Science.gov

Sample records for predicting field performance

  1. Predicting photothermal field performance

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Ross, R. G., Jr.

    1984-01-01

    Photothermal field performance in flat plate solar collectors was predicted. An analytical model which incorporates the measured dependency between transmittance loss and UV and temperature exposure levels was developed. The model uses SOLMET weather data extrapolated to 30 years for various sites and module mounting configurations. It is concluded that the temperature is the key to photothermally induced transmittance loss. The sensitivity of transmittance loss to UV level is nonlinear with minimum in curve near one sun. The ethylene vinyl acetate (EVA) results are consistent with 30 year life allocation.

  2. Search Performance Prediction for Multistatic Sensor Fields

    DTIC Science & Technology

    2008-09-01

    Principles of Underwater Sound, 3rd ed. New York: McGraw-Hill, 1983. [6] A. Papoulis , Probability , Random Variables, and Stochastic Processes, 3rd...upper bound on the detection range of a receiver in the field, and uses this bound to compute the expected probability of successful search for a...given target track. This expected probability depends on the numbers of sources and receivers in the field, their location distribution functions, and the

  3. Predicting Performance in an Advanced Undergraduate Geological Field Camp Experience

    ERIC Educational Resources Information Center

    Dykas, Matthew J.; Valentino, David W.

    2016-01-01

    This study examined the factors that contribute to students' success in conducting geological field work. Undergraduate students (n = 49; 51% female; mean age = 22 y) who were enrolled in the 5-wk State University of New York at Oswego (SUNY Oswego) geology field program volunteered to participate in this study. At the beginning of the field…

  4. Predicting Performance in an Advanced Undergraduate Geological Field Camp Experience

    ERIC Educational Resources Information Center

    Dykas, Matthew J.; Valentino, David W.

    2016-01-01

    This study examined the factors that contribute to students' success in conducting geological field work. Undergraduate students (n = 49; 51% female; mean age = 22 y) who were enrolled in the 5-wk State University of New York at Oswego (SUNY Oswego) geology field program volunteered to participate in this study. At the beginning of the field…

  5. Threshold Region Performance Prediction for Adaptive Matched Field Processing Localization

    DTIC Science & Technology

    2007-11-02

    significant non-local estimation errors at low signal-to-noise ratios ( SNRs )-errors not modeled by traditional localization measures such as the Cramer...as a function of SNR , for apertures and environments of interest. Particular attention will be given to the "threshold SNR " (below which localization...performance degrades rapidly due to global estimation errors) and to the minimum SNR required to achieve acceptable range/depth localization. Initial

  6. SMART empirical approaches for predicting field performance of PV modules from results of reliability tests

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata

    2016-09-01

    Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.

  7. Accomplishments and Compromises in Prediction Research for World Records and Best Performances in Track and Field and Swimming

    ERIC Educational Resources Information Center

    Liu, Yuanlong; Paul, Stanley; Fu, Frank H.

    2012-01-01

    The conductors of this study reviewed prediction research and studied the accomplishments and compromises in predicting world records and best performances in track and field and swimming. The results of the study showed that prediction research only promises to describe the historical trends in track and field and swimming performances, to study…

  8. Accomplishments and Compromises in Prediction Research for World Records and Best Performances in Track and Field and Swimming

    ERIC Educational Resources Information Center

    Liu, Yuanlong; Paul, Stanley; Fu, Frank H.

    2012-01-01

    The conductors of this study reviewed prediction research and studied the accomplishments and compromises in predicting world records and best performances in track and field and swimming. The results of the study showed that prediction research only promises to describe the historical trends in track and field and swimming performances, to study…

  9. East Olkaria Geothermal Field, Kenya: 2. Predictions of well performance and reservoir depletion

    NASA Astrophysics Data System (ADS)

    Bodvarsson, Gudmundur S.; Pruess, Karsten; Stefansson, Valgardur; Bjornsson, Sveinbjorn; Ojiambo, Sebastian B.

    1987-01-01

    Performance predictions are presented for the East Olkaria geothermal field, using a three-dimensional well-by-well model calibrated against 6.5 years of production history. Various reservoir development schemes are investigated to study the effects of different well spacing on well deliverabilities, power production of 45 and 105 MWe (megawatts electric), and the effects of injection on well performance and reservoir depletion. It is shown that the present well density at Olkaria (20 wells/km2) is too high; recommended well density for future wells is 11 wells/km2 (300-m well spacing). The present production area at East Olkaria (2 km2) is capable of 45 MWe power production for a 30-year period, but 105 MWe power production requires a well field area of about 9.5 km2, which may not exist. Injection can help sustain steam flow rates from wells, thus reducing the need for new development wells.

  10. Combining mesocosm and field experiments to predict invasive plant performance: a hierarchical Bayesian approach.

    PubMed

    Wilson, Chris H; Caughlin, T Trevor; Civitello, David J; Flory, S Luke

    2015-04-01

    Invasive plant fecundity underlies propagule pressure and ultimately range expansion. Predicting fecundity across large spatial scales, from regions to landscapes, is critical for understanding invasion dynamics and optimizing management. However, to accurately predict fecundity and other demographic processes, improved models that scale individual plant responses to abiotic drivers across heterogeneous environments are needed. Here we combine two experimental data sets to predict fecundity of a widespread and problematic invasive grass over large spatial scales. First, we analyzed seed production as a function of plant biomass in a small-scale mesocosm experiment with manipulated light levels. Then, in a field introduction experiment, we tracked plant performance across 21 common garden sites that differed widely in available light and other factors. We jointly analyzed these data using a Bayesian hierarchical model (BHM) framework to predict fecundity as a function of light in the field. Our analysis reveals that the invasive species is likely to produce sufficient seed to overwhelm establishment resistance, even in deeply shaded environments, and is likely seed-limited across much of its range. Finally, we extend this framework to address the general problem of how to scale up plant demographic processes and analyze the factors that control plant distribution and abundance at large scales.

  11. The Ahuachapan geothermal field, El Salvador: Exploitation model, performance predictions, economic analysis

    SciTech Connect

    Ripperda, M.; Bodvarsson, G.S.; Lippmann, M.J.; Witherspoon, P.A. ); Goranson, C. )

    1991-05-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL) with funding from the US Agency for International Development (USAID). This appendix to the report describes the work done during the second year of the study (FY89--90). The first year's report included (1) the development of geological and conceptual models of the field, (2) the evaluation of the reservoir's initial thermodynamic and chemical conditions and their changes during exploitation, (3) the evaluation of interference test data and the observed reservoir pressure decline and (4) the development of a natural state model for the field. In these appendices the results of reservoir engineering studies to evaluate different production-injection scenarios for the Ahuachapan geothermal field are discussed. The purpose of the work was to evaluate possible reservoir management options to enhance as well as to maintain the productivity of the field during a 30-year period (1990--2020). The ultimate objective was to determine the feasibility of increasing the electrical power output at Ahuachapan from the current level of about 50 MW{sub e} to the total installed capacity of 95 MW{sub e}. the flow rate and flowing enthalpy are shown for 1975--1990 and extrapolated out to 2015. Future temperature distributions are predicted.

  12. An exploitation model and performance predictions for the Ahuachapan Geothermal field, El Salvador

    SciTech Connect

    Ripperda, M.; Bodvarsson, G.S.; Lippmann, L. ); Cuellar, G.; Escobar, C. )

    1991-01-01

    This paper reports on the Ahuachapan geothermal field in El Salvador which has been producing electrical power since 1975. The power plant currently generates at approximately 50 per cent of its total installed capacity of 95 MW{sub c} because of a substantial reservoir pressure drawdown and limited drilling of make-up wells. The focus of this study is to develop means for increasing the power production over the next 30 years. One possible option is to devise an injection scheme to decrease the pressure decline and increase the energy recovery from the reservoir. Another possibility is to drill step-out wells to increase the size of the wellfield. A three-dimensional numerical model of the field has been developed to determine the effects of injection and expanded fluid production. The model was used to predict the responses of the existing and proposed production wells for different levels of electrical power generation. The overall reservoir response to different exploitation and injection scenarios was also investigated. The model predicts that the geothermal system can provide steam to generate 90 MW{sub c} for no more than 20 y, even with reinjection and a large-scale drilling program. The results also indicate that the system can produce about 75 MW{sub c} for a 30-y period with significant reinjection and the drilling of about 20 new production wells.

  13. The Ahuachapan geothermal field, El Salvador: Exploitation model, performance predictions, economic analysis

    SciTech Connect

    Ripperda, M.; Bodvarsson, G.S.; Lippmann, M.J.; Witherspoon, P.A.; Goranson, C.

    1991-05-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL) with funding from the US Agency for International Development (USAID). This report describes the work done during the second year of the study (FY89--90). The first year's report included (1) the development of geological and conceptual models of the field, (2) the evaluation of the reservoir's initial thermodynamic and chemical conditions and their changes during exploitation, (3) the evaluation of interference test data and the observed reservoir pressure decline and (4) the development of a natural state model for the field. In the present report the results of reservoir engineering studies to evaluate different production-injection scenarios for the Ahuachapan geothermal field are discussed. The purpose of the work was to evaluate possible reservoir management options to enhance as well as to maintain the productivity of the field during a 30-year period (1990--2020). The ultimate objective was to determine the feasibility of increasing the electrical power output at Ahuachapan from the current level of about 50 MW{sub e} to the total installed capacity of 95 MW{sub e}. 20 refs., 75 figs., 10 tabs.

  14. The 30-15 Intermittent Fitness Test: Can It Predict Outcomes in Field Tests of Anaerobic Performance?

    PubMed

    Scott, Brendan R; Hodson, Jacob A; Govus, Andrew D; Dascombe, Ben J

    2017-10-01

    Scott, BR, Hodson, JA, Govus, AD, and Dascombe, BJ. The 30-15 Intermittent Fitness Test: can it predict outcomes in field tests of anaerobic performance? J Strength Cond Res 31(10): 2825-2831, 2017-This study determined whether a composite assessment of intermittent fitness could be used to quantify performance in several anaerobic tasks. Fifty-two male recreational athletes (age: 24.3 ± 4.4 years; body mass: 85.1 ± 12.2 kg; height: 180.5 ± 7.0 cm) were recruited from various team sports. Participants completed a battery of field tests to assess sprinting speed (40-m sprint), acceleration ability (10-m sprint), change of direction speed (505 test), anaerobic capacity (300-m shuttle), lower-body power (vertical jump), and repeated-sprint ability and the 30-15 Intermittent Fitness Test to determine the velocity of intermittent fitness (VIFT). Relationships between anaerobic tests and VIFT were quantified via Pearson product-moment correlations, and a 2-predictor model multiple linear regression estimated the predictive relationships between the exercise tests and the VIFT. Multiple linear regression showed that VIFT significantly predicted 56, 51, 44, 36, 12, and 1% of the variance in the 300-m shuttle, repeated sprint, 505- and 40-m sprint, vertical jump, and 10-m sprint tests, respectively. The 2-predictor model determined the 300-m shuttle, and repeated-sprint performance accounted for 67% of the variance in VIFT. These findings highlight that various anaerobic characteristics contribute to the intermittent fitness qualities that are quantified through VIFT. More specifically, these data indicate that VIFT is useful for tracking performance in tasks largely determined by anaerobic capacity, but may not be a good predictor of brief all-out sprinting and jumping efforts.

  15. Macropore flow at the field scale: predictive performance of empirical models and X-ray CT analyzed macropore characteristics

    NASA Astrophysics Data System (ADS)

    Naveed, M.; Moldrup, P.; Schaap, M.; Tuller, M.; Kulkarni, R.; Vögel, H.-J.; Wollesen de Jonge, L.

    2015-11-01

    Predictions of macropore flow is important for maintaining both soil and water quality as it governs key related soil processes e.g. soil erosion and subsurface transport of pollutants. However, macropore flow currently cannot be reliably predicted at the field scale because of inherently large spatial variability. The aim of this study was to perform field scale characterization of macropore flow and investigate the predictive performance of (1) current empirical models for both water and air flow, and (2) X-ray CT derived macropore network characteristics. For this purpose, 65 cylindrical soil columns (6 cm diameter and 3.5 cm height) were extracted from the topsoil (5 to 8.5 cm depth) in a 15 m × 15 m grid from an agricultural loamy field located in Silstrup, Denmark. All soil columns were scanned with an industrial CT scanner (129 μm resolution) and later used for measurements of saturated water permeability, air permeability and gas diffusivity at -30 and -100 cm matric potentials. Distribution maps for both water and air permeabilities and gas diffusivity reflected no spatial correlation irrespective of the soil texture and organic matter maps. Empirical predictive models for both water and air permeabilities showed poor performance as they were not able to realistically capture macropore flow because of poor correlations with soil texture and bulk density. The tested empirical model predicted well gas diffusivity at -100 cm matric potential, but relatively failed at -30 cm matric potential particularly for samples with biopore flow. Image segmentation output of the four employed methods was nearly the same, and matched well with measured air-filled porosity at -30 cm matric potential. Many of the CT derived macropore network characteristics were strongly interrelated. Most of the macropore network characteristics were also strongly correlated with saturated water permeability, air permeability, and gas diffusivity. The correlations between macropore

  16. Uncertainty in Predicted Neighborhood-Scale Green Stormwater Infrastructure Performance Informed by field monitoring of Hydrologic Abstractions

    NASA Astrophysics Data System (ADS)

    Smalls-Mantey, L.; Jeffers, S.; Montalto, F. A.

    2013-12-01

    Human alterations to the environment provide infrastructure for housing and transportation but have drastically changed local hydrology. Excess stormwater runoff from impervious surfaces generates erosion, overburdens sewer infrastructure, and can pollute receiving bodies. Increased attention to green stormwater management controls is based on the premise that some of these issues can be mitigated by capturing or slowing the flow of stormwater. However, our ability to predict actual green infrastructure facility performance using physical or statistical methods needs additional validation, and efforts to incorporate green infrastructure controls into hydrologic models are still in their infancy stages. We use more than three years of field monitoring data to derive facility specific probability density functions characterizing the hydrologic abstractions provided by a stormwater treatment wetland, streetside bioretention facility, and a green roof. The monitoring results are normalized by impervious area treated, and incorporated into a neighborhood-scale agent model allowing probabilistic comparisons of the stormwater capture outcomes associated with alternative urban greening scenarios. Specifically, we compare the uncertainty introduced into the model by facility performance (as represented by the variability in the abstraction), to that introduced by both precipitation variability, and spatial patterns of emergence of different types of green infrastructure. The modeling results are used to update a discussion about the potential effectiveness of urban green infrastructure implementation plans.

  17. Large-Scale Graphene on Hexagonal-BN Hall Elements: Prediction of Sensor Performance without Magnetic Field.

    PubMed

    Joo, Min-Kyu; Kim, Joonggyu; Park, Ji-Hoon; Nguyen, Van Luan; Kim, Ki Kang; Lee, Young Hee; Suh, Dongseok

    2016-09-27

    A graphene Hall element (GHE) is an optimal system for a magnetic sensor because of its perfect two-dimensional (2-D) structure, high carrier mobility, and widely tunable carrier concentration. Even though several proof-of-concept devices have been proposed, manufacturing them by mechanical exfoliation of 2-D material or electron-beam lithography is of limited feasibility. Here, we demonstrate a high quality GHE array having a graphene on hexagonal-BN (h-BN) heterostructure, fabricated by photolithography and large-area 2-D materials grown by chemical vapor deposition techniques. A superior performance of GHE was achieved with the help of a bottom h-BN layer, and showed a maximum current-normalized sensitivity of 1986 V/AT, a minimum magnetic resolution of 0.5 mG/Hz(0.5) at f = 300 Hz, and an effective dynamic range larger than 74 dB. Furthermore, on the basis of a thorough understanding of the shift of charge neutrality point depending on various parameters, an analytical model that predicts the magnetic sensor operation of a GHE from its transconductance data without magnetic field is proposed, simplifying the evaluation of each GHE design. These results demonstrate the feasibility of this highly performing graphene device using large-scale manufacturing-friendly fabrication methods.

  18. Performance of protein-structure predictions with the physics-based UNRES force field in CASP11.

    PubMed

    Krupa, Paweł; Mozolewska, Magdalena A; Wiśniewska, Marta; Yin, Yanping; He, Yi; Sieradzan, Adam K; Ganzynkowicz, Robert; Lipska, Agnieszka G; Karczyńska, Agnieszka; Ślusarz, Magdalena; Ślusarz, Rafał; Giełdoń, Artur; Czaplewski, Cezary; Jagieła, Dawid; Zaborowski, Bartłomiej; Scheraga, Harold A; Liwo, Adam

    2016-11-01

    Participating as the Cornell-Gdansk group, we have used our physics-based coarse-grained UNited RESidue (UNRES) force field to predict protein structure in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11). Our methodology involved extensive multiplexed replica exchange simulations of the target proteins with a recently improved UNRES force field to provide better reproductions of the local structures of polypeptide chains. All simulations were started from fully extended polypeptide chains, and no external information was included in the simulation process except for weak restraints on secondary structure to enable us to finish each prediction within the allowed 3-week time window. Because of simplified UNRES representation of polypeptide chains, use of enhanced sampling methods, code optimization and parallelization and sufficient computational resources, we were able to treat, for the first time, all 55 human prediction targets with sizes from 44 to 595 amino acid residues, the average size being 251 residues. Complete structures of six single-domain proteins were predicted accurately, with the highest accuracy being attained for the T0769, for which the CαRMSD was 3.8 Å for 97 residues of the experimental structure. Correct structures were also predicted for 13 domains of multi-domain proteins with accuracy comparable to that of the best template-based modeling methods. With further improvements of the UNRES force field that are now underway, our physics-based coarse-grained approach to protein-structure prediction will eventually reach global prediction capacity and, consequently, reliability in simulating protein structure and dynamics that are important in biochemical processes. Freely available on the web at http://www.unres.pl/ CONTACT: has5@cornell.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. PREVAPORATION PERFORMANCE PREDICTION SOFTWARE

    EPA Science Inventory

    The Pervaporation, Performance, Prediction Software and Database (PPPS&D) computer software program is currently being developed within the USEPA, NRMRL. The purpose of the PPPS&D program is to educate and assist potential users in identifying opportunities for using pervaporati...

  20. Rocket performance prediction technique

    NASA Technical Reports Server (NTRS)

    Morgenthaler, J. H.; Stepien, W. R.

    1974-01-01

    Attention is given to a semiempirical correlation technique based on the rational assumption that the turbulent mixing of reactants is the rate controlling process in combustors employing diffusion flames. Questions of performance computation are considered along with the flow conditions. Predictions of combustion efficiency are obtained with the aid of a standard finite-difference computational technique.-

  1. PREVAPORATION PERFORMANCE PREDICTION SOFTWARE

    EPA Science Inventory

    The Pervaporation, Performance, Prediction Software and Database (PPPS&D) computer software program is currently being developed within the USEPA, NRMRL. The purpose of the PPPS&D program is to educate and assist potential users in identifying opportunities for using pervaporati...

  2. Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field.

    PubMed

    Geck, Christoph; Scharff, Heijo; Pfeiffer, Eva-Maria; Gebert, Julia

    2016-10-01

    On a large scale test field (1060m(2)) methane emissions were monitored over a period of 30months. During this period, the test field was loaded at rates between 14 and 46gCH4m(-2)d(-1). The total area was subdivided into 60 monitoring grid fields at 17.7m(2) each, which were individually surveyed for methane emissions and methane oxidation efficiency. The latter was calculated both from the direct methane mass balance and from the shift of the carbon dioxide - methane ratio between the base of the methane oxidation layer and the emitted gas. The base flux to each grid field was back-calculated from the data on methane oxidation efficiency and emission. Resolution to grid field scale allowed the analysis of the spatial heterogeneity of all considered fluxes. Higher emissions were measured in the upslope area of the test field. This was attributed to the capillary barrier integrated into the test field resulting in a higher diffusivity and gas permeability in the upslope area. Predictions of the methane oxidation potential were estimated with the simple model Methane Oxidation Tool (MOT) using soil temperature, air filled porosity and water tension as input parameters. It was found that the test field could oxidize 84% of the injected methane. The MOT predictions seemed to be realistic albeit the higher range of the predicted oxidations potentials could not be challenged because the load to the field was too low. Spatial and temporal emission patterns were found indicating heterogeneity of fluxes and efficiencies in the test field. No constant share of direct emissions was found as proposed by the MOT albeit the mean share of emissions throughout the monitoring period was in the range of the expected emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Laboratory Performance Predicts the Success of Field Releases in Inbred Lines of the Egg Parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae)

    PubMed Central

    Coelho, Aloisio; Rugman-Jones, Paul F.; Reigada, Carolina; Stouthamer, Richard; Parra, José R. P.

    2016-01-01

    In this study we assessed the relationship between the laboratory and field performance of different isofemale lines of Trichogramma pretiosum Riley. In comparative assays, we used three rare mitochondrial haplotypes as genetic markers of the isofemale lines, and by introgressing these mitochondrial haplotypes into each of 15 genetically different nuclear lines, also tested the assumption that mitochondria are neutral markers. In a laboratory trial, 45 isofemale lines (15 nuclear genotypes x three mitochondrial haplotypes) were ranked in three categories (best, intermediate and worst) according to the mean offspring production and the proportion of female offspring. Subsequently, lines from each of the three categories were selected for field releases to quantify field parasitism on Ephestia kuehniella. Temporally separate releases were done in a transgenic Bt cornfield, with four plots, each with 50 points of recapture. The points of recapture consisted of trap cards with eggs of E. kuehniella collected daily. The trap cards were maintained in the laboratory at 25°C until the adult wasps emerged, and the maternal identity of the wasps was determined using qPCR and high-resolution melt curve analysis to determine the mitochondrial haplotype. The results showed that these measures of laboratory performance (fecundity and offspring sex ratio) were good predictors of field success in T. pretiosum. We also report strong evidence discrediting the assumption that mitochondria are neutral, in view of the correlation between performance and mitochondrial haplotype. PMID:26730735

  4. EVA Performance Prediction

    NASA Technical Reports Server (NTRS)

    Peacock, Brian; Maida, James; Rajulu, Sudhakar

    2004-01-01

    out for EVA activities are based more on extensive domain experience than any formal analytic structure. Conversely, physical task analysis for industrial and structured evidence from training and EV A contexts. Again on earth there is considerable evidence of human performance degradation due to encumbrance and fatigue. These industrial models generally take the form of a discounting equation. The development of performance estimates for space operations, such as timeline predictions for EVA is generally based on specific input from training activity, for example in the NBL or KC135. uniformed services tasks on earth are much more formalized. Human performance data in the space context has two sources: first there is the micro analysis of performance in structured tasks by the space physiology community and second there is the less structured evidence from training and EV A contexts.

  5. Comparing performances of logistic regression and neural networks for predicting melatonin excretion patterns in the rat exposed to ELF magnetic fields.

    PubMed

    Jahandideh, Samad; Abdolmaleki, Parviz; Movahedi, Mohammad Mehdi

    2010-02-01

    Various studies have been reported on the bioeffects of magnetic field exposure; however, no consensus or guideline is available for experimental designs relating to exposure conditions as yet. In this study, logistic regression (LR) and artificial neural networks (ANNs) were used in order to analyze and predict the melatonin excretion patterns in the rat exposed to extremely low frequency magnetic fields (ELF-MF). Subsequently, on a database containing 33 experiments, performances of LR and ANNs were compared through resubstitution and jackknife tests. Predictor variables were more effective parameters and included frequency, polarization, exposure duration, and strength of magnetic fields. Also, five performance measures including accuracy, sensitivity, specificity, Matthew's Correlation Coefficient (MCC) and normalized percentage, better than random (S) were used to evaluate the performance of models. The LR as a conventional model obtained poor prediction performance. Nonetheless, LR distinguished the duration of magnetic fields as a statistically significant parameter. Also, horizontal polarization of magnetic fields with the highest logit coefficient (or parameter estimate) with negative sign was found to be the strongest indicator for experimental designs relating to exposure conditions. This means that each experiment with horizontal polarization of magnetic fields has a higher probability to result in "not changed melatonin level" pattern. On the other hand, ANNs, a more powerful model which has not been introduced in predicting melatonin excretion patterns in the rat exposed to ELF-MF, showed high performance measure values and higher reliability, especially obtaining 0.55 value of MCC through jackknife tests. Obtained results showed that such predictor models are promising and may play a useful role in defining guidelines for experimental designs relating to exposure conditions. In conclusion, analysis of the bioelectromagnetic data could result in

  6. A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green's function simulations

    SciTech Connect

    Salazar, Ramon B. E-mail: hilatikh@purdue.edu; Appenzeller, Joerg; Ilatikhameneh, Hesameddin E-mail: hilatikh@purdue.edu; Rahman, Rajib; Klimeck, Gerhard

    2015-10-28

    A new compact modeling approach is presented which describes the full current-voltage (I-V) characteristic of high-performance (aggressively scaled-down) tunneling field-effect-transistors (TFETs) based on homojunction direct-bandgap semiconductors. The model is based on an analytic description of two key features, which capture the main physical phenomena related to TFETs: (1) the potential profile from source to channel and (2) the elliptic curvature of the complex bands in the bandgap region. It is proposed to use 1D Poisson's equations in the source and the channel to describe the potential profile in homojunction TFETs. This allows to quantify the impact of source/drain doping on device performance, an aspect usually ignored in TFET modeling but highly relevant in ultra-scaled devices. The compact model is validated by comparison with state-of-the-art quantum transport simulations using a 3D full band atomistic approach based on non-equilibrium Green's functions. It is shown that the model reproduces with good accuracy the data obtained from the simulations in all regions of operation: the on/off states and the n/p branches of conduction. This approach allows calculation of energy-dependent band-to-band tunneling currents in TFETs, a feature that allows gaining deep insights into the underlying device physics. The simplicity and accuracy of the approach provide a powerful tool to explore in a quantitatively manner how a wide variety of parameters (material-, size-, and/or geometry-dependent) impact the TFET performance under any bias conditions. The proposed model presents thus a practical complement to computationally expensive simulations such as the 3D NEGF approach.

  7. Prediction of ducted fan performance

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1972-01-01

    Computer program to predict performance of ducted fan combination at specified advance ratio and angle of attack is described. Parameters affecting performance of ducted fan are presented. Information obtained from computer program is explained for various conditions considered.

  8. Prediction of pump cavitation performance

    NASA Technical Reports Server (NTRS)

    Moore, R. D.

    1974-01-01

    A method for predicting pump cavitation performance with various liquids, liquid temperatures, and rotative speeds is presented. Use of the method requires that two sets of test data be available for the pump of interest. Good agreement between predicted and experimental results of cavitation performance was obtained for several pumps operated in liquids which exhibit a wide range of properties. Two cavitation parameters which qualitatively evaluate pump cavitation performance are also presented.

  9. Program Predicts Nonlinear Inverter Performance

    NASA Technical Reports Server (NTRS)

    Al-Ayoubi, R. R.; Oepomo, T. S.

    1985-01-01

    Program developed for ac power distribution system on Shuttle orbiter predicts total load on inverters and node voltages at each of line replaceable units (LRU's). Mathematical model simulates inverter performance at each change of state in power distribution system.

  10. Initial Cognitive Performance Predicts Longitudinal Aviator Performance

    PubMed Central

    Jo, Booil; Adamson, Maheen M.; Kennedy, Quinn; Noda, Art; Hernandez, Beatriz; Zeitzer, Jamie M.; Friedman, Leah F.; Fairchild, Kaci; Scanlon, Blake K.; Murphy, Greer M.; Taylor, Joy L.

    2011-01-01

    Objectives. The goal of the study was to improve prediction of longitudinal flight simulator performance by studying cognitive factors that may moderate the influence of chronological age. Method. We examined age-related change in aviation performance in aircraft pilots in relation to baseline cognitive ability measures and aviation expertise. Participants were aircraft pilots (N = 276) aged 40–77.9. Flight simulator performance and cognition were tested yearly; there were an average of 4.3 (± 2.7; range 1–13) data points per participant. Each participant was classified into one of the three levels of aviation expertise based on Federal Aviation Administration pilot proficiency ratings: least, moderate, or high expertise. Results. Addition of measures of cognitive processing speed and executive function to a model of age-related change in aviation performance significantly improved the model. Processing speed and executive function performance interacted such that the slowest rate of decline in flight simulator performance was found in aviators with the highest scores on tests of these abilities. Expertise was beneficial to pilots across the age range studied; however, expertise did not show evidence of reducing the effect of age. Discussion. These data suggest that longitudinal performance on an important real-world activity can be predicted by initial assessment of relevant cognitive abilities. PMID:21586627

  11. Predictive performance models and multiple task performance

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Larish, Inge; Contorer, Aaron

    1989-01-01

    Five models that predict how performance of multiple tasks will interact in complex task scenarios are discussed. The models are shown in terms of the assumptions they make about human operator divided attention. The different assumptions about attention are then empirically validated in a multitask helicopter flight simulation. It is concluded from this simulation that the most important assumption relates to the coding of demand level of different component tasks.

  12. Predictive performance models and multiple task performance

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Larish, Inge; Contorer, Aaron

    1989-01-01

    Five models that predict how performance of multiple tasks will interact in complex task scenarios are discussed. The models are shown in terms of the assumptions they make about human operator divided attention. The different assumptions about attention are then empirically validated in a multitask helicopter flight simulation. It is concluded from this simulation that the most important assumption relates to the coding of demand level of different component tasks.

  13. Action perception predicts action performance.

    PubMed

    Bailey, Heather R; Kurby, Christopher A; Giovannetti, Tania; Zacks, Jeffrey M

    2013-09-01

    Everyday action impairments often are observed in demented older adults, and they are common potential barriers to functional independence. We evaluated whether the ability to segment and efficiently encode activities is related to the ability to execute activities. Further, we evaluated whether brain regions important for segmentation also were important for action performance. Cognitively healthy older adults and those with very mild or mild dementia of the Alzheimer's type watched and segmented movies of everyday activities and then completed the Naturalistic Action Test. Structural MRI was used to measure volume in the dorsolateral prefrontal cortex (DLPFC), medial temporal lobes (MTL), posterior cortex, and anterior cingulate cortex (ACC). Dementia status and the ability to segment everyday activities strongly predicted naturalistic action performance, and MTL volume largely accounted for this relationship. In addition, the current results supported the Omission-Commission Model: Different cognitive and neurological mechanisms predicted different types of action error. Segmentation, dementia severity, and MTL volume predicted everyday omission errors, DLPFC volume predicted commission errors, and ACC volume predicted action additions. These findings suggest that event segmentation may be critical for effective action production, and that the segmentation and production of activities may recruit the same event representation system.

  14. Action perception predicts action performance

    PubMed Central

    Bailey, Heather R.; Kurby, Christopher A.; Giovannetti, Tania; Zacks, Jeffrey M.

    2013-01-01

    Everyday action impairments often are observed in demented older adults, and they are common potential barriers to functional independence. We evaluated whether the ability to segment and efficiently encode activities is related to the ability to execute activities. Further, we evaluated whether brain regions important for segmentation also were important for action performance. Cognitively healthy older adults and those with very mild or mild dementia of the Alzheimer's type watched and segmented movies of everyday activities and then completed the Naturalistic Action Test. Structural MRI was used to measure volume in the dorsolateral prefrontal cortex (DLPFC), medial temporal lobes (MTL), posterior cortex, and anterior cingulate cortex (ACC). Dementia status and the ability to segment everyday activities strongly predicted naturalistic action performance, and MTL volume largely accounted for this relationship. In addition, the current results supported the Omission-Commission Model: Different cognitive and neurological mechanisms predicted different types of action error. Segmentation, dementia severity, and MTL volume predicted everyday omission errors, DLPFC volume predicted commission errors, and ACC volume predicted action additions. These findings suggest that event segmentation may be critical for effective action production, and that the segmentation and production of activities may recruit the same event representation system. PMID:23851113

  15. Transferable force field for crystal structure predictions, investigation of performance and exploration of different rescoring strategies using DFT-D methods.

    PubMed

    Broo, Anders; Nilsson Lill, Sten O

    2016-08-01

    A new force field, here called AZ-FF, aimed at being used for crystal structure predictions, has been developed. The force field is transferable to a new type of chemistry without additional training or modifications. This makes the force field very useful in the prediction of crystal structures of new drug molecules since the time-consuming step of developing a new force field for each new molecule is circumvented. The accuracy of the force field was tested on a set of 40 drug-like molecules and found to be very good where observed crystal structures are found at the top of the ranked list of tentative crystal structures. Re-ranking with dispersion-corrected density functional theory (DFT-D) methods further improves the scoring. After DFT-D geometry optimization the observed crystal structure is found at the leading top of the ranking list. DFT-D methods and force field methods have been evaluated for use in predicting properties such as phase transitions upon heating, mechanical properties or intrinsic crystalline solubility. The utility of using crystal structure predictions and the associated material properties in risk assessment in connection with form selection in the drug development process is discussed.

  16. Predicting transfer from training performance.

    PubMed

    Speelman, C P; Kirsner, K

    2001-12-01

    The research in this paper was designed to examine the extent to which improvement on a training task can be used to predict performance on a transfer task. This aim involved evaluating the proposition that when old skills are executed in the context of new tasks, they continue to improve as if stimulus conditions have not changed. That is, power functions that describe improvement on old skills during their initial acquisition should predict further improvement on these skills during their execution in new tasks. Three experiments were performed to achieve the aim of testing this proposition. Experiment 1 revealed that old skills were executed slower in the context of a new task than was predicted on the basis of training performance. Hence improvement in the old skills appeared to be disrupted by performance of the new task. Experiment 2 was designed to examine whether this disruption was due to an increase in complexity in the task from training to transfer, or simply due to any change in task. The results suggested that any change may cause some disruption, but this disruption was greatest with an increase in task complexity. Experiment 3 was designed to examine two variables that may affect the magnitude of this effect: the relative change in task complexity from training to transfer, and the amount of practice on a task prior to a change in task. The results indicated that only the former variable had any effect. In all three experiments no effects on performance accuracy were noted, and response times in the transfer tasks eventually returned to levels predicted by training learning functions. These results were interpreted as indicating that old skills do continue to improve in new tasks as if conditions are not altered, but that disruptions caused by transfer are related to performance overheads associated with reconceptualising the task.

  17. TRITIUM RESERVOIR STRUCTURAL PERFORMANCE PREDICTION

    SciTech Connect

    Lam, P.S.; Morgan, M.J

    2005-11-10

    The burst test is used to assess the material performance of tritium reservoirs in the surveillance program in which reservoirs have been in service for extended periods of time. A materials system model and finite element procedure were developed under a Savannah River Site Plant-Directed Research and Development (PDRD) program to predict the structural response under a full range of loading and aged material conditions of the reservoir. The results show that the predicted burst pressure and volume ductility are in good agreement with the actual burst test results for the unexposed units. The material tensile properties used in the calculations were obtained from a curved tensile specimen harvested from a companion reservoir by Electric Discharge Machining (EDM). In the absence of exposed and aged material tensile data, literature data were used for demonstrating the methodology in terms of the helium-3 concentration in the metal and the depth of penetration in the reservoir sidewall. It can be shown that the volume ductility decreases significantly with the presence of tritium and its decay product, helium-3, in the metal, as was observed in the laboratory-controlled burst tests. The model and analytical procedure provides a predictive tool for reservoir structural integrity under aging conditions. It is recommended that benchmark tests and analysis for aged materials be performed. The methodology can be augmented to predict performance for reservoir with flaws.

  18. Slurry pumping: Pump performance prediction

    SciTech Connect

    Taccani, R.; Pediroda, V.; Reini, M.; Giadrossi, A.

    2000-07-01

    Centrifugal pumps are being used increasingly for transportation of slurries through pipelines. To design a slurry handling system it is essential to have a knowledge of the effects of suspended solids on the pump performance. A new test loop has been realized in the laboratory of the Energetics Department of the University of Trieste which allows pump performance to be determined at various pump speeds, with many different mixture concentrations and rheologies. The pump test rig consists of 150 mm diameter pipe with facilities for measuring suction and discharge pressure, flowrate, pump input power and speed, slurry density and temperature. In particular flowrate is measured by diverting flow into a weighing tank and timing a specified volume of slurry. An automatic PC based data acquisition system has been implemented. Preliminary tests with clear water show that performance can be measured with good repeatability and accuracy. The new test rig is used to verify the range of validity of the correlations to predict pump performance, available in literature and of that proposed by authors. This correlation, based on a Neural Network and not on a predefined analytical expression, can be easily improved with new experimental data.

  19. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    SciTech Connect

    Robertson, D.E. Myers, D.A.; Bergeron, M.P.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.; Young, J.L.

    1985-08-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year-old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field inviestigation was conducted in 1983 and 1984 to complement the existing extensive data base on actual radionuclide migration. Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the empirical observations to provide insight into the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater enviroment. 8 refs., 5 figs.,

  20. DKIST Polarization Modeling and Performance Predictions

    NASA Astrophysics Data System (ADS)

    Harrington, David

    2016-05-01

    Calibrating the Mueller matrices of large aperture telescopes and associated coude instrumentation requires astronomical sources and several modeling assumptions to predict the behavior of the system polarization with field of view, altitude, azimuth and wavelength. The Daniel K Inouye Solar Telescope (DKIST) polarimetric instrumentation requires very high accuracy calibration of a complex coude path with an off-axis f/2 primary mirror, time dependent optical configurations and substantial field of view. Polarization predictions across a diversity of optical configurations, tracking scenarios, slit geometries and vendor coating formulations are critical to both construction and contined operations efforts. Recent daytime sky based polarization calibrations of the 4m AEOS telescope and HiVIS spectropolarimeter on Haleakala have provided system Mueller matrices over full telescope articulation for a 15-reflection coude system. AEOS and HiVIS are a DKIST analog with a many-fold coude optical feed and similar mirror coatings creating 100% polarization cross-talk with altitude, azimuth and wavelength. Polarization modeling predictions using Zemax have successfully matched the altitude-azimuth-wavelength dependence on HiVIS with the few percent amplitude limitations of several instrument artifacts. Polarization predictions for coude beam paths depend greatly on modeling the angle-of-incidence dependences in powered optics and the mirror coating formulations. A 6 month HiVIS daytime sky calibration plan has been analyzed for accuracy under a wide range of sky conditions and data analysis algorithms. Predictions of polarimetric performance for the DKIST first-light instrumentation suite have been created under a range of configurations. These new modeling tools and polarization predictions have substantial impact for the design, fabrication and calibration process in the presence of manufacturing issues, science use-case requirements and ultimate system calibration

  1. Predicting Visual Distraction Using Driving Performance Data

    PubMed Central

    Kircher, Katja; Ahlstrom, Christer

    2010-01-01

    Behavioral variables are often used as performance indicators (PIs) of visual or internal distraction induced by secondary tasks. The objective of this study is to investigate whether visual distraction can be predicted by driving performance PIs in a naturalistic setting. Visual distraction is here defined by a gaze based real-time distraction detection algorithm called AttenD. Seven drivers used an instrumented vehicle for one month each in a small scale field operational test. For each of the visual distraction events detected by AttenD, seven PIs such as steering wheel reversal rate and throttle hold were calculated. Corresponding data were also calculated for time periods during which the drivers were classified as attentive. For each PI, means between distracted and attentive states were calculated using t-tests for different time-window sizes (2 – 40 s), and the window width with the smallest resulting p-value was selected as optimal. Based on the optimized PIs, logistic regression was used to predict whether the drivers were attentive or distracted. The logistic regression resulted in predictions which were 76 % correct (sensitivity = 77 % and specificity = 76 %). The conclusion is that there is a relationship between behavioral variables and visual distraction, but the relationship is not strong enough to accurately predict visual driver distraction. Instead, behavioral PIs are probably best suited as complementary to eye tracking based algorithms in order to make them more accurate and robust. PMID:21050615

  2. Microgravity Geyser and Flow Field Prediction

    NASA Technical Reports Server (NTRS)

    Hochstein, J. I.; Marchetta, J. G.; Thornton, R. J.

    2006-01-01

    Modeling and prediction of flow fields and geyser formation in microgravity cryogenic propellant tanks was investigated. A computational simulation was used to reproduce the test matrix of experimental results performed by other investigators, as well as to model the flows in a larger tank. An underprediction of geyser height by the model led to a sensitivity study to determine if variations in surface tension coefficient, contact angle, or jet pipe turbulence significantly influence the simulations. It was determined that computational geyser height is not sensitive to slight variations in any of these items. An existing empirical correlation based on dimensionless parameters was re-examined in an effort to improve the accuracy of geyser prediction. This resulted in the proposal for a re-formulation of two dimensionless parameters used in the correlation; the non-dimensional geyser height and the Bond number. It was concluded that the new non-dimensional geyser height shows little promise. Although further data will be required to make a definite judgement, the reformulation of the Bond number provided correlations that are more accurate and appear to be more general than the previously established correlation.

  3. The Real World Significance of Performance Prediction

    ERIC Educational Resources Information Center

    Pardos, Zachary A.; Wang, Qing Yang; Trivedi, Shubhendu

    2012-01-01

    In recent years, the educational data mining and user modeling communities have been aggressively introducing models for predicting student performance on external measures such as standardized tests as well as within-tutor performance. While these models have brought statistically reliable improvement to performance prediction, the real world…

  4. Predicting Performance in Freshman Chemistry.

    ERIC Educational Resources Information Center

    Nordstrom, Brian H.

    The relatively large number of students who perform poorly in freshman chemistry courses signals the need for the identification of criteria that will result in correct placement decisions for incoming college students. Research findings have generally reported placement criteria that correlate significantly with performance in college chemistry…

  5. Performance Prediction Model for Bottom Bounce Operation.

    DTIC Science & Technology

    ACOUSTIC ATTENUATION, *BOTTOM LOSS, *BOTTOM BOUNCE , PERFORMANCE(ENGINEERING), SIGNAL TO NOISE RATIO, ACOUSTIC DETECTION, MATHEMATICAL PREDICTION, COMPUTER APPLICATIONS, RAY TRACING, REVERBERATION, AMBIENT NOISE, SONAR.

  6. Prediction of Effective Officer Performance

    DTIC Science & Technology

    1959-06-01

    miniature. Sinc" field observation and logical analysis of officer MOB schedules had led to ,the aypothesis that psychological demands differ among...could adequately reflect the differential psychological demands from job to job. The efficiency reports of 10,000 officers were analyzed and the results...showed no evidence of differential psychological demands among combat, technical, and administrative officer assignments or among any other group

  7. A nozzle internal performance prediction method

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1992-01-01

    A prediction method was written and incorporated into a three-dimensional Navier-Stokes code (PAB3D) for the calculation of nozzle internal performance. The following quantities are calculated: (1) discharge coefficient; (2) normal, side, and axial thrust ratios; (3) rolling, pitching, and yawing moments; and (4) effective pitch and yaw vector angles. Four different case studies are presented to confirm the applicability of the methodology. Internal and, in most situations, external flow-field regions are required to be modeled. The computed nozzle discharge coefficient matches both the level and the trend of the experimental data within quoted experimental data accuracy (0.5 percent). Moment and force ratios are generally within 1 to 2 percent of the absolute level of experimental data, with the trends of data matched accurately.

  8. The Prediction of Long-Term Coating Performance from Short-Term Electrochemical Data. Part 2; Comparison of Electrochemical Data to Field Exposure Results for Coatings on Steel

    NASA Technical Reports Server (NTRS)

    Contu, F.; Taylor, S. R.; Calle, L. M.; Hintze, P. E.; Curran, J. P.; Li, W.

    2009-01-01

    The pace of coatings development is limited by the time required to assess their corrosion protection properties. This study takes a step f orward from Part I in that it correlates the corrosion performance of organic coatings assessed by a series of short-term electrochemical measurement with 18-month beachside exposure results of duplicate pan els. A series of 19 coating systems on A36 steel substrates were test ed in a completely blind study using the damage tolerance test (DTT). In the DTT, a through-film pinhole defect is created, and the electro chemical characteristics of the defect are then monitored over the ne xt 4 to 7 days while immersed in 0.SM NaCl. The open circuit potentia l, anodic potentiostatic polarization tests and electrochemical imped ance spectroscopy were used to study the corrosion behavior of the co ating systems. The beachside exposure tests were conducted at the Ken nedy Space Center according to ASTM D610-01. It was found that for 79 % of the coatings systems examined, the 18 month beachside exposure r esults could be predicted by two independent laboratory tests obtained within 7 days.

  9. Estimating thermal performance curves from repeated field observations.

    PubMed

    Childress, Evan S; Letcher, Benjamin H

    2017-03-08

    Estimating thermal performance of organisms is critical for understanding population distributions and dynamics and predicting responses to climate change. Typically, performance curves are estimated using laboratory studies to isolate temperature effects, but other abiotic and biotic factors influence temperature-performance relationships in nature reducing these models' predictive ability. We present a model for estimating thermal performance curves from repeated field observations that includes environmental and individual variation. We fit the model in a Bayesian framework using MCMC sampling, which allowed for estimation of unobserved latent growth while propagating uncertainty. Fitting the model to simulated data varying in sampling design and parameter values demonstrated that the parameter estimates were accurate, precise, and unbiased. Fitting the model to individual growth data from wild trout revealed high out-of-sample predictive ability relative to laboratory-derived models, which produced more biased predictions for field performance. The field-based estimates of thermal maxima were lower than those based on laboratory studies. Under warming temperature scenarios, field-derived performance models predicted stronger declines in body size than laboratory-derived models, suggesting that laboratory-based models may underestimate climate change effects. The presented model estimates true, realized field performance, avoiding assumptions required for applying laboratory-based models to field performance, which should improve estimates of performance under climate change and advance thermal ecology. This article is protected by copyright. All rights reserved.

  10. Estimating thermal performance curves from repeated field observations

    USGS Publications Warehouse

    Childress, Evan; Letcher, Benjamin H.

    2017-01-01

    Estimating thermal performance of organisms is critical for understanding population distributions and dynamics and predicting responses to climate change. Typically, performance curves are estimated using laboratory studies to isolate temperature effects, but other abiotic and biotic factors influence temperature-performance relationships in nature reducing these models' predictive ability. We present a model for estimating thermal performance curves from repeated field observations that includes environmental and individual variation. We fit the model in a Bayesian framework using MCMC sampling, which allowed for estimation of unobserved latent growth while propagating uncertainty. Fitting the model to simulated data varying in sampling design and parameter values demonstrated that the parameter estimates were accurate, precise, and unbiased. Fitting the model to individual growth data from wild trout revealed high out-of-sample predictive ability relative to laboratory-derived models, which produced more biased predictions for field performance. The field-based estimates of thermal maxima were lower than those based on laboratory studies. Under warming temperature scenarios, field-derived performance models predicted stronger declines in body size than laboratory-derived models, suggesting that laboratory-based models may underestimate climate change effects. The presented model estimates true, realized field performance, avoiding assumptions required for applying laboratory-based models to field performance, which should improve estimates of performance under climate change and advance thermal ecology.

  11. Performance of epitaxial back surface field cells

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.; Baraona, C. R.; Swartz, C. K.

    1974-01-01

    Epitaxial back surface field structures were formed by depositing a 10 micron thick 10 ohm-cm epitaxial silicon layer onto substrates with resistivities of 0.01, 0.1, 1.0 and 10 ohm-cm. A correlation between cell open-circuit voltage and substrate resistivity was observed and was compared to theory. The cells were also irradiated with 1-MeV electrons to a fluence of 5 times 10 to the 15th electrons per sq cm. The decrease of cell open-circuit voltage was in excellent agreement with theoretical predictions and the measured short-circuit currents were within 2% of the prediction. Calculations are presented for optimum cell performance as functions of epitaxial layer thickness, radiation fluence, and substrate diffusion length.

  12. Performance of epitaxial back surface field cells

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.; Baraona, C. R.; Swartz, C. K.

    1973-01-01

    Epitaxial back surface field structures were formed by depositing a 10 micron thick 10 Omega-cm epitaxial silicon layer onto substrates with resistivities of 0.01, 0.1, 1.0 and 10 Omega-cm. A correlation between cell open-circuit voltage and substrate resistivity was observed and was compared to theory. The cells were also irradiated with 1 MeV electrons to a fluence of 5 X 10 to the 15th power e/cm2. The decrease of cell open-circuit voltage was in excellent agreement with theoretical predictions and the measured short circuit currents were within 2% of the prediction. Calculations are presented of optimum cell performance as functions of epitaxial layer thickness, radiation fluence and substrate diffusion length.

  13. Low thrust viscous nozzle flow fields prediction

    NASA Technical Reports Server (NTRS)

    Liaw, G. S.; Mo, J. D.

    1991-01-01

    A Navier-Stokes code was developed for low thrust viscous nozzle flow field prediction. An implicit finite volume in an arbitrary curvilinear coordinate system lower-upper (LU) scheme is used to solve the governing Navier-Stokes equations and species transportation equations. Sample calculations of carbon dioxide nozzle flow are presented to verify the validity and efficiency of this code. The computer results are in reasonable agreement with the experimental data.

  14. Performing the field necropsy examination.

    PubMed

    Mason, Gary L; Madden, Dennis J

    2007-11-01

    This article is designed to aid the practitioner by maximizing the effectiveness of field postmortem diagnostic investigations. Contents include an outline of the procedure for field necropsy of ruminants, recommended tools and supplies, and guidelines for sample collection and submission.

  15. Program Predicts Performance of Optical Parametric Oscillators

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bowers, Mark

    2006-01-01

    A computer program predicts the performances of solid-state lasers that operate at wavelengths from ultraviolet through mid-infrared and that comprise various combinations of stable and unstable resonators, optical parametric oscillators (OPOs), and sum-frequency generators (SFGs), including second-harmonic generators (SHGs). The input to the program describes the signal, idler, and pump beams; the SFG and OPO crystals; and the laser geometry. The program calculates the electric fields of the idler, pump, and output beams at three locations (inside the laser resonator, just outside the input mirror, and just outside the output mirror) as functions of time for the duration of the pump beam. For each beam, the electric field is used to calculate the fluence at the output mirror, plus summary parameters that include the centroid location, the radius of curvature of the wavefront leaving through the output mirror, the location and size of the beam waist, and a quantity known, variously, as a propagation constant or beam-quality factor. The program provides a typical Windows interface for entering data and selecting files. The program can include as many as six plot windows, each containing four graphs.

  16. Predictions of Performance in Career Education.

    ERIC Educational Resources Information Center

    Novick, M. R.; And Others

    Prediction weights for educational programs in 22 vocational and technical fields are provided using ability scores from the American College Testing Program (ACT) Career Planning Profile and a Bayesian regression theory. The criterion variable studies was first-semester grade-point average. Each vocational-technical program analyzed was…

  17. Shadow-based SAR ATR performance prediction

    NASA Astrophysics Data System (ADS)

    Blacknell, D.

    2009-05-01

    The ability to assess potential automatic target recognition (ATR) performance for a given SAR system, target set and clutter environment is a key requirement for system procurement and mission planning. A cost-effective solution is to develop a theoretical model which can provide ATR performance predictions given a parameterisation of the system, targets and environment. In this paper, a classification scheme based on shadow information is analysed. Consideration of the statistical accuracy of shadow-based features allows ATR performance to be predicted. Quantitative comparisons of predicted performance with results obtained via simulation as well as against real data from the MSTAR data set are presented. It is seen that a reasonable level of agreement is obtained which gives confidence in extending the theoretical concepts to more complex feature-based ATR schemes.

  18. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1983-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  19. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1984-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  20. Evaluating cotton stripper field performance

    USDA-ARS?s Scientific Manuscript database

    Cotton strippers are used primarily in the Southern High Plains due to the specific cotton varieties grown. Typically, cotton strippers cost about two-thirds the price of a cotton picker and range from one-half to one-fourth the horsepower. A cotton stripper also has a higher field and harvesting ef...

  1. A decision-support tool to predict spray deposition of insecticides in commercial potato fields and its implications for their performance

    USDA-ARS?s Scientific Manuscript database

    In conventional and most IPM programs, application of insecticides continues to be the most important responsive pest control tactic. For both immediate and long-term optimization and sustainability of insecticide applications, it is paramount to study the factors affecting the performance of insect...

  2. A statistical model for predicting muscle performance

    NASA Astrophysics Data System (ADS)

    Byerly, Diane Leslie De Caix

    The objective of these studies was to develop a capability for predicting muscle performance and fatigue to be utilized for both space- and ground-based applications. To develop this predictive model, healthy test subjects performed a defined, repetitive dynamic exercise to failure using a Lordex spinal machine. Throughout the exercise, surface electromyography (SEMG) data were collected from the erector spinae using a Mega Electronics ME3000 muscle tester and surface electrodes placed on both sides of the back muscle. These data were analyzed using a 5th order Autoregressive (AR) model and statistical regression analysis. It was determined that an AR derived parameter, the mean average magnitude of AR poles, significantly correlated with the maximum number of repetitions (designated Rmax) that a test subject was able to perform. Using the mean average magnitude of AR poles, a test subject's performance to failure could be predicted as early as the sixth repetition of the exercise. This predictive model has the potential to provide a basis for improving post-space flight recovery, monitoring muscle atrophy in astronauts and assessing the effectiveness of countermeasures, monitoring astronaut performance and fatigue during Extravehicular Activity (EVA) operations, providing pre-flight assessment of the ability of an EVA crewmember to perform a given task, improving the design of training protocols and simulations for strenuous International Space Station assembly EVA, and enabling EVA work task sequences to be planned enhancing astronaut performance and safety. Potential ground-based, medical applications of the predictive model include monitoring muscle deterioration and performance resulting from illness, establishing safety guidelines in the industry for repetitive tasks, monitoring the stages of rehabilitation for muscle-related injuries sustained in sports and accidents, and enhancing athletic performance through improved training protocols while reducing

  3. Modern Prediction Methods for Turbomachine Performance

    DTIC Science & Technology

    1976-01-01

    Techniques. In Distortion Induced Engine Instability. AGARD LS-72. October 1974. Paper 5. 107. Erdos , John, Alznor, Ldgar, Kalben, Paul , McNally...subject of Modern Prediction Methods for Turbo- machine Performance, is sponsored by the Propulsion and Energetics Panel of AGARD and implemented by...the Consultan’. and Exechange Programme. Propulsion system development costs may be significantly reduced by improvement of methods tor prediction of

  4. What predicts performance during clinical psychology training?

    PubMed

    Scior, Katrina; Bradley, Caroline E; Potts, Henry W W; Woolf, Katherine; de C Williams, Amanda C

    2014-06-01

    While the question of who is likely to be selected for clinical psychology training has been studied, evidence on performance during training is scant. This study explored data from seven consecutive intakes of the UK's largest clinical psychology training course, aiming to identify what factors predict better or poorer outcomes. Longitudinal cross-sectional study using prospective and retrospective data. Characteristics at application were analysed in relation to a range of in-course assessments for 274 trainee clinical psychologists who had completed or were in the final stage of their training. Trainees were diverse in age, pre-training experience, and academic performance at A-level (advanced level certificate required for university admission), but not in gender or ethnicity. Failure rates across the three performance domains (academic, clinical, research) were very low, suggesting that selection was successful in screening out less suitable candidates. Key predictors of good performance on the course were better A-levels and better degree class. Non-white students performed less well on two outcomes. Type and extent of pre-training clinical experience on outcomes had varied effects on outcome. Research supervisor ratings emerged as global indicators and predicted nearly all outcomes, but may have been biased as they were retrospective. Referee ratings predicted only one of the seven outcomes examined, and interview ratings predicted none of the outcomes. Predicting who will do well or poorly in clinical psychology training is complex. Interview and referee ratings may well be successful in screening out unsuitable candidates, but appear to be a poor guide to performance on the course. © 2013 The Authors. British Journal of Clinical Psychology published by John Wiley & Sons Ltd on behalf of the British Psychological Society.

  5. Why Do Spatial Abilities Predict Mathematical Performance?

    ERIC Educational Resources Information Center

    Tosto, Maria Grazia; Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Petrill, Stephen A.; Dale, Philip S.; Malykh, Sergey; Plomin, Robert; Kovas, Yulia

    2014-01-01

    Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering. Spatial skills have also been shown to rely on neuronal networks partially shared with mathematics. Understanding the nature of this association can inform educational practices and intervention for mathematical underperformance.…

  6. Predicting Language Performance in Hearing Impaired Children.

    ERIC Educational Resources Information Center

    Monsees, Edna K.

