laboratories. Methods: We developed the UMP on psychomotor vigilance task (PVT) lapse data from one study encompassing four different CSR conditions (7 d of 3, 5, 7, and 9 h of sleep/night), and predicted performance in five other studies (from four laboratories), including different combinations of TSD (40 to 88 h), CSR (2 to 6 h of sleep/night), control (8 to 10 h of sleep/night), and nap (nocturnal and diurnal) schedules. Results: The UMP accurately predicted PVT performance trends across 14 different sleep/wake conditions, yielding average prediction errors between 7% and 36%, with the predictions lying within 2 standard errors of the measured data 87% of the time. In addition, the UMP accurately predicted performance impairment (average error of 15%) for schedules (TSD and naps) not used in model development. Conclusions: The unified model of performance can be used as a tool to help design sleep/wake schedules to optimize the extent and duration of neurobehavioral performance and to accelerate recovery after sleep loss. Citation: Ramakrishnan S, Wesensten NJ, Balkin TJ, Reifman J. A unified model of performance: validation of its predictions across different sleep/wake schedules. SLEEP 2016;39(1):249–262. PMID:26518594

  7. Field Performance of Heat Pump Water Heaters in the Northeast

    SciTech Connect

    Shapiro, C.; Puttagunta, S.

    2013-08-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  8. Impact of graphene polycrystallinity on the performance of graphene field-effect transistors

    SciTech Connect

    Jiménez, David; Chaves, Ferney; Cummings, Aron W.; Van Tuan, Dinh; Kotakoski, Jani; Roche, Stephan

    2014-01-27

    We have used a multi-scale physics-based model to predict how the grain size and different grain boundary morphologies of polycrystalline graphene will impact the performance metrics of graphene field-effect transistors. We show that polycrystallinity has a negative impact on the transconductance, which translates to a severe degradation of the maximum and cutoff frequencies. On the other hand, polycrystallinity has a positive impact on current saturation, and a negligible effect on the intrinsic gain. These results reveal the complex role played by graphene grain boundaries and can be used to guide the further development and optimization of graphene-based electronic devices.

  9. A comparative study of the reported performance of ab initio protein structure prediction algorithms.

    PubMed

    Helles, Glennie

    2008-04-01

    Protein structure prediction is one of the major challenges in bioinformatics today. Throughout the past five decades, many different algorithmic approaches have been attempted, and although progress has been made the problem remains unsolvable even for many small proteins. While the general objective is to predict the three-dimensional structure from primary sequence, our current knowledge and computational power are simply insufficient to solve a problem of such high complexity. Some prediction algorithms do, however, appear to perform better than others, although it is not always obvious which ones they are and it is perhaps even less obvious why that is. In this review, the reported performance results from 18 different recently published prediction algorithms are compared. Furthermore, the general algorithmic settings most likely responsible for the difference in the reported performance are identified, and the specific settings of each of the 18 prediction algorithms are also compared. The average normalized r.m.s.d. scores reported range from 11.17 to 3.48. With a performance measure including both r.m.s.d. scores and CPU time, the currently best-performing prediction algorithm is identified to be the I-TASSER algorithm. Two of the algorithmic settings--protein representation and fragment assembly--were found to have definite positive influence on the running time and the predicted structures, respectively. There thus appears to be a clear benefit from incorporating this knowledge in the design of new prediction algorithms.

  10. A model to predict the thermal reaction norm for the embryo growth rate from field data.

    PubMed

    Girondot, Marc; Kaska, Yakup

    2014-10-01

    The incubation of eggs is strongly influenced by temperature as observed in all species studied to date. For example, incubation duration, sexual phenotype, growth, and performances in many vertebrate hatchlings are affected by incubation temperature. Yet it is very difficult to predict temperature effect based on the temperature within a field nest, as temperature varies throughout incubation. Previous works used egg incubation at constant temperatures in the laboratory to evaluate the dependency of growtProd. Type: FTPh rate on temperature. However, generating such data is time consuming and not always feasible due to logistical and legislative constraints. This paper therefore presents a methodology to extract the thermal reaction norm for the embryo growth rate directly from a time series of incubation temperatures recorded within natural nests. This methodology was successfully applied to the nests of the marine turtle Caretta caretta incubated on Dalyan Beach in Turkey, although it can also be used for any egg-laying species, with some of its limitations being discussed in the paper. Knowledge about embryo growth patterns is also important when determining the thermosensitive period for species with temperature-dependent sex determination. Indeed, in this case, sexual phenotype is sensitive to temperature only during this window of embryonic development.

  11. The influence of the tropics on the prediction of ultralong waves. I - Tropical wind field

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Paegle, J.

    1983-01-01

    The effects of tropical wind data from the FGGE and tropical latent heating on numerical modeling of ultralong waves are considered in a two-part study. The model studied is the global fourth-order GLAS general circulation model, an energy-conserving format with horizontal differences calculated with fourth-order accuracy. Data assimilation experiments were performed with and without the wind data, with account taken of eastward and northward wind components, the geopotential height, and the relative humidity, all over pressure surfaces. The initial conditions were used to generate six pairs of forecasts, and the tropical wind error decreased after two days of prediction when the initial conditions contained the wind data. The deviations from the measured planetary wave data were attributed to differences in the initial rotational wind field, which varied on a three-day basis. The latent heat initial data had a five-day period and extended its influence beyond the tropical zone. The tropical heat sources sustained the tropical westerlies in the GLAS model, and removal of the tropical heat sources reversed the wind to easterlies.

  12. Predicting Modes of the Unsteady Vorticity Field near the Trailing Edge of a Blade

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Spitz, Nicolas; Envia, Edmane (Technical Monitor)

    2003-01-01

    Progress on predicting modes of the unsteady velocity/vorticity field of a turbulent boundary layer from Reynolds stress statistics is described. Prediction of these modes, that provide the source terms for trailing edge noise predictions in aircraft engine fans and other configurations, will allow for the first time detailed viscous flow effects to be included in such noise calculations. The key accomplishments of this work in FY02 are: (1) The development of a Matlab code for the prediction of modes in two- and three-dimensional boundary layers, previously applied to plane wakes; (2) Predictions with the code using a constant lengthscale formulation in a fully developed turbulence channel flow. Comparison of these boundary layer predictions with available DNS simulation results; and (3) Formulation of an improved model using a variable lengthscale proportional to mixing length. Turbulent channel flow predictions and comparison with DNS results. This work is being carried out in continuous communication and collaboration with the Glegg research group at Florida Atlantic University, which will be incorporating mode predictions into engine noise calculations.

  13. Prediction of the Acoustic Field Associated with Instability Wave Source Model for a Compressible Jet

    NASA Technical Reports Server (NTRS)

    Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.

  14. Mentoring Support and Power: A Three Year Predictive Field Study on Protege Networking and Career Success

    ERIC Educational Resources Information Center

    Blickle, Gerhard; Witzki, Alexander H.; Schneider, Paula B.

    2009-01-01

    Career success of early employees was analyzed from a power perspective and a developmental network perspective. In a predictive field study with 112 employees mentoring support and mentors' power were assessed in the first wave, employees' networking was assessed after two years, and career success (i.e. income and hierarchical position) and…

  15. “Buzz-saw” noise: Prediction of the rotor-alone pressure field

    NASA Astrophysics Data System (ADS)

    McAlpine, A.; Schwaller, P. J. G.; Fisher, M. J.; Tester, B. J.

    2012-10-01

    Public expectations of lower environmental noise levels, and increasingly stringent legislative limits on aircraft noise, result in noise being a critical technical issue in the development of jet engines. Noise at take-off, when the engines are at high-power operating conditions, is a key reference level for engine noise certification. "Buzz-saw" noise is the dominant fan tone noise from modern high-bypass-ratio turbofan aircraft engines during take-off. Rotor-alone tones are the key component of buzz-saw noise. The rotor-alone pressure field is cut-off at subsonic fan tip speeds; buzz-saw noise is associated with supersonic fan tip speeds, or equivalently, high power engine operating conditions. A recent series of papers has described new work concerning the prediction of buzz-saw noise. The prediction method is based on modelling the nonlinear propagation of one-dimensional sawtooth waveforms. A sawtooth waveform is a simplified representation of the rotor-alone pressure field. Previous validation of the prediction method focussed entirely on reproducing the spectral characteristics of buzz-saw noise; this was dictated at that time by the availability of spectral data only for comparison between measurement and prediction. In this paper, full validation of the method by comparing measurement and prediction of the rotor-alone pressure field is published for the first time. It is shown that results from the modelling based on a one-dimensional sawtooth waveform capture the essential features of the rotor-alone pressure field as it propagates upstream inside a hard-walled inlet duct. This verifies that predictions of the buzz-saw noise spectrum, which are in good agreement with the measured data, are based on a model which reproduces the key physics of the noise generation process. Validation results for the rotor-alone pressure field in an acoustically lined inlet duct are also shown. Comparisons of the measured and predicted rotor-alone pressure field are more

  16. [OPEN FIELD BEHAVIOR AS A PREDICTIVE CRITERIA REFLECTING RATS CORTICOSTERONELEVEL BEFORE AND AFTER STRESS].

    PubMed

    Umriukhin, P E; Grigorchuk, O S

    2015-12-01

    In the presented study we investigated the possibility to use the open field behavior data for prediction of corticosterone level in rat blood plasma before and after stress. It is shown that the most reliable open field behavior parameters, reflecting high probability of significant upregulation of corticosterone after 3 hours of immobilization, are the short latency of first movement and low locomotor activity during the test. Rats with high corticosterone at normal non-stress conditions are characterized by low locomotor activity and on the contrary long latency period for the entrance of open field center.

  17. Field strength prediction for mobile radio with the aid of a topographic data bank

    NASA Astrophysics Data System (ADS)

    Lorenz, R. W.

    Okumura's classical study (1968) and numerous measurements in Germany are used to develop a field strength prediction method for mobile radio. A topographic data bank is developed that contains information on the altitude above sea level and the environmental clutter for areas of 100 x 150 sq m. The work is restricted to quasi-smooth terrain, and special attention is paid to the influence of environmental clutter and the range of field strength fluctuations. The prediction errors are indicated and values for the local probabilities are listed for two different kinds of built-up areas, forests and open terrain. Some discrepancies between measured values and the predicted values of the Okumura model are also explained.

  18. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data

    USGS Publications Warehouse

    Veltman, K.; Huijbregts, M.A.J.; Vijver, M.G.; Peijnenburg, W.J.G.M.; Hobbelen, P.H.F.; Koolhaas, J.E.; van Gestel, C.A.M.; van Vliet, P.C.J.; Jan, Hendriks A.

    2007-01-01

    The mechanistic bioaccumulation model OMEGA (Optimal Modeling for Ecotoxicological Applications) is used to estimate accumulation of zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) in the earthworm Lumbricus rubellus. Our validation to field accumulation data shows that the model accurately predicts internal cadmium concentrations. In addition, our results show that internal metal concentrations in the earthworm are less than linearly (slope < 1) related to the total concentration in soil, while risk assessment procedures often assume the biota-soil accumulation factor (BSAF) to be constant. Although predicted internal concentrations of all metals are generally within a factor 5 compared to field data, incorporation of regulation in the model is necessary to improve predictability of the essential metals such as zinc and copper. ?? 2006 Elsevier Ltd. All rights reserved.

  19. Characterizing Decision-Analysis Performances of Risk Prediction Models Using ADAPT Curves

    PubMed Central

    Lee, Wen-Chung; Wu, Yun-Chun

    2016-01-01

    Abstract The area under the receiver operating characteristic curve is a widely used index to characterize the performance of diagnostic tests and prediction models. However, the index does not explicitly acknowledge the utilities of risk predictions. Moreover, for most clinical settings, what counts is whether a prediction model can guide therapeutic decisions in a way that improves patient outcomes, rather than to simply update probabilities. Based on decision theory, the authors propose an alternative index, the “average deviation about the probability threshold” (ADAPT). An ADAPT curve (a plot of ADAPT value against the probability threshold) neatly characterizes the decision-analysis performances of a risk prediction model. Several prediction models can be compared for their ADAPT values at a chosen probability threshold, for a range of plausible threshold values, or for the whole ADAPT curves. This should greatly facilitate the selection of diagnostic tests and prediction models. PMID:26765451

  20. Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field.

    PubMed

    Gassmann, Aaron J

    2012-07-01

    Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) provide an effective management tool for many key insect pests. However, pest species have repeatedly demonstrated their ability to adapt to management practices. Results from laboratory selection experiments illustrate the capacity of pest species to evolve Bt resistance. Furthermore, resistance has been documented to Bt sprays in the field and greenhouse, and more recently, by some pests to Bt crops in the field. In 2009, fields were discovered in Iowa (USA) with populations of western corn rootworm, Diabrotica virgifera virgifera LeConte, that had evolved resistance to maize that produces the Bt toxin Cry3Bb1. Fields with resistant insects in 2009 had been planted to Cry3Bb1 maize for at least three consecutive years and as many as 6years. Computer simulation models predicted that the western corn rootworm might evolve resistance to Bt maize in as few as 3years. Laboratory and field data for interactions between western corn rootworm and Bt maize indicate that currently commercialized products are not high-dose events, which increases the risk of resistance evolution because non-recessive resistance traits may enhance survival on Bt maize. Furthermore, genetic analysis of laboratory strains of western corn rootworm has found non-recessive inheritance of resistance. Field studies conducted in two fields identified as harboring Cry3Bb1-resistant western corn rootworm found that survival of western corn rootworm did not differ between Cry3Bb1 maize and non-Bt maize and that root injury to Cry3Bb1 maize was higher than injury to other types of Bt maize or to maize roots protected with a soil insecticide. These first cases of field-evolved resistance to Bt maize by western corn rootworm provide an early warning and point to the need to apply better integrated pest management practices when using Bt maize to manage western corn rootworm.

  1. Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnets. II. Dynamic field changes and scaling laws

    NASA Astrophysics Data System (ADS)

    Sammut, Nicholas J.; Bottura, Luca; Bauer, Pierre; Velev, George; Pieloni, Tatiana; Micallef, Joseph

    2007-08-01

    A superconducting particle accelerator like the LHC (Large Hadron Collider) at CERN, can only be controlled well if the effects of the magnetic field multipoles on the beam are compensated. The demands on a control system solely based on beam feedback may be too high for the requirements to be reached at the specified bandwidth and accuracy. Therefore, we designed a suitable field description for the LHC (FIDEL) as part of the machine control baseline to act as a feed-forward magnetic field prediction system. FIDEL consists of a physical and empirical parametric field model based on magnetic measurements at warm and in cryogenic conditions. The performance of FIDEL is particularly critical at injection when the field decays, and in the initial part of the acceleration when the field snaps back. These dynamic components are both current and time dependent and are not reproducible from cycle to cycle since they also depend on the magnet powering history. In this paper a qualitative and quantitative description of the dynamic field behavior substantiated by a set of scaling laws is presented.

  2. The effects of magnetic field in plume region on the performance of multi-cusped field thruster

    SciTech Connect

    Hu, Peng Liu, Hui Yu, Daren; Gao, Yuanyuan; Mao, Wei

    2015-10-15

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field in the plume region were investigated. Five magnetic field shielding rings were separately mounted near the exit of discharge channel to decrease the strength of magnetic field in the plume region in different levels, while the magnetic field in the upstream was well maintained. The test results show that the electron current increases with the decrease of magnetic field strength in the plume region, which gives rise to higher propellant utilization and lower current utilization. On the other hand, the stronger magnetic field in the plume region improves the performance at low voltages (high current mode) while lower magnetic field improves the performance at high voltages (low current mode). This work can provide some optimal design ideas of the magnetic strength in the plume region to improve the performance of thruster.

  3. Goal orientation and work role performance: predicting adaptive and proactive work role performance through self-leadership strategies.

    PubMed

    Marques-Quinteiro, Pedro; Curral, Luís Alberto

    2012-01-01

    This article explores the relationship between goal orientation, self-leadership dimensions, and adaptive and proactive work role performances. The authors hypothesize that learning orientation, in contrast to performance orientation, positively predicts proactive and adaptive work role performances and that this relationship is mediated by self-leadership behavior-focused strategies. It is posited that self-leadership natural reward strategies and thought pattern strategies are expected to moderate this relationship. Workers (N = 108) from a software company participated in this study. As expected, learning orientation did predict adaptive and proactive work role performance. Moreover, in the relationship between learning orientation and proactive work role performance through self-leadership behavior-focused strategies, a moderated mediation effect was found for self-leadership natural reward and thought pattern strategies. In the end, the authors discuss the results and implications are discussed and future research directions are proposed.

  4. Goal orientation and work role performance: predicting adaptive and proactive work role performance through self-leadership strategies.

    PubMed

    Marques-Quinteiro, Pedro; Curral, Luís Alberto

    2012-01-01

    This article explores the relationship between goal orientation, self-leadership dimensions, and adaptive and proactive work role performances. The authors hypothesize that learning orientation, in contrast to performance orientation, positively predicts proactive and adaptive work role performances and that this relationship is mediated by self-leadership behavior-focused strategies. It is posited that self-leadership natural reward strategies and thought pattern strategies are expected to moderate this relationship. Workers (N = 108) from a software company participated in this study. As expected, learning orientation did predict adaptive and proactive work role performance. Moreover, in the relationship between learning orientation and proactive work role performance through self-leadership behavior-focused strategies, a moderated mediation effect was found for self-leadership natural reward and thought pattern strategies. In the end, the authors discuss the results and implications are discussed and future research directions are proposed. PMID:23094471

  5. Measurements of high-contrast starshade performance in the field

    NASA Astrophysics Data System (ADS)

    Smith, Daniel; Warwick, Steven; Glassman, Tiffany M.; Novicki, Megan C.; Richards, Michael C.; Harness, Anthony; Patterson, Keith D.

    2016-07-01

    The external starshade is a method for the direct detection and spectral characterization of terrestrial planets around other stars, a key goal identified in ASTRO2010. In an effort to validate the starlight-suppression performance of the starshade, we have measured contrast better than 1×10-9 using 60 cm starshades at points just beyond the starshade tips. These measurements were made over a 50% spectral bandpass, using an incoherent light source (a white LED), and in challenging outdoor test environments. Our experimental setup is designed to provide starshade to telescope separation and telescope aperture size that are scaled as closely as possible to the flight system. The measurements confirm not only the overall starlight-suppression capability of the starshade concept but also the robustness of the setup to optical disturbances such as atmospheric effects at the test site. The spectral coverage is limited only by the optics and detectors in our test setup, not by the starshade itself. Here we describe our latest results as well as detailed comparisons of the measured results to model predictions. Plans and status of the next phase of ground testing are also discussed.

  6. Analyzing Log Files to Predict Students' Problem Solving Performance in a Computer-Based Physics Tutor

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2015-01-01

    This study investigates whether information saved in the log files of a computer-based tutor can be used to predict the problem solving performance of students. The log files of a computer-based physics tutoring environment called Andes Physics Tutor was analyzed to build a logistic regression model that predicted success and failure of students'…

  7. Prediction and control as determinants of behavioural uncertainty: effects on task performance and heart rate reactivity.

    PubMed

    Baker, S R; Stephenson, D

    2000-01-01

    Control or control-belief is often viewed as being directly instrumental in facilitating coping mechanisms in aversive situations, and yet the empirical evidence for the beneficial effects of control is inconclusive. In this study we investigated the role of predictability in determining the effects of perceived control during an aversive reaction time task. Fifty-six subjects were allocated to one of four groups; predictable-control, predictable-no control, unpredictable-control, unpredictable-no control. In the predictable conditions, subjects could temporally predict the occurrence of an aversive noise. In the perceived control conditions, duration of the aversive tone was contingent on subject's performance. All subjects were matched in terms of the nature of the task and in the number and time of receipt of both the warning signal and noise. Heart rate reactivity and two performance parameters were measured, reaction time and performance increase. Both predictability and control-belief led to a reduction in heart rate reactivity, although they appeared to function independently and at different points in the sequence of events. That is, predictability or perceived control was sufficient to mitigate the effects of an aversive situation. Neither perception of control or predictability led to better task performance. These results are discussed in terms of behavioural uncertainty explanations.

  8. Predicting Story Goodness Performance from Cognitive Measures Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Le, Karen; Coelho, Carl; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-01-01

    Purpose: This study examined the prediction of performance on measures of the Story Goodness Index (SGI; Le, Coelho, Mozeiko, & Grafman, 2011) from executive function (EF) and memory measures following traumatic brain injury (TBI). It was hypothesized that EF and memory measures would significantly predict SGI outcomes. Method: One hundred…

  9. A Prediction Model for Community Colleges Using Graduation Rate as the Performance Indicator

    ERIC Educational Resources Information Center

    Moosai, Susan

    2010-01-01

    In this thesis a prediction model using graduation rate as the performance indicator is obtained for community colleges for three cohort years, 2003, 2004, and 2005 in the states of California, Florida, and Michigan. Multiple Regression analysis, using an aggregate of seven predictor variables, was employed in determining this prediction model.…

  10. Selection of optimal sensors for predicting performance of polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mao, Lei; Jackson, Lisa

    2016-10-01

    In this paper, sensor selection algorithms are investigated based on a sensitivity analysis, and the capability of optimal sensors in predicting PEM fuel cell performance is also studied using test data. The fuel cell model is developed for generating the sensitivity matrix relating sensor measurements and fuel cell health parameters. From the sensitivity matrix, two sensor selection approaches, including the largest gap method, and exhaustive brute force searching technique, are applied to find the optimal sensors providing reliable predictions. Based on the results, a sensor selection approach considering both sensor sensitivity and noise resistance is proposed to find the optimal sensor set with minimum size. Furthermore, the performance of the optimal sensor set is studied to predict fuel cell performance using test data from a PEM fuel cell system. Results demonstrate that with optimal sensors, the performance of PEM fuel cell can be predicted with good quality.

  11. Medical Students' Predictions of Public Opinion Regarding Role Performance of Doctors

    ERIC Educational Resources Information Center

    Congalton, Athol A.

    1971-01-01

    The results of a study of the predictions made by fourth year medical students concerning the public evaluation of doctors' role performance shows that doctors in training do not have an accurate picture of public opinion. (Author)

  12. The Validity of Conscientiousness Is Overestimated in the Prediction of Job Performance

    PubMed Central

    2015-01-01

    Introduction Sensitivity analyses refer to investigations of the degree to which the results of a meta-analysis remain stable when conditions of the data or the analysis change. To the extent that results remain stable, one can refer to them as robust. Sensitivity analyses are rarely conducted in the organizational science literature. Despite conscientiousness being a valued predictor in employment selection, sensitivity analyses have not been conducted with respect to meta-analytic estimates of the correlation (i.e., validity) between conscientiousness and job performance. Methods To address this deficiency, we reanalyzed the largest collection of conscientiousness validity data in the personnel selection literature and conducted a variety of sensitivity analyses. Results Publication bias analyses demonstrated that the validity of conscientiousness is moderately overestimated (by around 30%; a correlation difference of about .06). The misestimation of the validity appears to be due primarily to suppression of small effects sizes in the journal literature. These inflated validity estimates result in an overestimate of the dollar utility of personnel selection by millions of dollars and should be of considerable concern for organizations. Conclusion The fields of management and applied psychology seldom conduct sensitivity analyses. Through the use of sensitivity analyses, this paper documents that the existing literature overestimates the validity of conscientiousness in the prediction of job performance. Our data show that effect sizes from journal articles are largely responsible for this overestimation. PMID:26517553

  13. Predicting the performance of belt filter presses using the Crown Press for laboratory simulation

    SciTech Connect

    Graham, T.M.

    1999-07-26

    Belt filter presses (BFPs) are among the most commonly used devices to dewater wastewater sludge. The concept used by a BFP to achieve dewatered cake solids is relatively simple; however, replicating this performance in the laboratory in order to predict the performance of a BFP with reasonable reliability has proven to be a challenge. The Crown Press is one tool that has been shown to replicate the performance of anaerobically digested sludge on a BFP. This study used the Crown Press to replicate and predict the performance of waste activated sludge (WAS) from the Mauldin Road wastewater treatment plant on BFPs. Several operational variables, including belt speed, belt tension, polymer type, and polymer dose, were changed on the Crown Press to predict how the changes on the BFP would affect performance. Two polymers were chosen to be tested on the BFPs at Mauldin Road based on Crown Press predictions. The first polymer performed the same as the plant`s current polymer in the lab, and the second performed better (achieved higher final cake solids) than the current polymer. These predictions were borne out in the BFP tests, showing that the Crown Press predictions were accurate. The Crown Press predictions were also compared to the predictions made by the capillary suction time (CST) and specific resistance to filtration (SRF) tests. The Crown Press provided more information regarding the affect of polymer type and dose on cake solids than either CST or SRF. The Crown Press was shown to be a viable tool to assess potential changes in BFP performance with WAS when operational variables change.

  14. Predictive uncertainty analysis of a highly heterogeneous field-scale groundwater model using null-space Monte Carlo

    NASA Astrophysics Data System (ADS)

    Hart, D.; Yoon, H.; McKenna, S. A.

    2011-12-01

    Quantification of prediction uncertainty resulting from estimated parameters is critical to provide accurate predictive models for field-scale groundwater flow and transport problems. We examine and compare two approaches to defining predictive uncertainty where both approaches utilize pilot points to parameterize spatially heterogeneous fields. The first approach is the independent calibration of multiple initial "seed" fields created through geostatistical simulation and conditioned to observation data, resulting in an ensemble of calibrated property fields that defines uncertainty in the calibrated parameters. The second approach is the null-space Monte Carlo (NSMC) method that employs a decomposition of the Jacobian matrix from a single calibration to define a minimum number of linear combinations of parameters that account for the majority of the sensitivity of the overall calibration to the observed data. Random vectors are applied to the remaining linear combinations of parameters, the null space, to create an ensemble of fields, each of which remains calibrated to the data. We compare these two approaches using a highly-parameterized groundwater model of the Culebra dolomite in southeastern New Mexico. Observation data include two decades of steady-state head measurements and pumping test results. The predictive performance measure is advective travel time from a point to a prescribed boundary. Calibrated parameters at a set of pilot points include transmissivity, the horizontal hydraulic anisotropy, the storativity, and a section of recharge (> 1200 parameters in total). First, we calibrate 200 multiple random seed fields generated through geostatistical simulation conditioned to observation data. The 11 fields that contain the best and worst scenarios in terms of calibration and travel time analysis among the best 100 calibrated results provide a basis for the NSMC method. The NSMC method is used to generate 200 calibration-constrained parameter fields

  15. Effects of magnetic field strength in the discharge channel on the performance of a multi-cusped field thruster

    NASA Astrophysics Data System (ADS)

    Hu, Peng; Liu, Hui; Gao, Yuanyuan; Yu, Daren

    2016-09-01

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weaker magnetic field in the discharge channel.

  16. Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2015-10-01

    Health monitoring of rotating structures (e.g. wind turbines and helicopter blades) has historically been a challenge due to sensing and data transmission problems. Unfortunately mechanical failure in many structures initiates at components on or inside the structure where there is no sensor located to predict the failure. In this paper, a wind turbine was mounted with a semi-built-in configuration and was excited using a mechanical shaker. A series of optical targets was distributed along the blades and the fixture and the displacement of those targets during excitation was measured using a pair of high speed cameras. Measured displacements with three dimensional point tracking were transformed to all finite element degrees of freedom using a modal expansion algorithm. The expanded displacements were applied to the finite element model to predict the full-field dynamic strain on the surface of the structure as well as within the interior points. To validate the methodology of dynamic strain prediction, the predicted strain was compared to measured strain by using six mounted strain-gages. To verify if a simpler model of the turbine can be used for the expansion, the expansion process was performed both by using the modes of the entire turbine and modes of a single cantilever blade. The results indicate that the expansion approach can accurately predict the strain throughout the turbine blades from displacements measured by using stereophotogrammetry.