    The 2-year study evaluated the language performance of 69 hearing impaired, preschool children born following the rubella epidemic of the early 1960's in order to develop an instrument for objectively assessing language achievement and a predictive index of language achievement. Two language rating scales were developed which were tied to the…

  7. EOID Model Validation and Performance Prediction

    DTIC Science & Technology

    2002-09-30

    Our long-term goal is to accurately predict the capability of the current generation of laser-based underwater imaging sensors to perform Electro ... Optic Identification (EOID) against relevant targets in a variety of realistic environmental conditions. The two most prominent technologies in this area

  8. Why Do Spatial Abilities Predict Mathematical Performance?

    ERIC Educational Resources Information Center

    Tosto, Maria Grazia; Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Petrill, Stephen A.; Dale, Philip S.; Malykh, Sergey; Plomin, Robert; Kovas, Yulia

    2014-01-01

    Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering. Spatial skills have also been shown to rely on neuronal networks partially shared with mathematics. Understanding the nature of this association can inform educational practices and intervention for mathematical underperformance.…

  9. What predicts performance during clinical psychology training?

    PubMed Central

    Scior, Katrina; Bradley, Caroline E; Potts, Henry W W; Woolf, Katherine; de C Williams, Amanda C

    2014-01-01

    Objectives While the question of who is likely to be selected for clinical psychology training has been studied, evidence on performance during training is scant. This study explored data from seven consecutive intakes of the UK's largest clinical psychology training course, aiming to identify what factors predict better or poorer outcomes. Design Longitudinal cross-sectional study using prospective and retrospective data. Method Characteristics at application were analysed in relation to a range of in-course assessments for 274 trainee clinical psychologists who had completed or were in the final stage of their training. Results Trainees were diverse in age, pre-training experience, and academic performance at A-level (advanced level certificate required for university admission), but not in gender or ethnicity. Failure rates across the three performance domains (academic, clinical, research) were very low, suggesting that selection was successful in screening out less suitable candidates. Key predictors of good performance on the course were better A-levels and better degree class. Non-white students performed less well on two outcomes. Type and extent of pre-training clinical experience on outcomes had varied effects on outcome. Research supervisor ratings emerged as global indicators and predicted nearly all outcomes, but may have been biased as they were retrospective. Referee ratings predicted only one of the seven outcomes examined, and interview ratings predicted none of the outcomes. Conclusions Predicting who will do well or poorly in clinical psychology training is complex. Interview and referee ratings may well be successful in screening out unsuitable candidates, but appear to be a poor guide to performance on the course. Practitioner points While referee and selection interview ratings did not predict performance during training, they may be useful in screening out unsuitable candidates at the application stage High school final academic performance

  10. Misleading performance in the supercomputing field

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1992-01-01

    The problems of misleading performance reporting and the evident lack of careful refereeing in the supercomputing field are discussed in detail. Included are some examples that have appeared in recently published scientific papers. Some guidelines for reporting performance are presented the adoption of which would raise the level of professionalism and reduce the level of confusion in the field of supercomputing.

  11. Predictability of Brayton electric power system performance

    NASA Technical Reports Server (NTRS)

    Klann, J. L.; Hettel, H. J.

    1972-01-01

    Data from the first tests of the 2- to 15-kilowatt space power system in a vacuum chamber were compared with predictions of both a pretest analysis and a modified version of that analysis. The pretest analysis predicted test results with differences of no more than 9 percent of the largest measured value for each quantity. The modified analysis correlated measurements. Differences in conversion efficiency and power output were no greater than plus or minus 2.5 percent. This modified analysis was used to project space performance maps for the current test system.

  12. Predictive Variables of Half-Marathon Performance for Male Runners

    PubMed Central

    Gómez-Molina, Josué; Ogueta-Alday, Ana; Camara, Jesus; Stickley, Christoper; Rodríguez-Marroyo, José A.; García-López, Juan

    2017-01-01

    The aims of this study were to establish and validate various predictive equations of half-marathon performance. Seventy-eight half-marathon male runners participated in two different phases. Phase 1 (n = 48) was used to establish the equations for estimating half-marathon performance, and Phase 2 (n = 30) to validate these equations. Apart from half-marathon performance, training-related and anthropometric variables were recorded, and an incremental test on a treadmill was performed, in which physiological (VO2max, speed at the anaerobic threshold, peak speed) and biomechanical variables (contact and flight times, step length and step rate) were registered. In Phase 1, half-marathon performance could be predicted to 90.3% by variables related to training and anthropometry (Equation 1), 94.9% by physiological variables (Equation 2), 93.7% by biomechanical parameters (Equation 3) and 96.2% by a general equation (Equation 4). Using these equations, in Phase 2 the predicted time was significantly correlated with performance (r = 0.78, 0.92, 0.90 and 0.95, respectively). The proposed equations and their validation showed a high prediction of half-marathon performance in long distance male runners, considered from different approaches. Furthermore, they improved the prediction performance of previous studies, which makes them a highly practical application in the field of training and performance. Key points The present study obtained four equations involving anthropometric, training, physiological and biomechanical variables to estimate half-marathon performance. These equations were validated in a different population, demonstrating narrows ranges of prediction than previous studies and also their consistency. As a novelty, some biomechanical variables (i.e. step length and step rate at RCT, and maximal step length) have been related to half-marathon performance. PMID:28630571

  13. GUMICS-4 Year Run: Ground Magnetic Field Predictions

    NASA Astrophysics Data System (ADS)

    Honkonen, I. J.; Viljanen, A.; Juusola, L.; Facsko, G.; Vanhamäki, H.

    2013-12-01

    Space weather can have severe effects even at ground level when Geomagnetically Induced Currents (GIC) disrupt power transmission networks, the worst case being a complete blackout affecting millions of people. The importance of space weather forecasting as well as the need for model improvement and validation has been recognized internationally. The recently concluded GUMICS-4 one year run, in which solar wind observations obtained from OMNIWeb for the period 2002-01-29 to 2003-02-02 were given as input to the model, will allow GUMICS to be validated against observations on an unprecedented scale. The performance of GUMICS can be quantified statistically, as a function of, for example, the solar wind driver, various geomagnetic indices, magnetic local time and other parameters. Here we concentrate on the ability of GUMICS to predict ground magnetic field observations for one year of simulated results. The ground magnetic field predictions are compared to observations of the mainland IMAGE magnetometer stations located at CGM latitudes 54-68 N. Furthermore the GIC derived from ground magnetic field predictions are compared to observations along the natural gas pipeline at Mäntsälä, South Finland. Various metrics are used to objectively evaluate the performance of GUMICS as a function of different parameters, thereby providing significant insight into the space weather forecasting ability of models based on first principles.

  14. Performance predictions for the Keck telescope adaptive optics system

    SciTech Connect

    Gavel, D.T.; Olivier, S.S.

    1995-08-07

    The second Keck ten meter telescope (Keck-11) is slated to have an infrared-optimized adaptive optics system in the 1997--1998 time frame. This system will provide diffraction-limited images in the 1--3 micron region and the ability to use a diffraction-limited spectroscopy slit. The AO system is currently in the preliminary design phase and considerable analysis has been performed in order to predict its performance under various seeing conditions. In particular we have investigated the point-spread function, energy through a spectroscopy slit, crowded field contrast, object limiting magnitude, field of view, and sky coverage with natural and laser guide stars.

  15. Reheating predictions in single field inflation

    SciTech Connect

    Cook, Jessica L.; Dimastrogiovanni, Emanuela; Easson, Damien A.; Krauss, Lawrence M. E-mail: emad@asu.edu E-mail: krauss@asu.edu

    2015-04-01

    Reheating is a transition era after the end of inflation, during which the inflaton is converted into the particles that populate the Universe at later times. No direct cosmological observables are normally traceable to this period of reheating. Indirect bounds can however be derived. One possibility is to consider cosmological evolution for observable CMB scales from the time of Hubble crossing to the present time. Depending upon the model, the duration and final temperature after reheating, as well as its equation of state, may be directly linked to inflationary observables. For single-field inflationary models, if we approximate reheating by a constant equation of state, one can derive relations between the reheating duration (or final temperature), its equation of state parameter, and the scalar power spectrum amplitude and spectral index. While this is a simple approximation, by restricting the equation of state to lie within a broad physically allowed range, one can in turn bracket an allowed range of n{sub s} and r for these models. The added constraints can help break degeneracies between inflation models that otherwise overlap in their predictions for n{sub s} and r.

  16. What predicts performance in Canadian dental schools?

    PubMed

    Smithers, S; Catano, V M; Cunningham, D P

    2004-06-01

    The task of selecting the best dental applicants out of an extremely competitive applicant pool is a problem faced annually by dental faculties. This study examined the validity of both cognitive and noncognitive factors used for selection to Canadian dental schools. Interest in personality measurement and the prediction offered by personality measures has escalated and may be applied to the selection of dental candidates. Therefore, the study also assessed whether the addition of a personality measure would increase the validity of predicting performance beyond that achieved by an interview and the Dental Aptitude Test. Results suggest that an interview may be useful in identifying specific behavioral characteristics deemed important for success in dental training. Consistent with previous research, results show that the Dental Aptitude Test is a good predictor of preclinical academic success, with prediction declining when clinical components of the program are introduced into the criterion. Results from the personality measure indicated that Openness to Experience was significantly related to aspects of clinical education, although, contrary to expectations, this relationship was negative. A facet of Openness, Ideas, together with Positive Emotions, a facet of Extroversion, improved prediction of performance in clinical studies beyond that provided by the Dental Aptitude Test and the Interview. Implications of the findings are discussed, and recommendations regarding the admission process to Canadian dental programs are offered.

  17. Computer Program Predicts Turbine-Stage Performance

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Haas, Jeffrey E.; Katsanis, Theodore

    1988-01-01

    MTSBL updated version of flow-analysis programs MERIDL and TSONIC coupled to boundary-layer program BLAYER. Method uses quasi-three-dimensional, inviscid, stream-function flow analysis iteratively coupled to calculated losses so changes in losses result in changes in flow distribution. Manner effects both configuration on flow distribution and flow distribution on losses taken into account in prediction of performance of stage. Written in FORTRAN IV.

  18. Predicting performance: relative importance of students' background and past performance.

    PubMed

    Stegers-Jager, Karen M; Themmen, Axel P N; Cohen-Schotanus, Janke; Steyerberg, Ewout W

    2015-09-01

    Despite evidence for the predictive value of both pre-admission characteristics and past performance at medical school, their relative contribution to predicting medical school performance has not been thoroughly investigated. This study was designed to determine the relative importance of pre-admission characteristics and past performance in medical school in predicting student performance in pre-clinical and clinical training. This longitudinal prospective study followed six cohorts of students admitted to a Dutch, 6-year, undergraduate medical course during 2002-2007 (n = 2357). Four prediction models were developed using multivariate logistic regression analysis. Main outcome measures were 'Year 1 course completion within 1 year' (models 1a, 1b), 'Pre-clinical course completion within 4 years' (model 2) and 'Achievement of at least three of five clerkship grades of ≥ 8.0' (model 3). Pre-admission characteristics (models 1a, 1b, 2, 3) and past performance at medical school (models 1b, 2, 3) were included as predictor variables. In model 1a - including pre-admission characteristics only - the strongest predictor for Year 1 course completion was pre-university grade point average (GPA). Success factors were 'selected by admission testing' and 'age > 21 years'; risk factors were 'Surinamese/Antillean background', 'foreign pre-university degree', 'doctor parent' and male gender. In model 1b, number of attempts and GPA at 4 months were the strongest predictors for Year 1 course completion, and male gender remained a risk factor. Year 1 GPA was the strongest predictor for pre-clinical course completion, whereas being male or aged 19-21 years were risk factors. Pre-clinical course GPA positively predicted clinical performance, whereas being non-Dutch or a first-generation university student were important risk factors for lower clinical grades. Nagelkerke's R(2) ranged from 0.16 to 0.62. This study not only confirms the importance of past performance as a predictor

  19. Model for predicting mountain wave field uncertainties

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal

    2017-04-01

    Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of

  20. Predictability of clinical assessments for driving performance.

    PubMed

    Stav, Wendy B; Justiss, Michael D; McCarthy, Dennis P; Mann, William C; Lanford, Desiree N

    2008-01-01

    As the number of older drivers grows, it is increasingly important to accurately identify at-risk drivers. This study tested clinical assessments predictive of real-time driving performance. Selected assessment tools considered important in the identification of at-risk older drivers represented the domains of vision, cognition, motor performance, and driving knowledge. Participants were administered the battery of assessments followed by an on-road test. A univariate analysis was conducted to identify significant factors (<.05) to be included in a multivariate regression model. Assessments identified as independently associated with driving performance in the regression model included: FACTTM Contrast sensitivity slide-B, Rapid Pace Walk, UFOV rating, and MMSE total score. The domains of vision, cognitive, and motor performance were represented in the predictive model. Due to the dynamic nature of the driving task, it is not likely that a single assessment tool will identify at risk drivers. By standardizing the selection of clinical assessments used in driving evaluations, practitioners should be able to provide services more efficiently, more objectively, and more accurately to identify at-risk drivers.

  1. Developing a gas rocket performance prediction technique

    NASA Technical Reports Server (NTRS)

    Morgenthaler, J. H.; Moon, L. F.; Stepien, W. R.

    1974-01-01

    A simple, semi-empirical performance correlation/prediction technique applicable to gaseous and liquid propellant rocket engines is presented. Excellent correlations were attained for over 100 test firings by adjusting the computation of the gaseous mixing of an unreactive, coaxial jet using a correlation factor, F, which resulted in prediction of the experimental combustion efficiency for each firing. Static pressure, mean velocity and turbulence intensity in the developing region of non-reactive coaxial jets, typical of those of coaxial injector elements were determined. Detailed profiles were obtained at twelve axial locations (extending from the nozzle exit for a distance of five diameters) downstream from a single element of the Bell Aerospace H2/O2 19-element coaxial injector. These data are compared with analytical predictions made using both eddy viscosity and turbulence kinetic energy mixing models and available computer codes. Comparisons were disappointing, demonstrating the necessity of developing improved turbulence models and computational techniques before detailed predictions of practical coaxial free jet flows are attempted.

  2. Prediction of 200-m sprint kayaking performance.

    PubMed

    van Someren, Ken A; Palmer, Garry S

    2003-08-01

    The aim of this study was to determine the anthropometric and physiological profile of 200-m sprint kayakers and to examine relationships with 200-m race performance. Twenty-six male kayakers who were categorised in two ability groups, international (Int) and national (Nat) level, underwent a battery of anthropometric and physiological tests and a 200-m race. Race time was significantly lower in Int than Nat (39.9 +/- 0.8 s and 42.6 +/- 0.9 s, respectively). Int demonstrated significantly greater measures of mesomorphy, biepycondylar humeral breadth, circumferences of the upper arm, forearm and chest, peak power and total work in a modified Wingate test, total work in a 2-min ergometry test, peak isokinetic power, and peak isometric force. Significant relationships were found between 200-m time and a number of anthropometric variables and anaerobic and dynamometric parameters. Stepwise multiple regression revealed that total work in the modified Wingate alone predicted 200-m race time (R2 = 0.53, SEE = 1.11 s) for all 26 subjects, while biepycondylar humeral breadth alone predicted race time (R2 = 0.54, SEE = 0.52 s) in Int. These results demonstrate that superior upper body dimensions and anaerobic capacities distinguish international-level kayakers from national-level athletes and may be used to predict 200-m performance.

  3. Performance of catalyzed hydrazine in field applications

    SciTech Connect

    Allgood, T.B.

    1987-01-01

    The performance of newly developed oxygen scavengers for boilers is often compared to sulfite and hydrazine. Catalyzed hydrazine out-performs hydrazine and might be preferred when catalyzed sulfite cannot be used. Data from a Midwest Utility confirms that, under field conditions, catalyzed hydrazine out-performance hydrazine and carbohydrazine when feedwater oxygen and iron levels were critical. Catalyzed hydrazine might be preferred when high performance and economics are the primary concerns.

  4. Predictive genomics DNA profiling for athletic performance.

    PubMed

    Kambouris, Marios; Ntalouka, Foteini; Ziogas, Georgios; Maffulli, Nicola

    2012-12-01

    Genes control biological processes such as muscle, cartilage and bone formation, muscle energy production and metabolism (mitochondriogenesis, lactic acid removal), blood and tissue oxygenation (erythropoiesis, angiogenesis, vasodilatation), all essential in sport and athletic performance. DNA sequence variations in such genes confer genetic advantages that can be exploited, or genetic 'barriers' that could be overcome to achieve optimal athletic performance. Predictive Genomic DNA Profiling for athletic performance reveals genetic variations that may be associated with better suitability for endurance, strength and speed sports, vulnerability to sports-related injuries and individualized nutritional requirements. Knowledge of genetic 'suitability' in respect to endurance capacity or strength and speed would lead to appropriate sport and athletic activity selection. Knowledge of genetic advantages and barriers would 'direct' an individualized training program, nutritional plan and nutritional supplementation to achieving optimal performance, overcoming 'barriers' that results from intense exercise and pressure under competition with minimum waste of time and energy and avoidance of health risks (hypertension, cardiovascular disease, inflammation, and musculoskeletal injuries) related to exercise, training and competition. Predictive Genomics DNA profiling for Athletics and Sports performance is developing into a tool for athletic activity and sport selection and for the formulation of individualized and personalized training and nutritional programs to optimize health and performance for the athlete. Human DNA sequences are patentable in some countries, while in others DNA testing methodologies [unless proprietary], are non patentable. On the other hand, gene and variant selection, genotype interpretation and the risk and suitability assigning algorithms based on the specific Genomic variants used are amenable to patent protection.

  5. Hydrodynamic properties of fin whale flippers predict maximum rolling performance.

    PubMed

    Segre, Paolo S; Cade, David E; Fish, Frank E; Potvin, Jean; Allen, Ann N; Calambokidis, John; Friedlaender, Ari S; Goldbogen, Jeremy A

    2016-11-01

    Maneuverability is one of the most important and least understood aspects of animal locomotion. The hydrofoil-like flippers of cetaceans are thought to function as control surfaces that effect maneuvers, but quantitative tests of this hypothesis have been lacking. Here, we constructed a simple hydrodynamic model to predict the longitudinal-axis roll performance of fin whales, and we tested its predictions against kinematic data recorded by on-board movement sensors from 27 free-swimming fin whales. We found that for a given swimming speed and roll excursion, the roll velocity of fin whales calculated from our field data agrees well with that predicted by our hydrodynamic model. Although fluke and body torsion may further influence performance, our results indicate that lift generated by the flippers is sufficient to drive most of the longitudinal-axis rolls used by fin whales for feeding and maneuvering.

  6. Evaluation of performance of predictive models for deoxynivalenol in wheat.

    PubMed

    van der Fels-Klerx, H J

    2014-02-01

    The aim of this study was to evaluate the performance of two predictive models for deoxynivalenol contamination of wheat at harvest in the Netherlands, including the use of weather forecast data and external model validation. Data were collected in a different year and from different wheat fields than data used for model development. The two models were run for six preset scenarios, varying in the period for which weather forecast data were used, from zero-day (historical data only) to a 13-day period around wheat flowering. Model predictions using forecast weather data were compared to those using historical data. Furthermore, model predictions using historical weather data were evaluated against observed deoxynivalenol contamination of the wheat fields. Results showed that the use of weather forecast data rather than observed data only slightly influenced model predictions. The percent of correct model predictions, given a threshold of 1,250 μg/kg (legal limit in European Union), was about 95% for the two models. However, only three samples had a deoxynivalenol concentration above this threshold, and the models were not able to predict these samples correctly. It was concluded that two- week weather forecast data can reliable be used in descriptive models for deoxynivalenol contamination of wheat, resulting in more timely model predictions. The two models are able to predict lower deoxynivalenol contamination correctly, but model performance in situations with high deoxynivalenol contamination needs to be further validated. This will need years with conducive environmental conditions for deoxynivalenol contamination of wheat. © 2013 Society for Risk Analysis.

  7. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Franklin M. Orr, Jr; Martin J. Blunt

    1998-03-31

    This project performs research in four main areas: laboratory experiments to measure three-phase relative permeability; network modeling to predict three-phase relative perme- ability; benchmark simulations of gas injection and waterfl ooding at the field scale; and the development of fast streamline techniques to study field-scale oil. The aim of the work is to achieve a comprehensive description of gas injection processes from the pore to the core to the reservoir scale. In this report we provide a detailed description of our measurements of three-phase relative permeability.

  8. Texture metric that predicts target detection performance

    NASA Astrophysics Data System (ADS)

    Culpepper, Joanne B.

    2015-12-01

    Two texture metrics based on gray level co-occurrence error (GLCE) are used to predict probability of detection and mean search time. The two texture metrics are local clutter metrics and are based on the statistics of GLCE probability distributions. The degree of correlation between various clutter metrics and the target detection performance of the nine military vehicles in complex natural scenes found in the Search_2 dataset are presented. Comparison is also made between four other common clutter metrics found in the literature: root sum of squares, Doyle, statistical variance, and target structure similarity. The experimental results show that the GLCE energy metric is a better predictor of target detection performance when searching for targets in natural scenes than the other clutter metrics studied.

  9. Misleading Performance Reporting in the Supercomputing Field

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Kutler, Paul (Technical Monitor)

    1992-01-01

    In a previous humorous note, I outlined twelve ways in which performance figures for scientific supercomputers can be distorted. In this paper, the problem of potentially misleading performance reporting is discussed in detail. Included are some examples that have appeared in recent published scientific papers. This paper also includes some proposed guidelines for reporting performance, the adoption of which would raise the level of professionalism and reduce the level of confusion in the field of supercomputing.

  10. Predictors of fielding performance in professional baseball players.

    PubMed

    Mangine, Gerald T; Hoffman, Jay R; Vazquez, Jose; Pichardo, Napoleon; Fragala, Maren S; Stout, Jeffrey R

    2013-09-01

    The ultimate zone-rating extrapolation (UZR/150) rates fielding performance by runs saved or cost within a zone of responsibility in comparison with the league average (150 games) for a position. Spring-training anthropometric and performance measures have been previously related to hitting performance; however, their relationships with fielding performance measures are unknown. To examine the relationship between anthropometric and performance measurements on fielding performance in professional baseball players. Body mass, lean body mass (LBM), grip strength, 10-yd sprint, proagility, and vertical-jump mean (VJMP) and peak power (VJPP) were collected during spring training over the course of 5 seasons (2007-2011) for professional corner infielders (CI; n = 17, fielding opportunities = 420.7 ± 307.1), middle infielders (MI; n = 14, fielding opportunities = 497.3 ± 259.1), and outfielders (OF; n = 16, fielding opportunities = 227.9 ± 70.9). The relationships between these data and regular-season (100-opportunity minimum) fielding statistics were examined using Pearson correlation coefficients, while stepwise regression identified the single best predictor of UZR/150. Significant correlations (P < .05) were observed between UZR/150 and body mass (r = .364), LBM (r = .396), VJPP (r = .397), and VJMP (r = .405). Of these variables, stepwise regression indicated VJMP (R = .405, SEE = 14.441, P = .005) as the single best predictor for all players, although the addition of proagility performance strengthened (R = .496, SEE = 13.865, P = .002) predictive ability by 8.3%. The best predictor for UZR/150 was body mass for CI (R = .519, SEE = 15.364, P = .033) and MI (R = .672, SEE = 12.331, P = .009), while proagility time was the best predictor for OF (R = .514, SEE = 8.850, P = .042). Spring-training measurements of VJMP and proagility time may predict the defensive run value of a player over the course of a professional baseball season.

  11. Naturalistic Field Studies of Sleep and Performance

    DTIC Science & Technology

    2010-05-01

    AD_________________ Award Number: W81XWH-05-1-0099 TITLE: Naturalistic Field Studies of Sleep and...5a. CONTRACT NUMBER Naturalistic Field Studies of Sleep and Performance 5b. GRANT NUMBER W81XWH-05-1-0099 5c. PROGRAM ELEMENT NUMBER 6...Center (SPRC) conducts human and animal  studies  in laboratory and field settings in support of basic and applied sleep  research at Washington State

  12. Machine characterization and benchmark performance prediction

    NASA Technical Reports Server (NTRS)

    Saavedra-Barrera, Rafael H.

    1988-01-01

    From runs of standard benchmarks or benchmark suites, it is not possible to characterize the machine nor to predict the run time of other benchmarks which have not been run. A new approach to benchmarking and machine characterization is reported. The creation and use of a machine analyzer is described, which measures the performance of a given machine on FORTRAN source language constructs. The machine analyzer yields a set of parameters which characterize the machine and spotlight its strong and weak points. Also described is a program analyzer, which analyzes FORTRAN programs and determines the frequency of execution of each of the same set of source language operations. It is then shown that by combining a machine characterization and a program characterization, we are able to predict with good accuracy the run time of a given benchmark on a given machine. Characterizations are provided for the Cray-X-MP/48, Cyber 205, IBM 3090/200, Amdahl 5840, Convex C-1, VAX 8600, VAX 11/785, VAX 11/780, SUN 3/50, and IBM RT-PC/125, and for the following benchmark programs or suites: Los Alamos (BMK8A1), Baskett, Linpack, Livermore Loops, Madelbrot Set, NAS Kernels, Shell Sort, Smith, Whetstone and Sieve of Erathostenes.

  13. Designer substrate library for quantitative, predictive modeling of reaction performance

    PubMed Central

    Bess, Elizabeth N.; Bischoff, Amanda J.; Sigman, Matthew S.

    2014-01-01

    Assessment of reaction substrate scope is often a qualitative endeavor that provides general indications of substrate sensitivity to a measured reaction outcome. Unfortunately, this field standard typically falls short of enabling the quantitative prediction of new substrates’ performance. The disconnection between a reaction’s development and the quantitative prediction of new substrates’ behavior limits the applicative usefulness of many methodologies. Herein, we present a method by which substrate libraries can be systematically developed to enable quantitative modeling of reaction systems and the prediction of new reaction outcomes. Presented in the context of rhodium-catalyzed asymmetric transfer hydrogenation, these models quantify the molecular features that influence enantioselection and, in so doing, lend mechanistic insight to the modes of asymmetric induction. PMID:25267648

  14. Calculating predictive performance: a user's note.

    PubMed

    Wu, G

    1995-06-01

    The method proposed by Sheiner and Beal plays a cornerstone role in the evaluation of the predictive performance. Recently, the Sheiner and Beal's method has been intensively used in pharmacokinetic studies, however, this method has been used in a somewhat confusing way by several authors. Therefore, if one wants to use this method, one might find different examples to follow in the pharmacokinetic literature. Meanwhile, several detailed points were not given by Sheiner and Beal in their original paper. Clearly, the principles suggested by Sheiner and Beal are simple, but the practical application is something of an art. In this work we addressed these detailed points and indicated the confusion in using the Sheiner and Beal's method.

  15. PREDICTION OF CHEMICAL RESIDUES IN AQUATIC ORGANISMS FOR A FIELD DISCHARGE SITUATION.

    EPA Science Inventory

    A field study was performed which compared predicted and measured concentrations of chemicals in receiving water organisms from three sampling locations on Five Mile Creek, Birmingham, Al. Two point source discharges, both from coke manufacturing facilities, were included in the ...

  16. PREDICTION OF CHEMICAL RESIDUES IN AQUATIC ORGANISMS FOR A FIELD DISCHARGE SITUATION.

    EPA Science Inventory

    A field study was performed which compared predicted and measured concentrations of chemicals in receiving water organisms from three sampling locations on Five Mile Creek, Birmingham, Al. Two point source discharges, both from coke manufacturing facilities, were included in the ...

  17. Visual Performance Prediction Using Schematic Eye Models

    NASA Astrophysics Data System (ADS)

    Schwiegerling, James Theodore

    The goal of visual modeling is to predict the visual performance or a change in performance of an individual from a model of the human visual system. In designing a model of the human visual system, two distinct functions are considered. The first is the production of an image incident on the retina by the optical system of the eye, and the second is the conversion of this image into a perceived image by the retina and brain. The eye optics are evaluated using raytracing techniques familiar to the optical engineer. The effect of the retinal and brain function are combined with the raytracing results by analyzing the modulation of the retinal image. Each of these processes is important far evaluating the performance of the entire visual system. Techniques for converting the abstract system performance measures used by optical engineers into clinically -applicable measures such as visual acuity and contrast sensitivity are developed in this dissertation. Furthermore, a methodology for applying videokeratoscopic height data to the visual model is outlined. These tools are useful in modeling the visual effects of corrective lenses, ocular maladies and refractive surgeries. The modeling techniques are applied to examples of soft contact lenses, keratoconus, radial keratotomy, photorefractive keratectomy and automated lamellar keratoplasty. The modeling tools developed in this dissertation are meant to be general and modular. As improvements to the measurements of the properties and functionality of the various visual components are made, the new information can be incorporated into the visual system model. Furthermore, the examples discussed here represent only a small subset of the applications of the visual model. Additional ocular maladies and emerging refractive surgeries can be modeled as well.

  18. Rainfall Fields: Estimation, Analysis, and Prediction

    NASA Astrophysics Data System (ADS)

    The problem of predicting rainfall and its characteristics has always been one of overriding concern for both hydrologists and meteorologists. Yet, for decades the two disciplines have pursued its solution using radically different techniques and communicating relatively little about recent advances in understanding rainfall processes, new technology, and improvements in predictive skill.Meteorologists tend to publish in journals that deal almost exclusively with atmospheric processes, while hydrologists prefer media which focus on the Earth's surface and below. Meteorologists tend to concentrate on developing and improving numerical hydrodynamical models of the atmospheric processes that generate rainfall. Their approach is essentially to solve an initial value problem where the observed three-dimensional state of the atmosphere is input to the model and the rainfall is one of the output parameters.

  19. On predicting changes in the geomagnetic field.

    USGS Publications Warehouse

    Alldredge, L.R.

    1987-01-01

    The present method of using constant secular variation rates to forecast magnetic components at a given site or to forecast spherical harmonic coefficients is known to be inaccurate. A new predictive method using trend and trigonometric functions fitted to known past values is used to extrapolate for a few years into the future. This provides an improvement over the usual linear extrapolation method. -from Author

  20. Apparatus for performing oil field laser operations

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2017-01-03

    A system, apparatus and methods for delivering high power laser energy to perform laser operations in oil fields and to form a borehole deep into the earth using laser energy. A laser downhole assembly for the delivery of high power laser energy to surfaces and areas in a borehole, which assembly may have laser optics and a fluid path.

  1. Collective hormonal profiles predict group performance

    PubMed Central

    Akinola, Modupe; Page-Gould, Elizabeth; Mehta, Pranjal H.; Lu, Jackson G.

    2016-01-01

    Prior research has shown that an individual’s hormonal profile can influence the individual’s social standing within a group. We introduce a different construct—a collective hormonal profile—which describes a group’s hormonal make-up. We test whether a group’s collective hormonal profile is related to its performance. Analysis of 370 individuals randomly assigned to work in 74 groups of three to six individuals revealed that group-level concentrations of testosterone and cortisol interact to predict a group’s standing across groups. Groups with a collective hormonal profile characterized by high testosterone and low cortisol exhibited the highest performance. These collective hormonal level results remained reliable when controlling for personality traits and group-level variability in hormones. These findings support the hypothesis that groups with a biological propensity toward status pursuit (high testosterone) coupled with reduced stress-axis activity (low cortisol) engage in profit-maximizing decision-making. The current work extends the dual-hormone hypothesis to the collective level and provides a neurobiological perspective on the factors that determine who rises to the top across, not just within, social hierarchies. PMID:27528679

  2. Hydrogen Field Test Standard: Laboratory and Field Performance

    PubMed Central

    Pope, Jodie G.; Wright, John D.

    2015-01-01

    The National Institute of Standards and Technology (NIST) developed a prototype field test standard (FTS) that incorporates three test methods that could be used by state weights and measures inspectors to periodically verify the accuracy of retail hydrogen dispensers, much as gasoline dispensers are tested today. The three field test methods are: 1) gravimetric, 2) Pressure, Volume, Temperature (PVT), and 3) master meter. The FTS was tested in NIST's Transient Flow Facility with helium gas and in the field at a hydrogen dispenser location. All three methods agree within 0.57 % and 1.53 % for all test drafts of helium gas in the laboratory setting and of hydrogen gas in the field, respectively. The time required to perform six test drafts is similar for all three methods, ranging from 6 h for the gravimetric and master meter methods to 8 h for the PVT method. The laboratory tests show that 1) it is critical to wait for thermal equilibrium to achieve density measurements in the FTS that meet the desired uncertainty requirements for the PVT and master meter methods; in general, we found a wait time of 20 minutes introduces errors < 0.1 % and < 0.04 % in the PVT and master meter methods, respectively and 2) buoyancy corrections are important for the lowest uncertainty gravimetric measurements. The field tests show that sensor drift can become a largest component of uncertainty that is not present in the laboratory setting. The scale was calibrated after it was set up at the field location. Checks of the calibration throughout testing showed drift of 0.031 %. Calibration of the master meter and the pressure sensors prior to travel to the field location and upon return showed significant drifts in their calibrations; 0.14 % and up to 1.7 %, respectively. This highlights the need for better sensor selection and/or more robust sensor testing prior to putting into field service. All three test methods are capable of being successfully performed in the field and give

  3. Predicting vegetation-stabilized dune field morphology

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2012-09-01

    The morphology of vegetation-stabilized dune fields on the North American Great Plains (NAGP) mostly comprises parabolic dunes; stabilized barchan and transverse dunes are rare, with the exception of transverse and barchan mega-dunes in the Nebraska Sand Hills. We present a hypothesis from a numerical dune field model explaining the vegetation-stabilized morphology of dunes under unidirectional wind. Simulations with a range of initial dune morphologies (closely-spaced transverse to disperse barchans) indicate that stabilized morphology is determined by the ratio of slipface deposition rate to deposition tolerance of vegetation. Slipface deposition rate is related to dune height, flux, and celerity. With a fixed depositional tolerance, large, slow-moving dunes have low slipface deposition rates and ‘freeze’ in place once vegetation is introduced. Relatively small, fast dunes have high slipface deposition rates and evolve into parabolic dunes, often colliding during stabilization. Our hypothesis could explain differences in stabilized morphology across the NAGP and elsewhere.

  4. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Blunt, Martin J.; Orr, Jr., Franklin M.

    1999-12-20

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1998 - September 1998 under the third year of a three-year Department of Energy (DOE) grant on the ''Prediction of Gas Injection Performance for Heterogeneous Reservoirs''. The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical simulation. The research is divided into four main areas: (1) Pore scale modeling of three-phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three-phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator.

  5. Uncertainty in prediction of disinfection performance.

    PubMed

    Neumann, Marc B; von Gunten, Urs; Gujer, Willi

    2007-06-01

    Predicting the disinfection performance of a full-scale reactor in drinking water treatment is associated with considerable uncertainty. In view of quantitative risk analysis, this study assesses the uncertainty involved in predicting inactivation of Cryptosporidium parvum oocysts for an ozone reactor treating lake water. A micromodel is suggested which quantifies inactivation by stochastic sampling from density distributions of ozone exposure and lethal ozone dose. The ozone exposure distribution is computed with a tank in series model that is derived from tracer data and measurements of flow, ozone concentration and ozone decay. The distribution of lethal ozone doses is computed with a delayed Chick-Watson model which was calibrated by Sivaganesan and Marinas [2005. Development of a Ct equation taking into consideration the effect of Lot variability on the inactivation of Cryptosporidium parvum oocysts with ozone. Water Res. 39(11), 2429-2437] utilizing a large number of inactivation studies. Parameter uncertainty is propagated with Monte Carlo simulation and the probability of attaining given inactivation levels is assessed. Regional sensitivity analysis based on variance decomposition ranks the influence of parameters in determining the variance of the model result. The lethal dose model turns out to be responsible for over 90% of the output variance. The entire analysis is re-run for three exemplary scenarios to assess the robustness of the results in view of changing inputs, differing operational parameters or revised assumptions about the appropriate model. We argue that the suggested micromodel is a versatile approach for characterization of disinfection reactors. The scheme developed for uncertainty assessment is optimal for model diagnostics and effectively supports the management of uncertainty.

  6. Restructuring the navigational field: individual predisposition towards field independence predicts preferred navigational strategy.

    PubMed

    Boccia, Maddalena; Piccardi, Laura; D'Alessandro, Adele; Nori, Raffaella; Guariglia, Cecilia

    2017-06-01

    To successfully navigate within an environment, individuals have to organize the spatial information in terms of salient landmarks, paths and general layout of the navigational environment. They may differ in the strategy they adopt to orientate themselves, with some individuals preferring to use salient landmarks (landmark spatial style, L-SS), others preferring to plan routes or paths through an egocentric strategy in which landmarks are connected with each other (route spatial style, R-SS) and others still create a global map-like configuration of the environment regardless of their own position in the environment (survey spatial style, S-SS). Here, we assessed whether Field independence (FI), that is the extent to which the individual perceives part of a field as discrete from the surrounding field rather than embedded in the field, predicted the individual's spatial style. We assessed the individual's spatial style using the spatial cognitive style test (SCST) and measured FI using the group embedded figure test (GEFT). We found that FI predicted general spatial ability, with a higher level of FI being associated with better performances on the SCST. Also, Field-independent individuals showed a marked preference for an S-SS. These results suggest that a higher level of FI is associated with better performance on higher level spatial tasks (i.e. R-SS and S-SS) that is tasks requiring individuals to restructure the "navigational field" according to the navigational goal. The results also suggest that a higher level of FI makes individuals more prone to use a global and complex map-like representation of the environment.

  7. Microseismic Network Performance Estimation: Comparing Predictions to an Earthquake Catalogue

    NASA Astrophysics Data System (ADS)

    Greig, Wesley; Ackerley, Nick

    2014-05-01

    The design of networks for monitoring induced seismicity is of critical importance as specific standards of performance are necessary. One of the difficulties involved in designing networks for monitoring induced seismicity is that it is difficult to determine whether or not the network meets these standards without first developing an earthquake catalog. We develop a tool that can assess two key measures of network performance without an earthquake catalog: location accuracy and magnitude of completeness. Site noise is measured either at existing seismic stations or as part of a noise survey. We then interpolate measured values to determine a noise map for the entire region. This information is combined with instrument noise for each station to accurately assess total ambient noise at each station. Location accuracy is evaluated according to the approach of Peters and Crosson (1972). Magnitude of completeness is computed by assuming isotropic radiation and mandating a threshold signal to noise ratio (similar to Stabile et al. 2013). We apply this tool to a seismic network in the central United States. We predict the magnitude of completeness and the location accuracy and compare predicted values with observed values generated from the existing earthquake catalog for the network. We investigate the effects of hypothetical station additions and removals to a network to simulate network expansions and station failures. We find that the addition of stations to areas of low noise results in significantly larger improvements in network performance than station additions to areas of elevated noise, particularly with respect to magnitude of completeness. Our results highlight the importance of site noise considerations in the design of a seismic network. The ability to predict hypothetical station performance allows for the optimization of seismic network design and enables the prediction of performance for a purely hypothetical seismic network. If near real

  8. Why do spatial abilities predict mathematical performance?

    PubMed

    Tosto, Maria Grazia; Hanscombe, Ken B; Haworth, Claire M A; Davis, Oliver S P; Petrill, Stephen A; Dale, Philip S; Malykh, Sergey; Plomin, Robert; Kovas, Yulia

    2014-05-01

    Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering. Spatial skills have also been shown to rely on neuronal networks partially shared with mathematics. Understanding the nature of this association can inform educational practices and intervention for mathematical underperformance. Using data on two aspects of spatial ability and three domains of mathematical ability from 4174 pairs of 12-year-old twins, we examined the relative genetic and environmental contributions to variation in spatial ability and to its relationship with different aspects of mathematics. Environmental effects explained most of the variation in spatial ability (~70%) and in mathematical ability (~60%) at this age, and the effects were the same for boys and girls. Genetic factors explained about 60% of the observed relationship between spatial ability and mathematics, with a substantial portion of the relationship explained by common environmental influences (26% and 14% by shared and non-shared environments respectively). These findings call for further research aimed at identifying specific environmental mediators of the spatial-mathematics relationship. © 2014 The Authors Developmental Science Published by John Wiley & Sons Ltd.

  9. Changes in Memory Prediction Accuracy: Age and Performance Effects

    ERIC Educational Resources Information Center

    Pearman, Ann; Trujillo, Amanda

    2013-01-01

    Memory performance predictions are subjective estimates of possible memory task performance. The purpose of this study was to examine possible factors related to changes in word list performance predictions made by younger and older adults. Factors included memory self-efficacy, actual performance, and perceptions of performance. The current study…

  10. Changes in Memory Prediction Accuracy: Age and Performance Effects

    ERIC Educational Resources Information Center

    Pearman, Ann; Trujillo, Amanda

    2013-01-01

    Memory performance predictions are subjective estimates of possible memory task performance. The purpose of this study was to examine possible factors related to changes in word list performance predictions made by younger and older adults. Factors included memory self-efficacy, actual performance, and perceptions of performance. The current study…

  11. Performance evaluation of infrared imaging system in field test

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Guo, Xiaodong; Ren, Tingting; Zhang, Zhi-jie

    2014-11-01

    Infrared imaging system has been applied widely in both military and civilian fields. Since the infrared imager has various types and different parameters, for system manufacturers and customers, there is great demand for evaluating the performance of IR imaging systems with a standard tool or platform. Since the first generation IR imager was developed, the standard method to assess the performance has been the MRTD or related improved methods which are not perfect adaptable for current linear scanning imager or 2D staring imager based on FPA detector. For this problem, this paper describes an evaluation method based on the triangular orientation discrimination metric which is considered as the effective and emerging method to evaluate the synthesis performance of EO system. To realize the evaluation in field test, an experiment instrument is developed. And considering the importance of operational environment, the field test is carried in practical atmospheric environment. The test imagers include panoramic imaging system and staring imaging systems with different optics and detectors parameters (both cooled and uncooled). After showing the instrument and experiment setup, the experiment results are shown. The target range performance is analyzed and discussed. In data analysis part, the article gives the range prediction values obtained from TOD method, MRTD method and practical experiment, and shows the analysis and results discussion. The experimental results prove the effectiveness of this evaluation tool, and it can be taken as a platform to give the uniform performance prediction reference.

  12. Low thrust viscous nozzle flow fields prediction

    NASA Technical Reports Server (NTRS)

    Liaw, Goang-Shin

    1987-01-01

    An existing Navier-Stokes code (PARC2D) was used to compute the nozzle flow field. Grids were generated by the interactive grid generator codes TBGG and GENIE. All computations were made on the NASA/MSFC CRAY X-MP computer. Comparisons were made between the computations and MSFC in-house wall pressure measurements for CO2 flow through a conical nozzle having an area ratio of 40. Satisfactory agreements exist between the computations and measurements for different stagnation pressures of 29.4, 14.7, and 7.4 psia, at stagnation temperature of 1060 R. However, agreements did not match precisely near the nozzle exit. Several reasons for the lack of agreement are possible. The computational code assumes a constant gas gamma, whereas the gamma i.e. the specific heat ratio for CO2 varied from 1.22 in the plenum chamber to 1.38 at the nozzle exit. The computations also assumes adiabatic and no-slip walls. Both assumptions may not be correct. Finally, it is possible that condensation occurs during the nozzle expansion at the low stagnation pressure. The next phase of the work will incorporate variable gamma and slip wall boundary conditions in the computational code and develop a more accurate computer code.

  13. Low thrust viscous nozzle flow fields prediction

    NASA Astrophysics Data System (ADS)

    Liaw, Goang-Shin

    1987-12-01

    An existing Navier-Stokes code (PARC2D) was used to compute the nozzle flow field. Grids were generated by the interactive grid generator codes TBGG and GENIE. All computations were made on the NASA/MSFC CRAY X-MP computer. Comparisons were made between the computations and MSFC in-house wall pressure measurements for CO2 flow through a conical nozzle having an area ratio of 40. Satisfactory agreements exist between the computations and measurements for different stagnation pressures of 29.4, 14.7, and 7.4 psia, at stagnation temperature of 1060 R. However, agreements did not match precisely near the nozzle exit. Several reasons for the lack of agreement are possible. The computational code assumes a constant gas gamma, whereas the gamma i.e. the specific heat ratio for CO2 varied from 1.22 in the plenum chamber to 1.38 at the nozzle exit. The computations also assumes adiabatic and no-slip walls. Both assumptions may not be correct. Finally, it is possible that condensation occurs during the nozzle expansion at the low stagnation pressure. The next phase of the work will incorporate variable gamma and slip wall boundary conditions in the computational code and develop a more accurate computer code.

  14. An analytical model for predicting the aerodynamic performance of a turbine cascade with film cooling

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.; Tabakoff, W.

    1977-01-01

    Various analytical approaches to predicting the performance of film cooled turbine blades are reviewed. A two-dimensional cascade flow solution is developed for calculating the effects of the coolant injection on the total flow field. This solution is used with an available analytical performance predicting method to provide an improved method. Comparisons are made with experimental data and other analytical results.

  15. Prediction of Mechanical Properties of Polymers With Various Force Fields

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.

  16. Genomic Prediction of Testcross Performance in Canola (Brassica napus).

    PubMed

    Jan, Habib U; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A; Snowdon, Rod J

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable

  17. Genomic Prediction of Testcross Performance in Canola (Brassica napus)

    PubMed Central

    Jan, Habib U.; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A.; Snowdon, Rod J.

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable

  18. Predictions of H-mode performance in ITER

    SciTech Connect

    Budny, R. V.; Andre, R.; Bateman, G.; Halpern, F.; Kessel, C. E.; Kritz, A.; McCune, D.

    2008-03-03

    Time-dependent integrated predictive modeling is carried out using the PTRANSP code to predict fusion power and parameters such as alpha particle density and pressure in ITER H-mode plasmas. Auxiliary heating by negative ion neutral beam injection and ion cyclotron heating of He3 minority ions are modeled, and the GLF23 transport model is used in the prediction of the evolution of plasma temperature profiles. Effects of beam steering, beam torque, plasma rotation, beam current drive, pedestal temperatures, sawtooth oscillations, magnetic diffusion, and accumulation of He ash are treated self-consistently. Variations in assumptions associated with physics uncertainties for standard base-line DT H-mode plasmas (with Ip=15 MA, BTF=5.3 T, and Greenwald fraction=0.86) lead to a range of predictions for DT fusion power PDT and quasi-steady state fusion QDT (≡ PDT/Paux). Typical predictions assuming Paux = 50-53 MW yield PDT = 250- 720 MW and QDT = 5 - 14. In some cases where Paux is ramped down or shut off after initial flat-top conditions, quasi-steady QDT can be considerably higher, even infinite. Adverse physics assumptions such as existence of an inward pinch of the helium ash and an ash recycling coefficient approaching unity lead to very low values for PDT. Alternative scenarios with different heating and reduced performance regimes are also considered including plasmas with only H or D isotopes, DT plasmas with toroidal field reduced 10 or 20%, and discharges with reduced beam voltage. In full-performance D-only discharges, tritium burn-up is predicted to generate central tritium densities up to 1016/m3 and DT neutron rates up to 5×1016/s, compared with the DD neutron rates of 6×1017/s. Predictions with the toroidal field reduced 10 or 20% below the planned 5.3 T and keeping the same q98, Greenwald fraction, and Βη indicate that the fusion yield PDT and QDT will be lower by about a factor of two (scaling as B3.5).

  19. Pilot Performance With Predictive System Status Information

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.

    1997-01-01

    Research has shown a strong pilot preference for predictive information of aircraft system status in the flight deck. However, the benefits of predictive information have not been quantitatively demonstrated. The study described here attempted to identify and quantify these benefits if they existed. In this simulator experiment, three types of predictive information (none, whether a parameter was changing abnormally, and the time for a parameter to reach an alert range) and four initial times to an alert (1 minute, 5 minutes, 15 minutes, and ETA+ 45 minutes) were found to affect when subjects accomplished certain actions, such as accessing pertinent checklists, declaring emergencies, diverting, and calling the flight attendant and dispatch.

  20. Predicting Mathematics Performance in High School Girls and Boys.

    ERIC Educational Resources Information Center

    Sherman, Julia

    1979-01-01

    Females' and males' ninth grade scores for three cognitive tests and eight mathematics attitudes scales were used to predict mathematics performance. These scores significantly predicted mathematics performance 1-3 years later. Spatial visualization was an important variable, significantly predicting geometry grade for girls, but not for boys.…

  1. Analytical Modeling and Performance Prediction of Remanufactured Gearbox Components

    NASA Astrophysics Data System (ADS)

    Pulikollu, Raja V.; Bolander, Nathan; Vijayakar, Sandeep; Spies, Matthew D.

    Gearbox components operate in extreme environments, often leading to premature removal or overhaul. Though worn or damaged, these components still have the ability to function given the appropriate remanufacturing processes are deployed. Doing so reduces a significant amount of resources (time, materials, energy, manpower) otherwise required to produce a replacement part. Unfortunately, current design and analysis approaches require extensive testing and evaluation to validate the effectiveness and safety of a component that has been used in the field then processed outside of original OEM specification. To test all possible combination of component coupled with various levels of potential damage repaired through various options of processing would be an expensive and time consuming feat, thus prohibiting a broad deployment of remanufacturing processes across industry. However, such evaluation and validation can occur through Integrated Computational Materials Engineering (ICME) modeling and simulation. Sentient developed a microstructure-based component life prediction (CLP) tool to quantify and assist gearbox components remanufacturing process. This was achieved by modeling the design-manufacturing-microstructure-property relationship. The CLP tool assists in remanufacturing of high value, high demand rotorcraft, automotive and wind turbine gears and bearings. This paper summarizes the CLP models development, and validation efforts by comparing the simulation results with rotorcraft spiral bevel gear physical test data. CLP analyzes gear components and systems for safety, longevity, reliability and cost by predicting (1) New gearbox component performance, and optimal time-to-remanufacture (2) Qualification of used gearbox components for remanufacturing process (3) Predicting the remanufactured component performance.

  2. Does field independence predict visuo-spatial abilities underpinning human navigation? Behavioural evidence.

    PubMed

    Boccia, Maddalena; Piccardi, Laura; Di Marco, Mariangela; Pizzamiglio, Luigi; Guariglia, Cecilia

    2016-10-01

    Field independence (FI) has been defined as the extent to which the individual perceives part of a field as discrete from the surrounding field, rather than embedded in the field. It has been proposed to represent a relatively stable pattern in individuals' predisposition towards information processing. In the present study, we assessed the effect of FI on skills underpinning human navigation. Fifty Healthy individuals took part in this study. FI has been assessed by using the group embedded figures test (GEFT). Participants were also asked to perform several visuo-spatial orientation tasks, including the perspective taking/spatial orientation test (PTSOT), the mental rotation task (MRT) and the vividness task, as well as the Santa Barbara Sense of Direction Scale, a self-reported questionnaire, which has been found to predict environmental spatial orientation ability. We found that performances on the GEFT significantly predicted performances on the PTSOT and the MRT. This result supports the idea that FI predicts human navigation.

  3. Statistical validation of event predictors: A comparative study based on the field of seizure prediction

    SciTech Connect

    Feldwisch-Drentrup, Hinnerk; Schulze-Bonhage, Andreas; Timmer, Jens; Schelter, Bjoern

    2011-06-15

    The prediction of events is of substantial interest in many research areas. To evaluate the performance of prediction methods, the statistical validation of these methods is of utmost importance. Here, we compare an analytical validation method to numerical approaches that are based on Monte Carlo simulations. The comparison is performed in the field of the prediction of epileptic seizures. In contrast to the analytical validation method, we found that for numerical validation methods insufficient but realistic sample sizes can lead to invalid high rates of false positive conclusions. Hence we outline necessary preconditions for sound statistical tests on above chance predictions.

  4. Silicon Photomultiplier Performance in High ELectric Field

    NASA Astrophysics Data System (ADS)

    Montoya, J.; Morad, J.

    2016-12-01

    Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to

  5. Predicting Students' Performance in Elements of Statistics

    ERIC Educational Resources Information Center

    Li, Kuiyuan; Uvah, Josaphat; Amin, Raid

    2012-01-01

    In this paper, we assess students' performance in Elements of Statistics, one of the popular courses in general education, using data from UWF (University of West Florida) for fall 2008, fall 2009, and fall 2010 semesters. We analyze associations between students' performance in the course and several performance related factors including: college…

  6. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Blunt, Michael J.; Orr, Franklin M.

    1999-05-26

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1996 - September 1997 under the first year of a three-year Department of Energy grant on the Prediction of Gas Injection Performance for Heterogeneous Reservoirs. The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical simulation. The original proposal described research in four main areas; (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each stage of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.

  7. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Blunt, Martin J.; Orr, Franklin M.

    1999-05-17

    This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1997 - September 1998 under the second year of a three-year grant from the Department of Energy on the "Prediction of Gas Injection Performance for Heterogeneous Reservoirs." The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments, and numerical simulation. The original proposal described research in four areas: (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each state of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.

  8. Dual-stroke heat pump field performance

    NASA Astrophysics Data System (ADS)

    Veyo, S. E.

    1984-11-01

    Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.

  9. Prediction of College Performance of Superior Students.

    ERIC Educational Resources Information Center

    Roberts, Roy J.

    1965-01-01

    Using 857 male National Merit Finalists and Commended Students, scales to predict 1st year college grades and science, writing, art, music, speech, and leadership achievement were developed by analysis of 906 pre-college questionnaire items. Two item analysis strategies were used: responses of achieving subjects (S's) and general samples of…

  10. Differential Prediction of College Performance between Gender.

    ERIC Educational Resources Information Center

    Patton, Timothy K.

    Researchers in the past have found discrepancies in the prediction of college grade point average (GPA) between genders with the use of standardized tests such as the Scholastic Achievement Test (SAT) and the American College Test (ACT). These differences were studied to determine if the potential differences could be attributed to differential…

  11. Improved Coupling for UH-60 Performance Prediction

    NASA Technical Reports Server (NTRS)

    Romander, Ethan

    2012-01-01

    This presentation will have two parts to it. The first will consist of a review on force conservation in coupled stimulation. The second part will mainly be about the preliminary comparisons of measured/predicted blade motion. Furthermore, introduction to measurement technique and rigid body motion comparison will also be included in the presentation.

  12. Search field size and lesion detection performance

    NASA Astrophysics Data System (ADS)

    Tipnis, Sameer; Huda, Walter; Hardie, Andrew; Ogden, Kent

    2010-04-01

    In this study, we evaluated the ability of an observer to identify abnormal foci on CT and how that ability is affected by changing the search field size from a whole abdomen to the liver region alone. A 2-Alternate Forced Choice (2 AFC) experimental paradigm was used to quantify observer detection performance. Each AFC experiment yielded the intensity needed to achieve 92% accuracy in lesion detection (I92%). Abdominal images were obtained at an x-ray tube voltage of 120 kV with a CTDIvol of 20 mGy. Circular lesions were generated by projecting spheres onto the image plane, followed by blurring function. Five lesion sizes (5 mm, 7 mm, 10 mm, 12 mm, and 15 mm), and four readers who were extensively trained in AFC methodology, were used in the 2AFC experiments. Each experiment was repeated 4 times to improve the experimental precision, as well as to provide an estimate of experimental uncertainty. For each observer, the experimental order of the 40 experiments was randomized to eliminate learning curve and/or observer fatigue. We measured contrast detail slopes for both Abdomen and Liver search field size, and determined ratio of I92% value for Abdomen search field to the corresponding I92% for the Liver search field (i.e., Rabd:liv). Values of Rabd:liv provides quantitative indicator of the relative difficulty of detection lesions in the whole Abdomen relative to lesion detection restricted to the Liver. The slope of the contrast detail curve for the Abdomen search field was -0.03, whereas the corresponding slope for the Liver search field was -0.18. Rabd:liv ranged between 1.3 and 1.6, with an average of 1.4 +/- 0.1. The value of Rabd:liv monotonically increased from 1.35 for 5 mm lesions to nearly 1.6 for the largest 15 mm lesion. The results of our study indicate that limiting the area of search to the liver on a CT of the abdomen improves the detection of mass lesions. This finding is almost certainly related to the fact that the liver provides a relatively

  13. ILS Glide Slope Performance Prediction Multipath Scattering

    DTIC Science & Technology

    1976-12-01

    simple image theory to obtain the image field Ha(r): " .. e i k JA A ( 1 0 ) -H: a r) - - - 2- [ xe-(.h)e J where D2 is the distance from the image of...the transmitting dipole to the field point r: D2 x2 + (y-ya) + (z+h) The total field intensity H. at r is just the sum of the direct (Aa and ground...a _ [1+1 213+1 3 (14) where 11 F1 eik(R 1 +D1) ds (15) ,s. DZ-l KD Is(S - F 2 e ik(R I+ D2 ) ds (I ) 2 D, R1 6i 13 / I ik(R2+DI) SD1zR2 ds (17) 14

  14. Field procedures for verification and adjustment of fire behavior predictions

    Treesearch

    Richard C. Rothermel; George C. Rinehart

    1983-01-01

    The problem of verifying predictions of fire behavior, primarily rate of spread, is discussed in terms of the fire situation for which predictions are made, and the type of fire where data are to be collected. Procedures for collecting data and performing analysis are presented for both readily accessible fires where data should be complete, and for inaccessible fires...

  15. Product component genealogy modeling and field-failure prediction

    SciTech Connect

    King, Caleb; Hong, Yili; Meeker, William Q.

    2016-04-13

    Many industrial products consist of multiple components that are necessary for system operation. There is an abundance of literature on modeling the lifetime of such components through competing risks models. During the life-cycle of a product, it is common for there to be incremental design changes to improve reliability, to reduce costs, or due to changes in availability of certain part numbers. These changes can affect product reliability but are often ignored in system lifetime modeling. By incorporating this information about changes in part numbers over time (information that is readily available in most production databases), better accuracy can be achieved in predicting time to failure, thus yielding more accurate field-failure predictions. This paper presents methods for estimating parameters and predictions for this generational model and a comparison with existing methods through the use of simulation. Our results indicate that the generational model has important practical advantages and outperforms the existing methods in predicting field failures.

  16. Predicted Performance of Energetic Plasticizer Formulations.

    DTIC Science & Technology

    1980-06-01

    RESOLUIctt TESI CHARI NA IIN t 1111 A l (t IA NDIA N) ’ t LEVEW FRANK J. SOLER RESEARCH LABORATORY FJSRL TECHNICAL REPORT 80񓀯 JUNE 1980 00 PREDICTED...MND heat of formation q • 8 Soa Level lop (eocode) * * 10 𔃾 𔃾 𔃾 𔃾 ’ 0,4 SI0- Ml i I II. I I 5 1 Sa I - U 0 S! oS L ~ .+ ....... .... .... *11 TABLE

  17. Rotary-wing aerodynamics. Volume 2: Performance prediction of helicopters

    NASA Technical Reports Server (NTRS)

    Keys, C. N.; Stephniewski, W. Z. (Editor)

    1979-01-01

    Application of theories, as well as, special methods of procedures applicable to performance prediction are illustrated first, on an example of the conventional helicopter and then, winged and tandem configurations. Performance prediction of conventional helicopters in hover and vertical ascent are investigated. Various approaches to performance prediction in forward translation are presented. Performance problems are discussed only this time, a wing is added to the baseline configuration, and both aircraft are compared with respect to their performance. This comparison is extended to a tandem. Appendices on methods for estimating performance guarantees and growth of aircraft concludes this volume.

  18. Performance analysis and prediction in triathlon.

    PubMed

    Ofoghi, Bahadorreza; Zeleznikow, John; Macmahon, Clare; Rehula, Jan; Dwyer, Dan B

    2016-01-01

    Performance in triathlon is dependent upon factors that include somatotype, physiological capacity, technical proficiency and race strategy. Given the multidisciplinary nature of triathlon and the interaction between each of the three race components, the identification of target split times that can be used to inform the design of training plans and race pacing strategies is a complex task. The present study uses machine learning techniques to analyse a large database of performances in Olympic distance triathlons (2008-2012). The analysis reveals patterns of performance in five components of triathlon (three race "legs" and two transitions) and the complex relationships between performance in each component and overall performance in a race. The results provide three perspectives on the relationship between performance in each component of triathlon and the final placing in a race. These perspectives allow the identification of target split times that are required to achieve a certain final place in a race and the opportunity to make evidence-based decisions about race tactics in order to optimise performance.

  19. A predictive model of human performance.

    NASA Technical Reports Server (NTRS)

    Walters, R. F.; Carlson, L. D.

    1971-01-01

    An attempt is made to develop a model describing the overall responses of humans to exercise and environmental stresses for prediction of exhaustion vs an individual's physical characteristics. The principal components of the model are a steady state description of circulation and a dynamic description of thermal regulation. The circulatory portion of the system accepts changes in work load and oxygen pressure, while the thermal portion is influenced by external factors of ambient temperature, humidity and air movement, affecting skin blood flow. The operation of the model is discussed and its structural details are given.

  20. Driving and Low Vision: Validity of Assessments for Predicting Performance of Drivers

    ERIC Educational Resources Information Center

    Strong, J. Graham; Jutai, Jeffrey W.; Russell-Minda, Elizabeth; Evans, Mal

    2008-01-01

    The authors conducted a systematic review to examine whether vision-related assessments can predict the driving performance of individuals who have low vision. The results indicate that measures of visual field, contrast sensitivity, cognitive and attention-based tests, and driver screening tools have variable utility for predicting real-world…

  1. Field performance of a premium heating oil

    SciTech Connect

    Santa, T.; Jetter, S.M.

    1996-07-01

    As part of our ongoing research to provide quality improvements to heating oil, Mobil Oil together with Santa Fuel, Inc., conducted a field trial to investigate the performance of a new premium heating oil. This premium heating oil contains an additive system designed to minimize sludge related problems in the fuel delivery system of residential home heating systems. The additive used was similar to others reported at this and earlier BNL conferences, but was further developed to enhance its performance in oil heat systems. The premium heating oil was bulk additized and delivered to a subset of the customer base. Fuel related, unscheduled service calls were monitored in this test area, as well as in a similar baseline area that did not receive the premium heating oil. Overall, the premium fuel provided a 45% reduction in the occurrence of fuel related, unscheduled service calls as compared to the baseline area. Within this population, there was a reduction of 38% in systems with 275 gallon tanks, and 55% in systems that had >275 gallon tanks showing that the additive is effective in the various configurations of residential oil heat systems. In addition, photographic documentation collected at two accounts supported this improvement by clearly showing that the equipment remained cleaner with the premium heating oil than with regular heating oil. Based on these results, a full marketing trial of this new product has been initiated by Mobil and Santa Fuel, Inc., during the 1995-1996 heating season.

  2. Mining Behavior Based Safety Data to Predict Safety Performance

    SciTech Connect

    Jeffrey C. Joe

    2010-06-01

    The Idaho National Laboratory (INL) operates a behavior based safety program called Safety Observations Achieve Results (SOAR). This peer-to-peer observation program encourages employees to perform in-field observations of each other's work practices and habits (i.e., behaviors). The underlying premise of conducting these observations is that more serious accidents are prevented from occurring because lower level “at risk” behaviors are identified and corrected before they can propagate into culturally accepted “unsafe” behaviors that result in injuries or fatalities. Although the approach increases employee involvement in safety, the premise of the program has not been subject to sufficient empirical evaluation. The INL now has a significant amount of SOAR data on these lower level “at risk” behaviors. This paper describes the use of data mining techniques to analyze these data to determine whether they can predict if and when a more serious accident will occur.

  3. SPHERE on-sky performance compared with budget predictions

    NASA Astrophysics Data System (ADS)

    Dohlen, Kjetil; Vigan, Arthur; Mouillet, David; Wildi, François; Sauvage, Jean-François; Fusco, Thierry; Beuzit, Jean-Luc; Puget, Pascal; Le Mignant, David; Roelfsema, Ronald; Pragt, Johan; Schmid, Hans Martin; Gratton, Raffaele; Mesa, Dino; Claudi, Riccardo; Langlois, Maud; Costille, Anne; Hugot, Emmanuel; O'Neil, Jared; Guerra, Juan Carlos; N'Diaye, Mamadou; Girard, Julien; Mawet, Dimitri; Zins, Gerard

    2016-08-01

    The SPHERE (spectro-photometric exoplanet research) extreme-AO planet hunter saw first light at the VLT observatory on Mount Paranal in May 2014 after ten years of development. Great efforts were put into modelling its performance, particularly in terms of achievable contrast, and to budgeting instrumental features such as wave front errors and optical transmission to each of the instrument's three focal planes, the near infrared dual imaging camera IRDIS, the near infrared integral field spectrograph IFS and the visible polarimetric camera ZIMPOL. In this paper we aim at comparing predicted performance with measured performance. In addition to comparing on-sky contrast curves and calibrated transmission measurements, we also compare the PSD-based wave front error budget with in-situ wave front maps obtained thanks to a Zernike phase mask, ZELDA, implemented in the infrared coronagraph wheel. One of the most critical elements of the SPHERE system is its high-order deformable mirror, a prototype 40x40 actuator piezo stack design developed in parallel with the instrument itself. The development was a success, as witnessed by the instrument performance, in spite of some bad surprises discovered on the way. The devastating effects of operating without taking properly into account the loss of several actuators and the thermally and temporally induced variations in the DM shape will be analysed, and the actions taken to mitigate these defects through the introduction of specially designed Lyot stops and activation of one of the mirrors in the optical train will be described.

  4. SYRUS: Understanding and Predicting Multitasking Performance

    DTIC Science & Technology

    2007-02-01

    14 items. 11 Finally, following this set of cognitive tasks, participants completed 50 items from the International Personality Item Pool ( IPIP ...using a 5-point scale . Session 2. In Session 2, participants performed 9 5-minute blocks of the synthetic work task, called SynWin. Figure 1

  5. Challenges of Student Selection: Predicting Academic Performance

    ERIC Educational Resources Information Center

    van der Merwe, D.; de Beer, M.

    2006-01-01

    Finding accurate predictors of tertiary academic performance, specifically for disadvantaged students, is essential because of budget constraints and the need of the labour market to address employment equity. Increased retention, throughput and decreased dropout rates are vital. When making admission decisions, the under preparedness of students…

  6. Students' Ability to Predict Examination Performance

    ERIC Educational Resources Information Center

    Hall, W. C.; Veale, J. L.

    1976-01-01

    It is sometimes assumed that students (a) know which questions they will be best at answering in an examination, and (b) know how well they have performed after completing an examination. These hypotheses were tested for 50 dental students who completed a six-question essay examination in Human Physiology and Pharmacology. (Editor/RK)

  7. Accurate torque-speed performance prediction for brushless dc motors

    NASA Astrophysics Data System (ADS)

    Gipper, Patrick D.

    Desirable characteristics of the brushless dc motor (BLDCM) have resulted in their application for electrohydrostatic (EH) and electromechanical (EM) actuation systems. But to effectively apply the BLDCM requires accurate prediction of performance. The minimum necessary performance characteristics are motor torque versus speed, peak and average supply current and efficiency. BLDCM nonlinear simulation software specifically adapted for torque-speed prediction is presented. The capability of the software to quickly and accurately predict performance has been verified on fractional to integral HP motor sizes, and is presented. Additionally, the capability of torque-speed prediction with commutation angle advance is demonstrated.

  8. Scaling--which methods best predict performance?

    PubMed

    Comfort, Paul; Pearson, Stephen J

    2014-06-01

    Athletes with a higher body mass (BM) tend to be stronger, with ratio scaling possibly eliminating this effect. The aim of this study was to compare relationships between sprint performances with scaled measures of strength and power. Fifteen professional rugby league players (age, 26.27 6 3.87 years; height, 183.33 6 6.37 cm; BM, 96.86 6 11.49 kg) performed 1 repetition maximum back squats, power cleans, squat jumps, and sprints (5, 10, and 20 m). Heavier athletes (forward) generated significantly greater absolute levels of power during the squat jump (5,659.11 6 710.35 vs.4,740.16 6 558.61 W; p , 0.001); however, when power data were scaled no differences were observed. Squat performance indicated no differences in absolute ability between the subgroups (190.6 6 14.25 vs. 205.7 6 18.35 kg), although the lighter group was significantly (p # 0.05) stronger than the heavier group when using ratio and allometric methods (2.1 vs. 1.9 kg · kg(-1) and 10.42 vs. 9.87 kg · kg(0.28)), respectively. Significant relationships with 5-m sprints were only observed for ratio and allometrically scaled power cleans (r = 20.625, p , 0.02; r = 20.675, p , 0.02), with similar correlations between allometrically scaled 10-m sprint and both back squat and power clean performances. Scaled power clean performances were also inversely correlated with 20-m sprints (r = 20.620, r = 20.638, p , 0.02). Where differences in absolute strength are apparent between individuals of different BM, then the use of scaling is required. Because of the similarity between ratio and allometric methods, simple ratio scaling is recommended.

  9. The effect of performance feedback on cardiorespiratory fitness field tests.

    PubMed

    Metsios, G S; Flouris, A D; Koutedakis, Y; Theodorakis, Y

    2006-06-01

    We investigated the effects of performance feedback (PF) on predicting maximal oxygen uptake (VO2 max) using the 20 m Multistage Shuttle Run Test (MST) and 20 m Square Shuttle Test (SST). The agreement between these two field tests in relation to laboratory VO2 max was also examined. Forty healthy males (age: 21.5+/-2.3; BMI: 23.7+/-2.0) randomly performed four indirect VO2 max tests; that is the MST and SST, as well as a modified version of MST (MSTMD) and SST (SSTMD). During MST and SST subjects received PF with respect to both test stage and running pace. In contrast, MSTMD and SSTMD incorporated auditory feedback which solely emitted signals regulating the running pace. Participants also performed a laboratory VO2 max treadmill test (TT). ANOVA demonstrated significant mean predicted VO2 max decrements in both MSTMD (p<0.001) and SSTMD (p<0.05) compared to MST and SST, respectively. In predicting TTVO2 max, the '95% limits of agreement' analysis indicated errors equal to 3.6+/-9.6 and 1.4+/-10.3 ml kg-1 min-1 with coefficients of variation of +/-10.0% and +/-10.9%, for MST and MSTMD, respectively. The corresponding '95% limits of agreement' values for SST and SSTMD were 0.1+/-5.0 and -1.1+/-6.1 ml kg-1 min-1 with coefficients of variation of +/-5.4% and +/-6.7%, respectively. It is concluded that the application of PF leads to superior field testing performances.

  10. Potential Field Source Surface Model and Solar Wind Prediction

    NASA Astrophysics Data System (ADS)

    Poduval, B.; Zhao, X.; Hoeksema, T.

    2005-05-01

    Various magnetic activities of the Sun causes disturbances in the near-Earth enviornment as well as on the weather and technology on Earth. "Addressing these disturbances and predicting them well in advance are the main task of Space Weather research. Much of the solar side of Space Weather is concerned with the accurate prediction of solar wind and its properties which are closely related to the coronal magnetic field. Since a direct measurement of the coronal magnetic field is still limited to strong field regions, solar wind predictions are based on theoretical models of the corona. The primary prediction scheme of the solar wind speed currently used at SEC is based on the empirical relationship between the flux tube expansion (FTE) factor obtained using Potential Field Source Surface (PFSS) model of the corona and the solar wind speed near the Earth. Though successful, this scheme has significant discrepancies. We have studied, using the near-Earth saltellites data as well as near--Sun Helios data, the possible causes of these discrepancies. In our study, FTE at the source surface were obtained using two different coronal models: PFSS model and the Current--Sheet Source Surface (CSSS) model. We present the results of this investigation and a comparison of the two models.

  11. Third Graders' Performance Predictions: Calibration Deflections and Academic Success

    ERIC Educational Resources Information Center

    Ots, Aivar

    2013-01-01

    This study focuses on third grade pupils' (9 to 10 years old) ability to predict their performance in a given task and on the correspondence between the accuracy and adequacy of the predictions on the one hand, and the academic achievement on the other. The study involved 713 pupils from 29 Estonian schools. The pupils' performance predictions…

  12. Can cycle power predict sprint running performance?

    PubMed

    van Ingen Schenau, G J; Jacobs, R; de Koning, J J

    1991-01-01

    A major criticism of present models of the energetics and mechanics of sprint running concerns the application of estimates of parameters which seem to be adapted from measurements of running during actual competitions. This study presents a model which does not perpetuate this solecism. Using data obtained during supra-maximal cycle ergometer tests of highly trained athletes, the kinetics of the anaerobic and aerobic pathways were modelled. Internal power wasted in the acceleration and deceleration of body limbs and the power necessary to overcome air friction was calculated from data in the literature. Assuming a mechanical efficiency as found during submaximal cycling, a power equation was constructed which also included the power necessary to accelerate the body at the start of movement. The differential equation thus obtained was solved through simulation. The model appeared to predict realistic times at 100 m (10.47 s), 200 m (19.63 s) and 400 m (42.99 s) distances. By comparison with other methods it is argued that power equations of locomotion should include the concept of mechanical efficiency.

  13. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  14. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  15. Predicting unit performance by assessing transformational and transactional leadership.

    PubMed

    Bass, Bernard M; Avolio, Bruce J; Jung, Dong I; Berson, Yair

    2003-04-01

    How do leadership ratings collected from units operating under stable conditions predict subsequent performance of those units operating under high stress and uncertainty? To examine this question, the authors calculated the predictive relationships for the transformational and transactional leadership of 72 light infantry rifle platoon leaders for ratings of unit potency, cohesion, and performance for U.S. Army platoons participating in combat simulation exercises. Both transformational and transactional contingent reward leadership ratings of platoon leaders and sergeants positively predicted unit performance. The relationship of platoon leadership to performance was partially mediated through the unit's level of potency and cohesion. Implications, limitations, and future directions for leadership research are discussed.

  16. Review of VHF Band 1 field strength prediction

    NASA Astrophysics Data System (ADS)

    Sandell, R. S.; Lee, R. W.; Malcolm-Coe, J.

    1986-06-01

    The results of a review of Very High Frequency (VHF) Band I field strength measurements and prediction methods are described. Most of the measurements were made by the British Broadcasting Company (BBC) and many were used in the early 1960s to prepare CCIR propagation curves. Modern computational methods have permitted a fuller analysis of the data than was possible previously. This led to conculsions about the accuracy of the CCIR prediction method, how it should best be used, and the extent of discrepancies in the existing procedures. In addition, this review examines the BBC's more detailed path loss computerized prediction method. This has the potential to give more accurate results than the CCIR curves, although the program is not yet developed for operations at Band I frequencies. Finally the report makes proposals for future improvements to these prediction techniques, and considers the possibility of developing a harmonized approach.

  17. Does IQ Really Predict Job Performance?

    PubMed Central

    Richardson, Ken; Norgate, Sarah H.

    2015-01-01

    IQ has played a prominent part in developmental and adult psychology for decades. In the absence of a clear theoretical model of internal cognitive functions, however, construct validity for IQ tests has always been difficult to establish. Test validity, therefore, has always been indirect, by correlating individual differences in test scores with what are assumed to be other criteria of intelligence. Job performance has, for several reasons, been one such criterion. Correlations of around 0.5 have been regularly cited as evidence of test validity, and as justification for the use of the tests in developmental studies, in educational and occupational selection and in research programs on sources of individual differences. Here, those correlations are examined together with the quality of the original data and the many corrections needed to arrive at them. It is concluded that considerable caution needs to be exercised in citing such correlations for test validation purposes. PMID:26405429

  18. Residential magnetic fields predicted from wiring configurations: I. Exposure model.

    PubMed

    Bowman, J D; Thomas, D C; Jiang, L; Jiang, F; Peters, J M

    1999-10-01

    A physically based model for residential magnetic fields from electric transmission and distribution wiring was developed to reanalyze the Los Angeles study of childhood leukemia by London et al. For this exposure model, magnetic field measurements were fitted to a function of wire configuration attributes that was derived from a multipole expansion of the Law of Biot and Savart. The model parameters were determined by nonlinear regression techniques, using wiring data, distances, and the geometric mean of the ELF magnetic field magnitude from 24-h bedroom measurements taken at 288 homes during the epidemiologic study. The best fit to the measurement data was obtained with separate models for the two major utilities serving Los Angeles County. This model's predictions produced a correlation of 0.40 with the measured fields, an improvement on the 0.27 correlation obtained with the Wertheimer-Leeper (WL) wire code. For the leukemia risk analysis in a companion paper, the regression model predicts exposures to the 24-h geometric mean of the ELF magnetic fields in Los Angeles homes where only wiring data and distances have been obtained. Since these input parameters for the exposure model usually do not change for many years, the predicted magnetic fields will be stable over long time periods, just like the WL code. If the geometric mean is not the exposure metric associated with cancer, this regression technique could be used to estimate long-term exposures to temporal variability metrics and other characteristics of the ELF magnetic field which may be cancer risk factors.

  19. FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS

    SciTech Connect

    Coe, Dan; Bradley, Larry; Zitrin, Adi

    2015-02-20

    The Frontier Fields program is obtaining deep Hubble and Spitzer Space Telescope images of new ''blank'' fields and nearby fields gravitationally lensed by massive galaxy clusters. The Hubble images of the lensed fields are revealing nJy sources (AB mag > 31), the faintest galaxies yet observed. The full program will transform our understanding of galaxy evolution in the first 600 million years (z > 9). Previous programs have yielded a dozen or so z > 9 candidates, including perhaps fewer than expected in the Ultra Deep Field and more than expected in shallower Hubble images. In this paper, we present high-redshift (z > 6) number count predictions for the Frontier Fields and candidates in three of the first Hubble images. We show the full Frontier Fields program may yield up to ∼70 z > 9 candidates (∼6 per field). We base this estimate on an extrapolation of luminosity functions observed between 4 < z < 8 and gravitational lensing models submitted by the community. However, in the first two deep infrared Hubble images obtained to date, we find z ∼ 8 candidates but no strong candidates at z > 9. We defer quantitative analysis of the z > 9 deficit (including detection completeness estimates) to future work including additional data. At these redshifts, cosmic variance (field-to-field variation) is expected to be significant (greater than ±50%) and include clustering of early galaxies formed in overdensities. The full Frontier Fields program will significantly mitigate this uncertainty by observing six independent sightlines each with a lensing cluster and nearby blank field.

  20. Reliable predictions of waste performance in a geologic repository

    SciTech Connect

    Pigford, T.H.; Chambre, P.L.

    1985-08-01

    Establishing reliable estimates of long-term performance of a waste repository requires emphasis upon valid theories to predict performance. Predicting rates that radionuclides are released from waste packages cannot rest upon empirical extrapolations of laboratory leach data. Reliable predictions can be based on simple bounding theoretical models, such as solubility-limited bulk-flow, if the assumed parameters are reliably known or defensibly conservative. Wherever possible, performance analysis should proceed beyond simple bounding calculations to obtain more realistic - and usually more favorable - estimates of expected performance. Desire for greater realism must be balanced against increasing uncertainties in prediction and loss of reliability. Theoretical predictions of release rate based on mass-transfer analysis are bounding and the theory can be verified. Postulated repository analogues to simulate laboratory leach experiments introduce arbitrary and fictitious repository parameters and are shown not to agree with well-established theory. 34 refs., 3 figs., 2 tabs.

  1. Predicting the physiological performance of ectotherms in fluctuating thermal environments.

    PubMed

    Niehaus, Amanda C; Angilletta, Michael J; Sears, Michael W; Franklin, Craig E; Wilson, Robbie S

    2012-02-15

    Physiological ecologists have long sought to understand the plasticity of organisms in environments that vary widely among years, seasons and even hours. This is now even more important because human-induced climate change is predicted to affect both the mean and variability of the thermal environment. Although environmental change occurs ubiquitously, relatively few researchers have studied the effects of fluctuating environments on the performance of developing organisms. Even fewer have tried to validate a framework for predicting performance in fluctuating environments. Here, we determined whether reaction norms based on performance at constant temperatures (18, 22, 26, 30 and 34°C) could be used to predict embryonic and larval performance of anurans at fluctuating temperatures (18-28°C and 18-34°C). Based on existing theory, we generated hypotheses about the effects of stress and acclimation on the predictability of performance in variable environments. Our empirical models poorly predicted the performance of striped marsh frogs (Limnodynastes peronii) at fluctuating temperatures, suggesting that extrapolation from studies conducted under artificial thermal conditions would lead to erroneous conclusions. During the majority of ontogenetic stages, growth and development in variable environments proceeded more rapidly than expected, suggesting that acute exposures to extreme temperatures enable greater performance than do chronic exposures. Consistent with theory, we predicted performance more accurately for the less variable thermal environment. Our results underscore the need to measure physiological performance under naturalistic thermal conditions when testing hypotheses about thermal plasticity or when parameterizing models of life-history evolution.

  2. Predicting oxygenator clinical performance from laboratory in-vitro testing.

    PubMed

    Griffith, K E; Vasquez, M R; Beckley, P D; LaLone, B J

    1994-09-01

    Knowledge and predictability of oxygenator performance is vital to safe and effective conduct of cardiopulmonary bypass. The determination of oxygenator performance in the laboratory, however, is carried out under a strict set of conditions established by the Association for the Advancement of Medical Instrumentation (AAMI). This performance data is of limited value in the clinical setting where the perfusionist generally operates outside this set of parameters. This study (1) reports the laboratory performance characteristics of a hollow fiber membrane oxygenator (Sorin Monolyth), (2) uses this data to develop a model to predict performance under a wide range of clinical conditions, (3) compares predicted performance with clinical data collected at two open heart centers, and (4) reviews the complexities of comparing laboratory and clinical performance. An in-vitro "oxygenator-deoxygenator" circuit was utilized to determine O2 and CO2 gas exchange, blood path pressure drop, and heat exchanger efficiency at a variety of blood and gas flows, under standard (AAMI) blood inlet conditions: [table: see text] This laboratory performance data was compared to hospital and computer modeling data. Simple numerical comparison and analysis of variance of regression coefficients over groups indicated that some clinical parameters of performance (oxygen transfer and coefficient of heat exchange) were not predicted with the laboratory data. It is concluded that the laboratory performance data determined under strict controlled conditions may be of limited value in predicting clinical performance unless modeled to allow for variances in operating conditions.

  3. The joint effects of personality and workplace social exchange relationships in predicting task performance and citizenship performance.

    PubMed

    Kamdar, Dishan; Van Dyne, Linn

    2007-09-01

    This field study examines the joint effects of social exchange relationships at work (leader-member exchange and team-member exchange) and employee personality (conscientiousness and agreeableness) in predicting task performance and citizenship performance. Consistent with trait activation theory, matched data on 230 employees, their coworkers, and their supervisors demonstrated interactions in which high quality social exchange relationships weakened the positive relationships between personality and performance. Results demonstrate the benefits of consonant predictions in which predictors and outcomes are matched on the basis of specific targets. We discuss theoretical and practical implications.

  4. Knowledge Tracing and Prediction of Future Trainee Performance

    DTIC Science & Technology

    2006-06-01

    algorithm to capture recency , frequency, and spacing effects , while also providing flexibility and capability for predicting performance at later...demonstrated the model’s ability to capture recency , frequency, and spacing effects of human memory, we next turn to address its predictive...predict and assess how effective each training repetition will be (as a function of memory trace activation) and to help optimize the spacing of

  5. Evaluation of abutment scour prediction equations with field data

    USGS Publications Warehouse

    Benedict, S.T.; Deshpande, N.; Aziz, N.M.

    2007-01-01

    The U.S. Geological Survey, in cooperation with FHWA, compared predicted abutment scour depths, computed with selected predictive equations, with field observations collected at 144 bridges in South Carolina and at eight bridges from the National Bridge Scour Database. Predictive equations published in the 4th edition of Evaluating Scour at Bridges (Hydraulic Engineering Circular 18) were used in this comparison, including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. The comparisons showed that most equations tended to provide conservative estimates of scour that at times were excessive (as large as 158 ft). Equations also produced underpredictions of scour, but with less frequency. Although the equations provide an important resource for evaluating abutment scour at bridges, the results of this investigation show the importance of using engineering judgment in conjunction with these equations.

  6. Predicted NETD performance of a polarized infrared imaging sensor

    NASA Astrophysics Data System (ADS)

    Preece, Bradley; Hodgkin, Van A.; Thompson, Roger; Leonard, Kevin; Krapels, Keith

    2014-05-01

    Polarization filters are commonly used as a means of increasing the contrast of a scene thereby increasing sensor range performance. The change in the signal to noise ratio (SNR) is a function of the polarization of the target and background, the type and orientation of the polarization filter(s), and the overall transparency of the filter. However, in the mid-wave and longwave infrared bands (MWIR and LWIR), the noise equivalent temperature difference (NETD), which directly affects the SNR, is a function of the filter's re-emission and its reflected temperature radiance. This paper presents a model, by means of a Stokes vector input, that can be incorporated into the Night Vision Integrated Performance Model (NV-IPM) in order to predict the change in SNR, NETD, and noise equivalent irradiance (NEI) for infrared polarimeter imaging systems. The model is then used to conduct a SNR trade study, using a modeled Stokes vector input, for a notional system looking at a reference target. Future laboratory and field measurements conducted at Night Vision Electronic Sensors Directorate (NVESD) will be used to update, validate, and mature the model of conventional infrared systems equipped with polarization filters.

  7. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-01

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  8. Product component genealogy modeling and field-failure prediction

    DOE PAGES

    King, Caleb; Hong, Yili; Meeker, William Q.

    2016-04-13

    Many industrial products consist of multiple components that are necessary for system operation. There is an abundance of literature on modeling the lifetime of such components through competing risks models. During the life-cycle of a product, it is common for there to be incremental design changes to improve reliability, to reduce costs, or due to changes in availability of certain part numbers. These changes can affect product reliability but are often ignored in system lifetime modeling. By incorporating this information about changes in part numbers over time (information that is readily available in most production databases), better accuracy can bemore » achieved in predicting time to failure, thus yielding more accurate field-failure predictions. This paper presents methods for estimating parameters and predictions for this generational model and a comparison with existing methods through the use of simulation. Our results indicate that the generational model has important practical advantages and outperforms the existing methods in predicting field failures.« less

  9. Prediction of Successful Nursing Performance. Part I and Part II.

    ERIC Educational Resources Information Center

    Schwirian, Patricia M.

    Two of three phases of a study were conducted to (1) assess the state of the art on the prediction of nursing clinical performance and (2) obtain current information from nursing education programs about prediction criteria in use by them. Phase one involved a review of the 1965 through 1975 literature pertaining to studies that focused on the…

  10. Prediction of Student Performance Through Pretesting in Food and Nutrition

    ERIC Educational Resources Information Center

    Carruth, Betty Ruth; Lamb, Mina W.

    1971-01-01

    Attempts to develop an objective pretest for identifying students' levels of knowledge in food and nutrition prior to class instruction and for predicting student performance on the final examination. (Editor/MU)

  11. An Approach to Performance Prediction for Parallel Applications

    SciTech Connect

    Ipek, E; de Supinski, B R; Schulz, M; McKee, S A

    2005-05-17

    Accurately modeling and predicting performance for large-scale applications becomes increasingly difficult as system complexity scales dramatically. Analytic predictive models are useful, but are difficult to construct, usually limited in scope, and often fail to capture subtle interactions between architecture and software. In contrast, we employ multilayer neural networks trained on input data from executions on the target platform. This approach is useful for predicting many aspects of performance, and it captures full system complexity. Our models are developed automatically from the training input set, avoiding the difficult and potentially error-prone process required to develop analytic models. This study focuses on the high-performance, parallel application SMG2000, a much studied code whose variations in execution times are still not well understood. Our model predicts performance on two large-scale parallel platforms within 5%-7% error across a large, multi-dimensional parameter space.

  12. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect

    Franklin M. Orr, Jr.; Martin J. Blunt

    1998-04-30

    This report describes research into gas injection processes in four main areas: laboratory experiments to measure three-phase relative permeability; network modeling to predict three-phase relative permeability; benchmark simulations of gas injection and water flooding at the field scale; and the development of fast streamline techniques to study field-scale ow. The aim of the work is to achieve a comprehensive description of gas injection processes from the pore to the core to the reservoir scale. To this end, measurements of three-phase relative pemeability have been made and compared with predictions from pore scale modeling. At the field scale, streamline-based simulation has been extended to compositional displacements, providing a rapid method to predict oil recovery from gas injection.

  13. Plasma metabolite levels predict bird growth rates: A field test of model predictive ability.

    PubMed

    Albano, Noelia; Masero, José A; Villegas, Auxiliadora; Abad-Gómez, José María; Sánchez-Guzmán, Juan M

    2011-09-01

    Bird growth rates are usually derived from nonlinear relationships between age and some morphological structure, but this procedure may be limited by several factors. To date, nothing is known about the capacity of plasma metabolite profiling to predict chick growth rates. Based on laboratory-trials, we here develop predictive logistic models of body mass, and tarsus and wing length growth rates in Gull-billed Tern Gelochelidon nilotica chicks from measurements of plasma metabolite levels at different developmental stages. The predictive model obtained during the fastest growth period (at the age of 12 days) explained 65-68% of the chicks' growth rates, with fasting triglyceride level explaining most of the variation in growth rate. At the end of pre-fledging period, β-hydroxybutyrate level was also a good predictor of growth rates. Finally, we carried out a field test to check the predictive capacity of the models in two colonies of wild Gull-billed Tern, comparing field-measured and model-predicted growth rates between groups. Both, measured and predicted growth rates, matched statistically. Plasma metabolite levels can thus be applied in comparative studies of chick growth rates when semi-precocial birds can be captured only once.

  14. COMPASS: A Framework for Automated Performance Modeling and Prediction

    SciTech Connect

    Lee, Seyong; Meredith, Jeremy S; Vetter, Jeffrey S

    2015-01-01

    Flexible, accurate performance predictions offer numerous benefits such as gaining insight into and optimizing applications and architectures. However, the development and evaluation of such performance predictions has been a major research challenge, due to the architectural complexities. To address this challenge, we have designed and implemented a prototype system, named COMPASS, for automated performance model generation and prediction. COMPASS generates a structured performance model from the target application's source code using automated static analysis, and then, it evaluates this model using various performance prediction techniques. As we demonstrate on several applications, the results of these predictions can be used for a variety of purposes, such as design space exploration, identifying performance tradeoffs for applications, and understanding sensitivities of important parameters. COMPASS can generate these predictions across several types of applications from traditional, sequential CPU applications to GPU-based, heterogeneous, parallel applications. Our empirical evaluation demonstrates a maximum overhead of 4%, flexibility to generate models for 9 applications, speed, ease of creation, and very low relative errors across a diverse set of architectures.

  15. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  16. Predicting Air Combat Maneuvering (ACM) Performance: Fleet Fighter ACM Readiness Program Grades as Performance Criteria.

    DTIC Science & Technology

    1987-10-01

    predict fleet aviator inflight performance using perceptual psychomotor and information processing tasks. The goal is to develop relevant laboratory...were useful in identifying successful and unsuccessful aviators in combat (Viet Nam). Bale at al. (2) evaluated F-4 ’Replacement Air Group (RAG...predict performance. Our approach used performance-based tests of cognitive* perceptual, and multitask functioning to predict fleet operational aviator

  17. On the predictiveness of single-field inflationary models

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Patil, Subodh P.; Trott, Michael

    2014-06-01

    We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the running of Standard Model (SM) parameters and thereby introduces uncertainty into the potential inflationary predictions. We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably the most predictive single-field model on the market, because its predictions for A S , r and n s are made using only one new free parameter beyond those measured in particle physics experiments, and run up to the inflationary regime. We find that this issue can already have observable effects. At the same time, this UV-parameter dependence in the Renormalization Group allows Higgs Inflation to occur (in principle) for a slightly larger range of Higgs masses. We comment on the origin of the various UV scales that arise at large field values for the SM Higgs, clarifying cut off scale arguments by further developing the formalism of a non-linear realization of SU L (2) × U(1) in curved space. We discuss the interesting fact that, outside of Higgs Inflation, the effect of a non-minimal coupling to gravity, even in the SM, results in a non-linear EFT for the Higgs sector. Finally, we briefly comment on post BICEP2 attempts to modify the Higgs Inflation scenario.

  18. Predicting dynamic performance limits for servosystems with saturating nonlinearities

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Blech, R. A.

    1979-01-01

    A generalized treatment for a system with a single saturating nonlinearity is presented and compared with frequency response plots obtained from an analog model of the system. Once the amplitude dynamics are predicted with the limit lines, an iterative technique is employed to determine the system phase response. The saturation limit line technique is used in conjunction with velocity and acceleration limits to predict the performance of an electro-hydraulic servosystem containing a single-stage servovalve. Good agreement was obtained between predicted performance and experimental data.

  19. Predicting the performance and innovativeness of scientists and engineers.

    PubMed

    Keller, Robert T

    2012-01-01

    A study of 644 scientists and engineers from 5 corporate research and development organizations investigated hypotheses generated from an interactionist framework of 4 individual characteristics as longitudinal predictors of performance and innovativeness. An innovative orientation predicted 1-year-later and 5-years-later supervisory job performance ratings and 5-years-later counts of patents and publications. An internal locus of control predicted 5-years-later patents and publications, and self-esteem predicted performance ratings for both times and patents. Team-level nonroutine tasks moderated the individual-level relationships between an innovative orientation and performance ratings and patents such that the relationships were stronger in a nonroutine task environment. Implications for an interactionist framework of performance and innovativeness for knowledge workers are discussed.

  20. Prediction of Cycle 25 based on Polar Fields

    NASA Astrophysics Data System (ADS)

    Svalgaard, Leif

    2016-10-01

    WSO: The pole-most aperture measures the lineof-sight field between about 55° and the poles. Each 10 days the usable daily polar field measurements in a centered 30-day window are averaged. A 20nHz low pass filter eliminates yearly geometric projection effects. SDO-HMI: Line-of-sight magnetic observations (Blos above 60° lat.) at 720s cadence are converted to radial field (Br), under the assumption that the actual field vector is radial. Twice-per-day values are calculated as the mean weighted by de-projected image pixel areas for each latitudinal bin within ±45-deg longitude. These raw (12-hour) data have been averaged into the same windows as WSO’s and reduced to the WSO scale taking saturation (1.8) and projection (COS(72°)) into account. We have argued that the ‘poloidal’ field in the years leading up to solar minimum is a good proxy for the size of the next cycle (SNmax≈ DM [WSO scale μT]). The successful prediction of Cycle 24 seems to bear that out, as well as the observed corroboration from previous cycles. As a measure of the poloidal field we used the average ‘Dipole Moment’, i.e. the difference, DM, between the fields at the North pole and the South pole. The 20nHz filtered WSO DM matches well the HMI DM on the WSO scale using the same 30-day window as WSO. So, we can extend WSO using HMI into the future as needed. Preliminarily, the polar fields now are as strong as before the last minimum and may increase further, so Cycle 25 may be at least a repeat of Cycle 24, not any smaller and possible a bit stronger.

  1. Gatekeeping in Field Performance: Is Grade Inflation a Given?

    ERIC Educational Resources Information Center

    Sowbel, Lynda R.

    2011-01-01

    This field note presents the results of a pilot study that explored the use of a new non-numerically rated field performance tool, a vignette matching measure for MSW students. Evaluation of performance in the field has proved to be a difficult task because few if any measures, including competency-based measures, have known levels of reliability…

  2. Field Differentiation and LOGO Performance among Zimbabwean Schoolgirls.

    ERIC Educational Resources Information Center

    Wilson, David; And Others

    1990-01-01

    Examines the relationship of field differences to LOGO performance among Black and White Zimbabwean schoolgirls. Finds field independence and performance were related among both groups and remained significant when the intelligence variant was eliminated. Suggests field differentiation is an important concomitant of LOGO competence and simply not…

  3. TAS: A Transonic Aircraft/Store flow field prediction code

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1983-01-01

    A numerical procedure has been developed that has the capability to predict the transonic flow field around an aircraft with an arbitrarily located, separated store. The TAS code, the product of a joint General Dynamics/NASA ARC/AFWAL research and development program, will serve as the basis for a comprehensive predictive method for aircraft with arbitrary store loadings. This report described the numerical procedures employed to simulate the flow field around a configuration of this type. The validity of TAS code predictions is established by comparison with existing experimental data. In addition, future areas of development of the code are outlined. A brief description of code utilization is also given in the Appendix. The aircraft/store configuration is simulated using a mesh embedding approach. The computational domain is discretized by three meshes: (1) a planform-oriented wing/body fine mesh, (2) a cylindrical store mesh, and (3) a global Cartesian crude mesh. This embedded mesh scheme enables simulation of stores with fins of arbitrary angular orientation.

  4. Predicting benzene vapor concentrations with a near field/far field model.

    PubMed

    Nicas, Mark; Neuhaus, John

    2008-09-01

    Published data on benzene vapor concentrations in work simulation settings were used to examine the predictive ability of a near field/far field vapor dispersion model with an exponentially decreasing vapor emission rate. A given simulation involved two 15-min periods of applying a known volume of benzene-containing liquid to equipment on a worktable in a room with a measured air exchange rate. Replicate personal breathing zone (15-min time-weighted average, TWA) and room area (1-hr TWA) air samples were collected. In our modeling, the benzene vapor concentration in the near field zone (at the worktable) represented the personal breathing zone exposure level, and the benzene vapor concentration in the far field zone represented the room area concentration. Across 10 simulation combinations of two factors (the mass of benzene applied and the room air exchange rate), the mean of the personal breathing zone exposure levels ranged from 0.2 to 9.9 mg m(-3), and the mean of the room area concentrations ranged from 0.05 to 5.05 mg m(-3). Our model provided reasonably accurate estimates of the measured benzene vapor concentrations. Linear regression of the mean measured personal breathing zone exposure versus the predicted near field concentration yielded slope = 0.93 and r(2) = 0.94; the null hypothesis that the true slope equals one was not rejected (p-value = 0.39). Linear regression of the mean measured room area concentration versus the predicted far field concentration yielded slope = 0.90 and r(2) = 0.94; the null hypothesis that the true slope equals one was not rejected (p-value = 0.20). Other statistical tests showed no significant differences between measured and predicted values. In addition, most predicted concentrations fell within an approximate range of one-half to twofold the respective measured concentrations.

  5. Performance prediction using geostatistics and window reservoir simulation

    SciTech Connect

    Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.

    1995-11-01

    This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite. Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.

  6. Predicting drug pharmacokinetic properties using molecular interaction fields and SIMCA

    NASA Astrophysics Data System (ADS)

    Wolohan, Philippa R. N.; Clark, Robert D.

    2003-01-01

    We have developed a method that combines molecular interaction fields with soft independent modeling of class analogy (SIMCA) Wold:1977 to predict pharmacokinetic drug properties. Several additional considerations to those made in traditional QSAR are required in order to develop a successful QSPR strategy that is capable of accommodating the many complex factors that contribute to key pharmacokinetic properties such as ADME (absorption, distribution, metabolism, and excretion) and toxicology. An accurate prediction of oral bioavailability, for example, requires that absorption and first-pass hepatic elimination both be taken into consideration. To accomplish this, general properties of molecules must be related to their solubility and ability to penetrate biological membranes, and specific features must be related to their particular metabolic and toxicological profiles. Here we describe a method, which is applicable to structurally diverse data sets while utilizing as much detailed structural information as possible. We address the issue of the molecular alignment of a structurally diverse set of compounds using idiotropic field orientation (IFO), a generalization of inertial field orientation Clark:1998. We have developed a second flavor of this method, which directly incorporates electrostatics into the molecular alignment. Both variations of IFO produce a characteristic orientation for each structure and the corresponding molecular fields can then be analyzed using SIMCA. Models are presented for human intestinal absorption, blood-brain barrier penetration and bioavailability to demonstrate ways in which this tool can be used early in the drug development process to identify leads likely to exhibit poor pharmacokinetic behavior in pre-clinical studies, and we have explored the influence of conformation and molecular field type on the statistical properties of the models obtained.

  7. Evaluation of PV Module Field Performance

    SciTech Connect

    Wohlgemuth, John; Silverman, Timothy; Miller, David C.; McNutt, Peter; Kempe, Michael; Deceglie, Michael

    2015-06-14

    This paper describes an effort to inspect and evaluate PV modules in order to determine what failure or degradation modes are occurring in field installations. This paper will report on the results of six site visits, including the Sacramento Municipal Utility District (SMUD) Hedge Array, Tucson Electric Power (TEP) Springerville, Central Florida Utility, Florida Solar Energy Center (FSEC), the TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification. TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification. TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification.

  8. Field Dependency and Performance in Mathematics

    ERIC Educational Resources Information Center

    Onwumere, Onyebuchi; Reid, Norman

    2014-01-01

    Mathematics is an important school subject but one which often poses problems for learners. It has been found that learners do not possess the cognitive capacity to handle understanding procedures, representations, concepts, and applications at the same time. while the extent of field dependency may hold the key to one way by which the working…

  9. Prediction of Gymnastic Performance from Arousal and Anxiety Measures.

    ERIC Educational Resources Information Center

    Basler, Marilyn L.; And Others

    This study predicts gymnastic performance, arousal, and anxiety measures from past performances. Pulse rate and the Palmar Sweat Index were utilized as indicants of arousal. Anxiety was assessed by means of the State-Trait Anxiety Inventory. Eighteen members of the Ithaca College women's varsity gymnastic team were tested throughout the 1973-74…

  10. Which Social Skills Predict Academic Performance of Elementary School Students

    ERIC Educational Resources Information Center

    Sung, Youngji Y.; Chang, Mido

    2010-01-01

    The study explored various aspects of students' social skills in an attempt to identify specific aspect that has significance in predicting their academic performance and examined the longitudinal relationship of these social skills with academic performance. The study used two models that applied advanced statistical tools to a nationally…

  11. Predicting the Performance of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1986-01-01

    Stage-stacking computer code (STGSTK) developed for predicting off-design performance of multi-stage axial-flow compressors. Code uses meanline stagestacking method. Stage and cumulative compressor performance calculated from representative meanline velocity diagrams located at rotor inlet and outlet meanline radii. Numerous options available within code. Code developed so user modify correlations to suit their needs.

  12. Predicted TF41 performance with the AGARD research fuel

    SciTech Connect

    Peters, J.E.

    1984-01-01

    Calculations are presented to predict the performance of an alternative fuel in a conventional gas turbine combustor. Existing data for fuel effects on the Detroit Diesel Allison TF41 combustor, a can-annular burner, are correlated with the semi-empirical characteristic time model. The correlations are used to predict the ignition, stability and combustion efficiency performance of a proposed alternative fuel, the AGARD Research Fuel, in the TF41 combustor. Compared to standard NATO F-40 and F-35 fuels the alternative fuel will provide similar combustion efficiency levels, reduced flame stability and significantly degraded ignition performance.

  13. Prediction of Muscle Performance During Dynamic Repetitive Exercise

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2002-01-01

    A method for predicting human muscle performance was developed. Eight test subjects performed a repetitive dynamic exercise to failure using a Lordex spinal machine. Electromyography (EMG) data was collected from the erector spinae. Evaluation of the EMG data using a 5th order Autoregressive (AR) model and statistical regression analysis revealed that an AR parameter, the mean average magnitude of AR poles, can predict performance to failure as early as the second repetition of the exercise. Potential applications to the space program include evaluating on-orbit countermeasure effectiveness, maximizing post-flight recovery, and future real-time monitoring capability during Extravehicular Activity.

  14. Reading performance is predicted by more than phonological processing

    PubMed Central

    Kibby, Michelle Y.; Lee, Sylvia E.; Dyer, Sarah M.

    2014-01-01

    We compared three phonological processing components (phonological awareness, rapid automatized naming and phonological memory), verbal working memory, and attention control in terms of how well they predict the various aspects of reading: word recognition, pseudoword decoding, fluency and comprehension, in a mixed sample of 182 children ages 8–12 years. Participants displayed a wide range of reading ability and attention control. Multiple regression was used to determine how well the phonological processing components, verbal working memory, and attention control predict reading performance. All equations were highly significant. Phonological memory predicted word identification and decoding. In addition, phonological awareness and rapid automatized naming predicted every aspect of reading assessed, supporting the notion that phonological processing is a core contributor to reading ability. Nonetheless, phonological processing was not the only predictor of reading performance. Verbal working memory predicted fluency, decoding and comprehension, and attention control predicted fluency. Based upon our results, when using Baddeley’s model of working memory it appears that the phonological loop contributes to basic reading ability, whereas the central executive contributes to fluency and comprehension, along with decoding. Attention control was of interest as some children with ADHD have poor reading ability even if it is not sufficiently impaired to warrant diagnosis. Our finding that attention control predicts reading fluency is consistent with prior research which showed sustained attention plays a role in fluency. Taken together, our results suggest that reading is a highly complex skill that entails more than phonological processing to perform well. PMID:25285081

  15. Near-field noise predictions of an aircraft in cruise

    NASA Technical Reports Server (NTRS)

    Rawls, John W., Jr.

    1987-01-01

    The physics of the coupling of sound waves with the boundary layer is not yet well understood. It is believed, however, that for effective coupling of the sound waves and instability waves in the boundary layer, a matching of both frequency and wave number must occur. This requires that the sound field be accurately defined in both space and time. Currently analytical prediction methods lack sufficient accuracy to predict the noise levels from components of a turbofan engine. Although empirical methods do not yield the detail required for an analysis of the receptivity of sound by a boundary layer, valuable insight can be gained as to the changes in noise levels that might be expected under various operating conditions and aircraft configurations.

  16. Auditory evoked fields predict language ability and impairment in children.

    PubMed

    Oram Cardy, Janis E; Flagg, Elissa J; Roberts, Wendy; Roberts, Timothy P L

    2008-05-01

    Recent evidence suggests that a subgroup of children with autism show similarities to children with Specific Language Impairment (SLI) in the pattern of their linguistic impairments, but the source of this overlap is unclear. We examined the ability of auditory evoked magnetic fields to predict language and other developmental abilities in children and adolescents. Following standardized assessment of language ability, nonverbal IQ, and autism-associated behaviors, 110 trails of a tone were binaurally presented to 45 7-18 year olds who had typical development, autism (with LI), Asperger Syndrome (i.e., without LI), or SLI. Using a 151-channel MEG system, latency of left hemisphere (LH) and right hemisphere (RH) auditory M50 and M100 peaks was recorded. RH M50 latency (and to a lesser extent, RH M100 latency) predicted overall oral language ability, accounting for 36% of the variance. Nonverbal IQ and autism behavior ratings were not predicted by any of the evoked fields. Latency of the RH M50 was the best predictor of clinical LI (i.e., irrespective of autism diagnosis), and demonstrated 82% accuracy in predicting Receptive LI; a cutoff of 84.6 ms achieved 92% specificity and 70% sensitivity in classifying children with and without Receptive LI. Auditory evoked responses appear to reflect language functioning and impairment rather than non-specific brain (dys)function (e.g., IQ, behavior). RH M50 latency proved to be a relatively useful indicator of impaired language comprehension, suggesting that delayed auditory perceptual processing in the RH may be a key neural dysfunction underlying the overlap between subgroups of children with autism and SLI.

  17. REBCO tape performance under high magnetic field

    NASA Astrophysics Data System (ADS)

    Benkel, Tara; Miyoshi, Yasuyuki; Chaud, Xavier; Badel, Arnaud; Tixador, Pascal

    2017-08-01

    New improvements in high temperature superconductors (HTS) make them a promising candidate for building the next generation of high field magnets. As the conductors became recently available in long length, new projects such as NOUGAT (new magnet generation to generate Tesla at low cost) were started. This project aims at designing and building an HTS magnet prototype generating 10 T inside a 20 T resistive magnet. In this configuration, severe mechanical stress is applied on the insert and its extremities are subject to a high transverse component of the field. Because the conductor has anisotropic properties, it has to be studied carefully under similar conditions as the final prototype. First, this paper presents both the NOUGAT project and its context. Then, it shows the experimental results on short HTS tapes studied under high magnetic field up to 23 T with varying orientation. These results allow validating the current margin of the prototype. Finally, a first wound prototype is presented with experimental results up to 200 A under 16 T. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  18. Prediction of Airplane Sonic-Boom Pressure Fields

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; McLean, F. Edward; Middleton, Wilbur D.

    1965-01-01

    This paper presents a discussion of the sensitivity of supersonic-transport design and operation to sonic-boom considerations and shows the necessity for a study of these problems early in the development program. Methods of predicting pressure signatures are outlined and examples of the correlation of these estimates with wind-tunnel and flight measurements are shown. Estimates of sonic-boom characteristics for a representative supersonic transport show that in the critical transonic acceleration portion of the flight, overpressures somewhat lower than estimated by the use of far-field assumptions may be expected. Promising design possibilities for the achievement of further overpressure reductions are explored.

  19. Improving the Prediction of Absolute Solvation Free Energies Using the Next Generation OPLS Force Field.

    PubMed

    Shivakumar, Devleena; Harder, Edward; Damm, Wolfgang; Friesner, Richard A; Sherman, Woody

    2012-08-14

    Explicit solvent molecular dynamics free energy perturbation simulations were performed to predict absolute solvation free energies of 239 diverse small molecules. We use OPLS2.0, the next generation OPLS force field, and compare the results with popular small molecule force fields-OPLS_2005, GAFF, and CHARMm-MSI. OPLS2.0 produces the best correlation with experimental data (R(2) = 0.95, slope = 0.96) and the lowest average unsigned errors (0.7 kcal/mol). Important classes of compounds that performed suboptimally with OPLS_2005 show significant improvements.

  20. Recent progress towards predicting aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    Capability implemented in simulating aircraft ground handling performance is reviewed and areas for further expansion and improvement are identified. Problems associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior are discussed and efforts to improve tire/runway friction definition, and simulator fidelity are described. Aircraft braking performance data obtained on several wet runway surfaces are compared to ground vehicle friction measurements. Research to improve methods of predicting tire friction performance are discussed.

  1. Predicting Performance in Higher Education Using Proximal Predictors

    PubMed Central

    Niessen, A. Susan M.; Meijer, Rob R.; Tendeiro, Jorge N.

    2016-01-01

    We studied the validity of two methods for predicting academic performance and student-program fit that were proximal to important study criteria. Applicants to an undergraduate psychology program participated in a selection procedure containing a trial-studying test based on a work sample approach, and specific skills tests in English and math. Test scores were used to predict academic achievement and progress after the first year, achievement in specific course types, enrollment, and dropout after the first year. All tests showed positive significant correlations with the criteria. The trial-studying test was consistently the best predictor in the admission procedure. We found no significant differences between the predictive validity of the trial-studying test and prior educational performance, and substantial shared explained variance between the two predictors. Only applicants with lower trial-studying scores were significantly less likely to enroll in the program. In conclusion, the trial-studying test yielded predictive validities similar to that of prior educational performance and possibly enabled self-selection. In admissions aimed at student-program fit, or in admissions in which past educational performance is difficult to use, a trial-studying test is a good instrument to predict academic performance. PMID:27073859

  2. Predicting Performance in Higher Education Using Proximal Predictors.

    PubMed

    Niessen, A Susan M; Meijer, Rob R; Tendeiro, Jorge N

    2016-01-01

    We studied the validity of two methods for predicting academic performance and student-program fit that were proximal to important study criteria. Applicants to an undergraduate psychology program participated in a selection procedure containing a trial-studying test based on a work sample approach, and specific skills tests in English and math. Test scores were used to predict academic achievement and progress after the first year, achievement in specific course types, enrollment, and dropout after the first year. All tests showed positive significant correlations with the criteria. The trial-studying test was consistently the best predictor in the admission procedure. We found no significant differences between the predictive validity of the trial-studying test and prior educational performance, and substantial shared explained variance between the two predictors. Only applicants with lower trial-studying scores were significantly less likely to enroll in the program. In conclusion, the trial-studying test yielded predictive validities similar to that of prior educational performance and possibly enabled self-selection. In admissions aimed at student-program fit, or in admissions in which past educational performance is difficult to use, a trial-studying test is a good instrument to predict academic performance.