  17. The role of pleasantness and activation-based well-being in performance prediction.

    PubMed

    Wright, T A; Bonett, D G

    1997-07-01

    This study examined the relationships between 2 measures of psychological well-being and work performance using the circumplex model of emotion as the theoretical framework. Although the pleasantness-based measure of well-being predicted subsequent work performance, the results failed to establish a relationship between the activation-based measure of well-being and work performance. Future directions and implications of the findings regarding the further refinement of the role of psychological well-being in performance prediction are introduced. PMID:9552291

  18. BNL PREDICTION OF NUPECS FIELD MODEL TESTS OF NPP STRUCTURES SUBJECT TO SMALL TO MODERATE MAGNITUDE EARTHQUAKES.

    SciTech Connect

    XU,J.; COSTANTINO,C.; HOFMAYER,C.; MURPHY,A.; KITADA,Y.

    2003-08-17

    As part of a verification test program for seismic analysis codes for NPP structures, the Nuclear Power Engineering Corporation (NUPEC) of Japan has conducted a series of field model test programs to ensure the adequacy of methodologies employed for seismic analyses of NPP structures. A collaborative program between the United States and Japan was developed to study seismic issues related to NPP applications. The US Nuclear Regulatory Commission (NRC) and its contractor, Brookhaven National Laboratory (BNL), are participating in this program to apply common analysis procedures to predict both free field and soil-structure interaction (SSI) responses to recorded earthquake events, including embedment and dynamic cross interaction (DCI) effects. This paper describes the BNL effort to predict seismic responses of the large-scale realistic model structures for reactor and turbine buildings at the NUPEC test facility in northern Japan. The NUPEC test program has collected a large amount of recorded earthquake response data (both free-field and in-structure) from these test model structures. The BNL free-field analyses were performed with the CARES program while the SSI analyses were preformed using the SASS12000 computer code. The BNL analysis includes both embedded and excavated conditions, as well as the DCI effect, The BNL analysis results and their comparisons to the NUPEC recorded responses are presented in the paper.

  19. Predicting space telerobotic operator training performance from human spatial ability assessment

    NASA Astrophysics Data System (ADS)

    Liu, Andrew M.; Oman, Charles M.; Galvan, Raquel; Natapoff, Alan

    2013-11-01

    Our goal was to determine whether existing tests of spatial ability can predict an astronaut's qualification test performance after robotic training. Because training astronauts to be qualified robotics operators is so long and expensive, NASA is interested in tools that can predict robotics performance before training begins. Currently, the Astronaut Office does not have a validated tool to predict robotics ability as part of its astronaut selection or training process. Commonly used tests of human spatial ability may provide such a tool to predict robotics ability. We tested the spatial ability of 50 active astronauts who had completed at least one robotics training course, then used logistic regression models to analyze the correlation between spatial ability test scores and the astronauts' performance in their evaluation test at the end of the training course. The fit of the logistic function to our data is statistically significant for several spatial tests. However, the prediction performance of the logistic model depends on the criterion threshold assumed. To clarify the critical selection issues, we show how the probability of correct classification vs. misclassification varies as a function of the mental rotation test criterion level. Since the costs of misclassification are low, the logistic models of spatial ability and robotic performance are reliable enough only to be used to customize regular and remedial training. We suggest several changes in tracking performance throughout robotics training that could improve the range and reliability of predictive models.

  20. Variability of the ocean-induced magnetic field predicted at sea surface and at satellite altitudes

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.; Golubev, Yury N.

    2005-01-01

    Spatial and temporal variability of the magnetic field component induced by ocean circulation is investigated on the basis of a standard thin-shell approximation of electro- and magneto-static equations. Well-known difficulties of numerical solution of the governing equations are resolved by reducing the problem to an equation for the electric field potential,(ef) as opposed to a more conventional approach focused on the vertical jump, (psi), of the magnetic field potential across a combined ocean/ marine-sediment-layer spherical shell. The present formulation permits using more realistic input data on ocean currents and ultimately yields much greater (by at least an order of magnitude) values of the magnetic field at sea surface than predicted in earlier studies. Such large values are comparable to, and in some cases exceed, magnetic field variations caused by lithospheric and ionospheric sources on monthly to interannual timescales. At the 400-km altitude (of CHAMP satellite), the field attains 6 nT. The model predictions show favorable comparisons with some in situ measurements as well as with Challenging Minisatellite Payload (CHAMP) satellite magnetometer data.

  1. An Empirical Method for Fast Prediction of Rarefied Flow Field around a Vertical Plate

    NASA Astrophysics Data System (ADS)

    He, Tao; Wang, Jiang-Feng

    2016-06-01

    Numerical study is conducted to investigate the effects of free-stream Knudsen (Kn) number on rarefied flow field around a vertical plate employing an unstructured DSMC method, and an empirical method for fast prediction of flow-field structure at different Kn numbers in a given inflow velocity is proposed. First, the flow at a velocity 7500m/s is simulated using a perfect-gas model with free-stream Kn changing from 0.035 to 13.36. The flow-field characteristics in these cases with varying Kn numbers are analyzed and a linear-expansion phenomenon as a function of the square of Kn is discovered. An empirical method is proposed for fast flow-field prediction at different Kn based on the least-square-fitting method. Further, the effects of chemical reactions on flow field are investigated to verify the applicability of the empirical method in the real gas conditions. Three of the cases in perfect-gas flow are simulated again by introducing five-species air chemical module. The flow properties with and without chemical reactions are compared. In the end, the variation of chemical-reaction flow field as a function of Kn is analyzed and it is shown that the empirical method are also suitable when considering chemical reactions.

  2. Geological Factors Influencing Reservoir Performance of the Hartzog Draw Field, Wyoming

    SciTech Connect

    Hearn, C.L.; Ebanks, W.J.; Ranganathan, V.; Tye, R.S.

    1984-05-01

    The Hartzog Draw field, a major sandstone oil reservoir in the Powder River basin of Wyoming, was discovered in 1975 and unitized in 1980. The field is under waterflood and is being considered for carbon dioxide miscible flooding. To aid in evaluating enhanced recovery, the working interest owners approved a comprehensive geological-engineering study using data from existing wells and new infill wells. Geologic facies identified in the study provided the stratigraphic basis for mapping reservoir flow-units. These flow-units more precisely describe variations in rock properties that control fluid flow. Within the flow-units, bedding characteristics of the reservoir sandstones cause permeability anisotropy. Mineralogy and diagenesis affect permeability, porosity, water saturation, and sensitivity to injection fluids. The reservoir description resulting from this study provides insight into reservoir performance and forms the framework for reservoir engineering studies to predict waterflood and carbon dioxide flood recovery.

  3. Geological factors influencing reservoir performance of the Hartzog Draw field, Wyoming

    SciTech Connect

    Hearn, C.L.; Ebanks, W.J.; Ranganathan, V.; Tye, R.S.

    1983-10-01

    The Hartzog Draw field, a major sandstone oil reservoir in the Powder River basin of Wyoming, was discovered in 1975 and unitized in 1980. The field is under waterflood and is being considered for carbon dioxide miscible flooding. To aid in evaluating enhanced recovery, the working interest owners approved a comprehensive geological-engineering study using data from existing wells and new infill wells. Geologic facies identified in the study provided the stratigraphic basis for mapping reservoir flow-units. These flow-units more precisely describe variations in rock properties that control fluid flow. Within the flow-units, bedding characteristics of the reservoir sandstones cause permeability anisotropy. Mineralogy and diagenesis affect permeability, porosity, water saturation, and sensitivity to injection fluids. The reservoir description resulting from this study provides insight into reservoir performance and forms the framework for reservoir engineering studies to predict waterflood and carbon dioxide flood recovery.

  4. Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming

    SciTech Connect

    Hearn, C.L.; Ebanks, W.J.; Ranganathan, V.; Tye, R.S.

    1984-08-01

    The Hartzog Draw field, a major sandstone oil reservoir in the Powder River basin of Wyoming, was discovered in 1975 and unitized in 1980. The field is under waterflood and is being considered for CO/sub 2/ miscible flooding. To aid in evaluating enhanced recovery, the working interest owners approved a comprehensive geological-engineering study using data from existing wells and new infill wells. Geologic facies identified in the study provided the stratigraphic basis for mapping reservoir flow units. These flow units more precisely describe variations in rock properties that control fluid flow. Within the flow units, bedding characteristics of the reservoir sandstones cause permeability anisotropy. Mineralogy and diagenesis affect permeability, porosity, water saturation, and sensitivity to injection fluids. The reservoir description resulting from this study provides insight into reservoir performance and forms the framework for reservoir engineering studies to predict waterflood and CO/sub 2/-flood recovery.

  5. Predicting myelinated axon activation using spatial characteristics of the extracellular field

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Izad, O.; Tyler, D. J.

    2011-08-01

    The computation time required for modeling the nonlinear response of an axon to an applied electric field is a significant limitation to optimizing a large number of neural interface design parameters through use of advanced computer algorithms. This paper introduces two methods of predicting axon activation that incorporate a threshold that includes the magnitude of the extracellular potential to achieve increased accuracy over previous computationally efficient methods. Each method uses a modified driving function that includes the second spatial difference of the applied extracellular voltage to predict the electrical excitation of a nerve. The first method uses the second spatial difference taken at a single node of Ranvier, while the second uses a weighted sum of the second spatial differences taken at all nodes of Ranvier. This study quantifies prediction accuracy for cases with single and multiple point source stimulating electrodes. While both new methods address the major criticism of linearized prediction models, the weighted sum method provides the most robust response across single and multiple point sources. These methods improve prediction of axon activation based on properties of the applied field in a computationally efficient manner.

  6. Predicting the electric field distribution in the brain for the treatment of glioblastoma.

    PubMed

    Miranda, Pedro C; Mekonnen, Abeye; Salvador, Ricardo; Basser, Peter J

    2014-08-01

    The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a 'virtual lesion' in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V cm( - 1) and exceeded 1.0 V cm( - 1) in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor's necrotic core and in some parts of the gray matter-white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning.

  7. Predicting the electric field distribution in the brain for the treatment of glioblastoma

    NASA Astrophysics Data System (ADS)

    Miranda, Pedro C.; Mekonnen, Abeye; Salvador, Ricardo; Basser, Peter J.

    2014-08-01

    The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a ‘virtual lesion’ in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V cm - 1 and exceeded 1.0 V cm - 1 in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor’s necrotic core and in some parts of the gray matter-white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning.

  8. Utility of microcosm studies for predicting phylloplane bacterium population sizes in the field.

    PubMed

    Kinkel, L L; Wilson, M; Lindow, S E

    1996-09-01

    Population sizes of two ice nucleation-active strains of Pseudomonas syringae were compared on leaves in controlled environments and in the field to determine the ability of microcosm studies to predict plant habitat preferences in the field. The P. syringae strains investigated were the parental strains of recombinant deletion mutant strains deficient in ice nucleation activity that had been field tested for their ability to control plant frost injury. The population size of the P. syringae strains was measured after inoculation at three field locations on up to 40 of the same plant species that were studied in the growth chamber. There was seldom a significant relationship between the mean population size of a given P. syringae strain incubated under either wet or dry conditions in microcosms and the mean population size which could be recovered from the same species when inoculated in the field. Specifically, on some plant species, the population size recovered from leaves in the field was substantially greater than from that species in a controlled environment, while for other plant species field populations were significantly smaller than those observed under controlled conditions. Population sizes of inoculated P. syringae strains, however, were frequently highly positively correlated with the indigenous bacterial population size on the same plant species in the field, suggesting that the ability of a particular plant species to support introduced bacterial strains is correlated with its ability to support large bacterial populations or that indigenous bacteria enhance the survival of introduced strains. Microcosm studies therefore seem most effective at assessing possible differences between parental and recombinant strains under a given environmental regime but are limited in their ability to predict the specific population sizes or plant habitat preferences of bacteria on leaves under field conditions. PMID:16535405

  9. Predicting characteristics of rainfall driven estrogen runoff and transport from swine AFO spray fields.

    PubMed

    Lee, Boknam; Kullman, Seth W; Yost, Erin E; Meyer, Michael T; Worley-Davis, Lynn; Williams, C Michael; Reckhow, Kenneth H

    2015-11-01

    Animal feeding operations (AFOs) have been implicated as potentially major sources of estrogenic contaminants into the aquatic environment due to the relatively minimal treatment of waste and potential mobilization and transport of waste components from spray fields. In this study a Bayesian network (BN) model was developed to inform management decisions and better predict the transport and fate of natural steroidal estrogens from these sites. The developed BN model integrates processes of surface runoff and sediment loss with the modified universal soil loss equation (MUSLE) and the soil conservation service curve number (SCS-CN) runoff model. What-if scenario simulations of lagoon slurry wastes to the spray fields were conducted for the most abundant natural estrogen estrone (E1) observed in the system. It was found that E1 attenuated significantly after 2 months following waste slurry application in both spring and summer seasons, with the overall attenuation rate predicted to be higher in the summer compared to the spring. Using simulations of rainfall events in conjunction with waste slurry application rates, it was predicted that the magnitude of E1 runoff loss is significantly higher in the spring as compared to the summer months, primarily due to spray field crop management plans. Our what-if scenario analyses suggest that planting Bermuda grass in the spray fields is likely to reduce runoff losses of natural estrogens near the water bodies and ecosystems, as compared to planting of soybeans.

  10. Predicting protein kinase specificity: Predikin update and performance in the DREAM4 challenge.

    PubMed

    Ellis, Jonathan J; Kobe, Boštjan

    2011-01-01

    Predikin is a system for making predictions about protein kinase specificity. It was declared the "best performer" in the protein kinase section of the Peptide Recognition Domain specificity prediction category of the recent DREAM4 challenge (an independent test using unpublished data). In this article we discuss some recent improvements to the Predikin web server--including a more streamlined approach to substrate-to-kinase predictions and whole-proteome predictions--and give an analysis of Predikin's performance in the DREAM4 challenge. We also evaluate these improvements using a data set of yeast kinases that have been experimentally characterised, and we discuss the usefulness of Frobenius distance in assessing the predictive power of position weight matrices.

  11. Predicting law enforcement officer job performance with the Personality Assessment Inventory.

    PubMed

    Lowmaster, Sara E; Morey, Leslie C

    2012-01-01

    This study examined the descriptive and predictive characteristics of the Personality Assessment Inventory (PAI; Morey, 1991) in a sample of 85 law enforcement officer candidates. Descriptive results indicate that mean PAI full-scale and subscale scores are consistently lower than normative community sample scores, with some exceptions noted typically associated with defensive responding. Predictive validity was examined by relating PAI full-scale and subscale scores to supervisor ratings in the areas of job performance, integrity problems, and abuse of disability status. Modest correlations were observed for all domains; however, predictive validity was moderated by defensive response style, with greater predictive validity observed among less defensive responders. These results suggest that the PAI's full scales and subscales are able to predict law enforcement officers' performance, but their utility is appreciably improved when taken in the context of indicators of defensive responding.

  12. Predicting law enforcement officer job performance with the Personality Assessment Inventory.

    PubMed

    Lowmaster, Sara E; Morey, Leslie C

    2012-01-01

    This study examined the descriptive and predictive characteristics of the Personality Assessment Inventory (PAI; Morey, 1991) in a sample of 85 law enforcement officer candidates. Descriptive results indicate that mean PAI full-scale and subscale scores are consistently lower than normative community sample scores, with some exceptions noted typically associated with defensive responding. Predictive validity was examined by relating PAI full-scale and subscale scores to supervisor ratings in the areas of job performance, integrity problems, and abuse of disability status. Modest correlations were observed for all domains; however, predictive validity was moderated by defensive response style, with greater predictive validity observed among less defensive responders. These results suggest that the PAI's full scales and subscales are able to predict law enforcement officers' performance, but their utility is appreciably improved when taken in the context of indicators of defensive responding. PMID:22224672

  13. Transport studies in high-performance field reversed configuration plasmas

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Barnes, D. C.; Dettrick, S. A.; Trask, E.; Tuszewski, M.; Deng, B. H.; Gota, H.; Gupta, D.; Hubbard, K.; Korepanov, S.; Thompson, M. C.; Zhai, K.; Tajima, T.

    2016-05-01

    A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (but with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.

  14. High performance near field measurements for antennas and microstrip circuits

    SciTech Connect

    Zuercher, J.F.

    1994-12-31

    A simple and efficient computer-controlled setup for measuring near fields has been realized. It uses the modulated scatterer technique, together with a homodyne receiver to measure both the amplitude and phase of the fields. To move the probe, a standard plotter is used. Special probes have been designed for measuring all field components.

  15. Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project

    SciTech Connect

    Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J.

    1992-09-01

    The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

  16. Electric field prediction for a human body-electric machine system.

    PubMed

    Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia

    2004-01-01

    A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.

  17. Prediction of Coal ash leaching behavior in acid mine water, comparison of laboratory and field studies

    SciTech Connect

    ANNA, KNOX

    2005-01-10

    Strongly alkaline fluidized bed combustion ash is commonly used to control acid mine drainage in West Virginia coal mines. Objectives include acid neutralization and immobilization of the primary AMD pollutants: iron, aluminum and manganese. The process has been successful in controlling AMD though doubts remain regarding mobilization of other toxic elements present in the ash. In addition, AMD contains many toxic elements in low concentrations. And, each mine produces AMD of widely varying quality. So, predicting the effect of a particular ash on a given coal mine's drainage quality is of particular interest. In this chapter we compare the results of a site-specific ash leaching procedure with two large-scale field applications of FBC ash. The results suggested a high degree of predictability for roughly half of the 25 chemical parameters and poor predictability for the remainder. Of these, seven parameters were successfully predicted on both sites: acidity, Al, B, Ba, Fe, Ni and Zn while electrical conductivity, Ca, Cd, SO4, Pb and Sb were not successfully predicted on either site. Trends for the remaining elements: As, Ag, Be, Cu, Cr, Hg, Mg, Mn, pH, Se Tl and V were successfully predicted on one but not both mine sites.

  18. Prediction of intrinsic motivation and sports performance using 2 x 2 achievement goal framework.

    PubMed

    Li, Chiung-Huang; Chi, Likang; Yeh, Suh-Ruu; Guo, Kwei-Bin; Ou, Cheng-Tsung; Kao, Chun-Chieh

    2011-04-01

    The purpose of this study was to examine the influence of 2 x 2 achievement goals on intrinsic motivation and performance in handball. Participants were 164 high school athletes. All completed the 2 x 2 Achievement Goals Questionnaire for Sport and the Intrinsic Motivation subscale of the Sport Motivation Scale; the coach for each team rated his athletes' overall sports performance. Using simultaneous-regression analyses, mastery-approach goals positively predicted both intrinsic motivation and performance in sports, whereas performance-avoidance goals negatively predicted sports performance. These results suggest that athletes who pursue task mastery and improvement of their competence perform well and enjoy their participation. In contrast, those who focus on avoiding normative incompetence perform poorly.

  19. Simplified procedures for correlation of experimentally measured and predicted thrust chamber performance

    NASA Technical Reports Server (NTRS)

    Powell, W. B.

    1973-01-01

    Thrust chamber performance is evaluated in terms of an analytical model incorporating all the loss processes that occur in a real rocket motor. The important loss processes in the real thrust chamber were identified, and a methodology and recommended procedure for predicting real thrust chamber vacuum specific impulse were developed. Simplified equations for the calculation of vacuum specific impulse are developed to relate the delivered performance (both vacuum specific impulse and characteristic velocity) to the ideal performance as degraded by the losses corresponding to a specified list of loss processes. These simplified equations enable the various performance loss components, and the corresponding efficiencies, to be quantified separately (except that interaction effects are arbitrarily assigned in the process). The loss and efficiency expressions presented can be used to evaluate experimentally measured thrust chamber performance, to direct development effort into the areas most likely to yield improvements in performance, and as a basis to predict performance of related thrust chamber configurations.

  20. Three-dimensional electric field predictions of an iron-copper galvanic couple

    NASA Astrophysics Data System (ADS)

    Kasper, Rolf G.

    1987-02-01

    Based on completed experimental electric field scans and the corresponding finite element field predictions, it appears that the finite element numerical technique presents a strong analytical tool in calculating the nearfield electric intensity distributions about active microcells. These calculations were analytically achieved with the new double membrane finite element configuration representing nonlinear polarization and with a local tangent slope (impedance) definition dependent on the local potential difference. The experimental determination of the multidimensional current density structure was realized with a newly developed scanning vibrating electrode technique (SVET). The finite element model developed in this paper uses a priori measured uncoupled polarization curves for pure iron and pure copper. The current densities and the electric field intensities were calculated in the X, Y, and Z directions within specific regions of the electrolyte and on its boundaries. Results appear to indicate that first-order anodic mass loss can be predicated using (1) numerically predicted current density distributions on the anodic surface and (2) Faraday's law. The electric field correlation established in this work for the three-dimensional current density components provides the confidence to proceed in the evaluation of time-dependent effects of electric fields and multipolarized surfaces associated with pitting and crevice corrosion.

  1. Influence of input uncertainty on prediction of within-field pesticide leaching risks.

    PubMed

    Lindahl, Anna M L; Söderström, Mats; Jarvis, Nicholas

    2008-06-01

    Previous research has suggested that pesticide losses at the field scale can be dominated by a small proportion of the field area. The objective of this study was to investigate whether site-specific applications (i.e. avoiding high-risk areas) at the field scale can contribute to a reduction of pesticide leaching despite uncertainty in the underlying model-based leaching risk map. Using a meta-model of the dual-permeability model MACRO, the annual average pesticide leaching concentrations were estimated for 162 sample sites on a 47 ha field. The procedure was repeated for different scenarios describing different patterns of spatial variation of degradation half-lives and the partition coefficient to soil organic carbon. To account for interpolation uncertainty, maps of predicted pesticide leaching risk were produced by the method of sequential Gaussian simulation. The results of the case study show that larger reductions of predicted leaching were achieved by site-specific application than by that of a comparable uniform dose reduction. Hence, site-specific-applications may be a feasible method to reduce pesticide leaching at the field-scale providing that the model approach gives reasonable estimates of the spatial pattern of pesticide leaching.

  2. Improving the predictions of solar wind speed and interplanetary magnetic field at the Earth

    NASA Astrophysics Data System (ADS)

    Tran, Tham

    2009-09-01

    The Wang-Sheeley-Arge (WSA) model, an advanced version of the potential field source surface (PFSS) model, is widely used to predict the solar wind speed (SWS) and the interplanetary magnetic field (IMF) polarities at the Earth. The results, however, do not always match the observations. To improve the predictive capability of this model we made the following changes: (1) We used the high resolution magnetograms produced by the Michelson Doppler Imager (MDI) aboard the Solar and Heliospheric Observer (SOHO) spacecraft. We properly calibrated the magnetic field strength of the MDI observations using the Mt. Wilson (MWO) FeI magnetograms so that each MDI level 1.8 magnetogram can be converted to the same basis as the saturation-corrected long-duration MWO Fel magnetogram. (2) The WSA model requires a map of full solar surface magnetic field, and traditionally a synoptic chart is used. However, the synoptic chart does not represent the full solar surface at a particular time. Therefore, we suggest to use a new format called heliospheric (or snapshot) map in the model. (3) We implement a better estimate of the polar field that is not observable during some part of the year due to the solar tilted angle B0. The magnetic field near the solar poles is very important because it may be the dominant part of the solar magnetic field far away from the Sun, especially during the period of solar minimum. (4) The WSA model assumes that the solar photospheric magnetic field is nearly radial, so that its radial component can be obtained directly from the line-of-sight (LOS) of the observed field. This approach produces very strong radial magnetic field near the solar poles. We solve this problem by first obtaining the spherical harmonic coefficients directly from the LOS magnetic data and then reconstructing the radial magnetic chart. (5) Finally, changing the radius of the source surface, rss, in the PFSS analysis strongly affects the predicted SWS and IMF at the Earth. Our

  3. Application of CFD to sonic boom near and mid flow-field prediction

    NASA Technical Reports Server (NTRS)

    Cheung, Samson H.; Edwards, Thomas A.; Lawrence, Scott L.

    1990-01-01

    A 3-D parabolized Navier-Stokes (PNS) code was used to calculate the supersonic overpressures from three different geometries at near- and mid-flow fields. Wind tunnel data is used for code validation. Comparison of the computed results with different grid refinements is shown. It is observed that a large number of grid points is needed to resolve the tail shock/expansion fan interaction. Therefore, an adaptive grid approach is employed to calculate the flow field. The agreement between the numerical results and the wind tunnel data confirms that computational fluid dynamics can be applied to the problem of sonic boom prediction.

  4. Electromagnetic field strength prediction in an urban environment: A useful tool for the planning of LMSS

    NASA Technical Reports Server (NTRS)

    Vandooren, G. A. J.; Herben, M. H. A. J.; Brussaard, G.; Sforza, M.; Poiaresbaptista, J. P. V.

    1993-01-01

    A model for the prediction of the electromagnetic field strength in an urban environment is presented. The ray model, that is based on the Uniform Theory of Diffraction (UTD), includes effects of the non-perfect conductivity of the obstacles and their surface roughness. The urban environment is transformed into a list of standardized obstacles that have various shapes and material properties. The model is capable of accurately predicting the field strength in the urban environment by calculating different types of wave contributions such as reflected, edge and corner diffracted waves, and combinations thereof. Also, antenna weight functions are introduced to simulate the spatial filtering by the mobile antenna. Communication channel parameters such as signal fading, time delay profiles, Doppler shifts and delay-Doppler spectra can be derived from the ray-tracing procedure using post-processing routines. The model has been tested against results from scaled measurements at 50 GHz and proves to be accurate.

  5. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  6. EMPIRICAL PREDICTIONS FOR (SUB-)MILLIMETER LINE AND CONTINUUM DEEP FIELDS

    SciTech Connect

    Da Cunha, Elisabete; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter; Bertoldi, Frank; Carilli, Chris; Daddi, Emanuele; Elbaz, David; Sargent, Mark; Maiolino, Roberto; Riechers, Dominik; Smail, Ian; Weiss, Axel

    2013-03-01

    Modern (sub-)millimeter/radio interferometers such as ALMA, JVLA, and the PdBI successor NOEMA will enable us to measure the dust and molecular gas emission from galaxies that have luminosities lower than the Milky Way, out to high redshifts and with unprecedented spatial resolution and sensitivity. This will provide new constraints on the star formation properties and gas reservoir in galaxies throughout cosmic times through dedicated deep field campaigns targeting the CO/[C II] lines and dust continuum emission in the (sub-)millimeter regime. In this paper, we present empirical predictions for such line and continuum deep fields. We base these predictions on the deepest available optical/near-infrared Advanced Camera for Surveys and NICMOS data on the Hubble Ultra Deep Field (over an area of about 12 arcmin{sup 2}). Using a physically motivated spectral energy distribution model, we fit the observed optical/near-infrared emission of 13,099 galaxies with redshifts up to z = 5, and obtain median-likelihood estimates of their stellar mass, star formation rate, dust attenuation, and dust luminosity. We combine the attenuated stellar spectra with a library of infrared emission models spanning a wide range of dust temperatures to derive statistical constraints on the dust emission in the infrared and (sub-)millimeter which are consistent with the observed optical/near-infrared emission in terms of energy balance. This allows us to estimate, for each galaxy, the (sub-)millimeter continuum flux densities in several ALMA, PdBI/NOEMA, and JVLA bands. As a consistency check, we verify that the 850 {mu}m number counts and extragalactic background light derived using our predictions are consistent with previous observations. Using empirical relations between the observed CO/[C II] line luminosities and the infrared luminosity of star-forming galaxies, we infer the luminosity of the CO(1-0) and [C II] lines from the estimated infrared luminosity of each galaxy in our sample

  7. Predicting cycling performance in trained to elite male and female cyclists.

    PubMed

    Lamberts, Robert P

    2014-07-01

    In high-performance cycling, it is important to maintain a healthy balance between training load and recovery. Recently a new submaximal cycle test, known as the Lamberts and Lambert Submaximal Cycle Test (LSCT), has been shown to be able to accurately predict cycling performance in 15 well-trained cyclists. The aim of this study was to determine the predictive value of the LSCT in 102 trained to elite cyclists (82 men and 20 women). All cyclists performed an LSCT test followed by a peak-power-output (PPO) test, which included respiratory-gas analysis for the determination of maximal oxygen consumption (VO(2max)). They then performed the LSCT test followed by a 40-km time trial (TT) 72 h later. Average power output during the 3 stages of the LSCT increased from 31%, 60%, and 79% of PPO, while the ratings of perceived exertion increased from 8 to 13 to 16. Very good relationships were found between actual and LSCT-predicted PPO (r = .98, 95%CI: .97-.98, P < .0001), VO(2max) (r = .96, 95%CI: .97-.99, P < .0001) and 40-km-TT time (r = .98, 95%CI: .94-.97, P < .0001). No gender differences were found when predicting cycling performance from the LSCT (P = .95). The findings of this study show that the LSCT is able to accurately predict cycling performance in trained to elite male and female cyclists and potentially can be used to prescribe and fine-tune training prescription in cycling.