  3. Prediction of the diffuse-field transmission loss of interior natural-ventilation openings and silencers.

    PubMed

    Bibby, Chris; Hodgson, Murray

    2017-01-01

    The work reported here, part of a study on the performance and optimal design of interior natural-ventilation openings and silencers ("ventilators"), discusses the prediction of the acoustical performance of such ventilators, and the factors that affect it. A wave-based numerical approach-the finite-element method (FEM)-is applied. The development of a FEM technique for the prediction of ventilator diffuse-field transmission loss is presented. Model convergence is studied with respect to mesh, frequency-sampling and diffuse-field convergence. The modeling technique is validated by way of predictions and the comparison of them to analytical and experimental results. The transmission-loss performance of crosstalk silencers of four shapes, and the factors that affect it, are predicted and discussed. Performance increases with flow-path length for all silencer types. Adding elbows significantly increases high-frequency transmission loss, but does not increase overall silencer performance which is controlled by low-to-mid-frequency transmission loss.

  4. Probabilistic Analysis of Gas Turbine Field Performance

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2002-01-01

    A gas turbine thermodynamic cycle was computationally simulated and probabilistically evaluated in view of the several uncertainties in the performance parameters, which are indices of gas turbine health. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design, enhance performance, increase system availability and make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in the gas turbine health determination and to the identification of both the most critical measurements and parameters. Probabilistic analysis aims at unifying and improving the control and health monitoring of gas turbine aero-engines by increasing the quality and quantity of information available about the engine's health and performance.

  5. Naturalistic Field Studies of Sleep and Performance

    DTIC Science & Technology

    2009-04-01

    sleep  opportunity and creating acute and chronic  sleep  loss   Mathematical models combined with quantitative cognitive  architecture  are  useful for...Violanti, Cecil Burchfiel, Bryan  Vila, and Michael E. Andrew. (2008) “Waiting Time Distributions of  Actigraphy   Measured  Sleep .” Open  Sleep  Journal 2...AD_________________ Award Number: W81XWH-05-1-0099 TITLE: Naturalistic Field Studies of Sleep and

  6. Simple model for predicting microchannel heat sink performance and optimization

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Hsun; Chein, Reiyu

    2012-05-01

    A simple model was established to predict microchannel heat sink performance based on energy balance. Both hydrodynamically and thermally developed effects were included. Comparisons with the experimental data show that this model provides satisfactory thermal resistance prediction. The model is further extended to carry out geometric optimization on the microchannel heat sink. The results from the simple model are in good agreement as compared with those obtained from three-dimensional simulations.

  7. A Study of Coaxial Rotor Performance and Flow Field Characteristics

    DTIC Science & Technology

    2016-01-22

    A Study of Coaxial Rotor Performance and Flow Field Characteristics Natasha L. Barbely Aerospace Engineer NASA Ames Research Center Moffett Field...The pressure field generated by the two airfoils aided our interpretation of the more complex coaxial rotor system flow field. The pressure fields...velocity (ft/sec) Z vertical distance between rotors (ft) αS pitch angle (deg), negative pitch down κint coaxial rotor induced power interference

  8. Field performance of engineered male mosquitoes.

    PubMed

    Harris, Angela F; Nimmo, Derric; McKemey, Andrew R; Kelly, Nick; Scaife, Sarah; Donnelly, Christl A; Beech, Camilla; Petrie, William D; Alphey, Luke

    2011-10-30

    Dengue is the most medically important arthropod-borne viral disease, with 50-100 million cases reported annually worldwide. As no licensed vaccine or dedicated therapy exists for dengue, the most promising strategies to control the disease involve targeting the predominant mosquito vector, Aedes aegypti. However, the current methods to do this are inadequate. Various approaches involving genetically engineered mosquitoes have been proposed, including the release of transgenic sterile males. However, the ability of laboratory-reared, engineered male mosquitoes to effectively compete with wild males in terms of finding and mating with wild females, which is critical to the success of these strategies, has remained untested. We report data from the first open-field trial involving a strain of engineered mosquito. We demonstrated that genetically modified male mosquitoes, released across 10 hectares for a 4-week period, mated successfully with wild females and fertilized their eggs. These findings suggest the feasibility of this technology to control dengue by suppressing field populations of A. aegypti.

  9. A high performance field-reversed configuration

    SciTech Connect

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; and others

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  10. A high performance field-reversed configurationa)

    NASA Astrophysics Data System (ADS)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Schmitz, L.; Guo, H. Y.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; Cheung, A. H.; Conroy, K. D.; Dettrick, S. A.; Douglass, J. D.; Feng, P.; Galeotti, L.; Giammanco, F.; Granstedt, E.; Gupta, D.; Gupta, S.; Ivanov, A. A.; Kinley, J. S.; Knapp, K.; Korepanov, S.; Hollins, M.; Magee, R.; Mendoza, R.; Mok, Y.; Necas, A.; Primavera, S.; Onofri, M.; Osin, D.; Rath, N.; Roche, T.; Romero, J.; Schroeder, J. H.; Sevier, L.; Sibley, A.; Song, Y.; Van Drie, A. D.; Walters, J. K.; Waggoner, W.; Yushmanov, P.; Zhai, K.

    2015-05-01

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ˜1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  11. Predator personality and prey behavioural predictability jointly determine foraging performance.

    PubMed

    Chang, Chia-Chen; Teo, Huey Yee; Norma-Rashid, Y; Li, Daiqin

    2017-01-17

    Predator-prey interactions play important roles in ecological communities. Personality, consistent inter-individual differences in behaviour, of predators, prey or both are known to influence inter-specific interactions. An individual may also behave differently under the same situation and the level of such variability may differ between individuals. Such intra-individual variability (IIV) or predictability may be a trait on which selection can also act. A few studies have revealed the joint effect of personality types of both predators and prey on predator foraging performance. However, how personality type and IIV of both predators and prey jointly influence predator foraging performance remains untested empirically. Here, we addressed this using a specialized spider-eating jumping spider, Portia labiata (Salticidae), as the predator, and a jumping spider, Cosmophasis umbratica, as the prey. We examined personality types and IIVs of both P. labiata and C. umbratica and used their inter- and intra-individual behavioural variation as predictors of foraging performance (i.e., number of attempts to capture prey). Personality type and predictability had a joint effect on predator foraging performance. Aggressive predators performed better in capturing unpredictable (high IIV) prey than predictable (low IIV) prey, while docile predators demonstrated better performance when encountering predictable prey. This study highlights the importance of the joint effect of both predator and prey personality types and IIVs on predator-prey interactions.

  12. Predator personality and prey behavioural predictability jointly determine foraging performance

    PubMed Central

    Chang, Chia-chen; Teo, Huey Yee; Norma-Rashid, Y.; Li, Daiqin

    2017-01-01

    Predator-prey interactions play important roles in ecological communities. Personality, consistent inter-individual differences in behaviour, of predators, prey or both are known to influence inter-specific interactions. An individual may also behave differently under the same situation and the level of such variability may differ between individuals. Such intra-individual variability (IIV) or predictability may be a trait on which selection can also act. A few studies have revealed the joint effect of personality types of both predators and prey on predator foraging performance. However, how personality type and IIV of both predators and prey jointly influence predator foraging performance remains untested empirically. Here, we addressed this using a specialized spider-eating jumping spider, Portia labiata (Salticidae), as the predator, and a jumping spider, Cosmophasis umbratica, as the prey. We examined personality types and IIVs of both P. labiata and C. umbratica and used their inter- and intra-individual behavioural variation as predictors of foraging performance (i.e., number of attempts to capture prey). Personality type and predictability had a joint effect on predator foraging performance. Aggressive predators performed better in capturing unpredictable (high IIV) prey than predictable (low IIV) prey, while docile predators demonstrated better performance when encountering predictable prey. This study highlights the importance of the joint effect of both predator and prey personality types and IIVs on predator-prey interactions. PMID:28094288

  13. Study on the performance prediction of screw vacuum pump

    NASA Astrophysics Data System (ADS)

    Ohbayashi, T.; Sawada, T.; Hamaguchi, M.; Miyamura, H.

    2001-01-01

    Pumping characteristics of the screw vacuum pump were investigated. The aim of this study was to establish a method of the performance prediction and a way to design the pump that satisfies specific requirements. The performance was analysed by the balance among geometrical pumping speed, net throughput and leaks. The leaks flow through clearances between a screw rotor and a stator, and clearances between two meshing rotors. These leaks were estimated with the results based on the linearised BGK model and the flows through ideal labyrinthes. Experiments were carried out by rotors of 120 mm diameter, and pumping speed and ultimate pressure were measured. The comparison between the measurements and the predicted values shows that the present method predicts the performance of the screw pump with a sufficient accuracy for practical applications.

  14. Proactive Supply Chain Performance Management with Predictive Analytics

    PubMed Central

    Stefanovic, Nenad

    2014-01-01

    Today's business climate requires supply chains to be proactive rather than reactive, which demands a new approach that incorporates data mining predictive analytics. This paper introduces a predictive supply chain performance management model which combines process modelling, performance measurement, data mining models, and web portal technologies into a unique model. It presents the supply chain modelling approach based on the specialized metamodel which allows modelling of any supply chain configuration and at different level of details. The paper also presents the supply chain semantic business intelligence (BI) model which encapsulates data sources and business rules and includes the data warehouse model with specific supply chain dimensions, measures, and KPIs (key performance indicators). Next, the paper describes two generic approaches for designing the KPI predictive data mining models based on the BI semantic model. KPI predictive models were trained and tested with a real-world data set. Finally, a specialized analytical web portal which offers collaborative performance monitoring and decision making is presented. The results show that these models give very accurate KPI projections and provide valuable insights into newly emerging trends, opportunities, and problems. This should lead to more intelligent, predictive, and responsive supply chains capable of adapting to future business environment. PMID:25386605

  15. Proactive supply chain performance management with predictive analytics.

    PubMed

    Stefanovic, Nenad

    2014-01-01

    Today's business climate requires supply chains to be proactive rather than reactive, which demands a new approach that incorporates data mining predictive analytics. This paper introduces a predictive supply chain performance management model which combines process modelling, performance measurement, data mining models, and web portal technologies into a unique model. It presents the supply chain modelling approach based on the specialized metamodel which allows modelling of any supply chain configuration and at different level of details. The paper also presents the supply chain semantic business intelligence (BI) model which encapsulates data sources and business rules and includes the data warehouse model with specific supply chain dimensions, measures, and KPIs (key performance indicators). Next, the paper describes two generic approaches for designing the KPI predictive data mining models based on the BI semantic model. KPI predictive models were trained and tested with a real-world data set. Finally, a specialized analytical web portal which offers collaborative performance monitoring and decision making is presented. The results show that these models give very accurate KPI projections and provide valuable insights into newly emerging trends, opportunities, and problems. This should lead to more intelligent, predictive, and responsive supply chains capable of adapting to future business environment.

  16. Predicting the Magnetic Field of Earth-impacting CMEs

    NASA Astrophysics Data System (ADS)

    Kay, C.; Gopalswamy, N.; Reinard, A.; Opher, M.

    2017-02-01

    Predicting the impact of coronal mass ejections (CMEs) and the southward component of their magnetic field is one of the key goals of space weather forecasting. We present a new model, the ForeCAT In situ Data Observer (FIDO), for predicting the in situ magnetic field of CMEs. We first simulate a CME using ForeCAT, a model for CME deflection and rotation resulting from the background solar magnetic forces. Using the CME position and orientation from ForeCAT, we then determine the passage of the CME over a simulated spacecraft. We model the CME’s magnetic field using a force-free flux rope and we determine the in situ magnetic profile at the synthetic spacecraft. We show that FIDO can reproduce the general behavior of four observed CMEs. FIDO results are very sensitive to the CME’s position and orientation, and we show that the uncertainty in a CME’s position and orientation from coronagraph images corresponds to a wide range of in situ magnitudes and even polarities. This small range of positions and orientations also includes CMEs that entirely miss the satellite. We show that two derived parameters (the normalized angular distance between the CME nose and satellite position and the angular difference between the CME tilt and the position angle of the satellite with respect to the CME nose) can be used to reliably determine whether an impact or miss occurs. We find that the same criteria separate the impacts and misses for cases representing all four observed CMEs.

  17. Planar Near-Field Phase Retrieval Using GPUs for Accurate THz Far-Field Prediction

    NASA Astrophysics Data System (ADS)

    Junkin, Gary

    2013-04-01

    With a view to using Phase Retrieval to accurately predict Terahertz antenna far-field from near-field intensity measurements, this paper reports on three fundamental advances that achieve very low algorithmic error penalties. The first is a new Gaussian beam analysis that provides accurate initial complex aperture estimates including defocus and astigmatic phase errors, based only on first and second moment calculations. The second is a powerful noise tolerant near-field Phase Retrieval algorithm that combines Anderson's Plane-to-Plane (PTP) with Fienup's Hybrid-Input-Output (HIO) and Successive Over-Relaxation (SOR) to achieve increased accuracy at reduced scan separations. The third advance employs teraflop Graphical Processing Units (GPUs) to achieve practically real time near-field phase retrieval and to obtain the optimum aperture constraint without any a priori information.

  18. Hyperspectral prediction of leaf area index of winter wheat in irrigated and rainfed fields.

    PubMed

    Li, Guangxin; Wang, Chao; Feng, Meichen; Yang, Wude; Li, Fangzhou; Feng, Ruiyun

    2017-01-01

    The growth status of winter wheat in irrigated field and rainfed field are obviously different and the field types may have an effect on the predictive accuracy of hyperspectral model. The objectives of the present study were to understand the difference of spectral sensitive wavelengths for leaf area index (LAI) in two field types and realize its hyperspectral prediction. In study, a total of 31 and 28 sample sites in irrigated fields and rainfed fields respectively were selected from Wenxi County, and the LAI and canopy spectra were also collected at the main grow stage of winter wheat. The method of successive projections algorithm (SPA) was applied by selecting the important wavelengths, and the multiple linear regression (MLR) and partial least squares regression (PLSR) were used to construct the predictive model based on the important wavelengths and full wavelengths, respectively. Moreover, the parameters of variable importance project (VIP) and B-coefficient derived from PLSR analysis were implemented to validate the evaluated wavelengths using the SPA method. The sensitive wavelengths of LAI for irrigated field and rainfed field were 404, 407, 413, 417, 450, 677, 715, 735, 816, 1127 and 404, 406, 432, 501, 540, 679, 727, 779, 1120, 1290 nm, respectively, and these wavelengths proved to be highly correlated with LAI. Compared with the model performance based on the SPA-MLR and PLSR methods, the method of SPA-MLR was proved to be better (rainfed field: R2 = 0.736, RMSE = 1.169, RPD = 1.6245; irrigated field: R2 = 0.716, RMSE = 1.059, RPD = 1.538). Moreover, the predictive model of LAI in rainfed fields had a better accuracy than the model in irrigated fields. The results from this study indicated that it was necessary to classify the field type while monitoring the winter wheat using the remote sensing technology. This study also demonstrated that the multivariate method of SPA-MLR could accurately evaluate the sensitive wavelengths and construct the

  19. Prediction of muscle performance during dynamic repetitive movement

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2003-01-01

    BACKGROUND: During long-duration spaceflight, astronauts experience progressive muscle atrophy and often perform strenuous extravehicular activities. Post-flight, there is a lengthy recovery period with an increased risk for injury. Currently, there is a critical need for an enabling tool to optimize muscle performance and to minimize the risk of injury to astronauts while on-orbit and during post-flight recovery. Consequently, these studies were performed to develop a method to address this need. METHODS: Eight test subjects performed a repetitive dynamic exercise to failure at 65% of their upper torso weight using a Lordex spinal machine. Surface electromyography (SEMG) data was collected from the erector spinae back muscle. The SEMG data was evaluated using a 5th order autoregressive (AR) model and linear regression analysis. RESULTS: The best predictor found was an AR parameter, the mean average magnitude of AR poles, with r = 0.75 and p = 0.03. This parameter can predict performance to failure as early as the second repetition of the exercise. CONCLUSION: A method for predicting human muscle performance early during dynamic repetitive exercise was developed. The capability to predict performance to failure has many potential applications to the space program including evaluating countermeasure effectiveness on-orbit, optimizing post-flight recovery, and potential future real-time monitoring capability during extravehicular activity.

  20. Prediction of muscle performance during dynamic repetitive movement

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2003-01-01

    BACKGROUND: During long-duration spaceflight, astronauts experience progressive muscle atrophy and often perform strenuous extravehicular activities. Post-flight, there is a lengthy recovery period with an increased risk for injury. Currently, there is a critical need for an enabling tool to optimize muscle performance and to minimize the risk of injury to astronauts while on-orbit and during post-flight recovery. Consequently, these studies were performed to develop a method to address this need. METHODS: Eight test subjects performed a repetitive dynamic exercise to failure at 65% of their upper torso weight using a Lordex spinal machine. Surface electromyography (SEMG) data was collected from the erector spinae back muscle. The SEMG data was evaluated using a 5th order autoregressive (AR) model and linear regression analysis. RESULTS: The best predictor found was an AR parameter, the mean average magnitude of AR poles, with r = 0.75 and p = 0.03. This parameter can predict performance to failure as early as the second repetition of the exercise. CONCLUSION: A method for predicting human muscle performance early during dynamic repetitive exercise was developed. The capability to predict performance to failure has many potential applications to the space program including evaluating countermeasure effectiveness on-orbit, optimizing post-flight recovery, and potential future real-time monitoring capability during extravehicular activity.

  1. Micropropagation and field performance of Yucca valida.

    PubMed

    Arce-Montoya, Mario; Rodríguez-Alvarez, Margarito; Hernández-González, Julio A; Robert, Manuel L

    2006-08-01

    Yucca valida is an important potential source of steroidal saponins closely related to Yucca schidigera, the species that is commercially exploited from the wild as a source of steroidal extracts. Neither of the species has been domesticated mainly because of their slow growth and long life span before harvesting. Here, we report a micropropagation method to generate isogenic or clonal lines for plantation purposes. Seventeen clonal lines were propagated and evaluated over a period of 26 months in an experimental plantation and compared with the performance of plants from seeds. The large variability found between the plants derived from seeds is manifested in the differences observed between the different clonal lines; however, these present a much smaller internal coefficient of variation than the one observed in the population of plants derived from seeds. Some clonal lines perform in a superior manner indicating that a process of selection and cloning can generate lines of fast growing individuals for plantations that can satisfy the demand for these materials without putting a natural resource at risk.

  2. The predictive performance and stability of six species distribution models.

    PubMed

    Duan, Ren-Yan; Kong, Xiao-Quan; Huang, Min-Yi; Fan, Wei-Yi; Wang, Zhi-Gao

    2014-01-01

    Predicting species' potential geographical range by species distribution models (SDMs) is central to understand their ecological requirements. However, the effects of using different modeling techniques need further investigation. In order to improve the prediction effect, we need to assess the predictive performance and stability of different SDMs. We collected the distribution data of five common tree species (Pinus massoniana, Betula platyphylla, Quercus wutaishanica, Quercus mongolica and Quercus variabilis) and simulated their potential distribution area using 13 environmental variables and six widely used SDMs: BIOCLIM, DOMAIN, MAHAL, RF, MAXENT, and SVM. Each model run was repeated 100 times (trials). We compared the predictive performance by testing the consistency between observations and simulated distributions and assessed the stability by the standard deviation, coefficient of variation, and the 99% confidence interval of Kappa and AUC values. The mean values of AUC and Kappa from MAHAL, RF, MAXENT, and SVM trials were similar and significantly higher than those from BIOCLIM and DOMAIN trials (p<0.05), while the associated standard deviations and coefficients of variation were larger for BIOCLIM and DOMAIN trials (p<0.05), and the 99% confidence intervals for AUC and Kappa values were narrower for MAHAL, RF, MAXENT, and SVM. Compared to BIOCLIM and DOMAIN, other SDMs (MAHAL, RF, MAXENT, and SVM) had higher prediction accuracy, smaller confidence intervals, and were more stable and less affected by the random variable (randomly selected pseudo-absence points). According to the prediction performance and stability of SDMs, we can divide these six SDMs into two categories: a high performance and stability group including MAHAL, RF, MAXENT, and SVM, and a low performance and stability group consisting of BIOCLIM, and DOMAIN. We highlight that choosing appropriate SDMs to address a specific problem is an important part of the modeling process.

  3. Predictive Bias and Sensitivity in NRC Fuel Performance Codes

    SciTech Connect

    Geelhood, Kenneth J.; Luscher, Walter G.; Senor, David J.; Cunningham, Mitchel E.; Lanning, Donald D.; Adkins, Harold E.

    2009-10-01

    The latest versions of the fuel performance codes, FRAPCON-3 and FRAPTRAN were examined to determine if the codes are intrinsically conservative. Each individual model and type of code prediction was examined and compared to the data that was used to develop the model. In addition, a brief literature search was performed to determine if more recent data have become available since the original model development for model comparison.

  4. Predicting spacecraft multilayer insulation performance from heat transfer measurements

    NASA Technical Reports Server (NTRS)

    Stimpson, L. D.; Hagemeyer, W. A.

    1974-01-01

    Multilayer insulation (MLI) ideally consists of a series of radiation shields with low-conductivity spacers. When MLI blankets were installed on cryogenic tanks or spacecraft, a large discrepancy between the calorimeter measurements and the performance of the installed blankets was discovered. It was found that discontinuities such as exposed edges coupled with high lateral heat transfer created 'heat leaks' which overshadowed the basic heat transfer of the insulation. Approaches leading to improved performance predictions of MLI units are discussed.

  5. Comparison of prediction performance using statistical postprocessing methods

    NASA Astrophysics Data System (ADS)

    Han, Keunhee; Choi, JunTae; Kim, Chansoo

    2016-11-01

    As the 2018 Winter Olympics are to be held in Pyeongchang, both general weather information on Pyeongchang and specific weather information on this region, which can affect game operation and athletic performance, are required. An ensemble prediction system has been applied to provide more accurate weather information, but it has bias and dispersion due to the limitations and uncertainty of its model. In this study, homogeneous and nonhomogeneous regression models as well as Bayesian model averaging (BMA) were used to reduce the bias and dispersion existing in ensemble prediction and to provide probabilistic forecast. Prior to applying the prediction methods, reliability of the ensemble forecasts was tested by using a rank histogram and a residualquantile-quantile plot to identify the ensemble forecasts and the corresponding verifications. The ensemble forecasts had a consistent positive bias, indicating over-forecasting, and were under-dispersed. To correct such biases, statistical post-processing methods were applied using fixed and sliding windows. The prediction skills of methods were compared by using the mean absolute error, root mean square error, continuous ranked probability score, and continuous ranked probability skill score. Under the fixed window, BMA exhibited better prediction skill than the other methods in most observation station. Under the sliding window, on the other hand, homogeneous and non-homogeneous regression models with positive regression coefficients exhibited better prediction skill than BMA. In particular, the homogeneous regression model with positive regression coefficients exhibited the best prediction skill.

  6. Genetic predictions of racing performance in quarter horses.

    PubMed

    Willham, R L; Wilson, D E

    1991-09-01

    Research on the racing performance of quarter horses has been used to develop genetic prediction summaries on all horses with at least one start on record at the American Quarter Horse Association. In the 1987 summary, records from a total of 212,065 horses were used to give genetic predictions on stallions, mares, geldings, fillies, and colts. A reduced animal model was used that incorporated the repeated records of individuals. The individual race was the contemporary group after the data were adjusted for distance, sex, and age. Estimates of heritability of .24 and repeatability of .32 suggest that increased racing performance can be achieved if the predictions are used by breeders. Continued research in variance component estimation includes the genetic covariances among the several distances, maternal influence, and genetic parameters for racing longevity.

  7. Predicting waste stabilization pond performance using an ecological simulation model

    SciTech Connect

    New, G.R.

    1987-01-01

    Waste stabilization ponds (lagoons) are often favored in small communities because of their low cost and ease of operation. Most models currently used to predict performance are empirical or fail to address the primary lagoon cell. Empirical methods for predicting lagoon performance have been found to be off as much as 248 percent when used on a system other than the one they were developed for. Also, the present models developed for the primary cell lack the ability to predict parameters other than biochemical oxygen demand (BOD) and nitrogen. Oxygen consumption is usually estimated from BOD utilization. LAGOON is a fortran program which models the biogeochemical processes characteristic of the primary cell of facultative lagoons. Model parameters can be measured from lagoons in the vicinity of a proposed lagoon or estimated from laboratory studies. The model was calibrated utilizing a subset of the Corinne Utah lagoon data then validated utilizing a subset of the Corinne Utah data.

  8. Internal performance predictions for Langley scramjet engine module

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.

    1978-01-01

    A one dimensional theoretical method for the prediction of the internal performance of a scramjet engine is presented. The effects of changes in vehicle forebody flow parameters and characteristics on predicted thrust for the scramjet engine were evaluated using this method, and results are presented. A theoretical evaluation of the effects of changes in the scramjet engine's internal parameters is also presented. Theoretical internal performance predictions, in terms thrust coefficient and specific impulse, are provided for the scramjet engine for free stream Mach numbers of 5, 6, and 7 free stream dynamic pressure of 23,940 N/sq m forebody surface angles of 4.6 deg to 14.6 deg, and fuel equivalence ratio of 1.0.

  9. Sexual victimization history predicts academic performance in college women.

    PubMed

    Baker, Majel R; Frazier, Patricia A; Greer, Christiaan; Paulsen, Jacob A; Howard, Kelli; Meredith, Liza N; Anders, Samantha L; Shallcross, Sandra L

    2016-11-01

    College women frequently report having experienced sexual victimization (SV) in their lifetime, including child sexual abuse and adolescent/adult sexual assault. Although the harmful mental health sequelae of SV have been extensively studied, recent research suggests that SV is also a risk factor for poorer college academic performance. The current studies examined whether exposure to SV uniquely predicted poorer college academic performance, even beyond contributions from three well-established predictors of academic performance: high school rank, composite standardized test scores (i.e., American College Testing [ACT]), and conscientiousness. Study 1 analyzed longitudinal data from a sample of female college students (N = 192) who were assessed at the beginning and end of one semester. SV predicted poorer cumulative end-of-semester grade point average (GPA) while controlling for well-established predictors of academic performance. Study 2 replicated these findings in a second longitudinal study of female college students (N = 390) and extended the analyses to include follow-up data on the freshmen and sophomore students (n = 206) 4 years later. SV predicted students' GPA in their final term at the university above the contributions of well-established academic predictors, and it was the only factor related to leaving college. These findings highlight the importance of expanding the scope of outcomes of SV to include academic performance, and they underscore the need to assess SV and other adverse experiences on college campuses to target students who may be at risk of poor performance or leaving college. (PsycINFO Database Record

  10. Numerical predictions of EML (electromagnetic launcher) system performance

    SciTech Connect

    Schnurr, N.M.; Kerrisk, J.F.; Davidson, R.F.

    1987-01-01

    The performance of an electromagnetic launcher (EML) depends on a large number of parameters, including the characteristics of the power supply, rail geometry, rail and insulator material properties, injection velocity, and projectile mass. EML system performance is frequently limited by structural or thermal effects in the launcher (railgun). A series of computer codes has been developed at the Los Alamos National Laboratory to predict EML system performance and to determine the structural and thermal constraints on barrel design. These codes include FLD, a two-dimensional electrostatic code used to calculate the high-frequency inductance gradient and surface current density distribution for the rails; TOPAZRG, a two-dimensional finite-element code that simultaneously analyzes thermal and electromagnetic diffusion in the rails; and LARGE, a code that predicts the performance of the entire EML system. Trhe NIKE2D code, developed at the Lawrence Livermore National Laboratory, is used to perform structural analyses of the rails. These codes have been instrumental in the design of the Lethality Test System (LTS) at Los Alamos, which has an ultimate goal of accelerating a 30-g projectile to a velocity of 15 km/s. The capabilities of the individual codes and the coupling of these codes to perform a comprehensive analysis is discussed in relation to the LTS design. Numerical predictions are compared with experimental data and presented for the LTS prototype tests.

  11. A Novel Prediction Method about Single Components of Analog Circuits Based on Complex Field Modeling

    PubMed Central

    Tian, Shulin; Yang, Chenglin

    2014-01-01

    Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits' single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits' single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments. PMID:25147853

  12. A novel prediction method about single components of analog circuits based on complex field modeling.

    PubMed

    Zhou, Jingyu; Tian, Shulin; Yang, Chenglin

    2014-01-01

    Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits' single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits' single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments.

  13. Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.

    PubMed

    Ko, Chien-Ho

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  14. The Role of Means Efficacy When Predicting Creative Performance

    ERIC Educational Resources Information Center

    Simmons, Aneika L.; Payne, Stephanie C.; Pariyothorn, Matthew M.

    2014-01-01

    According to the "Internal-External Efficacy model", self-efficacy is an insufficient explanation for self-regulated behavior because it ignores the influence of external resources. Applying this theory of motivation to the prediction of creative performance, the extent to which means efficacy or the belief in the utility of external…

  15. Predicting Performance of One-Year MBA Students

    ERIC Educational Resources Information Center

    Fish, Lynn A.; Wilson, F. Scott

    2007-01-01

    Although several studies have been performed, Graduate Admissions programs are still encountering difficulties uncovering criteria that will predict academic success in their programs. Researchers have analyzed Executive, full and part-time MBA programs and can only conclude that undergraduate grade point average and the GMAT are significant…

  16. Image processing system performance prediction and product quality evaluation

    NASA Technical Reports Server (NTRS)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  17. Analysis of Factors that Predict Clinical Performance in Medical School

    ERIC Educational Resources Information Center

    White, Casey B.; Dey, Eric L.; Fantone, Joseph C.

    2009-01-01

    Academic achievement indices including GPAs and MCAT scores are used to predict the spectrum of medical student academic performance types. However, use of these measures ignores two changes influencing medical school admissions: student diversity and affirmative action, and an increased focus on communication skills. To determine if GPA and MCAT…

  18. The Role of Means Efficacy When Predicting Creative Performance

    ERIC Educational Resources Information Center

    Simmons, Aneika L.; Payne, Stephanie C.; Pariyothorn, Matthew M.

    2014-01-01

    According to the "Internal-External Efficacy model", self-efficacy is an insufficient explanation for self-regulated behavior because it ignores the influence of external resources. Applying this theory of motivation to the prediction of creative performance, the extent to which means efficacy or the belief in the utility of external…

  19. Human transfer functions used to predict system performance parameters

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Automatic, parameter-tracking, model-matching technique compares the responses of a human operator with those of an analog computer model of a human operator to predict and analyze the performance of mechanical or electromechanical systems prior to construction. Transfer functions represent the input-output relation of an operator controlling a closed-loop system.

  20. Multiple mini-interviews predict clerkship and licensing examination performance.

    PubMed

    Reiter, Harold I; Eva, Kevin W; Rosenfeld, Jack; Norman, Geoffrey R

    2007-04-01

    The Multiple Mini-Interview (MMI) has previously been shown to have a positive correlation with early medical school performance. Data have matured to allow comparison with clerkship evaluations and national licensing examinations. Of 117 applicants to the Michael G DeGroote School of Medicine at McMaster University who had scores on the MMI, traditional non-cognitive measures, and undergraduate grade point average (uGPA), 45 were admitted and followed through clerkship evaluations and Part I of the Medical Council of Canada Qualifying Examination (MCCQE). Clerkship evaluations consisted of clerkship summary ratings, a clerkship objective structured clinical examination (OSCE), and progress test score (a 180-item, multiple-choice test). The MCCQE includes subsections relevant to medical specialties and relevant to broader legal and ethical issues (Population Health and the Considerations of the Legal, Ethical and Organisational Aspects of Medicine[CLEO/PHELO]). In-programme, MMI was the best predictor of OSCE performance, clerkship encounter cards, and clerkship performance ratings. On the MCCQE Part I, MMI significantly predicted CLEO/PHELO scores and clinical decision-making (CDM) scores. None of these assessments were predicted by other non-cognitive admissions measures or uGPA. Only uGPA predicted progress test scores and the MCQ-based specialty-specific subsections of the MCCQE Part I. The MMI complements pre-admission cognitive measures to predict performance outcomes during clerkship and on the Canadian national licensing examination.

  1. Predicting Introductory Programming Performance: A Multi-Institutional Multivariate Study

    ERIC Educational Resources Information Center

    Bergin, Susan; Reilly, Ronan

    2006-01-01

    A model for predicting student performance on introductory programming modules is presented. The model uses attributes identified in a study carried out at four third-level institutions in the Republic of Ireland. Four instruments were used to collect the data and over 25 attributes were examined. A data reduction technique was applied and a…

  2. Prediction of Infant Performance From Neonatal and Developmental Criteria.

    ERIC Educational Resources Information Center

    Sweet, John F., Jr.; And Others

    This three-part study of early identification of developmental deficiencies in high risk infants was undertaken to determine whether infant performance can be predicted from neonatal and developmental criteria. Part I of the study began in 1977 and used 284 high risk infants as subjects. Part II was initiated in 1978. Subjects were 14 full-term,…

  3. Prediction of Nine Month Performance from Neonatal and Developmental Criteria.

    ERIC Educational Resources Information Center

    Sweet, John F., Jr.; And Others

    This study investigated the ability of the Neonatal Behavioral Assessment Scale (NBAS), in combination with neonatal histories and developmental assessments, to predict mental and motor performance of 9-month-old infants on the Bayley Scales of Infant Development (BSID). Fourteen normal, full-term infants and 10 average-for-gestational-age,…

  4. Prediction of Military Turnover Using Intentions, Satisfaction, and Performance.

    ERIC Educational Resources Information Center

    Knapp, Deirdre J.; And Others

    Although researchers have examined the link between job attitudes and turnover, some studies claim that civilian samples may not be generalizable to military personnel. This paper addresses two central questions: (1) To what extent does job satisfaction, job performance, and reenlistment intentions predict reenlistment behavior?; (2) To what…

  5. Predicting Performance of One-Year MBA Students

    ERIC Educational Resources Information Center

    Fish, Lynn A.; Wilson, F. Scott

    2007-01-01

    Although several studies have been performed, Graduate Admissions programs are still encountering difficulties uncovering criteria that will predict academic success in their programs. Researchers have analyzed Executive, full and part-time MBA programs and can only conclude that undergraduate grade point average and the GMAT are significant…

  6. Process for predicting structural performance of mechanical systems

    DOEpatents

    Gardner, David R.; Hendrickson, Bruce A.; Plimpton, Steven J.; Attaway, Stephen W.; Heinstein, Martin W.; Vaughan, Courtenay T.

    1998-01-01

    A process for predicting the structural performance of a mechanical system represents the mechanical system by a plurality of surface elements. The surface elements are grouped according to their location in the volume occupied by the mechanical system so that contacts between surface elements can be efficiently located. The process is well suited for efficient practice on multiprocessor computers.

  7. Process for predicting structural performance of mechanical systems

    DOEpatents

    Gardner, D.R.; Hendrickson, B.A.; Plimpton, S.J.; Attaway, S.W.; Heinstein, M.W.; Vaughan, C.T.

    1998-05-19

    A process for predicting the structural performance of a mechanical system represents the mechanical system by a plurality of surface elements. The surface elements are grouped according to their location in the volume occupied by the mechanical system so that contacts between surface elements can be efficiently located. The process is well suited for efficient practice on multiprocessor computers. 12 figs.

  8. Prediction of Infant Performance From Neonatal and Developmental Criteria.

    ERIC Educational Resources Information Center

    Sweet, John F., Jr.; And Others

    This three-part study of early identification of developmental deficiencies in high risk infants was undertaken to determine whether infant performance can be predicted from neonatal and developmental criteria. Part I of the study began in 1977 and used 284 high risk infants as subjects. Part II was initiated in 1978. Subjects were 14 full-term,…

  9. Prediction of Nine Month Performance from Neonatal and Developmental Criteria.

    ERIC Educational Resources Information Center

    Sweet, John F., Jr.; And Others

    This study investigated the ability of the Neonatal Behavioral Assessment Scale (NBAS), in combination with neonatal histories and developmental assessments, to predict mental and motor performance of 9-month-old infants on the Bayley Scales of Infant Development (BSID). Fourteen normal, full-term infants and 10 average-for-gestational-age,…

  10. Prediction and Quantification of Individual Athletic Performance of Runners.

    PubMed

    Blythe, Duncan A J; Király, Franz J

    2016-01-01

    We present a novel, quantitative view on the human athletic performance of individual runners. We obtain a predictor for running performance, a parsimonious model and a training state summary consisting of three numbers by application of modern validation techniques and recent advances in machine learning to the thepowerof10 database of British runners' performances (164,746 individuals, 1,417,432 performances). Our predictor achieves an average prediction error (out-of-sample) of e.g. 3.6 min on elite Marathon performances and 0.3 seconds on 100 metres performances, and a lower error than the state-of-the-art in performance prediction (30% improvement, RMSE) over a range of distances. We are also the first to report on a systematic comparison of predictors for running performance. Our model has three parameters per runner, and three components which are the same for all runners. The first component of the model corresponds to a power law with exponent dependent on the runner which achieves a better goodness-of-fit than known power laws in the study of running. Many documented phenomena in quantitative sports science, such as the form of scoring tables, the success of existing prediction methods including Riegel's formula, the Purdy points scheme, the power law for world records performances and the broken power law for world record speeds may be explained on the basis of our findings in a unified way. We provide strong evidence that the three parameters per runner are related to physiological and behavioural parameters, such as training state, event specialization and age, which allows us to derive novel physiological hypotheses relating to athletic performance. We conjecture on this basis that our findings will be vital in exercise physiology, race planning, the study of aging and training regime design.

  11. Prediction and Quantification of Individual Athletic Performance of Runners

    PubMed Central

    2016-01-01

    We present a novel, quantitative view on the human athletic performance of individual runners. We obtain a predictor for running performance, a parsimonious model and a training state summary consisting of three numbers by application of modern validation techniques and recent advances in machine learning to the thepowerof10 database of British runners’ performances (164,746 individuals, 1,417,432 performances). Our predictor achieves an average prediction error (out-of-sample) of e.g. 3.6 min on elite Marathon performances and 0.3 seconds on 100 metres performances, and a lower error than the state-of-the-art in performance prediction (30% improvement, RMSE) over a range of distances. We are also the first to report on a systematic comparison of predictors for running performance. Our model has three parameters per runner, and three components which are the same for all runners. The first component of the model corresponds to a power law with exponent dependent on the runner which achieves a better goodness-of-fit than known power laws in the study of running. Many documented phenomena in quantitative sports science, such as the form of scoring tables, the success of existing prediction methods including Riegel’s formula, the Purdy points scheme, the power law for world records performances and the broken power law for world record speeds may be explained on the basis of our findings in a unified way. We provide strong evidence that the three parameters per runner are related to physiological and behavioural parameters, such as training state, event specialization and age, which allows us to derive novel physiological hypotheses relating to athletic performance. We conjecture on this basis that our findings will be vital in exercise physiology, race planning, the study of aging and training regime design. PMID:27336162

  12. Prediction of Tennis Performance in Junior Elite Tennis Players

    PubMed Central

    Kramer, Tamara; Huijgen, Barbara C.H.; Elferink-Gemser, Marije T.; Visscher, Chris

    2017-01-01

    Predicting current and future tennis performance can lead to improving the development of junior tennis players. The aim of this study is to investigate whether age, maturation, or physical fitness in junior elite tennis players in U13 can explain current and future tennis performance. The value of current tennis performance for future tennis performance is also investigated. A total of 86 junior elite tennis players (boys, n = 44; girls, n = 42) U13 (aged: 12.5 ± 0.3 years), and followed to U16, took part in this study. All players were top-30 ranked on the Dutch national ranking list at U13, and top-50 at U16. Age, maturation, and physical fitness, were measured at U13. A principal component analysis was used to extract four physical components from eight tests (medicine ball throwing overhead and reverse, ball throwing, SJ, CMJas, Sprint 5 and 10 meter, and the spider test). The possible relationship of age, maturation, and the physical components; “upper body power”, “lower body power”, “speed”, and “agility” with tennis performance at U13 and U16 was analyzed. Tennis performance was measured by using the ranking position on the Dutch national ranking list at U13 and U16. Regression analyses were conducted based on correlations between variables and tennis performance for boys and girls, separately. In boys U13, positive correlations were found between upper body power and tennis performance (R2 is 25%). In girls, positive correlations between maturation and lower body power with tennis performance were found at U13. Early maturing players were associated with a better tennis performance (R2 is 15%). In girls U16, only maturation correlated with tennis performance (R2 is 13%); later-maturing girls at U13 had better tennis performances at U16. Measuring junior elite tennis players at U13 is important for monitoring their development. These measurements did not predict future tennis performance of junior elite tennis players three years later

  13. Turbulent flow field predictions in sharply curved turn around ducts

    NASA Technical Reports Server (NTRS)

    Santi, L. M.

    1986-01-01

    In this investigation, two-dimensional turbulent flow of incompressible Newtonian fluids in sharply curved 180 deg turn around ducts is studied. Results of an approximate numerical flow field analysis utilizing an orthogonal, body-fitted, curvilinear coordinate system are compared to results based on a traditional cylindrical reference frame. Qualitative indication of general streamfield characteristics as well as quantitative benchmarks for the planning of future experimentation are provided. In addition, preliminary results of an augmented kappa-epsilon turbulence model analysis, which explicitly accounts for the effects of streamline curvature and pressure strain in internal turbulent flows, are presented. Specific model difficulties are discussed and comparisons with standard kappa-esilon model predictions are included.

  14. Prediction of the far field noise from wind energy farms

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Hubbard, H. H.

    1986-01-01

    The basic physical factors involved in making predictions of wind turbine noise and an approach which allows for differences in the machines, the wind energy farm configurations and propagation conditions are reviewed. Example calculations to illustrate the sensitivity of the radiated noise to such variables as machine size, spacing and numbers, and such atmosphere variables as absorption and wind direction are presented. It is found that calculated far field distances to particular sound level contours are greater for lower values of atmospheric absorption, for a larger total number of machines, for additional rows of machines and for more powerful machines. At short and intermediate distances, higher sound pressure levels are calculated for closer machine spacings, for more powerful machines, for longer row lengths and for closer row spacings.

  15. A Comparative Study to Predict Student’s Performance Using Educational Data Mining Techniques

    NASA Astrophysics Data System (ADS)

    Uswatun Khasanah, Annisa; Harwati

    2017-06-01

    Student’s performance prediction is essential to be conducted for a university to prevent student fail. Number of student drop out is one of parameter that can be used to measure student performance and one important point that must be evaluated in Indonesia university accreditation. Data Mining has been widely used to predict student’s performance, and data mining that applied in this field usually called as Educational Data Mining. This study conducted Feature Selection to select high influence attributes with student performance in Department of Industrial Engineering Universitas Islam Indonesia. Then, two popular classification algorithm, Bayesian Network and Decision Tree, were implemented and compared to know the best prediction result. The outcome showed that student’s attendance and GPA in the first semester were in the top rank from all Feature Selection methods, and Bayesian Network is outperforming Decision Tree since it has higher accuracy rate.

  16. Prediction of indoor climbing performance in women rock climbers.

    PubMed

    Wall, Christopher B; Starek, Joanna E; Fleck, Steven J; Byrnes, William C

    2004-02-01

    In an attempt to more clearly understand the strength characteristics of female rock climbers and whether those variables affect and predict climbing performance, 2 indoor climbing performance tests (route and bouldering) were compared to a series of muscular strength tests performed by moderate (n = 6), intermediate (n = 6), and expert (n = 6) female rock climbers. Significant differences (p < 0.05) were found between the expert group and the moderate and intermediate groups for climbing specific hand strength, as well as 1-arm lock-off strength when expressed as a strength-to-weight ratio. Multiple correlations showed that these variables (r > 0.426) as well as a questionnaire of past climbing performance (r > 0.86) significantly correlated to the tests of indoor climbing performance. In conclusion, climbing-specific tests of hand strength and of one arm lock-off strength reliably and sensitively measured 2 significant variables in the performance of indoor rock climbing, and a questionnaire of past best performance may be an accurate tool for the prediction of indoor climbing performance.

  17. Entity versus incremental theories predict older adults' memory performance.

    PubMed

    Plaks, Jason E; Chasteen, Alison L

    2013-12-01

    The authors examined whether older adults' implicit theories regarding the modifiability of memory in particular (Studies 1 and 3) and abilities in general (Study 2) would predict memory performance. In Study 1, individual differences in older adults' endorsement of the "entity theory" (a belief that one's ability is fixed) or "incremental theory" (a belief that one's ability is malleable) of memory were measured using a version of the Implicit Theories Measure (Dweck, 1999). Memory performance was assessed with a free-recall task. Results indicated that the higher the endorsement of the incremental theory, the better the free recall. In Study 2, older and younger adults' theories were measured using a more general version of the Implicit Theories Measure that focused on the modifiability of abilities in general. Again, for older adults, the higher the incremental endorsement, the better the free recall. Moreover, as predicted, implicit theories did not predict younger adults' memory performance. In Study 3, participants read mock news articles reporting evidence in favor of either the entity or incremental theory. Those in the incremental condition outperformed those in the entity condition on reading span and free-recall tasks. These effects were mediated by pretask worry such that, for those in the entity condition, higher worry was associated with lower performance. Taken together, these studies suggest that variation in entity versus incremental endorsement represents a key predictor of older adults' memory performance.

  18. The prediction of transducer element performance from in air measurements

    NASA Astrophysics Data System (ADS)

    Schafer, M. E.

    1982-01-01

    A technique has been developed which accurately predicts the performance of underwater acoustic arrays prior to array construction. The technique is based upon the measurement of lumped-parameter equivalent circuit values for each element in the array, and is accurate in predicting the array transmit, receive and beam pattern response. The measurement procedure determines the shunt electrical and motional circuit elements from electrical imittance measurements. The electromechanical transformation ratio is derived from in-air measurements of the radiating face velocity and the input current to the transducer at resonance. The equivalent circuit values of a group of Tonpilz-type transducers were measured, and the self and mutual interaction acoustic loadings for a specific array geometry were calculated. The response of the elements was then predicted for water-loaded array conditions. Based on the predictions, a selection scheme was developed which minimized the effects of inter-element variability on array performance. The measured transmitting, receiving and beam pattern characteristics of a test array, built using the selected elements, were compared to predictions made before the array was built. The results indicated that the technique is accurate over a wide frequency range.

  19. Models for predicting the performance of Brayton-cycle engines

    SciTech Connect

    Korakianitis, T. ); Wilson, D.G. )

    1994-04-01

    Gas turbine performance is the result of choices of type of cycle, cycle temperature ratio, pressure ratio, cooling flows, and component losses. The output is usually given as efficiency (thermal, propulsive, specific thrust, overall efficiency) versus specific power. This paper presents a set of computer programs for the performance prediction of shaft-power and jet-propulsion cycles: simple, regenerative, intercooled-regenerative, turbojet, and turbofan. Each cycle is constructed using individual component modules. Realistic assumptions are specified for component efficiencies as functions of pressure ratio, cooling mass-flow rate as a function of cooling technology levels, and various other cycle losses. The programs can be used to predict design point and off-design point operation using appropriate component efficiencies. The effects of various cycle choices on overall performance are discussed.

  20. Models for predicting the performance of Brayton-cycle engines

    NASA Astrophysics Data System (ADS)

    Korakianitis, T.; Wilson, D. G.

    1994-04-01

    Gas turbine performance is the result of choices of type of cycle, cycle temperature ratio, pressure ratio, cooling flows, and component losses. The output is usually given as efficiency (thermal, propulsive, specific thrust, overall efficiency) versus specific power. This paper presents a set of computer programs for the performance prediction of shaft-power and jet-propulsion cycles: simple, regenerative, intercooled-regenerative, turbojet, and turbofan. Each cycle is constructed using individual component modules. Realistic assumptions are specified for component efficiencies as functions of pressure ratio, cooling mass-flow rate as a function of cooling technology levels, and various other cycle losses. The programs can be used to predict design point and off-design point operation using appropriate component efficiencies. The effects of various cycle choices on overall performance are discussed.

  1. Performance Study and CFD Predictions of a Ducted Fan System

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Chang, I-Chung; Bulaga, Robert W.; Rutkowski, Michael (Technical Monitor)

    2002-01-01

    An experimental investigation was completed in the NASA Ames 7 by 10-Foot Wind Tunnel to study the performance characteristics of a ducted fan. The goal of this effort is to study the effect of ducted fan geometry and utilize Computational Fluid Dynamics (CFD) analysis to provide a baseline for correlation. A 38-inch diameter, 10-inch chord duct with a five-bladed fixed-pitch fan was tested. Duct performance data were obtained in hover, vertical climb, and forward flight test conditions. This paper will present a description of the test, duct performance results and correlation with CFD predictions.

  2. Calibration between Undergraduate Students' Prediction of and Actual Performance: The Role of Gender and Performance Attributions

    ERIC Educational Resources Information Center

    Gutierrez, Antonio P.; Price, Addison F.

    2017-01-01

    This study investigated changes in male and female students' prediction and postdiction calibration accuracy and bias scores, and the predictive effects of explanatory styles on these variables beyond gender. Seventy undergraduate students rated their confidence in performance before and after a 40-item exam. There was an improvement in students'…

  3. Sensory noise predicts divisive reshaping of receptive fields

    PubMed Central

    Deneve, Sophie; Gutkin, Boris

    2017-01-01

    In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics. PMID:28622330

  4. Performance predictions for an SSME configuration with an enlarged throat

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dang, L. D.

    1985-01-01

    The Two Dimensional Kinetics (TDK) computer program that was recently developed for NASA was used to predict the performance of a Large Throat Configuration of the Space Shuttle Main Engine (SSME). Calculations indicate that the current design SSME contains a shock wave that is induced by the nozzle wall shape. In the Large Throat design an even stronger shock wave is predicted. Because of the presence of this shock wave, earlier performance predictions that have neglected shock wave effects have been questioned. The JANNAF thrust chamber performance prediction procedures given in a reference were applied. The analysis includes the effects of two dimensional reacting flow with a shock wave. The effects of the boundary layer with a regenatively cooled wall are also included. A Purdue computer program was used to compute axially symmetric supersonic nozzle flows with an induced shock, but is restricted to flows with a constant ratio of specific heats. Thus, the TDK program was also run with ths assumption and the results of the two programs were compared.

  5. Prediction of Gas Lubricated Foil Journal Bearing Performance

    NASA Technical Reports Server (NTRS)

    Carpino, Marc; Talmage, Gita

    2003-01-01

    This report summarizes the progress in the first eight months of the project. The objectives of this research project are to theoretically predict the steady operating conditions and the rotor dynamic coefficients of gas foil journal bearings. The project is currently on or ahead of schedule with the development of a finite element code that predicts steady bearing performance characteristics such as film thickness, pressure, load, and drag. Graphical results for a typical bearing are presented in the report. Project plans for the next year are discussed.

  6. Predictive Measures of Locomotor Performance on an Unstable Walking Surface

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Caldwell, E. E.; Batson, C. D.; De Dios, Y. E.; Gadd, N. E.; Goel, R.; Wood, S. J.; Cohen, H. S.; hide

    2016-01-01

    Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.

  7. A comparison of SAR ATR performance with information theoretic predictions

    NASA Astrophysics Data System (ADS)

    Blacknell, David

    2003-09-01

    Performance assessment of automatic target detection and recognition algorithms for SAR systems (or indeed any other sensors) is essential if the military utility of the system / algorithm mix is to be quantified. This is a relatively straightforward task if extensive trials data from an existing system is used. However, a crucial requirement is to assess the potential performance of novel systems as a guide to procurement decisions. This task is no longer straightforward since a hypothetical system cannot provide experimental trials data. QinetiQ has previously developed a theoretical technique for classification algorithm performance assessment based on information theory. The purpose of the study presented here has been to validate this approach. To this end, experimental SAR imagery of targets has been collected using the QinetiQ Enhanced Surveillance Radar to allow algorithm performance assessments as a number of parameters are varied. In particular, performance comparisons can be made for (i) resolutions up to 0.1m, (ii) single channel versus polarimetric (iii) targets in the open versus targets in scrubland and (iv) use versus non-use of camouflage. The change in performance as these parameters are varied has been quantified from the experimental imagery whilst the information theoretic approach has been used to predict the expected variation of performance with parameter value. A comparison of these measured and predicted assessments has revealed the strengths and weaknesses of the theoretical technique as will be discussed in the paper.

  8. A comprehensive performance evaluation on the prediction results of existing cooperative transcription factors identification algorithms.

    PubMed

    Lai, Fu-Jou; Chang, Hong-Tsun; Huang, Yueh-Min; Wu, Wei-Sheng

    2014-01-01

    Eukaryotic transcriptional regulation is known to be highly connected through the networks of cooperative transcription factors (TFs). Measuring the cooperativity of TFs is helpful for understanding the biological relevance of these TFs in regulating genes. The recent advances in computational techniques led to various predictions of cooperative TF pairs in yeast. As each algorithm integrated different data resources and was developed based on different rationales, it possessed its own merit and claimed outperforming others. However, the claim was prone to subjectivity because each algorithm compared with only a few other algorithms and only used a small set of performance indices for comparison. This motivated us to propose a series of indices to objectively evaluate the prediction performance of existing algorithms. And based on the proposed performance indices, we conducted a comprehensive performance evaluation. We collected 14 sets of predicted cooperative TF pairs (PCTFPs) in yeast from 14 existing algorithms in the literature. Using the eight performance indices we adopted/proposed, the cooperativity of each PCTFP was measured and a ranking score according to the mean cooperativity of the set was given to each set of PCTFPs under evaluation for each performance index. It was seen that the ranking scores of a set of PCTFPs vary with different performance indices, implying that an algorithm used in predicting cooperative TF pairs is of strength somewhere but may be of weakness elsewhere. We finally made a comprehensive ranking for these 14 sets. The results showed that Wang J's study obtained the best performance evaluation on the prediction of cooperative TF pairs in yeast. In this study, we adopted/proposed eight performance indices to make a comprehensive performance evaluation on the prediction results of 14 existing cooperative TFs identification algorithms. Most importantly, these proposed indices can be easily applied to measure the performance of new

  9. Prediction of Tennis Performance in Junior Elite Tennis Players.

    PubMed

    Kramer, Tamara; Huijgen, Barbara C H; Elferink-Gemser, Marije T; Visscher, Chris

    2017-03-01

    Predicting current and future tennis performance can lead to improving the development of junior tennis players. The aim of this study is to investigate whether age, maturation, or physical fitness in junior elite tennis players in U13 can explain current and future tennis performance. The value of current tennis performance for future tennis performance is also investigated. A total of 86 junior elite tennis players (boys, n = 44; girls, n = 42) U13 (aged: 12.5 ± 0.3 years), and followed to U16, took part in this study. All players were top-30 ranked on the Dutch national ranking list at U13, and top-50 at U16. Age, maturation, and physical fitness, were measured at U13. A principal component analysis was used to extract four physical components from eight tests (medicine ball throwing overhead and reverse, ball throwing, SJ, CMJas, Sprint 5 and 10 meter, and the spider test). The possible relationship of age, maturation, and the physical components; "upper body power", "lower body power", "speed", and "agility" with tennis performance at U13 and U16 was analyzed. Tennis performance was measured by using the ranking position on the Dutch national ranking list at U13 and U16. Regression analyses were conducted based on correlations between variables and tennis performance for boys and girls, separately. In boys U13, positive correlations were found between upper body power and tennis performance (R(2) is 25%). In girls, positive correlations between maturation and lower body power with tennis performance were found at U13. Early maturing players were associated with a better tennis performance (R(2) is 15%). In girls U16, only maturation correlated with tennis performance (R(2) is 13%); later-maturing girls at U13 had better tennis performances at U16. Measuring junior elite tennis players at U13 is important for monitoring their development. These measurements did not predict future tennis performance of junior elite tennis players three years later. Future

  10. Real-time Tsunami Inundation Prediction Using High Performance Computers

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  11. Computational prediction of isolated performance of an axisymmetric nozzle at Mach number 0.90

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1994-01-01

    An improved ability to predict external propulsive performance was incorporated into the three-dimensional Navier-Stokes code PAB3D. The improvements are the ability to account for skin friction and external pressure forces. Performance parameters for two axisymmetric supersonic cruise nozzle configurations were calculated to test the improved methodology. Internal and external flow-field regions were computed using a two-equation kappa-epsilon turbulent viscous-stress model. The computed thrust-minus-drag ratios were within 1 percent of the absolute level of experimental data and the trends of data were predicted accurately. The predicted trend of integrated nozzle pressure drag matched the trend of the integrated experimental pressure drag over a range of nozzle pressure ratios, but absolute drag levels were not accurately predicted.

  12. Annual performance prediction for off-axis aligned Lugo heliostats at Solar Two

    SciTech Connect

    Jones, S.A.

    1996-02-01

    The DELSOL computer code was used to model the annual Performance for numerous off-axis alignments of the Lugo heliostats located at the Solar Two site in Dagget, California. Recommended canting times are presented for the Lugo heliostats based upon their location in the field. Predicted annual performance of an off-axis alignment was actually higher than for on-axis alignment in some cases, and approximately equal if the recommended times are used. The annual performances of Solar One heliostats located nearby were also calculated, and illustrated the poorer performance expected of the Lugo heliostats.

  13. Temporal prediction errors modulate task-switching performance

    PubMed Central

    Limongi, Roberto; Silva, Angélica M.; Góngora-Costa, Begoña

    2015-01-01

    We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as “executive control” is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching. PMID:26379568

  14. Temporal prediction errors modulate task-switching performance.

    PubMed

    Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña

    2015-01-01

    We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.

  15. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  16. Magnetic field inversions at 1 AU: Comparisons between mapping predictions and observations

    NASA Astrophysics Data System (ADS)

    Li, B.; Cairns, Iver H.; Owens, M. J.; Neudegg, D.; Lobzin, V. V.; Steward, G.

    2016-11-01

    Large-scale magnetic field configurations are important for the transport of solar wind strahl electrons, which are suprathermal and directed along the field outward from the Sun. Strahl electrons are routinely used to infer not only the field configurations between the Sun and Earth but also local field structures, i.e., field inversions, where the magnetic field is locally folded back or inverted. Using solar wind data from ACE observations and a 2-D data-driven solar wind model with nonzero azimuthal magnetic field at the solar wind source surface, magnetic field lines are mapped between the Sun and Earth and beyond, in the solar equatorial plane. Standard verification metrics are used to assess, for five solar rotations at different phases of solar cycle 23, the performance of the mapping predictions for observed inversions, which are inferred from solar wind suprathermal electrons and magnetic fields measured by ACE. The probability of detection is consistently ≈0.70 across the different phases. The success ratio, the Hanssen-Kuipers skill score, and the Heidke skill score are ≈0.55-0.70 for the four rotations in the rising, solar maximum, and declining phases, but ≈0.35-0.60 for the rotation near solar minimum, during which almost half of the samples have undetermined field configurations. Our analyses confirm the persistence of inversions throughout solar cycle 23, suggest for most observed inversions a solar/coronal origin at the wind's source surface or below, and predict that inversions should be less common for larger heliocentric distance r ˜> 3 AU than for smaller r.

  17. Improving the performance of solar flare prediction using active longitudes information

    NASA Astrophysics Data System (ADS)

    Huang, X.; Zhang, L.; Wang, H.; Li, L.

    2013-01-01

    Context. Solar flare prediction models normally depend on properties of active regions, such as sunspot area, McIntosh classifications, Mount Wilson classifications, and various measures of the magnetic field. Nevertheless, the positional information of active regions has not been used. Aims: We define a metric, DARAL (distance between active regions and predicted active longitudes), to depict the positional relationship between active regions and predicted active longitudes and add DARAL to our solar flare prediction model to improve its performance. Methods: Combining DARAL with other solar magnetic field parameters, we build a solar flare prediction model with the instance-based learning method, which is a simple and effective algorithm in machine learning. We extracted 70 078 active region instances from the Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) magnetograms containing 1055 National Oceanic and Atmospheric Administration (NOAA) active regions within 30° of the solar disk center from 1996 to 2007 and used them to train and test the solar flare prediction model. Results: Using four performance measures (true positive rate, true negative rate, true skill statistic, and Heidke skill score), we compare performances of the solar flare prediction model with and without DARAL. True positive rate, true negative rate, true skill statistic, and Heidke skill score increase by 6.7% ± 1.3%, 4.2% ± 0.5%, 10.8% ± 1.4% and 8.7% ± 1.0%, respectively. Conclusions: The comparison indicates that the metric DARAL is beneficial to performances of the solar flare prediction model.

  18. When Predictions Take Control: The Effect of Task Predictions on Task Switching Performance

    PubMed Central

    Duthoo, Wout; De Baene, Wouter; Wühr, Peter; Notebaert, Wim

    2012-01-01

    In this paper, we aimed to investigate the role of self-generated predictions in the flexible control of behavior. Therefore, we ran a task switching experiment in which participants were asked to try to predict the upcoming task in three conditions varying in switch rate (30, 50, and 70%). Irrespective of their predictions, the color of the target indicated which task participants had to perform. In line with previous studies (Mayr, 2006; Monsell and Mizon, 2006), the switch cost was attenuated as the switch rate increased. Importantly, a clear task repetition bias was found in all conditions, yet the task repetition prediction rate dropped from 78 over 66 to 49% with increasing switch probability in the three conditions. Irrespective of condition, the switch cost was strongly reduced in expectation of a task alternation compared to the cost of an unexpected task alternation following repetition predictions. Hence, our data suggest that the reduction in the switch cost with increasing switch probability is caused by a diminished expectancy for the task to repeat. Taken together, this paper highlights the importance of predictions in the flexible control of behavior, and suggests a crucial role for task repetition expectancy in the context-sensitive adjusting of task switching performance. PMID:22891063

  19. Roadmap Toward a Predictive Performance-based Commercial Energy Code

    SciTech Connect

    Rosenberg, Michael I.; Hart, Philip R.

    2014-10-01

    Energy codes have provided significant increases in building efficiency over the last 38 years, since the first national energy model code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, and the inability to handle control optimization that is specific to building type and use. This paper provides a high level review of different options for energy codes, including prescriptive, prescriptive packages, EUI Target, outcome-based, and predictive performance approaches. This paper also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria. A vision is outlined to serve as a roadmap for future commercial code development. That vision is based on code development being led by a specific approach to predictive energy performance combined with building specific prescriptive packages that are designed to be both cost-effective and to achieve a desired level of performance. Compliance with this new approach can be achieved by either meeting the performance target as demonstrated by whole building energy modeling, or by choosing one of the prescriptive packages.

  20. Trends of Abutment-Scour Prediction Equations Applied to 144 Field Sites in South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Deshpande, Nikhil; Aziz, Nadim M.; Conrads, Paul A.

    2006-01-01

    The U.S. Geological Survey conducted a study in cooperation with the Federal Highway Administration in which predicted abutment-scour depths computed with selected predictive equations were compared with field measurements of abutment-scour depth made at 144 bridges in South Carolina. The assessment used five equations published in the Fourth Edition of 'Evaluating Scour at Bridges,' (Hydraulic Engineering Circular 18), including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. An additional unpublished equation also was assessed. Comparisons between predicted and observed scour depths are intended to illustrate general trends and order-of-magnitude differences for the prediction equations. Field measurements were taken during non-flood conditions when the hydraulic conditions that caused the scour generally are unknown. The predicted scour depths are based on hydraulic conditions associated with the 100-year flow at all sites and the flood of record for 35 sites. Comparisons showed that predicted scour depths frequently overpredict observed scour and at times were excessive. The comparison also showed that underprediction occurred, but with less frequency. The performance of these equations indicates that they are poor predictors of abutment-scour depth in South Carolina, and it is probable that poor performance will occur when the equations are applied in other geographic regions. Extensive data and graphs used to compare predicted and observed scour depths in this study were compiled into spreadsheets and are included in digital format with this report. In addition to the equation-comparison data, Water-Surface Profile Model tube-velocity data, soil-boring data, and selected abutment-scour data are included in digital format with this report. The digital database was developed as a resource for future researchers and is especially valuable for evaluating the reasonableness of future equations that may be developed.

  1. Field dependence--independence and performance with the passive transformation.

    PubMed

    Powers, J E; Lis, D J

    1977-12-01

    An investigation of the influence of children's levels of field dependence-independence on their performance with the passive transformation is presented. Eighty 6th graders classified as field dependent or field independent were presented with sentence-question combinations, each in either the active or passive voice, and numbers of correct responses were recorded. Results showed that field-independent subjects performed better over-all than did field-dependent subjects. The three-way interaction of field dependence-independence, sentence voice, and question voice was also significant. Field-dependent subjects performed significantly more poorly on the active-passive and passive-active combinations than on the active-active and passive-passive combinations. There were no significant differences among the four treatments within the field-independent subjects. Thus field-dependent subjects had greatest difficulty with combinations requiring them to isolate the essential elements of a sentence and use them in a different form; field-independent subjects did not experience this difficulty.

  2. Lessons from application of the UNRES force field to predictions of structures of CASP10 targets

    PubMed Central

    He, Yi; Mozolewska, Magdalena A.; Krupa, Paweł; Sieradzan, Adam K.; Wirecki, Tomasz K.; Liwo, Adam; Kachlishvili, Khatuna; Rackovsky, Shalom; Jagieła, Dawid; Ślusarz, Rafał; Czaplewski, Cezary R.; Ołdziej, Stanisław; Scheraga, Harold A.

    2013-01-01

    The performance of the physics-based protocol, whose main component is the United Residue (UNRES) physics-based coarse-grained force field, developed in our laboratory for the prediction of protein structure from amino acid sequence, is illustrated. Candidate models are selected, based on probabilities of the conformational families determined by multiplexed replica-exchange simulations, from the 10th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP10). For target T0663, classified as a new fold, which consists of two domains homologous to those of known proteins, UNRES predicted the correct symmetry of packing, in which the domains are rotated with respect to each other by 180° in the experimental structure. By contrast, models obtained by knowledge-based methods, in which each domain is modeled very accurately but not rotated, resulted in incorrect packing. Two UNRES models of this target were featured by the assessors. Correct domain packing was also predicted by UNRES for the homologous target T0644, which has a similar structure to that of T0663, except that the two domains are not rotated. Predictions for two other targets, T0668 and T0684_D2, are among the best ones by global distance test score. These results suggest that our physics-based method has substantial predictive power. In particular, it has the ability to predict domain–domain orientations, which is a significant advance in the state of the art. PMID:23980156

  3. Contextual predictability enhances reading performance in patients with schizophrenia.

    PubMed

    Fernández, Gerardo; Guinjoan, Salvador; Sapognikoff, Marcelo; Orozco, David; Agamennoni, Osvaldo

    2016-07-30

    In the present work we analyzed fixation duration in 40 healthy individuals and 18 patients with chronic, stable SZ during reading of regular sentences and proverbs. While they read, their eye movements were recorded. We used lineal mixed models to analyze fixation durations. The predictability of words N-1, N, and N+1 exerted a strong influence on controls and SZ patients. The influence of the predictabilities of preceding, current, and upcoming words on SZ was clearly reduced for proverbs in comparison to regular sentences. Both controls and SZ readers were able to use highly predictable fixated words for an easier reading. Our results suggest that SZ readers might compensate attentional and working memory deficiencies by using stored information of familiar texts for enhancing their reading performance. The predictabilities of words in proverbs serve as task-appropriate cues that are used by SZ readers. To the best of our knowledge, this is the first study using eyetracking for measuring how patients with SZ process well-defined words embedded in regular sentences and proverbs. Evaluation of the resulting changes in fixation durations might provide a useful tool for understanding how SZ patients could enhance their reading performance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Metamaterial magnetoinductive lens performance as a function of field strength.

    PubMed

    Algarín, José M; Freire, Manuel J; Breuer, Felix; Behr, Volker C

    2014-10-01

    Metamaterials are artificial composites that exhibit exotic electromagnetic properties, as the ability of metamaterial slabs to behave like lenses with sub-wavelength resolution for the electric or the magnetic field. In previous works, the authors investigated magnetic resonance imaging (MRI) applications of metamaterial slabs that behave like lenses for the radiofrequency magnetic field. In particular, the authors investigated the ability of MRI metamaterial lenses to increase the signal-to-noise ratio (SNR) of surface coils, and to localize the field of view (FOV) of the coils, which is of interest for parallel MRI (pMRI) applications. A metamaterial lens placed between a surface coil and the tissue enhances the sensitivity of the coil. Although the metamaterial lens introduces losses which add to the losses of the tissue, the enhancement of the sensitivity can compensate these additional losses and the SNR of the coil is increased. In a previous work, an optimization procedure was followed to find a metamaterial structure with minimum losses that will maximize the SNR. This structure was termed magnetoinductive (MI) lens by the authors. The properties of surface coils in the presence of MI lenses were investigated in previous works at the proton frequency of 1.5 T systems. The different frequency dependence of the losses in both the MI lenses and the tissue encouraged us to investigate the performance of MI lenses at different frequencies. Thus, in the present work, the SNR and the pMRI ability of MI lenses are investigated as a function of field strength. A numerical analysis is carried out with an algorithm developed by the authors to predict the SNR behavior of a surface coil loaded with a MI lens at the proton frequencies of 0.5 T, 1.5 T and 3 T systems. The results show that, at 0.5 T, there is a gain in the SNR for short distances, but the SNR is highly degraded at deeper distances. However, at 1.5 T and 3T, the MI lenses provide a gain in the SNR up to a

  5. Simulation and predicted performance of the Balcones GEDI experiment

    NASA Astrophysics Data System (ADS)

    Wu, A. Y.; Driga, M. D.; Woodson, H. H.; Zowarka, R. C., Jr.

    1986-11-01

    The guided electromagnetic defense interceptor (GEDI) railgun launcher system is powered by six Balcones homopolar generators (BHPG), each of which stores 10 MJ in kinetic energy. Each BHPG is connected to a coaxial inductor which stores about half of the BHPG's energy when charged to 1.2 MA. Six two-stage opening switches open in sequence or simultaneously after current peak, directing the current to the railgun armature. As much as 7.2 MA can be delivered to the railgun. A computer simulation code is developed to perform design parameter studies, sensitivity studies, and to predict GEDI system behaviors. The code is general enough for analyzing any railgun driven by multi-HPG inductors coupled with two-stage opening switches. A Gear type, multistep algorithm is used to overcome stiffness of the differential system caused by the way the switches are modeled. GEDI system performances are predicted with the code based on most updated component parameters.

  6. The Development and Prediction of Athletic Performance in Freestyle Swimming

    PubMed Central

    Stanula, Arkadiusz; Maszczyk, Adam; Roczniok, Robert; Pietraszewski, Przemysław; Ostrowski, Andrzej; Zając, Adam; Strzała, Marek

    2012-01-01

    This paper analyses the dynamics of changes between the performances of elite freestyle swimmers recorded at particular Olympic Games. It also uses a set of chronologically ordered results to predict probable times of swimmers at the 2012 Olympic Games in London. The analysis of past performances of freestyle swimmers and their prediction have revealed a number of interesting tendencies within separately examined results of men and women. Women’s results improve more dynamically compared with men’s. Moreover, the difference between women’s and men’s results is smaller, the longer the swimming distance. As both male and female athletes tend to compete more and more vigorously within their groups, the gap between the gold medallist and the last finisher in the final is constantly decreasing, which provides significant evidence that this sport discipline continues to develop. PMID:23486223

  7. The development and prediction of athletic performance in freestyle swimming.

    PubMed

    Stanula, Arkadiusz; Maszczyk, Adam; Roczniok, Robert; Pietraszewski, Przemysław; Ostrowski, Andrzej; Zając, Adam; Strzała, Marek

    2012-05-01

    This paper analyses the dynamics of changes between the performances of elite freestyle swimmers recorded at particular Olympic Games. It also uses a set of chronologically ordered results to predict probable times of swimmers at the 2012 Olympic Games in London. The analysis of past performances of freestyle swimmers and their prediction have revealed a number of interesting tendencies within separately examined results of men and women. Women's results improve more dynamically compared with men's. Moreover, the difference between women's and men's results is smaller, the longer the swimming distance. As both male and female athletes tend to compete more and more vigorously within their groups, the gap between the gold medallist and the last finisher in the final is constantly decreasing, which provides significant evidence that this sport discipline continues to develop.

  8. Comparison of two procedures for predicting rocket engine nozzle performance

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1987-01-01

    Two nozzle performance prediction procedures which are based on the standardized JANNAF methodology are presented and compared for four rocket engine nozzles. The first procedure required operator intercedence to transfer data between the individual performance programs. The second procedure is more automated in that all necessary programs are collected into a single computer code, thereby eliminating the need for data reformatting. Results from both procedures show similar trends but quantitative differences. Agreement was best in the predictions of specific impulse and local skin friction coefficient. Other compared quantities include characteristic velocity, thrust coefficient, thrust decrement, boundary layer displacement thickness, momentum thickness, and heat loss rate to the wall. Effects of wall temperature profile used as an input to the programs was investigated by running three wall temperature profiles. It was found that this change greatly affected the boundary layer displacement thickness and heat loss to the wall. The other quantities, however, were not drastically affected by the wall temperature profile change.

  9. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  10. A prediction model for personal radio frequency electromagnetic field exposure.

    PubMed

    Frei, Patrizia; Mohler, Evelyn; Bürgi, Alfred; Fröhlich, Jürg; Neubauer, Georg; Braun-Fahrländer, Charlotte; Röösli, Martin

    2009-12-15

    Radio frequency electromagnetic fields (RF-EMF) in our daily life are caused by numerous sources such as fixed site transmitters (e.g. mobile phone base stations) or indoor devices (e.g. cordless phones). The objective of this study was to develop a prediction model which can be used to predict mean RF-EMF exposure from different sources for a large study population in epidemiological research. We collected personal RF-EMF exposure measurements of 166 volunteers from Basel, Switzerland, by means of portable exposure meters, which were carried during one week. For a validation study we repeated exposure measurements of 31 study participants 21 weeks after the measurements of the first week on average. These second measurements were not used for the model development. We used two data sources as exposure predictors: 1) a questionnaire on potentially exposure relevant characteristics and behaviors and 2) modeled RF-EMF from fixed site transmitters (mobile phone base stations, broadcast transmitters) at the participants' place of residence using a geospatial propagation model. Relevant exposure predictors, which were identified by means of multiple regression analysis, were the modeled RF-EMF at the participants' home from the propagation model, housing characteristics, ownership of communication devices (wireless LAN, mobile and cordless phones) and behavioral aspects such as amount of time spent in public transports. The proportion of variance explained (R2) by the final model was 0.52. The analysis of the agreement between calculated and measured RF-EMF showed a sensitivity of 0.56 and a specificity of 0.95 (cut-off: 90th percentile). In the validation study, the sensitivity and specificity of the model were 0.67 and 0.96, respectively. We could demonstrate that it is feasible to model personal RF-EMF exposure. Most importantly, our validation study suggests that the model can be used to assess average exposure over several months.

  11. Does the UKCAT predict Year 1 performance in medical school?

    PubMed

    Lynch, Bonnie; Mackenzie, Rhoda; Dowell, Jon; Cleland, Jennifer; Prescott, Gordon

    2009-12-01

    The need to identify the best applicants for medicine and to ensure that selection is fair and ethical has led to the development of alternative, or additional, selection tools. One such tool is the United Kingdom Clinical Aptitude Test, or UKCAT. To date there have been no studies of the predictive validity of the UKCAT. This study set out to identify whether UKCAT total score and subtest scores predict Year 1 outcomes in medical school. Year 1 students starting in 2007 at the University of Aberdeen or University of Dundee medical schools were included. Data collected were: UKCAT scores; Universities and Colleges Admissions Service (UCAS) form scores; admission interview scores; final Year 1 degree examination scores, and records of re-sitting examinations and of withdrawing from a course. Correlations were used to select variables for multiple regression analysis to predict examination scores. Data were available for 341 students. Examination scores did not correlate with UKCAT total or subtest scores. Neither UCAS form score nor admission interview score predicted outcomes. None of the UKCAT scores were reliably associated with withdrawals (P-values for all comparisons > 0.05). Only the decision analysis subtest was associated with re-sits of examinations, but the difference in means was contrary to the direction anticipated (P = 0.025, 95% confidence interval = 6.1-89.7). UKCAT scores did not predict Year 1 performance at the two medical schools. Although early prediction is arguably not the primary aim of the UKCAT, there is some cause for concern that the test failed to show even the small-to-moderate predictive power demonstrated by similar admissions tools.

  12. The Rigors of Predictive Validation: Some Comments on "A Job Learning Approach to Performance Prediction"

    ERIC Educational Resources Information Center

    Cohen, Stephen L.; Penner, Louis A.

    1976-01-01

    In a recent article in this journal (EJ 130 391) Siegel and Bergman described a "miniature job training and evaluation" approach to performance prediction. This research highlights their methodology's strengths and weaknesses in light of standard procedures recommended in developing any set of predictors. (Author/RK)

  13. Performance of FFT methods in local gravity field modelling

    NASA Technical Reports Server (NTRS)

    Forsberg, Rene; Solheim, Dag

    1989-01-01

    Fast Fourier transform (FFT) methods provide a fast and efficient means of processing large amounts of gravity or geoid data in local gravity field modelling. The FFT methods, however, has a number of theoretical and practical limitations, especially the use of flat-earth approximation, and the requirements for gridded data. In spite of this the method often yields excellent results in practice when compared to other more rigorous (and computationally expensive) methods, such as least-squares collocation. The good performance of the FFT methods illustrate that the theoretical approximations are offset by the capability of taking into account more data in larger areas, especially important for geoid predictions. For best results good data gridding algorithms are essential. In practice truncated collocation approaches may be used. For large areas at high latitudes the gridding must be done using suitable map projections such as UTM, to avoid trivial errors caused by the meridian convergence. The FFT methods are compared to ground truth data in New Mexico (xi, eta from delta g), Scandinavia (N from delta g, the geoid fits to 15 cm over 2000 km), and areas of the Atlantic (delta g from satellite altimetry using Wiener filtering). In all cases the FFT methods yields results comparable or superior to other methods.

  14. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    NASA Astrophysics Data System (ADS)

    Ko, P.; Kurosawa, S.

    2014-03-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.

  15. Automation to improve efficiency of field expedient injury prediction screening.

    PubMed

    Teyhen, Deydre S; Shaffer, Scott W; Umlauf, Jon A; Akerman, Raymond J; Canada, John B; Butler, Robert J; Goffar, Stephen L; Walker, Michael J; Kiesel, Kyle B; Plisky, Phillip J

    2012-07-01

    Musculoskeletal injuries are a primary source of disability in the U.S. Military. Physical training and sports-related activities account for up to 90% of all injuries, and 80% of these injuries are considered overuse in nature. As a result, there is a need to develop an evidence-based musculoskeletal screen that can assist with injury prevention. The purpose of this study was to assess the capability of an automated system to improve the efficiency of field expedient tests that may help predict injury risk and provide corrective strategies for deficits identified. The field expedient tests include survey questions and measures of movement quality, balance, trunk stability, power, mobility, and foot structure and mobility. Data entry for these tests was automated using handheld computers, barcode scanning, and netbook computers. An automated algorithm for injury risk stratification and mitigation techniques was run on a server computer. Without automation support, subjects were assessed in 84.5 ± 9.1 minutes per subject compared with 66.8 ± 6.1 minutes per subject with automation and 47.1 ± 5.2 minutes per subject with automation and process improvement measures (p < 0.001). The average time to manually enter the data was 22.2 ± 7.4 minutes per subject. An additional 11.5 ± 2.5 minutes per subject was required to manually assign an intervention strategy. Automation of this injury prevention screening protocol using handheld devices and netbook computers allowed for real-time data entry and enhanced the efficiency of injury screening, risk stratification, and prescription of a risk mitigation strategy.

  16. Predicting prehospital care students' first-year academic performance.

    PubMed

    Madigan, Veronica

    2006-01-01

    To answer two research questions: First, can previously identified factors relating to academic performance be used to predict first-year academic success for students undertaking a newly developed and vocationally oriented prehospital care course delivered in a rural setting? Second, can the study's findings be used to develop appropriate student selection criteria to assist in the admission of students into relevant tertiary studies or the prehospital care industry? A retrospective review of all first-year, on-campus prehospital care students enrolled in a vocational course at a rural Australian university from 1998 to 2001 was conducted. Six predictors of academic performance were examined, namely: University Admission Index (UAI), postsecondary educational qualifications, student entry type (traditional or mature-aged), previous health-related experience, gender, and background (rural or urban). Three dependent variables assessed academic performance: grade point average (GPA) of students who completed all required first-year subjects, GPA of students who completed at least one subject in the first year, and the student's ability to successfully complete the first year. UAI > 50, previous health-related experience, postsecondary educational qualifications, background, student entry type, and gender were all found to be significant predictors of first-year academic performance in selective cohorts. In addition, a combination of predictors produced higher GPAs than did any single predictor. Academic performance of first-year students in the prehospital care discipline can be predicted given the appropriate selection variables. Admission selection can be assisted with the generated Student Selection 001.

  17. Measuring reflective-band imaging systems for performance prediction

    NASA Astrophysics Data System (ADS)

    Slonopas, Andre; Preece, Bradley L.; Haefner, David P.

    2017-05-01

    An objective performance of the reflective-band imaging systems is required in order to provide the warfighter with the right technology for a specific task. Various methods to measure and model performance in the visible (Vis) spectral regions have been proposed in the literature. This correspondence shows the influence of the spectral region averaging on the monochromatic modulation transfer function (MTF). This works unequivocally shows that the illumination source plays a crucial role in the accurate predictive analysis of the system performance. For accurate analysis the illumination sources need to be carefully considered for the atmospheric conditions. This work shows the possibility of using an LED configuration in the system performance analysis. Such configurations need rigorous calibration in order to become a valuable asset in system characterization.

  18. Recent Progress Towards Predicting Aircraft Ground Handling Performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    The significant progress which has been achieved in development of aircraft ground handling simulation capability is reviewed and additional improvements in software modeling identified. The problem associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior is discussed and efforts to improve this complex model, and hence simulator fidelity, are described. Aircraft braking performance data obtained on several wet runway surfaces is compared to ground vehicle friction measurements and, by use of empirically derived methods, good agreement between actual and estimated aircraft braking friction from ground vehilce data is shown. The performance of a relatively new friction measuring device, the friction tester, showed great promise in providing data applicable to aircraft friction performance. Additional research efforts to improve methods of predicting tire friction performance are discussed including use of an instrumented tire test vehicle to expand the tire friction data bank and a study of surface texture measurement techniques.

  19. Improving performance of mammalian microRNA target prediction

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. Results A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html. Conclusions A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly

  20. Analytical Prediction and Optimization of Far-Field Pyroshock Test Procedures

    NASA Astrophysics Data System (ADS)

    Lacher, Alexander; Jungel, Nikolas; von Wagner, Utz; Bager, Annette

    2012-07-01

    The simulation of far-field pyroshocks is mainly performed by the use of mechanical or mechatronic devices such as hammer pendulums, shakers and piezoactors. Latter show limitations concerning frequency and acceleration ranges which does not hold for hammer pendulums or bolt guns. Their controllability, however, is rather unsatisfactory and there still exists a general lack of computational prediction tools for usually time consuming and costly far-field pyroshock tests. Mechanical minimal models of existing hammer test devices are presented and investigated by the use of the finite element and analytical methods. The tedious mechanical impact problem is reduced by introducing a nonlinear compressive spring connecting striking partners. Computational test results are verified by experiments and optimized by an evolution strategy allowing for determination of optimum test parameters. The algorithms developed are the basis for fast and efficient predictions of pyroshock tests.

  1. Field Dependence-Independence and Dental Students' Clinical Performance.

    ERIC Educational Resources Information Center

    Suddick, Richard P.; And Others

    1982-01-01

    Two tests of field dependence-independence (the Embedded Figures Test and Inverted Tracing Test) are examined as potential predictors of student clinical performance. Results suggest that field-independent students may have an advantage in the clinical dental curriculum. (Author/MSE)

  2. Predictions and Performance on the PACT Teaching Event: Case Studies of High and Low Performers

    ERIC Educational Resources Information Center

    Sandholtz, Judith Haymore

    2012-01-01

    In an earlier study, the author and her colleague explored the extent to which supervisors' perspectives about candidates' performance corresponded with outcomes from a summative performance assessment (Sandholtz & Shea, 2012). They specifically examined the relationship between university supervisors' predictions and candidates' performance…

  3. Flow field predictions for a slab delta wing at incidence

    NASA Technical Reports Server (NTRS)

    Conti, R. J.; Thomas, P. D.; Chou, Y. S.

    1972-01-01

    Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.

  4. FRB Event Rate Predictions for the Ooty Wide Field Array

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Siddhartha; Bera, Apurba; Bharadwaj, Somnath; Ramesh Bhat, N. D.; Chengalur, Jayaram N.

    2017-03-01

    We developed a generic formalism to estimate the event rate and the redshift distribution of Fast Radio Bursts (FRBs) in our previous publication (Bera et al. 2016), considering FRBs are of an extragalactic origin. In this paper, we present (a) the predicted pulse widths of FRBs by considering two different scattering models, (b) the minimum total energy required to detect events, (c) the redshift distribution and (d) the detection rates of FRBs for the Ooty Wide Field Array (OWFA). The energy spectrum of FRBs is modelled as a power law with an exponent - α and our analysis spans a range -3≤ α≤5. We find that OWFA will be capable of detecting FRBs with α≥0. The redshift distribution and the event rates of FRBs are estimated by assuming two different energy distribution functions; a Delta function and a Schechter luminosity function with an exponent -2≤ γ≤2. We consider an empirical scattering model based on pulsar observations (model I) as well as a theoretical model (model II) expected for the intergalactic medium. The redshift distributions peak at a particular redshift z p for a fixed value of α, which lie in the range 0.3≤ z p ≤1 for the scattering model I and remain flat and extend up to high redshifts ( z≲5) for the scattering model II.

  5. The validity of physical aggression in predicting adolescent academic performance.

    PubMed

    Loveland, James M; Lounsbury, John W; Welsh, Deborah; Buboltz, Walter C

    2007-03-01

    Aggression has a long history in academic research as both a criterion and a predictor variable and it is well documented that aggression is related to a variety of poor academic outcomes such as: lowered academic performance, absenteeism and lower graduation rates. However, recent research has implicated physical aggression as being predictive of lower academic performance. The purpose of this study was to examine the role of the 'Big Five' personality traits of agreeableness, openness to experience, conscientiousness, neuroticism and extraversion and physical aggression in predicting the grade point averages (GPA) of adolescent students and to investigate whether or not there were differences in these relationships between male and female students. A sample of 992 students in grades 9 to 12 from a high school in south-eastern USA as part of a larger study examining the students' preparation for entry into the workforce. The study was correlational in nature: students completed a personality inventory developed by the second author with the GPA information supplied by the school. Results indicated that physical aggression accounts for 16% of variance in GPA and it adds 7% to the prediction of GPA beyond the Big Five. The Big Five traits added only 1.5% to the prediction of GPA after controlling for physical aggression. Interestingly, a significantly larger amount of variance in GPA was predicted by physical aggression for females than for males. Aggression accounts for significantly more variance in the GPA of females than for males, even when controlling for the Big Five personality factors. Future research should examine the differences in the expression of aggression in males and females, as well as how this is affecting interactions between peers and between students and their teachers.

  6. Photovoltaic performance models: an evaluation with actual field data

    NASA Astrophysics Data System (ADS)

    TamizhMani, Govindasamy; Ishioye, John-Paul; Voropayev, Arseniy; Kang, Yi

    2008-08-01

    Prediction of energy production is crucial to the design and installation of the building integrated photovoltaic systems. This prediction should be attainable based on the commonly available parameters such as system size, orientation and tilt angle. Several commercially available as well as free downloadable software tools exist to predict energy production. Six software models have been evaluated in this study and they are: PV Watts, PVsyst, MAUI, Clean Power Estimator, Solar Advisor Model (SAM) and RETScreen. This evaluation has been done by comparing the monthly, seasonaly and annually predicted data with the actual, field data obtained over a year period on a large number of residential PV systems ranging between 2 and 3 kWdc. All the systems are located in Arizona, within the Phoenix metropolitan area which lies at latitude 33° North, and longitude 112 West, and are all connected to the electrical grid.

  7. Increased genomic prediction accuracy in wheat breeding through spatial adjustment of field trial data.

    PubMed

    Lado, Bettina; Matus, Ivan; Rodríguez, Alejandra; Inostroza, Luis; Poland, Jesse; Belzile, François; del Pozo, Alejandro; Quincke, Martín; Castro, Marina; von Zitzewitz, Jarislav

    2013-12-09

    In crop breeding, the interest of predicting the performance of candidate cultivars in the field has increased due to recent advances in molecular breeding technologies. However, the complexity of the wheat genome presents some challenges for applying new technologies in molecular marker identification with next-generation sequencing. We applied genotyping-by-sequencing, a recently developed method to identify single-nucleotide polymorphisms, in the genomes of 384 wheat (Triticum aestivum) genotypes that were field tested under three different water regimes in Mediterranean climatic conditions: rain-fed only, mild water stress, and fully irrigated. We identified 102,324 single-nucleotide polymorphisms in these genotypes, and the phenotypic data were used to train and test genomic selection models intended to predict yield, thousand-kernel weight, number of kernels per spike, and heading date. Phenotypic data showed marked spatial variation. Therefore, different models were tested to correct the trends observed in the field. A mixed-model using moving-means as a covariate was found to best fit the data. When we applied the genomic selection models, the accuracy of predicted traits increased with spatial adjustment. Multiple genomic selection models were tested, and a Gaussian kernel model was determined to give the highest accuracy. The best predictions between environments were obtained when data from different years were used to train the model. Our results confirm that genotyping-by-sequencing is an effective tool to obtain genome-wide information for crops with complex genomes, that these data are efficient for predicting traits, and that correction of spatial variation is a crucial ingredient to increase prediction accuracy in genomic selection models.

  8. Predicting hybrid performance in rice using genomic best linear unbiased prediction.

    PubMed

    Xu, Shizhong; Zhu, Dan; Zhang, Qifa

    2014-08-26

    Genomic selection is an upgrading form of marker-assisted selection for quantitative traits, and it differs from the traditional marker-assisted selection in that markers in the entire genome are used to predict genetic values and the QTL detection step is skipped. Genomic selection holds the promise to be more efficient than the traditional marker-assisted selection for traits controlled by polygenes. Genomic selection for pure breed improvement is based on marker information and thus leads to cost-saving due to early selection before phenotypes are measured. When applied to hybrid breeding, genomic selection is anticipated to be even more efficient because genotypes of hybrids are predetermined by their inbred parents. Hybrid breeding has been an important tool to increase crop productivity. Here we proposed and applied an advanced method to predict hybrid performance, in which a subset of all potential hybrids is used as a training sample to predict trait values of all potential hybrids. The method is called genomic best linear unbiased prediction. The technology applied to hybrids is called genomic hybrid breeding. We used 278 randomly selected hybrids derived from 210 recombinant inbred lines of rice as a training sample and predicted all 21,945 potential hybrids. The average yield of top 100 selection shows a 16% increase compared with the average yield of all potential hybrids. The new strategy of marker-guided prediction of hybrid yields serves as a proof of concept for a new technology that may potentially revolutionize hybrid breeding.

  9. Effect of prior performance on subsequent performance evaluation by field independent-dependent raters.

    PubMed

    Sisco, Howard; Leventhal, Gloria

    2007-12-01

    The importance of accurate performance appraisals is central to many aspects of personnel activities in organizations. This study examined threats due to past performance to accuracy of evaluation of subsequent performance by raters differing in scores on field dependence. 162 college students were classified as Field-dependent (n = 81) or Field-independent (n = 81), using a median split on the Group Embedded Figures Test. Past performance (a lecture) was good or poor, presented directly via a videotape or indirectly via a written evaluation to the Field-independent or Field-dependent groups. Analysis indicated the hypothesized contrast effect (ratings in the opposite direction from that of prior ratings) in the Direct condition and an unexpected, albeit smaller, contrast effect in the Indirect condition. There were also differential effects of performance, presentation, and field dependency on rating of lecturer's style and ability.

  10. Treadmill Velocity Best Predicts 5000-m Run Performance.

    PubMed

    Stratton, E; O'Brien, B J; Harvey, J; Blitvich, J; McNicol, A J; Janissen, D; Paton, C; Knez, W

    2009-01-01

    In this study, we aimed to investigate physiological determinants of endurance performance that best predict 5000-m average run velocity before and after endurance training. Thirty-nine previously untrained participants completed a 5000-m run; a constant velocity test (measuring running economy); and an incremental treadmill test to determine maximal oxygen uptake, final treadmill velocity, and velocity and oxygen uptake at lactate threshold, before and after six weeks of endurance training. Maximal oxygen uptake, final treadmill velocity, and velocity and oxygen uptake at threshold all increased significantly after training (p < 0.05). Average velocity for 5000 m increased significantly (p < 0.05). Running economy was not significantly altered. Correlation analysis revealed final treadmill velocity was most strongly related to 5000-m performance, in both untrained and trained states (r = 0.89, 0.83). Lactate threshold velocity (r = 0.73, 0.76), maximal oxygen uptake (r = 0.55, 0.51) and oxygen uptake at threshold (r = 0.45, 0.45) also showed significant correlations. In contrast, running economy was not significantly related to performance. These results demonstrate that final treadmill velocity in an VO2max test is the single best predictor of 5000-m performance in untrained and trained states. Furthermore, stepwise regression analysis showed that only velocity at lactate threshold significantly improved the accuracy of prediction provided by final treadmill velocity alone.

  11. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine

    PubMed Central

    Ramakrishnan, Sridhar; Wesensten, Nancy J.; Kamimori, Gary H.; Moon, James E.; Balkin, Thomas J.; Reifman, Jaques

    2016-01-01

    Study Objectives: Existing mathematical models of neurobehavioral performance cannot predict the beneficial effects of caffeine across the spectrum of sleep loss conditions, limiting their practical utility. Here, we closed this research gap by integrating a model of caffeine effects with the recently validated unified model of performance (UMP) into a single, unified modeling framework. We then assessed the accuracy of this new UMP in predicting performance across multiple studies. Methods: We hypothesized that the pharmacodynamics of caffeine vary similarly during both wakefulness and sleep, and that caffeine has a multiplicative effect on performance. Accordingly, to represent the effects of caffeine in the UMP, we multiplied a dose-dependent caffeine factor (which accounts for the pharmacokinetics and pharmacodynamics of caffeine) to the performance estimated in the absence of caffeine. We assessed the UMP predictions in 14 distinct laboratory- and field-study conditions, including 7 different sleep-loss schedules (from 5 h of sleep per night to continuous sleep loss for 85 h) and 6 different caffeine doses (from placebo to repeated 200 mg doses to a single dose of 600 mg). Results: The UMP accurately predicted group-average psychomotor vigilance task performance data across the different sleep loss and caffeine conditions (6% < error < 27%), yielding greater accuracy for mild and moderate sleep loss conditions than for more severe cases. Overall, accounting for the effects of caffeine resulted in improved predictions (after caffeine consumption) by up to 70%. Conclusions: The UMP provides the first comprehensive tool for accurate selection of combinations of sleep schedules and caffeine countermeasure strategies to optimize neurobehavioral performance. Citation: Ramakrishnan S, Wesensten NJ, Kamimori GH, Moon JE, Balkin TJ, Reifman J. A unified model of performance for predicting the effects of sleep and caffeine. SLEEP 2016;39(10):1827–1841. PMID:27397562

  12. Predictive factors for masticatory performance in Duchenne muscular dystrophy.

    PubMed

    van Bruggen, H W; van de Engel-Hoek, L; Steenks, M H; Bronkhorst, E M; Creugers, N H J; de Groot, I J M; Kalaykova, S I

    2014-08-01

    Patients with Duchenne muscular dystrophy (DMD) report masticatory and swallowing problems. Such problems may cause complications such as choking, and feeling of food sticking in the throat. We investigated whether masticatory performance in DMD is objectively impaired, and explored predictive factors for compromised mastication. Twenty-three patients and 23 controls filled out two questionnaires about mandibular function, and underwent a clinical examination of the masticatory system and measurements of anterior bite force and masticatory performance. In the patients, moreover, quantitative ultrasound of the tongue and motor function measurement was performed. The patients were categorized into ambulatory stage (early or late), early non-ambulatory stage, or late non-ambulatory stage. Masticatory performance, anterior bite force and occlusal contacts were all reduced in the patient group compared to the controls (all p < 0.001). Mastication abnormalities were present early in the disease process prior to a reduction of motor function measurement. The early non-ambulatory and late non-ambulatory stage groups showed less masticatory performance compared to the ambulatory stage group (p < 0.028 and p < 0.010, respectively). Multiple linear regression analysis revealed that stage of the disease was the strongest independent risk factor for the masticatory performance (R(2) = 0.52). Anterior bite force, occlusal contacts and masticatory performance in DMD are severely reduced. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  14. Automated Performance Prediction of Message Passing Parallel Programs

    NASA Technical Reports Server (NTRS)

    Block, Robert J.; Mehra, Pankaj; Sarukkai, Sekhar; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    As the trend toward massively parallel processing continues, the need for tools that can predict scalability trends becomes greater. While high level languages Eke HPF have come into greater use, explicit message-passing programs proliferate, and will probably do so for some time, thanks to the onslaught of standards such as MPI. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require a substantial manual effort to represent an application in the model's format. The YAPP ("Yet Another Performance Predictor") tool is an attempt to automate the formation of first-order expressions for completion time, with a minimum of programmer assistance. The content of this paper is as follows: First, we explore the implementation details of YAPP, and illustrate with examples some of the reasons that automatic prediction is difficult. In the following sections, we present the results of four applications, using execution traces on the Intel i860, analyze the error in YAPP's predictions, explain the limitations of our implementation, and mention possible future additions. In particular, we illustrate techniques used to identify pipeline communication patterns, and demonstrate how compiler analysis and regression are combined to automate the prediction process.

  15. Automated Performance Prediction of Message Passing Parallel Programs

    NASA Technical Reports Server (NTRS)

    Block, Robert J.; Mehra, Pankaj; Sarukkai, Sekhar; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    As the trend toward massively parallel processing continues, the need for tools that can predict scalability trends becomes greater. While high level languages Eke HPF have come into greater use, explicit message-passing programs proliferate, and will probably do so for some time, thanks to the onslaught of standards such as MPI. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require a substantial manual effort to represent an application in the model's format. The YAPP ("Yet Another Performance Predictor") tool is an attempt to automate the formation of first-order expressions for completion time, with a minimum of programmer assistance. The content of this paper is as follows: First, we explore the implementation details of YAPP, and illustrate with examples some of the reasons that automatic prediction is difficult. In the following sections, we present the results of four applications, using execution traces on the Intel i860, analyze the error in YAPP's predictions, explain the limitations of our implementation, and mention possible future additions. In particular, we illustrate techniques used to identify pipeline communication patterns, and demonstrate how compiler analysis and regression are combined to automate the prediction process.

  16. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  17. Lightweight ZERODUR: Validation of Mirror Performance and Mirror Modeling Predictions

    NASA Technical Reports Server (NTRS)

    Hull, Tony; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA's XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2 m diameter, f/1.2988% lightweighted SCHOTT lightweighted ZERODUR(TradeMark) mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR(TradeMark). In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response(dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR(TradeMark) mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS). Summarize the outcome of NASA's XRCF tests and model validations

  18. Foraging Ecology Predicts Learning Performance in Insectivorous Bats

    PubMed Central

    Clarin, Theresa M. A.; Ruczyński, Ireneusz; Page, Rachel A.

    2013-01-01

    Bats are unusual among mammals in showing great ecological diversity even among closely related species and are thus well suited for studies of adaptation to the ecological background. Here we investigate whether behavioral flexibility and simple- and complex-rule learning performance can be predicted by foraging ecology. We predict faster learning and higher flexibility in animals hunting in more complex, variable environments than in animals hunting in more simple, stable environments. To test this hypothesis, we studied three closely related insectivorous European bat species of the genus Myotis that belong to three different functional groups based on foraging habitats: M. capaccinii, an open water forager, M. myotis, a passive listening gleaner, and M. emarginatus, a clutter specialist. We predicted that M. capaccinii would show the least flexibility and slowest learning reflecting its relatively unstructured foraging habitat and the stereotypy of its natural foraging behavior, while the other two species would show greater flexibility and more rapid learning reflecting the complexity of their natural foraging tasks. We used a purposefully unnatural and thus species-fair crawling maze to test simple- and complex-rule learning, flexibility and re-learning performance. We found that M. capaccinii learned a simple rule as fast as the other species, but was slower in complex rule learning and was less flexible in response to changes in reward location. We found no differences in re-learning ability among species. Our results corroborate the hypothesis that animals’ cognitive skills reflect the demands of their ecological niche. PMID:23755146

  19. Lightweight ZERODUR®: Validation of mirror performance and mirror modeling predictions

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA’s XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2m diameter, f/1.29 88% lightweighted SCHOTT lightweighted ZERODUR® mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR®. In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response (dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR® mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS), and summarize the outcome of NASA’s XRCF tests and model validations.

  20. Inhibitory Performance Predicting Drinking Behaviours Among Young Adults.

    PubMed

    Paz, Andres L; Keim, Carley A; Rosselli, Monica

    2016-11-01

    While inhibition has been studied extensively in correlation to alcohol abuse within the adult population, it has been studied less so in relation to the alcohol consumption habits of young adults. Accordingly, this is the first study with the objective of identifying which subcomponent(s) of inhibitory performance, behaviourally measured by the withholding of a pre-potent response, the cancellation of a pre-potent response and interference inhibition will best predict binge drinking habits among young adults. Forty-nine collegiate adults (41 females) with a mean age of 21.92 ± 1.34 years, performed three cognitive batteries assessing inhibition: Stop Signal task (SST), Go/No-Go task (GNG) and Simon task. Participants completed two biweekly alcohol logs, 2 and 4 weeks following inhibitory assessment. Regression analysis revealed that interference inhibition (Simon task) and/or withholding inhibition (GNG) contributed to the prediction of total intoxication days and total hangover days. These findings suggest that specific subcomponents of response inhibition, and not others, are more suitable for predicting alcohol consumption habits. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  1. Performance and wake predictions of HAWTs in wind farms

    SciTech Connect

    Leclerc, C.; Masson, C.; Paraschivoiu, I.

    1997-12-31

    The present contribution proposes and describes a promising way towards performance prediction of an arbitrary array of turbines. It is based on the solution of the time-averaged, steady-state, incompressible Navier-Stokes equations with an appropriate turbulence closure model. The turbines are represented by distributions of momentum sources in the Navier-Stokes equations. In this paper, the applicability and viability of the proposed methodology is demonstrated using an axisymmetric implementation. The k-{epsilon} model has been chosen for the closure of the time-averaged, turbulent flow equations and the properties of the incident flow correspond to those of a neutral atmospheric boundary layer. The proposed mathematical model is solved using a Control-Volume Finite Element Method (CVFEM). Detailed results have been obtained using the proposed method for an isolated wind turbine and for two turbines one behind another. In the case of an isolated turbine, accurate wake velocity deficit predictions are obtained and an increase in power due to atmospheric turbulence is found in agreement with measurements. In the case of two turbines, the proposed methodology provides an appropriate modelling of the wind-turbine wake and a realistic prediction of the performance degradation of the downstream turbine.

  2. Numerical predictions of burner performance during pulverized coal combustion

    SciTech Connect

    Zarnescu, V.; Pisupati, S.V.

    1999-07-01

    The performance of four burners in terms of temperature and velocity profiles, residence time and NO{sub x} emissions was predicted using numerical simulations and a two-dimensional model for pulverized coal combustion. Numerical predictions for two burners used in a pilot-scale 0.5 MM Btu/hr (146.5 kW) down-fired combustor (DFC) are presented. Two other burner configurations were evaluated and compared with the ones used with the DFC for attaining lower NO{sub x} levels. Simulations were conducted for both coal and coal-water slurry as primary fuels. A sensitivity analysis of predictions with respect to variations of the model parameters was performed. The results suggest that the higher NO{sub x} reduction with one of the burners used in the DFC is due to the improved near-burner aerodynamics and to better flame attachment. These improved conditions are influenced by a combination of geometric and flow parameters, such as burner dimensions, quart diameter, inlet velocity, inlet temperature and swirl number.

  3. Foraging ecology predicts learning performance in insectivorous bats.

    PubMed

    Clarin, Theresa M A; Ruczyński, Ireneusz; Page, Rachel A; Siemers, Björn M

    2013-01-01

    Bats are unusual among mammals in showing great ecological diversity even among closely related species and are thus well suited for studies of adaptation to the ecological background. Here we investigate whether behavioral flexibility and simple- and complex-rule learning performance can be predicted by foraging ecology. We predict faster learning and higher flexibility in animals hunting in more complex, variable environments than in animals hunting in more simple, stable environments. To test this hypothesis, we studied three closely related insectivorous European bat species of the genus Myotis that belong to three different functional groups based on foraging habitats: M. capaccinii, an open water forager, M. myotis, a passive listening gleaner, and M. emarginatus, a clutter specialist. We predicted that M. capaccinii would show the least flexibility and slowest learning reflecting its relatively unstructured foraging habitat and the stereotypy of its natural foraging behavior, while the other two species would show greater flexibility and more rapid learning reflecting the complexity of their natural foraging tasks. We used a purposefully unnatural and thus species-fair crawling maze to test simple- and complex-rule learning, flexibility and re-learning performance. We found that M. capaccinii learned a simple rule as fast as the other species, but was slower in complex rule learning and was less flexible in response to changes in reward location. We found no differences in re-learning ability among species. Our results corroborate the hypothesis that animals' cognitive skills reflect the demands of their ecological niche.

  4. Physical Activity Predicts Performance in an Unpracticed Bimanual Coordination Task

    PubMed Central

    Boisgontier, Matthieu P.; Serbruyns, Leen; Swinnen, Stephan P.

    2017-01-01

    Practice of a given physical activity is known to improve the motor skills related to this activity. However, whether unrelated skills are also improved is still unclear. To test the impact of physical activity on an unpracticed motor task, 26 young adults completed the international physical activity questionnaire and performed a bimanual coordination task they had never practiced before. Results showed that higher total physical activity predicted higher performance in the bimanual task, controlling for multiple factors such as age, physical inactivity, music practice, and computer games practice. Linear mixed models allowed this effect of physical activity to be generalized to a large population of bimanual coordination conditions. This finding runs counter to the notion that generalized motor abilities do not exist and supports the existence of a “learning to learn” skill that could be improved through physical activity and that impacts performance in tasks that are not necessarily related to the practiced activity. PMID:28265253

  5. Development of a massively parallel parachute performance prediction code

    SciTech Connect

    Peterson, C.W.; Strickland, J.H.; Wolfe, W.P.; Sundberg, W.D.; McBride, D.D.

    1997-04-01

    The Department of Energy has given Sandia full responsibility for the complete life cycle (cradle to grave) of all nuclear weapon parachutes. Sandia National Laboratories is initiating development of a complete numerical simulation of parachute performance, beginning with parachute deployment and continuing through inflation and steady state descent. The purpose of the parachute performance code is to predict the performance of stockpile weapon parachutes as these parachutes continue to age well beyond their intended service life. A new massively parallel computer will provide unprecedented speed and memory for solving this complex problem, and new software will be written to treat the coupled fluid, structure and trajectory calculations as part of a single code. Verification and validation experiments have been proposed to provide the necessary confidence in the computations.

  6. Prediction of sprint triathlon performance from laboratory tests.

    PubMed

    Van Schuylenbergh, R; Eynde, B Vanden; Hespel, P

    2004-01-01

    This study investigated whether sprint triathlon performance can be adequately predicted from laboratory tests. Ten triathletes [mean (SEM), age 21.8 (0.3) years, height 179 (2) cm, body mass 67.5 (2.5) kg] performed two graded maximal exercise test in random order, either on their own bicycle which was mounted on an ergometer or on a treadmill, to determine their peak oxygen consumption ( VO(2)peak). Furthermore, they participated in two to three 30-min constant-load tests in both swimming, cycling and running to establish their maximal lactate steady state (MLSS) in each exercise mode. Swim tests were performed in a 25-m swimming pool (water temperature 27 degrees C). During each test heart rate (HR), power output (PO) or running/swimming speed and blood lactate concentration (BLC) were recorded at regular intervals. Oxygen uptake ( VO(2)) was continuously measured during the graded tests. Two weeks after the laboratory tests all subjects competed in a triathlon race (500 m swim, 20-km bike, 5-km run) [1 h 4 min 45 s (1 min 38 s)]. Peak HR was 7 beats.min(-1) lower in the graded cycle test than in the treadmill test ( p<0.05) at similar peak BLC (approximately 10 mmol.l(-1)) and VO(2)peak (approximately 5 L.min(-1)). High correlations were found between VO(2)peak during cycling ( r=-0.71, p<0.05) or running ( r=-0.69, p<0.05) and triathlon performance. Stepwise multiple regression analysis showed that running speed and swimming speed at MLSS, together with BLC in running at MLSS, yielded the best prediction of performance [1 h 5 min 18 s (1 min 49 s)]. Thus, our data indicate that exercise tests aimed to determine MLSS in running and swimming allow for a precise estimation of sprint triathlon performance.

  7. Predicting introductory programming performance: A multi-institutional multivariate study

    NASA Astrophysics Data System (ADS)

    Bergin, Susan; Reilly, Ronan

    2006-12-01

    A model for predicting student performance on introductory programming modules is presented. The model uses attributes identified in a study carried out at four third-level institutions in the Republic of Ireland. Four instruments were used to collect the data and over 25 attributes were examined. A data reduction technique was applied and a logistic regression model using 10-fold stratified cross validation was developed. The model used three attributes: Leaving Certificate Mathematics result (final mathematics examination at second level), number of hours playing computer games while taking the module and programming self-esteem. Prediction success was significant with 80% of students correctly classified. The model also works well on a per-institution level. A discussion on the implications of the model is provided and future work is outlined.

  8. A simplified model for hybrid rocket performance prediction

    NASA Astrophysics Data System (ADS)

    Wolf, Robert S.; Wagner, John W.

    1992-02-01

    A computer code to predict hybrid rocket performance was developed and validated. The algorithm used is a simplification of the model derived by Marxman and Wooldridge. This model assumes the fuel regression rate to be controlled by convective heat transfer to the solid fuel from a relatively thin diffusion flame in a turbulent boundary layer. The model further assumes that the Reynolds analogy applies with mass addition at the wall. The computer code incorporates variable combustion product properties (temperature, molecular weight, and ratio of specific heats) as a function of the instantaneous global oxidizer/fuel ratio. The code was validated by constructing and firing a hybrid rocket motor. This motor used gaseous oxygen and hydroxyl-terminated polybutadiene as propellants. The oxygen flow rate used in the test was given as an input to the computer code, which then calculated chamber pressures and thrust. The agreement between test data and computer predictions was excellent.

  9. Assessing performance of prediction rules in machine learning.

    PubMed

    Martin, Rory; Yu, Kai

    2006-06-01

    An important goal in machine learning is to assess the degree to which prediction rules are robust and replicable, since these rules are used for decision making and for planning follow-up studies. This requires an estimate of a prediction rule's true error rate, a statistic that can be estimated by resampling data. However, there are many possible approaches depending upon whether we draw observations with or without replacement, or sample once, repeatedly, or not at all, and the pros and cons of each are often unclear. This study illustrates and compares different methods for estimating true error with the aim of providing practical guidance to users of machine learning techniques. We conducted Monte Carlo simulation studies using four different error estimators: bootstrap, split sample, resubstitution and a direct estimate of true error. Here, 'split sample' refers to a single random partition of the data into a pair of training and test samples, a popular scheme. We used stochastic gradient boosting as a learning algorithm, and considered data from two studies for which the underlying data mechanism was known to be complex: a library of 6000 tripeptide substrates collected for analysis of proteasome inhibition as part of anticancer drug design, and a cardiovascular study involving 600 subjects receiving antiplatelet treatment for acute coronary syndrome. There were important differences in the performance of the various error estimators examined. Error estimators for split sample and resubstitution, while being the most transparent in action and the simplest to apply, did not quantify the performance of prediction rules as accurately as the bootstrap. This was true for both types of study data, despite their highly different nature. The robustness and reliability of decisions based on analysis of genomics data could, in many cases, be improved by following best practices for prediction error estimation. For this, techniques such as bootstrap should be

  10. System performance predictions for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.

    1993-01-01

    Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.

  11. The Use of Learning Styles and Admission Criteria in Predicting Academic Performance and Retention of College Freshmen.

    ERIC Educational Resources Information Center

    Garton, Bryan L.; Dyer, James E.; King, Brad O.