  8. The Prediction of College Student Academic Performance and Retention: Application of Expectancy and Goal Setting Theories

    ERIC Educational Resources Information Center

    Friedman, Barry A.; Mandel, Rhonda G.

    2010-01-01

    Student retention and performance in higher education are important issues for educators, students, and the nation facing critical professional labor shortages. Expectancy and goal setting theories were used to predict academic performance and college student retention. Students' academic expectancy motivation at the start of the college…

  9. A Cross-Validation Study of Police Recruit Performance as Predicted by the IPI and MMPI.

    ERIC Educational Resources Information Center

    Shusman, Elizabeth J.; And Others

    Validation and cross-validation studies were conducted using the Minnesota Multiphasic Personality Inventory (MMPI) and Inwald Personality Inventory (IPI) to predict job performance for 698 urban male police officers who completed a six-month training academy. Job performance criteria evaluated included absence, lateness, derelictions, negative…

  10. Interactions of Team Mental Models and Monitoring Behaviors Predict Team Performance in Simulated Anesthesia Inductions

    ERIC Educational Resources Information Center

    Burtscher, Michael J.; Kolbe, Michaela; Wacker, Johannes; Manser, Tanja

    2011-01-01

    In the present study, we investigated how two team mental model properties (similarity vs. accuracy) and two forms of monitoring behavior (team vs. systems) interacted to predict team performance in anesthesia. In particular, we were interested in whether the relationship between monitoring behavior and team performance was moderated by team…

  11. Predicting arithmetical achievement from neuro-psychological performance: a longitudinal study.

    PubMed

    Fayol, M; Barrouillet, P; Marinthe, C

    1998-08-01

    In this article, we show that the performances of 5- to 6-year-old children in arithmetic tests can be predicted from their performances in neuro-psychological tests administered a number of months in advance, independently of their level of development. PMID:9818514

  12. Predicting One Mile and Two Mile Run Performance from Physiological Measures.

    ERIC Educational Resources Information Center

    Sucec, A. A.

    Twenty-three male distance runners between the ages of 16 and 23 who had achieved a ten-minute or better two-mile performance were tested to determine physical and physiological characteristics to be used in predictive research regarding running performance. Relative body fat ratio, metabolic data, and oxygen intake capability were among the…

  13. Predicting Examination Performance Using an Expanded Integrated Hierarchical Model of Test Emotions and Achievement Goals

    ERIC Educational Resources Information Center

    Putwain, Dave; Deveney, Carolyn

    2009-01-01

    The aim of this study was to examine an expanded integrative hierarchical model of test emotions and achievement goal orientations in predicting the examination performance of undergraduate students. Achievement goals were theorised as mediating the relationship between test emotions and performance. 120 undergraduate students completed…

  14. Prediction and Evaluation of Memory Performance by Young and Old Adults.

    ERIC Educational Resources Information Center

    Lovelace, Eugene A.; And Others

    The poorer performance of older people in laboratory tests of episodic memory may result from failures or deficiencies in metamemory processes, e.g., failure to monitor task or individual item difficulty. To study age differences in prediction of memory performance, an associative matching task was used to compare young (N=20) and older (N=20)…

  15. An improvement index to quantify the evolution of performance in field events.

    PubMed

    Haake, Steve; James, David; Foster, Leon

    2015-01-01

    The mean of the top 25 performances in 8 men's and 5 women's field events since the 1890s showed that performances increased dramatically after the Second World War II and subsequently plateaued during the late twentieth century. A performance improvement index, developed on the basis of work done, was set to 100% in 1948. The underlying rise found in all events was modelled using an exponential function with a superposition of steps and linear changes to account for the introduction of rule changes, drugs testing and the introduction of new technologies. The performance improvement index in throwing events increased to 140.9% compared with 125.8% in jumping events, and women's performance improvement always exceeded that of men's. Around half of all events were shown to have reached 99.9% of their predicted limit with a majority reaching it within the next 25 years. It was concluded that performance will only change in the future if an intervention takes place: this could be the emergence of a new technology, a rule change or a new athlete population.

  16. Field Verification of the Prediction Model on Desert Locust Adult Phase Status From Density and Vegetation

    PubMed Central

    Cissé, S.; Ghaout, S.; Babah Ebbe, M. A; Kamara, S; Piou, C.

    2016-01-01

    Previous studies investigated the effect of vegetation on density thresholds of adult Desert Locust gregarization from historical data in Mauritania. We examine here the prediction of locust phase based on adult density and vegetation conditions using the statistical model from Cisse et al. compared with actual behavior of Desert Locust adults observed in the field in Mauritania. From the 130 sites where adult locusts were found, the model predicted the phase of Desert Locust adults with a relatively small error of prediction of 6.1%. Preventive locust control should be rational, based on a risk assessment. The staff involved in implementation of the preventive control strategy needs specific indicators for when or where chemical treatment should be done. In this respect, we show here that the statistical model of Cisse et al. may be appropriate. PMID:27432351

  17. Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity.

    PubMed

    O'Dwyer, James P; Green, Jessica L

    2010-01-01

    Predicting the variation of biodiversity across the surface of the Earth is a fundamental issue in ecology, and in this article we focus on one of the most widely studied spatial biodiversity patterns: the species-area relationship (SAR). The SAR is a central tool in conservation, being used to predict species loss following global climate change, and is striking in its universality throughout different geographical regions and across the tree of life. In this article we draw upon the methods of quantum field theory and the foundation of neutral community ecology to derive the first spatially explicit neutral prediction for the SAR. We find that the SAR has three phases, with a power law increase at intermediate scales, consistent with decades of documented empirical patterns. Our model also provides a building block for incorporating non-neutral biological variation, with the potential to bridge the gap between neutral and niche-based approaches to community assembly. PMID:19909313

  18. Field Verification of the Prediction Model on Desert Locust Adult Phase Status From Density and Vegetation.

    PubMed

    Cissé, S; Ghaout, S; Babah Ebbe, M A; Kamara, S; Piou, C

    2016-01-01

    Previous studies investigated the effect of vegetation on density thresholds of adult Desert Locust gregarization from historical data in Mauritania. We examine here the prediction of locust phase based on adult density and vegetation conditions using the statistical model from Cisse et al. compared with actual behavior of Desert Locust adults observed in the field in Mauritania. From the 130 sites where adult locusts were found, the model predicted the phase of Desert Locust adults with a relatively small error of prediction of 6.1%. Preventive locust control should be rational, based on a risk assessment. The staff involved in implementation of the preventive control strategy needs specific indicators for when or where chemical treatment should be done. In this respect, we show here that the statistical model of Cisse et al. may be appropriate.

  19. Predicting shifts in dynamics of cannibalistic field populations using individual-based models.

    PubMed

    Persson, Lennart; de Roos, André M; Bertolo, Andrea

    2004-12-01

    The occurrence of qualitative shifts in population dynamical regimes has long been the focus of population biologists. Nonlinear ecological models predict that these shifts in dynamical regimes may occur as a result of parameter shifts, but unambiguous empirical evidence is largely restricted to laboratory populations. We used an individual-based modelling approach to predict dynamical shifts in field fish populations where the capacity to cannibalize differed between species. Model-generated individual growth trajectories that reflect different population dynamics were confronted with empirically observed growth trajectories, showing that our ordering and quantitative estimates of the different cannibalistic species in terms of life-history characteristics led to correct qualitative predictions of their dynamics. PMID:15590600

  20. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields.

    PubMed

    Wang, Sheng; Weng, Shunyan; Ma, Jianzhu; Tang, Qingming

    2015-01-01

    Intrinsically disordered proteins or protein regions are involved in key biological processes including regulation of transcription, signal transduction, and alternative splicing. Accurately predicting order/disorder regions ab initio from the protein sequence is a prerequisite step for further analysis of functions and mechanisms for these disordered regions. This work presents a learning method, weighted DeepCNF (Deep Convolutional Neural Fields), to improve the accuracy of order/disorder prediction by exploiting the long-range sequential information and the interdependency between adjacent order/disorder labels and by assigning different weights for each label during training and prediction to solve the label imbalance issue. Evaluated by the CASP9 and CASP10 targets, our method obtains 0.855 and 0.898 AUC values, which are higher than the state-of-the-art single ab initio predictors.

  1. Rapid prediction of total petroleum hydrocarbons in soil using a hand-held mid-infrared field instrument.

    PubMed

    Webster, Grant T; Soriano-Disla, José M; Kirk, Joel; Janik, Leslie J; Forrester, Sean T; McLaughlin, Mike J; Stewart, Richard J

    2016-11-01

    This manuscript reports on the performance of a hand-held diffuse reflectance (mid)-infrared Fourier transform (DRIFT) spectrometer for the prediction of total petroleum hydrocarbons (TPH) in three different diesel-contaminated soils. These soils include: a carbonate dominated clay, a kaolinite dominated clay and a loam from Padova Italy, north Western Australia and southern Nigeria, respectively. Soils were analysed for TPH concentration using a standard laboratory methods and scanned in DRIFT mode with the hand-held spectrometer to determine TPH calibration models. Successful partial least square regression (PLSR) predictions, with coefficient of determination (R(2)) ~0.99 and root mean square error (RMSE) <200mg/kg, were obtained for the low range TPH concentrations of 0 to ~3,000mg/kg. These predictions were carried out using a set of independent samples for each soil type. Prediction models were also tested for the full concentration range (0-60,000mg/kg) for each soil type model with R(2) and RMSE values of ~0.99 and <1,255mg/kg, respectively. Furthermore, a number of intermediate concentration range models were also generated for each soil type with similar R(2) values of ~0.99 and RMSE values <800mg/kg. This study shows the capability of using a portable mid-infrared (MIR) DRIFT spectrometer for predicting TPH in a variety of soil types and the potential for being a rapid in-field screening method for TPH concentration levels at common regulatory thresholds. A novel hand-held mid-infrared instrument can accurately detect TPH across different soil types and concentrations, which paves the way for a variety of applications in the field. PMID:27591631

  2. Rapid prediction of total petroleum hydrocarbons in soil using a hand-held mid-infrared field instrument.

    PubMed

    Webster, Grant T; Soriano-Disla, José M; Kirk, Joel; Janik, Leslie J; Forrester, Sean T; McLaughlin, Mike J; Stewart, Richard J

    2016-11-01

    This manuscript reports on the performance of a hand-held diffuse reflectance (mid)-infrared Fourier transform (DRIFT) spectrometer for the prediction of total petroleum hydrocarbons (TPH) in three different diesel-contaminated soils. These soils include: a carbonate dominated clay, a kaolinite dominated clay and a loam from Padova Italy, north Western Australia and southern Nigeria, respectively. Soils were analysed for TPH concentration using a standard laboratory methods and scanned in DRIFT mode with the hand-held spectrometer to determine TPH calibration models. Successful partial least square regression (PLSR) predictions, with coefficient of determination (R(2)) ~0.99 and root mean square error (RMSE) <200mg/kg, were obtained for the low range TPH concentrations of 0 to ~3,000mg/kg. These predictions were carried out using a set of independent samples for each soil type. Prediction models were also tested for the full concentration range (0-60,000mg/kg) for each soil type model with R(2) and RMSE values of ~0.99 and <1,255mg/kg, respectively. Furthermore, a number of intermediate concentration range models were also generated for each soil type with similar R(2) values of ~0.99 and RMSE values <800mg/kg. This study shows the capability of using a portable mid-infrared (MIR) DRIFT spectrometer for predicting TPH in a variety of soil types and the potential for being a rapid in-field screening method for TPH concentration levels at common regulatory thresholds. A novel hand-held mid-infrared instrument can accurately detect TPH across different soil types and concentrations, which paves the way for a variety of applications in the field.

  3. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.