    2000-01-01

    College freshmen (n=326) who preferred field-independent and field-neutral learning styles had higher grade point averages. High school grade point average and ACT scores were the best predictors of freshman academic performance. Learning style and ACT scores best predicted student retention. (SK)

  12. Electro-Optical System Simulation and Performance Prediction Extensions to EODES

    DTIC Science & Technology

    2010-01-01

    performed a preliminary validation of the Streak Tube Imaging Lidar (STIL) model using data from an August 2001 field test of electro-optical imaging...situations. It was also determined that the long fall time (see Fig. 2) of the proposed photodetector did adversely impact image quality. These... Lidar (STIL) sensor showed good agreement between EODES simulations and actual sensor imagery. In addition, the image quality predicted by EODES

  13. A Comprehensive Model for Performance Prediction of Electro-Optical Systems

    DTIC Science & Technology

    2009-01-01

    against Monte Carlo simulations, laboratory experiments, and field test data. A performance prediction capability was also developed based on the... turbid media under the assumption of small-angle scattering [1] and Fourier optics models for various scanning systems [2,3,4]. A key objective of this...solution strategy that includes time-dependence, range-dependent water properties, arbitrary scattering phase functions, and various source radiance

  14. Fine-motor skills testing and prediction of endovascular performance.

    PubMed

    Bech, Bo; Lönn, Lars; Schroeder, Torben V; Ringsted, Charlotte

    2013-12-01

    Performing endovascular procedures requires good control of fine-motor digital movements and hand-eye coordination. Objective assessment of such skills is difficult. Trainees acquire control of catheter/wire movements at various paces. However, little is known to what extent talent plays for novice candidates at entry to practice. To study the association between performance in a novel aptitude test of fine-motor skills and performance in simulated procedures. The test was based on manual course-tracking using a proprietary hand-operated roller-bar device coupled to a personal computer with monitor view rotation. A total of 40 test repetitions were conducted separately with each hand. Test scores were correlated with simulator performance. Group A (n = 14), clinicians with various levels of endovascular experience, performed a simulated procedure of contralateral iliac artery stenting. Group B (n = 19), medical students, performed 10 repetitions of crossing a challenging aortic bifurcation in a simulator. The test score differed markedly between the individuals in both groups, in particular with the non-dominant hand. Group A: the test score with the non-dominant hand correlated significantly with simulator performance assessed with the global rating scale SAVE (R = -0.69, P = 0.007). There was no association observed from performances with the dominant hand. Group B: there was no significant association between the test score and endovascular skills acquisition neither with the dominant nor with the non-dominant hand. Clinicians with increasing levels of endovascular technical experience had developed good fine-motor control of the non-dominant hand, in particular, that was associated with good procedural performance in the simulator. The aptitude test did not predict endovascular skills acquisition among medical students, thus, cannot be suggested for selection of novice candidates. Procedural experience and practice probably supplant the influence of innate

  15. Predictive hydrogeochemical modelling of bauxite residue sand in field conditions.

    PubMed

    Wissmeier, Laurin; Barry, David A; Phillips, Ian R

    2011-07-15

    The suitability of residue sand (the coarse fraction remaining from Bayer's process of bauxite refining) for constructing the surface cover of closed bauxite residue storage areas was investigated. Specifically, its properties as a medium for plant growth are of interest to ensure residue sand can support a sustainable ecosystem following site closure. The geochemical evolution of the residue sand under field conditions, its plant nutrient status and soil moisture retention were studied by integrated modelling of geochemical and hydrological processes. For the parameterization of mineral reactions, amounts and reaction kinetics of the mineral phases natron, calcite, tricalcium aluminate, sodalite, muscovite and analcime were derived from measured acid neutralization curves. The effective exchange capacity for ion adsorption was measured using three independent exchange methods. The geochemical model, which accounts for mineral reactions, cation exchange and activity corrected solution speciation, was formulated in the geochemical modelling framework PHREEQC, and partially validated in a saturated-flow column experiment. For the integration of variably saturated flow with multi-component solute transport in heterogeneous 2D domains, a coupling of PHREEQC with the multi-purpose finite-element solver COMSOL was established. The integrated hydrogeochemical model was applied to predict water availability and quality in a vertical flow lysimeter and a cover design for a storage facility using measured time series of rainfall and evaporation from southwest Western Australia. In both scenarios the sand was fertigated and gypsum-amended. Results show poor long-term retention of fertilizer ions and buffering of the pH around 10 for more than 5 y of leaching. It was concluded that fertigation, gypsum amendment and rainfall leaching alone were insufficient to render the geochemical conditions of residue sand suitable for optimal plant growth within the given timeframe. The

  16. Predicting the protein targets for athletic performance-enhancing substances.

    PubMed

    Mavridis, Lazaros; Mitchell, John Bo

    2013-06-25

    The World Anti-Doping Agency (WADA) publishes the Prohibited List, a manually compiled international standard of substances and methods prohibited in-competition, out-of-competition and in particular sports. It would be ideal to be able to identify all substances that have one or more performance-enhancing pharmacological actions in an automated, fast and cost effective way. Here, we use experimental data derived from the ChEMBL database (~7,000,000 activity records for 1,300,000 compounds) to build a database model that takes into account both structure and experimental information, and use this database to predict both on-target and off-target interactions between these molecules and targets relevant to doping in sport. The ChEMBL database was screened and eight well populated categories of activities (Ki, Kd, EC50, ED50, activity, potency, inhibition and IC50) were used for a rule-based filtering process to define the labels "active" or "inactive". The "active" compounds for each of the ChEMBL families were thereby defined and these populated our bioactivity-based filtered families. A structure-based clustering step was subsequently performed in order to split families with more than one distinct chemical scaffold. This produced refined families, whose members share both a common chemical scaffold and bioactivity against a common target in ChEMBL. We have used the Parzen-Rosenblatt machine learning approach to test whether compounds in ChEMBL can be correctly predicted to belong to their appropriate refined families. Validation tests using the refined families gave a significant increase in predictivity compared with the filtered or with the original families. Out of 61,660 queries in our Monte Carlo cross-validation, belonging to 19,639 refined families, 41,300 (66.98%) had the parent family as the top prediction and 53,797 (87.25%) had the parent family in the top four hits. Having thus validated our approach, we used it to identify the protein targets

  17. Neighborhood Integration and Connectivity Predict Cognitive Performance and Decline

    PubMed Central

    Ferdous, Farhana; Diaz Moore, Keith; Burns, Jeffrey M.

    2015-01-01

    Objective: Neighborhood characteristics may be important for promoting walking, but little research has focused on older adults, especially those with cognitive impairment. We evaluated the role of neighborhood characteristics on cognitive function and decline over a 2-year period adjusting for measures of walking. Method: In a study of 64 older adults with and without mild Alzheimer’s disease (AD), we evaluated neighborhood integration and connectivity using geographical information systems data and space syntax analysis. In multiple regression analyses, we used these characteristics to predict 2-year declines in factor analytically derived cognitive scores (attention, verbal memory, mental status) adjusting for age, sex, education, and self-reported walking. Results: Neighborhood integration and connectivity predicted cognitive performance at baseline, and changes in cognitive performance over 2 years. The relationships between neighborhood characteristics and cognitive performance were not fully explained by self-reported walking. Discussion: Clearer definitions of specific neighborhood characteristics associated with walkability are needed to better understand the mechanisms by which neighborhoods may impact cognitive outcomes. These results have implications for measuring neighborhood characteristics, design and maintenance of living spaces, and interventions to increase walking among older adults. We offer suggestions for future research measuring neighborhood characteristics and cognitive function. PMID:26504889

  18. Numerical simulation of a twin screw expander for performance prediction

    NASA Astrophysics Data System (ADS)

    Papes, Iva; Degroote, Joris; Vierendeels, Jan

    2015-08-01

    With the increasing use of twin screw expanders in waste heat recovery applications, the performance prediction of these machines plays an important role. This paper presents a mathematical model for calculating the performance of a twin screw expander. From the mass and energy conservation laws, differential equations are derived which are then solved together with the appropriate Equation of State in the instantaneous control volumes. Different flow processes that occur inside the screw expander such as filling (accompanied by a substantial pressure loss) and leakage flows through the clearances are accounted for in the model. The mathematical model employs all geometrical parameters such as chamber volume, suction and leakage areas. With R245fa as working fluid, the Aungier Redlich-Kwong Equation of State has been used in order to include real gas effects. To calculate the mass flow rates through the leakage paths formed inside the screw expander, flow coefficients are considered as constant and they are derived from 3D Computational Fluid Dynamic calculations at given working conditions and applied to all other working conditions. The outcome of the mathematical model is the P-V indicator diagram which is compared to CFD results of the same twin screw expander. Since CFD calculations require significant computational time, developed mathematical model can be used for the faster performance prediction.

  19. Theoretical Approach to Predict the Performance of Thermoelectric Generator Modules

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem H.; Fagehi, Hassan; Lee, Hosung; Attar, Alaa

    2017-02-01

    The aim of this work was to examine the validity of the thermoelectric modules' performance predicted by formulating the effective thermoelectric material properties. The three maximum parameters (output power, current, and efficiency) are defined in terms of the average temperature of the thermoelectric generator (TEG). These three maximum parameters, which are either taken from commercial TEG modules or measurements for particular operating conditions, are used to define the effective material properties (Seebeck coefficient, thermal conductivity, and electrical resistivity). The commercial performance curves provided by the manufacturer were compared with the results obtained here by the effective material properties with the simple standard thermoelectric equations. It has been found that this technique predicts the performance of four commercial thermoelectric modules with fair to good accuracy. The characteristics of the TEGs were represented using the normalized charts constructed by formulating the parameters as a fraction of over the maximum parameters. The normalized charts would be universal for any given TEG module once the thermoelectric material is known.

  20. WRF Performance Skills in Predicting Rainfall Over the Philippines

    NASA Astrophysics Data System (ADS)

    Perez, G. J. P.; Combinido, J. S.

    2014-12-01

    The Weather Research and Forecasting (WRF) model has been used for predicting rainfall over the Philippines. The period of October 2013 to May 2014 is chosen for the evaluation because of the unprecedented number of new ground instruments (300 to 500 automated rain gauges). It also gives us a good statistical representation of wet and dry seasons in the country. The WRF model configuration makes use of NCEP FNL for the initial boundary condition. Hindcasts are produced at 12-km resolution with 12 hours up to 144 hours lead-time. To assess the predictability of rainfall, we look at the dichotomous case, wherein we evaluate if the model is able to predict correctly the number of rainfall events. The left column in Figure 1 shows the monthly Percent Correct and Critical Success Index (CSI) for different lead-time. Percent Correct represents how well the model performs, 1 being the highest score, with equal bearing on correct positives and correct negatives. On the other hand, CSI is a balanced score that accounts for false alarm and missed events - it has a range of 0 to 1, where 1 means perfect forecast. Results show that during the wet season (October, November and December), PC is approximately 0.7 while in dry season (January, February and March), PC reaches values of around 0.9, which suggests improvement in the performance from wet to dry season. The increase in performance is attributed to the increase in number of correct negatives during the dry season. The CSI score, which excludes the correct negatives, shows that the ability of WRF to predict rainfall events drastically decline in December or during the transition from wet to dry season. This is due to the inability of WRF to pinpoint exact locations of small convective rainfall events. The predictability of actual rainfall values is indicated by the Mean Absolute Errors (MAE) and Root Mean Square Errors (RMSE) in Figure 1. The MAE for 3-hour accumulated rainfall is smallest during the dry season.

  1. Conditional random field approach to prediction of protein-protein interactions using domain information.

    PubMed

    Hayashida, Morihiro; Kamada, Mayumi; Song, Jiangning; Akutsu, Tatsuya

    2011-06-20

    For understanding cellular systems and biological networks, it is important to analyze functions and interactions of proteins and domains. Many methods for predicting protein-protein interactions have been developed. It is known that mutual information between residues at interacting sites can be higher than that at non-interacting sites. It is based on the thought that amino acid residues at interacting sites have coevolved with those at the corresponding residues in the partner proteins. Several studies have shown that such mutual information is useful for identifying contact residues in interacting proteins. We propose novel methods using conditional random fields for predicting protein-protein interactions. We focus on the mutual information between residues, and combine it with conditional random fields. In the methods, protein-protein interactions are modeled using domain-domain interactions. We perform computational experiments using protein-protein interaction datasets for several organisms, and calculate AUC (Area Under ROC Curve) score. The results suggest that our proposed methods with and without mutual information outperform EM (Expectation Maximization) method proposed by Deng et al., which is one of the best predictors based on domain-domain interactions. We propose novel methods using conditional random fields with and without mutual information between domains. Our methods based on domain-domain interactions are useful for predicting protein-protein interactions.

  2. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  3. The Influence of Viscous Effects on Ice Accretion Prediction and Airfoil Performance Predictions

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Wright, William B.

    2005-01-01

    A computational study was conducted to evaluate the effectiveness of using a viscous flow solution in an ice accretion code and the resulting accuracy of aerodynamic performance prediction. Ice shapes were obtained for one single-element and one multi-element airfoil using both potential flow and Navier-Stokes flowfields in the LEWICE ice accretion code. Aerodynamics were then calculated using a Navier-Stokes flow solver.

  4. Useful field of view predicts driving in the presence of distracters.

    PubMed

    Wood, Joanne M; Chaparro, Alex; Lacherez, Philippe; Hickson, Louise

    2012-04-01

    The Useful Field of View (UFOV) test has been shown to be highly effective in predicting crash risk among older adults. An important question which we examined in this study is whether this association is due to the ability of the UFOV to predict difficulties in attention-demanding driving situations that involve either visual or auditory distracters. Participants included 92 community-living adults (mean age 73.6 ± 5.4 years; range 65-88 years) who completed all three subtests of the UFOV involving assessment of visual processing speed (subtest 1), divided attention (subtest 2), and selective attention (subtest 3); driving safety risk was also classified using the UFOV scoring system. Driving performance was assessed separately on a closed-road circuit while driving under three conditions: no distracters, visual distracters, and auditory distracters. Driving outcome measures included road sign recognition, hazard detection, gap perception, time to complete the course, and performance on the distracter tasks. Those rated as safe on the UFOV (safety rating categories 1 and 2), as well as those responding faster than the recommended cut-off on the selective attention subtest (350 msec), performed significantly better in terms of overall driving performance and also experienced less interference from distracters. Of the three UFOV subtests, the selective attention subtest best predicted overall driving performance in the presence of distracters. Older adults who were rated as higher risk on the UFOV, particularly on the selective attention subtest, demonstrated poorest driving performance in the presence of distracters. This finding suggests that the selective attention subtest of the UFOV may be differentially more effective in predicting driving difficulties in situations of divided attention which are commonly associated with crashes.

  5. PREDICTION OF GAS INJECTION PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    SciTech Connect

    Martin J. Blunt; Franklin M. Orr Jr

    2000-06-01

    This final report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1996--May 2000 under a three-year grant from the Department of Energy on the ''Prediction of Gas Injection Performance for Heterogeneous Reservoirs''. The advances from the research include: new tools for streamline-based simulation including the effects of gravity, changing well conditions, and compositional displacements; analytical solutions to 1D compositional displacements which can speed-up gas injection simulation still further; and modeling and experiments that delineate the physics that is unique to three-phase flow.

  6. Summary of advanced methods for predicting high speed propeller performance

    NASA Technical Reports Server (NTRS)

    Bober, L. A.

    1980-01-01

    Three advanced analyses for predicting aircraft propeller performance at high subsonic speeds are described. Two of these analyses use a lifting line representation for the propeller blades and vortex filaments for the blade wakes but differ in the details of the solution. The third analysis is a finite difference solution of the unsteady, three dimensional Euler equations for the flow between adjacent blades. Analysis results are compared to data for a high speed propeller having eight swept blades integrally designed with the spinner and nacelle.

  7. Sprint running performance: comparison between treadmill and field conditions.

    PubMed

    Morin, Jean-Benoît; Sève, Pierrick

    2011-08-01

    We investigated the differences in performance between 100-m sprints performed on a sprint treadmill recently validated versus on a standard track. To date, studies comparing overground and treadmill running have mainly focused on constant and not maximal "free" running speed, and compared running kinetics and kinematics over a limited number of steps, but not overall sprint performance. Eleven male physical education students including two sprinters performed one 100-m on the treadmill and one on a standard athletics track in a randomized order, separated by 30 min. Performance data were derived in both cases from speed-time relationships measured with a radar and with the instrumented sprint treadmill, which allowed subjects to run and produce speed "freely", i.e. with no predetermined belt speed imposed. Field and treadmill typical speed-distance curves and data of maximal and mean speed, 100-m time and acceleration/deceleration time constants were compared using t tests and field-treadmill correlations were tested. All the performance parameters but time to reach top speed and deceleration time constant differed significantly, by about 20% on average, between field and treadmill (e.g. top speed of 8.84 ± 0.51 vs. 6.90 ± 0.39 m s(-1)). However, significant correlations were found (r > 0.63; P < 0.05) for all the performance parameters except time to reach top speed. Treadmill and field 100-m sprint performances are different, despite the fact that subjects could freely accelerate the belt. However, the significant correlations found make it possible to investigate and interpret inter-individual differences in field performance from treadmill measurements.

  8. Cold-Blooded Attention: Finger Temperature Predicts Attentional Performance.

    PubMed

    Vergara, Rodrigo C; Moënne-Loccoz, Cristóbal; Maldonado, Pedro E

    2017-01-01

    Thermal stress has been shown to increase the chances of unsafe behavior during industrial and driving performances due to reductions in mental and attentional resources. Nonetheless, establishing appropriate safety standards regarding environmental temperature has been a major problem, as modulations are also be affected by the task type, complexity, workload, duration, and previous experience with the task. To bypass this attentional and thermoregulatory problem, we focused on the body rather than environmental temperature. Specifically, we measured tympanic, forehead, finger and environmental temperatures accompanied by a battery of attentional tasks. We considered a 10 min baseline period wherein subjects were instructed to sit and relax, followed by three attentional tasks: a continuous performance task (CPT), a flanker task (FT) and a counting task (CT). Using multiple linear regression models, we evaluated which variable(s) were the best predictors of performance. The results showed a decrement in finger temperature due to instruction and task engagement that was absent when the subject was instructed to relax. No changes were observed in tympanic or forehead temperatures, while the environmental temperature remained almost constant for each subject. Specifically, the magnitude of the change in finger temperature was the best predictor of performance in all three attentional tasks. The results presented here suggest that finger temperature can be used as a predictor of alertness, as it predicted performance in attentional tasks better than environmental temperature. These findings strongly support that peripheral temperature can be used as a tool to prevent unsafe behaviors and accidents.

  9. High-Performance Field-Emission Properties of Boron Nitride Nanotube Field Emitters.

    PubMed

    Yun, Ki Nam; Sun, Yuning; Han, Jun Soo; Song, Yoon-Ho; Lee, Cheol Jin

    2017-01-18

    Boron nitride nanotubes (BNNTs) have attracted considerable attention as a field emission material because of their high mechanical strength, high negative electron affinity, and high oxidation resistance. Nevertheless, the obtained field-emission properties of BNNTs have indicated poor emission performance, which is a very high turn-on electric field with a low emission current. We fabricated BNNT field emitters and investigated their field-emission properties. The field-emission properties of the BNNT field emitters were considerably enhanced compared to those of other BN nanomaterial-based field emitters. The turn-on and the threshold electric fields of the BNNT field emitter were 3.1 and 5.4 V/μm at the gap distance of 750 μm, respectively. Both the turn-on and the threshold electric fields of the BNNT field emitters were decreased by increasing the gap distance between the emitter tip and the anode electrode. Degradation of the emission current during field emission operation for 20 h showed no significant difference according to the gap distance. Emission current fluctuation of the BNNT field emitters showed that the smaller gap was more unstable than the larger gap. The enhanced emission properties are mainly attributed to the small diameter, high-quality, and straight structure of BNNTs as well as the stable network formation of the BNNT film with good mechanical and electrical contact between the BNNTs and the cathode electrode. The remarkable emission performance of the BNNT field emitters might have promising applications for various field-emission devices.

  10. Planetary Suit Hip Bearing Model for Predicting Design vs. Performance

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar

    2011-01-01

    , the suited performance trends were comparable between the model and the suited subjects. With the three off-nominal bearing configurations compared to the nominal bearing configurations, human subjects showed decreases in hip flexion of 64%, 6%, and 13% and in hip abduction of 59%, 2%, and 20%. Likewise the solid model showed decreases in hip flexion of 58%, 1%, and 25% and in hip abduction of 56%, 0%, and 30%, under the same condition changes from the nominal configuration. Differences seen between the model predictions and the human subject performance data could be attributed to the model lacking dynamic elements and performing kinematic analysis only, the level of fit of the subjects with the suit, the levels of the subject s suit experience.

  11. Mechanical performance of a dental composite: probabilistic failure prediction.

    PubMed

    van der Varst, P G; Brekelmans, W A; de Vree, J H; de Groot, R

    1993-08-01

    In clinical situations, the mechanical performances of dental structures--for example, composite restorations--depend on many factors. Most of them have a probabilistic character. Because composites are brittle materials, their strength should also be considered as a probabilistic quantity. For successful prediction of mechanical failure of structures consisting of these materials, a probabilistic approach is indispensable, and a suitable definition of equivalent stress must be introduced. An equivalent stress facilitates the transfer of strength data of laboratory specimens to situations where the stress state is much more complicated. The tensile and compressive strengths of composites differ considerably. Of two equivalent stress definitions that potentially describe this experimental fact (the Drücker-Prager and the Modified von Mises equivalent stress), the predictive capacity was investigated for a microfine composite. In a probabilistic approach to failure, use of the Drücker-Prager equivalent stress appeared to be superior, because the average failure load of notched beams was predicted with an error smaller than 8%.

  12. Predicting Native English-Like Performance by Native Japanese Speakers

    PubMed Central

    Ingvalson, Erin M.; McClelland, James L.; Holt, Lori L.

    2011-01-01

    This study tested the predictions of the Speech Learning Model (SLM, Flege, 1988) on the case of native Japanese (NJ) speakers’ perception and production of English /ɹ / and /l/. NJ speakers’ degree of foreign accent, intelligibility of /ɹ –l/ productions, and ability to perceive natural speech /ɹ –l/ were assessed as a function of length of residency in North America, age of arrival in North America, years of student status in an English environment, and percentage of Japanese usage. Additionally, the extent to which NJ speakers’ utilized the F3 onset cue when differentiating /ɹ –l/ in perception and production was assessed, this cue having previously been shown to be the most reliable indicator of category membership. As predicted, longer residencies predicted more native English-like accents, more intelligible productions, and more accurate natural speech identifications; however, no changes were observed in F3 reliance, indicating that though performance improves it does so through reliance on other cues. PMID:22021941

  13. Predicting transfer performance: a comparison of competing function learning models.

    PubMed

    McDaniel, Mark A; Dimperio, Eric; Griego, Jacqueline A; Busemeyer, Jerome R

    2009-01-01

    The population of linear experts (POLE) model suggests that function learning and transfer are mediated by activation of a set of prestored linear functions that together approximate the given function (Kalish, Lewandowsky, & Kruschke, 2004). In the extrapolation-association (EXAM) model, an exemplar-based architecture associates trained input values with their paired output values. Transfer incorporates a linear rule-based response mechanism (McDaniel & Busemeyer, 2005). Learners were trained on a functional relationship defined by 2 linear-function segments with mirror slopes. In Experiment 1, 1 segment was densely trained and 1 was sparsely trained; in Experiment 2, both segments were trained equally, but the 2 segments were widely separated. Transfer to new input values was tested. For each model, training performance for each individual participant was fit, and transfer predictions were generated. POLE generally better fit the training data than did EXAM, but EXAM was more accurate at predicting (and fitting) transfer behaviors. It was especially telling that in Experiment 2 the transfer pattern was more consistent with EXAM's but not POLE's predictions, even though the presentation of salient linear segments during training dovetailed with POLE's approach.

  14. Numerical Prediction of SERN Performance using WIND code

    NASA Technical Reports Server (NTRS)

    Engblom, W. A.

    2003-01-01

    Computational results are presented for the performance and flow behavior of single-expansion ramp nozzles (SERNs) during overexpanded operation and transonic flight. Three-dimensional Reynolds-Averaged Navier Stokes (RANS) results are obtained for two vehicle configurations, including the NASP Model 5B and ISTAR RBCC (a variant of X-43B) using the WIND code. Numerical predictions for nozzle integrated forces and pitch moments are directly compared to experimental data for the NASP Model 5B, and adequate-to-excellent agreement is found. The sensitivity of SERN performance and separation phenomena to freestream static pressure and Mach number is demonstrated via a matrix of cases for both vehicles. 3-D separation regions are shown to be induced by either lateral (e.g., sidewall) shocks or vertical (e.g., cowl trailing edge) shocks. Finally, the implications of this work to future preliminary design efforts involving SERNs are discussed.

  15. UWB microwave breast cancer detection: generalized models and performance prediction.

    PubMed

    Chen, Yifan; Gunawan, Erry; Kim, Yongmin; Low, Kay Soon; Soh, Cheong Boon; Thi, Lin Lin

    2006-01-01

    This paper presents a generic framework for the modeling of ultra-wideband (UWB) signal propagation in human breast, which facilitates system-level simulations and provides performance prediction. The clutter associated with the breast tissue heterogeneity is modeled through several key parameters depending on the tissue compositions. Subsequently, important channel properties such as the backscatter energy and the probability density function of time-of-arrival are derived. The modified Hermite polynomials, which fit well into the real pulse shapes, are then used to model the UWB signals. Armed with the channel/signal model preliminaries, three metrics are proposed, namely, the mean clutter response, the clean tumor response, and the worst-case clutter response. The generalized model provides a parsimonious way to study the effects of tissue structures, pulse templates, and array setup on the performance of a specified UWB imaging system. Numerical examples are used to demonstrate the usefulness of the proposed approach.

  16. Transferable force field for carboxylate esters: application to fatty acid methylic ester phase equilibria prediction.

    PubMed

    Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne

    2012-03-15

    In this work, a new transferable united-atoms force field for carboxylate esters is proposed. All Lennard-Jones parameters are reused from previous parametrizations of the AUA4 force field, and only a unique set of partial electrostatic charges is introduced for the ester chemical function. Various short alkyl-chain esters (methyl acetate, ethyl acetate, methyl propionate, ethyl propionate) and two fatty acid methylic esters (methyl oleate and methyl palmitate) are studied. Using this new force field in Monte Carlo simulations, we show that various pure compound properties are accurately predicted: saturated liquid densities, vapor pressures, vaporization enthalpies, critical properties, liquid-vapor surface tensions. Furthermore, a good accuracy is also obtained in the prediction of binary mixture pressure-composition diagrams, without introducing empirical binary interaction parameters. This highlights the transferability of the proposed force field and gives the opportunity to simulate mixtures of industrial interest: a demonstration is performed through the simulation of the methyl oleate + methanol mixture involved in the purification sections of biodiesel production processes.

  17. Prediction of the Aero-Acoustic Performance of Open Rotors

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Envia, Edmane

    2014-01-01

    The rising cost of jet fuel has renewed interest in contrarotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980's designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.

  18. Do Maximal Roller Skiing Speed and Double Poling Performance Predict Youth Cross-Country Skiing Performance?

    PubMed Central

    Stöggl, Roland; Müller, Erich; Stöggl, Thomas

    2017-01-01

    The aims of the current study were to analyze whether specific roller skiing tests and cycle length are determinants of youth cross-country (XC) skiing performance, and to evaluate sex specific differences by applying non-invasive diagnostics. Forty-nine young XC skiers (33 boys; 13.8 ± 0.6 yrs and 16 girls; 13.4 ± 0.9 yrs) performed roller skiing tests consisting of both shorter (50 m) and longer durations (575 m). Test results were correlated with on snow XC skiing performance (PXC) based on 3 skating and 3 classical distance competitions (3 to 6 km). The main findings of the current study were: 1) Anthropometrics and maturity status were related to boys’, but not to girls’ PXC; 2) Significant moderate to acceptable correlations between girls’ and boys’ short duration maximal roller skiing speed (double poling, V2 skating, leg skating) and PXC were found; 3) Boys’ PXC was best predicted by double poling test performance on flat and uphill, while girls’ performance was mainly predicted by uphill double poling test performance; 4) When controlling for maturity offset, boys’ PXC was still highly associated with the roller skiing tests. The use of simple non-invasive roller skiing tests for determination of PXC represents practicable support for ski clubs, schools or skiing federations in the guidance and evaluation of young talent. Key points Double poling tests on flat and uphill terrain and short duration maximal speed tests were the highest cross-country skiing predicting factors in girls and boys. Only in the boys there was an effect of maturation on the performance outcomes, pointing out that girls seem to be almost fully matured at the age of 13 in contrast to the boys. Roller skiing tests over short distance (50-m) and longer distance 225 m and 350 m are stable and valid measures and suitable for performance prediction in youth cross-country skiers. PMID:28912656

  19. Cluster and Integral In-Orbit Solar Array Performance Prediction

    NASA Astrophysics Data System (ADS)

    d'Accolti, Gianfelice; Gonzalez, Jose Ramon; Taylor, Stephen; Escoubet, Philippe; Volpp, Juergen; Southworth, Richard; Bordoni, Emanuela

    2014-08-01

    Solar array in-orbit performance prediction is a key point to allow the extension of a mission, especially when margins of few watts are of paramount importance to keep working instruments relevant to its continuation. This is the case of the four Cluster satellites whose mission survival was depending on 10 to 15 Watts, a quantity normally neglected or absorbed in the simulation error. This verification was carried out after the first 12 years in orbit, with the aim of requesting a mission extension up to 2017. In order to verify if the solar array could deliver the requested power to satisfy the mission needs, ESA's Solar Generator Section reviewed its performance at a very detailed level. The approach followed produced four cases with different levels of probability. With this method, the data retrieved from the telemetry have been fitted with a very high degree of accuracy. The approach followed for Integral is slightly different. In this case the orbit is quite different, very eccentric and with a low perigee that crosses the trapped particle belts at some periods during the orbital evolution. The main implication of this fact lies in the higher doses of radiation and in the difficulty of making a reliable prediction. This situation has been overcome by assuming safety margins for the radiation dose to ensure the operation of solar array under the mission request.

  20. Geothermal field case studies that document the usefulness of models in predicting reservoir and well behavior

    SciTech Connect

    Lippmann, M.J.

    1989-03-01

    The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant art of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Falls in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources. 14 refs., 6 figs.

  1. Geothermal Field Case Studies that Document the Usefulness of Models in Predicting Reservoir and Well Behavior

    SciTech Connect

    Lippmann, Marcelo J.

    1989-03-21

    The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant part of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Fall in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources.

  2. Predicting Juno's Possible Internal Field and Secular Variation Models Based on Numerical Dynamo Simulations

    NASA Astrophysics Data System (ADS)

    Wicht, J.; Holme, R. T.; Gastine, T.; Duarte, L.

    2016-12-01

    We use numerical simulations to model Jupiter's internal dynamo and to predict the information Juno's magnetometer may reveal about the internal magnetic field and dynamics. The simulations were performed with the MHD code MagIC, cover 99% of Jupiter's radius below the one bar level, and use an electrical conductivity profile that includes the metallic inner as well as the molecular outer hydrogen layer. Surface magnetic fields closely resemble known magnetic field models. The flow is dominated by a realistic prograde equatorial jet but lacks multiple mid to high latitude jets which, according to our simulations, seem incompatible with a Jupiter like magnetic field. Using the Juno mission trajectory and assuming an isotropic measurement error of 100 nT we could recover the numerical model field to spheric harmonic degree 18, and secular variation (SV) perhaps to degree 5. The field shows characteristic bands where the equatorial jet reaches down to higher conductivities and promotes a secondary local dynamo effect. The presence of these bands as well as the SV caused by zonal flow advection may offer important clues on the depth of the zonal jets. The form of the spectrum can provide additional information on the general depth of the dynamo region: The numerical simulations suggest that dynamo action starts at the radius where the magnetic Reynolds number, the ratio of Ohmic dissipation time to convective turnover time, exceeds about 50. This roughly agrees with the depth where the magnetic power spectrum is white for spherical harmonics degrees beyond four.

  3. Field dependence-independence and dental students' clinical performance.

    PubMed

    Suddick, R P; Yancey, J M; Devine, S; Wilson, S

    1982-04-01

    The construct of field dependence-independence (FDI) is a bipolar characterization of cognitive style and functioning that has achieved wide interest outside the field of dental education. Since dental educators lack effective preadmission predictors of clinical grades or performance, the authors examined two tests of FDI as potential new predictors. The Embedded Figures Test (EFT) is a recognized FDI descriptor test based on the ability to identify rapidly and accurately a series of simple geometric figures "embedded" in more complex figures; such performance is characteristic of the field-independent individual. Similarly, rapid and accurate performance on the Inverted Tracing Test (ITT) (mirror tracing of simple figures) may also be characteristic of the field-independent individual. Multiple regression analyses indicated that the EFT and ITT parameters correlated more closely with clinical grades that did Dental Admission Test (DAT) predictors. The results suggest that individuals who tend to be field-independent, rather than field-dependent may hav an advantage in the dental school's clinical curriculum.

  4. Marijuana Use Predicts Cognitive Performance on Tasks of Executive Function

    PubMed Central

    Dahlgren, Mary Kathryn; Sagar, Kelly A.; Racine, Megan T.; Dreman, Meredith W.; Gruber, Staci A.

    2016-01-01

    Objective: Despite growing evidence that chronic marijuana use is associated with cognitive impairment, particularly when use is initiated at an early age, national trends demonstrate significant decreases in the perceived risk of marijuana corresponding with increased use, especially among youth. The current study assessed the impact of marijuana use on executive function and whether patterns of marijuana use, including earlier age at onset, higher frequency, and increased magnitude of use, predict impairment. Method: Forty-four chronic, heavy marijuana smokers (37 male, 7 female) and 32 healthy, nonsmoking control participants (20 male, 12 female) recruited from the Greater Boston area completed two assessments of executive function: the Stroop Color Word Test and Wisconsin Card Sorting Test (WCST). Results: Marijuana smokers had poorer executive function relative to control participants, a between-group difference that was primarily driven by individuals with early onset of marijuana use (before age 16; n = 21); significance remained even when controlling for frequency and magnitude of use. Further, earlier age at marijuana onset and increased marijuana use predicted poorer neurocognitive performance, and perseverative errors on the WCST significantly predicted marijuana group membership. Conclusions: These findings underscore the impact of early onset of marijuana use on executive function impairment independent of increased frequency and magnitude of use. In addition, poorer performance on the WCST may serve as a neuropsychological marker for heavy marijuana users. These results highlight the need for additional research to identify predictors associated with early marijuana use, as exposure to marijuana during a period of developmental vulnerability may result in negative cognitive consequences. PMID:26997188

  5. Predicting the Impacts of Intravehicular Displays on Driving Performance with Human Performance Modeling

    NASA Technical Reports Server (NTRS)

    Mitchell, Diane Kuhl; Wojciechowski, Josephine; Samms, Charneta

    2012-01-01

    A challenge facing the U.S. National Highway Traffic Safety Administration (NHTSA), as well as international safety experts, is the need to educate car drivers about the dangers associated with performing distraction tasks while driving. Researchers working for the U.S. Army Research Laboratory have developed a technique for predicting the increase in mental workload that results when distraction tasks are combined with driving. They implement this technique using human performance modeling. They have predicted workload associated with driving combined with cell phone use. In addition, they have predicted the workload associated with driving military vehicles combined with threat detection. Their technique can be used by safety personnel internationally to demonstrate the dangers of combining distracter tasks with driving and to mitigate the safety risks.

  6. Children's construction task performance and spatial ability: controlling task complexity and predicting mathematics performance.

    PubMed

    Richardson, Miles; Hunt, Thomas E; Richardson, Cassandra

    2014-12-01

    This paper presents a methodology to control construction task complexity and examined the relationships between construction performance and spatial and mathematical abilities in children. The study included three groups of children (N = 96); ages 7-8, 10-11, and 13-14 years. Each group constructed seven pre-specified objects. The study replicated and extended previous findings that indicated that the extent of component symmetry and variety, and the number of components for each object and available for selection, significantly predicted construction task difficulty. Results showed that this methodology is a valid and reliable technique for assessing and predicting construction play task difficulty. Furthermore, construction play performance predicted mathematical attainment independently of spatial ability.

  7. Performance Prediction of the NCAT Test Track Pavements Using Mechanistic Models

    NASA Astrophysics Data System (ADS)

    LaCroix, Andrew Thomas

    In the pavement industry in the United States of America, there is an increasing desire to improve the pavement construction quality and life for new and rehabilitated pavements. In order to improve the quality of the pavements, the Federal Highway Administration (FHWA) has pursued a performance-related specification (PRS) for over 20 years. The goal of PRS is to provide material and construction (M/C) properties that correlate well with pavement performance. In order to improve upon the PRS projects developed in WesTrack (NCHRP 9-20) and the MEPDG-based PRS (NCHRP 9-22), a set of PRS tests and models are proposed to provide a critical link between pavement performance and M/C properties. The PRS testing is done using the asphalt mixture performance tester (AMPT). The proposed PRS focuses on rutting and fatigue cracking of asphalt mixtures. The mixtures are characterized for their stiffness, fatigue behavior, and rutting resistance using a dynamic modulus (|E*|) test, a fatigue test, and a triaxial stress sweep (TSS) test, respectively. Information from the fatigue test characterizes the simplified viscoelastic continuum damage (S-VECD) model. Once the stiffness is reduced to a certain level, the material develops macro-cracks and fails. The TSS test is used to characterize a viscoplastic (VP) model. The VP model allows the prediction of the rut depth beneath the center of the wheel. The VECD and VP models are used within a layered viscoelastic (LVE) pavement model to predict fatigue and rutting performance of pavements. The PRS is evaluated by comparing the predictions to the field performance at the NCAT pavement test track in Opelika, Alabama. The test track sections evaluated are part of the 2009 test cycle group experiment, which focused on WMA, high RAP (50%), and a combination of both. The fatigue evaluation shows that all sections would last at least 18 years at the same traffic rate. The sections do not show any cracking, suggesting the sections are well

  8. Preliminary analytical results using surface current integration for predicting effects of surface pillows on RF performance

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.; Strange, D. A.

    1982-01-01

    An overview of the fast integral RF evaluation (FIRE) program is presented. This program uses surface current integration to evaluate RF performance of antenna systems. It requires modeling of surfaces in X, Y, Z coordinates along equally spaced X and Y grids with Z in the focal directon. The far field contribution of each surface point includes the effects of the Z-component of surface current which is not included in the aperture integration technique. Because of this, surface current integration is the most effective and inclusive technique for predicting RF performance on non-ideal reflectors. Results obtained from use of the FIRE program and an aperture integration program to predict RF performance of a LSS antenna concept are presented.

  9. Prediction of field emitter cathode lifetime based on measurement of I- V curves

    NASA Astrophysics Data System (ADS)

    Bormashov, V. S.; Nikolski, K. N.; Baturin, A. S.; Sheshin, E. P.

    2003-06-01

    A technique is presented, which allows the prediction of field emitter cathode lifetime without long-term direct measurements of cathode parameters stability. This technique is based on periodic measurements of cathode I- V characteristics. Moreover, it allows performing a post-experiment optimization for the appropriate choice of the feedback system to provide a stable operation during a long time. The proposed technique was applied to study the emission properties of reticulated vitreous carbon (RVC) and thermo-enlarged graphite (TEG). For the given cathodes, the characteristic time of the cathode destruction was estimated.

  10. Influence of grid bar shape on field cleaner performance - field testing

    USDA-ARS?s Scientific Manuscript database

    A test was conducted to evaluate the influence of grid bar cross sectional shape on cotton stripper field cleaner performance in terms of cleaning efficiency, seed cotton loss, and fiber and yarn quality. Three field cleaner configurations were tested on a cotton stripper harvester operating under f...

  11. Prediction versus reality: the use of mathematical models to predict elite performance in swimming and athletics at the olympic games.

    PubMed

    Heazlewood, Timothy

    2006-01-01

    A number of studies have attempted to predict future Olympic performances in athletics and swimming based on trends displayed in previous Olympic Games. Some have utilised linear models to plot and predict change, whereas others have utilised multiple curve estimation methods based on inverse, sigmoidal, quadratic, cubic, compound, logistic, growth and exponential functions. The non linear models displayed closer fits to the actual data and were used to predict performance changes 10's, 100's and 1000's of years into the future. Some models predicted that in some events male and female times and distances would crossover and females would eventually display superior performance to males. Predictions using mathematical models based on pre-1996 athletics and pre-1998 swimming performances were evaluated based on how closely they predicted sprints and jumps, and freestyle swimming performances for both male and females at the 2000 and 2004 Olympic Games. The analyses revealed predictions were closer for the shorter swimming events where men's 50m and women's 50m and 100m actual times were almost identical to predicted times. For both men and women, as the swim distances increased the accuracy of the predictive model decreased, where predicted times were 4.5-7% faster than actual times achieved. The real trends in some events currently displaying performance declines were not foreseen by the mathematical models, which predicted consistent improvements across all athletic and swimming events selected for in this study. Key PointsPrediction of future Olympic performance based on previous performance trends.Application of non-linear mathematical equations resulting in better fitting models.Application of mathematical predictive models to the Olympic sports of athletics and swimming.Accuracy of mathematical models in predicting sprint events in running and swimming.A research approach to predict future Olympic performance and set future performance standards that could be

  12. MRS Photodiode, LED and extruded scintillator performance in magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Zutshi, V.; /Northern Illinois U.

    2005-05-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported. In addition, the experimental results on the performance of the extruded scintillator and WLS fiber, and various LEDs in the magnetic fields of 1.8T and 2.3T respectively, are detailed. The measurement method used is being described.

  13. Predicting students' intention to use stimulants for academic performance enhancement.

    PubMed

    Ponnet, Koen; Wouters, Edwin; Walrave, Michel; Heirman, Wannes; Van Hal, Guido

    2015-02-01

    The non-medical use of stimulants for academic performance enhancement is becoming a more common practice among college and university students. The objective of this study is to gain a better understanding of students' intention to use stimulant medication for the purpose of enhancing their academic performance. Based on an extended model of Ajzen's theory of planned behavior, we examined the predictive value of attitude, subjective norm, perceived behavioral control, psychological distress, procrastination, substance use, and alcohol use on students' intention to use stimulants to improve their academic performance. The sample consisted of 3,589 Flemish university and college students (mean age: 21.59, SD: 4.09), who participated anonymously in an online survey conducted in March and April 2013. Structural equation modeling was used to investigate the relationships among the study variables. Our results indicate that subjective norm is the strongest predictor of students' intention to use stimulant medication, followed by attitude and perceived behavioral control. To a lesser extent, procrastinating tendencies, psychological distress, and substance abuse contribute to students' intention. Conclusions/ Importance: Based on these findings, we provide several recommendations on how to curtail students' intention to use stimulant medication for the purpose of improving their academic performance. In addition, we urge researchers to identify other psychological variables that might be related to students' intention.

  14. Childhood aerobic fitness predicts cognitive performance one year later.

    PubMed

    Chaddock, Laura; Hillman, Charles H; Pontifex, Matthew B; Johnson, Christopher R; Raine, Lauren B; Kramer, Arthur F

    2012-01-01

    Aerobically fit children outperform less fit peers on cognitive control challenges that involve inhibition, cognitive flexibility, and working memory. The aim of this study was to determine whether, compared with less fit children, more fit 9- and 10-year-old pre-adolescents exhibit superior performance on a modified compatible and incompatible flanker task of cognitive control at the initial time of fitness testing and approximately one year later. We found that more fit children demonstrated increased flanker accuracy at both test sessions, coupled with a superior ability to flexibly allocate strategies during task conditions that required different amounts of cognitive control, relative to less fit children. More fit children also gained a speed benefit at follow-up testing. Structural MRI data were also collected to investigate the relationship between basal ganglia volume and task performance. Bilateral putamen volumes of the dorsal striatum and globus pallidus volumes predicted flanker performance at initial and follow-up testing one year later. The present findings suggest that childhood aerobic fitness and basal ganglia volumes relate to cognitive control at the time of fitness testing and may play a role in cognitive performance in the future. We hope that this research will encourage public health and educational changes that will promote a physically active lifestyle in children.

  15. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine.

    PubMed

    Ramakrishnan, Sridhar; Wesensten, Nancy J; Kamimori, Gary H; Moon, James E; Balkin, Thomas J; Reifman, Jaques

    2016-10-01

    Existing mathematical models of neurobehavioral performance cannot predict the beneficial effects of caffeine across the spectrum of sleep loss conditions, limiting their practical utility. Here, we closed this research gap by integrating a model of caffeine effects with the recently validated unified model of performance (UMP) into a single, unified modeling framework. We then assessed the accuracy of this new UMP in predicting performance across multiple studies. We hypothesized that the pharmacodynamics of caffeine vary similarly during both wakefulness and sleep, and that caffeine has a multiplicative effect on performance. Accordingly, to represent the effects of caffeine in the UMP, we multiplied a dose-dependent caffeine factor (which accounts for the pharmacokinetics and pharmacodynamics of caffeine) to the performance estimated in the absence of caffeine. We assessed the UMP predictions in 14 distinct laboratory- and field-study conditions, including 7 different sleep-loss schedules (from 5 h of sleep per night to continuous sleep loss for 85 h) and 6 different caffeine doses (from placebo to repeated 200 mg doses to a single dose of 600 mg). The UMP accurately predicted group-average psychomotor vigilance task performance data across the different sleep loss and caffeine conditions (6% < error < 27%), yielding greater accuracy for mild and moderate sleep loss conditions than for more severe cases. Overall, accounting for the effects of caffeine resulted in improved predictions (after caffeine consumption) by up to 70%. The UMP provides the first comprehensive tool for accurate selection of combinations of sleep schedules and caffeine countermeasure strategies to optimize neurobehavioral performance.

  16. Using the detectability index to predict P300 speller performance

    NASA Astrophysics Data System (ADS)

    Mainsah, B. O.; Collins, L. M.; Throckmorton, C. S.

    2016-12-01

    Objective. The P300 speller is a popular brain-computer interface (BCI) system that has been investigated as a potential communication alternative for individuals with severe neuromuscular limitations. To achieve acceptable accuracy levels for communication, the system requires repeated data measurements in a given signal condition to enhance the signal-to-noise ratio of elicited brain responses. These elicited brain responses, which are used as control signals, are embedded in noisy electroencephalography (EEG) data. The discriminability between target and non-target EEG responses defines a user’s performance with the system. A previous P300 speller model has been proposed to estimate system accuracy given a certain amount of data collection. However, the approach was limited to a static stopping algorithm, i.e. averaging over a fixed number of measurements, and the row-column paradigm. A generalized method that is also applicable to dynamic stopping (DS) algorithms and other stimulus paradigms is desirable. Approach. We developed a new probabilistic model-based approach to predicting BCI performance, where performance functions can be derived analytically or via Monte Carlo methods. Within this framework, we introduce a new model for the P300 speller with the Bayesian DS algorithm, by simplifying a multi-hypothesis to a binary hypothesis problem using the likelihood ratio test. Under a normality assumption, the performance functions for the Bayesian algorithm can be parameterized with the detectability index, a measure which quantifies the discriminability between target and non-target EEG responses. Main results. Simulations with synthetic and empirical data provided initial verification of the proposed method of estimating performance with Bayesian DS using the detectability index. Analysis of results from previous online studies validated the proposed method. Significance. The proposed method could serve as a useful tool to initially assess BCI performance

  17. Predicting plant invasions under climate change: are species distribution models validated by field trials?

    PubMed

    Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C

    2014-09-01

    Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced

  18. Cortical structure predicts success in performing musical transformation judgments.

    PubMed

    Foster, Nicholas E V; Zatorre, Robert J

    2010-10-15

    Recognizing melodies by their interval structure, or "relative pitch," is a fundamental aspect of musical perception. By using relative pitch, we are able to recognize tunes regardless of the key in which they are played. We sought to determine the cortical areas important for relative pitch processing using two morphometric techniques. Cortical differences have been reported in musicians within right auditory cortex (AC), a region considered important for pitch-based processing, and we have previously reported a functional correlation between relative pitch processing in the anterior intraparietal sulcus (IPS). We addressed the hypothesis that regional variation of cortical structure within AC and IPS is related to relative pitch ability using two anatomical techniques, cortical thickness (CT) analysis and voxel-based morphometry (VBM) of magnetic resonance imaging data. Persons with variable amounts of formal musical training were tested on a melody transposition task, as well as two musical control tasks and a speech control task. We found that gray matter concentration and cortical thickness in right Heschl's sulcus and bilateral IPS both predicted relative pitch task performance and correlated to a lesser extent with performance on the two musical control tasks. After factoring out variance explained by musical training, only relative pitch performance was predicted by cortical structure in these regions. These results directly demonstrate the functional relevance of previously reported anatomical differences in the auditory cortex of musicians. The findings in the IPS provide further support for the existence of a multimodal network for systematic transformation of stimulus information in this region. Copyright 2010 Elsevier Inc. All rights reserved.

  19. In-Flight Performance of Wide Field Camera 3

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2010-01-01

    Wide Field Camera 3 (WFC3), a powerful new UVNisible/IR imager, was installed into HST during Servicing Mission 4. After a successful commissioning in the Servicing Mission Orbital Verification program, WFC3 has been engaged in an exciting program of scientific observations. I review here the in-flight scientific performance of the instrument, addressing such topics as image quality, sensitivity, detector performance, and stability.

  20. Twenty Questions game performance on medical school entrance predicts clinical performance.

    PubMed

    Williams, Reed G; Klamen, Debra L

    2015-09-01

    This study is based on the premise that the game of 'Twenty Questions' (TQ) tests the knowledge people acquire through their lives and how well they organise and store it so that they can effectively retrieve, combine and use it to address new life challenges. Therefore, performance on TQ may predict how effectively medical school applicants will organise and store knowledge they acquire during medical training to support their work as doctors. This study was designed to determine whether TQ game performance on medical school entrance predicts performance on a clinical performance examination near graduation. This prospective, longitudinal, observational study involved each medical student in one class playing a game of TQ on a non-medical topic during the first week of medical school. Near graduation, these students completed a 14-case clinical performance examination. Performance on the TQ task was compared with performance on the clinical performance examination. The 24 students who exhibited a logical approach to the TQ task performed better on all senior clinical performance examination measures than did the 26 students who exhibited a random approach. Approach to the task was a better predictor of senior examination diagnosis justification performance than was the Medical College Admission Test (MCAT) Biological Science Test score and accounts for a substantial amount of score variation not attributable to a co-relationship with MCAT Biological Science Test performance. Approach to the TQ task appears to be one reasonable indicator of how students process and store knowledge acquired in their everyday lives and may be a useful predictor of how they will process the knowledge acquired during medical training. The TQ task can be fitted into one slot of a mini medical interview. © 2015 John Wiley & Sons Ltd.

  1. Walking Planning Based on Artificial Vector Field with Prediction Simulation for Biped Robot

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takashi; Shibata, Masaaki

    This paper proposes a way of gait trajectory generation with artificial vector field for stable walking of a biped robot. The tip of the robot on walking can often deviate from the desired trajectory by the disturbances forced by unexpected outside factors. In our approach, though no prepared trajectory is specified a priori, the tip follows the artificial vectors designed in the workspace. Moreover, the prediction simulation is performed on-line. The simulator judges the stability under comparison with the present state and the prediction results, and then the gait parameters are adaptively improved in feedforward for the stable walk. The numerical and physical experimental results show the validity of the proposed method in the continuous walk.

  2. Investigation and Prediction of RF Window Performance in APT Accelerators

    SciTech Connect

    Humphries, S. Jr.

    1997-05-01

    The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate {beta} superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electron multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak{_}RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak{_}RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak{_}RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics.

  3. Ecosystem Predictions with Approximate vs. Exact Light Fields

    DTIC Science & Technology

    2009-03-27

    application of EcoSim to predictions of seasonal cycles of carbon cycling and phytoplankton dynamics in the Sargasso Sea showed that its predictions were...investigated. 15 8. References Bissett, W. P., J. J. Walsh, D.A. Dieterle, and K. L. Carder, 1999a. Carbon cycling in the upper waters of the Sargasso Sea : I...Dieterle, 1999b. Carbon cycling in the upper waters of the Sargasso Sea : II. Numerical simulation of apparent and inherent optical properties. Deep

  4. Causal interactions in attention networks predict behavioral performance.

    PubMed

    Wen, Xiaotong; Yao, Li; Liu, Yijun; Ding, Mingzhou

    2012-01-25

    Lesion and functional brain imaging studies have suggested that there are two anatomically nonoverlapping attention networks. The dorsal frontoparietal network controls goal-oriented top-down deployment of attention; the ventral frontoparietal network mediates stimulus-driven bottom-up attentional reorienting. The interaction between the two networks and its functional significance has been considered in the past but no direct test has been carried out. We addressed this problem by recording fMRI data from human subjects performing a trial-by-trial cued visual spatial attention task in which the subject had to respond to target stimuli in the attended hemifield and ignore all stimuli in the unattended hemifield. Correlating Granger causal influences between regions of interest with behavioral performance, we report two main results. First, stronger Granger causal influences from the dorsal attention network (DAN) to the ventral attention network (VAN), i.e., DAN→VAN, are generally associated with enhanced performance, with right intraparietal sulcus (IPS), left IPS, and right frontal eye field being the main sources of behavior-enhancing influences. Second, stronger Granger causal influences from VAN to DAN, i.e., VAN→DAN, are generally associated with degraded performance, with right temporal-parietal junction being the main sources of behavior-degrading influences. These results support the hypothesis that signals from DAN to VAN suppress and filter out unimportant distracter information, whereas signals from VAN to DAN break the attentional set maintained by the dorsal attention network to enable attentional reorienting.

  5. Improved inter-layer prediction for light field content coding with display scalability

    NASA Astrophysics Data System (ADS)

    Conti, Caroline; Ducla Soares, Luís.; Nunes, Paulo

    2016-09-01

    Light field imaging based on microlens arrays - also known as plenoptic, holoscopic and integral imaging - has recently risen up as feasible and prospective technology due to its ability to support functionalities not straightforwardly available in conventional imaging systems, such as: post-production refocusing and depth of field changing. However, to gradually reach the consumer market and to provide interoperability with current 2D and 3D representations, a display scalable coding solution is essential. In this context, this paper proposes an improved display scalable light field codec comprising a three-layer hierarchical coding architecture (previously proposed by the authors) that provides interoperability with 2D (Base Layer) and 3D stereo and multiview (First Layer) representations, while the Second Layer supports the complete light field content. For further improving the compression performance, novel exemplar-based inter-layer coding tools are proposed here for the Second Layer, namely: (i) an inter-layer reference picture construction relying on an exemplar-based optimization algorithm for texture synthesis, and (ii) a direct prediction mode based on exemplar texture samples from lower layers. Experimental results show that the proposed solution performs better than the tested benchmark solutions, including the authors' previous scalable codec.

  6. Predicting Undergraduates' Persistence in Science, Technology, Engineering, and Math Fields

    ERIC Educational Resources Information Center

    Koch, Amanda Joy

    2013-01-01

    A national shortage of workers in Science, Technology, Engineering, and Math (STEM) occupations has led to efforts to identify why people leave these fields. Lower persistence rates in STEM for females than for males have also led to examinations of features that cause females to leave STEM fields. The current study examines individual- and…

  7. Predicting Undergraduates' Persistence in Science, Technology, Engineering, and Math Fields

    ERIC Educational Resources Information Center

    Koch, Amanda Joy

    2013-01-01

    A national shortage of workers in Science, Technology, Engineering, and Math (STEM) occupations has led to efforts to identify why people leave these fields. Lower persistence rates in STEM for females than for males have also led to examinations of features that cause females to leave STEM fields. The current study examines individual- and…

  8. Retrostructural model to predict biomass formulations for barrier performance.

    PubMed

    Zhu Ryberg, Y Z; Edlund, U; Albertsson, A-C

    2012-08-13

    Barrier performance and retrostructural modeling of the macromolecular components demonstrate new design principles for film formulations based on renewable wood hydrolysates. Hardwood hydrolysates, which contain a fair share of lignin coexisting with poly- and oligosaccharides, offer excellent oxygen-barrier performance. A Hansen solubility parameter (HSP) model has been developed to convert the complex hydrolysate structural compositions into relevant matrix oxygen-permeability data allowing a systematic prediction of how the biomass should be formulated to generate an efficient barrier. HSP modeling suggests that the molecular packing ability plays a key role in the barrier performance. The actual size and distribution of free volume holes in the matrices were quantified in the subnanometer scale with Positron annihilation lifetime spectroscopy (PALS) verifying the affinity-driven assembly of macromolecular segments in a densely packed morphology and regulating the diffusion of small permeants through the matrix. The model is general and can be adapted to determine the macromolecular affinities of any hydrolysate biomass based on chemical composition.

  9. Design and Performance Analysis of Incremental Networked Predictive Control Systems.

    PubMed

    Pang, Zhong-Hua; Liu, Guo-Ping; Zhou, Donghua

    2016-06-01

    This paper is concerned with the design and performance analysis of networked control systems with network-induced delay, packet disorder, and packet dropout. Based on the incremental form of the plant input-output model and an incremental error feedback control strategy, an incremental networked predictive control (INPC) scheme is proposed to actively compensate for the round-trip time delay resulting from the above communication constraints. The output tracking performance and closed-loop stability of the resulting INPC system are considered for two cases: 1) plant-model match case and 2) plant-model mismatch case. For the former case, the INPC system can achieve the same output tracking performance and closed-loop stability as those of the corresponding local control system. For the latter case, a sufficient condition for the stability of the closed-loop INPC system is derived using the switched system theory. Furthermore, for both cases, the INPC system can achieve a zero steady-state output tracking error for step commands. Finally, both numerical simulations and practical experiments on an Internet-based servo motor system illustrate the effectiveness of the proposed method.

  10. Geoscience Laser Ranging System design and performance predictions

    NASA Technical Reports Server (NTRS)

    Anderson, Kent L.

    1991-01-01

    The Geoscience Laser System (GLRS) will be a high-precision distance-measuring instrument planned for deployment on the EOS-B platform. Its primary objectives are to perform ranging measurements to ground targets to monitor crustal deformation and tectonic plate motions, and nadir-looking altimetry to determine ice sheet thicknesses, surface topography, and vertical profiles of clouds and aerosols. The system uses a mode-locked, 3-color Nd:YAG laser source, a Microchannel Plate-PMT for absolute time-of-flight (TOF) measurement (at 532 nm), a streak camera for TOF 2-color dispersion measurement (532 nm and 355 nm), and a Si avalanche photodiode for altimeter waveform detection (1064 nm). The performance goals are to make ranging measurements to ground targets with about 1 cm accuracy, and altimetry height measurements over ice with 10 cm accuracy. This paper presents an overview of the design concept developed during a phase B study. System engineering issues and trade studies are discussed, with particular attention to error budgets and performance predictions.

  11. Music-related reward responses predict episodic memory performance.

    PubMed

    Ferreri, Laura; Rodriguez-Fornells, Antoni

    2017-09-22

    Music represents a special type of reward involving the recruitment of the mesolimbic dopaminergic system. According to recent theories on episodic memory formation, as dopamine strengthens the synaptic potentiation produced by learning, stimuli triggering dopamine release could result in long-term memory improvements. Here, we behaviourally test whether music-related reward responses could modulate episodic memory performance. Thirty participants rated (in terms of arousal, familiarity, emotional valence, and reward) and encoded unfamiliar classical music excerpts. Twenty-four hours later, their episodic memory was tested (old/new recognition and remember/know paradigm). Results revealed an influence of music-related reward responses on memory: excerpts rated as more rewarding were significantly better recognized and remembered. Furthermore, inter-individual differences in the ability to experience musical reward, measured through the Barcelona Music Reward Questionnaire, positively predicted memory performance. Taken together, these findings shed new light on the relationship between music, reward and memory, showing for the first time that music-driven reward responses are directly implicated in higher cognitive functions and can account for individual differences in memory performance.

  12. Orientation toward humans predicts cognitive performance in orang-utans

    PubMed Central

    Damerius, Laura A.; Forss, Sofia I. F.; Kosonen, Zaida K.; Willems, Erik P.; Burkart, Judith M.; Call, Josep; Galdikas, Birute M. F.; Liebal, Katja; Haun, Daniel B. M.; van Schaik, Carel P.

    2017-01-01

    Non-human animals sometimes show marked intraspecific variation in their cognitive abilities that may reflect variation in external inputs and experience during the developmental period. We examined variation in exploration and cognitive performance on a problem-solving task in a large sample of captive orang-utans (Pongo abelii & P. pygmaeus, N = 103) that had experienced different rearing and housing conditions during ontogeny, including human exposure. In addition to measuring exploration and cognitive performance, we also conducted a set of assays of the subjects’ psychological orientation, including reactions towards an unfamiliar human, summarized in the human orientation index (HOI), and towards novel food and objects. Using generalized linear mixed models we found that the HOI, rather than rearing background, best predicted both exploration and problem-solving success. Our results suggest a cascade of processes: human orientation was accompanied by a change in motivation towards problem-solving, expressed in reduced neophobia and increased exploration variety, which led to greater experience, and thus eventually to higher performance in the task. We propose that different experiences with humans caused individuals to vary in curiosity and understanding of the physical problem-solving task. We discuss the implications of these findings for comparative studies of cognitive ability. PMID:28067260

  13. Evaluation of predictive tools for cell culture clarification performance.

    PubMed

    Senczuk, Anna; Petty, Krista; Thomas, Anne; McNerney, Thomas; Moscariello, John; Yigzaw, Yinges

    2016-03-01

    Recent advances in the productivity of industrial mammalian cell culture processes have resulted in part in increased cell density. This increase and the associated increase in cellular debris are known to challenge harvest operations, however this understanding is limited and largely qualitative. Part of the issue arises from the heterogeneous size and composition of cellular debris, which makes harvest feed stream extremely difficult to characterize. Improved characterization methods would facilitate the development of clarification approaches that are consistent and scalable. This work describes how both particle size and cholesterol analysis can be used to characterize the feed stream. Particle size analysis by focused beam reflectance and dynamic light scattering are shown to be predictive of centrate filterability under certain harvest conditions. Because of the particle size range limitations of each detector, their applicability is limited to a particular stage or method of clarification. The measurement of cholesterol present in the cell culture supernatant or centrate was successfully used in providing relative amount of lysed cellular debris and enabled us to predict clarification performance of acid precipitated harvest regardless of particle size distribution profile. © 2015 Wiley Periodicals, Inc.

  14. Zero-G Thermodynamic Venting System (TVS) Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Nguyen, Han

    1994-01-01

    This report documents the Zero-g Thermodynamic Venting System (TVS) performance prediction computer program. The zero-g TVS is a device that destratifies and rejects environmentally induced zero-g thermal gradients in the LH2 storage transfer system. A recirculation pump and spray injection manifold recirculates liquid throughout the length of the tank thereby destratifying both the ullage gas and liquid bulk. Heat rejection is accomplished by the opening of the TVS control valve which allows a small flow rate to expand to a low pressure thereby producing a low temperature heat sink which is used to absorb heat from the recirculating liquid flow. The program was written in FORTRAN 77 language on the HP-9000 and IBM PC computers. It can be run on various platforms with a FORTRAN compiler.

  15. Yo-Yo IR1 vs. incremental continuous running test for prediction of 3000-m performance.

    PubMed

    Schmitz, Boris; Klose, Andreas; Schelleckes, Katrin; Jekat, Charlotte M; Krüger, Michael; Brand, Stefan-Martin

    2017-11-01

    This study aimed to compare physiological responses during the Yo-Yo intermittent recovery level 1 (Yo-Yo IR1) Test and an incremental continuous running field Test (ICRT) and to analyze their predictive value on 3000-m running performance. Forty moderately trained individuals (18 females) performed the ICRT and Yo-Yo IR1 Test to exhaustion. The ICRT was performed as graded running test with an increase of 2.0 km·h-1 after each 3 min interval for lactate diagnostic. In both tests, blood lactate levels were determined after the test and at 2 and 5 min of recovery. Heart rate (HR) was recorded to monitor differences in HR slopes and HR recovery. Comparison revealed a correlation between ICRT and Yo-Yo IR1 Test performance (R2=0.83, P<0.001), while significant differences in HRmax existed (Yo-Yo IR1, 189±10 bpm; ICRT, 195±16 bpm; P<0.005; ES=0.5). Maximum lactate levels were also different between test (Yo-Yo IR1, 10.1±2.1 mmol∙L-1; ICRT, 11.7±2.4 mmol∙L-1; P<0.01; ES=0.7). Significant inverse correlations were found between the Yo-Yo IR1 Test performance and 3000 m running time (R2=0.77, P<0.0001) as well as the ICRT and 3000 m time (R2=0.90, P<0.0001). Our data suggest that ICRT and Yo-Yo IR1 test are useful field test methods for the prediction of competitive running performances such as 3000-m runs but maximum HR and blood lactate values differ significantly. The ICRT may have higher predictive power for middle- to long- distance running performance such as 3000-m runs offering a reliable test for coaches in the recruitment of athletes or supervision of training concepts.

  16. Ion Thruster Discharge Performance Per Magnetic Field Topography

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Goebel, Dan

    2006-01-01

    DC-ION is a detailed computational model for predicting the plasma characteristics of rain-cusp ion thrusters. The advanced magnetic field meshing algorithm used by DC-ION allows precise treatment of the secondary electron flow. This capability allows self-consistent estimates of plasma potential that improves the overall consistency of the results of the discharge model described in Reference [refJPC05mod1]. Plasma potential estimates allow the model to predict the onset of plasma instabilities, and important shortcoming of the previous model for optimizing the design of discharge chambers. A magnetic field mesh simplifies the plasma flow calculations, for both the ions and the secondary electrons, and significantly reduces numerical diffusion that can occur with meshes not aligned with the magnetic field. Comparing the results of this model to experimental data shows that the behavior of the primary electrons, and the precise manner of their confinement, dictates the fundamental efficiency of ring-cusp. This correlation is evident in simulations of the conventionally sized NSTAR thruster (30 cm diameter) and the miniature MiXI thruster (3 cm diameter).

  17. Performance of electret ionization chambers in magnetic field.

    PubMed

    Kotrappa, P; Stieff, L R; Mengers, T F; Shull, R D

    2006-04-01

    Electret ionization chambers are widely used for measuring radon and radiation. The radiation measured includes alpha, beta, and gamma radiation. These detectors do not have any electronics and as such can be introduced into magnetic field regions. It is of interest to study the effect of magnetic fields on the performance of these detectors. Relative responses are measured with and without magnetic fields present. Quantitative responses are measured as the magnetic field is varied from 8 kA/m to 716 kA/m (100 to 9,000 gauss). No significant effect is observed for measuring alpha radiation and gamma radiation. However, a significant systematic effect is observed while measuring beta radiation from a 90Sr-Y source. Depending upon the field orientation, the relative response increased from 1.0 to 2.7 (vertical position) and decreased from 1.0 to 0.60 (horizontal position). This is explained as due to the setting up of a circular motion for the electrons by the magnetic field, which may increase or decrease the path length in air depending upon the experimental configuration. It is concluded that these ionization chambers can be used for measuring alpha (and hence radon) and gamma radiation in the range of magnetic fields studied. However, caution must be exercised if measuring beta radiation.

  18. Visualization of Force Fields in Protein Structure Prediction

    SciTech Connect

    Crawford, Clark; Kreylos, Oliver; Hamann, Bernd; Crivelli, Silvia

    2005-04-26

    The force fields used in molecular computational biology are not mathematically defined in such a way that their mathematical representation would facilitate the straightforward application of volume visualization techniques. To visualize energy, it is necessary to define a spatial mapping for these fields. Equipped with such a mapping, we can generate volume renderings of the internal energy states in a molecule. We describe our force field, the spatial mapping that we used for energy, and the visualizations that we produced from this mapping. We provide images and animations that offer insight into the computational behavior of the energy optimization algorithms that we employ.

  19. Field Performance of Photovoltaic Systems in the Tucson Desert

    NASA Astrophysics Data System (ADS)

    Orsburn, Sean; Brooks, Adria; Cormode, Daniel; Greenberg, James; Hardesty, Garrett; Lonij, Vincent; Salhab, Anas; St. Germaine, Tyler; Torres, Gabe; Cronin, Alexander

    2011-10-01

    At the Tucson Electric Power (TEP) solar test yard, over 20 different grid-connected photovoltaic (PV) systems are being tested. The goal at the TEP solar test yard is to measure and model real-world performance of PV systems and to benchmark new technologies such as holographic concentrators. By studying voltage and current produced by the PV systems as a function of incident irradiance, and module temperature, we can compare our measurements of field-performance (in a harsh desert environment) to manufacturer specifications (determined under laboratory conditions). In order to measure high-voltage and high-current signals, we designed and built reliable, accurate sensors that can handle extreme desert temperatures. We will present several benchmarks of sensors in a controlled environment, including shunt resistors and Hall-effect current sensors, to determine temperature drift and accuracy. Finally we will present preliminary field measurements of PV performance for several different PV technologies.

  20. Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, Michael P.; Reddell, Jerry P.

    1997-01-01

    This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.

  1. Comparison of predicted far-field temperatures for discrete and smeared heat sources

    SciTech Connect

    Ryder, E.E.

    1992-12-16

    A fundamental concern in the design of the potential repository at Yucca Mountain. Nevada is the response of the host rock to the emplacement of heat-generating waste. The thermal perturbation of the rock mass has implications regarding the structural, hydrologic. and geochemical performance of the potential repository. The phenomenological coupling of many of these performance aspects makes repository thermal modeling a difficult task. For many of the more complex, coupled models, it is often necessary to reduce the geometry of the potential repository to a smeared heat-source approximation. Such simplifications have impacts on induced thermal profiles that in turn may influence other predicted responses through one- or two-way thermal couplings. The effect of waste employment layout on host-rock thermal was chosen as the primary emphasis of this study. Using a consistent set of modeling and input assumptions, far-field thermal response predictions made for discrete-source as well as plate source approximations of the repository geometry. Input values used in the simulations are consistent with a design-basis a real power density (APD) of 80 kW/acre as would be achieved assuming a 2010 emplacement start date, a levelized receipt schedule, and a limitation on available area as published in previous design studies. It was found that edge effects resulting from general repository layout have a significant influence on the shapes and extents of isothermal profiles, and should be accounted for in far-field modeling efforts.

  2. The Effect of Stress and Recovery on Field-test Performance in Floorball.

    PubMed

    van der Does, H T D; Brink, M S; Visscher, C; Huijgen, B C H; Frencken, W G P; Lemmink, K A P M

    2015-06-01

    Physical and psychosocial stress and recovery are important performance determinants. A holistic approach that monitors these performance determinants over a longer period of time is lacking. Therefore this study aims to investigate the effect of a player's physical and psychosocial stress and recovery on field-test performance. In a prospective non-experimental cohort design 10 female Dutch floorball players were monitored over 6 months. To monitor physical and psychosocial stress and recovery, daily training-logs and 3-weekly the Recovery-Stress Questionnaire for Athletes (RESTQ-Sport) were filled out respectively. To determine field-test performance 6 Heart rate Interval Monitoring System (HIMS) and 4 Repeated Modified Agility T-test (RMAT) measurements were performed. Multilevel prediction models were applied to account for within-players and between-players field-test performance changes. The results show that more psychosocial stress and less psychosocial recovery over 3-6 weeks before testing decrease HIMS performance (p≤0.05). More physical stress over 6 weeks before testing improves RMAT performance (p≤0.05). In conclusion, physical and psychosocial stress and recovery affect submaximal interval-based running performance and agility up to 6 weeks before testing. Therefore both physical and psychosocial stress and recovery should be monitored in daily routines to optimize performance.

  3. Fuzzy linguistic prediction model for sinoatrial node field potential analysis in acute hyperglycemia environment.

    PubMed

    Feng, Yu; Cao, Hui; Wang, Yanxia; Zhang, Yanbin

    2015-01-01

    The objective of this study is to build a fuzzy linguistic prediction model (FLPM) for analyzing the actuation duration of acute hyperglycemia to sinoatrial node field potential. The field potential was recorded using microelectrode arrays (MEA). The experimental data were analyzed using partial least squares (PLS), support vector machine (SVM), back propagation neural network (BPNN) and the proposed method. The experimental results showed that the fuzzy linguistic prediction model could be adopted for predicting the actuation duration of high glucose to the sinoatrial node field potential. Compared with the other aforementioned models, the proposed model had higher prediction accuracy.

  4. Optimal sampling and sample preparation for NIR-based prediction of field scale soil properties

    NASA Astrophysics Data System (ADS)

    Knadel, Maria; Peng, Yi; Schelde, Kirsten; Thomsen, Anton; Deng, Fan; Humlekrog Greve, Mogens

    2013-04-01

    The representation of local soil variability with acceptable accuracy and precision is dependent on the spatial sampling strategy and can vary with a soil property. Therefore, soil mapping can be expensive when conventional soil analyses are involved. Visible near infrared spectroscopy (vis-NIR) is considered a cost-effective method due to labour savings and relative accuracy. However, savings may be offset by the costs associated with number of samples and sample preparation. The objective of this study was to find the most optimal way to predict field scale total organic carbon (TOC) and texture. To optimize the vis-NIR calibrations the effects of sample preparation and number of samples on the predictive ability of models with regard to the spatial distribution of TOC and texture were investigated. Conditioned Latin hypercube sampling (cLHs) method was used to select 125 sampling locations from an agricultural field in Denmark, using electromagnetic induction (EMI) and digital elevation model (DEM) data. The soil samples were scanned in three states (field moist, air dried and sieved to 2 mm) with a vis-NIR spectrophotometer (LabSpec 5100, ASD Inc., USA). The Kennard-Stone algorithm was applied to select 50 representative soil spectra for the laboratory analysis of TOC and texture. In order to investigate how to minimize the costs of reference analysis, additional smaller subsets (15, 30 and 40) of samples were selected for calibration. The performance of field calibrations using spectra of soils at the three states as well as using different numbers of calibration samples was compared. Final models were then used to predict the remaining 75 samples. Maps of predicted soil properties where generated with Empirical Bayesian Kriging. The results demonstrated that regardless the state of the scanned soil, the regression models and the final prediction maps were similar for most of the soil properties. Nevertheless, as expected, models based on spectra from field

  5. Field Performance of a Genetically Engineered Strain of Pink Bollworm

    PubMed Central

    Simmons, Gregory S.; McKemey, Andrew R.; Morrison, Neil I.; O'Connell, Sinead; Tabashnik, Bruce E.; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S.; Phillips, Caroline E.; Miller, Ernie D.; Rose, Robert I.; Staten, Robert T.; Donnelly, Christl A.; Alphey, Luke

    2011-01-01

    Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT) – mass-release of sterile insects to mate with, and thereby control, their wild counterparts – has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field – ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area – were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests. PMID:21931649

  6. Estimating the magnitude of prediction uncertainties for field-scale P loss models

    USDA-ARS?s Scientific Manuscript database

    Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study, an uncertainty analysis for the Annual P Loss Estima...

  7. Computational Predictions of the Performance Wright 'Bent End' Propellers

    NASA Technical Reports Server (NTRS)

    Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)

    2002-01-01

    Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.

  8. Can formative quizzes predict or improve summative exam performance?

    PubMed

    Zhang, Niu; Henderson, Charles N R

    2015-03-01

    Despite wide use, the value of formative exams remains unclear. We evaluated the possible benefits of formative assessments in a physical examination course at our chiropractic college. Three hypotheses were examined: (1) Receiving formative quizzes (FQs) will increase summative exam (SX) scores, (2) writing FQ questions will further increase SE scores, and (3) FQs can predict SX scores. Hypotheses were tested across three separate iterations of the class. The SX scores for the control group (Class 3) were significantly less than those of Classes 1 and 2, but writing quiz questions and taking FQs (Class 1) did not produce significantly higher SX scores than only taking FQs (Class 2). The FQ scores were significant predictors of SX scores, accounting for 52% of the SX score. Sex, age, academic degrees, and ethnicity were not significant copredictors. Our results support the assertion that FQs can improve written SX performance, but students producing quiz questions didn't further increase SX scores. We concluded that nonthreatening FQs may be used to enhance student learning and suggest that they also may serve to identify students who, without additional remediation, will perform poorly on subsequent summative written exams.

  9. White matter fractional anisotropy predicts balance performance in older adults.

    PubMed

    Van Impe, Annouchka; Coxon, James P; Goble, Daniel J; Doumas, Mihail; Swinnen, Stephan P

    2012-09-01

    Aging is characterized by brain structural changes that may compromise motor functions. In the context of postural control, white matter integrity is crucial for the efficient transfer of visual, proprioceptive and vestibular feedback in the brain. To determine the role of age-related white matter decline as a function of the sensory feedback necessary to correct posture, we acquired diffusion weighted images in young and old subjects. A force platform was used to measure changes in body posture under conditions of compromised proprioceptive and/or visual feedback. In the young group, no significant brain structure-balance relations were found. In the elderly however, the integrity of a cluster in the frontal forceps explained 21% of the variance in postural control when proprioceptive information was compromised. Additionally, when only the vestibular system supplied reliable information, the occipital forceps was the best predictor of balance performance (42%). Age-related white matter decline may thus be predictive of balance performance in the elderly when sensory systems start to degrade.

  10. Use of Boundary Layer Transition Detection to Validate Full-Scale Flight Performance Predictions

    NASA Technical Reports Server (NTRS)

    Hamner, Marvine; Owens, L. R., Jr.; Wahls, R. A.; Yeh, David

    1999-01-01

    Full-scale flight performance predictions can be made using CFD or a combination of CFD and analytical skin-friction predictions. However, no matter what method is used to obtain full-scale flight performance predictions knowledge of the boundary layer state is critical. The implementation of CFD codes solving the Navier-Stokes equations to obtain these predictions is still a time consuming, expensive process. In addition, to ultimately obtain accurate performance predictions the transition location must be fixed in the CFD model. An example, using the M2.4-7A geometry, of the change in Navier-Stokes solution with changes in transition and in turbulence model will be shown. Oil flow visualization using the M2.4-7A 4.0% scale model in the 14'x22' wind tunnel shows that fixing transition at 10% x/c in the CFD model best captures the flow physics of the wing flow field. A less costly method of obtaining full-scale performance predictions is the use of non-linear Euler codes or linear CFD codes, such as panel methods, combined with analytical skin-friction predictions. Again, knowledge of the boundary layer state is critical to the accurate determination of full-scale flight performance. Boundary layer transition detection has been performed at 0.3 and 0.9 Mach numbers over an extensive Reynolds number range using the 2.2% scale Reference H model in the NTF. A temperature sensitive paint system was used to determine the boundary layer state for these conditions. Data was obtained for three configurations: the baseline, undeflected flaps configuration; the transonic cruise configuration; and, the high-lift configuration. It was determined that at low Reynolds number conditions, in the 8 to 10 million Reynolds number range, the baseline configuration has extensive regions of laminar flow, in fact significantly more than analytical skin-friction methods predict. This configuration is fully turbulent at about 30 million Reynolds number for both 0.3 and 0.9, Mach numbers

  11. Maintenance personnel performance simulation (MAPPS): a model for predicting maintenance performance reliability in nuclear power plants

    SciTech Connect

    Knee, H.E.; Krois, P.A.; Haas, P.M.; Siegel, A.I.; Ryan, T.G.

    1983-01-01

    The NRC has developed a structured, quantitative, predictive methodology in the form of a computerized simulation model for assessing maintainer task performance. Objective of the overall program is to develop, validate, and disseminate a practical, useful, and acceptable methodology for the quantitative assessment of NPP maintenance personnel reliability. The program was organized into four phases: (1) scoping study, (2) model development, (3) model evaluation, and (4) model dissemination. The program is currently nearing completion of Phase 2 - Model Development.

  12. Predicting cotton yield of small field plots in a cotton breeding program using UAV imagery data

    NASA Astrophysics Data System (ADS)

    Maja, Joe Mari J.; Campbell, Todd; Camargo Neto, Joao; Astillo, Philip

    2016-05-01

    One of the major criteria used for advancing experimental lines in a breeding program is yield performance. Obtaining yield performance data requires machine picking each plot with a cotton picker, modified to weigh individual plots. Harvesting thousands of small field plots requires a great deal of time and resources. The efficiency of cotton breeding could be increased significantly while the cost could be decreased with the availability of accurate methods to predict yield performance. This work is investigating the feasibility of using an image processing technique using a commercial off-the-shelf (COTS) camera mounted on a small Unmanned Aerial Vehicle (sUAV) to collect normal RGB images in predicting cotton yield on small plot. An orthonormal image was generated from multiple images and used to process multiple, segmented plots. A Gaussian blur was used to eliminate the high frequency component of the images, which corresponds to the cotton pixels, and used image subtraction technique to generate high frequency pixel images. The cotton pixels were then separated using k-means cluster with 5 classes. Based on the current work, the calculated percentage cotton area was computed using the generated high frequency image (cotton pixels) divided by the total area of the plot. Preliminary results showed (five flights, 3 altitudes) that cotton cover on multiple pre-selected 227 sq. m. plots produce an average of 8% which translate to approximately 22.3 kgs. of cotton. The yield prediction equation generated from the test site was then use on a separate validation site and produced a prediction error of less than 10%. In summary, the results indicate that a COTS camera with an appropriate image processing technique can produce results that are comparable to expensive sensors.

  13. The useful field of view assessment predicts simulated commercial motor vehicle driving safety.

    PubMed

    McManus, Benjamin; Heaton, Karen; Vance, David E; Stavrinos, Despina

    2016-10-02

    The Useful Field of View (UFOV) assessment, a measure of visual speed of processing, has been shown to be a predictive measure of motor vehicle collision (MVC) involvement in an older adult population, but it remains unknown whether UFOV predicts commercial motor vehicle (CMV) driving safety during secondary task engagement. The purpose of this study is to determine whether the UFOV assessment predicts simulated MVCs in long-haul CMV drivers. Fifty licensed CMV drivers (Mage = 39.80, SD = 8.38, 98% male, 56% Caucasian) were administered the 3-subtest version of the UFOV assessment, where lower scores measured in milliseconds indicated better performance. CMV drivers completed 4 simulated drives, each spanning approximately a 22.50-mile distance. Four secondary tasks were presented to participants in a counterbalanced order during the drives: (a) no secondary task, (b) cell phone conversation, (c) text messaging interaction, and (d) e-mailing interaction with an on-board dispatch device. The selective attention subtest significantly predicted simulated MVCs regardless of secondary task. Each 20 ms slower on subtest 3 was associated with a 25% increase in the risk of an MVC in the simulated drive. The e-mail interaction secondary task significantly predicted simulated MVCs with a 4.14 times greater risk of an MVC compared to the no secondary task condition. Subtest 3, a measure of visual speed of processing, significantly predicted MVCs in the email interaction task. Each 20 ms slower on subtest 3 was associated with a 25% increase in the risk of an MVC during the email interaction task. The UFOV subtest 3 may be a promising measure to identify CMV drivers who may be at risk for MVCs or in need of cognitive training aimed at improving speed of processing. Subtest 3 may also identify CMV drivers who are particularly at risk when engaged in secondary tasks while driving.

  14. The practice of prediction: What can ecologists learn from applied, ecology-related fields?

    USGS Publications Warehouse

    Pennekamp, Frank; Adamson, Matthew; Petchey, Owen L; Poggiale, Jean-Christophe; Aguiar, Maira; Kooi, Bob W.; Botkin, Daniel B.; DeAngelis, Don

    2016-01-01

    The pervasive influence of human induced global environmental change affects biodiversity across the globe, and there is great uncertainty as to how the biosphere will react on short and longer time scales. To adapt to what the future holds and to manage the impacts of global change, scientists need to predict the expected effects with some confidence and communicate these predictions to policy makers. However, recent reviews found that we currently lack a clear understanding of how predictable ecology is, with views seeing it as mostly unpredictable to potentially predictable, at least over short time frames. However, in applied, ecology-related fields predictions are more commonly formulated and reported, as well as evaluated in hindsight, potentially allowing one to define baselines of predictive proficiency in these fields. We searched the literature for representative case studies in these fields and collected information about modeling approaches, target variables of prediction, predictive proficiency achieved, as well as the availability of data to parameterize predictive models. We find that some fields such as epidemiology achieve high predictive proficiency, but even in the more predictive fields proficiency is evaluated in different ways. Both phenomenological and mechanistic approaches are used in most fields, but differences are often small, with no clear superiority of one approach over the other. Data availability is limiting in most fields, with long-term studies being rare and detailed data for parameterizing mechanistic models being in short supply. We suggest that ecologists adopt a more rigorous approach to report and assess predictive proficiency, and embrace the challenges of real world decision making to strengthen the practice of prediction in ecology.

  15. Using the dipolar and quadrupolar moments to improve solar-cycle predictions based on the polar magnetic fields.

    PubMed

    Muñoz-Jaramillo, Andrés; Balmaceda, Laura A; DeLuca, Edward E

    2013-07-26

    The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth's upper atmosphere (commonly referred to as space weather and climate). In recent years there has been an effort to develop accurate solar cycle predictions, leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. Here we show that cycle predictions can be made more accurate if performed separately for each hemisphere, taking advantage of information about both the dipolar and quadrupolar moments of the solar magnetic field during minimum.

  16. Effects of intensified military field training on jumping performance.

    PubMed

    Welsh, T T; Alemany, J A; Montain, S J; Frykman, P N; Tuckow, A P; Young, A J; Nindl, B C

    2008-01-01

    A sensitive, reliable, field-expedient test may be valuable for monitoring interventions during periods of anticipated physical performance decline. The purpose of this study was to determine the capabilities of unloaded jumping tests for detecting decrements in physical performance following eight days of military sustained operations. Twenty-nine U. S. Marines (24 +/- 1 y; 180 +/- 6 cm; 82.5 +/- 8.2 kg) performed 1, 5 and 30 repetition(s) of unloaded countermovement jumps (UJ) before and after eight days of sustained operations (SUSOPS). Jump performance data was collected simultaneously using a switch mat (SM) and a linear position transducer (LPT). Jump height (m) and power (W) were highest using 1 UJ and declined 4.9 and 8.9%, respectively after SUSOPS. Jump power (JP) declined progressively over 30 UJ (20%). Five UJ offered no advantages over 1 UJ and was inadequate to examine changes in muscle fatigability (pre: 1294 +/- 138 W; post: 1250 +/- 165 W). The SM and a LPT were in agreement and had a high correlation (r = 0.92). One UJ was a sensitive, easy to implement test for monitoring the collective impact of high physical, nutritional, cognitive, and environmental stress on an individuals' physical performance before and after 8 days of SUSOPS, suggesting decrements in physical performance associated with overreaching can be detected by simply administered field-expedient jumping tests.

  17. ROPS performance during field upset and static testing.

    PubMed

    Harris, J R; McKenzie, E A; Etherton, J R; Cantis, D M; Ronaghi, M

    2010-01-01

    Agriculture remains one of the most hazardous occupations in the U.S. By conservative estimates, tractor overturns alone claim 120 lives annually. A rollover protective structure (ROPS) and a seatbelt are a highly effective engineering safety control that can prevent many of these fatalities and reduce the severity of injuries associated with tractor overturn. SAE J2194 is a consensus performance standard established for agricultural ROPS. According to this standard, satisfactory ROPS performance can be demonstrated through static testing, field upset testing, or impact testing. A previous modeling study suggested that static testing may underpredict the strain induced in a ROPS during afield upset. In the current study, field upset testing and laboratory static testing results were compared. Field upset testing included six rear and six side upset tests performed according to SAE J2194 guidelines. Additionally, static testing was performed on a ROPS of the same model. The results support findings from the modeling study. Near the lowest sections of the ROPS, the plastic strain resulting from rear upset testing exceeded the plastic strain from static testing for 18 of 24 data points. Conversely, the ROPS plastic strain from side upset testing was typically less than plastic strain from laboratory static testing. However, data indicate that the side upset test may not be very repeatable. This study suggests that the longitudinal loading energy criterion for static testing might not be a conservative predictor of rear upset ROPS response.

  18. Rate of Force Development, Muscle Architecture, and Performance in Young Competitive Track and Field Throwers.

    PubMed

    Zaras, Nikolaos D; Stasinaki, Angeliki-Nikoletta E; Methenitis, Spyridon K; Krase, Argyro A; Karampatsos, Giorgos P; Georgiadis, Giorgos V; Spengos, Konstantinos M; Terzis, Gerasimos D

    2016-01-01

    The rate of force development (RFD) is an essential component for performance in explosive activities, although it has been proposed that muscle architectural characteristics might be linked with RFD and power performance. The purpose of the study was to investigate the relationship between RFD, muscle architecture, and performance in young track and field throwers. Twelve young track and field throwers completed 10 weeks of periodized training. Before (T1) and after (T2) training performance was evaluated in competitive track and field throws, commonly used shot put tests, isometric leg press RFD, 1 repetition maximum (1RM) strength as well as vastus lateralis architecture and body composition. Performance in competitive track and field throwing and the shot put test from the power position increased by 6.76 ± 4.31% (p < 0.001) and 3.58 ± 4.97% (p = 0.019), respectively. Rate of force development and 1RM strength also increased (p ≤ 0.05). Vastus lateralis thickness and fascicle length increased by 5.95 ± 7.13% (p = 0.012) and 13.41 ± 16.15% (p = 0.016), respectively. Significant correlations were found at T1 and T2, between performance in the shot put tests and both RFD and fascicle length (p ≤ 0.05). Close correlations were found between RFD, muscle thickness, and fascicle length (p ≤ 0.05). Significant correlations were found between the % changes in lean body mass and the % increases in RFD. When calculated together, the % increase in muscle thickness and RFD could predict the % increase in shot put throw test from the power position (p = 0.019). These results suggest that leg press RFD may predict performance in shot put tests that are commonly used by track and field throwers.

  19. Analytical prediction for electromagnetic performance of interior permanent magnet machines based on subdomain model

    NASA Astrophysics Data System (ADS)

    Shin, Kyung-Hun; Park, Hyung-II; Cho, Han-Wook; Choi, Jang-Young

    2017-05-01

    This paper presents an analytical model for the computation of the electromagnetic performance in interior permanent magnet (IPM) machines that accounts for the stator and the complex rotor structure. Using the subdomain method, we propose a simplified analytical model that considers the magnetic properties of the IPM machine. The analytical solutions are derived by solving the field-governing equations in each simple and regular subdomain, i.e., magnet, barrier, air gap, slot opening, and slot, and then applying the boundary conditions to the interfaces between these subdomains. The analytical model accurately accounts for the influence of the interaction between the slots, the relative recoil permeability of the magnets, and the boundary conditions. The magnetic field and electromagnetic performance obtained using the analytical method are compared with those obtained using finite element analysis. Finally, the analytical predictions are compared with the measured data in order to confirm the validity of the methods proposed in this paper.

  20. The dark and bright sides of self-efficacy in predicting learning, innovative and risky performances.

    PubMed

    Salanova, Marisa; Lorente, Laura; Martínez, Isabel M

    2012-11-01

    The objective of this study is to analyze the different role that efficacy beliefs play in the prediction of learning, innovative and risky performances. We hypothesize that high levels of efficacy beliefs in learning and innovative performances have positive consequences (i.e., better academic and innovative performance, respectively), whereas in risky performances they have negative consequences (i.e., less safety performance). To achieve this objective, three studies were conducted, 1) a two-wave longitudinal field study among 527 undergraduate students (learning setting), 2) a three-wave longitudinal lab study among 165 participants performing innovative group tasks (innovative setting), and 3) a field study among 228 construction workers (risky setting). As expected, high levels of efficacy beliefs have positive or negative consequences on performance depending on the specific settings. Unexpectedly, however, we found no time x self-efficacy interaction effect over time in learning and innovative settings. Theoretical and practical implications within the social cognitive theory of A. Bandura framework are discussed.

  1. Can performance in medical school predict performance in residency? A compilation and review of correlative studies.

    PubMed

    Harfmann, Katya L; Zirwas, Matthew J

    2011-11-01

    The current resident selection process relies heavily on medical student performance, with the assumption that analysis of this performance will aid in the selection of successful residents. Although there is abundant literature analyzing indicators of medical student performance measures as predictors of success in residency, wide-ranging differences in beliefs persist concerning their validity. We sought to collect and review studies that have correlated medical student performance with residency performance. The English-language literature from 1996 to 2009 was searched with PubMed. Selected studies evaluated medical students on the basis of US Medical Licensing Examination scores, preclinical and clinical performance, research experience, objective structured clinical examination performance, medical school factors, honor society membership, Medical Student Performance Evaluations, letters of recommendation, and faculty interviews. Outcome measures were standardized residency examinations and residency supervisor ratings. The medical student factors that correlated most strongly with performance on examinations in residency were medical student examination scores, clinical performance, and honor society membership. Those that correlated most strongly with supervisor ratings were clinical grades, faculty interview, and medical school attended. Overall, there were inconsistent results for most performance measures. In addition to the lack of a widely used measure of success in residency, most studies were small, single institution, and single specialty, and thus of limited ability to generalize findings. No one medical student factor can be used to predict performance in residency. There is a need for a more consistent and systematic approach to determining predictors of success in residency. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  2. Ecosystem Predictions with Approximate vs. Exact Light Fields

    DTIC Science & Technology

    2009-01-01

    and phytoplankton dynamics in the Sargasso Sea showed that its predictions were consistent with measurement of various biological and chemical...L. Carder, 1999a. Carbon cycling in the upper waters of the Sargasso Sea : I. Numerical simulation of differential carbon and nitrogen fluxes. Deep... Sea Res. 46: 205-269. Bissett, W. P., K. L. Carder, J. J. Walsh, and D.A. Dieterle, 1999b. Carbon cycling in the upper waters of the Sargasso

  3. Performance of field measuring probes for SSC magnets

    SciTech Connect

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1993-12-31

    Several years of experience have been acquired on the operation of probes (``moles``) constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device-the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. We describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the hewn tube of the magnet is also described.

  4. Predicting Student Academic Performance in an Engineering Dynamics Course: A Comparison of Four Types of Predictive Mathematical Models

    ERIC Educational Resources Information Center

    Huang, Shaobo; Fang, Ning

    2013-01-01

    Predicting student academic performance has long been an important research topic in many academic disciplines. The present study is the first study that develops and compares four types of mathematical models to predict student academic performance in engineering dynamics--a high-enrollment, high-impact, and core course that many engineering…

  5. Predicting Student Academic Performance in an Engineering Dynamics Course: A Comparison of Four Types of Predictive Mathematical Models

    ERIC Educational Resources Information Center

    Huang, Shaobo; Fang, Ning

    2013-01-01

    Predicting student academic performance has long been an important research topic in many academic disciplines. The present study is the first study that develops and compares four types of mathematical models to predict student academic performance in engineering dynamics--a high-enrollment, high-impact, and core course that many engineering…

  6. Performances of four photometry softwares in very dense stellar fields

    NASA Astrophysics Data System (ADS)

    Dubout-Crillon, R.; Llebaria, A.

    2002-06-01

    We assess the relative performances of the softwares DAOPHOT, DAOPHOT/ ALLSTAR, CAPELLA, SEXTRACTOR for stellar fields with irregular backgrounds and asymmetric PSFs. The first three packages use PSF fit- tings, the fourth performs fixed aperture photometry and a small aperture was used in order to minimize the contaminating fluxes. A typical extragalactic stellar field has been used to built synthetic counterparts in order to test the photometric accuracy with respect to the blend extent. The results show in which cases DAOPHOT, DAOPHOT/ ALLSTAR and SEXTRACTOR overestimate the fluxes of blended stars. SEXTRACTOR results dispersions are near the ALLSTAR ones, but as we can expect, systematic overestimation appears for the severely blended stars. For stars merged in the wings of brighter stars, CAPELLA reaches the best accuracy. For isolated and moderately blended stars, ALLSTAR, CAPELLA and SEXTRACTOR results are near.

  7. Performance evaluation of RF electric and magnetic field measuring instruments

    NASA Astrophysics Data System (ADS)

    Nesmith, B. C. W.; Ruggers, P. S.

    1982-03-01

    The need to quantify the electromagnetic fields emitted by industrial, scientific, or medical (ISM) products operating in the 10 to 300 MHs region requires the testing of instrumentation suitable for use in RF radiation hazard surveys. To meet this requirement, several procedures were devised to test the accuracy of the RF survey instrumentation. Measurement systems and protocols were developed and evaluated. The electric (E) an magnetic (H) field measuring instruments were tested for linearity, calibration accuracy, amplitude modulation response, directivity, antenna patterns, temperature response, drift and noise, radiofrequency interference and polarization response. Tests were performed on three commercially available RF survey instruments and a one-of-a-kind device over the 10 to 100 MHs region. Complete tests were only performed at the ISM frequency of 27.12 MHs. Errors for each of the tests are presented in tabular form.

  8. Field theoretical prediction of a property of the tropical cyclone

    NASA Astrophysics Data System (ADS)

    Spineanu, F.; Vlad, M.

    2014-01-01

    The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems combining thermodynamics and fluid-mechanical processes. The late phase of the evolution towards stationarity consists of the vorticity concentration, a well known tendency to self-organization , an universal property of the two-dimensional fluids. It may then be expected that the stationary state of the tropical cyclone has the same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors, Bose-Einsetin condensate, cosmic strings, etc. Indeed it was found that there is a description of the atmospheric vortex in terms of a classical field theory. It is compatible with the more conventional treatment based on conservation laws, but the field theoretical model reveals properties that are almost inaccessible to the conventional formulation: it identifies the stationary states as being close to self-duality. This is of highest importance: the self-duality is known to be the origin of all coherent structures known in natural systems. Therefore the field theoretical (FT) formulation finds that the cuasi-coherent form of the atmospheric vortex (tropical cyclone) at stationarity is an expression of this particular property. In the present work we examine a strong property of the tropical cyclone, which arises in the FT formulation in a natural way: the equality of the masses of the particles associated to the matter field and respectively to the gauge field in the FT model is translated into the equality between the maximum radial extension of the tropical cyclone and the Rossby radius. For the cases where the FT model is a good approximation we calculate characteristic quantities of the tropical cyclone and find good comparison with observational data.

  9. Soil and Nitrogen redistribution in a small Mediterranean cereal field: modelling predictions and field measurements

    NASA Astrophysics Data System (ADS)

    López-Vicente, Manuel, , Dr.; Quijano, M. Sc. Laura; Gaspar, Leticia, , Dr.; Palazón, M. Sc. Leticia; Navas, Ana, , Dr.

    2015-04-01

    Cultivation is one of the main factors triggering soil erosion and the loss of fertile soil accelerates and in some cases causes soil degradation and crop yield reduction. Patterns of erosion, delivery and deposition of soil particles appear to be closely linked to that of soil nutrients. In this study, we assess the rates of soil and nutrient (soil nitrogen) redistribution and budget in a rain-fed cereal experimental plot (0.65 ha; Ebro river basin, NE Spain) caused by water erosion. The study area has a mean slope of 7%, it is classed as a closed-hydrological unit due to the cutting-connectivity effect of the landscape linear elements (LLEs), it has only one outlet and runoff directly reach La Reina gully. Climate is continental Mediterranean with two humid periods (average annual rainfall depth of 556 mm). Rainfall events of high intensity happen in June, July, September and October, with average values of maximum rainfall intensity in 30 min higher than 4 mm h-1 and above 6 mm h-1 in October. Soils are classified as Haplic Calcisols with an average and maximum values of soil organic matter of 1.5% and 2.4% respectively, high carbonate contents (ca. 39%) and texture is silt loam. The field has been cultivated for more than 150 years and consequently the soil is thoroughly mixed in the plough layer (25-30 cm). The cereal field was last harvested in June 2007 and from that date onwards the field has remained fallow for research purposes. Before fallowing the field was managed with minimum tillage during 15 years. Vegetation clearance practices were implemented to prevent scrub growth and so the soil surface has remained almost bare since that date. A total of 222 topsoil (5 cm depth) samples were collected following a regular 5x5 metre grid. Soil nitrogen content (%) was determined by the dry combustion method using a Leco TruSpec carbon and nitrogen analyzer (LECO Corporation, St. Joseph, MI, USA). Soil nitrogen was detected by determining the NOx gas evolved

  10. Performance of a carbon nanotube field emission electron gun

    NASA Astrophysics Data System (ADS)

    Getty, Stephanie A.; King, Todd T.; Bis, Rachael A.; Jones, Hollis H.; Herrero, Federico; Lynch, Bernard A.; Roman, Patrick; Mahaffy, Paul

    2007-04-01

    A cold cathode field emission electron gun (e-gun) based on a patterned carbon nanotube (CNT) film has been fabricated for use in a miniaturized reflectron time-of-flight mass spectrometer (RTOF MS), with future applications in other charged particle spectrometers, and performance of the CNT e-gun has been evaluated. A thermionic electron gun has also been fabricated and evaluated in parallel and its performance is used as a benchmark in the evaluation of our CNT e-gun. Implications for future improvements and integration into the RTOF MS are discussed.

  11. Ocean wind field measurement performance of the ERS-1 scatterometer

    NASA Technical Reports Server (NTRS)

    Hans, P.; Schuessler, H.

    1984-01-01

    The Active Microwave Instrumentation (AMI), which will be implemented on the ERS-1, is a 5.3 GHz multipurpose radar for land surface imaging, ocean wave spectrum measurement and wind observations over oceans. The imaging and wave measurements apply Synthetic Aperture Radar (SAR) techniques, while wind field detection is performed by the Scatterometer as part of the AMI. The Scatterometer system design was developed and optimized with the aid of a performance simulator. This paper, aimed at giving an overview, is presented about the: (1) ERS-1 Scatterometer system design; (2) Error budget; and the (3) Overall calibration concept.

  12. The Large Binocular Camera image simulator: predicting the performances of LBC

    NASA Astrophysics Data System (ADS)

    Grazian, Andrea; Fontana, Adriano; De Santis, Cristian; Gallozzi, Stefano; Giallongo, Emanuele

    2004-09-01

    The LBC (Large Binocular Camera) Image Simulator is a package for generating artificial images in the typical FITS format. It operates on real or artificial images, simulating the expected performances of real instruments including several observing conditions (filters, air-mass, flat-field, exposure time) and creating images with the LBC instrumental artifacts (optical deformations, noise, CCD architectures). This simulator can be used also to produce artificial images for other existing and future telescopes, since it is very flexible on its structure. The main aim of LBCSIM is to support the development of pipeline and data analysis procedure able to cope with wide field imaging and fast reduction of huge amount of photometric data. The software consists of three stand alone programs written in C language, using IRAF and running under Linux OS. The LBC Image Simulator is built with particular attention to the Virtual Observatory and Data Grid applications. In this paper, we first describe the software, the performances and several tests carried out before the public release and some examples for the users. In particular, we compared the Hubble Deep Field South (HDFS) as seen by FORS1 with a simulated image and found that the agreement is good. Then, we use this software to predict the expected performances of the LBC instrument by means of realistic simulations of deep field observations with the LBT telescope.

  13. Performance of Electroless Nickel coatings in oil field environments

    SciTech Connect

    Duncan, R.N.

    1982-01-01

    Recent experience has shown functional Electroless Nickel to have outstanding resistance to corrosion and erosion in petroleum production facilities. Details of test programs to establish the performance of this coating in saline/CO/sub 2//H/sub 2/S environments at temperatures up to 180 C (350 F) are reported, together with actual experience with their use. Data also are presented on the effect of heat treatment and of deposit composition on the corrosion of Electroless Nickel in oil field services.

  14. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    NASA Astrophysics Data System (ADS)

    ten Haaf, G.; Wouters, S. H. W.; van der Geer, S. B.; Vredenbregt, E. J. D.; Mutsaers, P. H. A.

    2014-12-01

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  15. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Jensen, R. N.; Knoll, R. H.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  16. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  17. Frontoparietal white matter integrity predicts haptic performance in chronic stroke.

    PubMed

    Borstad, Alexandra L; Choi, Seongjin; Schmalbrock, Petra; Nichols-Larsen, Deborah S

    2016-01-01

    strongly correlated with the shared variance across tracts in the control, but not in the poststroke participants. A moderate to good relationship was found between ipsilesional T-M1 MD and affected hand HASTe score (r = - 0.62, p = 0.006) and less affected hand HASTe score (r = - 0.53, p = 0.022). Regression analysis revealed approximately 90% of the variance in affected hand HASTe score was predicted by the white matter integrity in the frontoparietal network (as indexed by MD) in poststroke participants while 87% of the variance in HASTe score was predicted in control participants. This study demonstrates the importance of frontoparietal white matter in mediating haptic performance and specifically identifies that T-M1 and precuneus interhemispheric tracts may be appropriate targets for piloting rehabilitation interventions, such as noninvasive brain stimulation, when the goal is to improve poststroke haptic performance.

  18. Frontoparietal white matter integrity predicts haptic performance in chronic stroke

    PubMed Central

    Borstad, Alexandra L.; Choi, Seongjin; Schmalbrock, Petra; Nichols-Larsen, Deborah S.

    2015-01-01

    strongly correlated with the shared variance across tracts in the control, but not in the poststroke participants. A moderate to good relationship was found between ipsilesional T–M1 MD and affected hand HASTe score (r = − 0.62, p = 0.006) and less affected hand HASTe score (r = − 0.53, p = 0.022). Regression analysis revealed approximately 90% of the variance in affected hand HASTe score was predicted by the white matter integrity in the frontoparietal network (as indexed by MD) in poststroke participants while 87% of the variance in HASTe score was predicted in control participants. This study demonstrates the importance of frontoparietal white matter in mediating haptic performance and specifically identifies that T–M1 and precuneus interhemispheric tracts may be appropriate targets for piloting rehabilitation interventions, such as noninvasive brain stimulation, when the goal is to improve poststroke haptic performance. PMID:26759788

  19. Burst muscle performance predicts the speed, acceleration, and turning performance of Anna’s hummingbirds

    PubMed Central

    Segre, Paolo S; Dakin, Roslyn; Zordan, Victor B; Dickinson, Michael H; Straw, Andrew D; Altshuler, Douglas L

    2015-01-01

    Despite recent advances in the study of animal flight, the biomechanical determinants of maneuverability are poorly understood. It is thought that maneuverability may be influenced by intrinsic body mass and wing morphology, and by physiological muscle capacity, but this hypothesis has not yet been evaluated because it requires tracking a large number of free flight maneuvers from known individuals. We used an automated tracking system to record flight sequences from 20 Anna's hummingbirds flying solo and in competition in a large chamber. We found that burst muscle capacity predicted most performance metrics. Hummingbirds with higher burst capacity flew with faster velocities, accelerations, and rotations, and they used more demanding complex turns. In contrast, body mass did not predict variation in maneuvering performance, and wing morphology predicted only the use of arcing turns and high centripetal accelerations. Collectively, our results indicate that burst muscle capacity is a key predictor of maneuverability. DOI: http://dx.doi.org/10.7554/eLife.11159.001 PMID:26583753

  20. Magnetic field of the planet Uranus: predictions, measurements, and interpretation

    SciTech Connect

    Dolginov, S.S.

    1987-09-01

    The magnitude and tilt of the eccentric dipole of Uranus are examined in the framework of a processing dynamo model. It is shown that the unique parameters of the magnetic field of Uranus are connected with the fact that, unlike the other planets, the magnetic field of Uranus is generated in two bordering regions whose highly conducting materials differ sharply in density: the density anti rho = 12 g x cm/sup -3/ in a core with an upper boundary r = 0.3R/sub U/, and anti rho = 3.1 g x cm/sup -3/ in an ocean with an upper boundary r = 0.6R/sub U/. The upper boundary of the magnetically active region in the ocean is determined by the magnetic pressure P = 1.9 Mbar, at which the ocean material is metallized.

  1. Correlation of Field Data with Reliability Prediction Models

    DTIC Science & Technology

    1981-11-01

    Dsgwrtnsfl of Cginfuu mNW Tchnlca hifrmadw Sevice ADA 111258 RADC.TR-81 29 Final Tch1lcal Reprt November� CORRELATION OF FIELD DATA WITH RELIABILITY...of digital parts of D-1 and D screen but there was a higher proportion of better quality parts in PMOS, NMOS, etc. From here on, this type of...three factors, since military environments use military quality parts, and temperature is a characteristic of environment. The orientation of their inter

  2. Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance.

    PubMed

    Matthews, Percival G; Lewis, Mark Rose; Hubbard, Edward M

    2016-02-01

    What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approximate number system (ANS), are ill-suited for learning fraction concepts. However, recent research in developmental psychology and neuroscience has revealed a ratio-processing system (RPS) that is sensitive to magnitudes of nonsymbolic ratios and may be ideally suited for supporting fraction concepts. We provide evidence for this hypothesis by showing that individual differences in RPS acuity predict performance on four measures of mathematical competence, including a university entrance exam in algebra. We suggest that the nonsymbolic RPS may support symbolic fraction understanding much as the ANS supports whole-number concepts. Thus, even abstract mathematical concepts, such as fractions, may be grounded not only in higher-order logic and language, but also in basic nonsymbolic processing abilities. © The Author(s) 2015.

  3. Performance predictions of VAWTs with NLF airfoil blades

    SciTech Connect

    Masson, C.; Leclerc, C.; Paraschivoiu, I.

    1997-02-01

    The successful design of an efficient Vertical Axis Wind Turbine (VAWT) can be obtained only when appropriate airfoil sections have been selected. Most VAWTs currently operating worldwide use blades of symmetrical NACA airfoil series. As these blades were designed for aviation applications, Sandia National Laboratories developed a family of airfoils specifically designed for VAWTs in order to decrease the Cost of Energy (COE) of the VAWT (Berg, 1990). Objectives formulated for the blade profile were: modest values of maximum lift coefficient, low drag at low angle of attack, high drag at high angle of attack, sharp stall, and low thickness-to-chord ratio. These features are similar to those of Natural Laminar Flow airfoils (NLF) and gave birth to the SNLA airfoil series. This technical brief illustrates the benefits and losses resulting from using NLF airfoils on VAWT blades. To achieve this goal, the streamtube model of Paraschivoiu (1988) is used to predict the performance of VAWTs equipped with blades of various airfoil shapes. The airfoil shapes considered are the conventional airfoils NACA 0018 and NACA 0021, and the SNLA 0018/50 airfoil designed at Sandia. Furthermore, the potential benefit of reducing the airfoil drag is clearly illustrated by the presentation of the individual contributions of lift and drag to power.

  4. Numerical modelling methods for predicting antenna performance on aircraft

    NASA Astrophysics Data System (ADS)

    Kubina, S. J.

    1983-09-01

    Typical case studies that involve the application of Moment Methods to the prediction of the radiation characteristics of antennas in the HF frequency band are examined. The examples consist of the analysis of a shorted transmission line HF antenna on a CHSS-2/Sea King helicopter, wire antennas on the CP-140/Aurora patrol aircraft and a long dipole antenna on the Space Shuttle Orbiter spacecraft. In each of these cases the guidelines for antenna modeling by the use of the program called the Numerical Electromagnetic Code are progressively applied and results are compared to measurements made by the use of scale-model techniques. In complex examples of this type comparisons based on individual radiation patterns are insufficient for the validation of computer models. A volumetric method of radiation pattern comparison is used based on criteria that result from pattern integration and that are related to communication system performance. This is supplemented by hidden-surface displays of an entire set of conical radiation patterns resulting from measurements and computations. Antenna coupling considerations are discussed for the case of the dual HF installation on the CP-140/Aurora aircraft.

  5. Testing of Typhoon WRF (TWRF) Initial Field and Its Application to Operational Typhoon Prediction at Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, D.-S.; Hsiao, L.-F.; Yeh, T.-C.; Guo, Y.-R.