    PubMed

    Sjögren, Erik; Thörn, Helena; Tannergren, Christer

    2016-06-01

    Gastrointestinal (GI) drug absorption is a complex process determined by formulation, physicochemical and biopharmaceutical factors, and GI physiology. Physiologically based in silico absorption models have emerged as a widely used and promising supplement to traditional in vitro assays and preclinical in vivo studies. However, there remains a lack of comparative studies between different models. The aim of this study was to explore the strengths and limitations of the in silico absorption models Simcyp 13.1, GastroPlus 8.0, and GI-Sim 4.1, with respect to their performance in predicting human intestinal drug absorption. This was achieved by adopting an a priori modeling approach and using well-defined input data for 12 drugs associated with incomplete GI absorption and related challenges in predicting the extent of absorption. This approach better mimics the real situation during formulation development where predictive in silico models would be beneficial. Plasma concentration-time profiles for 44 oral drug administrations were calculated by convolution of model-predicted absorption-time profiles and reported pharmacokinetic parameters. Model performance was evaluated by comparing the predicted plasma concentration-time profiles, Cmax, tmax, and exposure (AUC) with observations from clinical studies. The overall prediction accuracies for AUC, given as the absolute average fold error (AAFE) values, were 2.2, 1.6, and 1.3 for Simcyp, GastroPlus, and GI-Sim, respectively. The corresponding AAFE values for Cmax were 2.2, 1.6, and 1.3, respectively, and those for tmax were 1.7, 1.5, and 1.4, respectively. Simcyp was associated with underprediction of AUC and Cmax; the accuracy decreased with decreasing predicted fabs. A tendency for underprediction was also observed for GastroPlus, but there was no correlation with predicted fabs. There were no obvious trends for over- or underprediction for GI-Sim. The models performed similarly in capturing dependencies on dose and

  4. Comparison of Performance Predictions for New Low-Thrust Trajectory Tools

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Kos, Larry; Hopkins, Randall; Crane, Tracie

    2006-01-01

    Several low thrust trajectory optimization tools have been developed over the last 3% years by the Low Thrust Trajectory Tools development team. This toolset includes both low-medium fidelity and high fidelity tools which allow the analyst to quickly research a wide mission trade space and perform advanced mission design. These tools were tested using a set of reference trajectories that exercised each tool s unique capabilities. This paper compares the performance predictions of the various tools against several of the reference trajectories. The intent is to verify agreement between the high fidelity tools and to quantify the performance prediction differences between tools of different fidelity levels.

  5. A single set of biomechanical variables cannot predict jump performance across various jumping tasks.

    PubMed

    Johnston, Lucas A; Butler, Robert J; Sparling, Tawnee L; Queen, Robin M

    2015-02-01

    Vertical jump performance is related to high-level function in athletics. The purpose of this study was to determine whether a single set of biomechanical variables exist that can predict vertical jump height during multiple jumping strategies: single foot jump, drop jump, and countermovement jump. Three-dimensional mechanics were collected during the 3 different jumping tasks in 50 recreational male athletes. Three successful trials were analyzed for each jump type. Testing order was randomized to minimize fatigue effects, and the dominant limb was used for analysis. All discrete variables were correlated to jump height and the 10 variables that had the strongest correlation were inserted into a linear regression model to identify what variables predicted maximum jump height. No single set of variables that predicted jump height existed across all 3 jumping tasks. One foot jump height was predicted by peak knee power, peak hip extension moment, peak knee extension velocity, and the percentage of the trial when peak knee flexion velocity occurred (r = 0.58). Countermovement jump height was predicted by peak hip power, ankle range of motion, and knee range of motion (r = 0.65). Drop jump height was predicted by the peak vertical ground reaction force and the percentage of the trial when the peak hip velocity occurred (r = 0.37). A single set of variables was not identified that could predict jump performance across different types of jumping tasks; therefore, additional interventional investigations are needed to better understand how to alter and improve jump performance.

  6. Wide-field high-performance geosynchronous imaging

    NASA Astrophysics Data System (ADS)

    Wood, H. John; Jenstrom, Del; Wilson, Mark; Hinkal, Sanford; Kirchman, Frank

    1998-01-01

    coverage requirements, drives the telescope design to a 1.6 degree square FOV to provide full Earth disk coverage in less than 12 swaths. The telescope design to accommodate the FOV and image quality requirements is a 30 cm aperture three-element off-axis anastigmat. The size and mass of the imager instrument that result from this optical configuration are larger than desired. But spacecraft reaction wheel torque and power requirements to raster the imager FOV are achievable using existing spacecraft technology. However, launch mass and cost are higher than desired. In the second high-level trade study, the AGS imager team is looking at incorporating a scan mirror and having the satellite three-axis stabilized. The use of the scan mirror eliminates the long turn-around times of the spacecraft scanning approach, allowing for faster Earth coverage. Thus the field of view of the afocal telescope can be reduced by half while still satisfying ground coverage requirements. The optical design of the reduced field afocal telescope is being studied to shrink its size and improve its performance. Both a three-mirror Cassegrain afocal and a two-mirror pair of confocal paraboloids are being considered. With either telescope, the size, mass, and power requirements of this imager are significantly less than those of the first imager design. Both imager designs appear to be feasible and both meet envisioned MTPE and NOAA geosynchronous imaging needs. The AGS imager team is continuing to explore the optical trade space to further optimize imager designs.

  7. Characterization, performance, and prediction of a lead-acid battery under simulated electric vehicle driving requirements

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.; Bozek, J. M.

    1981-01-01

    A state-of-the-art 6-V battery module in current use by the electric vehicle industry was tested at the NASA Lewis Research Center to determine its performance characteristics under the SAE J227a driving schedules B, C, and D. The primary objective of the tests was to determine the effects of periods of recuperation and long and short periods of electrical regeneration in improving the performance of the battery module and hence extendng the vehicle range. A secondary objective was to formulate a computer program that would predict the performance of this battery module for the above driving schedules. The results show excellent correlation between the laboratory tests and predicted results. The predicted performance compared with laboratory tests was within +2.4 to -3.7 percent for the D schedule, +0.5 to -7.1 percent for the C schedule, and better than -11.4 percent for the B schedule.

  8. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now

  9. Investigating the discrepancy between the predicted and actual energy performance of buildings

    NASA Astrophysics Data System (ADS)

    Demanuele, Christine

    The threat of climate change has increased the demand for energy efficiency in buildings, with various stakeholders requesting more accurate predictions of energy consumption, and energy consultants coming under increased pressure to guarantee the energy performance of buildings. This study aims to investigate the factors causing the discrepancy which currently exists between the predicted and actual energy performance of buildings, which will lead to a deeper understanding of this discrepancy and, ultimately, more accurate energy predictions. As part of this study, a non-domestic building in London was modelled and monitored, so as to identify the main contributors to the discrepancy between the predicted and actual energy consumption. In addition, sensitivity analysis was carried out on a number of input variables to establish the set of influential parameters, and to determine whether using such techniques would successfully predict the range in which building energy consumption is likely to fall. The results show that the uncertainty calculated from differential sensitivity analysis encompasses the actual energy performance of the building. The most variable and influential parameters are those which are controlled by occupants, therefore it is paramount that management and occupants are well-informed about the building operation for energy targets to be achieved. Although the sensitivity analysis methods employed are impractical for commercial use, it is possible to develop simpler methods, encompassing all stages of building design and operation, which would decrease the discrepancy between the actual and predicted energy performance of buildings. Such techniques would be invaluable to energy consultants, for whom the cost resting on uncertainties in predictions is substantial due to more demanding clients and fines liable to be paid if energy predictions go wrong. A better understanding of the discrepancy, together with more accurate predictions, would

  10. Can We Predict CME Deflections Based on Solar Magnetic Field Configuration Alone?

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Evans, R. M.

    2013-12-01

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including predicting CME deflections close to the Sun and through interplanetary space. Deflections of CMEs occur due to variations in the background magnetic field or solar wind speed, magnetic reconnection, and interactions with other CMEs. Using our newly developed model of CME deflections due to gradients in the background solar magnetic field, ForeCAT (Kay et al. 2013), we explore the questions: (a) do all simulated CMEs ultimately deflect to the minimum in the background solar magnetic field? (b) does the majority of the deflection occur in the lower corona below 4 Rs? ForeCAT does not include temporal variations in the magnetic field of active regions (ARs), spatial variations in the background solar wind speed, magnetic reconnection, or interactions with other CMEs. Therefore we focus on the effects of the steady state solar magnetic field. We explore two different Carrington Rotations (CRs): CR 2029 (April-May 2005) and CR 2077 (November-December 2008). Little is known about how the density and magnetic field fall with distance in the lower corona. We consider four density models derived from observations (Chen 1996, Mann et al. 2003, Guhathakurta et al. 2006, Leblanc et al. 1996) and two magnetic field models (PFSS and a scaled model). ForeCAT includes drag resulting from both CME propagation and deflection through the background solar wind. We vary the drag coefficient to explore the effect of drag on the deflection at 1 AU.

  11. Performance Monitoring Local Field Potentials in the Medial Frontal Cortex of Primates: Supplementary Eye Field

    PubMed Central

    Emeric, Erik E.; Leslie, Melanie; Pouget, Pierre

    2010-01-01

    We describe intracranial local field potentials (LFPs) recorded in the supplementary eye field (SEF) of macaque monkeys performing a saccade countermanding task. The most prominent feature at 90% of the sites was a negative-going polarization evoked by a contralateral visual target. At roughly 50% of sites a negative-going polarization was observed preceding saccades, but in stop signal trials this polarization was not modulated in a manner sufficient to control saccade initiation. When saccades were canceled in stop signal trials, LFP modulation increased with the inferred magnitude of response conflict derived from the coactivation of gaze-shifting and gaze-holding neurons. At 30% of sites, a pronounced negative-going polarization occurred after errors. This negative polarity did not appear in unrewarded correct trials. Variations of response time with trial history were not related to any features of the LFP. The results provide new evidence that error-related and conflict-related but not feedback-related signals are conveyed by the LFP in the macaque SEF and are important for identifying the generator of the error-related negativity. PMID:20660423

  12. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    NASA Astrophysics Data System (ADS)

    Wagh, Arun S.; Sayenko, S. Yu.; Dovbnya, A. N.; Shkuropatenko, V. A.; Tarasov, R. V.; Rybka, A. V.; Zakharchenko, A. A.

    2015-07-01

    Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid-base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete's tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.

  13. Assessing the performance of prediction models: a framework for some traditional and novel measures

    PubMed Central

    Steyerberg, Ewout W.; Vickers, Andrew J.; Cook, Nancy R.; Gerds, Thomas; Gonen, Mithat; Obuchowski, Nancy; Pencina, Michael J.; Kattan, Michael W.

    2013-01-01

    The performance of prediction models can be assessed using a variety of different methods and metrics. Traditional measures for binary and survival outcomes include the Brier score to indicate overall model performance, the concordance (or c) statistic for discriminative ability (or area under the receiver operating characteristic (ROC) curve), and goodness-of-fit statistics for calibration. Several new measures have recently been proposed that can be seen as refinements of discrimination measures, including variants of the c statistic for survival, reclassification tables, net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Moreover, decision–analytic measures have been proposed, including decision curves to plot the net benefit achieved by making decisions based on model predictions. We aimed to define the role of these relatively novel approaches in the evaluation of the performance of prediction models. For illustration we present a case study of predicting the presence of residual tumor versus benign tissue in patients with testicular cancer (n=544 for model development, n=273 for external validation). We suggest that reporting discrimination and calibration will always be important for a prediction model. Decision-analytic measures should be reported if the predictive model is to be used for making clinical decisions. Other measures of performance may be warranted in specific applications, such as reclassification metrics to gain insight into the value of adding a novel predictor to an established model. PMID:20010215

  14. Predicting plasticity: acute context-dependent changes to vocal performance predict long-term age-dependent changes.

    PubMed

    James, Logan S; Sakata, Jon T

    2015-10-01

    Understanding the factors that predict and guide variation in behavioral change can lend insight into mechanisms of motor plasticity and individual differences in behavior. The performance of adult birdsong changes with age in a manner that is similar to rapid context-dependent changes to song. To reveal mechanisms of vocal plasticity, we analyzed the degree to which variation in the direction and magnitude of age-dependent changes to Bengalese finch song could be predicted by variation in context-dependent changes. Using a repeated-measures design, we found that variation in age-dependent changes to the timing, sequencing, and structure of vocal elements ("syllables") was significantly predicted by variation in context-dependent changes. In particular, the degree to which the duration of intersyllable gaps, syllable sequencing at branch points, and fundamental frequency of syllables within spontaneous [undirected (UD)] songs changed over time was correlated with the degree to which these features changed from UD song to female-directed (FD) song in young-adult finches (FDyoung). As such, the structure of some temporal features of UD songs converged over time onto the structure of FDyoung songs. This convergence suggested that the FDyoung song could serve as a stable target for vocal motor plasticity. Consequently, we analyzed the stability of FD song and found that the temporal structure of FD song changed significantly over time in a manner similar to UD song. Because FD song is considered a state of heightened performance, these data suggest that age-dependent changes could reflect practice-related improvements in vocal motor performance. PMID:26311186

  15. Predicting plasticity: acute context-dependent changes to vocal performance predict long-term age-dependent changes

    PubMed Central

    James, Logan S.

    2015-01-01

    Understanding the factors that predict and guide variation in behavioral change can lend insight into mechanisms of motor plasticity and individual differences in behavior. The performance of adult birdsong changes with age in a manner that is similar to rapid context-dependent changes to song. To reveal mechanisms of vocal plasticity, we analyzed the degree to which variation in the direction and magnitude of age-dependent changes to Bengalese finch song could be predicted by variation in context-dependent changes. Using a repeated-measures design, we found that variation in age-dependent changes to the timing, sequencing, and structure of vocal elements (“syllables”) was significantly predicted by variation in context-dependent changes. In particular, the degree to which the duration of intersyllable gaps, syllable sequencing at branch points, and fundamental frequency of syllables within spontaneous [undirected (UD)] songs changed over time was correlated with the degree to which these features changed from UD song to female-directed (FD) song in young-adult finches (FDyoung). As such, the structure of some temporal features of UD songs converged over time onto the structure of FDyoung songs. This convergence suggested that the FDyoung song could serve as a stable target for vocal motor plasticity. Consequently, we analyzed the stability of FD song and found that the temporal structure of FD song changed significantly over time in a manner similar to UD song. Because FD song is considered a state of heightened performance, these data suggest that age-dependent changes could reflect practice-related improvements in vocal motor performance. PMID:26311186

  16. Predictive nature of prefrontal theta oscillation on the performance of trace conditioned eyeblink responses in guinea pigs.

    PubMed

    Chen, Hao; Wang, Yi-jie; Yang, Li; Hu, Chen; Ke, Xian-feng; Fan, Zheng-li; Sui, Jian-feng; Hu, Bo

    2014-05-15

    Stimulus-evoked theta oscillations are observed in the medial prefrontal cortex (mPFC) when executing a variety of learning tasks. Here, we aimed to further determine whether spontaneous theta-band (5.0-10.0 Hz) oscillations in the mPFC predicted the subsequent behavioral performance in trace eyeblink conditioning (TEBC), in which the conditioned stimulus (CS) was separated from the unconditioned stimulus (US) by 500 ms trace interval. By recording local field potentials (LFP) signals in the guinea pigs performing the TEBC task, we found that, a higher mPFC relative theta ratio [theta/(delta+beta)] during the baseline (850-ms period prior to the onset of the CS) was predictive of higher magnitude and more adaptive timing rather than faster acquisition of trace conditioned eyeblink responses (CR). However, the prediction of baseline mPFC theta activity was time-limited to the well-learning stage. Additionally, the relative power of mPFC theta activity did not correlate with the CR performance if the trace interval between the CS and the US was shortened to 100 ms. These results suggest that the brain state in which the baseline mPFC theta activity is present or absent is detrimental for the subsequent performance of trace CRs especially when the asymptotic learning state is achieved.

  17. Intrinsic motivation and extrinsic incentives jointly predict performance: a 40-year meta-analysis.

    PubMed

    Cerasoli, Christopher P; Nicklin, Jessica M; Ford, Michael T

    2014-07-01

    More than 4 decades of research and 9 meta-analyses have focused on the undermining effect: namely, the debate over whether the provision of extrinsic incentives erodes intrinsic motivation. This review and meta-analysis builds on such previous reviews by focusing on the interrelationship among intrinsic motivation, extrinsic incentives, and performance, with reference to 2 moderators: performance type (quality vs. quantity) and incentive contingency (directly performance-salient vs. indirectly performance-salient), which have not been systematically reviewed to date. Based on random-effects meta-analytic methods, findings from school, work, and physical domains (k = 183, N = 212,468) indicate that intrinsic motivation is a medium to strong predictor of performance (ρ = .21-45). The importance of intrinsic motivation to performance remained in place whether incentives were presented. In addition, incentive salience influenced the predictive validity of intrinsic motivation for performance: In a "crowding out" fashion, intrinsic motivation was less important to performance when incentives were directly tied to performance and was more important when incentives were indirectly tied to performance. Considered simultaneously through meta-analytic regression, intrinsic motivation predicted more unique variance in quality of performance, whereas incentives were a better predictor of quantity of performance. With respect to performance, incentives and intrinsic motivation are not necessarily antagonistic and are best considered simultaneously. Future research should consider using nonperformance criteria (e.g., well-being, job satisfaction) as well as applying the percent-of-maximum-possible (POMP) method in meta-analyses. PMID:24491020

  18. Intrinsic motivation and extrinsic incentives jointly predict performance: a 40-year meta-analysis.

    PubMed

    Cerasoli, Christopher P; Nicklin, Jessica M; Ford, Michael T

    2014-07-01

    More than 4 decades of research and 9 meta-analyses have focused on the undermining effect: namely, the debate over whether the provision of extrinsic incentives erodes intrinsic motivation. This review and meta-analysis builds on such previous reviews by focusing on the interrelationship among intrinsic motivation, extrinsic incentives, and performance, with reference to 2 moderators: performance type (quality vs. quantity) and incentive contingency (directly performance-salient vs. indirectly performance-salient), which have not been systematically reviewed to date. Based on random-effects meta-analytic methods, findings from school, work, and physical domains (k = 183, N = 212,468) indicate that intrinsic motivation is a medium to strong predictor of performance (ρ = .21-45). The importance of intrinsic motivation to performance remained in place whether incentives were presented. In addition, incentive salience influenced the predictive validity of intrinsic motivation for performance: In a "crowding out" fashion, intrinsic motivation was less important to performance when incentives were directly tied to performance and was more important when incentives were indirectly tied to performance. Considered simultaneously through meta-analytic regression, intrinsic motivation predicted more unique variance in quality of performance, whereas incentives were a better predictor of quantity of performance. With respect to performance, incentives and intrinsic motivation are not necessarily antagonistic and are best considered simultaneously. Future research should consider using nonperformance criteria (e.g., well-being, job satisfaction) as well as applying the percent-of-maximum-possible (POMP) method in meta-analyses.

  19. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    SciTech Connect

    Bobra, M. G.; Couvidat, S.

    2015-01-10

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.

  20. Human vision model to predict observer performance: detection of microcalcifications as a function of monitor phosphor

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Johnson, Jeffrey P.; Roehrig, Hans; Lubin, Jeffrey; Engstrom, Michael

    2003-05-01

    The goal was to develop an efficient method of optimizing CRT monitor performance for digital mammography. The Sarnoff JNDmetrix vision model is based on just-noticeable difference measurement and frequency-channel vision-modeling principles. Given 2 images as input the model returns accurate, robust estimates of discriminability. Model predictions are compared with human performance. Mammographic images with microcalcifications were viewed by six radiologists, once on a monitor with P45 and once on one with P104 phosphor. Results were compared with output of the model used to predict differences in perceptibility of calcifications using luminance data measured with a high-resolution CCD camera. Human performance was best with high contrast clusters and got worse with each decrease in contrast. Performance was better with the P45 than the P104 for targets at all contrast levels. The JNDmetrix model predicted the same pattern of results. Correlation between human and model observer performance was very high. We have demonstrated the utility of using a vision model to accurately predict human detection performance. The type of phosphor in a monitor influences observer performance at least for the detection of microcalcifications. The main reason is that the P104 has a higher luminance, but the P45 has a higher signal-to-noise ratio.

  1. Functional traits predict drought performance and distribution of Mediterranean woody species

    NASA Astrophysics Data System (ADS)

    Lopez-Iglesias, Bárbara; Villar, Rafael; Poorter, Lourens

    2014-04-01

    Water availability is one of the key environmental factors that affect plant establishment and distribution. In many regions water availability will decline with climate change, exposing small seedlings to a greater likelihood of drought. In this study, 17 leaves, stem, root, and whole-plant traits of ten woody Mediterranean species were measured under favourable growing conditions and seedling drought survival was evaluated during a simulated dry-down episode. The aims of this study were: i) to assess drought survival of different species, ii) to analyse which functional traits predict drought survival time, and iii) to explain species distribution in the field, based on species drought survival and drought strategies. Drought survival time varied ten-fold across species, from 19 to 192 days. Across species, drought survival was positively related to the rooting depth per leaf area, i.e., the ability to acquire water from deeper soil layers while reducing transpiring leaf area. Drought survival time was negatively related to species ability to grow quickly, as indicated by high relative growth and net assimilation rates. Drought survival also explained species distribution in the field. It was found that species were sorted along a continuum, ranging between two contrasting species functional extremes based on functional traits and drought performance. One extreme consisted of acquisitive fast-growing deciduous species, with thin, soft metabolically active leaves, with high resource use and vulnerability to drought. The opposite extreme consisted of conservative slow-growing evergreen species with sclerophyllous leaves, deep roots, a low transpiring area, and low water use, resulting in high drought survival and drought tolerance. The results show that these drought strategies shape species distribution in this Mediterranean area.

  2. Spontaneous Alpha Power Lateralization Predicts Detection Performance in an Un-Cued Signal Detection Task.

    PubMed

    Boncompte, Gonzalo; Villena-González, Mario; Cosmelli, Diego; López, Vladimir

    2016-01-01

    Focusing one's attention by external guiding stimuli towards a specific area of the visual field produces systematical neural signatures. One of the most robust is the change in topological distribution of oscillatory alpha band activity across parieto-occipital cortices. In particular, decreases in alpha activity over contralateral and/or increases over ipsilateral scalp sites, respect to the side of the visual field where attention was focused. This evidence comes mainly from experiments where an explicit cue informs subjects where to focus their attention, thus facilitating detection of an upcoming target stimulus. However, recent theoretical models of attention have highlighted a stochastic or non-deterministic component related to visuospatial attentional allocation. In an attempt to evidence this component, here we analyzed alpha activity in a signal detection paradigm in the lack of informative cues; in the absence of preceding information about the location (and time) of appearance of target stimuli. We believe that the unpredictability of this situation could be beneficial for unveiling this component. Interestingly, although total alpha power did not differ between Seen and Unseen conditions, we found a significant lateralization of alpha activity over parieto-occipital electrodes, which predicted behavioral performance. This effect had a smaller magnitude compared to paradigms in which attention is externally guided (cued). However we believe that further characterization of this spontaneous component of attention is of great importance in the study of visuospatial attentional dynamics. These results support the presence of a spontaneous component of visuospatial attentional allocation and they advance pre-stimulus alpha-band lateralization as one of its neural signatures. PMID:27504824

  3. Spontaneous Alpha Power Lateralization Predicts Detection Performance in an Un-Cued Signal Detection Task

    PubMed Central

    Villena-González, Mario; Cosmelli, Diego; López, Vladimir

    2016-01-01

    Focusing one’s attention by external guiding stimuli towards a specific area of the visual field produces systematical neural signatures. One of the most robust is the change in topological distribution of oscillatory alpha band activity across parieto-occipital cortices. In particular, decreases in alpha activity over contralateral and/or increases over ipsilateral scalp sites, respect to the side of the visual field where attention was focused. This evidence comes mainly from experiments where an explicit cue informs subjects where to focus their attention, thus facilitating detection of an upcoming target stimulus. However, recent theoretical models of attention have highlighted a stochastic or non-deterministic component related to visuospatial attentional allocation. In an attempt to evidence this component, here we analyzed alpha activity in a signal detection paradigm in the lack of informative cues; in the absence of preceding information about the location (and time) of appearance of target stimuli. We believe that the unpredictability of this situation could be beneficial for unveiling this component. Interestingly, although total alpha power did not differ between Seen and Unseen conditions, we found a significant lateralization of alpha activity over parieto-occipital electrodes, which predicted behavioral performance. This effect had a smaller magnitude compared to paradigms in which attention is externally guided (cued). However we believe that further characterization of this spontaneous component of attention is of great importance in the study of visuospatial attentional dynamics. These results support the presence of a spontaneous component of visuospatial attentional allocation and they advance pre-stimulus alpha-band lateralization as one of its neural signatures. PMID:27504824

  4. Small wind turbine performance evaluation using field test data and a coupled aero-electro-mechanical model

    NASA Astrophysics Data System (ADS)

    Wallace, Brian D.

    A series of field tests and theoretical analyses were performed on various wind turbine rotor designs at two Penn State residential-scale wind-electric facilities. This work involved the prediction and experimental measurement of the electrical and aerodynamic performance of three wind turbines; a 3 kW rated Whisper 175, 2.4 kW rated Skystream 3.7, and the Penn State designed Carolus wind turbine. Both the Skystream and Whisper 175 wind turbines are OEM blades which were originally installed at the facilities. The Carolus rotor is a carbon-fiber composite 2-bladed machine, designed and assembled at Penn State, with the intent of replacing the Whisper 175 rotor at the off-grid system. Rotor aerodynamic performance is modeled using WT_Perf, a National Renewable Energy Laboratory developed Blade Element Momentum theory based performance prediction code. Steady-state power curves are predicted by coupling experimentally determined electrical characteristics with the aerodynamic performance of the rotor simulated with WT_Perf. A dynamometer test stand is used to establish the electromechanical efficiencies of the wind-electric system generator. Through the coupling of WT_Perf and dynamometer test results, an aero-electro-mechanical analysis procedure is developed and provides accurate predictions of wind system performance. The analysis of three different wind turbines gives a comprehensive assessment of the capability of the field test facilities and the accuracy of aero-electro-mechanical analysis procedures. Results from this study show that the Carolus and Whisper 175 rotors are running at higher tip-speed ratios than are optimum for power production. The aero-electro-mechanical analysis predicted the high operating tip-speed ratios of the rotors and was accurate at predicting output power for the systems. It is shown that the wind turbines operate at high tip-speeds because of a miss-match between the aerodynamic drive torque and the operating torque of the wind

  5. An Assessment of Thermodynamic Database Effects on Reactive Transport Models' Predictions of Permeability Fields: Insights from CO2/Brine Experiments

    NASA Astrophysics Data System (ADS)

    Tutolo, B. M.; Seyfried, W. E.; Saar, M. O.

    2011-12-01

    Numerical modeling software such as TOUGHREACT, ECLIPSE, and Geochemist's Workbench provide modules that couple mineral reactive chemistry with porosity and permeability modifications to predict the behavior of energy byproducts, such as carbon dioxide, in the subsurface. Modern coders have already included increasingly complex equations that describe natural systems (i.e. mineral dissolution/precipitation kinetic parameters and porosity/permeability functions) into these and other software applications. Generally, these computer models use the bulk volumetric changes predicted by geochemical calculations to infer porosity changes, and subsequently use highly simplified porosity/permeability correlation functions, such as the Carman-Kozeny equation, to modify permeability fields. In spite of the computational complexity provided in these models, they require, as a foundation, fundamental information on the thermodynamic stability of minerals and aqueous species at a wide range of temperatures and pressures to produce accurate predictions of the geochemistry of long-term energy byproduct storage in the subsurface, even in the simplest cases. With improvements in geochemical thermodynamic databases, researchers may begin to produce more realistic simulations of the complex interactions between fluid and heat flow and geological systems. Unfortunately, the requisite thermodynamic data is often lacking, or inaccurate. In this study, therefore, we provide a discussion of geochemical thermodynamic databases, discuss the synthesis and reconciliation of the databases used in this study, and compare predictions from reactive transport software with single phase CO2/brine experiments performed at temperatures and pressures applicable to geologic storage conditions.

  6. Preliminary predictions of athletic performance among collegiate baseball players with a biopsychosocial model.

    PubMed

    Plante, T G; Booth, J

    1995-06-01

    This study investigated the association of nine biopsychosocial variables and athletic performance among 40 elite collegiate baseball players. High scores on confidence and perceived fitness and low scores on repressive denial, strength of religious faith, and sensitivity to glare were reliably associated with ratings of superior athletic performance by four coaches. Preliminary results suggest that the biopsychosocial model may prove useful in predicting athletic performance.

  7. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test.