    2012-04-01

    Typhoons are the most significant weather systems in Taiwan, and they cause considerable damage there every year. The associated rainfall of typhoons is also one of the most important water resources in Taiwan. The numerical prediction models provide necessary guidance on typhoon track forecast. However, for a numerical model to predict accurate rainfall and wind field are still a highly challenging task. In addition, the two major factors that lead to challenge on typhoon forecasting in the vicinity of Taiwan are resulted from the lack of observational data over the Northwest Pacific Ocean and the significant interaction between typhoon circulation and Taiwan Central Mountain Range. In order to provide subjective guidance for the forecast team in the Central Weather Bureau (CWB) on typhoon track and precipitation, the numerical typhoon model is needed for more accurate typhoon predictions. Improve the skill of typhoon prediction is the highest priority for Taiwan's Central Weather Bureau (CWB). To achieve this goal, one key component is to improve the accuracy of model initial condition. More recently, the community model such as Weather Research and Forecasting (WRF) modeling system is widely applied to tropical cyclone forecast. A version of WRF model, called TWRF (Typhoon WRF) in the Central Weather Bureau, was developed from 2010. In the TWRF system, including the partial cycling approach, typhoon initialization scheme, outer loops in WRF 3DVAR system are used to examine the ability on the typhoon prediction. The ultimate aim is the construction of real-time forecasting of typhoon track and rainfall prior to and affecting Taiwan, to improve the typhoon warnings and provide local officials with the comprehensive information in the hardest hit areas as soon as possible. The detail performance of TWRF during 2010, 2011 typhoon season and the improvement strategies in the near future will be presented in the conference.

  6. Using Mason number to predict MR damper performance from limited test data

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.; Wereley, Norman M.

    2017-05-01

    The Mason number can be used to produce a single master curve which relates MR fluid stress versus strain rate behavior across a wide range of shear rates, temperatures, and applied magnetic fields. As applications of MR fluid energy absorbers expand to a variety of industries and operating environments, Mason number analysis offers a path to designing devices with desired performance from a minimal set of preliminary test data. Temperature strongly affects the off-state viscosity of the fluid, as the passive viscous force drops considerably at higher temperatures. Yield stress is not similarly affected, and stays relatively constant with changing temperature. In this study, a small model-scale MR fluid rotary energy absorber is used to measure the temperature correction factor of a commercially-available MR fluid from LORD Corporation. This temperature correction factor is identified from shear stress vs. shear rate data collected at four different temperatures. Measurements of the MR fluid yield stress are also obtained and related to a standard empirical formula. From these two MR fluid properties - temperature-dependent viscosity and yield stress - the temperature-corrected Mason number is shown to predict the force vs. velocity performance of a full-scale rotary MR fluid energy absorber. This analysis technique expands the design space of MR devices to high shear rates and allows for comprehensive predictions of overall performance across a wide range of operating conditions from knowledge only of the yield stress vs. applied magnetic field and a temperature-dependent viscosity correction factor.

  7. Bulgarian Geomagnetic Reference Field (BulGRF) for 2015.0 and secular variation prediction model up to 2020

    NASA Astrophysics Data System (ADS)

    Metodiev, Metodi; Trifonova, Petya

    2017-09-01

    The Bulgarian Geomagnetic Reference Field (BulGRF) for 2015.0 epoch and its secular variation model prediction up to 2020.0 is produced and presented in this paper. The main field model is based on the well-known polynomial approximation in latitude and longitude of the geomagnetic field elements. The challenge in our modelling strategy was to update the absolute field geomagnetic data from 1980.0 up to 2015.0 using secular measurements unevenly distributed in time and space. As a result, our model gives a set of six coefficients for the horizontal H, vertical Z, total field F, and declination D elements of the geomagnetic field. The extrapolation of BulGRF to 2020 is based on an autoregressive forecasting of the Panagyurishte observatory annual means. Comparison of the field values predicted by the model with Panagyurishte (PAG) observatory annual mean data and two vector field measurements performed in 2015 shows a close match with IGRF-12 values and some difference with the real (measured) values, which is probably due to the influence of crustal sources. BulGRF proves to be a reliable alternative to the global geomagnetic field models which together with its simplicity makes it a useful tool for reducing magnetic surveys to a common epoch carried out over the Bulgarian territory up to 2020.

  8. Prediction of mandibular rotation: an empirical test of clinician performance.

    PubMed

    Baumrind, S; Korn, E L; West, E E

    1984-11-01

    An experiment was conducted in an attempt to determine empirically how effective a number of expert clinicians were at differentiating "backward rotators" from "forward rotators" on the basis of head-film information which might reasonably have been available to them prior to instituting treatment for the correction of Class II malocclusion. As a result of a previously reported ongoing study, pre- and posttreatment head films were available for 188 patients treated in the mixed dentition for the correction of Class II malocclusion and for 50 untreated Class II subjects. These subjects were divided into 14 groups (average size of group, 17; range, 6 to 23) solely on the basis of type of treatment and the clinician from whose clinic the records had originated. From within each group, we selected the two or three subjects who had exhibited the most extreme backward rotation and the two or three subjects who had exhibited the most extreme forward rotation of the mandible during the interval between films. The sole criterion for classification was magnitude of change in the mandibular plane angle of Downs between the pre- and posttreatment films of each patient. The resulting sample contained 32 backward-rotator subjects and 32 forward-rotator subjects. Five expert judges (mean clinical experience, 28 years) were asked to identify the backward-rotator subjects by examination of the pretreatment films. The findings may be summarized as follows: (1) No judge performed significantly better than chance. (2) There was strong evidence that the judges used a shared, though relatively ineffective, set of rules in making their discriminations between forward and backward rotators. (3) Statistical analysis of the predictive power of a set of standard cephalometric measurements which had previously been made for this set of subjects indicated that the numerical data also failed to identify potential backward rotators at a rate significantly better than chance. We infer from these

  9. Prediction model of sinoatrial node field potential using high order partial least squares.

    PubMed

    Feng, Yu; Cao, Hui; Zhang, Yanbin

    2015-01-01

    High order partial least squares (HOPLS) is a novel data processing method. It is highly suitable for building prediction model which has tensor input and output. The objective of this study is to build a prediction model of the relationship between sinoatrial node field potential and high glucose using HOPLS. The three sub-signals of the sinoatrial node field potential made up the model's input. The concentration and the actuation duration of high glucose made up the model's output. The results showed that on the premise of predicting two dimensional variables, HOPLS had the same predictive ability and a lower dispersion degree compared with partial least squares (PLS).

  10. A paradigm for data-driven predictive modeling using field inversion and machine learning

    NASA Astrophysics Data System (ADS)

    Parish, Eric J.; Duraisamy, Karthik

    2016-01-01

    We propose a modeling paradigm, termed field inversion and machine learning (FIML), that seeks to comprehensively harness data from sources such as high-fidelity simulations and experiments to aid the creation of improved closure models for computational physics applications. In contrast to inferring model parameters, this work uses inverse modeling to obtain corrective, spatially distributed functional terms, offering a route to directly address model-form errors. Once the inference has been performed over a number of problems that are representative of the deficient physics in the closure model, machine learning techniques are used to reconstruct the model corrections in terms of variables that appear in the closure model. These reconstructed functional forms are then used to augment the closure model in a predictive computational setting. As a first demonstrative example, a scalar ordinary differential equation is considered, wherein the model equation has missing and deficient terms. Following this, the methodology is extended to the prediction of turbulent channel flow. In both of these applications, the approach is demonstrated to be able to successfully reconstruct functional corrections and yield accurate predictive solutions while providing a measure of model form uncertainties.

  11. Moffett Field Funnel and Gate TCE Treatment System: Interpretation of Field Performance using Reactive Transport Modeling

    SciTech Connect

    Yabusaki, Steven B.; Cantrell, Kirk J.; Sass, B. M.

    2001-06-30

    A multicomponent reactive transport simulator was used to understand the behavior of chemical components, including TCE and cis-1,2-DCE, in groundwater transported through the pilot-scale funnel and gate chemical treatment system at Moffett Field, California. Field observations indicated that zero-valent iron emplaced in the gate to effect the destruction of chlorinated hydrocarbons also resulted in increases in pH and hydrocarbons, as well as decreases in EH, alkalinity, dissolved O2 and CO2, and major ions (i.e., Ca, Mg, Cl, sulfate, nitrate). Of concern are chemical transformations that may reduce the effectiveness or longevity of the iron cell and/or create secondary contaminants. A coupled model of transport and reaction processes was developed to account for mobile and immobile components undergoing equilibrium and kinetic reactions including TCE degradation, parallel iron dissolution reactions, precipitation of secondary minerals, and complexation reactions. The model reproduced solution chemistry observed in the iron cell using reaction parameters from the literature and laboratory studies. Mineral precipitation in the iron zone, which is critical to correctly predicting the aqueous concentrations, was predicted to account for up to 3 percent additional mineral volume annually. Interplay between rates of transport and rates of reaction in the field was key to understanding system behavior.

  12. Does intrinsic motivation fuel the prosocial fire? Motivational synergy in predicting persistence, performance, and productivity.

    PubMed

    Grant, Adam M

    2008-01-01

    Researchers have obtained conflicting results about the role of prosocial motivation in persistence, performance, and productivity. To resolve this discrepancy, I draw on self-determination theory, proposing that prosocial motivation is most likely to predict these outcomes when it is accompanied by intrinsic motivation. Two field studies support the hypothesis that intrinsic motivation moderates the association between prosocial motivation and persistence, performance, and productivity. In Study 1, intrinsic motivation strengthened the relationship between prosocial motivation and the overtime hour persistence of 58 firefighters. In Study 2, intrinsic motivation strengthened the relationship between prosocial motivation and the performance and productivity of 140 fundraising callers. Callers who reported high levels of both prosocial and intrinsic motivations raised more money 1 month later, and this moderated association was mediated by a larger number of calls made. I discuss implications for theory and research on work motivation.

  13. Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness

    NASA Astrophysics Data System (ADS)

    Tumac, Deniz

    2014-03-01

    Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.

  14. Unsteady-flow-field predictions for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1991-01-01

    The unsteady flow field around an oscillating cascade of flat plates with zero stagger was studied by using a time marching Euler code. This case had an exact solution based on linear theory and served as a model problem for studying pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step size was shown for a moderate reduced frequency. Results show that an approximate nonreflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer to the airfoils than when reflective boundaries are used. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates captures the unsteady flow field better than when uniform grids are used as long as the 'Courant Friedrichs Levy' (CFL) number is less than 1 for a sufficient portion of the grid. Finally, a solution based on an optimization of grid, CFL number, and boundary conditions shows good agreement with linear theory.

  15. Field Verification of Structural Performance of Thermoplastic Pipe Under Deep Backfill Conditions

    NASA Astrophysics Data System (ADS)

    Sargand, S.

    2002-05-01

    This report provides information regarding the structural performance of thermoplastic pipes under relatively deep soil cover conditions. The eighteen (12 HDPE, 6 PVC) thermoplastic pipes, with diameter ranging from 30 to 60 in., were instrumented with sensors, embedded with granular backfill in shallow trenches, and subjected to 20-ft or 40-ft high soil fill for about 10 months. Their installation plans involved two types of backfill soil, three relative compactions, and varying bedding thickness to study the effects of these installation parameters on the pipe performance. Once the field performance of each test pipe was presented and discussed, comparative cross examinations of the entire field data were made to identify the effects of various installation parameters on the pipe deformations/deflections and soil pressure against pipe. A comprehensive set of soil testing was performed in the laboratory to characterize each of the three soil types that existed in the field. Results from the shear strength tests were analyzed further to obtain hyperbolic model parameter values for these soils. Three analytical methods (modified Iowa formula, elastic solutions, and finite element) were applied to evaluate their abilities to predict the field performance of the thermoplastic pipes under relatively deep soil cover. In their applications, material properties measured in the laboratory were utilized as much as possible.

  16. Can the comprehensive model phase 4 (CM4) predict the geomagnetic diurnal field for days away from quiet time?

    NASA Astrophysics Data System (ADS)

    Onovughe, Elvis

    2016-10-01

    The most recent comprehensive model (CM4) of the geomagnetic field (Sabaka et al., 2004) has been used in conjunction with geomagnetic ground observatory station data to analyse and study the geomagnetic diurnal variation field for days away from quiet time and the CM4 prediction for these times. Even though much has been learnt about many components of the geomagnetic field, the diurnal variation field behaviour for days away from quiet time (moderately disturbed time) has not been intensively studied. Consequently, we analyse these, and the predictive ability of the CM4 for ground variations, and whether the CM4 prediction of the diurnal variation (whether at quiet time or away from quiet time) is valid outside the period of reference that from which the data were used in modelling. In carrying out the study, we compared the observatory station data and the CM4 prediction directly. Using the CM4 code, well-characterised internal and magnetospheric components were subtracted from the data, plots and global maps of the residual field generated and then compared with the CM4 to see how well the model performed in predicting the data at moderately disturbed time (Kp ≤ 5). The results show that the CM4 is valid and produces useful predictions outside the period covering the timespan of the model and during moderately disturbed time, despite the lack of active data in the original model dataset. The model predictability of the data increases as we move to higher spherical harmonic degree truncation, as the model-data misfit is reduced, but with increased roughness as a result of small-scale features incorporated. The observed results show that this relationship between the increase in spherical harmonic degree truncation and reduction in misfit can be restricted by data quality or quantity and global coverage or spread.

  17. A Deep Conditional Random Field Approach to Transmembrane Topology Prediction and Application to GPCR Three-Dimensional Structure Modeling.

    PubMed

    Wu, Hongjie; Wang, Kun; Lu, Liyao; Xue, Yu; Lyu, Qiang; Jiang, Min

    2016-08-25

    Transmembrane proteins play important roles in cellular energy production, signal transmission, and metabolism. Many shallow machine learning methods have been applied to transmembrane topology prediction, but the performance was limited by the large size of membrane proteins and the complex biological evolution information behind the sequence. In this paper, we proposed a novel deep approach based on conditional random fields named as dCRF-TM for predicting the topology of transmembrane proteins. Conditional random fields take into account more complicated interrelation between residue labels in full-length sequence than HMM and SVM-based methods. Three widely-used datasets were employed in the benchmark. DCRF-TM had the accuracy 95% over helix location prediction and the accuracy 78% over helix number prediction. DCRF-TM demonstrated a more robust performance on large size proteins (>350 residues) against 11 state-of-the-art predictors. Further dCRF-TM was applied to ab initio modeling three-dimensional structures of seven-transmembrane receptors, also known as G protein-coupled receptors. The predictions on 24 solved G protein-coupled receptors and unsolved vasopressin V2 receptor illustrated that dCRF-TM helped abGPCR-I-TASSER to improve TM-score 34.3% rather than using the random transmembrane definition. 2 out of 5 predicted models caught the experimental verified disulfide bond in vasopressin V2 receptor.

  18. Does High School Performance Predict College Math Placement?

    ERIC Educational Resources Information Center

    Kowski, Lynne E.

    2013-01-01

    Predicting student success has long been a question of interest for postsecondary admission counselors throughout the United States. Past research has examined the validity of several methods designed for predicting undergraduate success. High school record, standardized test scores, extracurricular activities, and combinations of all three have…

  19. Radio link design framework for WSN deployment and performance prediction

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Giannetti, Filippo

    2017-05-01

    For an easy implementation of wireless sensor and actuator networks (WSAN), the state-of-the-art is offering single-chip solutions embedding in the same device a microcontroller core with a wireless transceiver. These internet-on-chip devices support different protocols (Bluetooth, ZigBee, Bluetooth Low Energy, sub- GHz links), from about 300 MHz to 6 GHz, with max. sustained bit-rates from 250 kb/s (sub-GHz links) to 4 Mb/s (Wi-Fi), and different trade-offs between RX sensitivity (from -74 to -100 dBm), RX noise figure (few dB to 10 dB), maximum TX power (from 0 to 22 dBm), link distances, power consumption levels (from few mW to several hundreds of mW). One limit for their successful application is the missing of an easy-to-use modeling and simulation environment to plan their deployment. The need is to predict, before installing a network, at which distances the sensors can be deployed, the real achievable bit-rate, communication latency, outage probability, power consumption, battery duration. To this aim, this paper presents the H2AWKS (Harsh environment and Hardware Aware Wireless linK Simulator) simulator, which allows the planning of a WSAN taking into account environment constraints and hardware parameters. Applications of H2AWKS to real WSAN case studies prove that it is an easy to use simulation environment, which allows design exploration of the system performance of a WSAN as a function of the operating environment and of the hardware parameters of the used devices.

  20. Pallidal spiking activity reflects learning dynamics and predicts performance

    PubMed Central

    Noblejas, Maria Imelda; Mizrahi, Aviv D.; Dauber, Omer; Bergman, Hagai

    2016-01-01

    The basal ganglia (BG) network has been divided into interacting actor and critic components, modulating the probabilities of different state–action combinations through learning. Most models of learning and decision making in the BG focus on the roles of the striatum and its dopaminergic inputs, commonly overlooking the complexities and interactions of BG downstream nuclei. In this study, we aimed to reveal the learning-related activity of the external segment of the globus pallidus (GPe), a downstream structure whose computational role has remained relatively unexplored. Recording from monkeys engaged in a deterministic three-choice reversal learning task, we found that changes in GPe discharge rates predicted subsequent behavioral shifts on a trial-by-trial basis. Furthermore, the activity following the shift encoded whether it resulted in reward or not. The frequent changes in stimulus–outcome contingencies (i.e., reversals) allowed us to examine the learning-related neural activity and show that GPe discharge rates closely matched across-trial learning dynamics. Additionally, firing rates exhibited a linear decrease in sequences of correct responses, possibly reflecting a gradual shift from goal-directed execution to automaticity. Thus, modulations in GPe spiking activity are highest for attention-demanding aspects of behavior (i.e., switching choices) and decrease as attentional demands decline (i.e., as performance becomes automatic). These findings are contrasted with results from striatal tonically active neurons, which show none of these task-related modulations. Our results demonstrate that GPe, commonly studied in motor contexts, takes part in cognitive functions, in which movement plays a marginal role. PMID:27671661

  1. Prediction of directional reflectance of a corn field under stress

    NASA Technical Reports Server (NTRS)

    Suits, G. H.; Safir, G.; Ellingbroe, A. H.

    1972-01-01

    A vegetative canopy model concept is developed and used to calculate the directional spectral reflectance of a corn field under stress. The problem has been idealized by assuming that the canopy is represented in several layers of uniform but randomly distributed biological components; horizontal and vertical projection of leaves, for example, replaces the actual leaf. An accumulative horizontal projection leads to a quantitative horizontal leaf area index while accumulated vertical projections provide the vertical leaf index area for each layer. The spectral properties of the projections are obtained from the spectral properties of the biological components. These techniques together with soil reflectance data provide a physical description for the vegetative canopy and adequately interprete multispectral scanning data.

  2. Predicting neutron star properties based on chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Laduke, Alison; Sammarruca, Francesca

    2016-09-01

    The energy per nucleon as a function of density, known as the nuclear equation of state, is the crucial input in the structure equations of neutron stars and thus establishes the connection between nuclear physics and compact astrophysical objects. More precisely, the pressure which supports the star against gravitational collapse is mostly determined by the nature of the equation of state of highly neutron-rich matter. In this contribution, we will report on our work in progress to calculate neutron star masses and radii. The equation of state is obtained microscopically from Brueckner-Hartree-Fock calculations based on state-of-the-art nuclear forces which have been developed within the framework of chiral effective field theory. The latter has become popular in recent years as a fundamental and systematic approach firmly connected to low-energy quantum chromodynamics. Supported by the Hill Undergraduate Fellowship and the U.S. Department of Energy.

  3. Prediction of SSVEP-based BCI performance by the resting-state EEG network

    NASA Astrophysics Data System (ADS)

    Zhang, Yangsong; Xu, Peng; Guo, Daqing; Yao, Dezhong

    2013-12-01

    Objective. The prediction of brain-computer interface (BCI) performance is a significant topic in the BCI field. Some researches have demonstrated that resting-state data are promising candidates to achieve the goal. However, so far the relationships between the resting-state networks and the steady-state visual evoked potential (SSVEP)-based BCI have not been investigated. In this paper, we investigate the possible relationships between the SSVEP responses, the classification accuracy of five stimulus frequencies and the closed-eye resting-state network topology. Approach. The resting-state functional connectivity networks of the corresponding five stimulus frequencies were created by coherence, and then three network topology measures—the mean functional connectivity, the clustering coefficient and the characteristic path length of each network—were calculated. In addition, canonical correlation analysis was used to perform frequency recognition with the SSVEP data. Main results. Interestingly, we found that SSVEPs of each frequency were negatively correlated with the mean functional connectivity and clustering coefficient, but positively correlated with characteristic path length. Each of the averaged network topology measures across the frequencies showed the same relationship with the SSVEPs averaged across frequencies between the subjects. Furthermore, our results also demonstrated that the classification accuracy can be predicted by three averaged network measures and their combination can further improve the prediction performance. Significance. These findings indicate that the SSVEP responses and performance are predictable using the information at the resting-state, which may be instructive in both SSVEP-aided cognition studies and SSVEP-based BCI applications.

  4. Prediction of SSVEP-based BCI performance by the resting-state EEG network.

    PubMed

    Zhang, Yangsong; Xu, Peng; Guo, Daqing; Yao, Dezhong

    2013-12-01

    The prediction of brain-computer interface (BCI) performance is a significant topic in the BCI field. Some researches have demonstrated that resting-state data are promising candidates to achieve the goal. However, so far the relationships between the resting-state networks and the steady-state visual evoked potential (SSVEP)-based BCI have not been investigated. In this paper, we investigate the possible relationships between the SSVEP responses, the classification accuracy of five stimulus frequencies and the closed-eye resting-state network topology. The resting-state functional connectivity networks of the corresponding five stimulus frequencies were created by coherence, and then three network topology measures--the mean functional connectivity, the clustering coefficient and the characteristic path length of each network--were calculated. In addition, canonical correlation analysis was used to perform frequency recognition with the SSVEP data. Interestingly, we found that SSVEPs of each frequency were negatively correlated with the mean functional connectivity and clustering coefficient, but positively correlated with characteristic path length. Each of the averaged network topology measures across the frequencies showed the same relationship with the SSVEPs averaged across frequencies between the subjects. Furthermore, our results also demonstrated that the classification accuracy can be predicted by three averaged network measures and their combination can further improve the prediction performance. These findings indicate that the SSVEP responses and performance are predictable using the information at the resting-state, which may be instructive in both SSVEP-aided cognition studies and SSVEP-based BCI applications.

  5. Flow Field and Acoustic Predictions for Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  6. A multi-domain Chebyshev collocation method for predicting ultrasonic field parameters in complex material geometries.

    PubMed

    Nielsen, S A; Hesthaven, J S

    2002-05-01

    The use of ultrasound to measure elastic field parameters as well as to detect cracks in solid materials has received much attention, and new important applications have been developed recently, e.g., the use of laser generated ultrasound in non-destructive evaluation (NDE). To model such applications requires a realistic calculation of field parameters in complex geometries with discontinuous, layered materials. In this paper we present an approach for solving the elastic wave equation in complex geometries with discontinuous layered materials. The approach is based on a pseudospectral elastodynamic formulation, giving a direct solution of the time-domain elastodynamic equations. A typical calculation is performed by decomposing the global computational domain into a number of subdomains. Every subdomain is then mapped on a unit square using transfinite blending functions and spatial derivatives are calculated efficiently by a Chebyshev collocation scheme. This enables that the elastodynamic equations can be solved within spectral accuracy, and furthermore, complex interfaces can be approximated smoothly, hence avoiding staircasing. A global solution is constructed from the local solutions by means of characteristic variables. Finally, the global solution is advanced in time using a fourth order Runge-Kutta scheme. Examples of field prediction in discontinuous solids with complex geometries are given and related to ultrasonic NDE.

  7. Predicting compaction and subsidence for an immature gas bearing carbonate field

    SciTech Connect

    Prins, M.; Smits, R.M.M.; Schutjens, P.M.T.M.

    1995-10-01

    Reservoir compaction and associated surface subsidence levels can be significant when high porosity carbonate gas reservoirs are depleted. A well known example is the Ekofisk field in the North Sea. Therefore these phenomena are incorporated when designing offshore platform constructions. Because the design and the construction part of development takes place well before the field production starts (i.e. when only little is known about the field), uncertainties exist in the parameters that are required for the prediction of surface subsidence. This paper describes the prediction of subsidence for the M1 field, offshore Sarawak, East Malaysia and shows that although many uncertainties may exist in the parameters required for the predictions, investigation into the effects of these uncertainties provides useful insight in the possible range of subsidence levels. The predicted range of subsidence levels can subsequently be used as input for the platform design.

  8. Atomic bonding effects in annular dark field scanning transmission electron microscopy. I. Computational predictions

    SciTech Connect

    Odlyzko, Michael L.; Mkhoyan, K. Andre; Himmetoglu, Burak; Cococcioni, Matteo

    2016-07-15

    Annular dark field scanning transmission electron microscopy (ADF-STEM) image simulations were performed for zone-axis-oriented light-element single crystals, using a multislice method adapted to include charge redistribution due to chemical bonding. Examination of these image simulations alongside calculations of the propagation of the focused electron probe reveal that the evolution of the probe intensity with thickness exhibits significant sensitivity to interatomic charge transfer, accounting for observed thickness-dependent bonding sensitivity of contrast in all ADF-STEM imaging conditions. Because changes in image contrast relative to conventional neutral atom simulations scale directly with the net interatomic charge transfer, the strongest effects are seen in crystals with highly polar bonding, while no effects are seen for nonpolar bonding. Although the bonding dependence of ADF-STEM image contrast varies with detector geometry, imaging parameters, and material temperature, these simulations predict the bonding effects to be experimentally measureable.

  9. Field measurement and model prediction of infiltration in treated wastewater irrigated clayey soil

    NASA Astrophysics Data System (ADS)

    Albalasmeh, Ammar; Gharaibeh, Mamoun; Ghezzehei, Teamrat

    2016-04-01

    Soil water infiltration is a critical process in designing irrigation systems, especially if traded wastewater (TWW) is being used. In this study, the ability of seven different infiltration models (Kostiakov, Modified Kostiakov, Philip, Horton, Holaton, SCS (US-Soil Conservation Service) and Huggins and Monke) were compared to estimate and assess those models' parameters, and to evaluate their prediction ability for TWW irrigated soils. The field measurements were conducted in TWW irrigated soils using a hood infiltrometer. Six comparison criteria including Mean error, Geometric mean error, Root mean square error, Coefficient of determination, F-Statistic and Akaike information criterion were used to determine the best performing model with the least number of fitting parameters. The research indicated that three-parameter models had the best description of the relationship between cumulative infiltration and time in the researched TWW irrigated soils.

  10. Predicting Undergraduates' Persistence in Science, Technology, Engineering, and Math Fields

    NASA Astrophysics Data System (ADS)

    Koch, Amanda Joy

    A national shortage of workers in Science, Technology, Engineering, and Math (STEM) occupations has led to efforts to identify why people leave these fields. Lower persistence rates in STEM for females than for males have also led to examinations of features that cause females to leave STEM fields. The current study examines individual- and school-level features that influence undergraduate students' decisions to leave STEM majors, focusing on potential explanations for why females are more likely than males to leave. Persistence in STEM was examined in three samples: (a) persistence through the second year of college in a sample of high school seniors interested in STEM majors; (b) persistence through the fourth year of college in a sample of second year undergraduate STEM majors; and (c) persistence through the second, third, and fourth years of college in a sample of high school seniors interested in STEM majors. Differences between persistence in male-dominated and non-male-dominated STEM majors were also examined. In all samples, gender differences were found for most individual-level predictors, with males tending to score higher than females on measures such as SAT-Math, self-rated STEM ability, and high school extracurricular activities and awards in STEM. On the other hand, females earned better high school grades and had stronger relative non-STEM ability and achievement than males. Bivariate analyses indicated that those who persisted in STEM majors typically had higher scores than those who did not persist for SAT-Math, high school achievement, STEM course taking, undergraduate STEM grades, self-rated STEM ability, interest in STEM, extracurricular activities and awards in STEM, degree goals, and socioeconomic status. Multivariate analyses identified SAT-Math as one of the best predictors of persistence in high school samples, and undergraduate STEM GPA was one of the best predictors in the samples of second year undergraduates. In several samples, a

  11. Diagnostic Performance 1 H after Simulation Training Predicts Learning

    ERIC Educational Resources Information Center

    Consoli, Anna; Fraser, Kristin; Ma, Irene; Sobczak, Matthew; Wright, Bruce; McLaughlin, Kevin

    2013-01-01

    Although simulation training improves post-training performance, it is unclear how well performance soon after simulation training predicts longer term outcomes (i.e., learning). Here our objective was to assess the predictive value of performance 1 h post-training of performance 6 weeks later. We trained 84 first year medical students a simulated…

  12. Diagnostic Performance 1 H after Simulation Training Predicts Learning

    ERIC Educational Resources Information Center

    Consoli, Anna; Fraser, Kristin; Ma, Irene; Sobczak, Matthew; Wright, Bruce; McLaughlin, Kevin

    2013-01-01

    Although simulation training improves post-training performance, it is unclear how well performance soon after simulation training predicts longer term outcomes (i.e., learning). Here our objective was to assess the predictive value of performance 1 h post-training of performance 6 weeks later. We trained 84 first year medical students a simulated…

  13. Theoretical Predictions and Experimental Assessments of the Performance of Alumina RF Windows

    SciTech Connect

    Karen Ann Cummings

    1998-07-01

    Radio frequency (RF) windows are the most likely place for catastrophic failure to occur in input power couplers for particle accelerators. Reliable RF windows are essential for the success of the Accelerator Production of Tritium (APT) program because there are over 1000 windows on the accelerator, and it takes more than one day to recover from a window failure. The goals of this research are to analytically predict the lifetime of the windows, to develop a conditioning procedure, and to evaluate the performance of the RF windows. The analytical goal is to predict the lifetime of the windows. The probability of failure is predicted by the combination of a finite element model of the window, Weibull probabilistic analysis, and fracture mechanics. The window assembly is modeled in a finite element electromagnetic code in order to calculate the electric fields in the window. The geometry (i.e. mesh) and electric fields are input into a translator program to generate the mesh and boundary conditions for a finite element thermal structural code. The temperatures and stresses are determined in the thermal/structural code. The geometry and thermal structural results are input into another translator program to generate an input file for the reliability code. Material, geometry and service data are also input into the reliability code. To obtain accurate Weibull and fatigue data for the analytical model, four point bend tests were done. The analytical model is validated by comparing the measurements to the calculations. The lifetime of the windows is then determined using the reliability code. The analytical model shows the window has a good thermal mechanical design and that fast fracture is unlikely to occur below a power level of 9 Mw. The experimental goal is to develop a conditioning procedure and evaluate the performance of RF windows. During the experimental evaluation, much was learned about processing of the windows to improve the RF performance. Methods of

  14. High performance ultrasonic field simulation on complex geometries

    NASA Astrophysics Data System (ADS)

    Chouh, H.; Rougeron, G.; Chatillon, S.; Iehl, J. C.; Farrugia, J. P.; Ostromoukhov, V.

    2016-02-01

    Ultrasonic field simulation is a key ingredient for the design of new testing methods as well as a crucial step for NDT inspection simulation. As presented in a previous paper [1], CEA-LIST has worked on the acceleration of these simulations focusing on simple geometries (planar interfaces, isotropic materials). In this context, significant accelerations were achieved on multicore processors and GPUs (Graphics Processing Units), bringing the execution time of realistic computations in the 0.1 s range. In this paper, we present recent works that aim at similar performances on a wider range of configurations. We adapted the physical model used by the CIVA platform to design and implement a new algorithm providing a fast ultrasonic field simulation that yields nearly interactive results for complex cases. The improvements over the CIVA pencil-tracing method include adaptive strategies for pencil subdivisions to achieve a good refinement of the sensor geometry while keeping a reasonable number of ray-tracing operations. Also, interpolation of the times of flight was used to avoid time consuming computations in the impulse response reconstruction stage. To achieve the best performance, our algorithm runs on multi-core superscalar CPUs and uses high performance specialized libraries such as Intel Embree for ray-tracing, Intel MKL for signal processing and Intel TBB for parallelization. We validated the simulation results by comparing them to the ones produced by CIVA on identical test configurations including mono-element and multiple-element transducers, homogeneous, meshed 3D CAD specimens, isotropic and anisotropic materials and wave paths that can involve several interactions with interfaces. We show performance results on complete simulations that achieve computation times in the 1s range.

  15. The use of high-resolution terrain data in gravity field prediction

    NASA Technical Reports Server (NTRS)

    Groten, E.; Becker, M.; Euler, H.-J.; Hausch, W.; Kling, TH.

    1989-01-01

    Different types of gravity prediction methods for local and regional gravity evaluation are developed, tested, and compared. Four different test areas were particularly selected in view of different prediction requirements. Also different parts of the spectrum of the gravity field were considered.

  16. Residential magnetic fields predicted from wiring configurations: II. Relationships To childhood leukemia.

    PubMed

    Thomas, D C; Bowman, J D; Jiang, L; Jiang, F; Peters, J M

    1999-10-01

    Case-control data on childhood leukemia in Los Angeles County were reanalyzed with residential magnetic fields predicted from the wiring configurations of nearby transmission and distribution lines. As described in a companion paper, the 24-h means of the magnetic field's magnitude in subjects' homes were predicted by a physically based regression model that had been fitted to 24-h measurements and wiring data. In addition, magnetic field exposures were adjusted for the most likely form of exposure assessment errors: classic errors for the 24-h measurements and Berkson errors for the predictions from wire configurations. Although the measured fields had no association with childhood leukemia (P for trend=.88), the risks were significant for predicted magnetic fields above 1.25 mG (odds ratio=2.00, 95% confidence interval=1.03-3.89), and a significant dose-response was seen (P for trend=.02). When exposures were determined by a combination of predictions and measurements that corrects for errors, the odds ratio (odd ratio=2.19, 95% confidence interval=1.12-4.31) and the trend (p =.007) showed somewhat greater significance. These findings support the hypothesis that magnetic fields from electrical lines are causally related to childhood leukemia but that this association has been inconsistent among epidemiologic studies due to different types of exposure assessment error. In these data, the leukemia risks from a child's residential magnetic field exposure appears to be better assessed by wire configurations than by 24-h area measurements. However, the predicted fields only partially account for the effect of the Wertheimer-Leeper wire code in a multivariate analysis and do not completely explain why these wire codes have been so often associated with childhood leukemia. The most plausible explanation for our findings is that the causal factor is another magnetic field exposure metric correlated to both wire code and the field's time-averaged magnitude. Copyright 1999

  17. Foveated model observers to predict human performance in 3D images

    NASA Astrophysics Data System (ADS)

    Lago, Miguel A.; Abbey, Craig K.; Eckstein, Miguel P.

    2017-03-01

    We evaluate 3D search requires model observers that take into account the peripheral human visual processing (foveated models) to predict human observer performance. We show that two different 3D tasks, free search and location-known detection, influence the relative human visual detectability of two signals of different sizes in synthetic backgrounds mimicking the noise found in 3D digital breast tomosynthesis. One of the signals resembled a microcalcification (a small and bright sphere), while the other one was designed to look like a mass (a larger Gaussian blob). We evaluated current standard models observers (Hotelling; Channelized Hotelling; non-prewhitening matched filter with eye filter, NPWE; and non-prewhitening matched filter model, NPW) and showed that they incorrectly predict the relative detectability of the two signals in 3D search. We propose a new model observer (3D Foveated Channelized Hotelling Observer) that incorporates the properties of the visual system over a large visual field (fovea and periphery). We show that the foveated model observer can accurately predict the rank order of detectability of the signals in 3D images for each task. Together, these results motivate the use of a new generation of foveated model observers for predicting image quality for search tasks in 3D imaging modalities such as digital breast tomosynthesis or computed tomography.

  18. First Assessments of Predicted ICESat-2 Performance Using Aircraft Data

    NASA Technical Reports Server (NTRS)

    Neumann, Thomas; Markus, Thorsten; Cook, William; Hancock, David; Brenner, Anita; Kelly, Brunt; DeMarco, Eugenia; Reed, Daniel; Walsh, Kaitlin

    2012-01-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key observations of ice sheet elevation change, sea ice freeboard, vegetation canopy height, earth surface elevation, and sea surface height. Scheduled for launch in mid-2016, ICESat-2 will use a high repetition rate (10 kHz), small footprint (10 m nominal ground diameter) laser, and a single-photon-sensitive detection strategy (photon counting) to measure precise range to the earth's surface. Using green light (532 nm), the six beams of ICESat-2 will provide improved spatial coverage compared with the single beam of ICESat, while the differences in transmit energy among the beams provide a large dynamic range. The six beams are arranged into three pairs of beams which allow slopes to measured on an orbit-by-orbit basis. In order to evaluate models of predicted ICESat-2 performance and provide ICESat-2-like data for algorithm development, an airborne ICESat-2 simulator was developed and first flown in 2010. This simulator, the Multiple Altimeter Beam Experimental Lidar (MABEL) was most recently deployed to Iceland in April 2012 and collected approx 85 hours of science data over land ice, sea ice, and calibration targets. MABEL uses a similar photon-counting measurement strategy to what will be used on ICESat-2. MABEL collects data in 16 green channels and an additional 8 channels in the infrared aligned across the direction of flight. By using NASA's ER-2 aircraft flying at 20km altitude, MABEL flies as close to space as is practical, and collects data through approx 95% of the atmosphere. We present background on the MABEL instrument, and data from the April 2012 deployment to Iceland. Among the 13 MABEL flights, we collected data over the Greenland ice sheet interior and outlet glaciers in the southwest and western Greenland, sea ice data over the Nares Strait and Greenland Sea, and a number of small glaciers and ice caps in Iceland and Svalbard

  19. Field Performance of Recycled Plastic Foundation for Pipeline

    PubMed Central

    Kim, Seongkyum; Lee, Kwanho

    2015-01-01

    The incidence of failure of embedded pipelines has increased in Korea due to the increasing applied load and the improper compaction of bedding and backfill materials. To overcome these problems, a prefabricated lightweight plastic foundation using recycled plastic was developed for sewer pipelines. A small scale laboratory chamber test and two field tests were conducted to verify its construction workability and performance. From the small scale laboratory chamber test, the applied loads at 2.5% and 5.0% of deformation were 3.45 kgf/cm2 and 5.85 kgf/cm2 for Case S1, and 4.42 kgf/cm2 and 6.43 kgf/cm2 for Case S2, respectively. From the first field test, the vertical deformation of the recycled plastic foundation (Case A2) was very small. According to the analysis based on the PE pipe deformation at the connection (CN) and at the center (CT), the pipe deformation at each part for Case A1 was larger than that for Case A2, which adopted the recycled lightweight plastic foundation. From the second field test, the measured maximum settlements of Case B1 and Case B2 were 1.05 cm and 0.54 cm, respectively. The use of a plastic foundation can reduce the settlement of an embedded pipeline and be an alternative construction method.

  20. Using a Surrogate Test of Math Skills to Predict Performance of Non-Traditional Accounting Students.

    ERIC Educational Resources Information Center

    Schiff, Jonathan B.

    1989-01-01

    A study was designed to predict student performance in the introductory accounting course, specifically the performance of nontraditional students. A predictive instrument to measure mathematical abilities was employed; outcomes were compared to individuals' final course grade. Results indicate that a brief math skills test can predict performance…

  1. Field of view selection for optimal airborne imaging sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Barnard, P. Werner; Fildis, Halidun; Erbudak, Mustafa; Senger, Tolga; Alpman, Mehmet E.

    2014-05-01

    The choice of the Field of View (FOV) of imaging sensors used in airborne targeting applications has major impact on the overall performance of the system. Conducting a market survey from published data on sensors used in stabilized airborne targeting systems shows a trend of ever narrowing FOVs housed in smaller and lighter volumes. This approach promotes the ever increasing geometric resolution provided by narrower FOVs, while it seemingly ignores the influences the FOV selection has on the sensor's sensitivity, the effects of diffraction, the influences of sight line jitter and collectively the overall system performance. This paper presents a trade-off methodology to select the optimal FOV for an imaging sensor that is limited in aperture diameter by mechanical constraints (such as space/volume available and window size) by balancing the influences FOV has on sensitivity and resolution and thereby optimizing the system's performance. The methodology may be applied to staring array based imaging sensors across all wavebands from visible/day cameras through to long wave infrared thermal imagers. Some examples of sensor analysis applying the trade-off methodology are given that highlights the performance advantages that can be gained by maximizing the aperture diameters and choosing the optimal FOV for an imaging sensor used in airborne targeting applications.

  2. High field transport of high performance black phosphorus transistors

    NASA Astrophysics Data System (ADS)

    Li, Tiaoyang; Zhang, Zhenfeng; Li, Xuefei; Huang, Mingqiang; Li, Sichao; Li, Shengman; Wu, Yanqing

    2017-04-01

    Black phosphorus is a layered material stacked together by weak van der Waals force with a direct bandgap and highly anisotropic electrical characteristics. Most of the previous reports focus on the low-field mobility of transistors based on SiO2 back gate dielectrics. Recently, black phosphorus transistors encapsulated with hexagonal boron nitride have been demonstrated with greatly improved mobility at low temperatures. However, this approach requires multiple dry transfer methods using both black phosphorus and boron nitride flakes, which are only available in small crystal sizes. Here, we demonstrated high performance black phosphorus transistors using atomic layer deposited high-κ HfO2 as a back gate dielectric. The maximum drain current density reaches 480 μA/μm at 300 K and a record high drain current 906 μA/μm at 20 K in a short channel 100 nm device based on HfO2, exhibiting excellent current-carrying capability and high field strength. Moreover, a side-by-side comparison on important figures-of-merit is carried out systematically for transistors based on HfO2 with those based on conventional SiO2, showing more than 50% performance improvement in mobility and over 8 times reduction in interface trap density.

  3. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.

    PubMed

    Wang, Fang; Annable, Michael D; Jawitz, James W

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important

  4. [Performance of an open low-field MR unit in routine examination of knee lesions and comparison with high field systems].

    PubMed

    Vahlensieck, M; Schnieber, O

    2003-02-01

    The purpose of this study was to analyze the diagnostic value of a low-field open MR system in the diagnosis of knee lesions and to compare it with that of high-field MR systems. In 139 knees,arthroscopic investigations were used as the gold standard to calculate sensitivity, specificity, predictive values and accuracy of the low-field open MR system. Figures for high field systems were taken from the literature. The values for the open MR system relative to arthroscopy were as follows: sensitivity 66%,specificity 95%,positive predictive value 64%,negative predictive value 92%, and accuracy 82%. The corresponding values taken from 10 relevant publications for highfield systems were: sensitivity 81%, specificity 90%, accuracy 90%. A lower diagnostic performance has to be expected using open low field MR units for knee lesions in comparison to high field units. Sedative drugs can make it possible for claustrophobic patients to be investigated in high-field units. The use of open low-field scanners may still be indicated in very adipose patients who do not fit into closed units.

  5. Comparisons of Transport and Dispersion Model Predictions of the Joint Urban 2003 Field Experiment

    DTIC Science & Technology

    2007-03-01

    Comparisons of Transport and Dispersion Model Predictions of the Joint Urban 2003 Field Experiment I N S T I T U T E F O R D E F E N S E A N A L Y...T E F O R D E F E N S E A N A L Y S E S IDA Paper P-4195 Comparisons of Transport and Dispersion Model Predictions of the Joint Urban 2003 Field...Material Transport and Dispersion Prediction Models .” The objective of this effort was to conduct analyses and special studies associated with the

  6. Prediction of noise field of a propfan at angle of attack

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1991-01-01

    A method for predicting the noise field of a propfan operating at an angle of attack to the oncoming flow is presented. The method takes advantage of the high-blade-count of the advanced propeller designs to provide an accurate and efficient formula for predicting their noise field. The formula, which is written in terms of the Airy function and its derivative, provides a very attractive alternative to the use of numerical integration. A preliminary comparison shows rather favorable agreement between the predictions from the present method and the experimental data.

  7. Aerodynamic Performance Predictions of Single and Twin Jet Afterbodies

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Pao, S. Paul; Abdol-Hamid, Khaled S.; Jones, William T.

    1995-01-01

    The multiblock three-dimensional Navier-Stokes method PAB3D was utilized by the Component Integration Branch (formerly Propulsion Aerodynamics Branch) at the NASA-Langley Research Center in an international study sponsored by AGARD Working Group #17 for the assessment of the state-of-the-art of propulsion-airframe integration testing techniques and CFD prediction technologies. Three test geometries from ONERA involving fundamental flow physics and four geometries from NASA-LaRC involving realistic flow interactions of wing, body, tail, and jet plumes were chosen by the Working Group. An overview of results on four (1 ONERA and 3 LaRC) of the seven test cases is presented. External static pressures, integrated pressure drag and total drag were calculated for the Langley test cases and jet plume velocity profiles and turbulent viscous stresses were calculated for the ONERA test case. Only selected data from these calculations are presented in this paper. The complete data sets calculated by the participants will be presented in an AGARD summary report. Predicted surface static pressures compared favorably with experimental data for the Langley geometries. Predicted afterbody drag compared well with experiment. Predicted nozzle drag was typically low due to over-compression of the flow near the trailing edge. Total drag was typically high. Predicted jet plume quantities on the ONERA case compared generally well with data.

  8. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Chi, Feng; Guo, Yong

    2015-07-01

    The spin thermoelectric performance in a germanene nano-ribbon is studied by using the nonequilibrium Green’s function method. We demonstrate theoretically that the temperature bias Δ T can generate spin thermopower when an exchange field breaks the edge states of germanene leads. However, the spin thermoelectric efficiency is quite low with its maximum {{Z}s}T≃ 0.01 . When applying strong electric field in the central region, a relatively large spin-dependent band gap can be opened, and hence the spin figure of merit is predicted to be more than 100 times larger than the case without external field. The remarkably enhancement of ZsT (larger than one) comes from the suppression of the thermal conductance and the improvement of the spin Seebeck effect. These striking properties make ferromagnetic leads germanene nano-ribbon a promising pure spin thermoelectric nanogenerator.

  9. Incremental validity of Useful Field of View subtests for the prediction of instrumental activities of daily living.

    PubMed

    Aust, Frederik; Edwards, Jerri D

    2016-01-01

    The Useful Field of View Test (UFOV®) is a cognitive measure that predicts older adults' ability to perform a range of everyday activities. However, little is known about the individual contribution of each subtest to these predictions, and the underlying constructs of UFOV performance remain a topic of debate. We investigated the incremental validity of UFOV subtests for the prediction of Instrumental Activities of Daily Living (IADL) performance in two independent datasets, the SKILL (n = 828) and ACTIVE (n = 2426) studies. We then explored the cognitive and visual abilities assessed by UFOV using a range of neuropsychological and vision tests administered in the SKILL study. In the four subtest variant of UFOV, only Subtests 2 and 3 consistently made independent contributions to the prediction of IADL performance across three different behavioral measures. In all cases, the incremental validity of UFOV Subtests 1 and 4 was negligible. Furthermore, we found that UFOV was related to processing speed, general nonspeeded cognition, and visual function; the omission of Subtests 1 and 4 from the test score did not affect these associations. UFOV Subtests 1 and 4 appear to be of limited use to predict IADL and possibly other everyday activities. Future research should investigate whether shortening UFOV by omitting these subtests is a reliable and valid assessment approach.

  10. Subjective preference evaluation of sound fields by performing singers

    NASA Astrophysics Data System (ADS)

    Noson, Dennis

    2003-08-01

    A model of the auditory process is proposed for performing singers, which incorporates the added signal from bone conduction, as well as the psychological distance for subjective preference of the performer from the acoustic sound field of the stage. The explanatory power of previous scientific studies of vocal stage acoustics has been limited by a lack of an underlying theory of performer preference. Ando's theory, using the autocorrelation function (ACF) for parametrizing temporal factors, was applied to interpretation of singer sound field preference determined by the pair comparison method. Melisma style singing (no lyrics) was shown to increase the preferred delay time of reflections from a mean of 14 ms with lyrics to 23 ms without (p<0.05). The extent of the shift in preferred time delay was shown to be directly related to minima of the effective duration of the running ACF, (τe)min, calculated from each singer's voice. Voice matching experiments for singers demonstrated a strong overestimate of the voice outside the head compared with the singer's own voice (22.4 dB overestimate, p<0.01). Individual singer melisma singing delay preferences were compared for ``ah'' versus ``hum'' syllables, and the increased delay preference (41 ms) was shown to be correlated with (τe)min (r2<0.68, p<0.01). When the proposed bone conduction model was applied, using the measured overestimate of sound level of the singer's own voice for each singer (9.9 dB mean overestimate difference between ``ah'' and ``hum,'' p<0.01), the relationship of singer preference to (τe)min was improved (r2=0.97, p<0.01). Thesis advisor: Yoichi Ando Copies of this thesis are available from the author by inquiry at BRC Acoustics, 1741 First Avenue South, Seattle, WA 98134 USA. E-mail address: dnoson@brcacoustics.com

  11. Field measured and modeled performance of full scale cylindrical stratified chilled water storage tanks

    NASA Astrophysics Data System (ADS)

    Musser, Amy

    1998-10-01

    Field-measured performance of full scale cylindrical naturally stratified chilled water storage tanks with radial and octagonal inlet diffusers is analyzed. A detailed computational fluid dynamics model of flow near the lower inlet diffuser is also constructed, and is used to obtain simplified expressions to predict performance from design parameters. The performance of four full scale ranks operating under controlled flow rate conditions is field monitored and analysis techniques appropriate for use with field data are developed. The tests indicate that inlet mixing increases with inlet flow rate, but that the tanks tested perform well at design flow rate, with 4% or less of the overall tank capacity lost to mixing. Results also suggest that upper radial diffusers may allow more mixing than lower radial diffusers. Data are also collected from three installations under normal operating conditions, and operating strategies are identified and described. Under typical operation, flow rates tend to be much lower than design, and system return temperatures are often lower than predicted by the designer. Detailed simulations of the flow neat lower radial inlet diffusers are performed using a commercially available computational fluid dynamics software package. Dimensionless parameters relevant to the development of stratification are identified and a parametric study is constructed in which each parameter assumes two values, representing high and low typical operating conditions. The computational simulations determine that the Richardson number and two geometric parameters affect stratification, and a linear regression model is developed to describe these effects. This result allows further assessment of current guidelines for the design of lower radial inlet diffusers, and provides a simplified method that tank designers and operators can use to estimate inlet performance based on design parameters.

  12. Holland Type as a Moderator of Personality-Performance Predictions.

    ERIC Educational Resources Information Center

    Fritzsche, Barbara A.; McIntire, Sandra A.; Yost, Amy Powell

    2002-01-01

    Data from 559 undergraduates provided modest evidence that Holland's taxonomy of work environments moderated the relationship between personality and performance. The traits of agreeableness and conscientiousness were better predictors of performance in certain environments. The important relationship between personality and performance may be…

  13. Predicting College Performance of Homeschooled versus Traditional Students

    ERIC Educational Resources Information Center

    Yu, Martin C.; Sackett, Paul R.; Kuncel, Nathan R.

    2016-01-01

    The prevalence of homeschooling in the United States is increasing. Yet little is known about how commonly used predictors of postsecondary academic performance (SAT, high school grade point average [HSGPA]) perform for homeschooled students. Postsecondary performance at 140 colleges and universities was analyzed comparing a sample of traditional…

  14. Prediction of Performance of a Cavitating Propeller in Oblique Inflow

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Kinnas, Spyros A.

    2015-12-01

    A cavitating propeller subject to an oblique inflow in a cavitating tunnel is simulated using potential flow methods coupled with a Reynolds-averaged Navier-Stokes (RANS) solver. The propeller is mainly modelled using a panel method, while the inflow to the propeller is evaluated by coupling a Vortex-Lattice Method (VLM) with the RANS solver. The effects of the tunnel wall are incorporated into the calculated effective inflow to the propeller. The predicted propeller forces and cavity pattern are correlated with experiment. The fully wetted open water characteristics of the propeller predicted by the panel method are presented as well.

  15. Prediction of sonic boom from experimental near-field overpressure data. Volume 1: Method and results

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hague, D. S.; Reiners, S. J.

    1975-01-01

    A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.

  16. Performance Modeling: Understanding the Present and Predicting theFuture

    SciTech Connect

    Bailey, David H.; Snavely, Allan

    2005-11-30

    We present an overview of current research in performance modeling, focusing on efforts underway in the Performance Evaluation Research Center (PERC). Using some new techniques, we are able to construct performance models that can be used to project the sustained performance of large-scale scientific programs on different systems, over a range of job and system sizes. Such models can be used by vendors in system designs, by computing centers in system acquisitions, and by application scientists to improve the performance of their codes.

  17. Performance analysis of the toroidal field ITER production conductors

    NASA Astrophysics Data System (ADS)

    Breschi, M.; Macioce, D.; Devred, A.

    2017-05-01

    The production of the superconducting cables for the toroidal field (TF) magnets of the ITER machine has recently been completed at the manufacturing companies selected during the previous qualification phase. The quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers include performance tests of several conductor samples from selected unit lengths. The short full-size samples (4 m long) were subjected to DC and AC tests in the SULTAN facility at CRPP in Villigen, Switzerland. In a previous work the results of the tests of the conductor performance qualification samples were reported. This work reports the analyses of the results of the tests of the production conductor samples. The results reported here concern the values of current sharing temperature, critical current, effective strain and n-value from the DC tests and the energy dissipated per cycle from the AC loss tests. A detailed comparison is also presented between the performance of the conductors and that of their constituting strands.

  18. Premium performance heating oil - Part 2, Field trial results

    SciTech Connect

    Jetter, S.M.; Hoskin, D.; McClintock, W.R.

    1996-07-01

    Limited field trial results of a heating oil additive package developed to minimize unscheduled maintenance indicate that it achieves its goal of keeping heating oil systems cleaner. The multifunctional additive package was developed to provide improved fuel oxidation stability, improved corrosion protection, and dispersency. This combination of performance benefits was chosen because we believed it would retard the formation of sludge, as well as allow sludge already present to be carried through the system without fouling the fuel system components (dispersency should keep sludge particles small so they pass through the filtering system). Since many unscheduled maintenance calls are linked to fouling of the fuel filtering system, the overall goal of this technology is to reduce these maintenance calls. Photographic evidence shows that the additive package not only reduces the amount of sludge formed, but even removes existing sludge from filters and pump strainers. This {open_quotes}clean-up{close_quotes} performance is provided trouble free: we found no indication that nozzle/burner performance was impaired by dispersing sludge from filters and pump strainers. Qualitative assessments from specific accounts that used the premium heating oil also show marked reductions in unscheduled maintenance.

  19. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 1: Theory and application

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A computer program, the Propeller Nacelle Aerodynamic Performance Prediction Analysis (PANPER), was developed for the prediction and analysis of the performance and airflow of propeller-nacelle configurations operating over a forward speed range inclusive of high speed flight typical of recent propfan designs. A propeller lifting line, wake program was combined with a compressible, viscous center body interaction program, originally developed for diffusers, to compute the propeller-nacelle flow field, blade loading distribution, propeller performance, and the nacelle forebody pressure and viscous drag distributions. The computer analysis is applicable to single and coaxial counterrotating propellers. The blade geometries can include spanwise variations in sweep, droop, taper, thickness, and airfoil section type. In the coaxial mode of operation the analysis can treat both equal and unequal blade number and rotational speeds on the propeller disks. The nacelle portion of the analysis can treat both free air and tunnel wall configurations including wall bleed. The analysis was applied to many different sets of flight conditions using selected aerodynamic modeling options. The influence of different propeller nacelle-tunnel wall configurations was studied. Comparisons with available test data for both single and coaxial propeller configurations are presented along with a discussion of the results.

  20. Performance of dust respirators with facial seal leaks. II. Predictive model

    SciTech Connect

    Hinds, W.C.; Bellin, P.

    1987-10-01

    A performance model for half-mask and single-use respirators is presented. It represents a possible alternative to field measurements of respirator performance. Experimental data on filter and leak performance given in Part I were used to develop a model that allows one to predict 1) the overall respirator penetration as a function of particle size for any work rate and 2) overall total mass penetration for any work rate and exposure aerosol-size distribution for a known respirator filter and facial seal leak condition. A simplified method based on general regression equations is presented that allows one to estimate these quantities based on QNFT (quantitative fit testing) measurements and a knowledge of the exposure aerosol size distribution. Example calculations are given for a situation in which QNFT gives a fit factor of 50 for a half-mask with dust, fume and mist filter cartridges, but predicted protection factors for various use conditions range from 20 to 81 depending on exposure particle-size distribution and work rate of the wearer.