    PubMed

    Liebeschuetz, John W; Cole, Jason C; Korb, Oliver

    2012-06-01

    The performance of all four GOLD scoring functions has been evaluated for pose prediction and virtual screening under the standardized conditions of the comparative docking and scoring experiment reported in this Edition. Excellent pose prediction and good virtual screening performance was demonstrated using unmodified protein models and default parameter settings. The best performing scoring function for both pose prediction and virtual screening was demonstrated to be the recently introduced scoring function ChemPLP. We conclude that existing docking programs already perform close to optimally in the cognate pose prediction experiments currently carried out and that more stringent pose prediction tests should be used in the future. These should employ cross-docking sets. Evaluation of virtual screening performance remains problematic and much remains to be done to improve the usefulness of publically available active and decoy sets for virtual screening. Finally we suggest that, for certain target/scoring function combinations, good enrichment may sometimes be a consequence of 2D property recognition rather than a modelling of the correct 3D interactions.

  8. A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction

    NASA Astrophysics Data System (ADS)

    Belu, Radian

    2010-11-01

    In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.

  9. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test.

    PubMed

    Liebeschuetz, John W; Cole, Jason C; Korb, Oliver

    2012-06-01

    The performance of all four GOLD scoring functions has been evaluated for pose prediction and virtual screening under the standardized conditions of the comparative docking and scoring experiment reported in this Edition. Excellent pose prediction and good virtual screening performance was demonstrated using unmodified protein models and default parameter settings. The best performing scoring function for both pose prediction and virtual screening was demonstrated to be the recently introduced scoring function ChemPLP. We conclude that existing docking programs already perform close to optimally in the cognate pose prediction experiments currently carried out and that more stringent pose prediction tests should be used in the future. These should employ cross-docking sets. Evaluation of virtual screening performance remains problematic and much remains to be done to improve the usefulness of publically available active and decoy sets for virtual screening. Finally we suggest that, for certain target/scoring function combinations, good enrichment may sometimes be a consequence of 2D property recognition rather than a modelling of the correct 3D interactions. PMID:22371207

  10. An Ensemble Based Top Performing Approach for NCI-DREAM Drug Sensitivity Prediction Challenge

    PubMed Central

    Wan, Qian; Pal, Ranadip

    2014-01-01

    We consider the problem of predicting sensitivity of cancer cell lines to new drugs based on supervised learning on genomic profiles. The genetic and epigenetic characterization of a cell line provides observations on various aspects of regulation including DNA copy number variations, gene expression, DNA methylation and protein abundance. To extract relevant information from the various data types, we applied a random forest based approach to generate sensitivity predictions from each type of data and combined the predictions in a linear regression model to generate the final drug sensitivity prediction. Our approach when applied to the NCI-DREAM drug sensitivity prediction challenge was a top performer among 47 teams and produced high accuracy predictions. Our results show that the incorporation of multiple genomic characterizations lowered the mean and variance of the estimated bootstrap prediction error. We also applied our approach to the Cancer Cell Line Encyclopedia database for sensitivity prediction and the ability to extract the top targets of an anti-cancer drug. The results illustrate the effectiveness of our approach in predicting drug sensitivity from heterogeneous genomic datasets. PMID:24978814

  11. On the Accuracy of Bulk Density and Moisture Content Prediction in Wheat from Near-field Free-space Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulk density and moisture in wheat predicted from near-field, free-space measurement at 5.8 GHz and 23 degrees C with a pair of inexpensive microstrip antennas are compared to those predicted from measurement in the far field with a pair of sophisticated focused-beam, horn-lens antennas. Results of ...

  12. Computer prediction of three-dimensional potential flow fields in which aircraft propellers operate: Computer program description and users manual

    NASA Technical Reports Server (NTRS)

    Jumper, S. J.

    1979-01-01

    A method was developed for predicting the potential flow velocity field at the plane of a propeller operating under the influence of a wing-fuselage-cowl or nacelle combination. A computer program was written which predicts the three dimensional potential flow field. The contents of the program, its input data, and its output results are described.

  13. Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Campbell, Richard L.; Elmiligui, Alaa; Cliff, Susan E.; Nayani, Sudheer N.

    2014-01-01

    Ongoing interest in analysis and design of low sonic boom supersonic transports re- quires accurate and ecient Computational Fluid Dynamics (CFD) tools. Specialized grid generation techniques are employed to predict near- eld acoustic signatures of these con- gurations. A fundamental examination of grid properties is performed including grid alignment with ow characteristics and element type. The issues a ecting the robustness of cylindrical surface extrusion are illustrated. This study will compare three methods in the extrusion family of grid generation methods that produce grids aligned with the freestream Mach angle. These methods are applied to con gurations from the First AIAA Sonic Boom Prediction Workshop.

  14. Enhancing performance of next generation FSO communication systems using soft computing-based predictions.

    PubMed

    Kazaura, Kamugisha; Omae, Kazunori; Suzuki, Toshiji; Matsumoto, Mitsuji; Mutafungwa, Edward; Korhonen, Timo O; Murakami, Tadaaki; Takahashi, Koichi; Matsumoto, Hideki; Wakamori, Kazuhiko; Arimoto, Yoshinori

    2006-06-12

    The deterioration and deformation of a free-space optical beam wave-front as it propagates through the atmosphere can reduce the link availability and may introduce burst errors thus degrading the performance of the system. We investigate the suitability of utilizing soft-computing (SC) based tools for improving performance of free-space optical (FSO) communications systems. The SC based tools are used for the prediction of key parameters of a FSO communications system. Measured data collected from an experimental FSO communication system is used as training and testing data for a proposed multi-layer neural network predictor (MNNP) used to predict future parameter values. The predicted parameters are essential for reducing transmission errors by improving the antenna's accuracy of tracking data beams. This is particularly essential for periods considered to be of strong atmospheric turbulence. The parameter values predicted using the proposed tool show acceptable conformity with original measurements.

  15. Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR)

    PubMed Central

    Morales, Esteban; de Leon, John Mark S.; Abdollahi, Niloufar; Yu, Fei; Nouri-Mahdavi, Kouros; Caprioli, Joseph

    2016-01-01

    Purpose The study was conducted to evaluate threshold smoothing algorithms to enhance prediction of the rates of visual field (VF) worsening in glaucoma. Methods We studied 798 patients with primary open-angle glaucoma and 6 or more years of follow-up who underwent 8 or more VF examinations. Thresholds at each VF location for the first 4 years or first half of the follow-up time (whichever was greater) were smoothed with clusters defined by the nearest neighbor (NN), Garway-Heath, Glaucoma Hemifield Test (GHT), and weighting by the correlation of rates at all other VF locations. Thresholds were regressed with a pointwise exponential regression (PER) model and a pointwise linear regression (PLR) model. Smaller root mean square error (RMSE) values of the differences between the observed and the predicted thresholds at last two follow-ups indicated better model predictions. Results The mean (SD) follow-up times for the smoothing and prediction phase were 5.3 (1.5) and 10.5 (3.9) years. The mean RMSE values for the PER and PLR models were unsmoothed data, 6.09 and 6.55; NN, 3.40 and 3.42; Garway-Heath, 3.47 and 3.48; GHT, 3.57 and 3.74; and correlation of rates, 3.59 and 3.64. Conclusions Smoothed VF data predicted better than unsmoothed data. Nearest neighbor provided the best predictions; PER also predicted consistently more accurately than PLR. Smoothing algorithms should be used when forecasting VF results with PER or PLR. Translational Relevance The application of smoothing algorithms on VF data can improve forecasting in VF points to assist in treatment decisions. PMID:26998405

  16. Predicting Functional Performance and Range of Motion Outcomes After Total Knee Arthroplasty

    PubMed Central

    Bade, Michael J.; Kittelson, John M.; Kohrt, Wendy M.; Stevens-Lapsley, Jennifer E.

    2015-01-01

    Objective The aim of this study was to assess the predictive value of functional performance and range of motion measures on outcomes after total knee arthroplasty. Design This is a secondary analysis of two pooled prospective randomized controlled trials. Sixty-four subjects (32 men and 32 women) with end-stage knee osteoarthritis scheduled to undergo primary total knee arthroplasty were enrolled. Active knee flexion and extension range of motion, Timed Up and Go (TUG) test time, and 6-min walk test distance were assessed. Results Preoperative measures of knee flexion and extension were predictive of long-term flexion (β = 0.44, P < 0.001) and extension (β = 0.46, P < 0.001). Acute measures of knee flexion and extension were not predictive of long-term flexion (β= 0.09, P = 0.26) or extension (β = 0.04, P = 0.76). Preoperative TUG performance was predictive of long-term 6-min walk performance (β = −21, P < 0.001). Acute TUG performance was predictive of long-term functional performance on the 6-min walk test, after adjusting for the effects of sex and age (P = 0.02); however, once adjusted for preoperative TUG performance, acute TUG was no longer related to long-term 6-min walk performance (P = 0.65). Conclusions Acute postoperative measures of knee range of motion are of limited prognostic value, although preoperative measures have some prognostic value. However, acute measures of functional performance are of useful prognostic value, especially when preoperative functional performance data are unavailable. PMID:24508937

  17. Bulalo field, Philippines: Reservoir modeling for prediction of limits to sustainable generation

    SciTech Connect

    Strobel, Calvin J.

    1993-01-28

    The Bulalo geothermal field, located in Laguna province, Philippines, supplies 12% of the electricity on the island of Luzon. The first 110 MWe power plant was on line May 1979; current 330 MWe (gross) installed capacity was reached in 1984. Since then, the field has operated at an average plant factor of 76%. The National Power Corporation plans to add 40 MWe base load and 40 MWe standby in 1995. A numerical simulation model for the Bulalo field has been created that matches historic pressure changes, enthalpy and steam flash trends and cumulative steam production. Gravity modeling provided independent verification of mass balances and time rate of change of liquid desaturation in the rock matrix. Gravity modeling, in conjunction with reservoir simulation provides a means of predicting matrix dry out and the time to limiting conditions for sustainable levelized steam deliverability and power generation.

  18. Prediction of coronal and heliospheric magnetic fields: The promise of SOI-MDI on SOHO

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.; Zhao, X. P.; Scherrer, P. H.

    1995-01-01

    Models of the coronal magnetic field have been developed over the years that reproduce the static characteristics of coronal and heliospheric structures fairly well. Limitations of spatial and temporal resolution and nonuniform quality of the input data have made it particularly difficult to investigate the response of the corona to rapidly changing photospheric conditions. The Solar Oscillations Investigation (SOI) experiment on SOHO, scheduled for launch late in 1995, will produce a series of full-disk photospheric magnetic field observations with 4" resolution about every 2 hours for the next several years. Higher resolution observations of the center of the disk will be available several times per day. These data should provide a basis for predicting the coronal and heliospheric field and their changes with unprecedented accuracy during the rising phase of Solar Cycle 23.

  19. Influence of the Convection Electric Field Models on Predicted Plasmapause Positions During Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Pierrard, V.; Khazanov, G.; Cabrera, J.; Lemaire, J.

    2007-01-01

    In the present work, we determine how three well documented models of the magnetospheric electric field, and two different mechanisms proposed for the formation of the plasmapause influence the radial distance, the shape and the evolution of the plasmapause during the geomagnetic storms of 28 October 2001 and of 17 April 2002. The convection electric field models considered are: Mcllwain's E51) electric field model, Volland-Stern's model and Weimer's statistical model compiled from low-Earth orbit satellite data. The mechanisms for the formation of the plasmapause to be tested are: (i) the MHD theory where the plasmapause should correspond to the last-closed- equipotential (LCE) or last-closed-streamline (LCS), if the E-field distribution is stationary or time-dependent respectively; (ii) the interchange mechanism where the plasmapause corresponds to streamlines tangent to a Zero-Parallel-Force surface where the field-aligned plasma distribution becomes convectively unstable during enhancements of the E-field intensity in the nightside local time sector. The results of the different time dependent simulations are compared with concomitant EUV observations when available. The plasmatails or plumes observed after both selected geomagnetic storms are predicted in all simulations and for all E-field models. However, their shapes are quite different depending on the E-field models and the mechanisms that are used. Despite the partial success of the simulations to reproduce plumes during magnetic storms and substorms, there remains a long way to go before the detailed structures observed in the EUV observations during periods of geomagnetic activity can be accounted for very precisely by the existing E-field models. Furthermore, it cannot be excluded that the mechanisms currently identified to explain the formation of "Carpenter's knee" during substorm events, will', have to be revised or complemented in the cases of geomagnetic storms.

  20. Design Characteristics Influence Performance of Clinical Prediction Rules in Validation: A Meta-Epidemiological Study

    PubMed Central

    Ban, Jong-Wook; Emparanza, José Ignacio; Urreta, Iratxe; Burls, Amanda

    2016-01-01

    Background Many new clinical prediction rules are derived and validated. But the design and reporting quality of clinical prediction research has been less than optimal. We aimed to assess whether design characteristics of validation studies were associated with the overestimation of clinical prediction rules’ performance. We also aimed to evaluate whether validation studies clearly reported important methodological characteristics. Methods Electronic databases were searched for systematic reviews of clinical prediction rule studies published between 2006 and 2010. Data were extracted from the eligible validation studies included in the systematic reviews. A meta-analytic meta-epidemiological approach was used to assess the influence of design characteristics on predictive performance. From each validation study, it was assessed whether 7 design and 7 reporting characteristics were properly described. Results A total of 287 validation studies of clinical prediction rule were collected from 15 systematic reviews (31 meta-analyses). Validation studies using case-control design produced a summary diagnostic odds ratio (DOR) 2.2 times (95% CI: 1.2–4.3) larger than validation studies using cohort design and unclear design. When differential verification was used, the summary DOR was overestimated by twofold (95% CI: 1.2 -3.1) compared to complete, partial and unclear verification. The summary RDOR of validation studies with inadequate sample size was 1.9 (95% CI: 1.2 -3.1) compared to studies with adequate sample size. Study site, reliability, and clinical prediction rule was adequately described in 10.1%, 9.4%, and 7.0% of validation studies respectively. Conclusion Validation studies with design shortcomings may overestimate the performance of clinical prediction rules. The quality of reporting among studies validating clinical prediction rules needs to be improved. PMID:26730980